WO2013019021A2 - 도펀트 포함 그래핀 적층체 및 그 제조방법 - Google Patents

도펀트 포함 그래핀 적층체 및 그 제조방법 Download PDF

Info

Publication number
WO2013019021A2
WO2013019021A2 PCT/KR2012/005945 KR2012005945W WO2013019021A2 WO 2013019021 A2 WO2013019021 A2 WO 2013019021A2 KR 2012005945 W KR2012005945 W KR 2012005945W WO 2013019021 A2 WO2013019021 A2 WO 2013019021A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
layer
dopant
graphene laminate
polymer
Prior art date
Application number
PCT/KR2012/005945
Other languages
English (en)
French (fr)
Other versions
WO2013019021A3 (ko
Inventor
권오관
최정옥
정준호
최면천
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Publication of WO2013019021A2 publication Critical patent/WO2013019021A2/ko
Publication of WO2013019021A3 publication Critical patent/WO2013019021A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention relates to a graphene laminate with reduced sheet resistance and a method of manufacturing the same.
  • Graphene is a term made by combining the suffix -ene, which means a molecule having a double bond of graphite, which means graphite, and a two-dimensional allotrope of carbon, which has hexagonal lattice. do.
  • the infinite plane of graphene represents an energy-free region of electrons where the valence and conduction bands meet. Looking at the properties of the graph in more detail as follows.
  • the thickness of the graphene layer is about 0.34 nm, which corresponds to one carbon atom, and has a very useful property different from existing materials.
  • carrier mobility in monolayer graphene is up to 200,000 cm 2 / Vs, which is 100 times higher than silicon at room temperature, far beyond the 70,000 cm 2 / Vs of InSb.
  • the electrical resistance at room temperature is as small as 2/3 of copper, and has a current density of 100 million to 200 million A / cm 2 , and can withstand about 100 times the current density of the amount flowing through copper. Due to such excellent physical properties, the graphene layer has a very high application potential as an electronic device material, and is applicable to transistors, lasers, touch panels, organic light emitting devices, solar cells, or electrodes of secondary batteries.
  • the graphene layer transferred onto the substrate may be easily influenced by external physical and chemical environments, thereby changing the sheet resistance, which is important for graphene electrode applications.
  • the sheet resistance change acts as a cause of inhibiting physical properties and large area when forming various elements such as transparent electrodes.
  • the present invention provides a graphene laminate with reduced sheet resistance and a method of manufacturing the same.
  • the present invention provides a graphene laminate and a method of manufacturing the same, which are not affected by external environmental factors and maintain sheet resistance and light transmittance without a separate sealing process.
  • Graphene laminate according to the present invention is a substrate; A dopant-containing polymer layer; And a graphene layer. In addition, it provides a method for producing the graphene laminate.
  • the graphene laminate according to the present invention may have low sheet resistance and high light transmittance, and thus may be utilized in various forms of electronic devices.
  • FIG. 1 is a schematic view showing a laminated structure for the graphene laminate according to an embodiment of the present invention
  • FIGS. 2 and 3 are each a process chart showing a graphene transfer method according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a graphene stack structure including a graphene layer according to an embodiment of the present invention.
  • 5 and 6 are graphs showing the results of measuring the light transmittance of the graphene laminate according to an embodiment of the present invention, respectively.
  • Graphene laminate according to the present invention, the substrate; A dopant-containing polymer layer; And a graphene layer.
  • the graphene laminate according to the present invention includes a dopant and has a sheet resistance value of 600 ⁇ / sq or less, specifically 10 ⁇ / sq to 400 ⁇ / sq.
  • the graphene laminate may be utilized in various electronic devices such as transparent electrodes due to the low sheet resistance value.
  • the polymer layer is polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, fluorine, acrylic, polyvinyl acetate, polyamide, polyacetal, polycarbonate, polyphenylene oxide It may include one or more of a polyester, a polysulfone, a polyimide, a phenolic, urea, melamine, alkyd, unsaturated polyester, epoxy, silicon, acrylic and polyurethane. As the polymer, a thermosetting or thermoplastic polymer may be applied without particular limitation.
  • the polymer layer may include a conductive polymer.
  • Conductive polymers include, for example, polyacetylene, polydiacetylene, polyphenylene, polyaniline, polythiophene, polyphenylenevinylene, polythiophenevinylene, polypyrrole, polyfluorene and PEDOT: PSS (Poly (3 , 4-ethylenedioxythiophene) poly (styrenesulfonate)) may include any one or more.
  • the polymer layer may include a photocurable polymer.
  • a polymer layer may be formed through a UV curing process.
  • the photocurable polymer may be polymerized with one or more monomers of the following Chemical Formulas 1 to 3. .
  • n is an integer of 3 to 20.
  • the polymer layer may be an adhesive polymer including a repeating structure of one or more of the following Chemical Formulas 4 to 7.
  • R 1 is an alkyl group of C5 to C30
  • R 2 is an alkyl group of C5 to C20; Or a C6 to C30 aryl group having a substituted or unsubstituted C1 to C20 alkyl group,
  • R 3 is an alcohol group; Halogen group; Or a C1 to C10 alkyl group including any one or more of an alcohol group, a carboxyl group, a sulfonic acid group, an amine group, a carbonyl group, a cyano group, and a halogen group at the terminal of the substituent,
  • R 4 is a C1 to C10 alkyl group including a linear or branched chain type
  • X 1 to X 4 are each independently hydrogen or an alkyl group of C1 to C5,
  • n is an integer of 0-10.
  • the number of repetitions of the structure shown in Chemical Formulas 4 to 7 above is not particularly limited. This is because the repeating structures of Formulas 4 to 7 form a polymer layer.
  • the number of repetitions of the structure of Chemical Formulas 4 to 7 may be independently 1 to 1,000,000 range, but is not limited thereto.
  • the adhesive polymer not only has excellent adhesive properties with the graphene layer, but also due to such excellent adhesive properties, it is possible to improve the stability of the graphene layer with respect to transfer efficiency and external environmental factors of graphene.
  • the polymer layer may have a glass transition temperature of minus 10 °C to image 100 °C.
  • the glass transition temperature is a range that can increase the adhesion with the substrate and the graphene layer. If the glass transition temperature is less than minus 10 °C, the mechanical properties of the polymer layer is poor, the graphene layer transferred to the polymer layer can be easily damaged. If the glass transition temperature exceeds 100 °C image between the polymer layer and the graphene It is difficult to contact the interface of the adhesive force can be reduced.
  • the dopant according to the present invention is not particularly limited, but may preferably include a P-type dopant.
  • the dopant is included in the polymer layer and has an effect of lowering sheet resistance.
  • the dopant may include one or more of halogen oxide, sulfur oxide, metal halide, nitrogen oxide, metal peroxide, benzoquinone compound and dibromoanthracene.
  • Halogen oxides, sulfur oxides, metal halides, nitrogen oxides, metal peroxides, benzoquinone compounds, and dibromoanthracene are very effective materials for doping P-type dopants. Also affects.
  • By controlling the work function of the graphene thin film by doping with a P-type dopant it is possible to manufacture a functionalized graphene transparent electrode.
  • such graphene transparent electrode has excellent light transmittance, sheet resistance value and flexibility can be used in various transparent electrode applications.
  • the halogen oxide may include at least one of iodine oxide and chlorine oxide.
  • the iodine-based oxide may include at least one of iodilbenzene, iodoxybenzoic acid, and des-martin periodinan.
  • the chlorine-based oxide may include one or more of NaClO, NaClO 2 , NaClO 3 , NaClO 4 , AgClO 3 and AgClO 4 .
  • the sulfur oxide may include one or more of (CH 3 ) 2 SO, KHSO 5 , KHSO 4 , K 2 SO 4 , FSO 3 H and CF 3 SO 3 H.
  • the metal halide may be a metal salt including one or more of silver ions, gold ions, cerium ions, iron ions, molybdenum ions, tungsten ions, tin ions, ruthenium ions, and tantalum ions.
  • the metal halides are FeCl 3 , MoCl 5 , WCl 5 , SnCl 4 , MoF 5 , RuF 5 , TaBr 5 , SnI 4 , HAuCl 4 , AuCl 3 , (NH 4 ) 2 Ce (SO 4 ) 3 and (NH 4 ) And at least one of 2 Ce (NO 3 ) 6 .
  • the nitrogen oxides are AgNO 3 , NO 2 F, NO 2 Cl, N 2 O 5 , NO 2 BF 4 , CH 3 NO 2 , C 6 H 5 NO 2 , CH 3 ONO, NO (SbCl 6 ), NOBF 4 , It may comprise one or more of NOClO 4 , NOSO 4 H, C 6 H 5 NO, NOCl, NOF and NOBr.
  • metal peroxide may include KMnO 4, BaMnO 4, one or more of OsO 4.
  • benzoquinone-based compound may include one or more of benzoquinone, tetrachlorobenzoquinone, dichlorodicyanobenzoquinone and tetracyanoquinomethane.
  • the content of the dopant according to the present invention may be 0.01 to 20 wt%, preferably 0.1 to 10 wt%, based on the dopant-containing polymer layer.
  • the content of the dopant is less than 0.01wt%, the sheet resistance reduction effect is insignificant, and when it exceeds 20wt%, the film flatness may decrease.
  • the material constituting the substrate is not particularly limited, and for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyethersulfone (PES), polycyclic olefin (PCO), poly And one or more of acrylate (PA), polyetheretherketone (PEEK), and polyimide (PI).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PES polyethersulfone
  • PCO polycyclic olefin
  • PA acrylate
  • PEEK polyetheretherketone
  • PI polyimide
  • FIG. 1 is a schematic diagram showing a laminated structure of a graphene-coated substrate according to an embodiment of the present invention. Referring to FIG. 1, it can be seen that the substrate 10, the polymer layer 20 including the dopant, and the graphene layer 30 are sequentially stacked on the substrate 10.
  • the present invention provides a method for producing the graphene laminate.
  • the manufacturing method For example, the manufacturing method,
  • the type and content of the dopant and the polymer used in the manufacturing method are as described above.
  • the content of the dopant may be 0.01 to 20 wt%, preferably 0.1 to 10 wt%, based on the dopant-containing polymer layer.
  • a dry or wet transfer method may be used depending on a method of removing a metal catalyst layer.
  • a roll-to-roll method may be used.
  • the dry transfer method has the advantage that the graphene layer formed on the metal catalyst layer can be directly transferred onto the target substrate without including a solution process using a solvent or water.
  • the present invention does not exclude a wet process.
  • the metal catalyst layer can be removed using an etching solution.
  • the roll-to-roll system can be used, for example.
  • the metal catalyst layer and the graphene layer are separated by a roll-to-roll method. .
  • the metal catalyst layer can be removed using, for example, an etchant.
  • the metal catalyst layer may be removed using an etching solution.
  • the metal catalyst layer is not particularly limited, and for example, a copper foil or a nickel thin film may be used.
  • the etchant is not particularly limited as long as it can remove the metal catalyst layer, for example, acid, hydrofluoric acid (HF), buffered oxide etchant (BOE), ferric chloride (FeCl 3 ) solution, and ferric nitrate (Fe). (NO 3 ) 3 ) solution and one or more of ammonium persulfate ((NH 4 ) 2 S 2 O 8 ).
  • the polymer is not particularly limited, and a thermoplastic polymer may be used.
  • a separate curing process is not required, but when a thermosetting or photocurable polymer is used, a curing process of applying heat or irradiating UV may be included.
  • the graphene layer formed on the metal catalyst layer and the polymer-coated substrate including the dopant may be laminated and may include a thermal or UV curing process.
  • the graphene layer used in the present invention may have a structure formed on both sides of the metal catalyst layer, after laminating a substrate coated with a dopant-containing polymer, respectively, on the outer surface of the graphene layer formed on both sides of the metal catalyst layer, to remove the metal catalyst layer Process may be included.
  • This is advantageous in that two graphene laminates can be formed through a single manufacturing process, thereby doubling the manufacturing efficiency. Even in this case, a separate curing process may be performed depending on the type of polymer used.
  • it may include a thermal or UV curing process.
  • FIGS. 2 and 3 schematically show a method of manufacturing a graphene laminate according to an embodiment of the present invention, respectively.
  • a polymer layer 20 is formed by applying a polymer including a dopant to one surface of the substrate 10. Then, the metal catalyst layer 40 on which the graphene layer 30 is formed is laminated. In this case, the polymer layer 20 and the graphene layer 30 are in direct contact with each other, and may be in close contact with a roller or the like to increase adhesion. Although it may vary depending on the components constituting the polymer layer, when the polymer is photocurable, it may include a process of curing through UV irradiation. Then, the metal catalyst layer 40 is removed. Removal of the metal catalyst layer 40 may be performed through a roll-to-roll process.
  • the metal catalyst layer 40 can be removed using an etchant.
  • the kind of etching liquid which can be used is not specifically limited.
  • 3 shows a process chart of the graphene transfer method according to another embodiment.
  • 3 discloses a method in which both graphene layers 31 and 32 formed on both surfaces of the metal catalyst layer 40 can be utilized.
  • Two substrates 11 and 12 having the dopant-containing polymer layers 21 and 22 are laminated on the upper and lower graphene layers 31 and 32 of the metal catalyst layer 40, respectively.
  • the process of irradiating heat or UV may be further processed.
  • the metal catalyst layer is removed using a roll-to-roll or etching solution, two laminated structures consisting of the substrate 10, the dopant containing polymer layers 21 and 22 and the graphene layers 31 and 32 are obtained.
  • This method compared with the conventional graphene transfer method can improve the process efficiency twice, and can minimize the amount of graphene lost in the transfer process.
  • the present invention also provides an intermediate structure of the graphene laminate formed during the transfer process.
  • the intermediate structure is a state before the metal catalyst layer is removed.
  • the graphene laminate may include a structure in which a substrate, a polymer layer including a dopant, a graphene layer, a metal catalyst layer, a graphene layer, a polymer layer including a dopant, and a substrate are sequentially stacked.
  • 4 shows an example of a graphene laminate.
  • the laminate has a symmetrical structure based on the copper foil 40 which is a metal catalyst layer.
  • the substrate 11, the dopant-containing polymer layer 21, and the graphene layer 31 are sequentially stacked, and the metal catalyst layer 40 is formed on the graphene layer 31.
  • the graphene layer 32, the dopant-containing polymer layer 22, and the substrate 10 are sequentially formed on the metal catalyst layer 40.
  • the present invention provides an electrode or a conductive thin film comprising the graphene laminate described above.
  • the electrode or the conductive thin film may be utilized in various types of electronic devices without particular limitation.
  • the electronic device may be applied as a transistor, a laser device, a touch panel, an organic light emitting device, a solar cell, or an electrode of a secondary battery.
  • the dopant-containing solution was applied to a PET substrate (thickness 75 ⁇ m) by spin coating, and dried at 70 ° C. for 1 hour to produce a thin film having a thickness of about 1 ⁇ m on the PET substrate.
  • Copper foil (thickness 25 ⁇ m, purity 99.8%), which is a metal catalyst having a size of 5 cm ⁇ 5 cm, was charged to a quartz tube for producing a graphene layer.
  • the graphene layer formed on the copper foil was laminated on a PET substrate coated with a polymer containing a dopant. Specifically, the surface where the graphene is formed on the copper foil and the surface on which the dopant-containing polymer is applied to the PET substrate are faced to each other, and the PET substrate and the graphene layer are laminated by applying pressure. Then, a graphene laminate including a copper foil was formed through a UV curing process. The graphene laminate including the copper foil was prepared using a 0.1 M (NH 4 ) 2 S 2 O 8 aqueous solution to remove the graphene laminate from the copper foil.
  • Example 2 was prepared in the same manner as in Example 1, except that 10g of the monomer represented by the formula (8) and 3g of the monomer represented by the following formula (3) used in Example 1.
  • a graphene laminate was manufactured in the same manner as in Example 1, except that 0.1 wt% of FeCl 3 was used as the dopant.
  • This Example was prepared in the same manner as in Example 1 except that KMnO 4 0.1wt% as a dopant was prepared.
  • This example uses NaClO as a dopant.
  • a graphene laminate was manufactured in the same manner as in Example 1, except that 0.1 wt% was used.
  • Comparative Example 1 is a graphene laminate containing no dopant, except that the dopant application process of Example 1, a graphene laminate was prepared in the same manner as in Example 1.
  • Comparative Example 2 is a graphene laminate containing no dopant, except that the dopant application process of Example 1, a graphene laminate was prepared in the same manner as in Example 2.
  • the sheet resistance of the graphene laminates prepared in Example 1 and Comparative Example 1 is shown in Tables 1 and 2 by measuring an arbitrary 9 section with a 4-point probe.
  • Table 1 Measure Sheet resistance ( ⁇ / sq) One 298 2 302 3 288 4 274 5 278 6 264 7 277 8 254 9 279
  • the measurement 1 to 9 means any 9 intervals.
  • Table 1 shows the sheet resistance values of Example 1, and the average sheet resistance values of 279 ⁇ / sq on average.
  • the sheet resistance of Comparative Example 1 disclosed in Table 2 represents an average of 828 ⁇ / sq, and it was confirmed that the sheet resistance was reduced to about 1/3 due to the use of the dopant tetracyanoquinomethane.
  • Table 3 shows the sheet resistance of Example 2, and the average sheet resistance of 351 ⁇ / sq.
  • the sheet resistance value of Comparative Example 2 disclosed in Table 4 was found to be an average of 832 ⁇ / sq. Through this, it was confirmed that the sheet resistance value was reduced to about 2/5 due to the use of the dopant tetracyanoquinomidimethane. In addition, it was confirmed that using the monomer of the formula (11) than the monomer of the formula (3) is more effective in lowering the sheet resistance value.
  • Tables 5 to 7 show sheet resistance values of Examples 3 to 5, respectively, and average sheet resistance values of 407 ⁇ / sq, 550 ⁇ / sq, and 506 ⁇ / sq, respectively. It can be seen that a slight difference occurs in the sheet resistance value depending on the type of dopant. From the above results, it was confirmed that the sheet resistance value was lowered to about 3/5 or less when the dopant was used as compared with the case where the dopant was not used.
  • the light transmittance of the graphene laminates prepared in Examples 1 and 2 was measured. Specifically, the light in the UV / visible region was irradiated and the amount of transmitted light was measured in%.
  • Figure 5 shows the light transmittance measurement results for the graphene laminate prepared in Example 1. Referring to FIG. 5, it was confirmed that the light transmittance of 97% or more in the entire wavelength band region, and the light transmittance of 97.83% for the light of 550 nm wavelength.
  • Figure 6 shows the light transmittance measurement results for the graphene laminate prepared in Example 2. Referring to FIG. 6, light transmittance of 97% or more was exhibited in the entire wavelength band, and light transmittance of 97.67% was observed for light having a wavelength of 550 nm.
  • the graphene laminate including the dopant of the present invention has excellent light transmittance in addition to the sheet resistance reduction effect.

Abstract

본 발명은 기판; 도펀트 포함 고분자층; 및 그래핀층이 순차 적층된 구조를 포함하는 그래핀 적층체 및 그 제조방법에 관한 것으로, 상기 그래핀 적층체는 면저항이 낮고 광투과도가 높아서 다양한 형태의 전자소자 등으로 활용 가능하다.

Description

도펀트 포함 그래핀 적층체 및 그 제조방법
본 발명은 면저항이 감소된 그래핀 적층체 및 그 제조방법에 관한 것이다.
그래핀(graphene)이란 흑연을 의미하는 그라파이트(graphite)와 탄소(carbon)의 이중결합을 가진 분자를 뜻하는 접미사 -ene을 결합해서 만든 용어로서 육각형의 격자를 가진 탄소의 2차원적인 동소체를 의미한다. 그래핀의 무한한 평면은 원자가띠와 전도띠가 만나는 전자가 없는 에너지 영역을 보인다. 그래핀의 성질을 보다 구체적으로 살펴보면 아래와 같다.
그래핀층의 두께는 탄소원자 1개에 해당하는 약 0.34nm로 기존의 물질과 다른 매우 유용한 특성을 가지고 있다. 특히, 단층 그래핀 내에 캐리어 이동도는 실온에서 실리콘에 비하여 100배나 높은 최대 20만cm2/Vs이 되어 종래 최대로 알려진 인듐 안티몬(InSb)의 7.7만cm2/Vs를 훨씬 넘어선다. 또한 실온에서의 전기 저항치도 구리의 2/3로 작으며, 1억~2억A/cm2의 전류밀도를 가져 구리에 흐르는 양의 약 100배의 전류밀도에 견딜 수 있다. 이러한 우수한 물성으로 인해, 그래핀층은 전자 소자용 재료로서 매우 높은 응용 가능성을 가지고 있으며, 트랜지스터, 레이저, 터치패널, 유기발광소자, 태양전지 또는 이차전지의 전극 등으로 응용이 가능하다.
그래핀을 실제로 응용하기 위하여 대면적 또는 미세 패턴을 가지는 균일한 그래핀층을 제조하여야 한다. 이를 위해서, 다양한 연구가 진행된 바 있다. 예를 들어, 기계적 박리법, 화학기상증착(CVD)법, SiC 기판의 열분해법 및 산화 그래핀법 등이 있다.
그러나, 그래핀층을 기판상에 전사하게 되면 기판상에 전사된 그래핀층이 외부의 물리적, 화학적 환경에 쉽게 영향을 받아 그래핀 전극 응용에 중요한 면저항이 변화될 수 있다. 면저항 변화는 투명 전극과 같은 다양한 소자를 형성하는 경우에 물성 및 대면적화를 저해하는 원인으로 작용한다. 종래에는 이러한 외부 환경 요인에 의한 면저항 변화를 차단하기 위해서 별도의 밀봉 기술을 도입해야 하는 문제점이 있었다.
본 발명은 면저항이 감소된 그래핀 적층체 및 그 제조방법을 제공한다. 또한, 별도의 밀봉 공정 없이도 외부 환경 요인에 영향을 받지 않아 면저항 및 광투과도가 유지되는 그래핀 적층체 및 그 제조방법을 제공한다.
본 발명에 따른 그래핀 적층체는 기판; 도펀트 포함 고분자층; 및 그래핀층을 포함한다. 또한, 상기 그래핀 적층체를 제조하는 방법을 제공한다.
본 발명에 따른 그래핀 적층체는 면저항이 낮고 광투과도가 높아 다양한 형태의 전자 소자 등에 활용 가능하다.
도 1은 본 발명의 일실시예에 따른 그래핀 적층체에 대한 적층구조를 나타낸 모식도이다;
도 2 및 3은 각각 본 발명의 일실시예에 따른 그래핀 전사 방법을 도시한 공정도이다.
도 4는 본 발명의 일실시예에 따른 그래핀층을 포함하는 그래핀 적층구조를 나타낸 단면도이다.
도 5 및 6은 각각 본 발명의 일실시예에 따른 그래핀 적층체에 대한 광투과도를 측정한 결과를 나타낸 그래프이다.
본 발명에 따른 그래핀 적층체는, 기판; 도펀트 포함 고분자층; 및 그래핀층을 포함한다.
본 발명에 따른 그래핀 적층체는 도펀트를 포함하고 있어 600Ω/sq 이하, 구체적으로 10Ω/sq 내지 400Ω/sq의 낮은 면저항 값을 가진다. 상기 그래핀 적층체는 이러한 낮은 면저항 값으로 인해 투명 전극과 같은 다양한 전자소자 등에 활용 가능하다.
상기 고분자층은 폴리에틸렌계, 폴리프로필렌계, 폴리스틸렌계, 폴리염화비닐계, 폴리염화비닐리덴계, 불소계, 아크릴계, 폴리아세트산비닐계, 폴리아미드계, 폴리아세탈계, 폴리카보네이트계, 폴리페닐렌옥사이드계, 폴리에스테르계, 폴리술폰계, 폴리이미드계, 페놀계, 요소계, 멜라민계, 알키드계, 불포화 폴리에스테르계, 에폭시계, 규소계, 아크릴계 및 폴리우레탄계 중 하나 이상을 포함할 수 있다. 상기 고분자로는 열경화성 또는 열가소성 고분자를 특별한 제한 없이 적용 가능하다.
상기 고분자층은 전도성 고분자를 포함 할 수 있다. 전도성 고분자는, 예를 들어, 폴리아세틸렌, 폴리디아세틸렌, 폴리페닐렌, 폴리아닐린, 폴리티오펜, 폴리페닐렌비닐렌, 폴리티오펜비닐렌, 폴리피롤, 폴리플루오렌 및 PEDOT:PSS(Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) 중 어느 하나 이상을 포함할 수 있다.
상기 고분자층은 광경화성 고분자를 포함할 수 있다. 예를 들어, 그래핀층과 도펀트를 포함하는 고분자 용액을 도포한 기판과 합지한 후, UV 경화 과정을 거쳐 고분자층을 형성할 수 있다. 예를 들어, 광경화성 고분자는 하기 화학식 1 내지 3 중 하나 이상의 모노머로 중합될 수 있다. .
[화학식 1]
Figure PCTKR2012005945-appb-I000001
[화학식 2]
Figure PCTKR2012005945-appb-I000002
[화학식 3]
Figure PCTKR2012005945-appb-I000003
상기 화학식 1 및 2에서, n은 3 내지 20의 정수이다.
또한, 상기 고분자층은 하기 화학식 4 내지 7 중 하나 이상의 반복 구조를 포함하는 접착성 고분자일 수 있다.
[화학식 4]
Figure PCTKR2012005945-appb-I000004
[화학식 5]
Figure PCTKR2012005945-appb-I000005
[화학식 6]
Figure PCTKR2012005945-appb-I000006
[화학식 7]
Figure PCTKR2012005945-appb-I000007
상기 화학식 4 내지 7에서,
R1은 C5 내지 C30의 알킬기이고,
R2는 C5 내지 C20의 알킬기; 또는 C1 내지 C20의 알킬기가 치환 또는 비치환된 C6 내지 C30의 아릴기이고,
R3는 알코올기; 할로겐기; 또는 치환기의 말단에 알코올기, 카르복실기, 술폰산기, 아민기, 카보닐기, 시아노기 및 할로겐기 중 어느 하나 이상을 포함하는 C1 내지 C10의 알킬기이고,
R4는 직쇄(linear chain) 또는 측쇄(branched chain)형을 포함하는 C1 내지 C10의 알킬기이고,
X1 내지 X4는 각각 독립적으로 수소 또는 C1 내지 C5의 알킬기이고,
n은 0 내지 10의 정수이다.
위 화학식 4 내지 7에 나타낸 구조의 반복 횟수는 특별히 제한되지 않는다. 이는 화학식 4 내지 7의 반복 구조들이 고분자층을 형성하기 때문이다. 예를 들어, 상기 화학식 4 내지 7의 구조의 반복 횟수는 각각 독립적으로 1 내지 1,000,000 범위일 수 있으나, 이에 제한되는 것은 아니다. 상기 접착성 고분자는 그래핀층과의 우수한 접착 특성을 가질 뿐만 아니라, 이러한 우수한 접착특성으로 인해 그래핀의 전사 효율 및 외부 환경 요인에 대해 그래핀층의 안정성을 향상시킬 수 있다.
상기 고분자층은 영하 10℃ 내지 영상 100℃의 유리전이온도를 가질 수 있다. 이러한 유리전이온도는 기판 및 그래핀층과의 접착력을 높일 수 있는 범위이다. 유리전이온도가 영하 10℃ 미만일 경우에는 고분자층의 기계적 물성이 떨어져 고분자층에 전사된 그래핀층이 쉽게 손상을 입을 수 있고, 유리전이온도가 영상 100℃를 초과할 경우에는 고분자층과 그래핀 사이의 계면 접촉이 어려워 접착력이 저하될 수 있다.
본 발명에 따른 도펀트는 특별히 제한되지 않으나, 바람직하게는 P형 도펀트를 포함할 수 있다. 상기 도펀트는 고분자층 내에 포함되어 면저항을 낮추는 효과를 갖는다.
상기 도펀트는 할로겐 산화물, 황산화물, 금속 할라이드, 질소 산화물, 금속 과산화물, 벤조퀴논계 화합물 및 디브로모안트라센 중 하나 이상을 포함할 수 있다. 할로겐 산화물, 황산화물, 금속 할라이드, 질소 산화물, 금속 과산화물, 벤조퀴논계 화합물 및 디브로모안트라센은 P형 도판트 도핑에 매우 효과적인 물질로서, 그래핀 박막의 면저항 뿐만 아니라 일함수(Workfunction) 특성 변화에도 영향을 미친다. P형 도펀트로 도핑하여 그래핀 박막의 일함수를 조절하면, 기능화된 그래핀 투명전극으로의 제조가 가능하다. 또한, 이러한 그래핀 투명전극은 우수한 광투과도, 면저항값 및 유연성을 가지게 되어 다양한 투명전극 응용분야에서 사용할 수 있다.
상기 할로겐 산화물은 요오드계 산화물 및 염소계 산화물 중 하나 이상을 포함할 수 있다. 상기 요오드계 산화물은 아이오딜벤젠, 아이오독시벤조산 및 데스-마틴 퍼아이오디난 중 하나 이상을 포함할 수 있다. 또한, 상기 염소계 산화물은 NaClO, NaClO2, NaClO3, NaClO4, AgClO3 및 AgClO4 중 하나 이상을 포함할 수 있다.
상기 황산화물은 (CH3)2SO, KHSO5, KHSO4, K2SO4, FSO3H 및 CF3SO3H 중 하나 이상을 포함할 수 있다.
상기 금속 할라이드는 은이온, 금이온, 세륨이온, 철이온, 몰리브덴이온, 텅스텐이온, 주석이온, 루테늄이온 및 탄탈륨이온 중 하나 이상을 포함하는 금속염일 수 있다. 또한 금속 할라이드는 FeCl3, MoCl5, WCl5, SnCl4, MoF5, RuF5, TaBr5, SnI4, HAuCl4, AuCl3, (NH4)2Ce(SO4)3 및 (NH4)2Ce(NO3)6 중 하나 이상을 포함할 수 있다.
상기 질소산화물은 AgNO3, NO2F, NO2Cl, N2O5, NO2BF4, CH3NO2, C6H5NO2, CH3ONO, NO(SbCl6), NOBF4, NOClO4, NOSO4H, C6H5NO, NOCl, NOF 및 NOBr 중 하나 이상을 포함할 수 있다.
상기 금속 과산화물은 KMnO4, BaMnO4, OsO4 중 하나 이상을 포함할 수 있다.
또한, 상기 벤조퀴논계 화합물은 벤조퀴논, 테트라클로로벤조퀴논, 디클로로디시아노벤조퀴논 및 테트라시아노퀴노디메탄 중 하나 이상을 포함할 수 있다.
본 발명에 따른 도펀트의 함량은, 도펀트 포함 고분자층을 기준으로, 0.01 내지 20wt%일 수 있으며, 바람직하게는 0.1~10wt% 범위일 수 있다. 도펀트의 함량이 0.01wt% 미만 일때는 면저항 감소 효과가 미비하고, 상기 20wt% 초과하는 경우에는 막 평탄성이 저하될 수 있다.
기판을 구성하는 소재는 특별히 제한되지 않으며, 예를 들어 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리카보네이트(PC), 폴리에테르설폰(PES), 폴리사이클릭올레핀(PCO), 폴리아크릴레이트(PA), 폴리에테르에테르케톤(PEEK) 및 폴리이미드(PI) 중 하나 이상을 포함할 수 있다.
도 1은 본 발명의 일실시예에 따른 그래핀이 코팅된 기판의 적층구조를 나타낸 모식도이다. 도 1을 참조하면, 기판(10), 기판(10) 상에 도펀트가 포함된 고분자층(20) 및 그래핀층(30)이 순차적으로 적층된 구조임을 알 수 있다.
본 발명은 상기 그래핀 적층체를 제조하는 방법을 제공한다. 예를 들어, 상기 제조방법은,
(a) 기판상에 도펀트를 포함하는 고분자를 도포하는 단계;
(b) 금속 촉매층 상에 형성된 그래핀층과 도펀트를 포함하는 고분자가 도포된 기판을 합지하는 단계; 및
(c) 금속 촉매층을 제거하는 단계를 포함할 수 있다.
본 제조방법에서 사용되는 도펀트 및 고분자의 종류와 함량은 앞서 설명한 바와 같다. 예를 들어, 도펀트의 함량은, 도펀트 포함 고분자층을 기준으로, 0.01 내지 20wt%일 수 있으며, 바람직하게는 0.1~10wt% 범위일 수 있다.
본 발명에 따른 그래핀 적층체의 제조방법은, 금속 촉매층을 제거하는 방식에 따라 건식 또는 습식 전사방법을 사용할 수 있다. 건식 전사방법으로는 예를 들어, 롤투롤 방식이 사용될 수 있다. 건식 전사방법은, 용제나 물을 사용하는 용액공정을 포함하지 않고 금속 촉매층에 형성된 그래핀층을 목적 기판상에 직접 건식 전사할 수 있다는 장점이 있다. 또한, 본 발명은 습식 공정을 제외하는 것은 아니다. 예를 들어, 에칭액을 이용하여 금속 촉매층을 제거할 수 있다.
건식 전사방법을 사용하는 경우에는, 예를 들어 롤투롤 방식을 사용할 수 있다. 구체적으로는, 상기 (c) 단계는, 금속 촉매층 상에 형성된 그래핀층과 도펀트를 포함하는 고분자가 도포된 기판을 상호 접촉하도록 합지한 후, 롤투롤 방식에 의해 금속 촉매층과 그래핀층을 분리하게 된다.
습식 전사방법을 사용하는 경우에는, 예를 들어 에칭액을 이용하여 금속 촉매층을 제거할 수 있다. 구체적으로는, 상기 (c) 단계는, 금속 촉매층 상에 형성된 그래핀층과 도펀트를 포함하는 고분자가 도포된 기판을 상호 접촉하도록 합지한 후, 에칭액을 이용하여 금속 촉매층을 제거할 수 있다. 상기 금속 촉매층은 특별히 제한되지 않으며, 예를 들어 구리 호일 또는 니켈 박막 등이 사용될 수 있다. 상기 에칭액은 금속 촉매층을 제거할 수 있는 경우라면 특별히 제한되지 않으며, 예를 들어 산, 불산(HF), BOE(buffered oxide etchant), 염화제2철(FeCl3) 용액, 질산제2철(Fe(NO3)3) 용액 및 과황산암모늄((NH4)2S2O8) 중 하나 이상을 이용하여 수행될 수 있다.
본 발명에서 사용되는 고분자의 종류에 따라서 별도의 경화 과정을 거칠 수 있다. 본 발명에서 고분자는 특별히 제한되지 않으며, 열가소성 고분자가 사용될 수 있으며 이 경우에는 별도의 경화 과정이 요구되지 않지만, 열경화성 또는 광경화성 고분자가 사용될 경우에는 열을 가하거나 UV를 조사하는 경화 과정이 포함될 수 있다. 예를 들어, 상 기 (b) 단계에서, 금속 촉매층 상에 형성된 그래핀층과 도펀트를 포함하는 고분자가 도포된 기판을 합지하고 열 또는 UV 경화 과정을 포함할 수 있다.
또한, 본 발명에서 사용되는 그래핀층은 금속 촉매층의 양면에 형성된 구조일 수 있으며, 금속 촉매층의 양면에 형성된 그래핀층의 외면에 각각 도펀트 포함 고분자가 도포된 기판을 합지한 후, 금속 촉매층을 제거하는 과정을 포함할 수 있다. 이는 1 회의 제조공정을 통해 2 개의 그래핀 적층체를 형성할 수 있다는 점에서, 제조 효율을 2배로 높일 수 있다는 장점이 있다. 이 경우에도, 사용되는 고분자의 종류에 따라서 별도의 경화 과정을 거칠 수 있다. 예를 들어, 금속 촉매층의 양면에 형성된 그래핀층의 외면에 각각 도펀트 포함 고분자가 도포된 기판을 합지한 후, 열 또는 UV 경화 과정을 포함할 수 있다.
도면을 통해 본 발명의 일실시예에 따른 그래핀 적층체를 제조하는 방법을 보다 상세히 살펴본다.
도 2 및 3은 각각 본 발명의 일실시예에 따른 그래핀 적층체의 제조방법을 모식적으로 나타내었다.
도 2를 참조하면, 기판(10)의 일면에 도펀트가 포함된 고분자를 도포하여 고분자층(20)을 형성한다. 그런 다음, 그래핀층(30)이 형성된 금속 촉매층(40)을 합지한다. 이 때에는, 고분자층(20)과 그래핀층(30)이 직접 접촉하도록 하며, 부착력을 높이기 위해 롤러 등을 이용하여 밀착시킬 수 있다. 고분자층을 구성하는 성분에 따라 달라질 수 있으나, 고분자가 광경화성인 경우에는 UV 조사를 통해 경화시키는 과정을 포함할 수 있다. 그런 다음, 금속 촉매층(40)을 제거하게 된다. 금속 촉매층(40) 제거는 롤투롤 공정을 통해 수행될 수 있다. 이때 고분자층(20)의 접착력에 의해 금속 촉매층을 분리시키더라도 그래핀층(30)은 기판(10)에 남게 된다. 혹은, 에칭액을 사용하여 금속 촉매층(40)을 제거할 수 있다. 사용 가능한 에칭액의 종류는 특별히 제한되지 않는다. 금속 촉매층(40)이 제거된 후에는, 기판(10), 도펀트 포함 고분자층(20) 및 그래핀(30)으로 이루어진 적층 구조가 남게 된다.
도 3에는 또 다른 하나의 실시예에 따른 그래핀 전사방법의 공정도를 나타내었다. 도 3은 금속 촉매층(40)의 양면에 형성된 그래핀층(31, 32)을 모두 활용할 수 있는 방법을 개시한 것이다. 도펀트 포함 고분자층(21, 22)이 형성된 두 개의 기판(11, 12)을 금속 촉매층(40)의 상하부 그래핀층(31, 32)에 각각 합지하게 된다. 필요에 따라서는, 열 또는 UV를 조사하는 과정을 더 거칠 수 있다. 그런 다음, 롤투롤 또는 에칭액을 이용하여 금속 촉매층을 제거하면, 기판(10), 도펀트 포함 고분자층(21, 22) 및 그래핀층(31, 32)으로 이루어진 적층구조가 2 개 얻어진다. 이러한 방법은, 기존의 그래핀 전사방법과 비교하여 공정 효율을 2배 향상시킬 수 있으며, 전사과정에서 소실되는 그래핀의 양을 최소화할 수 있다.
본 발명은 또한, 상기 전사과정에서 형성되는 그래핀 적층체의 중간 구조를 제공한다. 상기 중간구조는 금속 촉매층이 제거되기 전의 모습이다. 예를 들어, 그래핀 적층체는 기판, 도펀트 포함 고분자층, 그래핀층, 금속 촉매층, 그래핀층, 도펀트 포함 고분자층 및 기판이 순차적으로 적층된 구조를 포함할 수 있다. 도 4에는 그래핀 적층체의 일례를 도시하였다. 상기 적층체는 금속 촉매층인 구리 호일(40)을 기준으로 대칭 구조를 형성하고 있다. 기판(11), 도펀트 포함 고분자층(21) 및 그래핀층(31)이 순차 적층되고, 그래핀층(31) 위에 금속 촉매층(40)이 형성된 구조이다. 또한, 금속 촉매층(40) 상에는 그래핀층(32), 도펀트 포함 고분자층(22) 및 기판(10)이 순차적으로 형성된 구조이다.
본 발명은 앞서 설명한 그래핀 적층체를 포함하는 전극 또는 전도성 박막을 제공한다. 상기 전극 또는 전도성 박막은 특별한 제한 없이 다양한 형태의 전자 소자에 활용될 수 있다. 또한, 상기 전자 소자는 트랜지스터, 레이저 소자, 터치패널, 유기발광소자, 태양전지 또는 이차전지의 전극 등으로 응용 가능하다.
이하 실시예를 들어 본 발명을 더 상세히 설명한다. 본 발명의 실시예는 발명의 상세한 설명을 위한 것일 뿐, 이에 의해 권리범위를 제한하려는 것은 아니다.
실시예 1
하기 화학식 8로 표시되는 모노머 10g과 화학식 9로 표시되는 모노머 3g, 희석제 2g 및 광개시제 0.1g(CIBA사, 제품번호 184)을 혼합하고, 여기에 도펀트로 테트라시아노퀴노디메탄 0.1wt%를 혼합하여 용액을 제조하였다.
[화학식 8]
Figure PCTKR2012005945-appb-I000008
[화학식 9]
Figure PCTKR2012005945-appb-I000009
그런 다음, PET 기판(두께 75μm)에 상기 도펀트 포함 용액을 스핀 코팅 방법으로 도포한 후, 70℃에서 1시간 건조 시켜 PET 기판에 약 1μm 두께의 박막을 제작 하였다.
그래핀층 제작을 위하여 5cm x 5cm 크기를 갖는 금속 촉매인 구리 호일(두께 25μm, 순도 99.8%)을 석영 튜브에 장입하였다. 먼저 산화막 제거를 위하여 1000℃에서 H2/Ar = 10/50sccm으로 20분간 흘려주었다. 그런 다음, 동일 온도를 유지하면서 CH4/H2/Ar = 20/10/50sccm을 30분간 흘려주어 구리 호일 표면상에 그래핀층을 형성한 후, Ar = 50sccm 흘려주면서 3.6℃/sec 속도로 냉각하여 그래핀층이 형성된 구리 호일을 제조하였다.
구리 호일에 형성된 그래핀층을 도펀트가 포함된 고분자가 도포된 PET 기판상에 합지하였다. 구체적으로는, 구리 호일에 그래핀이 형성된 면과 PET 기판에 도펀트 포함 고분자가 도포된 면을 마주보도록 하고, 압력을 가하여 PET 기판과 그래핀층을 합지 시켰다. 그런 다음, UV 경화 과정을 거쳐 구리 호일을 포함하는 그래핀 적층체를 형성하였다. 상기 구리 호일이 포함된 그래핀 적층체를 0.1M의 (NH4)2S2O8 수용액을 이용하여 구리 호일이 제거된 그래핀 적층체를 제조하였다.
실시예 2
본 실시예는 실시예 1에서 사용된 상기 화학식 8로 표시되는 모노머 10g과 하기 화학식 3으로 표시되는 모노머 3g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 그래핀 적층체를 제조하였다.
[화학식 3]
Figure PCTKR2012005945-appb-I000010
실시예 3
본 실시예는 도펀트로 FeCl3 0.1wt%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 그래핀 적층체를 제조하였다.
실시예 4
본 실시예는 도펀트로 KMnO4 0.1wt%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 그래핀 적층체를 제조하였다.
실시예 5
본 실시예는 도펀트로 NaClO 0.1wt%를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 그래핀 적층체를 제조하였다.
비교예 1
본 비교예 1은 도펀트를 포함하지 않는 그래핀 적층체로, 실시예 1의 도펀트 적용 공정을 제외 하고는, 실시예 1과 동일한 방법으로 그래핀 적층체를 제조하였다.
비교예 2
본 비교예 2는 도펀트를 포함하지 않는 그래핀 적층체로, 실시예 1의 도펀트 적용 공정을 제외 하고는, 실시예 2과 동일한 방법으로 그래핀 적층체를 제조하였다.
실험예 1: 면저항 측정 실험
1. 실시예 1 및 비교예 1의 면저항 측정
실시예 1 및 비교예 1에서 제조된 그래핀 적층체에 대한 면저항은 4-탐침 면저항 측정기(4-point probe)로 임의의 9구간을 측정하여 표 1과 2에 각각 나타내었다.
표 1
측정 면저항(Ω/sq)
1 298
2 302
3 288
4 274
5 278
6 264
7 277
8 254
9 279
* 상기 측정 1 ~ 9는 임의의 9 구간을 의미함.
표 2
측정 면저항(Ω/sq)
1 852
2 823
3 850
4 632
5 790
6 894
7 871
8 843
표 1은 실시예 1의 면저항 값을 나타낸 것으로, 평균 279Ω/sq의 평균 면저항 값을 나타내었다. 이에 비해, 표 2에 개시된 비교예 1의 면저항 값은 평균 828Ω/sq을 나타내어, 도펀트인 테트라시아노퀴노디메탄의 사용으로 인해 면저항 값이 약 1/3 수준으로 감소되는 것을 확인하였다.
2. 실시예 2 및 비교예 2의 면저항 측정
실시예 2 및 비교예 2에서 제조된 그래핀 적층체에 대한 면저항 값을 표 3과 4에 각각 나타내었다.
표 3
측정 면저항(Ω/sq)
1 375
2 345
3 327
4 311
5 328
6 346
7 371
8 348
9 355
표 4
측정 면저항(Ω/sq)
1 869
2 822
3 836
4 789
5 778
6 874
7 841
8 813
9 865
표 3은 실시예 2의 면저항 값을 나타낸 것으로, 평균 351Ω/sq의 평균 면저항 값을 나타내었다. 이에 비해, 표 4에 개시된 비교예 2의 면저항 값은 평균 832Ω/sq인 것으로 나타났다. 이를 통해, 도펀트 테트라시아노퀴노디메탄의 사용으로 인해 면저항 값이 약 2/5 수준으로 감소되었음을 확인하였다. 또한, 화학식 3의 모노머보다 화학식 11의 모노머를 사용하는 것이 면저항 값을 낮추는데 보다 효과적임을 확인 하였다.
3. 실시예 3 내지 5의 면저항 측정
실시예 3 내지 5에서 제조된 그래핀 적층체에 대한 면저항 값을 표 5 내지 7에 각각 나타내었다.
표 5
측정 면저항(Ω/sq)
1 426
2 400
3 444
4 449
5 353
6 403
7 399
8 392
9 396
표 6
측정 면저항(Ω/sq)
1 547
2 544
3 571
4 577
5 502
6 557
7 486
8 578
9 586
표 7
측정 면저항(Ω/sq)
1 501
2 550
3 439
4 546
5 509
6 513
7 486
8 482
9 524
상기 표 5 내지 7은 각각 실시예 3 내지 5의 면저항 값을 나타낸 것으로, 각각 평균 407Ω/sq, 550Ω/sq 및 506Ω/sq의 면저항 값을 나타내었다. 도펀트의 종류에 따라 면저항 값에 약간의 차이가 발생함을 알 수 있다. 위 결과를 통해 도펀트를 사용하지 않은 경우와 비교하여 도펀트를 사용한 경우에는 면저항 값이 약 3/5수준 이하로 낮아지는 것을 확인하였다.
실험예 2: 광투과도 측정 실험
실시예 1 및 2에서 제조된 그래핀 적층체에 대하여 광투과도를 측정하였다. 구체적으로는 UV/visible 영역의 광을 조사하고 투과된 광량을 %로 측정 하였다.
도 5에는 실시예 1에서 제조된 그래핀 적층체에 대한 광투과도 측정결과를 나타내었다. 도 5를 참조하면, 전 파장대 영역에서 97% 이상의 광투과도를 나타내며, 550 nm 파장의 광에 대해서는 97.83%의 광투과도를 나타내는 것으로 확인되었다.
도 6에는 실시예 2에서 제조된 그래핀 적층체에 대한 광투과도 측정결과를 나타내었다. 도 6을 참조하면, 전 파장대 영역에서 97% 이상의 광투과도를 나타내며, 550 nm 파장의 광에 대해서 97.67%의 광투과도를 나타내는 것으로 확인되었다.
이를 통해, 본 발명의 도펀트 포함 그래핀 적층체는 면저항 감소 효과 이외에도 광투과도가 매우 우수한 것을 알 수 있다.
10, 11, 12 : 기판
20, 21, 22 : 도펀트 포함 고분자층
30, 31, 32 : 그래핀층
40 : 금속 촉매층

Claims (35)

  1. 기판; 도펀트 포함 고분자층; 및 그래핀층을 포함하는 그래핀 적층체.
  2. 제 1 항에 있어서,
    면저항이 600Ω/sq 이하인 그래핀 적층체.
  3. 제 1 항에 있어서,
    면저항이 10Ω/sq 내지 400Ω/sq인 그래핀 적층체.
  4. 제 1 항에 있어서,
    고분자층은 폴리에틸렌계, 폴리프로필렌계, 폴리스틸렌계, 폴리염화비닐계, 폴리염화비닐리덴계, 불소계, 아크릴계, 폴리아세트산비닐계, 폴리아미드계, 폴리아세탈계, 폴리카보네이트계, 폴리페닐렌옥사이드계, 폴리에스테르계, 폴리술폰계, 폴리이미드계, 페놀계, 요소계, 멜라민계, 알키드계, 불포화 폴리에스테르계, 에폭시계, 규소계, 아크릴계 및 폴리우레탄계 중 하나 이상을 포함하는 그래핀 적층체.
  5. 제 1 항에 있어서,
    고분자층은 전도성 고분자를 포함하는 그래핀 적층체.
  6. 제 5 항에 있어서,
    전도성 고분자는 폴리아세틸렌, 폴리디아세틸렌, 폴리페닐렌, 폴리아닐린, 폴리티오펜, 폴리페닐렌비닐렌, 폴리티오펜비닐렌, 폴리피롤, 폴리플루오렌 및 PEDOT:PSS 중 하나 이상을 포함하는 그래핀 적층체.
  7. 제 1 항에 있어서,
    고분자층은 하기 화학식 1 내지 3 중 하나 이상의 모노머 중합체를 포함하는 그래핀 적층체
    [화학식 1]
    Figure PCTKR2012005945-appb-I000011
    [화학식 2]
    Figure PCTKR2012005945-appb-I000012
    [화학식 3]
    Figure PCTKR2012005945-appb-I000013
    상기 화학식 1 및 2에서, n은 3 내지 20의 정수이다.
  8. 제 1 항에 있어서,
    고분자층은 하기 화학식 4 내지 7 중 하나 이상을 포함하는 그래핀 적층체:
    [화학식 4]
    Figure PCTKR2012005945-appb-I000014
    [화학식 5]
    Figure PCTKR2012005945-appb-I000015
    [화학식 6]
    Figure PCTKR2012005945-appb-I000016
    [화학식 7]
    Figure PCTKR2012005945-appb-I000017
    상기 화학식 4 내지 7에서,
    R1은 C5 내지 C30의 알킬기이고,
    R2는 C5 내지 C20의 알킬기; 또는 C1 내지 C20의 알킬기가 치환 또는 비치환된 C6 내지 C30의 아릴기이고,
    R3는 알코올기; 할로겐기; 또는 말단에 알코올기, 카르복실기, 술폰산기, 아민기, 카보닐기, 시아노기 및 할로겐기 중 하나 이상을 포함하는 C1 내지 C10의 알킬기이고,
    R4는 직쇄(linear chain) 또는 측쇄(branched chain)형을 포함하는 C1 내지 C10의 알킬기이고,
    X1 내지 X4는 각각 독립적으로 수소 또는 C1 내지 C5의 알킬기이고,
    n은 0 내지 10의 정수이다.
  9. 제 1 항에 있어서,
    고분자층의 유리전이온도가 영하 10℃ 내지 영상 100℃ 범위인 그래핀 적층체.
  10. 제 1 항에 있어서,
    도펀트는 P형 도펀트를 포함하는 그래핀 적층체.
  11. 제 1 항에 있어서,
    도펀트는 할로겐 산화물, 황산화물, 금속 할라이드, 질소 산화물, 금속 과산화물, 벤조퀴논계 화합물 및 디브로모안트라센 중 하나 이상을 포함하는 그래핀 적층체.
  12. 제 11 항에 있어서,
    할로겐 산화물은 요오드계 산화물 및 염소계 산화물 중 하나 이상을 포함하는 그래핀 적층체.
  13. 제 12 항에 있어서,
    요오드계 산화물은 아이오딜벤젠, 아이오독시벤조산 및 데스-마틴 퍼아이오디난 중 하나 이상을 포함하는 그래핀 적층체.
  14. 제 12 항에 있어서,
    염소계 산화물은 NaClO, NaClO2, NaClO3, NaClO4, AgClO3 및 AgClO4 중 하나 이상을 포함하는 그래핀 적층체.
  15. 제 11 항에 있어서,
    황산화물은 (CH3)2SO, KHSO5, KHSO4, K2SO4, FSO3H 및 CF3SO3H 중 하나 이상을 포함하는 그래핀 적층체.
  16. 제 11 항에 있어서,
    금속 할라이드는 은이온, 금이온, 세륨이온, 철이온, 몰리브덴이온, 텅스텐이온, 주석이온, 루테늄이온 및 탄탈륨이온 중 하나 이상을 포함하는 금속염인 그래핀 적층체.
  17. 제 11 항에 있어서,
    금속 할라이드는 FeCl3, MoCl5, WCl5, SnCl4, MoF5, RuF5, TaBr5, SnI4, HAuCl4, AuCl3, (NH4)2Ce(SO4)3 및 (NH4)2Ce(NO3)6 중 하나 이상을 포함하는 그래핀 적층체.
  18. 제 11 항에 있어서,
    질소산화물은 AgNO3, NO2F, NO2Cl, N2O5, NO2BF4, CH3NO2, C6H5NO2, CH3ONO, NO(SbCl6), NOBF4, NOClO4, NOSO4H, C6H5NO, NOCl, NOF 및 NOBr 중 하나 이상을 포함하는 그래핀 적층체.
  19. 제 11 항에 있어서,
    금속 과산화물은 KMnO4, BaMnO4 및 OsO4 중 하나 이상을 포함하는 그래핀 적층체.
  20. 제 11 항에 있어서,
    벤조퀴논계 화합물은 벤조퀴논, 테트라클로로벤조퀴논, 디클로로디시아노벤조퀴논 및 테트라시아노퀴노디메탄 중 하나 이상을 포함하는 그래핀 적층체.
  21. 제 1 항에 있어서,
    도펀트의 함량은, 고분자층을 기준으로, 0.01 내지 20wt%인 그래핀 적층체.
  22. 제 1 항에 있어서,
    기판은 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리카보네이트, 폴리에테르설폰, 폴리사이클릭올레핀, 폴리아크릴레이트, 폴리에테르에테르케톤 및 폴리이미드 중 하나 이상을 포함하는 그래핀 적층체.
  23. (a) 기판상에 도펀트를 포함하는 고분자를 도포하는 단계;
    (b) 금속 촉매층 상에 형성된 그래핀층과 도펀트를 포함하는 고분자가 도포된 기판을 합지하는 단계; 및
    (c) 금속 촉매층을 제거하는 단계를 포함하는 그래핀 적층체의 제조방법.
  24. 제 23 항에 있어서,
    도펀트의 함량은, 고분자층을 기준으로 0.01 내지 20wt%인 그래핀 적층체의 제조방법.
  25. 제 23 항에 있어서,
    (c) 단계는 건식 전사방법에 의해 금속 촉매층을 제거하는 그래핀 적층체의 제조방법.
  26. 제 25 항에 있어서,
    (c) 단계는, 롤투롤 방식에 의해 금속 촉매층과 그래핀층을 분리하는 그래핀 적층체의 제조방법.
  27. 제 23 항에 있어서,
    (c) 단계는 습식 전사방법에 의해 금속 촉매층을 제거하는 그래핀 적층체의 제조방법.
  28. 제 27 항에 있어서,
    (c) 단계는, 에칭액을 이용하여 금속 촉매층을 제거하는 그래핀 적층체의 제조방법.
  29. 제 23 항에 있어서,
    (b) 단계에서, 금속 촉매층상에 형성된 그래핀층과 도펀트를 포함하는 고분자가 도포된 기판을 합지하고 열 또는 UV 경화 과정을 포함하는 그래핀 적층체의 제조방법.
  30. 제 23 항에 있어서,
    그래핀층이 형성된 금속 촉매층은 금속 촉매층의 양면에 그래핀층이 형성된 구조이며,
    금속 촉매층의 양면에 형성된 그래핀층 각각의 외면에 도펀트를 포함하는 고분자가 도포된 기판을 합지한 후, 금속 촉매층을 제거하는 그래핀 적층체의 제조방법.
  31. 제 30 항에 있어서,
    금속 촉매층 양면에 형성된 그래핀층 각각의 외면에 도펀트를 포함하는 고분자가 도포된 기판을 합지한 후, 열 또는 UV 경화 과정을 포함하는 그래핀 적층체의 제조방법.
  32. 기판, 도펀트 포함 고분자층, 그래핀, 금속 촉매층, 그래핀, 도펀트 포함 고분자층 및 기판이 순차적으로 적층된 구조의 그래핀 적층체.
  33. 제 1 항에 따른 그래핀 적층체를 포함하는 전극 또는 전도성 박막.
  34. 제 33 항의 전극 또는 전도성 박막을 포함하는 전자 소자.
  35. 제 34 항에 있어서,
    상기 전자 소자는 트랜지스터, 레이저 소자, 터치패널, 유기발광소자, 태양전지 또는 이차전지인 전자 소자.
PCT/KR2012/005945 2011-07-29 2012-07-26 도펀트 포함 그래핀 적층체 및 그 제조방법 WO2013019021A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110076091A KR101166528B1 (ko) 2011-07-29 2011-07-29 도펀트 포함 그래핀 적층체 및 그 제조방법
KR10-2011-0076091 2011-07-29

Publications (2)

Publication Number Publication Date
WO2013019021A2 true WO2013019021A2 (ko) 2013-02-07
WO2013019021A3 WO2013019021A3 (ko) 2013-04-04

Family

ID=46717011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005945 WO2013019021A2 (ko) 2011-07-29 2012-07-26 도펀트 포함 그래핀 적층체 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR101166528B1 (ko)
WO (1) WO2013019021A2 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103345963A (zh) * 2013-06-28 2013-10-09 重庆墨希科技有限公司 一种石墨烯复合材料透明电极及其制备方法和应用
CN104229776A (zh) * 2013-06-12 2014-12-24 Lg电子株式会社 制造石墨烯的方法及通过所述方法制造的石墨烯
CN104910752A (zh) * 2015-06-10 2015-09-16 华南理工大学 一种聚苯胺石墨烯纳米复合防腐涂料及其制备方法
CN105239061A (zh) * 2015-09-25 2016-01-13 中国科学院宁波材料技术与工程研究所 一种石墨烯/金属复合薄膜及其制备方法
CN106158400A (zh) * 2016-04-08 2016-11-23 邢孟秋 一种柔性聚苯胺基复合膜及其制备方法、超级电容器
WO2018012416A1 (ja) * 2016-07-14 2018-01-18 日産化学工業株式会社 電荷輸送性薄膜形成用ワニス
CN108609614A (zh) * 2018-05-28 2018-10-02 天津大学 一种蓝、紫荧光单层氮掺杂石墨烯的制备方法
CN112736176A (zh) * 2019-10-14 2021-04-30 中国科学院金属研究所 一种提高发光二极管发光效率的方法
US11760071B2 (en) 2018-05-09 2023-09-19 Canatu Oy Electrically conductive multilayer film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275636B1 (ko) * 2011-08-30 2013-06-17 전자부품연구원 도핑 폴리머층을 포함하는 그래핀 기반 적층체
CN103682152A (zh) * 2012-09-25 2014-03-26 国际商业机器公司 透明导电电极及其形成方法、有机发光二极管(oled)器件及其形成方法
KR101980711B1 (ko) 2012-11-16 2019-08-28 엘지전자 주식회사 그래핀 전자파 차단판, 이의 제조방법 및 이를 이용하는 전자기기 및 전자레인지의 도어
CN103450461B (zh) * 2013-08-02 2015-07-22 电子科技大学 一种制造复合纳米薄膜的方法
CN103396573B (zh) * 2013-08-22 2015-07-22 电子科技大学 一种复合纳米薄膜的制备方法
KR101668817B1 (ko) * 2014-09-11 2016-10-25 주식회사 엘엠에스 전기적 특성이 향상된 그래핀 구조체
KR101648895B1 (ko) * 2014-10-28 2016-08-17 한국표준과학연구원 금속박편 또는 금속박막에 성장한 그래핀을 임의의 기판에 고분자 레지듀 없이 전사하는 그래핀 가두리 전사방법
US10497893B2 (en) 2015-04-15 2019-12-03 Lg Electronics Inc. Method for doping graphene, method for manufacturing graphene composite electrode, and graphene structure comprising same
KR101753590B1 (ko) 2015-04-15 2017-07-04 엘지전자 주식회사 기판 표면 개질을 이용한 그래핀의 도핑 방법 및 이를 포함하는 그래핀 구조체

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110041965A (ko) * 2009-10-16 2011-04-22 성균관대학교산학협력단 그래핀 투명 전극 및 이를 포함하는 플렉시블 실리콘 박막 반도체 소자
KR20110069478A (ko) * 2009-12-17 2011-06-23 삼성전기주식회사 투명 전극용 투명 기판의 제조 방법
KR20110079532A (ko) * 2009-12-30 2011-07-07 성균관대학교산학협력단 그래핀 필름의 롤투롤 도핑 방법 및 도핑된 그래핀 필름

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110041965A (ko) * 2009-10-16 2011-04-22 성균관대학교산학협력단 그래핀 투명 전극 및 이를 포함하는 플렉시블 실리콘 박막 반도체 소자
KR20110069478A (ko) * 2009-12-17 2011-06-23 삼성전기주식회사 투명 전극용 투명 기판의 제조 방법
KR20110079532A (ko) * 2009-12-30 2011-07-07 성균관대학교산학협력단 그래핀 필름의 롤투롤 도핑 방법 및 도핑된 그래핀 필름

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229776A (zh) * 2013-06-12 2014-12-24 Lg电子株式会社 制造石墨烯的方法及通过所述方法制造的石墨烯
US9278862B2 (en) 2013-06-12 2016-03-08 Lg Electronics Inc. Method for manufacturing graphene and graphene manufactured by the same
CN104229776B (zh) * 2013-06-12 2017-01-11 Lg电子株式会社 制造石墨烯的方法及通过所述方法制造的石墨烯
CN103345963A (zh) * 2013-06-28 2013-10-09 重庆墨希科技有限公司 一种石墨烯复合材料透明电极及其制备方法和应用
CN104910752A (zh) * 2015-06-10 2015-09-16 华南理工大学 一种聚苯胺石墨烯纳米复合防腐涂料及其制备方法
CN105239061A (zh) * 2015-09-25 2016-01-13 中国科学院宁波材料技术与工程研究所 一种石墨烯/金属复合薄膜及其制备方法
CN106158400A (zh) * 2016-04-08 2016-11-23 邢孟秋 一种柔性聚苯胺基复合膜及其制备方法、超级电容器
WO2018012416A1 (ja) * 2016-07-14 2018-01-18 日産化学工業株式会社 電荷輸送性薄膜形成用ワニス
JPWO2018012416A1 (ja) * 2016-07-14 2019-05-09 日産化学株式会社 電荷輸送性薄膜形成用ワニス
US11760071B2 (en) 2018-05-09 2023-09-19 Canatu Oy Electrically conductive multilayer film
CN108609614A (zh) * 2018-05-28 2018-10-02 天津大学 一种蓝、紫荧光单层氮掺杂石墨烯的制备方法
CN112736176A (zh) * 2019-10-14 2021-04-30 中国科学院金属研究所 一种提高发光二极管发光效率的方法

Also Published As

Publication number Publication date
KR101166528B1 (ko) 2012-07-19
WO2013019021A3 (ko) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2013019021A2 (ko) 도펀트 포함 그래핀 적층체 및 그 제조방법
EP3091587B1 (en) Organic electronic device and fabrication method therefor
Someya Stretchable electronics
WO2011096700A2 (en) Touch panel and method of manufacturing the same
WO2011046415A2 (ko) 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치
WO2011081440A2 (ko) 그래핀 필름의 롤투롤 도핑 방법 및 도핑된 그래핀 필름
WO2012064285A1 (en) Transparent graphene conductor with permanent dipole layer
JP2014200926A (ja) 透明導電フィルムおよび電気素子
KR20110036543A (ko) 이식 도전체 제조를 위한 향상된 cnt/탑코팅 프로세스
JPWO2007125671A1 (ja) 電界効果トランジスタ
Ouyang et al. Photolithographic patterning of PEDOT: PSS with a silver interlayer and its application in organic light emitting diodes
WO2012002723A2 (ko) 투명 전도성막, 이의 제조 방법, 및 이를 이용한 투명전극 및 소자
WO2015065055A1 (ko) 전도성 필름, 그의 제조방법 및 그를 포함하는 디스플레이 장치
KR20160111850A (ko) 금속메쉬의 표면에너지 제어를 통한 투명전극 제조방법 및 그 제조방법에 의해 제조된 투명전극을 포함하는 유기태양전지
WO2014027854A1 (ko) iCVD 공정을 이용한 절연막 형성 방법
Varghese et al. Near‐Infrared and Visible‐Range Optoelectronics in 2D Hybrid Perovskite/Transition Metal Dichalcogenide Heterostructures
WO2018205360A1 (zh) 一种oled器件及oled器件的制作方法
CN103871684A (zh) 应用石墨烯的结构及其制造方法
US20170321321A1 (en) Stable IR Transparent Conductive Graphene Hybrid Materials and Methods of Making
WO2013002564A2 (ko) 이형방지 조성물, 상기 이형방지 조성물을 포함하는 그래핀 적층체 및 그 제조방법
WO2014115909A1 (ko) 전기 전도성 고분자의 제조방법 및 상기 방법에 의해 제조된 전기 전도성 고분자의 박막을 포함하는 열전소자
EP2363904A2 (en) Organic semiconductor element and organic electrode
WO2013048128A2 (ko) 전자흡인기를 함유하는 고분자를 포함하는 그래핀 적층체 및 그 제조방법
WO2021176518A1 (ja) 透明電極および透明電極の製造方法、ならびに透明電極を具備した光電変換素子
US9583540B2 (en) Use of self-assembled layers for checking the threshold voltage of organic transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819338

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819338

Country of ref document: EP

Kind code of ref document: A2