WO2013026396A1 - 轮径变化及高速爆胎安全行驶控制和救助*** - Google Patents

轮径变化及高速爆胎安全行驶控制和救助*** Download PDF

Info

Publication number
WO2013026396A1
WO2013026396A1 PCT/CN2012/080470 CN2012080470W WO2013026396A1 WO 2013026396 A1 WO2013026396 A1 WO 2013026396A1 CN 2012080470 W CN2012080470 W CN 2012080470W WO 2013026396 A1 WO2013026396 A1 WO 2013026396A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
vehicle
module
tire
puncture
Prior art date
Application number
PCT/CN2012/080470
Other languages
English (en)
French (fr)
Inventor
王德红
Original Assignee
Wang Dehong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Dehong filed Critical Wang Dehong
Priority to EP12824947.1A priority Critical patent/EP2818340B1/en
Priority to ES12824947.1T priority patent/ES2652503T3/es
Publication of WO2013026396A1 publication Critical patent/WO2013026396A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17558Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for collision avoidance or collision mitigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2240/00Monitoring, detecting wheel/tire behaviour; counteracting thereof
    • B60T2240/07Tire tolerance compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data

Definitions

  • the invention relates to a safe driving control and rescue system for a vehicle wheel diameter change and a high speed puncture.
  • the tire has a section width of 195 mm
  • the tire itself has a section height of 136.5 mm
  • a hub radius of 355.6 mm and a total radius of 492.1 mm
  • the circumference thereof is 3090.4mm
  • the total radius of the wheel will be reduced from 492.1mm to a radius of 355.6mm
  • the rolling radius or the height of the hub from the ground can be reduced by 27.74%.
  • the line speed at the same angular velocity will also be reduced by 27.74%, which means that the same tire rotation, the rolling distance will be 0.857 meters less than the coaxial non-explosive tire wheel.
  • the theoretical linear speed of the wheel is 30m/s. If the right front wheel is a driving wheel puncture, in the extreme case of no manipulation of the direction, this type of non-puncture In theory, the wheel will advance 8.32 meters more per second than the tire wheel. If the rolling resistance of the tire wheel and the ground is greater than that of the non-explosive tire, the effect of the differential will further amplify the driving force of the non-explosive tire.
  • the width of the general lane is about 3.5m, and the axle between the two wheels of the car is only Less than 2 meters, the non-bleeding tire can drive one lane and two wheelbase widths in a half second instant than the tire wheel; especially after the tire is torn, the tire wheel will be subjected to huge rolling resistance instantaneously.
  • the device will make the non-burst tire fly, the vehicle will rotate with the tire tire as the axis, and it will not explode within 0.3 seconds.
  • the tire wheel takes more than one axle distance and turns the front end 90 degrees or even 180 degrees.
  • the horizontal side occupies the sidetrack of the flat tire.
  • the huge forward inertia of the car is enough to cause huge traffic accidents such as rolling and tailing in 0.5 seconds.
  • ABS wheel speed sensor to detect the air pressure drop by the left and right tire speed difference is that as long as the ABS is installed, basically no additional cost is required, but the problem is that the air pressure measurement accuracy is lower than the direct mode, and the tire pressure appears in all four wheels. Unable to detect when falling.
  • the direct TPMS mounts the sensor and RF transmitter chip near the tire valve to alert the on-board wireless receiver in time when the tire pressure is too high, too low, fast or slow air leaks, and the tire temperature changes abnormally. Puncture occurrence information.
  • Tire pressure conditions, including spare tires, can be monitored at any time, whether the car is driving or parked.
  • TPMS is unable to carry out automatic rescue after high-speed puncture and control of vehicle stability. It cannot fundamentally eliminate major car accidents such as car crashes and possible serial rear-end collisions caused by punctures.
  • the sampling frequency is low, and it is usually sampled in a few seconds to several minutes.
  • the puncture signal cannot be obtained in time, and in order to obtain the abnormal information of the tire pressure such as the puncture, it is necessary to increase the sampling frequency. It will inevitably affect the service life of the battery, and at the same time, the production cost is high, the power saving mode needs to be considered, and the circuit design is complicated; it is generally located at the installation position of the valve, and the tire pressure monitoring and transmitting module is easily damaged when the tire is loaded or unloaded.
  • TPMS or BMBS Physical Transport Detection and Braking System
  • BMBS and ESP systems for controlling vehicles under dangerous conditions cannot measure and provide severe air loss or puncture.
  • the radius of the tire changes, so that the real-time information of the effective rolling radius of each round cannot be used, and the effective rolling radius caused by the puncture of the high-speed vehicle changes instantaneously, and more targeted, more timely and scientific and effective driving control is carried out. And rescue.
  • the control logic is based on the assumption that the effective rolling radius of each round is constant.
  • judging whether a certain scrolling speed changes not only depends on whether the rotational angular velocity changes, but also whether the effective rolling radius changes.
  • the two kinds of detections themselves are indispensable. Only when the two are combined can they be accurate. Only by determining the operating status of each wheel can the vehicle be scientifically and effectively controlled. If only the speed and mutual difference of each wheel angle are monitored, and the current effective rolling radius of each wheel is not changed, it is bound to be seriously deviated from the actual situation of a serious shortage of air or sudden puncture, which leads to the ESP system. A serious error control strategy.
  • the cumulative effect of the lateral force deviation caused by the sudden increase of the lack of rolling rolling resistance is relatively weak, and the large longitudinal forward inertia of the relatively high-speed traveling vehicle is relatively weak.
  • the vehicle is still in a longitudinally stable forward state due to inertia.
  • the ESP has not been able to detect the critical threshold of the vehicle reaching the side slip or the rotation around the vertical axis, but it can first detect that the left front wheel angular velocity increases significantly by nearly 30%.
  • the ESP may be regarded as a slipping tendency of the left front wheel on the smooth side of the route, so that the left front wheel is braked so that its angular velocity is consistent with the right normal wheel.
  • the right front wheel will surely get more driving force due to the differential action.
  • the left side of the tire will rotate more distances at the same time.
  • the ESP participates in the control, but it will instantly induce sudden,
  • the greater left-bias force causes the puncture vehicle to turn around and roll over.
  • the ESP system will have logic disorder in control, which may cause countermeasures and may lead to more serious accident hazards.
  • the present application proposes a rescue for the high-speed tire bursting of the vehicle and applies to the wheel diameter occurrence.
  • the safe driving intelligent control system with obvious changes ensures the safe and stable operation of vehicles with changed wheel diameters, and the dangers of human-vehicle damage caused by high-speed puncture vehicles Major traffic accidents are reduced to zero.
  • a wheel diameter change and high speed puncture safety driving control and rescue system comprising: a real-time monitoring module for detecting rolling wheel diameters of respective wheels; and a wheel diameter signal for transmitting the real-time monitoring module a signal transmission module, configured to receive a wheel diameter signal from the signal transmission module and perform analysis and processing to obtain an analysis and processing module of a rolling radius of each wheel of an effective wheel diameter; a central control device for The height variation of the effective wheel diameter of each wheel transmitted by the analysis and processing module determines whether a tire burst occurs in each wheel, and implements integrated driving control and a tire rescue function; and a wheel brake control module; the central control device determines After a tire has a flat tire, the central control unit transmits information such as the emergency brake command and the effective wheel diameter of each wheel and the real-time angular velocity of each wheel to the wheel brake control module, which will be based on the tire wheel The difference between the effective wheel diameter of the effective wheel diameter and the non-percussed wheel is that the vehicle
  • the wheel brake control module makes the angular velocity of the tire tire and the coaxial non-explosive tire wheel by generating a braking force control signal that increases the braking force of the coaxial non-explosive tire wheel.
  • the angular velocity is adjusted to be inversely proportional to the real-time effective rolling radius of the two, thereby controlling the coaxial two front wheels or the two rear wheels of the vehicle to achieve the same linear velocity; or the vehicle brake control module while the vehicle is in a cornering state
  • the difference between the angular velocity of the tire tire and the angular velocity of the coaxial non-explosive tire is adjusted to meet the requirement of the steering angle of the curved road to meet the steering angle of the curved road, thereby eliminating the tire wheel
  • the difference between the rolling speed and the rolling speed caused by the difference between the rolling radius, the rolling resistance, the ground adhesion and the coaxial non-explosive tire wheel ensures that the linear speed of the two wheels is the same when traveling straight, or the speed difference satisfies the requirements of the curve driving.
  • the root cause of the lateral lateral force induced by the puncture is eliminated, so that the puncture vehicle is completely in a stable and safe driving state.
  • the central control device jointly controls the wheel brake control module and the engine drive control module to increase or decrease the driving traction of the engine to the vehicle while generating the necessary braking force for the vehicle. Ensure that the vehicle accelerates or decelerates, so that the vehicle can be changed at a reasonable speed, especially to avoid speed control during high-speed tire relief. Improper and a rear-end collision with the rear car.
  • the rolling wheel diameter real-time monitoring module comprises a set of one or more height sensors fixedly mounted on the respective wheel axles at positions close to the respective wheel hubs, and can transmit signals to the central processor in a wired manner to avoid sampling frequency.
  • the height sensor is ultrasonic and infrared.
  • a wireless measuring component such as a laser measuring the height of the hub of various electromagnetic waves from the ground.
  • the height change amount of the effective wheel diameter of the central control device is equal to the maximum change amount Ah max of the height of the effective wheel diameter, and the height change amount remains unchanged when the vehicle travels for a set delay distance.
  • Ah max the maximum change amount of the height of the effective wheel diameter
  • Ah>Ah max appears (the tire is completely out of gas and the hub size will also decrease, it will not exist in practice; it usually appears when the tire is just falling or the lower surface of the sensor is higher than the lower road surface of the tire) or Ah ⁇ 0 is negative
  • the value indicating that the effective rolling radius of the tire will increase, but does not exist in practice, generally occurs when the tire jumps off the ground
  • the road surface is convex and concave abnormal, and the interference data is collected at this time. After a certain distance, it will disappear automatically and the system will not consider it.
  • the wheel diameter variation may be determined by detecting a roll amount of the puncture vehicle in the direction of the blaster wheel, and determining a wheel slant roll amount sensor as an auxiliary judgment system through a set installed at the bottom of the vehicle
  • the roll amount sensor after using a certain tire, the vehicle has a certain height reduction amount Ah max from the ground at the place, and the specific height reduction amount Ah max causes the vehicle to have a certain degree of roll angle e in the direction. Max , the body level of the chassis maintains a stable tilt state during the operation of the tire tire. By monitoring the specific tilt state, it can also assist in determining whether a tire has a puncture or a specific radius of change in the rolling radius.
  • the central control device determines that a puncture has occurred, a certain distance traveled, when found When the height change of the effective wheel diameter of the tire is no longer equal to Ah max , but the normal value is restored, the central control device determines that the vehicle has passed the abnormally convex and concave road section, thereby issuing an instruction to immediately cancel the puncture rescue function.
  • the rolling wheel diameter real-time monitoring module preferentially selects a technical solution for detecting the effective rolling radius of the wheel from inside the wheel tire
  • the program is to install a detecting function integrated module device on the inner hub of each tire, the integrated module
  • the device comprises at least a power supply module, a crown inner height detecting sensor and a wireless transmitting module.
  • the detecting function integrated module can be installed at the valve mouth or can be mounted on the hub, and the crown detected when the detecting device rotates to the lowermost portion
  • the real-time variation of the effective rolling radius of the wheel can be used to determine the real-time variation of the effective rolling radius of the tire.
  • the advantage of this detection method is that it is not subject to road surface abnormal interference, and the processing data is easy and reliable.
  • the crown height detecting module can be installed on the wheel hub.
  • the inner crown height detecting sensor can detect the height change of the crown by ultrasonic, microwave, infrared, laser, and can also adopt the contact electromagnetic switch, close Switch, displacement detection sensor Sensing direct physical contact with the crown of resilient manner, measuring the height of a flat tire or a serious shortage of a particular gas while reducing the amount of the crown, thereby determining whether or not to puncture or serious air shortage, and acquires a current corresponding to the effective rolling radius.
  • the functional design of the above-mentioned crown height variation monitoring system can be monitored after the tire crown is lowered to the maximum value Ah max , and the tire is torn and rolled away from the hub when the tire is rolled for a long time.
  • the rolling radius corresponding to the real-time signal is far greater than the maximum value Rmax when the tire pressure is normal, the system will consider that the tire has fallen off and automatically adopts the radius of the metal hub as the current effective rolling radius.
  • the module function of the above-mentioned crown height variation detecting device is designed to transmit the puncture signal and the wheel diameter signal to the outside only when the crown height is lowered to the maximum value Ah max to extend the internal battery life.
  • the above-mentioned detecting device for detecting the change of the wheel diameter from the inside of the tire can integrate the acceleration, the tire pressure, and the tire temperature sensor, thereby becoming multifunctional with the wheel diameter, the tire temperature, the tire pressure, and the power saving.
  • the TPMS upgraded product VW-TPMS meets the higher and more scientific requirements for vehicle stability control.
  • the system further includes a puncture alarm module, and the puncture alarm module receives the central control
  • the puncture signal of the device automatically activates the alarm function inside and outside the vehicle, and maintains the alarm function until it is automatically released after the safe stop, or manually canceled by manual means.
  • the internal alarm function includes a voice prompt and the instrument warning light flashes;
  • the external alarm function includes lighting the fog light, the four-corner light, the brake light, the far and near light, whistling, or alarming with a dedicated alarm, including the activation of the four-corner light and the alternate flashing of the turn indicator to the side with the emergency stop belt.
  • a steering wheel angle measuring and stabilizing module is further provided, the steering wheel angle measuring and stabilizing module providing steering steering and angle information to the central control device, and being equipped with electric power after receiving a puncture signal from the central control device
  • the steering wheel stabilization module automatically increases the damping force of the steering wheel or fully locks the steering wheel, and appropriately reduces the damping when it detects that the driver has an active steering intention, so that the vehicle can slightly adjust the direction to change the lane.
  • the anti-rear rear-end module is further provided with a rear-end rear-end collision module that is in signal communication with the central control device.
  • the central control device includes an emergency braking function for reducing the vehicle speed after a puncture
  • the anti-rear rear-end module includes real-time detection a detecting device for the separation distance between the host vehicle and the following rear vehicle, the distance detecting device transmitting a distance detecting signal of the real-time detection to the anti-rear rear-end module, the anti-rear rear-end module first spacing the distance Compared with a predetermined "brake release threshold", when the separation distance is smaller than the "brake release threshold", the vehicle emergency brake release signal is sent to the central control device, and the central control device controls the wheel brake module and the engine.
  • the module issues a deceleration release control command to keep the vehicle's safety distance from the rear vehicle unchanged; and when the rear-end rear-end collision module finds that the separation distance between the vehicle and the rear vehicle is still further shortened rapidly, the anti-rear rear-end module will The separation distance is then compared with a predetermined "acceleration start threshold", if the interval with the rear vehicle is equal to or less than the "acceleration start threshold", Then, an acceleration start signal is sent to the central control device, and the central control device further issues an acceleration command to the engine drive control module, so that the two-wheel travel line speed on the tire wheel axle is equal or meets the curve lane through the wheel brake control module.
  • the central control device automatically cancels the above-mentioned acceleration function;
  • the central control device will restart the emergency deceleration function to reduce the risk of high-speed driving of the puncture vehicle; Repeatedly, control the speed of the flat tire vehicle until it drops As low as the system's scheduled "pneumatic safety rate".
  • the central control device when the vehicle does not have a puncture, only when there is a significant lack of air, such as 0 ⁇ Ah ⁇ 0.6 Ah max , the central control device, according to the real-time angular velocity and the effective wheel diameter real-time size change information on the left and right wheels of each axle
  • the steering wheel angle is only the starting wheel brake module, the tire tire alarm module, the steering wheel angle measurement and stability module, the engine drive control module, and the real-time line speed required to control the angular speed of each wheel to meet the safety of the vehicle.
  • the size control scheme eliminates the roll force caused by the change of the wheel diameter and the U-turn and the tail-flick phenomenon, and issues an internal alarm, and the driver decides whether to decelerate or stop the inspection; and finds that the tire is abnormally severely lacking or bursting.
  • the central control unit issues control commands to the wheel brake module, alarm module, steering wheel angle measurement and stability module, engine drive control module and anti-rear rear-end module to implement anti-rear Rear-end safe control and puncture of safe driving, such as reducing vehicle intelligence to "pneumatic safety speed" Help function.
  • the present invention adopts a sufficiently high monitoring sampling frequency, so that each time the vehicle travels 0.1 to 0.5 m, the effective rolling radius of the tire is completed.
  • the parameters are updated and implemented once to avoid the formation of the biasing force and the regulation of the safe speed.
  • FIG. 1 is a schematic view showing the structural principle of "VW-ESP wheel diameter variation and high-speed puncture safety driving control and rescue system” including "VWMS-wheel diameter variation and puncture monitoring device” according to the present invention.
  • the present invention provides a wheel diameter variation and puncture monitoring device 100.
  • the monitoring device 100 includes: an onboard power supply module 101, a wheel diameter change real time monitoring module 102, The wheel angular velocity real-time detection module 103, the signal transmission module 104 and each wheel effective rolling radius, angular velocity and real-time variation analysis and processing module 105.
  • the wheel diameter change real-time monitoring module 102 is composed, for example, by a set of one or more height sensors fixedly mounted on the respective wheel axles at positions close to the respective wheel hubs, and the height sensor determines the height of the hub from the ground in real time during the running of the vehicle or The height of the tire and its real-time variation, wherein the height sensor can measure the height of the hub from the ground or the height of the tire using ultrasonic, infrared, laser or other direct or indirect methods (herein referred to as the height variation of the effective wheel diameter of each wheel). Measuring component.
  • the rear vehicle will have a certain amount of height reduction Ah max from the ground at this point, and the specific height reduction amount Ah max will cause the vehicle to have a certain degree of roll angle e max in the direction, and the chassis level will be in the flat tire
  • a stable tilt state is maintained during the running of the wheel, and by monitoring the specific tilting state, it is also possible to assist in determining whether a tire has a puncture or a specific radius of change in the rolling radius.
  • This method of detecting the real-time variation of the effective rolling radius of the tire has the advantage of continuous measurement on-line, regardless of the sampling frequency and built-in battery life limit, and the equipment and wiring are simple and reliable.
  • the signal output module 104 transmits the real-time angular velocity signals of the respective wheels and the effective rolling radius real-time signals and/or the roll amount signals of the respective wheels by means of a wired harness.
  • the analysis and processing module 105 analyzes and processes the real-time detection signals of the effective rolling radius of each round to obtain the height variation Ah of the effective wheel diameter, that is, the variation of the hub from the ground height or the height of the tire.
  • the analysis and processing module 105 is a separate module.
  • the analytical processing and output modules can also be integrated into the vehicle's central control system as part of it.
  • the wheel diameter variation and puncture monitoring device 100 of Fig. 1 is included in the wheel diameter variation and high speed puncture safety travel control and rescue system (VW-ESP) 200 of the present invention.
  • the puncture rescue and safe travel control system 200 includes a central control device 210, a height change signal of each wheel effective wheel diameter output from the wheel diameter change and the analysis and processing module 105 of the puncture monitoring device 100, and a real-time angular velocity signal output of each wheel.
  • the central control unit 210 determines whether a puncture occurs during high-speed travel based on the input effective wheel height change signal of each wheel, and the determination process is as follows:
  • the sensor of the monitoring module 103 abutting the hub by measuring the height h of the hub from the ground in real time, combined with the fixed distance hi of the sensor itself from the rolling center of the axle, can be determined that the current corresponding is effective
  • the collected false signal is filtered to eliminate the abnormal road surface interference: that is, set a certain delay distance, or set the corresponding delay time according to the vehicle speed, and collect the effective wheel diameter.
  • the height change amount (decrease amount) is equal to Ah max , if the height change amount (decrease amount) remains unchanged after the set travel delay distance (such as 1 ⁇ 3 meters), it is judged that the tire breakage occurs.
  • the central control device 210 will not judge For the occurrence of a puncture, thereby filtering out the accidental height of the Ah max bumps under the sensor, or if the wheel itself just passes through a pit road that has a relative depth just below the sensor and is just Ah max ;
  • the central control device After detecting the height reduction of the effective wheel diameter of the running tire and returning to the normal value after a certain distance, no longer equal to the change amount of the puncture characteristic Ah max , the central control device immediately releases the puncture brake The function of rescue automatically eliminates the false signal interference caused by abnormal road surface; (5) After monitoring the height of the effective wheel diameter is equal to or greater than the change amount of Ah ma sign, for the vehicle with TPMS tire pressure monitoring function, the central control system will Automatically wake up the corresponding extension of the TPMS and perform patrol verification.
  • the central control device will automatically start the puncture intelligent rescue function; if the tire pressure is normal, the vehicle is indicated When driving over a concave or concave road surface or a scattered object surface, the central control device is not determined to have a puncture accident.
  • the wheel diameter change and high speed puncture safety travel control and rescue system (VW-ESP) 200 further includes a wheel brake control module 211, a puncture alarm module 212, and a steering wheel angle measurement connected to the central control device 210. And a stability module 213, an engine drive control module 214, and an anti-rear rear-end module 215.
  • the central control device 210 performs joint control on the wheel brake control module 211 and the engine drive control module 214 to increase or decrease the driving traction of the engine to the vehicle while generating the necessary braking force for the vehicle, so as to ensure that the vehicle can not only automatically decelerate, Moreover, the acceleration function can also be automatically implemented, so that the vehicle can perform the lane changing operation at a reasonable speed, in particular, avoiding the serial rear-end collision accident that occurs when the vehicle speed control is unscientific during the high-speed tire explosion rescue process and the rear vehicle.
  • the emergency brake execution command and the effective wheel diameter of each vehicle and the real-time angular velocity of each wheel are sent to the wheel brake control module 211, and the wheel brake control module 211
  • the brake force of different magnitudes and different action times is applied to each wheel according to the difference between the effective wheel diameter of the tire wheel and the effective wheel diameter of the non-explosive wheel and the state of the vehicle running, so that the vehicle remains in the running state of the vehicle.
  • the original stable driving state prevents the vehicle from running out of control and the risk of loss of control.
  • the running state of the vehicle may be straight or curved.
  • the wheel brake control module 211 achieves the same linear speed by controlling the two front wheels or the two rear wheels of the vehicle, and increases the braking force of the coaxial non-explosive tires, combined with the central control.
  • the device 210 controls the engine drive control module 214 to adjust the tire tire angular velocity and the coaxial non-explosive tire angular velocity to be inversely proportional to the real-time effective rolling radius of the two; in the driving state of the curve driving, the wheel brake control module According to the size and direction of the steering angle and the real-time effective rolling radius of the two, the difference between the angular speed of the tire and the angular speed of the coaxial non-explosive wheel is adjusted to meet the requirement of stable running of the two-wheel speed.
  • the wheel brake control module 211 expresses the dynamic difference between the effective rolling radius of the combined tire and the coaxial non-explosive tire, or the dynamic difference of the effective rolling radius of the left and right wheels on each axle of the vehicle in a broad sense.
  • the line speed of real-time travel of the tire tire and the coaxial non-explosive tire wheel (or the left and right coaxial wheels) is the same as the control target, and the control is respectively adjusted.
  • the amount of braking force applied to the two wheels, combined with the control of the driving force of the engine, and the separate/and/or combined braking and driving functions of other wheels, and the active eradication of the tires caused by the puncture The non-explosive tire wheel of the shaft, the difference in the linear speed of the two rounds actually caused by the difference in the mutual adhesion, rolling resistance, rolling radius and rolling angular velocity of the two wheels after the puncture, fundamentally eliminates the problem due to the puncture
  • the puncture alarm module 212 receives a puncture signal from the central control unit 210 or After a serious lack of air signal, the vehicle's alarm function is automatically activated to activate the alarm function inside and outside the vehicle, and the alarm function is maintained until it is automatically released after the safe stop, or manually cancelled by manual means.
  • the internal alarm function includes a voice prompt, The instrument warning light flashes; the external alarm function includes turning the fog light, the four-corner light, the brake light, the far and near light and the whistle, or alarming with a special alarm, including starting the four-corner light and turning the light to the side with the emergency stop belt.
  • the flashing alternately, so that when the distance from the rear vehicle is too short, the speed of the vehicle is too high, and the left and right lanes are occupied, the vehicle is prompted to be abnormal and the vehicle is actively decelerated or avoided.
  • the steering wheel angle measuring and stabilizing module 213 automatically increases the damping force of the steering wheel or completely locks the steering wheel, thereby preventing the tire from being blown out due to a sudden burst of tires.
  • the high-speed rolling tear causes the wheel to roll on the ground and suddenly the driver loses control of the direction caused by the large deviation force or the tail force, thereby further preventing the accident from occurring, and appropriately reducing the damping when detecting that the driver has the intention of actively turning. It is convenient for the vehicle to slightly adjust the direction to change lanes.
  • wheel diameter variation and high speed puncture safety driving control and rescue system are advantageous examples of the invention.
  • the (VW-ESP) 200 also includes an anti-rear rear-end module 215 in signal communication with the central control unit 210.
  • the anti-rear rear-end module 215 includes detection means for detecting the separation distance between the host vehicle and the following following vehicle in real time. After detecting a serious lack of gas or a puncture, such as Ah>0.6Ah ma , the interval distance detecting device transmits a real-time detected separation distance signal to the anti-rear rear-end module 215, and the anti-rear rear-end module blocks the interval.
  • the distance is first compared to a predetermined "brake release threshold", when the separation distance is less than the "brake release threshold”, a vehicle emergency brake release signal is sent to the central control unit 210, and the central control unit 210 is directed to the wheel brake module. 211 and the engine drive control module 214 issue a deceleration release control command to control the vehicle speed to keep the safe distance between the vehicle and the following vehicle unchanged; and when the anti-rear rear-end module 215 finds that the separation distance between the vehicle and the following vehicle is still further shortened rapidly , the anti-rear rear-end module 215 re-separates the separation distance with a predetermined one.
  • the "acceleration start threshold" comparison if the interval to the rear vehicle is equal to or less than the "acceleration start threshold”, an acceleration start signal is sent to the central control device 210, and the central control device 210 further issues an acceleration command to the engine drive control module 214, and thus Maintained by brake control module 211 While the two-wheel travel speed on the tire wheel axle is equal, increase the driving force of the engine to increase the vehicle speed, and actively increase the safe distance between the rear vehicle and the rear vehicle; when the distance increases to a predetermined "brake release threshold", the center The control device 210 will automatically issue an instruction to the engine drive control module 214 to actively cancel the acceleration function; when the rear-end rear-end collision module 215 finds that the rear vehicle is separated from the vehicle, it is increased to be larger than the predetermined one due to the warning of the fetal alarm module 212.
  • the central control unit 210 will restart the emergency deceleration function to reduce the risk of high-speed driving of the puncture vehicle; this is repeated until the controlled puncture vehicle is lowered to the system's predetermined "pneumatic safe speed".
  • the central control device 210 when the vehicle does not have a puncture, only when there is a significant lack of air, such as 0 ⁇ Ah ⁇ 0.6 Ah max , the central control device 210 only activates the wheel brake module 211 and the alarm module 212.
  • the steering wheel angle measuring and stabilizing module 213 and the engine driving control module 214 perform the control of the angular speeds of the wheels to meet the safe and stable operation of the vehicle according to the real-time angular velocity and the effective wheel diameter real-time magnitude change information and the steering wheel angle and direction on the respective axles.
  • the coaxial right and left two-wheel real-time linear speed control scheme is required to ensure the safe and stable operation of the vehicle, eradicate the side slip and the tail-blinking phenomenon of the vehicle, and issue an internal alarm, and the driver decides whether to decelerate or stop the inspection;
  • the central control unit 210 of the system is based on the above described scheme, based on the real-time angular velocity and the effective wheel size information.
  • Dynamic module 211 alarm module 212, steering wheel angle measurement and stability module 213, engine drive control Module 214, and the anti-car rear-end module 215 and a control command to reduce the "safe speed tire” intelligent control and other functions in accordance with the rescue vehicle smart After the above-described anti-car rear-end.
  • the sampling frequency is monitored with a sufficiently high wheel diameter so that each time the vehicle travels 0.1 to 0.5 m, the wheel is completed.
  • the effective rolling radius parameter is updated, and a regulation to avoid the formation of the biasing force and reduce the vehicle speed is implemented.
  • the present invention provides a wheel diameter variation and puncture monitoring device 100.
  • the monitoring device 100 includes: an onboard power supply module 101, a wheel diameter change real-time monitoring module 102, a wheel angular velocity real-time detection module 103, and a signal transmission.
  • VW-ESP puncture safety travel control and rescue system
  • the only difference from the embodiment of FIG. 1 above is that the structure and detection manner of the wheel diameter change real-time monitoring module 102 in the system is different from that of the first embodiment, and other structures and technical solutions are similar.
  • the wheel diameter variation and the wheel diameter variation real-time monitoring module 102 in the tire diameter monitoring device 100 may alternatively select a detection detecting device and a corresponding technical solution for the effective rolling radius of the wheel from inside the wheel tire.
  • the wheel diameter change real-time monitoring module 102 is different from the method for indirectly measuring the real-time size of the effective rolling radius of the tire from the outside of the tire in the first embodiment, but adopts a real-time detection function of the wheel diameter change on the hub inside each tire.
  • the integrated module device directly detects the reduced height of the tire crown under different air shortage conditions, thereby directly measuring the effective rolling radius variation of the tire.
  • the advantages are accurate data, simple processing, convenient installation, and measurement without external rain and snow.
  • the environment and the road surface are abnormally convex and concave, and it is not necessary to delay the detection and filtering of a certain road section for the detected data.
  • the wheel diameter change real-time monitoring module 102 includes at least a power supply module, a crown inner height detecting sensor, and a wireless transmitting module.
  • the detecting function integrating module 102 can be installed at the valve or can be mounted on the hub and rotated by the detecting device.
  • the real-time variation of the distance between the crown and the hub detected at the lowest part can be used to determine the real-time variation of the effective rolling radius of the tire.
  • the crown height detecting module can be installed on the wheel hub to double the diameter of the wheel.
  • the detection speed of the change; the inner height detection sensor of the crown can use ultrasonic wave signals such as ultrasonic waves, infrared rays, lasers, etc.
  • the contact electromagnetic switch, the proximity switch, the displacement amount detecting sensor can also be used. Physical direct elastic contact to sense the specific displacement of the crown, measure the reduction of the height of the crown during a puncture or severe gas shortage, to determine whether a puncture or severe gas shortage occurs, and obtain the current effective rolling radius.
  • the vehicle is forced to run at a high speed for a long time, and the tire is rolled and rolled for a long time.
  • the wheel hub is torn away from the hub.
  • the rolling radius corresponding to the real-time signal monitored by the wheel diameter change real-time monitoring module 102 will be much larger than the maximum value Rmax when the tire pressure is normal, and the crown height variation in the patented technology.
  • the functional design of the monitoring system automatically adopts the effective radius value of the pre-set tire wheel to directly contact the metal wheel to contact the ground, and takes the relevant effective rolling radius as a countermeasure.
  • the function design of the wheel diameter change real-time monitoring module 102 is only to detect the puncture and the wheel diameter signal when the tire is found to have a puncture, only when the height of the crown is reduced to the maximum characteristic value Ah max . Internal battery life and reduced manufacturing costs increase device reliability.
  • the wheel diameter change real-time monitoring module 102 can also integrate acceleration, tire pressure, and tire temperature sensor, thereby becoming a multi-functional TPMS upgrade product VW-TPMS with wheel diameter, tire temperature, tire pressure and power saving. Implement higher and more scientific driving stability control for vehicles.
  • the salvage and safe travel control functions of the wheel diameter change or high-speed puncture vehicle in this example include the travel speed regulation of the coaxial two wheels in which the wheel diameter change or the puncture occurs, and the steering wheel stability control , internal and external alarm function, and anti-rear vehicle rear-end deceleration control, so that the puncture vehicle can be safely and stably driven and reduced to a reasonable driving speed, allowing the driver to safely stop at the emergency parking belt to implement replacement of spare tires, etc. Operation, avoiding rollovers, U-turns, tails, and vicious chain rear-end collisions caused by uncontrollable vehicles caused by high-speed punctures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Regulating Braking Force (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种轮径变化及高速爆胎安全行驶控制和救助***(200),包括:用于检测各个车轮得滚动轮径的实时监测模块(102),用于处理有效轮径的高度变化量的分析与处理模块(105),中央控制装置(210),用于根据从所述分析与处理模块传输的各轮的有效轮径的高度变化量判断是否各轮发生有效滚动半径变化和爆胎;以及车轮制动控制模块(211),在中央控制装置判断出一个车轮发生变化尤其是爆胎后,车轮制动控制模块将同轴两轮的有效轮径差异,在车辆处于直线行驶或者弯道行驶的状态下控制制动装置向各个车轮施加不同大小和不同作用时间的制动力,配合对发动机驱动力的调控,以控制各个车轮的实时行进速度,从而使得轮径发生变化或高速爆胎的车辆保持原稳定行驶状态。

Description

轮径变化及高速爆胎安全行驶控制和救助*** 技术领域
本发明涉及一种车辆发生轮径变化及高速爆胎时的安全行驶控制和救助 ***。
背景技术
目前, 以 ABS、 TCS、 ESP的为代表的安全行车自动控制技术得到长足 的发展, 在特定情况下对车辆的安全性和稳定控制起到了很好的、 至关重要 的辅助作用, 但针对高速行车过程中, 轮胎有效滚动半径发生明显变化时的 行车安全控制和救助问题, 却缺乏有效的研究, 依据轮径变化特性对车辆进 行安全有效对策的技术方案, 几乎是空白。
例如在高速公路上,车辆如突发前轮爆胎,轮胎有效滚动半径就会有重大 改变, 此时, 车头会快速偏向爆胎侧, 由于巨大的惯性和方向纠正不力, 多 半会发生翻滚而造成重大交通事故,此时车辆即使装备目前最先进的 ESP系 统, 对防止爆胎引发的重大事故危害的作用也不大。
具体来说, 以一般轿车的常用轮胎 195/70R 14 77H为例, 轮胎的断面宽 度为 195mm, 轮胎本身的断面高度为 136.5mm, 轮毂半径为 355.6mm, 总 半径为 492.1mm, 其周长为 3090.4mm, ,在高速行驶中发生爆胎后, 如果轮 胎脱落, 则该车轮的总半径将从 492.1mm最大可减少为轮毂半径 355.6mm, 滚动半径或轮毂距地的高度减少幅度高达 27.74%, 则同样角速度时行进的 线速度也将减少 27.74%, 这就意味着同样转动一圈, 爆胎轮与同轴非爆胎 轮相比, 滚动距离将少 0.857米。 对时速为 108km/h的高速车辆, 车轮的理 论线速度为 30米 /秒, 如右前轮为驱动轮爆胎时, 在不对方向进行任何操控 的极端情况下, 这种规格的非爆胎轮理论上每秒将比爆胎轮多前进 8.32米。 如爆胎轮与地面的滚动阻力大于非爆胎轮时, 差速器的作用将进一步放大非 爆胎轮的驱动力, 而一般车道的宽度在 3.5m左右, 汽车两轮之间的轮轴只 有不足 2米, 非爆胎轮可在半秒的瞬间比爆胎轮多行驶一个车道、 两个轴距 的宽度; 尤其在轮胎被撕裂后爆胎轮将瞬间受到巨大滚动阻力, 此时差速器 将使非爆胎轮飞转, 车辆会以该爆胎轮为轴心发生旋转, 在 0.3秒以内非爆 胎轮多走一个车轴距离而使车头调转 90度甚至 180度, 横向占据爆胎侧行 车道, 而后汽车巨大的前行惯性足以在 0.5秒内使得车辆翻滚、 甩尾等出现 巨大交通事故。
然而,目前汽车行业很少关注轮胎滚动半径的突发变化导致的行车危害及 其安全稳定控制问题。 针对高速爆胎, 其监测技术普遍采用轮胎内部压力是 否突降为零来判断。现有的用于轿车的轮胎压力监测*** TPMS主要有两种 方式,一种是使用 ABS配备的角速度传感器。该方式利用的是气压下降会导 致轮胎有效直径减小, 从而就会导致轮胎转速的异常增加。 另一种方式就是 在轮胎内安装气压传感器和温度传感器的直接检测方式。直接方式的检测精 度一般比间接方式高。
使用 ABS轮速传感器通过左右轮胎转速差检测气压下降的间接方式的优 点是只要安装 ABS, 基本上就不再需要追加成本, 但问题是气压测定精度比 直接方式低, 4个轮都出现轮胎气压下降时无法检测。
直接式 TPMS将传感器和射频发射器芯片安装在轮胎气门附近,在轮胎压 力过高、 过低、 快速或慢速漏气, 及轮胎温度异常变化时, 及时向车载无线 接收器报警, 从而可提供爆胎发生信息。 无论汽车在行驶还是停靠状态, 均 可随时监测轮胎压力状况, 包括备胎。 但 TPMS却无法进行高速爆胎后的自 动救助和车辆的稳定性控制, 不能从根本上消除爆胎引发的车毁人亡及可能 的连环追尾等重大恶***通事故。
基于现有 TPMS的胎压监测技术, 采样频率低, 一般在数秒至数分钟才 采样一次, 无法及时获得爆胎信号, 而要及时获得爆胎等胎压异常信息, 就 必须扩大采样频率, 这必然影响电池的使用寿命, 同时制作成本高、 需要考 虑省电模式等, 线路设计复杂; 其一般位于气门嘴的安装位置, 在装卸轮胎 时容易损坏胎压监测和发射模块。
而现有的检测胎压的 TPMS或 BMBS (爆胎检测与制动***) ***、 对 车辆在危险情况下进行控制的 BMBS和 ESP***,均无法测量和提供严重缺 气或爆胎等情况下的轮胎半径变化, 从而不能依据各轮有效滚动半径实时信 息, 对高速行驶的车辆因爆胎等原因导致的有效滚动半径瞬间发生显著改 变, 进行更加针对性的、 更加及时和科学有效的行车控制和救助。 以目前车辆配置的最高级的 ESP行车稳定性控制***为例, 其控制逻辑 是基于各轮有效滚动半径恒定不变的假设前提。 而事实上, 判断某轮滚动快 慢是否发生变化, 不仅要看旋转角速度是否发生改变, 还要检测有效滚动半 径大小是否发生变化, 两种检测本身, 缺一不可, 只有二者共同结合, 才能 准确确定各轮的运行状态, 也才能对车辆进行科学有效的控制。 如仅仅监测 各轮角速度快慢和相互差异, 而不检测各轮当前的有效滚动半径大小有无变 化, 势必与某轮严重缺气或突发爆胎的实际情况出现严重偏差, 从而导致 ESP***给出严重错误的控制对策。
例如, 在左前轮刚刚爆胎瞬间, 爆胎轮因缺气滚动阻力突发增大引发的 侧向力跑偏累积效果, 相对高速行驶车辆的巨大纵向前行惯性是比较弱小 的, 此时车辆因惯性作用还处于纵向稳定前行状态, ESP还没能监测到车辆 达到侧滑或绕竖直轴旋转的临界阈值,但却可首先检测到左前轮角速度明显 瞬间增加近 30%, 此时 ESP可能视为左前轮在途径一侧光滑路面而出现打 滑趋势, 从而对左前轮采取制动措施, 以便其角速度与右侧正常轮一致。 而 右前轮因差速器作用必将获得更大的驱动力, 相对左侧爆胎轮在同样的时间 要转动更多的距离, 这样, ESP参与控制的结果, 反而会瞬间诱发突然的、 更加巨大的左偏力而导致爆胎车辆掉头、侧翻,此时 ESP***会出现控制上 的逻辑混乱, 从而引发对策错误而可能导致更加严重的事故危害。
此外, 针对高速爆胎事故虽然已有一些对策技术, 但无法从根本上消除 爆胎车辆高速行进中引发的侧倾力及侧翻危险, 无法考虑轮径变化时的行车 特性, 从而无法有效实施爆胎救助问题, 现有公开的技术也无法在实际行车 过程中根除爆胎救助过程中引发的追尾事故。对高速行驶车辆可能出现的安 全隐患, 还有待更加科学、 完善的救助对策和安全行车控制方案。 发明内容
因此, 针对车辆高速行驶过程中, 出现轮胎有效滚动半径变化甚至是突 发爆胎时的安全行驶控制及救助问题, 本申请提出一种用于车辆高速爆胎故 障的救助和适用于轮径发生明显变化时的安全行驶智能控制***,确保轮径 发生变化的车辆安全稳定运行, 并将高速爆胎车辆可能导致的人车危害和 重大交通事故, 降为低至零可能。
根据本发明, 提出了一种轮径变化及高速爆胎安全行驶控制和救助系 统, 包括: 用于检测各个车轮的滚动轮径的实时监测模块; 用于传输所述 实时监测模块的轮径信号的信号传输模块, 用于接收来自信号传输模块的 轮径信号并进行分析和处理得出有效轮径的高度变化量的各轮的滚动半径 的分析与处理模块; 中央控制装置, 用于根据从所述分析与处理模块传输 的各轮的有效轮径的高度变化量判断是否各轮发生爆胎, 并实施综合行车 控制和爆胎救助功能; 以及车轮制动控制模块; 在中央控制装置判断出一 个车轮发生爆胎后, 中央控制装置将执行紧急制动命令和各车轮的有效轮 径和各车轮的实时角速度等信息发送给车轮制动控制模块, 车轮制动控制 模块将根据爆胎车轮的有效轮径和非爆胎车轮的有效轮径的差异, 在车辆 处于直线行驶或者弯道行驶的状态时, 控制制动装置向各个车轮施加不同 大小和不同作用时间的制动力,从而控制各个车轮的实时角速度和线速度, 从而使得爆胎车辆稳定保持原行驶状态。
优选的是, 在车辆处于直线行驶的状态下, 车轮制动控制模块通过产生 增加同轴非爆胎轮的制动力的制动力控制信号, 使爆胎轮的角速度与同轴 非爆胎轮的角速度调整为与二者的实时有效滚动半径成反比, 从而控制车 辆的同轴的两前轮或者两后轮达到相同的线速度; 或者在车辆处于弯道行 驶的状态下, 车轮制动控制模块根据转向角大小和方向, 将爆胎轮的角速 度与同轴非爆胎轮的角速度差异大小调整为同轴两轮的线速度差异满足弯 道行驶的转向角的要求, 从而消除爆胎轮因滚动半径、 滚动阻力、 地面附 着力与同轴非爆胎轮差异导致的二者滚动线速度的差异, 确保直线行驶时 两轮的线速度相同, 或速度差异满足弯道行驶的要求, 从根本上消除因爆 胎诱发的横向侧向力产生的根源, 使得爆胎车辆完全处于稳定、 安全行驶 状态。
优选的是, 在上述控制过程中, 中央控制装置, 会对车轮制动控制模块 和发动机驱动控制模块进行联合控制, 在产生对车辆必要制动力的同时, 增加或减少发动机对车辆的驱动牵引力, 确保车辆加速或减速前进, 以便 车辆以合理速度进行变道操作, 尤其是避免高速爆胎救助过程中车速控制 不当而与后车发生连环追尾事故。
优选的是,所述中央控制装置在各轮的有效轮径的高度变化量等于有效 轮径的高度的最大变化范围八1^ 数值时, 判断该车轮发生爆胎; 其中 A hmax= Rmax-Rmin, ( Rmax是气压充足时预先测定的车轮的最大有效滚动半径, Rmin是气压完全为零时预先测定的车轮的最小有效滚动半径); 在 Ah介于 0~Ahmax之间时, 则为缺气和严重缺气状态。
优选的是,所述滚动轮径实时监测模块包括一组固定安装在各个车轮轮 轴上靠近各轮轮毂的位置处的一个或者多个高度传感器, 可以有线方式与 中央处理器传输信号, 避免采样频率设定高低取舍的麻烦, 以便从轮胎的 外部利用高度传感器, 在车辆行驶过程中实时测定该轮毂距地面高度的实 时变化量, 来测定各轮的有效滚动半径, 其中高度传感器是采用超声波、 红外线或激光测量等各类电磁波的轮毂距地面高度的无线测量元件。
优选的是,所述中央控制装置在一轮胎的有效轮径的高度变化量等于有 效轮径的高度的最大变化量 Ahmax并且该高度变化量在车辆行驶过设定的 延时距离仍保持不变时,判断该车轮发生爆胎; 如 Ah数值稳定在 0~Ahmax 之间的某一数值, 则判断为缺气和严重缺气状态。 如出现 Ah>Ahmax (指 轮胎完全缺气且轮毂大小也会减小, 实际中不会存在; 一般在轮胎正好落 坑或传感器下部路面比轮胎下部路面高时出现) 或 Ah<0 为负值 (指轮胎 的有效滚动半径反而会增大, 实际中也不存在, 一般出现在轮胎跳离地面 的状态) 的两种情况, 则为路面凸凹异常, 此时采集的为干扰数据, 车辆 行驶一段距离后会自动消失, ***不予考虑。
优选的是, 所述轮径变化, 可以以通过检测爆胎车辆向爆胎轮方向的侧 倾量而判断某轮发生爆胎侧倾量传感器作为辅助判断***, 通过安装在车 辆底部的一套侧倾量传感器, 利用某轮爆胎后车辆在该处距地面会有一个 确定大小的高度降低量 Ahmax, 该特定高度降低量 Ahmax会导致车辆向该方 向有一个特定程度的侧倾角 emax, 该车身底盘水平面会在爆胎轮运行期间 维持一个稳定的倾斜状态, 通过对该特定倾斜状态的监测, 也可以辅助判 定某轮是否发生爆胎或滚动半径是否发生特定的变化量。
优选的是, 在中央控制装置判断发生爆胎后经过一段行驶距离, 当发现 该轮胎的有效轮径的高度变化量不再等于 Ahmax, 而是恢复到正常数值时, 则中央控制装置判定车辆驶过的是凸凹异常的路段, 从而发出指令立即解 除爆胎救助功能。
优选的是, 所述滚动轮径实时监测模块, 优先选用从车轮轮胎内部对车 轮有效滚动半径进行检测的技术方案, 该方案是在每个轮胎内部轮毂上安 装检测功能集成模块装置, 该集成模块装置, 至少包括供电模块、 胎冠内 侧高度检测传感器、 无线发射模块, 该检测功能集成模块可以安装在气门 嘴处, 也可以安装在轮毂上, 在该检测装置旋转至最下部时检测的胎冠与 轮毂间距的实时变化量, 就可以测定出轮胎有效滚动半径的实时变化量, 这种检测方式的好处是不受路面异常干扰, 处理数据容易可靠, 胎冠高度 检测模块可在轮毂上安装多处, 以成倍提高对轮径变化的检测速度; 该胎 冠内侧高度检测传感器, 可采用超声波、 微波、 红外线、 激光, 以无线方 式检测胎冠高度变化, 也可采用接触式电磁开关、 接近开关、 位移量检测 传感器, 以物理直接弹性接触感知胎冠的方式, 测量爆胎或严重缺气时胎 冠高度的特定降低量, 从而判定是否发生爆胎或严重缺气, 并获取当前对 应的有效滚动半径。
优选的是, 上述胎冠高度变化量监测***的功能设计, 可以在发现胎冠 高度降低到最大值 Ahmax后, 在轮胎长时间碾压滚动被轮毂撕裂而同脱离 轮毂时, 即监测到的实时信号对应的滚动半径远远大于胎压正常时的最大 值 Rmax 时, 则本***会认为轮胎已经脱落而自动采用金属轮毂的半径作 为当前的有效滚动半径进行相关对策。
优选的是, 上述胎冠高度变化量检测装置的模块功能设计, 可仅在胎冠 高度降低到最大值 Ahmax时, 才向外部发射爆胎信号及轮径信号, 以延长 内部电池寿命。
优选的是,上述从轮胎内部检测轮径变化的检测装置,可以集成加速度、 胎压、 胎温传感器, 从而成为同时具有轮径、 胎温、 胎压和节电等多功能
TPMS升级换代产品 VW-TPMS,满足对车辆稳定性控制的更高、更科学要 求。
优选的是, 该***还包括爆胎报警模块, 爆胎报警模块接收来自中央控 制装置的爆胎信号, 自动启动对车辆内外的报警功能, 并保持该报警功能 直到安全停车后自动解除, 或通过手动方式人工适时解除为止, 对内报警 功能包括语音提示、 仪表警示灯闪烁; 对外报警功能包括将雾灯、 四角灯、 刹车灯、 远近灯点亮, 鸣笛、 或用专用报警器报警, 包括启动四角灯和向 有应急停车带一侧的转向指示灯的交替闪烁。
优选的是, 还包括方向盘角度测量和稳定模块, 该方向盘角度测量和稳 定模块可以向中央控制装置提供方向盘转向和角度信息, 且在收到来自中 央控制装置的爆胎信号后, 对于装备有电动助力转向***的车辆, 方向盘 稳定模块会自动立即增加方向盘的阻尼力或完全锁紧方向盘, 以及在检测 到司机有主动转向意图时再适当减少阻尼, 便于车辆略微调整方向改变车 道。
优选的是, 还配有与中央控制装置信号连通的防后车追尾模块, 中央控 制装置在发生爆胎后实施降低车速的紧急制动功能时, 该防后车追尾模块 包括用于实时测探本车辆与紧随着的后车之间的间隔距离的探测装置, 该 间隔距离探测装置将实时检测的间隔距离信号传送给该防后车追尾模块, 该防后车追尾模块将该间隔距离首先与一个预定的 "制动解除阈值"比较, 当该间隔距离小于该 "制动解除阈值" 时, 向中央控制装置发送车辆应急 制动解除信号, 中央控制装置向车轮制动模块和发动机驱动控制模块发出 减速解除控制指令, 使车辆保持与后车的安全车距不变; 而当防后车追尾 模块发现本车与后车的间隔距离仍在进一步快速縮短, 则防后车追尾模块 将该间隔距离再与一个预定的 "加速启动阈值" 比较, 如果与后车间隔等 于或小于该 "加速启动阈值", 则向中央控制装置发出加速启动信号, 中央 控制装置向发动机驱动控制模块进一步发出加速指令, 于是在通过车轮制 动控制模块保持爆胎轮轮轴上的两轮行进线速度相等或满足弯道行车线速 度要求的同时, 增加发动机驱动力提高车速, 主动增大与后车的安全车距; 当车距增加到预定的 "制动解除阈值" 时, 中央控制装置自动解除上述加 速功能; 当防后车追尾模块发现后车与本车间隔, 因报警提示等原因又增 大到大于预定的 "制动解除阈值" 时, 中央控制装置将重新启动应急减速 功能, 降低爆胎车辆高速行车危险; 如此反复, 控制爆胎车辆车速直至降 低到***预定的 "爆胎安全速度"行驶为止。
优选的是, 在车辆没有发生爆胎只是出现明显缺气时, 如 0<Ah<0.6 Ahmax时, 中央控制装置,依据各个轮轴上左右两轮实时角速度和有效轮径 实时大小变化量信息和方向盘转角大小, 仅仅是启动车轮制动模块、 爆胎 报警模块、 方向盘角度测量和稳定模块、 发动机驱动控制模块, 实施调控 各轮角速度满足车辆安全稳定运行时同轴左右两轮所需实时线速度大小的 控制方案, 根除轮径变化引发的侧倾力和掉头、 甩尾现象发生, 并发出对 内报警, 而由司机决定是否减速或停车检查; 而在发现轮胎为异常严重缺 气或突发爆胎, 如 Ah>0.6Ahmax时,中央控制装置, 才向车轮制动模块、 报 警模块、 方向盘角度测量和稳定模块、 发动机驱动控制模块和防后车追尾 模块发出控制指令, 实施防后车追尾的将车辆智能降低到 "爆胎安全速度" 等的安全行车智能控制和爆胎救助功能。
为了实时、 精确地监测高速行驶的车辆爆胎发生或有效滚动轮径的变 化, 本发明采用足够高的监测采样频率, 使得每次车辆行进 0.1~0.5米, 就 完成对爆胎轮有效滚动半径参数的更新, 并实施一次避免跑偏力形成和安 全车速的调控。 附图说明
图 1 为根据本发明的包括 " VWMS-轮径变化及爆胎监测设备" 的 "VW-ESP轮径变化及高速爆胎安全行驶控制和救助***"的结构原理示意 图。 具体实施方式: 第一实施例- 如图 1所示,本发明提出了一种轮径变化和爆胎监测设备 100,该监测 设备 100包括: 车载电源模块 101, 轮径变化实时监测模块 102, 车轮角速 度实时检测模块 103, 信号传输模块 104和各车轮有效滚动半径、 角线速 度及实时变化量分析和处理模块 105。 该轮径变化实时监测模块 102例如由一组固定安装在各个车轮轮轴上 靠近各轮轮毂的位置处的一个或者多个高度传感器构成, 高度传感器在车 辆行驶过程中实时测定该轮毂距地面高度或轮胎高度大小及其实时变化 量, 其中高度传感器可以是采用超声波、 红外线、 激光或其他直接或间接 方法测量轮毂距地面高度或轮胎高度变化 (这里称为各轮的有效轮径的高 度变化) 的测量元件。 也可以通过检测爆胎车辆向爆胎轮方向的侧倾量而 判断某轮发生爆胎侧倾量传感器作为辅助判断***, 通过安装在车辆底部 的一套侧倾量传感器, 利用某轮爆胎后车辆在该处距地面会有一个确定大 小的高度降低量 Ahmax, 该特定高度降低量 Ahmax会导致车辆向该方向有一 个特定程度的侧倾角 emax, 该车身底盘水平面会在爆胎轮运行期间维持一 个稳定的倾斜状态, 通过对该特定倾斜状态的监测, 也可以辅助判定某轮 是否发生爆胎或滚动半径是否发生特定的变化量。
这种检测轮胎有效滚动半径实时变化量的方式, 优点是可以在线连续 测量, 不用考虑采样频率和内置电池使用寿命限制, 设备和线路简单可靠。
信号输出模块 104采用有线线束方式将各轮的实时角速度信号和各轮 有效滚动半径实时信号和 /或侧倾量信号进行传输。
分析和处理模块 105将各轮有效滚动半径实时检测信号进行分析和处 理得出有效轮径的高度变化量 Ah, 即轮毂距地面高度或轮胎高度的变化 量。 在本发明的图 1的实施例中, 分析和处理模块 105是单独的模块。 但 是在其它的实施例中, 分析处理和输出模块也可以集成到车辆的中央控制 ***中成为其的一部分来完成。
图 1中的轮径变化和爆胎监测设备 100包含在本发明的轮径变化和高 速爆胎安全行驶控制和救助***(VW-ESP) 200中。 爆胎救助和安全行驶 控制*** 200包括中央控制装置 210,从轮径变化和爆胎监测设备 100的分 析和处理模块 105输出的各轮有效轮径的高度变化信号和各轮的实时角速 度信号输出到中央控制装置 210,中央控制装置 210根据输入的各轮的有效 轮径高度变化信号判断在高速行驶中是否有爆胎发生, 其判断过程如下:
( 1 )紧靠轮毂的监测模块 103的传感器, 通过实时测定轮毂距地高度 h,结合传感器本身距轮轴滚动中心的固定距离 hi ,可得出当前对应的有效 滚动半径 R (R=h+hl ), 有效滚动轮径 R的值介于气压充足时预先测定的 最大滚动半径 Rmax和气压完全为零时可预先测定的最小有效滚动半径 Rmin 之间,即: Rmin<R<Rmax, 由此得出有效轮径的高度的最大变化范围 Ahmax=
Figure imgf000012_0001
(2 ) 判断有效轮径的高度 h的变化量 Ah是否接近可预先测定的、 胎 压完全消失时的最大高度变化量 Ahmax,就可判定该轮是否发生爆胎或胎压 严重过低;
(3)通过延时处理方法, 对采集的误信号进行过滤,可消除路面异常的 干扰: 即设定一定的延时距离, 或根据车速高低设定对应延时时间, 在采 集到有效轮径的高度变化量(降低量)等于 Ahmax时, 如该高度变化量(降 低量) 在车辆行驶过设定的延时距离 (如 1~3米) 仍保持不变, 才判断为 爆胎发生并实施智能救助功能; 否则, 在经过该设定的延时距离, 通过来 自轮径变化和爆胎监测设备 100的信号发现有效轮径的高度恢复为正常值, 则中央控制装置 210将不判断为爆胎发生, 从而过滤掉传感器下方偶然有 高度为 Ahmax凸起物经过、 或如车轮本身刚好经过与传感器下方有相对深 度刚好经为 Ahmax的凹坑路面而采集的误信号;
(4 )在监测到行驶中轮胎的有效轮径的高度降低量经过一段距离后又 恢复到正常值, 不再是等于爆胎特征变化量 Ahmax后, 中央控制装置具有 立即解除爆胎制动救助的功能, 自动消除异常路面带来的误信号干扰; (5 ) 在监测到有效轮径的高度等于或者大于 Ahma 征变化量后, 对 有 TPMS胎压监测功能的车辆, 中央控制***会自动唤醒 TPMS的对应分 机, 进行巡查验证, 若 TPMS对应分机发送回的是该轮胎压为零或严重过 低信息, 则中央控制装置将自动启动爆胎智能救助功能; 若胎压正常, 表 明车辆处于驶过凸凹路面或散落物路面, 中央控制装置不判定为发生爆胎 事故。
如图 1所示,轮径变化和高速爆胎安全行驶控制和救助***(VW-ESP) 200还包括连接到中央控制装置 210的车轮制动控制模块 211、爆胎报警模 块 212、 方向盘角度测量和稳定模块 213、 发动机驱动控制模块 214、 及防 后车追尾模块 215。 中央控制装置 210, 会对车轮制动控制模块 211和发动机驱动控制模块 214进行联合控制,在产生对车辆必要制动力的同时,增加或减少发动机对 车辆的驱动牵引力, 确保车辆不仅可以自动减速, 而且也可以自动实施加 速功能, 以便车辆以合理速度进行变道操作, 尤其是避免高速爆胎救助过 程中车速控制不科学而与后车发生的连环追尾事故。
在中央控制装置 210判断出某个车轮发生爆胎后, 将紧急制动执行命令 和各车辆的有效轮径和各轮的实时角速度等信息发送给车轮制动控制模块 211 , 车轮制动控制模块 211 将根据爆胎车轮的有效轮径和非爆胎车轮的有 效轮径的差异以及车辆行驶的状态向各个车轮施加不同大小和不同作用时 间的制动力, 从而使得在车辆的行驶状态下车辆保持原有的稳定行驶状态, 防止车辆的行驶方向跑偏等车辆失控危险。 这里, 车辆的行驶状态可以是直 线行驶或者弯道行驶。 在直线行驶行驶状态下, 车轮制动控制模块 211通过 控制车辆的同轴的两前轮或者两后轮达到相同的线速度为目标,通过增加同 轴非爆胎轮的制动力、结合中央控制装置 210对发动机驱动控制模块 214控 制, 使爆胎轮角速度与同轴非爆胎轮角速度调整为与二者的实时有效滚动半 径成反比; 在弯道行驶的行驶状态下, 车轮制动控制模块 211根据转向角大 小和方向及二者的实时有效滚动半径,将爆胎轮角速度与同轴非爆胎轮角速 度差异大小, 调整为同轴两轮线速度差异满足弯道稳定行驶要求。
根据本发明的车轮制动控制模块 211,表现在结合爆胎轮和同轴非爆胎轮 有效滚动半径的动态差异量, 或广义讲车辆各个轮轴上左右两个车轮有效滚 动半径的动态差异, 在剔除弯道转向需要的两轮线速度差异量的情况下, 以 实现爆胎轮与同轴非爆胎轮(或同轴左右两轮)实时行进的线速度相同为控 制目标, 通过分别调控施加在两轮上的制动力大小、 结合对发动机驱动力大 小的控制, 以及对其他车轮进行单独 /和 /或联合制动、 驱动等调控功能, 而 主动根除爆胎导致的爆胎轮和同轴的非爆胎轮, 因爆胎后两轮的各向附着 力、 滚动阻力、 滚动半径、 滚动角速度出现差异所导致的两轮实际行进的线 速度差异, 从根本上消除因爆胎而在某车轴上诱发的横向力差异导致的方向 跑偏力和由此导致方向失控引发的灾难事故。
同时, 爆胎报警模块 212在收到来自中央控制装置 210的爆胎信号或 严重缺气信号后, 自动启动车辆的报警功能, 启动对车辆内外的报警功能, 并保持该报警功能直到安全停车后自动解除, 或通过手动方式人工适时解 除为止, 对内报警功能包括语音提示、 仪表警示灯闪烁; 对外报警功能包 括将雾灯、 四角灯、 刹车灯、 远近灯点亮和鸣笛、 或用专用报警器报警, 包括启动四角灯和向有应急停车带一侧的转向指示灯的交替闪烁, 以便在 与后车车距过短、 本车车速过高、 左右车道又被占道时, 提示后车本车异 常而便于后车采取主动减速或避让措施。
可选择的是,方向盘角度测量和稳定模块 213,除向中央控制装置提供 当前的实时转向角度大小和方向外, 在收到来自中央控制装置 210的爆胎 信号后, 对于装备有电动助力转向或电液助力转向***的车辆, 方向盘角 度测量和稳定模块 213会自动立即增加方向转动轮的阻尼力或完全锁紧方 向盘, 从而防止因突发爆胎时, 以及随后的因爆胎轮缺气被高速碾压撕裂 导致轮毂着地滚动而瞬间突发巨大跑偏力或甩尾力引发的司机对方向的失 控, 从而进一步防止事故的发生, 在检测到司机有主动转向意图时再适当 减少阻尼, 便于车辆略微调整方向改变变道。
在本发明有利的实例中,轮径变化和高速爆胎安全行驶控制和救助***
(VW-ESP) 200 还包括与中央控制装置 210 信号连通的防后车追尾模块 215。该防后车追尾模块 215包括用于实时测探本车辆与紧随着的后车之间 的间隔距离的探测装置。在探测到严重缺气或爆胎发生后,如 Ah>0.6Ahma, 该间隔距离探测装置将实时检测的间隔距离信号传送给该防后车追尾模块 215, 该防后车追尾模块将该间隔距离首先与一个预定的 "制动解除阈值" 比较, 当该间隔距离小于该 "制动解除阈值" 时, 向中央控制装置 210发 送车辆应急制动解除信号, 中央控制装置 210向车轮制动模块 211和发动 机驱动控制模块 214发出减速解除控制指令, 控制车速使车辆保持与后车 的安全车距不变; 而当防后车追尾模块 215发现本车与后车的间隔距离仍 在进一步快速縮短, 则防后车追尾模块 215将该间隔距离再与一个预定的
"加速启动阈值" 比较, 如果与后车间隔等于或小于该 "加速启动阈值", 则向中央控制装置 210发出加速启动信号, 中央控制装置 210进一步向发 动机驱动控制模块 214发出加速指令, 于是在通过制动控制模块 211保持 爆胎轮轮轴上的两轮行进线速度相等的同时, 增加发动机的驱动力提高车 速, 主动增大与后车的安全车距; 当车距增加到预定的 "制动解除阈值" 时, 中央控制装置 210将自动向发动机驱动控制模块 214发出指令, 主动 解除加速功能; 当防后车追尾模块 215发现后车与本车间隔, 因报爆胎警 模块 212提示等原因又增大到大于预定的 "制动解除阈值" 时, 中央控制 装置 210将重新启动应急减速功能, 降低爆胎车辆高速行车危险; 如此反 复, 直至控制爆胎车辆降低到***预定的 "爆胎安全速度"行驶为止。
在实际实施方案中, 可选择的是, 在车辆没有发生爆胎只是出现明显 缺气时, 如 0<Ah<0.6Ahmax时, 中央控制装置 210仅仅是启动车轮制动模 块 211、 报警模块 212、 方向盘角度测量和稳定模块 213、 发动机驱动控制 模块 214,依据各个轮轴上左右两轮实时角速度和有效轮径实时大小变化量 信息和方向盘转角大小及方向, 实施调控各轮角速度满足车辆安全稳定运 行时所需同轴左右两轮实时线速度大小的控制方案, 确保车辆的安全稳定 运行, 根除车辆的侧滑和掉头甩尾现象发生, 并发出对内报警, 由司机决 定是否减速或停车检查; 而在发现轮胎为严重缺气或突发爆胎, 如 Ah>0.6 Ahmax时,本***的中央控制装置 210, 才按照以上描述的方案, 依据实时 角速度和有效轮径大小信息, 向车轮制动模块 211、 报警模块 212、 方向盘 角度测量和稳定模块 213、发动机驱动控制模块 214和防后车追尾模块 215 发出控制指令和按照进行上述防后车追尾的将车辆智能降低到 "爆胎安全 速度"等的智能控制和救助功能。
为了实时地精确地检测高速行驶的车辆的爆胎的发生或车轮有效轮径 的变化,本专利中以足够高的轮径监测采样频率,使得每次车辆行进 0.1~0.5 米, 就完成对车轮有效滚动半径参数的更新, 并实施一次避免跑偏力形成 和降低车速的调控。 第二实施例:
如图 1所示,本发明提出了一种轮径变化和爆胎监测设备 100,该监测设 备 100包括: 车载电源模块 101, 轮径变化实时监测模块 102, 车轮角速度 实时检测模块 103, 信号传输模块 104和各车轮有效滚动半径、 角线速度及 实时变化量分析和处理模块 105; 此外, 本发明中的轮径变化和高速爆胎安 全行驶控制和救助*** (VW-ESP) 200还包括连接到中央控制装置 210的 车轮制动控制模块 211、 爆胎报警模块 212、 方向角度测量和稳定模块 213、 发动机驱动控制模块 214、 及防后车追尾模块 215。
在本发明的其它的实施例中, 与上述图 1 的实施例唯一所不同的是*** 中的轮径变化实时监测模块 102的结构和检测方式与第一实施例不同, 其他 结构和技术方案则类似。
在其它的实施实施实例中,轮径变化和爆胎监测设备 100中的轮径变化 实时监测模块 102,可替换地选用从车轮轮胎内部对车轮有效滚动半径进行 检测检测装置和对应的技术方案。
该轮径变化实时监测模块 102, 不同于上述第一实施例中从轮胎外部间 接测定轮胎有效滚动半径实时大小的方式, 而是采用在每个轮胎内部的轮 毂上, 安装轮径变化实时检测功能集成模块装置, 直接从内部检测轮胎胎 冠在不同缺气情况下的降低的高度, 从而直接测定轮胎的有效滚动半径变 化, 优点是数据精确, 处理简单, 安装方便, 测量不受外部雨雪泥泞环境 和路面异常凸凹的干扰, 不用对检测的数据进行行驶一定路段的延时确认 和过滤处理。
该轮径变化实时监测模块 102, 至少包括供电模块、 胎冠内侧高度检测 传感器、 无线发射模块; 该检测功能集成模块 102可以安装在气门嘴处, 也可以安装在轮毂上, 通过该检测装置旋转至最下部时所检测的胎冠与轮 毂间距的实时变化量, 就可以测定出轮胎有效滚动半径的实时变化量; 胎 冠高度检测模块可在轮毂上安装多处, 以成倍提高对轮径变化的检测速度; 该胎冠内侧高度检测传感器, 可采用超声波、 红外线、 激光等电磁波信号, 以无线方式检测胎冠高度变化, 也可采用接触式电磁开关、 接近开关、 位 移量检测传感器, 以物理直接弹性接触感知胎冠特定位移量的方式, 测量 爆胎或严重缺气时胎冠高度的降低量,从而判定是否发生爆胎或严重缺气, 并获取当前对应的有效滚动半径。
优选的是, 在爆胎后因路况原因, 比如后部和左右均有车辆占道而无法 变道或减速, 车辆被迫高速长时间运行, 则爆胎轮胎被长时间碾压滚动被 轮毂撕裂而脱离轮毂, 此时, 轮径变化实时监测模块 102监测到的实时信 号对应的滚动半径,将远大于胎压正常时的最大值 Rmax,而本专利技术中 的胎冠高度变化量监测***的功能设计, 会自动采用预先设定好的爆胎轮 以金属轮毂直接触地滚动的有效半径值, 作为当前的有效滚动半径进行相 关对策。
在实际实施时, 该轮径变化实时监测模块 102的功能设计, 仅在检测到 胎冠高度降低到最大特征值 Ahmax时, 才向发现爆胎时才发射爆胎及轮径 信号, 以延长内部电池寿命和减少制作成本, 提高器件的可靠性。
此外, 该轮径变化实时监测模块 102, 也可以集成加速度、 胎压、 胎温 传感器, 从而成为同时具有轮径、 胎温、 胎压和节电等多功能 TPMS升级 换代产品 VW-TPMS, 便于对车辆实施更高、 更科学的行车稳定性控制。
与第一实施例一样,本实例中对轮径变化或高速爆胎车辆的救助和安全 行驶控制功能, 包括发生轮径变化或爆胎的同轴两轮的行进速度调控、 转 向盘稳定性控制、 内外报警功能, 以及防后车追尾减速控制 4个方面, 从 而使得爆胎车辆, 能够安全稳定地行驶和降低到合理的行驶速度, 供司机 择机安全停靠到应急停车带上实施更换备胎等操作, 避免高速爆胎导致的 车辆无法掌控而引发的侧翻、 掉头、 甩尾以及恶性连环追尾事故发生。
本发明的上述实施例中所示的结构和配置仅仅是示意性的。虽然在本公 开中已经详细描述了上述实施例, 但是在本质上不脱离在此所述的主题的 新颖示教和优点的前提下, 许多改进都是可能的。

Claims

权 利 要 求
1.一种轮径变化及高速爆胎安全行驶控制和救助***, 包括:
用于检测各个车轮的滚动轮径和角速度的实时监测模块;
用于传输所述实时监测模块的轮径和速度信号的信号传输模块; 用于接收来自信号传输模块的轮径信号、速度信号并进行分析和处理得 出有效轮径的高度变化量和角线速度变化量的分析与处理模块;
中央控制装置,用于根据从所述分析与处理模块传输的各轮的有效轮径 的高度变化量判断是否各轮发生爆胎; 以及
车轮制动控制模块, 在中央控制装置判断出一个车轮发生爆胎后, 中央 控制装置将执行紧急制动命令和各车轮的有效轮径和各车轮的实时角速度 信息发送给车轮制动控制模块, 车轮制动控制模块将根据爆胎车轮的有效 轮径和非爆胎车轮的有效轮径的差异, 在车辆处于直线行驶或者弯道行驶 的状态下控制制动装置向各个车轮施加不同大小和不同作用时间的制动 力, 以控制各个车轮的实时行进速度, 从而使得车辆保持原稳定行驶状态。
2.根据权利要求 1所述的***, 其特征在于, 在车辆处于直线行驶的状 态下, 控制车轮制动模块通过产生增加同轴非爆胎轮的制动力的制动力控 制信号, 控制各轮的制动***输出制动力, 使爆胎轮的角速度与同轴非爆 胎轮的角速度调整为与二者的实时有效滚动半径成反比, 从而控制车辆同 轴的两前轮或者两后轮达到和时刻维持相同的线速度; 或者, 在车辆处于 弯道行驶的状态下, 根据转向角大小和方向, 将爆胎轮的角速度与同轴非 爆胎轮的角速度差异大小调整为同轴两轮的线速度差异满足弯道行驶的转 向角的要求。
3.根据权利要求 1所述的***, 其特征在于, 所述中央控制装置在各轮 的有效轮径的高度变化量等于有效轮径的高度的最大变化范围 Ahmax时, 判断该车轮发生爆胎, 其中 Ahmax= Rmax-Rmin, 1„^是气压充足时预先测定 的车轮的最大滚动半径, Rmin是气压完全为零时可预先测定的车轮最小有 效滚动半径; 在 Ah介于(^八!^^之间时, 则判断为轮胎缺气和严重缺气 状态。
4.根据权利要求 1~3之一所述的***, 其特征在于, 所述车轮滚动轮径 实时监测模块, 包括一组固定安装在各个车轮轮轴上靠近各轮轮毂位置处 的一个或者多个高度传感器, 从车轮轮胎外部, 利用高度传感器在车辆行 驶过程中测定该轮毂距地面高度的实时变化量; 其中高度传感器是采用超 声波、 红外线或激光测量轮毂距地面高度的测量元件。
5. 根据权利要求 1~4 之一所述的***所述轮径变化, 可以以通过检测 爆胎车辆向爆胎轮方向的侧倾量而判断某轮发生爆胎侧倾量传感器作为辅 助判断***, 通过安装在车辆底部的一套侧倾量传感器, 利用某轮爆胎后 车辆在该处距地面会有一个确定大小的高度降低量 Ahmax,该特定高度降低 量 Ahmax会导致车辆向该方向有一个特定程度的侧倾角 emax,该车身底盘水 平面会在爆胎轮运行期间维持一个稳定的倾斜状态, 通过对该特定倾斜状 态的监测, 也可以辅助判定某轮是否发生爆胎或滚动半径是否发生特定的
6.根据权利要求 1~5所述的***, 其特征在于, 所述中央控制装置在一 轮胎的有效轮径的高度变化量等于有效轮径的高度最大变化值 Ahmax并且 该高度变化量在车辆行驶过设定的延时距离仍保持不变时, 中央控制装置 判断该车轮发生爆胎。
7.根据权利要求 6所述的***, 其特征在于, 在中央控制装置判断发生 爆胎后经过一段行驶距离后, 发现该轮胎的有效轮径的高度变化量不再是 爆胎时最大变化量 Ahmax, 而是恢复为稳定的正常值时, 则判断为路面局部 异常凸凹产生的干扰误信号, 中央控制装置立即解除该车轮发生爆胎的判 断。
8.根据权利要求 1~3之一所述的***, 其特征在于, 所述车轮滚动轮径 实时监测模块,采用在每个轮胎内部轮毂上安装的检测功能集成模块装置, 该集成模块装置包括供电模块、胎冠内侧高度检测传感器、 无线发射模块, 该检测功能集成模块安装在气门嘴或轮毂上, 在该检测功能集成模块装置 旋转至最下部时检测的胎冠与轮毂间距的实时变化量, 从而测定出轮胎有 效滚动半径的实时变化量; 该胎冠内侧高度检测传感器, 通过采用超声波、 红外线或激光, 以无线方式检测胎冠高度变化, 或者采用接触式电磁开关、 接近开关或位移量检测传感器, 以物理直接弹性接触胎冠的方式, 测量爆 胎或严重缺气时胎冠高度的降低量, 从而判定是否发生爆胎或严重缺气, 并获取当前对应的有效滚动半径。
9.根据权利要求 8所述的***, 其特征在于, 所述的检测功能集成模块 装置仅在检测到胎冠高度降低到最大值 Ahmax时, 才向外部发射爆胎信息 及轮径信号。
10.根据权利要求 8所述的***,其特征在于,上述从车轮轮胎内部对车 轮有效滚动半径的检测装置集成有加速度、 胎压、 胎温传感器。
11. 根据权利要求 8所述的***, 其特征在于, 所述检测功能集成模块 装置在检测到胎冠高度降低到最低值后, 在轮胎长时间碾压转动被轮毂撕 裂而同脱离轮毂, 监测到的实时信号对应的滚动半径远远大于胎压正常时 的最大值 Rmax 时, 则会采用测定的金属轮毂直接触地滚动时的有效半径 作为当前的有效滚动半径数值。
12.根据权利要求 1~11之一所述的***, 其特征在于, 还包括爆胎报警 模块, 爆胎报警模块接收来自中央控制装置的爆胎信号, 自动启动对车辆 内外的报警功能, 并保持该报警功能直到安全停车后自动解除, 或通过手 动方式人工适时解除为止, 对内报警功能包括语音提示、 仪表警示灯闪烁; 对外报警功能包括将雾灯、 四角灯、 刹车灯、 远近灯点亮, 鸣笛、 或用专 用报警器报警, 包括启动四角灯和向有应急停车带一侧的转向指示灯的交 替闪烁。
13.根据权利要求 1~12之一所述的***, 其特征在于, 还包括方向盘角 度测量和稳定模块, 方向盘角度测量和稳定模块向中央控制装置提供转向 盘的转角大小和方向的实时数据, 同时, 当收到来自中央控制装置的爆胎 信号后, 对于装备有电动助力转向***或电液助力转向***的车辆, 方向 盘角度测量和稳定模块, 会自动立即增加方向盘的阻尼力或完全锁紧方向 盘, 以及在检测到司机有主动转向意图时再适当减少阻尼, 便于车辆略微 调整方向改变车道。
14.根据权利要求 1~13之一所述的***, 其特征在于, 还包括与中央控 制装置信号连通的防后车追尾模块, 该防后车追尾模块包括用于实时测探 本车辆与紧随着的后车之间的间隔距离的探测装置; 在***判定车辆出现 严重缺气或发生爆胎时, 该防后车追尾模块与后车的间距探测装置将实时 检测的间隔距离信号传送给该防后车追尾模块, 该防后车追尾模块将该间 隔距离首先与一个预定的制动解除阈值比较, 当该间隔距离小于该制动解 除阈值时, 向中央控制装置发送车辆应急制动解除信号, 中央控制装置向 制动模块和发动机驱动控制模块发出减速解除控制指令, 控制车速使车辆 保持与后车的安全车距不变; 而当防后车追尾模块发现本车与后车的间隔 距离仍在进一步快速縮短, 则防后车追尾模块将该间隔距离再与一个预定 的加速启动阈值比较, 如果与后车间隔等于或小于该加速启动阈值, 则向 中央控制装置发出加速启动信号, 中央控制装置进一步向发动机驱动控制 模块发出加速执行指令, 于是在通过制动控制模块保持爆胎轮轮轴上的两 轮行进线速度相等或满足弯道行驶对速度差异要求的同时, 增加发动机驱 动力提高车速, 主动增大与后车的安全车距; 当车距增加到预定的制动解 除阈值时, 中央控制装置向发动机驱动控制模块发出自动解除加速指令; 当防后车追尾模块发现后车与本车间隔, 又增大到大于预定的制动解除阈 值时, 中央控制装置将重新向制动模块发出急减速指令, 以便控制爆胎车 辆的速度直至降低到预定的爆胎安全行驶速度为止。
15.根据权利要求 1-14之一所述的***, 其特征在于, 所述中央控制装 置对车轮制动控制模块和发动机驱动控制模块进行联合控制, 以便在调整 各轮角速度而产生对车辆的各车轮进行制动的同时, 增加或减少发动机对 车辆的输出功率使得车辆加速或减速前进。
16. 根据权利要求 1~15所述的***, 其特征在于, 可在中央控制装置 判断车辆为轮胎缺气状态时, 如轮胎的有效半径的变化量 Ah 处于 0<A h<0.6Ahmax, 设定央控制装置, 仅依据各轮轴左右两轮实时角速度和有效 轮径大小实时变化量和方向盘转角大小及方向, 实时调控各轮角速度, 使 得同轴左右两轮所需线速度大小, 满足车辆进行直线或弯道安全稳定行驶 的要求, 并启动爆胎报警模块实施内外报警功能。
17.根据权利要求 1~16之一所述的***, 所述监测模块 102的采样频 率使得每次车辆行进 0.1~0.5米就完成对车轮有效滚动半径参数的更新。
PCT/CN2012/080470 2011-08-22 2012-08-22 轮径变化及高速爆胎安全行驶控制和救助*** WO2013026396A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12824947.1A EP2818340B1 (en) 2011-08-22 2012-08-22 Safety driving control and rescue system for wheel diameter change and high-speed tire burst
ES12824947.1T ES2652503T3 (es) 2011-08-22 2012-08-22 Sistema de control de conducción de seguridad y rescate para el cambio de radio de ruedas y el estallido de neumáticos en alta velocidad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110244556.1 2011-08-22
CN201110244556.1A CN102951135B (zh) 2011-08-22 2011-08-22 轮径变化及高速爆胎安全行驶控制和救助***

Publications (1)

Publication Number Publication Date
WO2013026396A1 true WO2013026396A1 (zh) 2013-02-28

Family

ID=47745947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080470 WO2013026396A1 (zh) 2011-08-22 2012-08-22 轮径变化及高速爆胎安全行驶控制和救助***

Country Status (4)

Country Link
EP (1) EP2818340B1 (zh)
CN (1) CN102951135B (zh)
ES (1) ES2652503T3 (zh)
WO (1) WO2013026396A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103448702A (zh) * 2013-04-11 2013-12-18 浙江吉利汽车研究院有限公司杭州分公司 汽车爆胎防追尾控制装置及控制方法
CN106143003A (zh) * 2015-04-16 2016-11-23 联创汽车电子有限公司 自动调节的胎压监测***及其实现方法
EP3118072A4 (en) * 2013-11-19 2017-04-19 Zhejiang Geely Automobile Research Institute Co., Ltd. Staged brake control device for vehicle tire burst and control method thereof
CN106740765A (zh) * 2017-01-19 2017-05-31 李良杰 爆胎控制***
CN108216154A (zh) * 2018-02-12 2018-06-29 宁波威迪思智能科技有限公司 具有承压警报功能的汽车爆胎自救辅助装置和承压警报方法
CN108227531A (zh) * 2018-02-12 2018-06-29 宁波威迪思智能科技有限公司 具有超速警报功能的汽车爆胎自救辅助装置和超速警报方法
CN108482365A (zh) * 2018-04-28 2018-09-04 江苏大学 一种车辆爆胎瞬态车身应急控制***及方法
CN110509768A (zh) * 2019-09-30 2019-11-29 李加林 一种前驱式乘用车爆胎控制方法
CN111366934A (zh) * 2020-03-13 2020-07-03 山东航向电子科技有限公司 基于超声波消除轮胎距离影响的***及方法
CN111572293A (zh) * 2020-04-22 2020-08-25 北京龙卓科技有限公司 一种轮胎智能安全管理***
CN113232758A (zh) * 2020-07-09 2021-08-10 浙江春风动力股份有限公司 全地形车及快速拆装装置
CN114161888A (zh) * 2021-11-30 2022-03-11 偌轮汽车科技(武汉)有限公司 双胎iTPMS胎压监测方法及其***
CN114842638A (zh) * 2022-05-12 2022-08-02 北京主线科技有限公司 车辆失稳状态的补救方法、救援方法、装置、设备及介质
US11480434B2 (en) * 2020-02-04 2022-10-25 Pony Ai Inc. Initial localization
CN115352226A (zh) * 2022-09-02 2022-11-18 浙江吉利控股集团有限公司 胎压控制方法、装置、设备及可读存储介质
CN115447544A (zh) * 2022-10-25 2022-12-09 丁增明 一种汽车前轮制动独立控制装置、方法及其***
CN116141976A (zh) * 2023-04-24 2023-05-23 江西科技学院 基于轮毂电机驱动的电动汽车稳定性监测管控***

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193667A (ja) * 2013-03-28 2014-10-09 Jtekt Corp 車両用操舵装置
CN106494386B (zh) * 2014-09-16 2018-09-28 安徽跃辰新能源汽车有限公司 具有冗余爆胎监测的跟驰汽车
CN104482937A (zh) * 2014-12-19 2015-04-01 中国人民解放军第二炮兵装备研究院第三研究所 一种高精度车辆里程测量装置及方法
CN104816713A (zh) * 2015-04-21 2015-08-05 朱炎炎 车辆爆胎后行驶方向控制方法及控制***
CN104890456A (zh) * 2015-06-29 2015-09-09 安徽宝昱电子科技有限公司 车胎破损警报控制组件
CN107433947B (zh) * 2016-05-25 2019-11-22 比亚迪股份有限公司 车辆爆胎时的控制方法、车辆控制***和车辆
DE102016010750B4 (de) * 2016-09-06 2018-07-12 Nira Dynamics Ab Schätzung absoluter Radrollradien und Schätzung eines vertikalen Kompressionswerts
CN108001222A (zh) * 2016-10-28 2018-05-08 长城汽车股份有限公司 车辆的控制方法、***及车辆
US10266181B2 (en) * 2016-12-14 2019-04-23 Ford Global Technologies, Llc Tire blowout control
CN107176282A (zh) * 2017-05-25 2017-09-19 贵州宝文电机科技有限公司 内转直线舵机
CN107792058A (zh) * 2017-09-28 2018-03-13 湖南大学 一种车辆在高速行驶中前轮爆胎时保持正确方向的方法
CN108189628B (zh) * 2018-01-10 2020-07-07 南京晓庄学院 一种基于智能预测的轮胎保护装置及其控制方法
CN108973545B (zh) * 2018-09-20 2024-03-08 安徽工业大学科技园有限公司 一种预测爆胎的监测装置及方法
DE102018216257A1 (de) * 2018-09-24 2020-03-26 Volkswagen Aktiengesellschaft Verfahren zur Notfallreaktion bei einem Reifendruckverlust, sowie Fahrzeug
CN109334355A (zh) * 2018-11-27 2019-02-15 深圳市星科微数码科技集团有限公司 一种轮胎压力监控装置
DE102019214815B3 (de) 2019-09-27 2021-03-25 Thyssenkrupp Ag Verfahren zum iterativen Ermitteln des Radius' eines Kraftfahrzeugrads
CN111439258A (zh) * 2020-02-27 2020-07-24 广汽蔚来新能源汽车科技有限公司 爆胎车辆控制方法、装置、计算机设备和存储介质
DE102020203330A1 (de) 2020-03-16 2021-09-16 Volkswagen Aktiengesellschaft Verfahren zum Einleiten eines Notbremsvorgangs und Kraftfahrzeug
CN112078309B (zh) * 2020-08-25 2022-07-26 惠州华阳通用电子有限公司 一种轮胎漏气检测方法和***
CN112611582B (zh) * 2020-11-02 2022-04-22 山东华通二手车信息技术有限公司 轮胎状态实时分析平台及方法
CN114801597B (zh) * 2022-05-13 2023-10-20 岚图汽车科技有限公司 车辆及其轮胎气压及温度的调节装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721528A (en) * 1996-12-23 1998-02-24 Ford Global Technologies, Inc. Low tire warning system
EP1388440A2 (en) * 2002-08-07 2004-02-11 Ford Global Technologies, LLC A method and apparatus for identifying the location of pressure sensors in a tyre pressure monitoring system
EP1428692A1 (en) * 2002-12-12 2004-06-16 Giovanni Barbanti A device for surveying the radial deformation state of a tire
WO2006122452A1 (fr) * 2005-05-18 2006-11-23 Zhenzhong Guo Dispositif de securite en cas de eclatement d'un pneumatique de vehicule
CN101716873A (zh) * 2009-12-24 2010-06-02 浙江亚太机电股份有限公司 一种车辆爆胎或剧烈漏气监测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968892B1 (en) * 1997-11-28 2009-07-15 Denso Corporation Vehicle controller
KR100689214B1 (ko) * 1999-07-30 2007-03-09 피렐리 타이어 소시에떼 퍼 아찌오니 차량 타이어 제어에 의한 차량 동작 특성 제어 방법 및시스템
US20020130771A1 (en) * 2000-08-17 2002-09-19 Osborne Corwin K. Vehicle wheel monitoring system
DE10140615C1 (de) * 2001-08-18 2002-11-21 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung eines abgelösten Reifens
FR2866853B1 (fr) * 2004-02-27 2006-05-26 Michelin Soc Tech Methode et dispositif de controle du glissement
CN100478228C (zh) * 2004-05-14 2009-04-15 王德红 汽车轮胎压力的报警控制设备
KR101315780B1 (ko) * 2009-02-17 2013-10-14 주식회사 만도 차량 자세제어장치 및 그 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721528A (en) * 1996-12-23 1998-02-24 Ford Global Technologies, Inc. Low tire warning system
EP1388440A2 (en) * 2002-08-07 2004-02-11 Ford Global Technologies, LLC A method and apparatus for identifying the location of pressure sensors in a tyre pressure monitoring system
EP1428692A1 (en) * 2002-12-12 2004-06-16 Giovanni Barbanti A device for surveying the radial deformation state of a tire
WO2006122452A1 (fr) * 2005-05-18 2006-11-23 Zhenzhong Guo Dispositif de securite en cas de eclatement d'un pneumatique de vehicule
CN101716873A (zh) * 2009-12-24 2010-06-02 浙江亚太机电股份有限公司 一种车辆爆胎或剧烈漏气监测方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103448702A (zh) * 2013-04-11 2013-12-18 浙江吉利汽车研究院有限公司杭州分公司 汽车爆胎防追尾控制装置及控制方法
EP3118072A4 (en) * 2013-11-19 2017-04-19 Zhejiang Geely Automobile Research Institute Co., Ltd. Staged brake control device for vehicle tire burst and control method thereof
CN106143003B (zh) * 2015-04-16 2018-08-21 联创汽车电子有限公司 自动调节的胎压监测***及其实现方法
CN106143003A (zh) * 2015-04-16 2016-11-23 联创汽车电子有限公司 自动调节的胎压监测***及其实现方法
CN106740765A (zh) * 2017-01-19 2017-05-31 李良杰 爆胎控制***
CN108227531A (zh) * 2018-02-12 2018-06-29 宁波威迪思智能科技有限公司 具有超速警报功能的汽车爆胎自救辅助装置和超速警报方法
CN108216154A (zh) * 2018-02-12 2018-06-29 宁波威迪思智能科技有限公司 具有承压警报功能的汽车爆胎自救辅助装置和承压警报方法
CN108216154B (zh) * 2018-02-12 2024-01-30 重庆汉大科技有限公司 具有承压警报功能的汽车爆胎自救辅助装置和承压警报方法
CN108482365A (zh) * 2018-04-28 2018-09-04 江苏大学 一种车辆爆胎瞬态车身应急控制***及方法
CN110509768A (zh) * 2019-09-30 2019-11-29 李加林 一种前驱式乘用车爆胎控制方法
US11480434B2 (en) * 2020-02-04 2022-10-25 Pony Ai Inc. Initial localization
CN111366934A (zh) * 2020-03-13 2020-07-03 山东航向电子科技有限公司 基于超声波消除轮胎距离影响的***及方法
CN111366934B (zh) * 2020-03-13 2023-07-25 山东航向电子科技有限公司 基于超声波消除轮胎距离影响的***及方法
CN111572293A (zh) * 2020-04-22 2020-08-25 北京龙卓科技有限公司 一种轮胎智能安全管理***
CN113232758B (zh) * 2020-07-09 2023-06-16 浙江春风动力股份有限公司 全地形车及快速拆装装置
CN113232758A (zh) * 2020-07-09 2021-08-10 浙江春风动力股份有限公司 全地形车及快速拆装装置
CN114161888A (zh) * 2021-11-30 2022-03-11 偌轮汽车科技(武汉)有限公司 双胎iTPMS胎压监测方法及其***
CN114161888B (zh) * 2021-11-30 2023-10-20 偌轮汽车科技(武汉)有限公司 双胎iTPMS胎压监测方法及其***
CN114842638A (zh) * 2022-05-12 2022-08-02 北京主线科技有限公司 车辆失稳状态的补救方法、救援方法、装置、设备及介质
CN115352226A (zh) * 2022-09-02 2022-11-18 浙江吉利控股集团有限公司 胎压控制方法、装置、设备及可读存储介质
CN115352226B (zh) * 2022-09-02 2024-06-07 浙江吉利控股集团有限公司 胎压控制方法、装置、设备及可读存储介质
CN115447544A (zh) * 2022-10-25 2022-12-09 丁增明 一种汽车前轮制动独立控制装置、方法及其***
CN116141976A (zh) * 2023-04-24 2023-05-23 江西科技学院 基于轮毂电机驱动的电动汽车稳定性监测管控***

Also Published As

Publication number Publication date
CN102951135A (zh) 2013-03-06
EP2818340A4 (en) 2015-09-09
CN102951135B (zh) 2017-01-18
EP2818340A1 (en) 2014-12-31
EP2818340B1 (en) 2017-10-11
ES2652503T3 (es) 2018-02-02

Similar Documents

Publication Publication Date Title
WO2013026396A1 (zh) 轮径变化及高速爆胎安全行驶控制和救助***
US9598089B2 (en) Method and arrangement for vehicle stabilization
US9573589B2 (en) Method and arrangement for vehicle stabilization
JP4447098B2 (ja) 自動車の後部側とその後ろに連結されたトレーラとの間隔の決定装置及び連結車の安定化装置
CN104773168B (zh) 基于安全制动的自动挡汽车爆胎控制***及方法
CN102910201B (zh) 一种基于转向的汽车防爆胎控制***
US20110156891A1 (en) Judgment line calculations for a vehicle safety system
US20080061625A1 (en) Vehicle stability control system for low tire pressure situations
WO2012128128A1 (ja) 走行装置
CN103448720B (zh) 汽车爆胎防追尾控制方法及控制装置
CN104709006B (zh) 车辆爆胎控制装置及控制方法
CN102774378A (zh) 车辆追尾预警及保护方法、***
CN204548096U (zh) 基于安全制动的自动档汽车爆胎控制***
CN107719037A (zh) 一种车辆爆胎应急***及其控制方法
CN112141078A (zh) 一种爆胎自动驾驶***
CN111907492B (zh) 车辆aeb***控制方法及装置
CN207496406U (zh) 一种车辆爆胎应急***
CN103448702B (zh) 汽车爆胎防追尾控制装置及控制方法
CN103273920A (zh) 防前碰的汽车爆胎安全控制***
CN102556044B (zh) 一种车辆快速泄气平稳制动方法及***
CN106627533A (zh) 一种重卡制动控制方法、***及具有该***的车辆
CN104816713A (zh) 车辆爆胎后行驶方向控制方法及控制***
CN110936891A (zh) 用于在胎压损失的情况下应急反应的方法以及交通工具
CN105644537A (zh) 车辆爆胎后行驶方向控制方法及控制***
KR100892360B1 (ko) 티피엠에스를 이용한 요레이트 연산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012824947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012824947

Country of ref document: EP