WO2013018595A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2013018595A1
WO2013018595A1 PCT/JP2012/068757 JP2012068757W WO2013018595A1 WO 2013018595 A1 WO2013018595 A1 WO 2013018595A1 JP 2012068757 W JP2012068757 W JP 2012068757W WO 2013018595 A1 WO2013018595 A1 WO 2013018595A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
scanning
video signal
clock signal
source
Prior art date
Application number
PCT/JP2012/068757
Other languages
English (en)
French (fr)
Inventor
山本 薫
誠二 金子
小川 康行
耕平 田中
誠一 内田
泰 高丸
森 重恭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2013526831A priority Critical patent/JP6076253B2/ja
Priority to CN201280048662.5A priority patent/CN103843056B/zh
Publication of WO2013018595A1 publication Critical patent/WO2013018595A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0281Arrangement of scan or data electrode driver circuits at the periphery of a panel not inherent to a split matrix structure
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit

Definitions

  • the present invention relates to a display device and a driving method thereof, and more particularly, to a display device in which a display unit and a video signal line driving circuit are integrally formed and a driving method thereof.
  • a source driver for driving a source line (video signal line) of a liquid crystal display device is mounted as an IC (Integrated Circuit) chip on the periphery of a substrate constituting the liquid crystal panel.
  • IC Integrated Circuit
  • a liquid crystal display device provided with this monolithic source driver (hereinafter referred to as a “source driver monolithic liquid crystal display device”) is disclosed in, for example, Patent Document 1.
  • a-Si TFT a thin film transistor (hereinafter referred to as “a-Si TFT”) using amorphous silicon (a-Si) as a semiconductor layer has been conventionally employed as a driving element.
  • Patent Document 2 discloses a driving method of a display device in which a rest period T2 in which all gate lines are in a non-scanning state is provided after a scanning period T1 in which gate lines are scanned.
  • this idle period T2 no clock signal or the like is given to the gate driver.
  • the driving frequency of the gate line as a whole becomes about 30 Hz. For this reason, power consumption can be reduced.
  • an object of the present invention is to provide a display device in which a display unit and a video signal line driving circuit are integrally formed and a driving method thereof, with reduced power consumption.
  • a first aspect of the present invention is a display device, A plurality of video signal lines, a plurality of scanning signal lines intersecting with the plurality of video signal lines, and a display unit for displaying an image;
  • a video signal line driving circuit formed integrally with the display unit for driving the plurality of video signal lines;
  • a display control circuit for providing the video signal line driving circuit with a clock signal that periodically repeats an on level and an off level, and one or more predetermined number of video signals corresponding to an image to be displayed on the display unit;
  • the video signal line driving circuit includes: A shift register that sequentially turns on a plurality of output signals based on the clock signal; A plurality of sampling blocks each provided with the plurality of output signals, Each sampling block applies the predetermined number of video signals to the predetermined number of video signal lines based on the output signal received by the sampling block, The frequency of the clock signal in the idle period is lower than the frequency of the clock signal in the scanning period.
  • An amplitude of the clock signal in the pause period is smaller than an amplitude of the clock signal in the scanning period.
  • the pause period is longer than the scanning period.
  • each sampling block the output signal received by the sampling block is supplied to a control terminal, one of the predetermined number of video signals is supplied to a first conduction terminal, and one of the plurality of video signal lines It has one or more switching elements to which the second conduction terminal is connected.
  • Each sampling block has a plurality of the switching elements.
  • a sixth aspect of the present invention is the fifth aspect of the present invention,
  • the display unit displays a color image based on a plurality of primary colors;
  • the predetermined number of video signals respectively corresponding to the plurality of primary colors;
  • the number of the plurality of switching elements in each sampling block is the same number as the plurality of primary colors,
  • the display control circuit supplies the predetermined number of video signals different from each other to the first conduction terminals of the plurality of switching elements in each sampling block.
  • the display unit displays a color image based on a plurality of primary colors;
  • the number of the plurality of switching elements in each sampling block is an integer multiple of the plurality of primary colors;
  • the display control circuit has the predetermined number of images on the first conduction terminal of the switching element in which the second conduction terminal is connected to the video signal lines adjacent to each other among the plurality of switching elements in each sampling block. Video signals corresponding to different primary colors of the signals are respectively provided.
  • the video signal line driving circuit includes: A first video signal line driving circuit located on one side with respect to the display unit; And a second video signal line driving circuit positioned on the other side of the display unit.
  • the video signal line driver circuit is realized using a thin film transistor in which a semiconductor layer is formed of an oxide semiconductor.
  • the video signal line driving circuit is realized by using a thin film transistor in which a semiconductor layer is formed of amorphous silicon.
  • An eleventh aspect of the present invention includes a plurality of video signal lines, a plurality of scanning signal lines intersecting with the plurality of video signal lines, a display unit for displaying an image, and an on level and an off level. And a display control circuit that outputs a predetermined number of video signals corresponding to an image to be displayed on the display unit, and a display control circuit that is formed integrally with the display unit, and that is based on the clock signal.
  • Video signal line driving circuit including a shift register for sequentially turning on the output signals of the plurality of output signals, and a plurality of sampling blocks to which the plurality of output signals are respectively applied, and scanning signal lines for driving the plurality of scanning signal lines
  • a driving method of a display device comprising a driving circuit, A scanning period in which the plurality of scanning signal lines are sequentially selected and a pause period in which all of the plurality of scanning signal lines are in a non-selected state alternate with a frame period that includes the scanning period and the pause period as a cycle.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention, An amplitude of the clock signal in the pause period is smaller than an amplitude of the clock signal in the scanning period.
  • a thirteenth aspect of the present invention is the eleventh aspect of the present invention,
  • the pause period is longer than the scanning period.
  • one frame period includes the scanning period and the pause period.
  • the frequency of the clock signal during this idle period is lower than the frequency of the clock signal during the scanning period. For this reason, the drive frequency of the selection circuit in the entire one frame period is reduced. Thereby, power consumption is reduced.
  • the display portion and the video signal line driving circuit are integrally formed, the frame area is reduced and the cost of the video signal line driving circuit is reduced.
  • the amplitude of the clock signal in the pause period is smaller than the amplitude of the clock signal in the scanning period. For this reason, further reduction in power consumption can be achieved.
  • the pause period becomes longer than the scanning period. For this reason, further reduction in power consumption can be achieved.
  • a sampling block can be realized by one or more switching elements.
  • a video signal is given to the switching element in the sampling block to which the output signal is given at the timing when the output signal of the shift register becomes high level based on the clock signal. For this reason, the influence of the noise etc. which a video signal line receives in an idle period is reduced. Thereby, the fall of display quality can be suppressed.
  • the frequency of the clock signal in the idle period is lower than that in the scanning period, the load applied to the switching element is reduced. Therefore, the threshold fluctuation in the switching element is reduced, so that a decrease in reliability of the switching element can be suppressed.
  • sequential driving can be performed in which video signals are simultaneously applied to a plurality of source lines.
  • the same effect as in the fifth aspect can be achieved.
  • a display device that displays an image based on a plurality of primary colors
  • video signals for an integral multiple of pixels composed of a plurality of primary colors are written at a time.
  • a sufficient pause period can be secured, or a video signal writing time can be secured sufficiently.
  • the number of sampling blocks can be reduced, the number of shift register stages can be reduced.
  • the number of stages of the video signal line driving circuit is halved. This doubles the layout pitch in the direction in which the scanning signal lines extend. Thereby, for example, high definition of the display unit can be achieved.
  • a video signal line driving circuit is realized using a thin film transistor in which a semiconductor layer is formed of an oxide semiconductor. Since the leakage current of the thin film transistor is sufficiently small, the frequency of the clock signal during the idle period can be further reduced. For this reason, further reduction in power consumption can be achieved. In addition, since the on-state current of the thin film transistor in which the semiconductor layer is formed using an oxide semiconductor is sufficiently large, the size of the thin film transistor can be sufficiently reduced. Thereby, further narrowing of the frame can be achieved.
  • a video signal line driving circuit is realized using a thin film transistor in which a semiconductor layer is formed of amorphous silicon. For this reason, further cost reduction can be achieved.
  • FIG. 1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a first embodiment of the present invention. It is a block diagram for demonstrating the structure of the source driver in the said 1st Embodiment. It is a block diagram which shows the structure of the shift register in the said 1st Embodiment. It is a signal waveform diagram for demonstrating operation
  • the gate terminal of the thin film transistor corresponds to the control terminal
  • the drain terminal corresponds to the first conduction terminal
  • the source terminal corresponds to the second conduction terminal.
  • FIG. 1 is a block diagram showing the overall configuration of an active matrix liquid crystal display device according to a first embodiment of the present invention.
  • the liquid crystal display device includes a power source 100, a DC / DC converter 110, a display control circuit 200, a source driver (video signal line driving circuit) 300, a gate driver (scanning signal line driving circuit) 400, a common electrode driving circuit 500, and a display unit. 600.
  • the source driver 300 is formed on the liquid crystal display panel 700 including the display portion 600 using amorphous silicon, polycrystalline silicon, microcrystalline silicon, an oxide semiconductor (for example, IGZO), or the like. That is, in the liquid crystal display device according to this embodiment, the source driver 300 and the display unit 600 are formed on the same substrate (an array substrate that is one of the two substrates constituting the liquid crystal display panel). This is a source driver monolithic liquid crystal display device.
  • the gate driver 400 may also be formed over the liquid crystal display panel 700 using amorphous silicon, polycrystalline silicon, microcrystalline silicon, an oxide semiconductor, or the like. Specific implementation examples using these amorphous silicon and IGZO will be described later.
  • the display unit 600 includes n source lines (video signal lines) SL1 to SLn, m gate lines (scanning signal lines) GL1 to GLm, source lines SL1 to SLn, and gate lines GL1 to GLm.
  • M ⁇ n pixel forming portions provided corresponding to the respective intersections are formed.
  • the m ⁇ n pixel forming portions are arranged in a matrix to constitute a pixel array.
  • Each pixel forming portion includes a pixel thin film transistor 80 which is a switching element having a gate terminal connected to a gate line passing through a corresponding intersection and a source terminal connected to a source line passing through the intersection, and the pixel thin film transistor 80
  • a pixel electrode connected to the drain terminal, a common electrode Ec which is a counter electrode provided in common to the plurality of pixel formation portions, and a pixel electrode provided in common to the plurality of pixel formation portions.
  • the liquid crystal layer is sandwiched between the electrode Ec.
  • a pixel capacitor Cp is constituted by a liquid crystal capacitor formed by the pixel electrode and the common electrode Ec.
  • an auxiliary capacitor is provided in parallel with the liquid crystal capacitor in order to reliably hold the voltage in the pixel capacitor Cp.
  • the auxiliary capacitor is not directly related to the present invention, its description and illustration are omitted.
  • the pixel forming portion is configured as a set of three pixel forming portions corresponding to R, G, and B, respectively.
  • One pixel is formed by this one set.
  • the pixel formation portions corresponding to R, G, and B are referred to as “R pixel formation portion”, “G pixel formation portion”, and “B pixel formation portion”, respectively.
  • the power supply 100 supplies a predetermined power supply voltage to the DC / DC converter 110, the display control circuit 200, and the common electrode drive circuit 500.
  • the DC / DC converter 110 generates a predetermined DC voltage for operating the source driver 300 and the gate driver 400 from the power supply voltage and supplies it to the source driver 300 and the gate driver 400.
  • the common electrode drive circuit 500 gives a predetermined potential Vcom to the common electrode Ec.
  • the display control circuit 200 receives an image signal DAT and a timing signal group TG such as a horizontal synchronization signal and a vertical synchronization signal sent from the outside, and receives a video signal Vid and a source start pulse signal for controlling image display on the display unit 600.
  • the SSP, the source clock signal SCK, the gate start pulse signal GSP, and the gate clock signal GCK are output.
  • the high level potential of the source clock signal SCK is Vdd potential
  • the low level potential is Vss potential.
  • the source clock signal SCK is composed of two-phase source clock signals SCK1 and SCK2.
  • the source clock signal SCK1 is referred to as a “first source clock signal”
  • the source clock signal SCK2 is referred to as a “second source clock signal”.
  • the period from the time when each of the first source clock signal SCK1 and the second source clock signal SCK2 changes from the low level potential to the high level potential until the time when the high level potential changes to the low level potential is referred to as the “sampling period”.
  • the first source clock signal SCK1 and the second source clock signal SCK2 are out of phase with each other by one sampling period, and both are at a high level potential (Vdd potential) only for one sampling period among the two sampling periods (however, , Except for a rest period T2 described later).
  • the source driver 300 receives the video signal Vid, the source start pulse signal SSP, and the source clock signal SCK output from the display control circuit 200.
  • the source driver 300 supplies the received video signal Vid to the source lines SL1 to SLn at a predetermined timing.
  • This video signal Vid includes three video signals Vidr, Vidg, and Vidb.
  • the video signal Vidr is referred to as “R video signal”
  • the video signal Vidg is referred to as “G video signal”
  • the video signal Vidb is referred to as “B video signal”.
  • the R video signal Vidr, the G video signal Vidg, and the B video signal Vidb correspond to the R pixel forming unit, the G pixel forming unit, and the B pixel forming unit, respectively.
  • the source driver 300 in this embodiment performs so-called dot sequential driving. A detailed description of this source driver will be described later.
  • the gate driver 400 Based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, the gate driver 400 supplies the high-level potential scanning signals GS (1) to GS (m) to the gate lines GL1 to GLm, respectively. Is repeated with one frame period as a cycle.
  • a period (one horizontal scanning period) in which a high level potential is applied to each gate line and the gate line is in a selected state is referred to as a “scanning selection period”.
  • a period during which the gate line GLi is in a selected state one horizontal scanning period
  • one frame period includes a scanning period T1 and a pause period T2 provided after the scanning period T1.
  • the gate driver 400 sequentially sets the scanning signals GS (1) to GS (m) to the high level potential based on the gate clock signal GCK.
  • the gate driver 400 sets the m gate lines GL1 to GLm (scanning signals GS (1) to GS (m)) to a low level potential.
  • the video signals are applied to the source lines SL1 to SLn, and the scanning signals GS (1) to GS (m) are applied to the gate lines GL1 to GLm, respectively.
  • An image based on DAT is displayed on the display unit 600.
  • FIG. 2 is a block diagram showing the configuration of the source driver 300 in this embodiment. As shown in FIG. 2, the source driver 300 includes a shift register 310 and a sampling circuit 320.
  • the shift register 310 receives the source start pulse signal SSP and the source clock signal SCK output from the display control circuit 200.
  • the shift register 310 sequentially transfers pulses included in the source start pulse signal SSP from the input end to the output end based on the source start pulse signal SSP and the source clock signal SCK.
  • the selection signals SEL (1) to SEL (k) which are output signals of the shift register 310, sequentially become a high level potential. These selection signals SEL (1) to SEL (k) are applied to the sampling circuit 320.
  • the sampling circuit 320 receives the selection signals SEL (1) to (k) output from the shift register 310 and the video signal Vid output from the display control circuit 200.
  • the sampling circuit 320 supplies the video signal Vid to the source lines SL1 to SLn at the timing when these selection signals SEL (1) to (k) become the high level potential.
  • FIG. 3 is a block diagram showing a configuration of the shift register 310 in the present embodiment.
  • the shift register 310 includes k bistable circuits 30 (1) to 30 (k) and one dummy bistable circuit 30 (k + 1).
  • the k + 1th stage may be referred to as a “dummy stage”.
  • Each bistable circuit is in one of two states (first state and second state) at each time point, and a signal indicating the state (hereinafter referred to as a “state signal”). Output.
  • a bistable circuit if the bistable circuit is in the first state, a high-level (on-level) potential state signal is output from the bistable circuit, and the bistable circuit is in the second state. Then, a state signal having a low level (off level) potential is output from the bistable circuit.
  • This state signal corresponds to the selection signal described above. That is, the state signals of the bistable circuits 30 (1) to 30 (k) correspond to the selection signals SEL (1) to SEL (k), respectively.
  • Each bistable circuit has an input terminal for receiving a clock signal CK1 (hereinafter referred to as “first clock signal”), an input terminal for receiving a clock signal CK2 (hereinafter referred to as “second clock signal”), An input terminal (not shown) for receiving a DC power supply potential Vss (the magnitude of this potential is also referred to as the “Vss potential”), an input terminal for receiving a set signal S, and an input for receiving a reset signal R A terminal and an output terminal for outputting a status signal Z are provided.
  • the shift register 310 is supplied with the two-phase first source clock signal SCK1 and second source clock signal SCK2 as the source clock signal SCK as described above.
  • this invention is not limited to this, It is good also as an aspect using the source clock signal of 3 phases or more.
  • the signals given to the input terminals of each stage (each bistable circuit) of the shift register 310 are as follows. That is, the first source clock signal SCK1 is provided as the first clock signal CK1, and the second source clock signal SCK2 is provided as the second clock signal CK2. In the even-numbered stage, the first source clock signal SCK1 is supplied as the second clock signal CK2, and the second source clock signal SCK2 is supplied as the first clock signal CK1. Further, a low level DC power supply potential Vss is commonly applied to each stage by means not shown.
  • the status signal Z output from the previous stage is given as the set signal S, and the status signal Z outputted from the next stage is given as the reset signal R.
  • the source start pulse signal SSP is given as the set signal S to the first stage (frontmost stage) 30 (1).
  • the source start pulse signal SSP is a signal that becomes a high level potential in the first sampling period in each scanning selection period.
  • a state signal output from the dummy stage 30 (k + 1) is given as a reset signal R to the k-th stage (last stage) 30 (k).
  • the dummy stage 30 (k + 1) is given the state signal Z output from the k-th stage 30 (k) as the set signal S, and its own state signal Z is given as the reset signal R.
  • the period in which the state signal Z of the dummy stage 30 (k + 1) is at the high level potential is shorter than the period in which the state signal Z of the other stage is at the high level potential.
  • the source end pulse signal SEP may be given as the reset signal R to the k-th stage 30 (k).
  • the source end pulse signal SEP is a signal that becomes a high level potential in one sampling period after the end of the k-th scanning selection period.
  • the source start pulse signal SSP as the set signal S is supplied to the first stage 30 (1) of the shift register 310, based on the first source clock signal SCK1 and the second source clock signal SCK2.
  • the pulses included in the source start pulse signal SSP (this pulse is included in the status signal Z output from each stage) are sequentially transferred from the first stage 30 (1) to the kth stage 30 (k).
  • the state signals Z output from the first stage 30 (1) to the kth stage 30 (k) are sequentially set to the high level potential.
  • the state signals Z output from the first stages 30 (1) to 30 (k) are supplied to the sampling circuit 320 as selection signals SEL (1) to SEL (k). As described above, as shown in FIG.
  • a selection signal that sequentially becomes a high level potential is supplied to the sampling circuit 320 for each sampling period.
  • a period during which each selection signal is at a high level potential is referred to as a “sampling selection period”.
  • a period during which the selection signal SEL (j) is at a high level is referred to as a “jth sampling selection period”.
  • FIG. 5 is a circuit diagram showing a configuration of each bistable circuit in the present embodiment.
  • the bistable circuit includes four thin film transistors (switching elements) M1 to M4, a capacitor C1, four input terminals 31 to 34, an input terminal for a low-level DC power supply potential Vss, and An output terminal 39 is used.
  • the input terminal that receives the first clock signal CK1 is denoted by reference numeral 31
  • the input terminal that receives the second clock signal CK2 is denoted by reference numeral 32
  • the input terminal that receives the set signal S is denoted by reference numeral 33.
  • the input terminal that receives the reset signal R is denoted by reference numeral 34.
  • reference numeral 39 is attached to an output terminal for outputting the status signal Z.
  • the bistable circuit of the shift register 310 is not limited to the configuration of the bistable circuit in the present embodiment, and bistable circuits having various configurations can be employed.
  • the gate terminal of the thin film transistor M1, the source terminal of the thin film transistor M3, the drain terminal of the thin film transistor M4, and one end of the capacitor C1 are connected to each other.
  • a connection point (wiring) where these are connected to each other is referred to as a “first node” for convenience.
  • the first node is denoted by reference numeral N1.
  • the gate terminal is connected to the first node N1, the drain terminal is connected to the input terminal 31, and the source terminal is connected to the output terminal 39.
  • the gate terminal is connected to the input terminal 32, the drain terminal is connected to the output terminal 39, and the source terminal is connected to the input terminal for the DC power supply potential Vss.
  • the gate terminal and the drain terminal are connected to the input terminal 33 (that is, diode connection), and the source terminal is connected to the first node N1.
  • the thin film transistor M4 has a gate terminal connected to the input terminal 34, a drain terminal connected to the first node N1, and a source terminal connected to the input terminal for the DC power supply potential Vss.
  • the capacitor C1 has one end connected to the first node N1 and the other end connected to the output terminal 39.
  • the thin film transistor M1 applies the potential of the first clock signal CK to the output terminal 39 when the potential of the first node N1 is at a high level.
  • the thin film transistor M2 changes the potential of the output terminal 39 toward the Vss potential when the potential of the second clock signal CK2 is at a high level.
  • the thin film transistor M3 changes the potential of the first node N1 toward the high level when the potential of the set signal S is at the high level.
  • the thin film transistor M4 changes the potential of the first node N1 toward the Vss potential when the potential of the reset signal R is at a high level.
  • the capacitor C1 functions as an auxiliary capacitor when the first node N1 is bootstrapped.
  • FIG. 6 is a signal waveform diagram for explaining the operation in the scanning period T1 among the operations of the bistable circuit in the present embodiment. Since the operation of other bistable circuits is the same, the description thereof is omitted.
  • this bistable circuit will be described as an odd-numbered stage. In the odd-numbered stages, the first source clock signal SCK1 and the second source clock signal SCK2 correspond to the first clock signal CK1 and the second clock signal CK2, respectively.
  • a period from time t1 to time t2 in FIG. 6 corresponds to a sampling selection period.
  • one sampling period immediately before the sampling selection period is referred to as a “set period”, and one sampling period immediately after the sampling selection period is referred to as a “reset period”.
  • a period other than the selection period, the set period, and the reset period in the scanning period is referred to as a “normal operation period”.
  • the potential of the set signal S changes from low level to high level. Since the thin film transistor M3 is diode-connected as shown in FIG. 5, when the potential of the set signal S goes high, the thin film transistor M3 is turned on and the capacitor C1 is charged (here, precharged). As a result, the potential of the first node N1 changes from the low level to the high level, and the thin film transistor M1 is turned on. However, in the set period, since the potential of the first source clock signal SCK1 (first clock signal CK1) is at a low level, the potential of the state signal Z is maintained at a low level.
  • the set signal S changes from high level to low level.
  • the thin film transistor M3 is turned off.
  • the first node N1 is in a floating state.
  • the potential of the first source clock signal SCK1 changes from the low level to the high level. Since the thin film transistor M1 is in an on state and has a gate capacitance, the potential of the first node N1 increases as the potential of the input terminal 31 increases (the first node N1 is bootstrapped).
  • the capacitor C1 works to promote the potential rise of the first node N1.
  • the gate potential of the thin film transistor M1 becomes sufficiently high, so that the potential of the state signal Z rises to the high level (Vdd potential) of the first source clock signal SCK1.
  • the potential of the first source clock signal SCK1 changes from high level to low level. Since the thin film transistor M1 is in the on state at time t2, the potential of the state signal Z decreases as the potential of the input terminal 31 decreases. As the potential of the state signal Z decreases in this way, the potential of the first node N1 also decreases via the capacitor C1. In the reset period, the reset signal R changes from a low level to a high level. For this reason, the thin film transistor M4 is turned on. As a result, during the reset period, the potential of the first node N1 is reliably lowered to a low level.
  • the second source clock signal SCK2 (second clock signal CK2) changes from the low level to the high level. For this reason, since the thin film transistor M2 is turned on, the potential of the state signal Z is reliably lowered to a low level.
  • the potential of the second source clock signal SCK2 repeats a high level and a low level every horizontal scanning period, so that the thin film transistor M2 is turned on every horizontal scanning period. For this reason, the potential of the state signal Z can be maintained at a low level.
  • each cycle of the first source clock signal SCK1 and the second source clock signal SCK2 in the scanning period T1 (hereinafter referred to as “scanning period cycle”) is represented by a reference tck1.
  • the respective frequencies of the first gate clock signal GCK1 and the second gate clock signal GCK2 in the scanning period T1 (hereinafter referred to as “scanning period frequency”) are denoted by reference numeral fck1.
  • the respective amplitudes of the first source clock signal SCK1 and the second source clock signal SCK2 in the scanning period T1 (hereinafter referred to as “scanning period amplitude”) are represented by reference sign Vck1.
  • FIG. 7 is a circuit diagram for explaining the configuration of the sampling circuit 320 in the present embodiment.
  • the sampling circuit 320 includes k sampling blocks 40 (1) to 40 (k).
  • the display unit 600 is formed with a pixel matrix of m rows ⁇ n columns, and the sampling blocks are provided so as to correspond to the columns of these pixel matrices in a three-to-one correspondence.
  • the source lines SL1 to SLn are grouped into source line groups SG1 to SGk in units of three.
  • the source line set SGj includes three source lines SL3j-2 to SL3j. These source line sets SG1 to SGk correspond to the sampling blocks 40 (1) to 40 (k), respectively.
  • a source line corresponding to R hereinafter referred to as “R source line” in the source line set SGj is represented by reference sign SLrj
  • G source line a source line corresponding to G
  • a source line corresponding to B (hereinafter referred to as a “B source line”) is represented by a symbol SLbj.
  • the G pixel formation portion provided corresponding to is represented by reference symbol gij
  • the B pixel formation portion provided corresponding to the intersection of the B source line SLbj and the gate line GLi is represented by reference symbol bij.
  • each sampling block is composed of three thin film transistors.
  • the three thin film transistors in the sampling block 40 (j) are referred to as “R thin film transistor 41r (j)”, “G thin film transistor 41g (j)”, and “B thin film transistor 41b (j)”, respectively.
  • a selection signal corresponding to the sampling block including the R thin film transistor is given to the gate terminal, an R video signal Vidr is given to the source terminal, and the R thin film transistor is given to the drain terminal.
  • R source lines in a source line set corresponding to the sampling block to be included are connected.
  • a gate terminal receives a selection signal corresponding to the sampling block including the G thin film transistor, a source terminal receives a G video signal Vidg, and a drain terminal receives the G thin film transistor.
  • G source lines in the source line set corresponding to the sampling block to be included are connected.
  • the gate terminal is supplied with a selection signal corresponding to the sampling block including the B thin film transistor, the source terminal is supplied with the B video signal Vidb, and the drain terminal is supplied with the B thin film transistor.
  • a source line for B in the source line set corresponding to the included sampling block is connected.
  • the source driver 300 including such a sampling circuit 320 realizes dot-sequential driving in which the video signal Vid is sequentially supplied to the source line in units of picture elements composed of R / G / B pixels in one horizontal scanning period. This operation will be described in detail later.
  • one frame period is composed of the scanning period T1 and the pause period T2 provided after the scanning period T1.
  • the operation of the liquid crystal display device according to the present embodiment will be described separately for the operation in the scanning period T1 and the operation in the pause period T2.
  • FIG. 8 is a signal waveform diagram for explaining the operation in the scanning period T1 of the liquid crystal display device according to this embodiment.
  • the scanning signals GS (1) to GS (m) are sequentially selected based on the gate clock signal GCK.
  • video signals are sequentially applied to the source line in block units (source group units).
  • FIG. 8 shows various signal waveforms related to driving of the source driver 300 in the first scan selection period. The operation in the scan selection period other than the first scan selection period is the same, and the description thereof is omitted.
  • the source start pulse signal SSP becomes a high level potential in the first sampling period.
  • the selection signals SEL (1) to SEL (k) sequentially become a high level potential.
  • the scanning period cycle tck1 is two sampling periods.
  • the G video signal Vidg has a potential corresponding to the G pixel forming portion gij in the jth sampling period in the i-th scanning selection period.
  • the B video signal Vidb has a potential corresponding to the B pixel formation portion bij in the jth sampling period in the i-th scanning selection period.
  • the polarity of each video signal is inverted every sampling period, the polarities of the video signals applied to the output signal lines adjacent to each other are inverted, and every frame period.
  • the polarity inversion drive is performed by inverting the polarity of each video signal, the present invention is not limited to this.
  • the selection signal SEL (1) is at a high level potential in the first sampling period, the R thin film transistor 41r (1), the G thin film transistor 41g (1), and the B use in the sampling block 40 (1) shown in FIG.
  • the thin film transistor 41b (1) is turned on. For this reason, the R video signal Vidr having a potential corresponding to the R pixel formation portion r11 is given to the R source line SLr1, and the G video signal Vidg having a potential corresponding to the G pixel formation portion g11 is obtained.
  • the B video signal Vidb which is given to the G source line SLg1 and has a potential corresponding to the B pixel formation portion b11, is given to the B source line SLb1.
  • the potentials of the R source line SLr1, the G source line SLg1, and the B source line SLb1 are positive, negative, and negative, respectively, from the potential (Vcom potential) in the preceding pause period T2. Change to positive polarity.
  • the potentials of the R source line SLr1, the G source line SLg1, and the B source line SLb1 are written to the R pixel forming portion r11, the G pixel forming portion g11, and the B pixel forming portion b11, respectively. Since the operation in the second to m sampling periods is the same, the description thereof is omitted.
  • the operation of one scanning selection period is realized by repeating the one sampling period as described above, and the operation of the scanning period T1 is realized by repeating this one scanning selection period.
  • FIG. 9 is a signal waveform diagram for explaining the operation in the pause period T2 of the liquid crystal display device according to the present embodiment.
  • the pause period T2 is longer than the scanning period T1.
  • the present invention is not limited to this, and the pause period T2 may be shorter than the scanning period T1.
  • X horizontal scanning period a period corresponding to the length of the first X scanning selection period (one horizontal scanning period) in the pause period T ⁇ b> 2.
  • the signal waveform is shown.
  • X is, for example, an integer of 2 or more, but the present invention is not limited to this.
  • the operation in the other X horizontal scanning periods is the same, and the description thereof is omitted.
  • the first source clock signal SCK1 and the second source clock signal SCK2 are at a high level potential in one sampling period with a period longer than the scanning period period tck1.
  • pause period cycle each cycle of the first source clock signal SCK1 and the second source clock signal SCK2 in the pause period T2 (hereinafter referred to as “pause period cycle”) is denoted by reference symbol tck2.
  • pause period frequencies the respective frequencies (hereinafter referred to as “pause period frequencies”) of the first source clock signal SCK1 and the second source clock signal SCK2 in the idle period T2 are denoted by a symbol fck2.
  • pause period amplitude the respective amplitudes (hereinafter referred to as “pause period amplitude”) of the first source clock signal SCK1 and the second source clock signal SCK2 in the pause period T2 are represented by reference sign Vck2.
  • the idle period cycle tck2 is longer than the scanning period cycle tck1. That is, the idle period frequency fck2 is lower than the scanning period frequency fck1.
  • the scanning period frequency fck1 is an integral multiple of the idle period frequency fck2.
  • the display control circuit 200 and the like can have a simple configuration.
  • the scanning period frequency fck1 is at least twice the idle period frequency fck2.
  • the idle period frequency fck2 is 1 ⁇ 2 times or less of the scanning period frequency fck1.
  • the power consumption required for driving the source driver 300 can be sufficiently reduced.
  • Such control of the frequency (cycle) of the source clock signal SCK is performed in the display control circuit 200, for example.
  • the idle period amplitude Vck2 and the scanning period amplitude Vck1 are the same.
  • the R video signal Vidr, the G video signal Vidg, and the B video signal Vidb are at the Vcom potential.
  • the potential is not limited to the Vcom potential, and may be another fixed potential.
  • the scanning signals GS (1) to GS (m) do not become a high level potential during the pause period T2, the video signal is written to the R pixel forming portion rij, the G pixel forming portion gij, and the B pixel forming portion bij. Absent.
  • the source start pulse signal SSP becomes a high level potential in the first sampling period in the X horizontal scanning period. Therefore, the selection signals SEL (1) to SEL (k) are sequentially set to the high level potential on the basis of the first source clock signal SCK1 and the second source clock signal SCK2 having the idle period frequency fck2 lower than the scanning period frequency fck1. Become.
  • FIG. 10 is a signal waveform diagram for explaining the operation of the bistable circuit in the present embodiment, in particular, the operation in the idle period T2. Since the operation of other bistable circuits is the same, the description thereof is omitted.
  • one horizontal scanning period in which the set signal S is at a high level potential is referred to as a “set period”, and a period from the end of the set period to the start of the sampling selection period is “selected”.
  • the period from the end of the sampling selection period to the time when the reset signal R changes to the high level potential is called the “waiting period”, and the period during which the reset signal R is at the high level potential Period.
  • a period other than the sampling selection period, the set period, the selection waiting period, the reset waiting period, and the reset period in the suspension period T2 is referred to as a “normal operation period”.
  • the operation in the set period (time points s0 to s1) is the same as the operation in the set period in the scanning period T1, and thus description thereof is omitted.
  • the potential of the set signal S changes from high level to low level, so that the thin film transistor M3 is turned off (see FIG. 5). For this reason, the first node N1 is in a floating state. Further, the first source clock signal SCK1 remains at a low level potential. For this reason, in the selection waiting period, the potential of the first node N1 in the set period is maintained. Note that since the potential of the second source clock signal SCK2 changes to a low level, the thin film transistor M2 is turned off.
  • the potential of the first source clock signal SCK1 changes from the high level to the low level, so that the potential of the first node N1 is influenced by the parasitic capacitance between the gate and the drain of the thin film transistor M1. Descends. This amount of decrease in potential corresponds to the amount of increase in potential due to the above-described boost strap. For this reason, the thin film transistor M1 is not turned off. Therefore, as described above, when the potential of the first source clock signal SCK1 changes from the high level to the low level, the potential of the state signal Z changes to the low level. Further, after that, the potential of the first source clock signal SCK1 is maintained at the low level, so that the potential of the state signal Z is maintained at the low level.
  • the selection signals SEL (1) to SEL (k) are sequentially set to the high level potential in a period longer than the period in the scanning period T1. Therefore, the R thin film transistor, the G thin film transistor, and the B thin film transistor in each of the sampling blocks 40 (1) to 40 (k) are sequentially turned on.
  • the R thin film transistor is turned on, the R video signal Vidr having the Vcom potential is applied to the R source line.
  • the G thin film transistor is turned on, the G video signal Vidg at the Vcom potential is applied to the G source line.
  • the B thin film transistor is turned on, the B video signal Vidb at the Vcom potential is applied to the B source line.
  • the scanning signals GS (1) to GS (m) do not become high level potentials in the idle period T2, and therefore the potentials of these R source line, G source line, and B source line are R respectively. It is not written in the pixel formation portion, the G pixel formation portion, and the B pixel formation portion.
  • the source line is in a floating state. For this reason, the source line is likely to be affected by noise or the like in the pause period T2. Since there is a parasitic capacitance between the source line and the pixel electrode, and the pixel electrode is also in a floating state, noise in the source line also affects the pixel potential due to capacitive coupling. As a result, the display quality may be degraded.
  • the selection signals SEL (1) to SEL (k) are generated by the shift register 310 operating on the first source clock signal SCK1 and the second source clock signal SCK2 in the pause period T2. Sequentially becomes a high level potential.
  • the Vcom potential is applied to the source line in the source line group corresponding to each selection signal at the high level.
  • the influence of noise and the like received by the source lines SL1 to SLm is reduced by the source lines SL1 to SLm being in the floating state in the pause period T2.
  • each thin film transistor in the sampling circuit 320 is kept on during the rest period T2 and each video signal is set to the Vcom potential, it is necessary to continuously apply a high level potential to the gate terminal of the thin film transistor. Since the gate bias stress is applied to the thin film transistor for a long time, the threshold fluctuation in the thin film transistor is increased. As a result, the thin film transistor is lowered.
  • the shift register 310 operates based on the first source clock signal SCK1 and the second source clock signal SCK2 in the pause period T2, so that the selection signal SEL ( 1) to SEL (k) sequentially become high level potentials.
  • the high level potential is applied to the gate terminal of the thin film transistor in the sampling circuit 320 only in one sampling period in each X horizontal scanning period.
  • a-Si or an oxide semiconductor can be used for the semiconductor layer of each thin film transistor in the sampling circuit 320 in the present embodiment.
  • the oxide semiconductor typically, InGaZnO x (hereinafter referred to as “IGZO”), which is an oxide semiconductor mainly containing indium, gallium, zinc, and oxygen, is used. It is not limited. For example, any oxide semiconductor containing at least one of indium, gallium, zinc, copper, silicon, tin, aluminum, calcium, germanium, and lead may be used.
  • FIG. 11 is a graph showing drain current-gate voltage characteristics of a TFT using a-Si TFT and IGZO as a semiconductor layer (hereinafter referred to as “IGZOTFT”).
  • the horizontal axis represents the gate voltage Vg
  • the vertical axis represents the drain current Ids.
  • the leakage current of the IGZOTFT is 1/1000 or less of the leakage current of the a-Si TFT
  • the on-current of the IGZOTFT is about 20 times the on-current of the a-Si TFT.
  • the IGZOTFT has a small leakage current as described above, when the IGZOTFT is used as each thin film transistor in the sampling circuit 320 in the present embodiment, the source driver 300 (sampling circuit 320 is used even when the a-Si TFT is used as this thin film transistor. ) Driving power can be reduced (1/100 or less).
  • the IGZOTFT has a large on-state current as described above, when the IGZOTFT is used, the size of the TFT can be reduced to about 1/20 compared to the case where the a-Si TFT is used.
  • this embodiment can be realized at a lower cost than when an IGZO TFT is used.
  • the pause period T2 is provided after the scanning period T1 within one frame period. Since the idle period frequency fck2 is lower than the scanning period frequency fck1, the driving frequency of the entire source frame of the source driver 300 is reduced. For this reason, the power consumption required for driving the source driver 300 is reduced. Further, since the source driver 300 is monolithically formed, the frame area of the liquid crystal display panel 700 is reduced and the cost of the source driver 300 is reduced.
  • the Vcom potential is applied to the source line in the corresponding source line group at the timing when each selection signal becomes high level in the pause period T2. For this reason, since the source lines SL1 to SLm are in the floating state in the suspension period T2, the influence of noise and the like received by these source lines SL1 to SLm is reduced. Thereby, the fall of display quality can be suppressed.
  • the high level potential is applied to the gate terminal of each thin film transistor in the sampling circuit 320 only in one sampling period in each X horizontal scanning period in the pause period T2, the gate bias stress applied to the thin film transistor is reduced. . As a result, a decrease in driving capability (reliability) of each thin film transistor in the sampling circuit 320 can be suppressed.
  • the pause period T2 is provided longer than the scanning period T1, further power consumption can be achieved.
  • the leakage current of the IGZOTFT is sufficiently small, so that the idle period frequency fck2 can be further reduced. For this reason, power consumption can be reduced.
  • the TFT size can be sufficiently reduced. Thereby, further narrowing of the frame can be achieved. Note that by using the IGZOTFT as each thin film transistor in the bistable circuit, further reduction in power consumption and narrowing of the frame can be achieved.
  • the cost can be further reduced.
  • FIG. 12 is a signal waveform diagram for explaining the operation in the pause period T2 of the liquid crystal display device according to the second embodiment of the present invention. Since the present embodiment is the same as the first embodiment except for the operation during the suspension period, the description of the same portion is omitted.
  • the pause period amplitude Vck2 is smaller than the scanning period amplitude Vck1. Note that, in order to ensure that each thin film transistor in the sampling circuit 320 is turned on in the pause period T2, it is necessary to be higher than the threshold voltage of this thin film transistor. That is, the pause period amplitude Vck in this embodiment is smaller than the scanning period amplitude Vck2 and larger than the threshold voltage of each thin film transistor in the sampling circuit 320.
  • the pause period amplitude Vck2 which is the amplitude of each of the first source clock signal SCK1 and the second source clock signal SCK2 in the pause period T2, is the first source clock signal SCK1 and the second source in the scan period T1. It is smaller than the scanning period amplitude Vck1 that is the amplitude of each of the clock signals SCK2. For this reason, further reduction in power consumption can be achieved.
  • the gate bias stress applied to the R thin film transistor, the G thin film transistor, and the B thin film transistor is further reduced during the suspension period T2, the R thin film transistor, the G thin film transistor, and the B thin film transistor are further improved in reliability. Can be achieved.
  • FIG. 13 is a circuit diagram for explaining the configuration of the sampling circuit 320 according to the third embodiment of the present invention. Since this embodiment is the same as the first embodiment except for the configuration of the sampling circuit 320 and the detailed operation of the liquid crystal display device, the description of the same parts is omitted. In this embodiment, the relationship between the sampling blocks 40 (1) to 40 (k) and the source lines SL1 to SLn is different from that in the first embodiment, and sampling is performed so as to correspond to each column of the pixel matrix on a one-to-one basis. Blocks are provided.
  • the video signal Vid includes 24 video signals Vidr1 to Vidr8, Vidg1 to Vidg8, and Vidb1 to Vidb8.
  • the video signal Vidrx is referred to as “xR video signal”
  • the video signal Vidigx is referred to as “xG video signal”
  • the first to eighth R video signals Vidr1 to Vidr8 correspond to the R pixel forming unit
  • the first to 8G video signals Vidg1 to Vidg8 correspond to the G pixel forming unit
  • the first to 8B video signals Vidb1 to Vidb8 are This corresponds to the B pixel forming portion.
  • the source lines SL1 to SLn are grouped into source line groups SG1 to SGk in units of 24.
  • the source line set SGj is composed of 24 source lines SL24j-23 to SL24j.
  • These source line sets SG1 to SGk correspond to the sampling blocks 40 (1) to 40 (k), respectively.
  • eight source lines corresponding to the same color are provided in each source line group.
  • xG source lines eight G source lines in the source line set SGj
  • xB source lines eight B source lines in the source line set SGj
  • SLbj_x eight B source lines in the source line set SGj
  • an R pixel forming portion provided corresponding to the intersection of the xR source line SLrj_x and the gate line GLi is denoted by rij_x (i to m), and the intersection of the xG source line SLgj_x and the gate line GLi.
  • a G pixel forming portion provided for the xb is represented by reference symbol gij_x
  • a G pixel forming portion provided corresponding to the intersection of the xb source line SLbj_x and the gate line GLi is represented by bij_x.
  • Each sampling block is composed of 24 thin film transistors as shown in FIG.
  • the gate terminal For each xR thin film transistor, the gate terminal is supplied with a selection signal corresponding to the sampling block including the xR thin film transistor, the source terminal is supplied with the xR video signal Vidrx, and the drain terminal is supplied with the second signal.
  • the xR source line in the source line set corresponding to the sampling block including the xR thin film transistor is connected.
  • the gate terminal For each xG thin film transistor, the gate terminal is supplied with a selection signal corresponding to the sampling block including the xG thin film transistor, the source terminal is supplied with the xG video signal Vidgx, and the drain terminal is supplied with the corresponding second signal.
  • the xG source line in the source line set corresponding to the sampling block including the xG thin film transistor is connected.
  • a selection signal corresponding to the sampling block including the xB thin film transistor is given to the gate terminal, the xB video signal Vidbx is given to the source terminal, and the corresponding xth video signal Vidbx is given to the drain terminal.
  • the xB source line in the source line set corresponding to the sampling block including the xB thin film transistor is connected.
  • the source driver 300 including such a sampling circuit 320 realizes block sequential driving in which a video signal Vid is sequentially applied to a source line in block units (source group units) and a plurality of picture elements are simultaneously written in one horizontal scanning period. The This operation will be described in detail later.
  • FIG. 14 is a signal waveform diagram for explaining the operation in the scanning period T1 of the liquid crystal display device according to this embodiment.
  • the description of the common parts with the first embodiment is omitted as appropriate.
  • FIG. 14 shows various signal waveforms related to driving of the source driver 300 in the first scan selection period. The operation in the scan selection period other than the first scan selection period is the same, and the description thereof is omitted.
  • the xG video signal Vidgx has a potential corresponding to the xG pixel forming unit gij_x in the jth sampling period in the i-th scanning selection period.
  • the xB video signal Vidbx has a potential corresponding to the xB pixel formation portion bij_x in the jth sampling period in the i-th scanning selection period.
  • the selection signal SEL (1) becomes a high level potential in the first sampling period
  • the xB thin film transistor 41bx (1) is turned on.
  • the xR video signal Vidrx having a potential corresponding to the R pixel forming portion r11_x is supplied to the xR source line SLr1_x, and the xG video having a potential corresponding to the G pixel forming portion g11_x.
  • the signal Vidx is supplied to the xG source line SLg1_x, and the xB video signal Vidbx having a potential corresponding to the B pixel formation portion b11_x is supplied to the xB source line SLb1_x.
  • the potentials of the xR source line SLr1_x, the xG source line SLg1_x, and the xB source line SLb1_x change from the potential (Vcom potential) in the preceding pause period T2 to a positive polarity or a negative polarity. Change.
  • the potentials of the xR source line SLr1_x, the xG source line SLg1_x, and the xB source line SLb1_x are written to the R pixel formation portion r11_x, the G pixel formation portion g11_x, and the B pixel formation portion b11_x, respectively. Since the operation in the second to m sampling periods is the same, the description thereof is omitted.
  • the operation of one scanning selection period is realized by repeating the one sampling period as described above, and the operation of the scanning period T1 is realized by repeating this one scanning selection period.
  • FIG. 15 is a signal waveform diagram for explaining the operation in the pause period T2 of the liquid crystal display device according to the present embodiment.
  • the xR Vidrx, the xG Viggx, and the xB Vidbx are at the Vcom potential in the suspension period T2. Note that the potential is not limited to the Vcom potential, and may be another fixed potential.
  • the xR thin film transistor is turned on, the xR video signal Vidrx having the Vcom potential is applied to the xR source line.
  • the xG thin film transistor is turned on, the xG video signal Vidgx at the Vcom potential is applied to the xG source line.
  • the xB video signal Vidbx having the Vcom potential is applied to the xB source line.
  • the scanning signals GS (1) to GS (m) do not become a high level potential in the pause period T2, and therefore, the potentials of the xR source line, the xG source line, and the xB source line. Are not written in the R pixel forming portion, the G pixel forming portion, and the B pixel forming portion, respectively.
  • the number of pixel forming portions in which a video signal can be written at a time is increased as compared with the first embodiment. For this reason, it is possible to secure a sufficient rest period T2 by shortening the scanning period T1 compared to the first embodiment, or to provide the scanning period T1 having the same length as that of the first embodiment. As a result, it is possible to secure a sufficient video signal writing time for each pixel formation portion. Further, the number of stages of the shift register 310 can be reduced by reducing the number of sampling blocks.
  • FIG. 16 is a circuit diagram for explaining a configuration of a source driver 300 according to the fourth embodiment of the present invention. Since this embodiment is the same as the first embodiment except for the configuration of the source driver 300, the description of the same portion is omitted.
  • the source driver 300 in the present embodiment is divided into both sides (upper and lower sides in FIG. 16) of the display unit 600.
  • a portion of the source driver 300 that is disposed on the upper side of the display unit 600 is referred to as a “first source driver” and is denoted by reference numeral 300a.
  • a portion of the source driver 300 that is disposed below the display unit 600 is referred to as a “second source driver” and is denoted by reference numeral 300 b.
  • the shift register 310 in the present embodiment is configured separately on both sides of the display unit 600.
  • a portion of the shift register 310 that is disposed on the upper side of the display unit 600 is referred to as a “first shift register” and is denoted by reference numeral 310a.
  • a portion of the shift register 310 disposed below the display unit 600 is referred to as a “second shift register” and is denoted by reference numeral 310 b.
  • the first shift register 310a corresponds to a portion composed of an odd-stage bistable circuit in the shift register 310 in the first embodiment.
  • the second shift register 310b corresponds to a portion made up of an even number of bistable circuits in the shift register in the first embodiment.
  • the sampling circuit 320 in the present embodiment is configured separately on both sides of the display unit 600.
  • a portion of the sampling circuit 320 that is disposed on the upper side of the display unit 600 is referred to as a “first sampling circuit” and is denoted by reference numeral 320a.
  • a portion of the sampling circuit 320 disposed below the display unit 600 is referred to as a “second sampling circuit” and is denoted by reference numeral 320b.
  • the first sampling circuit 320a corresponds to a portion of the sampling circuit 320 in the first embodiment, which is composed of odd-numbered sampling blocks counted from the side where the gate driver 400 is disposed.
  • the second sampling circuit 320b corresponds to a part of the sampling circuit 320 in the first embodiment, which is composed of even-numbered sampling blocks counted from the side where the gate driver 400 is arranged.
  • the first source driver 300a includes a first shift register 310a and a first sampling circuit 320a.
  • the second source driver 300b includes a second shift register 310b and a second sampling circuit 320b.
  • the number of stages of the first source driver 300a and the second source driver 300b respectively disposed on the upper and lower sides of the display unit is approximately the number of stages of the source driver 300 in the first embodiment. Halved. For this reason, the layout pitch in the extending direction of the gate line is doubled. Thereby, for example, it becomes possible to deal with a higher-definition liquid crystal display panel.
  • the present invention is not limited to the configuration of the present embodiment, and for example, as shown in FIG. 17, the first sampling circuit 320a and the second sampling circuit 320b may share the sampling blocks 40 (1) to 40 (k). That is, in this case, the odd-numbered sampling blocks counted from the side on which the gate driver 400 is arranged are arranged on the lower side of the display unit 600 and the R thin film transistor and the B thin film transistor. And a thin film transistor for G. Further, the even-numbered sampling blocks counted from the side where the gate driver 400 is disposed include the G thin film transistor disposed on the upper side of the display unit 600, the R thin film transistor disposed on the lower side of the display unit 600, and B Thin film transistor.
  • the first source driver 300a includes the shift register 310 and the first sampling circuit 320a
  • the second source driver 300a includes the shift register 310 and the second sampling circuit 320b.
  • the number of stages of the shift register 310 arranged on each of the upper side and the lower side of the display unit is the same as the number of stages of the shift register 310 in the first embodiment, but the upper side and the lower side of the display unit.
  • the number of stages of each of the first sampling circuit 320a and the second sampling circuit 320b arranged on the side is about half of the number of stages of the sampling circuit 320 in the first embodiment. For this reason, as in the fourth embodiment, the layout pitch in the direction in which the gate lines extend can be doubled.
  • color image display using the three primary colors RGB is described, but the present invention is not limited to this.
  • color image display may be performed using four primary colors such as RGBY, or five or more primary colors.
  • Monochrome image display may be performed.
  • each set of source lines is composed of 24 source lines, but the present invention is not limited to this.
  • each source line group may be configured by source lines that are multiples of the number of primary colors.
  • the thin film transistors are all assumed to be n-channel type, but the present invention is not limited to this. The present invention can be applied even if the thin film transistor is a p-channel type.
  • the liquid crystal display device has been described as an example, but the present invention is not limited to this.
  • the present invention can also be applied to other display devices such as organic EL (Electro Luminescence) display devices.
  • organic EL Electro Luminescence
  • the above-described embodiments can be variously modified and implemented without departing from the spirit of the present invention.
  • a display device in which a display unit and a video signal line driving circuit are integrally formed with reduced power consumption and a method for controlling the video signal line driving circuit in the display device are provided.
  • the present invention can be applied to a display device in which a display unit and a video signal line driving circuit are integrally formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 消費電力を低減した、表示部と映像信号線駆動回路とが一体的に形成された表示装置を提供する。 ソースドライバ(300)はシフトレジスタ(310)およびサンプリング回路(320)により構成される。サンプリング回路(320)はサンプリングブロック(40(1)~40(k))により構成される。各サンプリングブロックは3つの薄膜トランジスタにより構成される。シフトレジスタはソースクロック信号(SCK2)に基づいて選択信号(SEL(1)~SEL(k))を出力する。選択信号(SEL(1)~SEL(k))はサンプリングブロック(40(1)~40(k))に与えられる。走査期間(T1)の後に休止期間(T2)が設けられる。休止期間(T2)では、休止期間周波数(fck2)のソースクロック信号(SCK)に基づいてシフトレジスタ(310)が動作する。休止期間周波数(fck2)は走査期間周波数(fck1)よりも低い。

Description

表示装置およびその駆動方法
 本発明は、表示装置およびその駆動方法に関し、特に、表示部と映像信号線駆動回路とが一体的に形成された表示装置およびその駆動方法に関する。
 従来、液晶表示装置のソースライン(映像信号線)を駆動するためのソースドライバ(映像信号線駆動回路)は、液晶パネルを構成する基板の周辺部にIC(Integrated Circuit)チップとして搭載されることが多かった。しかし近年、基板上に直接的にソースドライバを形成する試みがなされてきている。このようなソースドライバは「モノリシックソースドライバ」等と呼ばれている。このモノリシックソースドライバを備えた液晶表示装置(以下「ソースドライバモノリシック型の液晶表示装置」という)は、例えば特許文献1に開示されている。このソースドライバモノリシック型の液晶表示装置によれば、狭額縁化および低コスト化を図ることができる。なお、このソースドライバモノリシック型の液晶表示装置では、従来よりアモルファスシリコン(a-Si)を半導体層に用いた薄膜トランジスタ(以下「a-SiTFT」という)等が駆動素子として採用されている。
 ところで、特許文献2には、ゲートラインを走査する走査期間T1の後に、全てのゲートラインを非走査状態にする休止期間T2を設ける表示装置の駆動方法が開示されている。この休止期間T2では、ゲートドライバにクロック信号等が与えられない。このため、走査期間T1においてゲートラインを60Hzで走査したとしても、例えばこの走査期間T1の同じ長さの休止期間T2を設けることにより、全体としてのゲートラインの駆動周波数が30Hz程度になる。このため、低消費電力化を図ることができる。
日本の特開2004-78172号公報 日本の特開2001-312253号公報
 従来から、表示装置等の電子機器には低消費電力化が求められている。
 そこで、本発明は、消費電力を低減した、表示部と映像信号線駆動回路とが一体的に形成された表示装置およびその駆動方法を提供することを目的とする。
 本発明の第1の局面は、表示装置であって、
 複数の映像信号線、該複数の映像信号線と交差する複数の走査信号線を含み、画像を表示するための表示部と、
 前記表示部と一体的に形成され、前記複数の映像信号線を駆動するための映像信号線駆動回路と、
 前記映像信号線駆動回路に、オンレベルとオフレベルとを周期的に繰り返すクロック信号、および前記表示部に表示すべき画像に対応する1以上の所定数の映像信号を与える表示制御回路と、
 前記複数の走査信号線が順次選択される走査期間と該複数の走査信号線のいずれもが非選択状態となる休止期間とが、該走査期間と該休止期間とからなるフレーム期間を周期として交互に現れるように、前記複数の走査信号線を駆動するための走査信号線駆動回路とを備え、
 前記映像信号線駆動回路は、
  前記クロック信号に基づいて複数の出力信号を順次にオンレベルにするシフトレジスタと、
  前記複数の出力信号がそれぞれ与えられる複数のサンプリングブロックとを含み、
 各サンプリングブロックが、該サンプリングブロックの受け取る前記出力信号に基づいて、前記所定数の映像信号を該所定数の映像信号線に与え、
 前記走査期間における前記クロック信号の周波数よりも、前記休止期間における該クロック信号の周波数が低いことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記休止期間における前記クロック信号の振幅が、前記走査期間における該クロック信号の振幅よりも小さいことを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記休止期間が前記走査期間よりも長いことを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 各サンプリングブロックは、該サンプリングブロックの受け取る前記出力信号が制御端子に与えられ、前記所定数の映像信号のうちのいずれかが第1導通端子に与えられ、前記複数の映像信号線のうちのいずれかに第2導通端子が接続された1以上のスイッチング素子を有することを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 各サンプリングブロックは前記スイッチング素子を複数有することを特徴とする。
 本発明の第6の局面は、本発明の第5の局面において、
 前記表示部が複数の原色に基づくカラー画像を表示し、
 前記所定数の映像信号が前記複数の原色にそれぞれ対応し、
 各サンプリングブロックにおける前記複数のスイッチング素子の数が前記複数の原色と同数であり、
 前記表示制御回路が、各サンプリングブロックにおける前記複数のスイッチング素子の前記第1導通端子に互いに異なる前記所定数の映像信号をそれぞれ与えることを特徴とする。
 本発明の第7の局面は、本発明の第5の局面において、
 前記表示部が複数の原色に基づくカラー画像を表示し、
 各サンプリングブロックにおける前記複数のスイッチング素子の数が前記複数の原色の整数倍であり、
 前記表示制御回路が、各サンプリングブロックにおける前記複数のスイッチング素子のうちの、互いに隣接する映像信号線に前記第2導通端子が接続されたスイッチング素子の前記第1導通端子に、前記所定数の映像信号のうちの互いに異なる原色に対応する映像信号をそれぞれ与えることを特徴とする。
 本発明の第8の局面は、本発明の第1の局面において、
 前記映像信号線駆動回路は、
  前記表示部に対して一方に位置する第1映像信号線駆動回路と、
  前記表示部に対して他方に位置する第2映像信号線駆動回路とにより構成されることを特徴とする。
 本発明の第9の局面は、本発明の第1の局面から第8の局面までのいずれかにおいて、
 前記映像信号線駆動回路が、酸化物半導体により半導体層が形成された薄膜トランジスタを用いて実現されていることを特徴とする。
 本発明の第10の局面は、本発明の第1の局面から第8の局面までのいずれかにおいて、
 前記映像信号線駆動回路が、アモルファスシリコンにより半導体層が形成された薄膜トランジスタを用いて実現されていることを特徴とする。
 本発明の第11の局面は、複数の映像信号線、該複数の映像信号線と交差する複数の走査信号線を含み、画像を表示するための表示部と、オンレベルとオフレベルとを周期的に繰り返すクロック信号および該表示部に表示すべき画像に対応する1以上の所定数の映像信号を出力する表示制御回路と、該表示部と一体的に形成され、該クロック信号に基づいて複数の出力信号を順次にオンレベルにするシフトレジスタおよび該複数の出力信号がそれぞれ与えられる複数のサンプリングブロックとを含む映像信号線駆動回路と、前記複数の走査信号線を駆動するための走査信号線駆動回路とを備える表示装置の駆動方法であって、
 前記複数の走査信号線が順次選択される走査期間と該複数の走査信号線のいずれもが非選択状態となる休止期間とが、該走査期間と該休止期間とからなるフレーム期間を周期として交互に現れるように前記複数の走査信号線を駆動するステップと、
 各サンプリングブロックの受け取る前記出力信号に基づいて、前記所定数の映像信号を該所定数の映像信号線に与えるステップと、
 前記走査期間における前記クロック信号の周波数よりも、前記休止期間における該クロック信号の周波数を低くするステップとを備えることを特徴とする。
 本発明の第12の局面は、本発明の第11の局面において、
 前記休止期間における前記クロック信号の振幅が、前記走査期間における該クロック信号の振幅よりも小さいことを特徴とする。
 本発明の第13の局面は、本発明の第11の局面において、
 前記休止期間が前記走査期間よりも長いことを特徴とする。
 本発明の第1の局面によれば、表示部と映像信号線駆動回路とが一体的に形成された表示装置において、1フレーム期間が上記走査期間および上記休止期間からなる。この休止期間におけるクロック信号の周波数は、走査期間におけるクロック信号の周波数よりも低くなる。このため、1フレーム期間全体での選択回路の駆動周波数が低減される。これにより、消費電力が低減される。また、表示部と映像信号線駆動回路とが一体的に形成されているので、額縁面積が縮小されると共に、映像信号線駆動回路のコストが低減される。
 本発明の第2の局面によれば、休止期間におけるクロック信号の振幅が、走査期間におけるクロック信号の振幅よりも小さくなる。このため、さらなる低消費電力化を図ることができる。
 本発明の第3の局面によれば、休止期間が走査期間によりも長くなる。このため、さらなる低消費電力化を図ることができる。
 本発明の第4の局面によれば、1以上のスイッチング素子によりサンプリングブロックを実現することができる。ここで、休止期間において、クロック信号に基づいてシフトレジスタの出力信号がハイレベルになるタイミングで、この出力信号が与えられるサンプリングブロック内のスイッチング素子に映像信号が与えられる。このため、休止期間において映像信号線が受けるノイズ等の影響が低減される。これにより、表示品位の低下を抑制することができる。また、休止期間におけるクロック信号の周波数が走査期間におけるものよりも低くなるので、スイッチング素子に掛かる負荷が低減される。したがって、スイッチング素子におけるしきい値変動が低減されるので、当該スイッチング素子の信頼性低下を抑制することができる。
 本発明の第5の局面によれば、映像信号を同時に複数のソースラインに与える順次駆動を行うことができる。
 本発明の第6の局面によれば、複数原色に基づく画像表示を行う表示装置において、上記第5の発明と同様の効果を奏することができる。
 本発明の第7の局面によれば、複数原色に基づく画像表示を行う表示装置において、複数の原色からなる画素の整数倍分の映像信号が一度に書き込まれる。走査期間を短くすることにより十分な休止期間を確保することができるか、または、映像信号の書き込み時間を十分に確保することができる。また、サンプリングブロックの数を削減することができるので、シフトレジスタの段数を削減することができる。
 本発明の第8の局面によれば、映像信号線駆動回路の段数が約半分になる。このため、走査信号線の延びる方向におけるレイアウトピッチが倍に広がる。これにより、例えば表示部の高精細化を図ることができる。
 本発明の第9の局面によれば、酸化物半導体により半導体層が形成された薄膜トランジスタを用いて映像信号線駆動回路が実現される。この薄膜トランジスタのリーク電流は十分に小さいので、休止期間におけるクロック信号の周波数をさらに低くすることができる。このため、さらなる低消費電力化を図ることができる。また、酸化物半導体により半導体層が形成された薄膜トランジスタのオン電流は十分に大きいので、この薄膜トランジスタのサイズを十分に小さくすることができる。これにより、さらなる狭額縁化を図ることができる。
 本発明の第10の局面によれば、アモルファスシリコンにより半導体層が形成された薄膜トランジスタを用いて映像信号線駆動回路が実現される。このため、さらなる低コスト化を図ることができる。
 本発明の第11の局面から第13の局面までによれば、表示装置の駆動方法において、本発明の第1の局面から第3の局面までとそれぞれ同様の効果を奏することができる。
本発明の第1の実施形態に係る液晶表示装置の全体構成を示すブロック図である。 上記第1の実施形態におけるソースドライバの構成を説明するためのブロック図である。 上記第1の実施形態におけるシフトレジスタの構成を示すブロック図である。 上記第1の実施形態におけるシフトレジスタの動作を説明するための信号波形図である。 上記第1の実施形態における双安定回路の構成を示す回路図である。 上記第1の実施形態における双安定回路の動作を説明するための信号波形図である。 上記第1の実施形態におけるサンプリング回路の構成を説明するための回路図である。 上記第1の実施形態における液晶表示装置の走査期間での動作を説明するための信号波形図である。 上記第1の実施形態における液晶表示装置の休止期間での動作を説明するための信号波形図である。 上記第1の実施形態における双安定回路の休止期間での動作を説明するための信号波形図である。 a-SiTFTおよびIGZOTFTのドレイン電流-ゲート電圧特性を示す図である。 本発明の第2の実施形態における液晶表示装置の休止期間での動作を説明するための信号波形図である。 本発明の第3の実施形態におけるサンプリング回路の構成を説明するための回路図である。 上記第3の実施形態における液晶表示装置の走査期間での動作を説明するための信号波形図である。 上記第3の実施形態における液晶表示装置の休止期間での動作を説明するための信号波形図である。 本発明の第4の実施形態におけるソースドライバの構成を説明するための回路図である。 上記第4の実施形態におけるソースドライバの構成の他の例を説明するための回路図である。
 以下、添付図面を参照しながら、本発明の実施形態について説明する。なお、以下の説明においては、薄膜トランジスタのゲート端子は制御端子に相当し、ドレイン端子は第1導通端子に相当し、ソース端子は第2導通端子に相当する。また、薄膜トランジスタはすべてnチャネル型であるものとして説明する。
 <1.第1の実施形態>
 <1.1 全体構成および動作>
 図1は、本発明の第1の実施形態に係るアクティブマトリクス型の液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、電源100とDC/DCコンバータ110と表示制御回路200とソースドライバ(映像信号線駆動回路)300とゲートドライバ(走査信号線駆動回路)400と共通電極駆動回路500と表示部600とを備えている。
 ソースドライバ300は、アモルファスシリコン、多結晶シリコン、微結晶シリコン、または酸化物半導体(例えばIGZO)等を用いて、表示部600を含む液晶表示パネル700上に形成されている。すなわち、本実施形態に係る液晶表示装置は、ソースドライバ300と表示部600とが同一基板(液晶表示パネルを構成する2枚の基板のうちの一方の基板であるアレイ基板)上に形成されたソースドライバモノリシック型の液晶表示装置である。なお、ゲートドライバ400もアモルファスシリコン、多結晶シリコン、微結晶シリコン、または酸化物半導体等を用いて液晶表示パネル700上に形成されていても良い。これらのアモルファスシリコンおよびIGZOを用いた具体的な実現例については後述する。
 表示部600には、n本のソースライン(映像信号線)SL1~SLnと、m本のゲートライン(走査信号線)GL1~GLmと、これらのソースラインSL1~SLnとゲートラインGL1~GLmとの交差点にそれぞれ対応して設けられたm×n個の画素形成部とが形成されている。上記m×n個の画素形成部は、マトリクス状に配置されることにより画素アレイを構成している。各画素形成部は、対応する交差点を通過するゲートラインにゲート端子が接続されると共に当該交差点を通過するソースラインにソース端子が接続されたスイッチング素子である画素薄膜トランジスタ80と、その画素薄膜トランジスタ80のドレイン端子に接続された画素電極と、上記複数個の画素形成部に共通的に設けられた対向電極である共通電極Ecと、上記複数個の画素形成部に共通的に設けられ画素電極と共通電極Ecとの間に挟持された液晶層とからなる。そして、画素電極と共通電極Ecとにより形成される液晶容量により、画素容量Cpが構成される。なお通常、画素容量Cpに確実に電圧を保持すべく、液晶容量に並列に補助容量が設けられるが、補助容量は本発明には直接に関係しないのでその説明および図示を省略する。
 本実施形態に係る液晶表示装置では、RGBの3原色によるカラー画像表示が行われる。このため、上記画素形成部は、R、G、およびBにそれぞれ対応する3個の画素形成部を1組として構成されている。この1組により1画素が形成される。以下では、R、G、およびBにそれぞれ対応する画素形成部を「R画素形成部」、「G画素形成部」、および「B画素形成部」という。
 電源100は、DC/DCコンバータ110と表示制御回路200と共通電極駆動回路500とに所定の電源電圧を供給する。DC/DCコンバータ110は、ソースドライバ300およびゲートドライバ400を動作させるための所定の直流電圧を電源電圧から生成し、それをソースドライバ300およびゲートドライバ400に供給する。共通電極駆動回路500は、共通電極Ecに所定の電位Vcomを与える。
 表示制御回路200は、外部から送られる画像信号DATおよび水平同期信号や垂直同期信号などのタイミング信号群TGを受け取り、映像信号Vidと、表示部600における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKを出力する。ソースクロック信号SCKのハイレベル側の電位はVdd電位、ローレベル側の電位はVss電位となっている。
 本実施形態では、このソースクロック信号SCKは2相のソースクロック信号SCK1およびSCK2からなっている。以下では、ソースクロック信号SCK1を「第1ソースクロック信号」といい、ソースクロック信号SCK2を「第2ソースクロック信号」という。また、第1ソースクロック信号SCK1および第2ソースクロック信号SCK2のそれぞれがローレベル電位からハイレベル電位に変化する時点から、ハイレベル電位からローレベル電位に変化する時点までの期間を便宜上「サンプリング期間」という。これらの第1ソースクロック信号SCK1および第2ソースクロック信号SCK2は、互いに1サンプリング期間だけ位相がずれており、いずれも2サンプリング期間中の1サンプリング期間だけハイレベル電位(Vdd電位)になる(ただし、後述の休止期間T2を除く)。
 ソースドライバ300は、表示制御回路200から出力される映像信号Vid、ソーススタートパルス信号SSP、およびソースクロック信号SCKを受け取る。このソースドライバ300は、受け取った映像信号Vidを所定のタイミングでソースラインSL1~SLnに与える。この映像信号Vidは、3つの映像信号Vidr、Vidg、およびVidbからなっている。以下では、映像信号Vidrを「R用映像信号」といい、映像信号Vidgを「G用映像信号」といい、映像信号Vidbを「B用映像信号」という。R用映像信号Vidr、G用映像信号Vidg、およびB用映像信号VidbはそれぞれR画素形成部、G画素形成部、およびB画素形成部に対応している。本実施形態におけるソースドライバ300は、いわゆる点順次駆動を行う。なお、このソースドライバについての詳しい説明は後述する。
 ゲートドライバ400は、表示制御回路200から出力されるゲートスタートパルス信号GSPおよびゲートクロック信号GCKに基づいて、ハイレベル電位の走査信号GS(1)~GS(m)のゲートラインGL1~GLmそれぞれへの印加を1フレーム期間を周期として繰り返す。以下では、各ゲートラインにハイレベル電位が与えられることにより、当該ゲートラインが選択状態となっている期間(1水平走査期間)を「走査選択期間」という。さらに、ゲートラインGLiが選択状態となっている期間(1水平走査期間)を「第i走査選択期間」という(i=1~m)。本実施形態では、1フレーム期間が走査期間T1と、当該走査期間T1の後に設けられた休止期間T2とからなっている。ゲートドライバ400は、この走査期間T1では走査信号GS(1)~GS(m)をゲートクロック信号GCKに基づいて順次にハイレベル電位にする。一方休止期間T2では、ゲートドライバ400は、m本のゲートラインGL1~GLm(走査信号GS(1)~GS(m))をローレベル電位にする。
 以上のようにして、ソースラインSL1~SLnに映像信号が印加され、ゲートラインGL1~GLmに走査信号GS(1)~GS(m)がそれぞれ印加されることにより、外部から送られた画像信号DATに基づく画像が表示部600に表示される。
 <1.2 ソースドライバの構成および動作>
 図2は、本実施形態におけるソースドライバ300の構成を示すブロック図である。図2に示すように、このソースドライバ300は、シフトレジスタ310およびサンプリング回路320により構成されている。
 シフトレジスタ310は、表示制御回路200から出力されたソーススタートパルス信号SSPおよびソースクロック信号SCKを受け取る。このシフトレジスタ310は、これらのソーススタートパルス信号SSPおよびソースクロック信号SCKに基づいて、ソーススタートパルス信号SSPに含まれるパルスを入力端から出力端へと順次転送する。この転送に応じて、このシフトレジスタ310の出力信号である選択信号SEL(1)~SEL(k)が順次にハイレベル電位になる。これらの選択信号SEL(1)~SEL(k)は、サンプリング回路320に与えられる。
 サンプリング回路320は、シフトレジスタ310から出力された選択信号SEL(1)~(k)と、表示制御回路200から出力された映像信号Vidとを受け取る。サンプリング回路320は、これらの選択信号SEL(1)~(k)がハイレベル電位になるタイミングで、映像信号VidをソースラインSL1~SLnに与える。
 <1.3 シフトレジスタの構成および動作>
 図3は、本実施形態におけるシフトレジスタ310の構成を示すブロック図である。このシフトレジスタ310は、k個の双安定回路30(1)~30(k)と、1個のダミー用双安定回路30(k+1)により構成されている。なお、以下の説明では、x段目(x=1~k+1)の双安定回路のことを、単に「x段目」ということがある。また、k+1段目を「ダミー段」ということがある。各双安定回路は、各時点において2つの状態(第1の状態および第2の状態)のうちのいずれか一方の状態となっていて当該状態を示す信号(以下「状態信号」という。)を出力する。本実施形態では、双安定回路が第1の状態となっていれば、当該双安定回路からはハイレベル(オンレベル)電位の状態信号が出力され、双安定回路が第2の状態となっていれば、当該双安定回路からはローレベル(オフレベル)電位の状態信号が出力される。この状態信号は、上述の選択信号に相当する。すなわち、双安定回路30(1)~30(k)の状態信号はそれぞれ、選択信号SEL(1)~SEL(k)に相当する。
 各双安定回路には、クロック信号CK1(以下「第1クロック信号」という)を受け取るための入力端子、クロック信号CK2(以下「第2クロック信号」という)を受け取るための入力端子、ローレベルの直流電源電位Vss(この電位の大きさのことを上記「Vss電位」ともいう)を受け取るための入力端子(図示しない)、セット信号Sを受け取るための入力端子、リセット信号Rを受け取るための入力端子、および状態信号Zを出力するための出力端子が設けられている。
 このシフトレジスタ310には、ソースクロック信号SCKとして、上述のように2相の第1ソースクロック信号SCK1および第2ソースクロック信号SCK2が与えられる。なお、本発明はこれに限定されるものではなく、3相以上のソースクロック信号を用いた態様としても良い。
 シフトレジスタ310の各段(各双安定回路)の入力端子に与えられる信号は次のようになっている。すなわち、第1ソースクロック信号SCK1が第1クロック信号CK1として与えられ、第2ソースクロック信号SCK2が第2クロック信号CK2として与えられる。偶数段目には、第1ソースクロック信号SCK1が第2クロック信号CK2として与えられ、第2ソースクロック信号SCK2が第1クロック信号CK1として与えられる。また、各段には図示しない手段によりローレベルの直流電源電位Vssが共通的に与えられる。
 各段には、前段から出力される状態信号Zがセット信号Sとして与えられ、次段から出力される状態信号Zがリセット信号Rとして与えられる。ただし、1段目(最前段)30(1)には、ソーススタートパルス信号SSPがセット信号Sとして与えられる。このソーススタートパルス信号SSPは、各走査選択期間のうちの、最初の1サンプリング期間においてハイレベル電位になる信号である。また、k段目(最後段)30(k)には、ダミー段30(k+1)から出力される状態信号がリセット信号Rとして与えられる。なお、ダミー段30(k+1)には、k段目30(k)から出力される状態信号Zがセット信号Sとして与えられ、自身の状態信号Zがリセット信号Rとして与えられる。このため、ダミー段30(k+1)の状態信号Zがハイレベル電位になっている期間は、他の段の状態信号Zがハイレベル電位になっている期間よりも短い。このようなダミー段30(k+1)を設けることに代えて、k段目30(k)にリセット信号Rとして、ソースエンドパルス信号SEPを与えても良い。このソースエンドパルス信号SEPは、k段目の走査選択期間終了後の1サンプリング期間においてハイレベル電位になる信号である。
 以上のような構成において、シフトレジスタ310の1段目30(1)にセット信号Sとしてのソーススタートパルス信号SSPが与えられると、第1ソースクロック信号SCK1および第2ソースクロック信号SCK2に基づいて、ソーススタートパルス信号SSPに含まれるパルス(このパルスは各段から出力される状態信号Zに含まれる)が1段目30(1)からk段目30(k)へと順次に転送される。そして、このパルスの転送に応じて、1段目30(1)~k段目30(k)からそれぞれ出力される状態信号Zが順次にハイレベル電位となる。これらの1段目30(1)~30(k)からそれぞれ出力される状態信号Zは、選択信号SEL(1)~SEL(k)としてサンプリング回路320に与えられる。以上により、図4に示すように、1サンプリング期間ずつ順次にハイレベル電位となる選択信号がサンプリング回路320に与えられる。以下では、各選択信号がハイレベル電位になる期間を「サンプリング選択期間」という。さらに、選択信号SEL(j)がハイレベルになる期間を「第jサンプリング選択期間」という。
 <1.4 双安定回路の構成および動作>
 図5は、本実施形態における各双安定回路の構成を示す回路図である。図5に示すように、この双安定回路は、4個の薄膜トランジスタ(スイッチング素子)M1~M4、コンデンサC1、4個の入力端子31~34、ローレベルの直流電源電位Vss用の入力端子、および出力端子39により構成されている。ここで、第1クロック信号CK1を受け取る入力端子には符号31を付し、第2クロック信号CK2を受け取る入力端子には符号32を付し、セット信号Sを受け取る入力端子には符号33を付し、リセット信号Rを受け取る入力端子には符号34を付している。また、状態信号Zを出力する出力端子には符号39を付している。なお、シフトレジスタ310の双安定回路としては、本実施形態における双安定回路の構成に限定されるものではなく、種々の構成の双安定回路を採用することができる。
 次に、この双安定回路内における構成要素間の接続関係について説明する。薄膜トランジスタM1のゲート端子、薄膜トランジスタM3のソース端子、薄膜トランジスタM4のドレイン端子、およびコンデンサC1の一端は互いに接続されている。以下では、これらが互いに接続されている接続点(配線)のことを便宜上「第1ノード」という。この第1ノードには符号N1を付す。
 薄膜トランジスタM1については、ゲート端子が第1ノードN1に接続され、ドレイン端子が入力端子31に接続され、ソース端子が出力端子39に接続されている。薄膜トランジスタM2については、ゲート端子が入力端子32に接続され、ドレイン端子が出力端子39に接続され、ソース端子が直流電源電位Vss用の入力端子に接続されている。薄膜トランジスタM3については、ゲート端子およびドレイン端子が入力端子33に接続され(すなわち、ダイオード接続となっている)、ソース端子が第1ノードN1に接続されている。薄膜トランジスタM4については、ゲート端子が入力端子34に接続され、ドレイン端子が第1ノードN1に接続され、ソース端子が直流電源電位Vss用の入力端子に接続されている。コンデンサC1については、一端が第1ノードN1に接続され、他端が出力端子39に接続されている。
 次に、この双安定回路における各構成要素の機能について説明する。薄膜トランジスタM1は、第1ノードN1の電位がハイレベルになっているときに、第1クロック信号CKの電位を出力端子39に与える。薄膜トランジスタM2は、第2クロック信号CK2の電位がハイレベルになっているときに、出力端子39の電位をVss電位に向けて変化させる。薄膜トランジスタM3は、セット信号Sの電位がハイレベルになっているときに、第1ノードN1の電位をハイレベルに向けて変化させる。薄膜トランジスタM4は、リセット信号Rの電位がハイレベルになっているときに、第1ノードN1の電位をVss電位に向けて変化させる。コンデンサC1は、第1ノードN1がブートストラップされるときの補助容量として機能する。
 図6は、本実施形態における双安定回路の動作のうち、特に走査期間T1での動作を説明するための信号波形図である。なお、他の双安定回路の動作も同様であるので、説明を省略する。ここで、この双安定回路は奇数段目であるものとして説明する。奇数段目では、第1ソースクロック信号SCK1および第2ソースクロック信号SCK2がそれぞれ第1クロック信号CK1および第2クロック信号CK2に相当する。図6における時点t1から時点t2までの期間はサンプリング選択期間に相当する。走査期間T1での動作説明においては、サンプリング選択期間直前の1サンプリング期間のことを「セット期間」といい、サンプリング選択期間直後の1サンプリング期間のことを「リセット期間」という。また、走査期間のうちの、選択期間、セット期間、およびリセット期間以外の期間のことを「通常動作期間」という。
 セット期間になると(時点t0になると)、セット信号Sの電位がローレベルからハイレベルに変化する。薄膜トランジスタM3が図5に示すようにダイオード接続となっているので、セット信号Sの電位がハイレベルになることによって薄膜トランジスタM3がオン状態になり、コンデンサC1が充電(ここではプリチャージ)される。これにより、第1ノードN1の電位がローレベルからハイレベルに変化し、薄膜トランジスタM1がオン状態となる。しかし、セット期間では、第1ソースクロック信号SCK1(第1クロック信号CK1)の電位がローレベルとなっているので、状態信号Zの電位はローレベルで維持される。
 サンプリング選択期間になると(時点t1になると)、セット信号Sがハイレベルからローレベルに変化する。これにより、薄膜トランジスタM3がオフ状態になる。このとき、第1ノードN1はフローティング状態になる。この時点t1では、第1ソースクロック信号SCK1の電位がローレベルからハイレベルに変化する。薄膜トランジスタM1はオン状態でありゲート容量が存在するので、入力端子31の電位の上昇に伴って第1ノードN1の電位も上昇する(第1ノードN1がブートストラップされる)。この際、コンデンサC1は第1ノードN1の電位上昇を促進するように働く。その結果、薄膜トランジスタM1のゲート電位は十分に高いレベルになるので、第1ソースクロック信号SCK1のハイレベル(Vdd電位)まで状態信号Zの電位が上昇する。
 リセット期間になると(時点t2になると)、第1ソースクロック信号SCK1の電位がハイレベルからローレベルに変化する。時点t2には薄膜トランジスタM1がオン状態となっているので、入力端子31の電位の低下と共に状態信号Zの電位が低下する。このように状態信号Zの電位が低下することによって、コンデンサC1を介して第1ノードN1の電位も低下する。また、リセット期間には、リセット信号Rがローレベルからハイレベルに変化する。このため、薄膜トランジスタM4がオン状態になる。その結果、リセット期間には、第1ノードN1の電位が確実にローレベルに低下する。さらに、リセット期間には、第2ソースクロック信号SCK2(第2クロック信号CK2)がローレベルからハイレベルに変化する。このため、薄膜トランジスタM2がオン状態になるので、状態信号Zの電位が確実にローレベルに低下する。
 通常動作期間では、第2ソースクロック信号SCK2の電位が1水平走査期間毎にハイレベルとローレベルとを繰り返すことにより、薄膜トランジスタM2が1水平走査期間毎にオン状態になる。このため、状態信号Zの電位をローレベルに維持することができる。
 なお、以下の説明では、走査期間T1における第1ソースクロック信号SCK1および第2ソースクロック信号SCK2のそれぞれの周期(以下「走査期間周期」という)を符号tck1で表す。また、走査期間T1における第1ゲートクロック信号GCK1および第2ゲートクロック信号GCK2のそれぞれの周波数(以下「走査期間周波数」という)を符号fck1で表す。さらに、走査期間T1における第1ソースクロック信号SCK1および第2ソースクロック信号SCK2のそれぞれの振幅(以下「走査期間振幅」という)を符号Vck1で表す。
 <1.5 サンプリング回路の構成>
 図7は、本実施形態におけるサンプリング回路320の構成を説明するための回路図である。図7に示すように、このサンプリング回路320は、k個のサンプリングブロック40(1)~40(k)により構成されている。表示部600には上述のようにm行×n列の画素マトリクスが形成されており、これらの画素マトリクスの各列と3対1で対応するように上記サンプリングブロックが設けられている。
 サンプリングブロック40(1)~40(k)にはそれぞれ選択信号SEL(1)~SEL(k)が与えられている(対応している)。また、サンプリングブロック40(1)~40(k)のそれぞれには互いに異なる3本のソースラインが接続されている。サンプリングブロック40(j)にはソースラインSL3j-2~SL3jが接続されている(j=1~k)。各サンプリングブロックには、R用映像信号Vidr、G用映像信号Vidg、およびB用映像信号Vidbが与えられている。
 図7に示すように、ソースラインSL1~SLnは、3本を単位としてソースライン組SG1~SGkに組み分けされている。ここで、ソースライン組SGjは3本のソースラインSL3j-2~SL3jからなっている。これらのソースライン組SG1~SGkはそれぞれ、サンプリングブロック40(1)~40(k)に対応している。図7において、ソースライン組SGj中の、Rに対応するソースライン(以下「R用ソースライン」という)を符号SLrjで表し、Gに対応するソースライン(以下「G用ソースライン」という)を符号SLgjで表し、Bに対応するソースライン(以下「B用ソースライン」という)を符号SLbjで表している。また、R用ソースラインSLrjとゲートラインGLiとの交差点に対応して設けられたR画素形成部を符号rijで表し(i=1~m)、G用ソースラインSLgjとゲートラインGLiとの交差点に対応して設けられたG画素形成部を符号gijで表し、B用ソースラインSLbjとゲートラインGLiとの交差点に対応して設けられてB画素形成部を符号bijで表している。
 図7に示すように、各サンプリングブロックは3つの薄膜トランジスタにより構成されている。以下では、サンプリングブロック40(j)内の3つの薄膜トランジスタをそれぞれ、「R用薄膜トランジスタ41r(j)」、「G用薄膜トランジスタ41g(j)」、および「B用薄膜トランジスタ41b(j)」という。
 各R用薄膜トランジスタについては、ゲート端子には当該R用薄膜トランジスタを含むサンプリングブロックに対応する選択信号が与えられ、ソース端子にはR用映像信号Vidrが与えられ、ドレイン端子には当該R用薄膜トランジスタを含むサンプリングブロックに対応するソースライン組内のR用ソースラインが接続されている。各G用薄膜トランジスタについては、ゲート端子には当該G用薄膜トランジスタを含むサンプリングブロックに対応する選択信号が与えられ、ソース端子にはG用映像信号Vidgが与えられ、ドレイン端子には当該G用薄膜トランジスタを含むサンプリングブロックに対応するソースライン組内のG用ソースラインが接続されている。各B用薄膜トランジスタについては、ゲート端子には当該B用薄膜トランジスタを含むサンプリングブロックに対応する選択信号が与えられ、ソース端子にはB用映像信号Vidbが与えられ、ドレイン端子には当該B用薄膜トランジスタを含むサンプリングブロックに対応するソースライン組内のB用ソースラインが接続されている。
 このようなサンプリング回路320を含むソースドライバ300により、1水平走査期間において映像信号VidをR/G/Bの各画素からなる絵素単位で順次にソースラインに与える点順次駆動が実現される。なお、この動作について詳しい説明は後述する。
 <1.6 液晶表示装置の動作>
 本実施形態では、上述のように1フレーム期間が走査期間T1と、当該走査期間T1の後に設けられた休止期間T2とからなっている。ここで、本実施形態に係る液晶表示装置の動作を、走査期間T1における動作と休止期間T2における動作とに分けて説明する。
 <1.6.1 走査期間の動作>
 図8は、本実施形態に係る液晶表示装置の走査期間T1における動作を説明するための信号波形図である。図8に示すように、走査期間T1では走査信号GS(1)~GS(m)がゲートクロック信号GCKに基づいて順次に選択状態になる。各選択期間では、ブロック単位(ソース組単位)でソースラインに映像信号が順次に与えられる。図8では、第1走査選択期間における、ソースドライバ300の駆動に関する各種信号波形を示している。なお、第1走査選択期間以外の走査選択期間での動作についても同様であるので、その説明を省略する。
 第1走査選択期間において、最初の1サンプリング期間でソーススタートパルス信号SSPがハイレベル電位になる。その後、第1ソースクロック信号SCK1および第2ソースクロック信号SCK2に基づいて選択信号SEL(1)~SEL(k)が順次にハイレベル電位になる。図8に示すように、本実施形態では、走査期間周期tck1は2サンプリング期間である。
 R用映像信号Vidrは、第i走査選択期間中の第jサンプリング期間でR画素形成部rijに対応する電位となっている(i=1~m、j=1~k)。G用映像信号Vidgは、第i走査選択期間中の第jサンプリング期間でG画素形成部gijに対応する電位となっている。B用映像信号Vidbは、第i走査選択期間中の第jサンプリング期間でB画素形成部bijに対応する電位となっている。なお、本実施形態および後述の各実施形態では、1サンプリング期間毎に各映像信号の極性を反転させ且つ互いに隣接する出力信号線に与えられる映像信号の極性を互いに反転させると共に、フレーム期間毎に各映像信号の極性を反転させることにより極性反転駆動を行っているが、本発明はこれに限定されるものではない。
 第1サンプリング期間では選択信号SEL(1)がハイレベル電位になるので、図7に示すサンプリングブロック40(1)内のR用薄膜トランジスタ41r(1)、G用薄膜トランジスタ41g(1)、およびB用薄膜トランジスタ41b(1)がオン状態になる。このため、R画素形成部r11に対応する電位になっているR用映像信号VidrがR用ソースラインSLr1に与えられ、G画素形成部g11に対応する電位になっているG用映像信号VidgがG用ソースラインSLg1に与えられ、B画素形成部b11に対応する電位になっているB用映像信号VidbがB用ソースラインSLb1に与えられる。この第1サンプリング期間では、R用ソースラインSLr1、G用ソースラインSLg1、およびB用ソースラインSLb1の電位は、先行の休止期間T2における電位(Vcom電位)からそれぞれ、正極性、負極性、および正極性に変化する。これらのR用ソースラインSLr1、G用ソースラインSLg1、およびB用ソースラインSLb1の電位はそれぞれ、R画素形成部r11、G画素形成部g11、およびB画素形成部b11に書き込まれる。なお、第2~mサンプリング期間での動作も同様であるので、その説明を省略する。
 以上のような1サンプリング期間が繰り返されることにより1走査選択期間の動作が実現され、この1走査選択期間が繰り返されることにより走査期間T1の動作が実現される。
 <1.6.2 休止期間の動作>
 図9は、本実施形態に係る液晶表示装置の休止期間T2における動作を説明するための信号波形図である。図9に示すように、休止期間T2では、m本のゲートラインGL1~GLm(走査信号GS(1)~GS(m))のいずれもがローレベル電位になっている。実施形態および後述の各実施形態では、休止期間T2が走査期間T1よりも長く設けられている。ただし、本発明はこれに限定されるものではなく、休止期間T2が走査期間T1よりも短くても良い。図9では、休止期間T2における最初の、X回分の1走査選択期間(1水平走査期間)の長さに相当する期間(以下「X水平走査期間」という)でのソースドライバ300の駆動に関する各種信号波形を示している。ここで、Xは例えば2以上の整数であるが、本発明はこれに限定されるものではない。なお、他のX水平走査期間での動作についても同様であるので、その説明を省略する。
 図9に示すように、この休止期間T2では、第1ソースクロック信号SCK1および第2ソースクロック信号SCK2は走査期間周期tck1よりも長い周期で、1サンプリング期間でハイレベル電位になる。以下では、休止期間T2における第1ソースクロック信号SCK1および第2ソースクロック信号SCK2のそれぞれの周期(以下「休止期間周期」という)を符号tck2で表す。また、休止期間T2における第1ソースクロック信号SCK1および第2ソースクロック信号SCK2のそれぞれの周波数(以下「休止期間周波数」という)を符号fck2で表す。また、休止期間T2における第1ソースクロック信号SCK1および第2ソースクロック信号SCK2のそれぞれの振幅(以下「休止期間振幅」という)を符号Vck2で表す。
 上述のように、休止期間周期tck2は走査期間周期tck1よりも長い。すなわち、休止期間周波数fck2は走査期間周波数fck1よりも低い。ここで、走査期間周波数fck1は休止期間周波数fck2の整数倍であることが望ましい。これにより、表示制御回路200等を簡易な構成とすることができる。また、走査期間周波数fck1は休止期間周波数fck2の2倍以上であることが望ましい。言い換えると、休止期間周波数fck2は走査期間周波数fck1の1/2倍以下であることが望ましい。これにより、ソースドライバ300の駆動に要する消費電力を十分に低減することができる。このようなソースクロック信号SCKの周波数(周期)の制御は、例えば表示制御回路200において行われる。なお、本実施形態では、休止期間振幅Vck2および走査期間振幅Vck1は互いに同じ大きさである。
 図9に示すように、休止期間T2ではR用映像信号Vidr、G用映像信号Vidg、およびB用映像信号VidbがVcom電位になっている。なお、Vcom電位に限らず、他の固定電位となっていても良い。また、休止期間T2では走査信号GS(1)~GS(m)はハイレベル電位にならないので、R画素形成部rij、G画素形成部gij、およびB画素形成部bijには映像信号は書き込まれない。
 図9に示すように、X水平走査期間での最初の1サンプリング期間においてソーススタートパルス信号SSPがハイレベル電位になる。したがって、走査期間周波数fck1よりも低い休止期間周波数fck2である第1ソースクロック信号SCK1および第2ソースクロック信号SCK2に基づいて、選択信号SEL(1)~SEL(k)が順次にハイレベル電位になる。
 図10は、本実施形態における双安定回路の動作のうち、特に休止期間T2での動作を説明するための信号波形図である。なお、他の双安定回路の動作も同様であるので、説明を省略する。休止期間T2での動作説明においては、セット信号Sがハイレベル電位になっている1水平走査期間を「セット期間」といい、セット期間の終了時点からサンプリング選択期間開始時点までの期間を「選択待ち期間」といい、サンプリング選択期間終了時点からリセット信号Rがハイレベル電位に変化する時点までの期間を「リセット待ち期間」といい、リセット信号Rがハイレベル電位になっている期間を「リセット期間」という。また、休止期間T2のうちの、サンプリング選択期間、セット期間、選択待ち期間、リセット待ち期間およびリセット期間以外の期間のことを「通常動作期間」という。
 セット期間(時点s0~s1)の動作については、走査期間T1におけるセット期間での動作と同様であるので説明を省略する。
 選択待ち期間になると(時点s1になると)、セット信号Sの電位がハイレベルからローレベルに変化するので薄膜トランジスタM3がオフ状態になる(図5を参照)。このため、第1ノードN1はフローティング状態になる。また、第1ソースクロック信号SCK1はローレベル電位のままである。このため、選択待ち期間では、セット期間における第1ノードN1の電位が維持される。なお、第2ソースクロック信号SCK2の電位がローレベルに変化するので、薄膜トランジスタM2がオフ状態になる。
 サンプリング選択期間(時点s2~s3)の動作については、走査期間T1におけるセット期間での動作と同様であるので説明を省略する。
 リセット待ち期間になると(時点s3になると)、第1ソースクロック信号SCK1の電位がハイレベルからローレベルに変化するので、薄膜トランジスタM1のゲート-ドレイン間の寄生容量の影響により第1ノードN1の電位が下降する。この電位の下降量は、上述のブーストストラップによる電位の上昇量に相当する。このため、薄膜トランジスタM1はオフ状態にはならない。したがって、上述のように第1ソースクロック信号SCK1の電位がハイレベルからローレベルに変化することにより、状態信号Zの電位がローレベルに変化する。また、その後も、第1ソースクロック信号SCK1の電位はローレベルを維持するので、状態信号Zの電位はローレベルを維持する。
 このようにして、本実施形態では、休止期間T2において、走査期間T1における周期よりも長い周期で選択信号SEL(1)~SEL(k)が順次にハイレベル電位になる。このため、サンプリングブロック40(1)~40(k)のそれぞれのR用薄膜トランジスタ、G用薄膜トランジスタ、およびB用薄膜トランジスタが順次にオン状態になる。R用薄膜トランジスタがオン状態になると、Vcom電位になっているR用映像信号VidrがR用ソースラインに与えられる。G用薄膜トランジスタがオン状態になると、Vcom電位になっているG用映像信号VidgがG用ソースラインに与えられる。B用薄膜トランジスタがオン状態になると、Vcom電位になっているB用映像信号VidbがB用ソースラインに与えられる。なお、上述のように休止期間T2では走査信号GS(1)~GS(m)がハイレベル電位にならないので、これらのR用ソースライン、G用ソースライン、B用ソースラインの電位はそれぞれR画素形成部、G画素形成部、およびB画素形成部に書き込まれない。
 <1.7 考察>
 上記従来のソースドライバモノリシック型の液晶表示装置において特許文献2に記載の駆動方法を単純に用いる場合、休止期間T2においてソースラインを所定電位(Vcom電位)に固定するために、休止期間T2においてサンプリング回路320内の各薄膜トランジスタをオフ状態に維持するか、または、休止期間T2において当該薄膜トランジスタをオン状態維持すると共に各映像信号をVcom電位にすることが考えられる。
 しかし、休止期間T2においてサンプリング回路320内の各薄膜トランジスタをオフ状態に維持すると、ソースラインがフローティング状態になる。このため、休止期間T2においてソースラインがノイズ等の影響を受けやすくなってしまう。ソースラインと画素電極との間には寄生容量があり、画素電極もフローティング状態なので、ソースラインのノイズは容量カップリングにより画素電位へも影響する。その結果、表示品位の低下を招くおそれがある。これに対して、本実施形態では、休止期間T2において、第1ソースクロック信号SCK1および第2ソースクロック信号SCK2にシフトレジスタ310が動作することにより、選択信号SEL(1)~SEL(k)が順次にハイレベル電位になる。このため、各選択信号がハイレベルになるタイミングでこれに対応するソースライン組内のソースラインにVcom電位が与えられることとなる。これにより、休止期間T2においてソースラインSL1~SLmがフローティング状態になることによりこれらのソースラインSL1~SLmが受けるノイズ等の影響が低減される。その結果、表示品位の低下を抑制することができる。
 一方、休止期間T2においてサンプリング回路320内の各薄膜トランジスタをオン状態維持すると共に各映像信号をVcom電位にすると、薄膜トランジスタのゲート端子にハイレベル電位を与え続ける必要がある。この薄膜トランジスタにゲートバイアスストレスが長時間掛かることとなるので、この薄膜トランジスタおけるしきい値変動が大きくなる。その結果、この薄膜トランジスタが低下する。これに対して、本実施形態では、休止期間T2において、第1ソースクロック信号SCK1および第2ソースクロック信号SCK2に基づいてシフトレジスタ310が動作することにより、各X水平走査期間で選択信号SEL(1)~SEL(k)が順次にハイレベル電位になる。このように、各X水平走査期間中の1サンプリング期間にのみ、サンプリング回路320内の薄膜トランジスタのゲート端子にハイレベル電位が与えられる。これにより、本実施形態ではこの薄膜トランジスタに掛かるゲートバイアスストレスが低減されるので、この薄膜トランジスタにおけるしきい値変動が低減される。その結果、サンプリング回路320内の各薄膜トランジスタの駆動能力(信頼性)の低下を抑制することができる。
 <1.8 実現例>
 本実施形態におけるサンプリング回路320内の各薄膜トランジスタの半導体層には、例えば、a-Siまたは酸化物半導体等を用いることができる。なお、酸化物半導体としては、典型的には、インジウム、ガリウム、亜鉛、および酸素を主成分とする酸化物半導体であるInGaZnOx(以下、「IGZO」という)が用いられるが本発明はこれに限定されるものではない。例えば、インジウム、ガリウム、亜鉛、銅、珪素、錫、アルミニウム、カルシウム、ゲルマニウム、および鉛のうち少なくとも1つを含む酸化物半導体であれば良い。
 図11は、a-SiTFTおよびIGZOを半導体層に用いたTFT(以下「IGZOTFT」という)のドレイン電流-ゲート電圧特性を示す図である。図11において、横軸はゲート電圧Vgを表し、縦軸はドレイン電流Idsを表している。図11に示すように、IGZOTFTのリーク電流はa-SiTFTのリーク電流の1/1000以下であると共に、IGZOTFTのオン電流はa-SiTFTのオン電流の約20倍である。
 IGZOTFTは上述のようにリーク電流が小さいので、IGZOTFTを本実施形態におけるサンプリング回路320内の各薄膜トランジスタとして用いた場合、a-SiTFTをこの薄膜トランジスタとして用いた場合によりも、ソースドライバ300(サンプリング回路320)の駆動電力を低減することができる(1/100以下)。
 また、IGZOTFTは上述のようにオン電流が大きいので、IGZOTFTを用いた場合、a-SiTFTを用いた場合に比べてTFTのサイズを1/20程度に小さくすることができる。
 なお、a-SiTFTを用いた場合は、IGZOTFTを用いた場合よりも低コストで本実施形態を実現することができる。
 <1.9 効果>
 本実施形態によれば、点順次駆動方式のソースドライバモノリシック型の液晶表示装置において、1フレーム期間内で走査期間T1の後に休止期間T2が設けられる。休止期間周波数fck2が走査期間周波数fck1よりも低いので、ソースドライバ300の1フレーム期間全体の駆動周波数が低減される。このため、ソースドライバ300の駆動に要する消費電力が低減される。また、ソースドライバ300がモノリシック化されて形成されているので、液晶表示パネル700の額縁面積が縮小されると共に、ソースドライバ300のコストが低減される。
 また、本実施形態によれば、休止期間T2において、各選択信号がハイレベルになるタイミングでこれに対応するソースライン組内のソースラインにVcom電位が与えられる。このため、休止期間T2においてソースラインSL1~SLmがフローティング状態になることによりこれらのソースラインSL1~SLmが受けるノイズ等の影響が低減される。これにより、表示品位の低下を抑制することができる。また、休止期間T2において、各X水平走査期間中の1サンプリング期間にのみ、サンプリング回路320内の各薄膜トランジスタのゲート端子にハイレベル電位が与えられるので、この薄膜トランジスタに掛かるゲートバイアスストレスが低減される。その結果、サンプリング回路320内の各薄膜トランジスタの駆動能力(信頼性)の低下を抑制することができる。
 また、本実施形態によれば、休止期間T2が走査期間T1よりも長く設けられているので、さらなる消費電力化を図ることができる。
 IGZOTFTを本実施形態におけるサンプリング回路320内の各薄膜トランジスタとして用いた場合には、IGZOTFTのリーク電流が十分に小さいので、休止期間周波数fck2をさらに低くすることができる。このため、消費電力を低減することができる。また、この場合、IGZOTFTのオン電流が十分に大きいので、TFTサイズを十分に小さくすることができる。これにより、さらなる狭額縁化を図ることができる。なお、IGZOTFTを、双安定回路内の各薄膜トランジスタとしても用いることにより、さらなる低消費電力化および狭額縁化を図ることができる。
 一方、a-SiTFTを本実施形態におけるサンプリング回路320内の各薄膜トランジスタとして用いた場合には、さらなる低コスト化を図ることができる。
 <2.第2の実施形態>
 <2.1 休止期間の動作>
 図12は、本発明の第2の実施形態における液晶表示装置の休止期間T2での動作を説明するための信号波形図である。なお、本実施形態は、休止期間の動作を除き上記第1の実施形態と同様であるので、当該同様の部分についての説明を省略する。本実施形態における休止期間振幅Vck2は走査期間振幅Vck1よりも小さい。なお、休止期間T2においてサンプリング回路320内の各薄膜トランジスタを確実にオン状態にするためには、この薄膜トランジスタのしきい値電圧よりも大きい必要がある。すなわち、本実施形態における休止期間振幅Vckは、走査期間振幅Vck2よりも小さく且つサンプリング回路320内の各薄膜トランジスタのしきい値電圧よりも大きい。
 <2.2 効果>
 本実施形態によれば、休止期間T2における第1ソースクロック信号SCK1および第2ソースクロック信号SCK2のそれぞれの振幅である休止期間振幅Vck2が、走査期間T1における第1ソースクロック信号SCK1および第2ソースクロック信号SCK2のそれぞれの振幅である走査期間振幅Vck1よりも小さい。このため、さらなる低消費電力化を図ることができる。また、休止期間T2にR用薄膜トランジスタ、G用薄膜トランジスタ、およびB用薄膜トランジスタに掛かるゲートバイアスストレスがさらに低減されるので、これらのR用薄膜トランジスタ、G用薄膜トランジスタ、およびB用薄膜トランジスタのさらなる高信頼性化を図ることができる。
 <3.第3の実施形態>
 <3.1 サンプリング回路の構成>
 図13は、本発明の第3の実施形態におけるサンプリング回路320の構成を説明するための回路図である。なお、本実施形態は、サンプリング回路320の構成および液晶表示装置の詳細な動作を除き上記第1の実施形態と同様であるので、当該同様の部分についての説明を省略する。本実施形態では、サンプリングブロック40(1)~40(k)とソースラインSL1~SLnとの関係が上記第1の実施形態と異なり、画素マトリクスの各列と24対1で対応するようにサンプリングブロックが設けられている。
 本実施形態では、映像信号Vidが24個の映像信号Vidr1~Vidr8、Vidg1~Vidg8、およびVidb1~Vidb8からなっている。以下では、映像信号Vidrxを「第xR用映像信号」といい、映像信号Vidgxを「第xG用映像信号」といい、映像信号Vidbxを「第xB用映像信号」という(x=1~8)。第1~第8R用映像信号Vidr1~Vidr8はR画素形成部に対応し、第1~8G用映像信号Vidg1~Vidg8はG画素形成部に対応し、第1~8B用映像信号Vidb1~Vidb8はB画素形成部に対応している。
 サンプリングブロック40(1)~40(k)にはそれぞれ選択信号SEL(1)~SEL(k)が与えられている(対応している)。また、サンプリングブロック40(1)~40(k)のそれぞれには互いに異なる24本のソースラインが接続されている。サンプリングブロック40(j)にはソースラインSL24j-23~SL24jが接続されている(j=1~k)。各サンプリングブロックには、第1~第8R用映像信号Vidr1~Vidr8、第1~8G用映像信号Vidg1~Vidg8、および第1~8B用映像信号Vidb1~Vidb8が与えられている。
 本実施形態では、ソースラインSL1~SLnが24本を単位としてソースライン組SG1~SGkに組み分けされている。ここで、ソースライン組SGjは24本のソースラインSL24j-23~SL24jからなっている。これらのソースライン組SG1~SGkはそれぞれ、サンプリングブロック40(1)~40(k)に対応している。各ソースライン組内には、同色に対応するソースラインが8本設けられている。図13において、ソースライン組SGj中の8本のR用ソースラインをそれぞれ「第xR用ソースライン」といい、それぞれを符号SLrj_xで表す(x=1~8)。同様に、ソースライン組SGj中の8本のG用ソースラインをそれぞれ「第xG用ソースライン」といい、それぞれを符号SLgj_xで表す。また同様に、ソースライン組SGj中の8本のB用ソースラインをそれぞれ「第xB用ソースライン」といい、それぞれ符号SLbj_xで表している。
 また、第xR用ソースラインSLrj_xとゲートラインGLiとの交差点に対応して設けられたR画素形成部を符号rij_xで表し(i~m)、第xG用ソースラインSLgj_xとゲートラインGLiとの交差点に対して設けられたG画素形成部を符号gij_xで表し、第xb用ソースラインSLbj_xとゲートラインGLiとの交差点に対応して設けられたG画素形成部を符号bij_xで表している。
 各サンプリングブロックは、図13に示すように24個の薄膜トランジスタにより構成されている。以下では、サンプリングブロック40(j)内の24個の薄膜トランジスタをそれぞれ、第xR用薄膜トランジスタ41x1(j)、第xG用薄膜トランジスタ41gx(j)、および第xB用薄膜トランジスタ41bx(j)という(x=1~8)。
 各第xR用薄膜トランジスタについては、ゲート端子には当該第xR用薄膜トランジスタを含むサンプリングブロックに対応する選択信号が与えられ、ソース端子には第xR用映像信号Vidrxが与えられ、ドレイン端子には当該第xR用薄膜トランジスタを含むサンプリングブロックに対応するソースライン組内の第xR用ソースラインが接続されている。各第xG用薄膜トランジスタについては、ゲート端子には当該第xG用薄膜トランジスタを含むサンプリングブロックに対応する選択信号が与えられ、ソース端子には第xG用映像信号Vidgxが与えられ、ドレイン端子には当該第xG用薄膜トランジスタを含むサンプリングブロックに対応するソースライン組内の第xG用ソースラインが接続されている。各第xB用薄膜トランジスタについては、ゲート端子には当該第xB用薄膜トランジスタを含むサンプリングブロックに対応する選択信号が与えられ、ソース端子には第xB用映像信号Vidbxが与えられ、ドレイン端子には当該第xB用薄膜トランジスタを含むサンプリングブロックに対応するソースライン組内の第xB用ソースラインが接続されている。
 このようなサンプリング回路320を含むソースドライバ300により、1水平走査期間において映像信号Vidをブロック単位(ソース組単位)で順次にソースラインに与えて複数の絵素を同時に書き込むブロック順次駆動が実現される。なお、この動作について詳しい説明は後述する。
 <3.2 液晶表示装置の動作>
 <3.2.1 走査期間の動作>
 図14は、本実施形態に係る液晶表示装置の走査期間T1における動作を説明するための信号波形図である。ここで、本実施形態において上記第1の実施形態との共通部分については適宜説明を省略する。図14では、第1走査選択期間における、ソースドライバ300の駆動に関する各種信号波形を示している。なお、第1走査選択期間以外の走査選択期間での動作についても同様であるので、その説明を省略する。
 第xR映像信号Vidrxは、第i走査選択期間中の第jサンプリング期間で第xR画素形成部rij_xに対応する電位となっている(x=1~8、i=1~m、j=1~k)。第xG映像信号Vidgxは、第i走査選択期間中の第jサンプリング期間で第xG画素形成部gij_xに対応する電位となっている。第xB映像信号Vidbxは、第i走査選択期間中の第jサンプリング期間で第xB画素形成部bij_xに対応する電位となっている。
 第1サンプリング期間では選択信号SEL(1)がハイレベル電位になるので、図13に示すサンプリングブロック40(1)内の第xR用薄膜トランジスタ41rx(1)、第xG用薄膜トランジスタ41gx(1)、および第xB用薄膜トランジスタ41bx(1)がオン状態になる。このため、R画素形成部r11_xに対応する電位になっている第xR用映像信号Vidrxが第xR用ソースラインSLr1_xに与えられ、G画素形成部g11_xに対応する電位になっている第xG用映像信号Vidgxが第xG用ソースラインSLg1_xに与えられ、B画素形成部b11_xに対応する電位になっている第xB用映像信号Vidbxが第xB用ソースラインSLb1_xに与えられる。この第1サンプリング期間では、第xR用ソースラインSLr1_x、第xG用ソースラインSLg1_x、および第xB用ソースラインSLb1_xの電位は、先行の休止期間T2における電位(Vcom電位)から正極性または負極性に変化する。これらの第xR用ソースラインSLr1_x、第xG用ソースラインSLg1_x、および第xB用ソースラインSLb1_xの電位はそれぞれ、R画素形成部r11_x、G画素形成部g11_x、およびB画素形成部b11_xに書き込まれる。なお、第2~mサンプリング期間での動作も同様であるので、その説明を省略する。
 以上のような1サンプリング期間が繰り返されることにより1走査選択期間の動作が実現され、この1走査選択期間が繰り返されることにより走査期間T1の動作が実現される。
 <3.2.2 休止期間の動作>
 図15は、本実施形態に係る液晶表示装置の休止期間T2における動作を説明するための信号波形図である。図15に示すように、この休止期間T2では第xR用Vidrx、第xG用Vidgx、および第xB用VidbxがVcom電位になっている。なお、Vcom電位に限らず、他の固定電位となっていても良い。
 本実施形態では、上記第1の実施形態と同様に、休止期間T2において、走査期間T1における周期よりも長い周期で選択信号SEL(1)~SEL(k)が順次にハイレベル電位になる。このため、サンプリングブロック40(1)~40(k)のそれぞれの第xR用薄膜トランジスタ、第xG用薄膜トランジスタ、および第xB用薄膜トランジスタが順次にオン状態になる(x=1~8)。第xR用薄膜トランジスタがオン状態になると、Vcom電位になっている第xR用映像信号Vidrxが第xR用ソースラインに与えられる。第xG用薄膜トランジスタがオン状態になると、Vcom電位になっている第xG用映像信号Vidgxが第xG用ソースラインに与えられる。第xB用薄膜トランジスタがオン状態になると、Vcom電位になっている第xB用映像信号Vidbxが第xB用ソースラインに与えられる。なお、上述のように休止期間T2では走査信号GS(1)~GS(m)がハイレベル電位にならないので、これらの第xR用ソースライン、第xG用ソースライン、第xB用ソースラインの電位はそれぞれR画素形成部、G画素形成部、およびB画素形成部に書き込まれない。
 <3.3 効果>
 本実施形態によれば、上記第1の実施形態によりも映像信号を一度に書き込める画素形成部数が増加する。このため、上記第1の実施形態よりも走査期間T1を短くすることにより十分な休止期間T2を確保することができるか、または、上記第1の実施形態と同じ長さ走査期間T1を設けることにより各画素形成部に対する映像信号の書き込み時間を十分に確保することができる。また、サンプリングブロックの数を削減することにより、シフトレジスタ310の段数を削減することができる。
 <4.第4の実施形態>
 <4.1 ソースドライバの構成>
 図16は、本発明の第4の実施形態におけるソースドライバ300の構成を説明するための回路図である。本実施形態はソースドライバ300の構成を除く上記第1の実施形態と同様であるので、当該同様の部分についての説明を省略する。図16に示すように、本実施形態におけるソースドライバ300は、表示部600の両側(図16における上下)にそれぞれ分れて構成されている。以下では、ソースドライバ300のうち、表示部600の上側に配置されている部分を「第1ソースドライバ」といい、符号300aで表す。また、ソースドライバ300のうち、表示部600の下側に配置されている部分を「第2ソースドライバ」といい、符号300bで表す。
 本実施形態におけるシフトレジスタ310は、表示部600の両側にそれぞれ分けて構成されている。以下では、シフトレジスタ310のうち、表示部600の上側に配置されている部分を「第1シフトレジスタ」といい、符号310aで表す。また、シフトレジスタ310のうち、表示部600の下側に配置されている部分を「第2シフトレジスタ」といい、符号310bで表す。第1シフトレジスタ310aは、上記第1の実施形態におけるシフトレジスタ310のうちの奇数段の双安定回路からなる部分に相当する。第2シフトレジスタ310bは、上記第1の実施形態におけるシフトレジスタのうちの偶数段の双安定回路からなる部分に相当する。
 本実施形態におけるサンプリング回路320は、表示部600の両側にそれぞれ分けて構成されている。以下では、サンプリング回路320のうち、表示部600の上側に配置されている部分を「第1サンプリング回路」といい、符号320aで表す。また、サンプリング回路320のうち、表示部600の下側に配置されている部分を「第2サンプリング回路」といい、符号320bで表す。第1サンプリング回路320aは、上記第1の実施形態におけるサンプリング回路320のうちの、ゲートドライバ400が配置されている側から数えて奇数番目のサンプリングブロックからなる部分に相当する。第2サンプリング回路320bは、上記第1の実施形態におけるサンプリング回路320のうちの、ゲートドライバ400が配置されている側から数えて偶数番目のサンプリングブロックからなる部分に相当する。
 第1ソースドライバ300aは、第1シフトレジスタ310aおよび第1サンプリング回路320aにより構成されている。第2ソースドライバ300bは、第2シフトレジスタ310bおよび第2サンプリング回路320bにより構成されている。
 <4.2 効果>
 本実施形態によれば、表示部の上側および下側にそれぞれ配置された第1ソースドライバ300aおよび第2ソースドライバ300bのそれぞれの段数が、上記第1の実施形態におけるソースドライバ300の段数の約半分になる。このため、ゲートラインの延びる方向におけるレイアウトピッチが倍に広がる。これにより、例えばより高精細な液晶表示パネルに対応可能となる。
 なお、本実施形態の構成に限らず、例えば図17に示すように、第1サンプリング回路320aと第2サンプリング回路320bがサンプリングブロック40(1)~40(k)を共有した構成としても良い。すなわちこの場合、ゲートドライバ400が配置されている側から数えて奇数番目のサンプリングブロックは、表示部600の上側に配置されたR用薄膜トランジスタおよびB用薄膜トランジスタと、表示部600の下側に配置されたG用薄膜トランジスタとにより構成されている。また、ゲートドライバ400が配置されている側から数えて偶数番目のサンプリングブロックは、表示部600の上側に配置されたG用薄膜トランジスタと、表示部600の下側に配置されたR用薄膜トランジスタおよびB用薄膜トランジスタとにより構成されている。なお、この場合、第1シフトレジスタ310aおよび第2シフトレジスタ310bに代えて、2つの上記第1の実施形態におけるシフトレジスタ310がそれぞれ設けられる。このように、図17に示す例では、第1ソースドライバ300aはシフトレジスタ310および第1サンプリング回路320aにより構成され、第2ソースドライバ300aはシフトレジスタ310および第2サンプリング回路320bにより構成される。
 この例によれば、表示部の上側および下側のそれぞれに配置されたシフトレジスタ310の段数は、上記第1の実施形態におけるシフトレジスタ310の段数と同じであるものの、表示部の上側および下側にそれぞれ配置された第1サンプリング回路320aおよび第2サンプリング回路320bのそれぞれの段数が、上記第1の実施形態におけるサンプリング回路320の段数の約半分になる。このため、上記第4の実施形態と同様に、ゲートラインの延びる方向におけるレイアウトピッチを倍に広げることができる。
 <5.その他>
 上記各実施形態では、ソースクロック信号SCKの周波数および振幅の制御は表示制御回路200において行われることが望ましいが、ソースドライバ300においてこのような制御が行われる構成としても良い。
 上記各実施形態では、RGBの3原色によるカラー画像表示が行われる例を挙げて説明したが、本発明はこれに限定されるものではない。例えばRGBY等の4原色、または5原色以上によりカラー画像表示が行われても良い。またモノクロ画像表示が行われて良い。
 上記第3の実施形態では、各ソースライン組が24本のソースラインにより構成されているが本発明はこれに限定されるものではない。例えば、各ソースライン組が原色数の倍数のソースラインにより構成されていれば良い。
 上記各実施形態では、薄膜トランジスタはすべてnチャネル型であるものとして説明したが、本発明はこれに限定されるものではない。薄膜トランジスタがpチャネル型であっても本発明を適用することができる。
 上記各実施形態では液晶表示装置を例に挙げて説明したが、本発明はこれに限定されない。有機EL(Electro Luminescence)表示装置等の他の表示装置にも本発明を適用することができる。また、その他、本発明の趣旨を逸脱しない範囲で上記各実施形態を種々変形して実施することができる。
 以上により、消費電力を低減した、表示部と映像信号線駆動回路とが一体的に形成された表示装置および当該表示装置内の映像信号線駆動回路の制御方法を提供する。
 本発明は、表示部と映像信号線駆動回路とが一体的に形成された表示装置に適用することができる。
40(j)…サンプリングブロック
41x(j)…薄膜トランジスタ(x=r、g、b)
41x1(j)~41x8(j)…薄膜トランジスタ(x=r、g、b)
200…表示制御回路
300…ソースドライバ(映像信号線駆動回路)
310…シフトレジスタ
320…サンプリング回路
400…ゲートドライバ(走査信号線駆動回路)
600…表示部
700…液晶表示パネル
SCK1、SCK2…ソースクロック信号
Vidx…映像信号(x=r、g、b)
Vidx1~Vidx8…映像信号(x=r、g、b)
SLxj…ソースライン(映像信号線)(x=r、g、b)
SLxj_1~SLxj_8…ソースライン(映像信号線)(x=r、g、b)
SGj…ソースライン組(映像信号線組)
xij…画素形成部(x=r、g、b)
xij_1~xij_8…画素形成部(x=r、g、b)
T1…走査期間
T2…休止期間
tck1…走査期間周期
tck2…休止期間周期
fck1…走査期間周波数
fck2…休止期間周波数
Vck1…走査期間振幅
Vck2…休止期間振幅
Vss…ローレベルの直流電源電位
Vdd…ハイレベルの直流電源電位

Claims (13)

  1.  複数の映像信号線、該複数の映像信号線と交差する複数の走査信号線を含み、画像を表示するための表示部と、
     前記表示部と一体的に形成され、前記複数の映像信号線を駆動するための映像信号線駆動回路と、
     前記映像信号線駆動回路に、オンレベルとオフレベルとを周期的に繰り返すクロック信号、および前記表示部に表示すべき画像に対応する1以上の所定数の映像信号を与える表示制御回路と、
     前記複数の走査信号線が順次選択される走査期間と該複数の走査信号線のいずれもが非選択状態となる休止期間とが、該走査期間と該休止期間とからなるフレーム期間を周期として交互に現れるように、前記複数の走査信号線を駆動するための走査信号線駆動回路とを備え、
     前記映像信号線駆動回路は、
      前記クロック信号に基づいて複数の出力信号を順次にオンレベルにするシフトレジスタと、
      前記複数の出力信号がそれぞれ与えられる複数のサンプリングブロックとを含み、
     各サンプリングブロックが、該サンプリングブロックの受け取る前記出力信号に基づいて、前記所定数の映像信号を該所定数の映像信号線に与え、
     前記走査期間における前記クロック信号の周波数よりも、前記休止期間における該クロック信号の周波数が低いことを特徴とする、表示装置。
  2.  前記休止期間における前記クロック信号の振幅が、前記走査期間における該クロック信号の振幅よりも小さいことを特徴とする、請求項1に記載の表示装置。
  3.  前記休止期間が前記走査期間よりも長いことを特徴とする、請求項1に記載の表示装置。
  4.  各サンプリングブロックは、該サンプリングブロックの受け取る前記出力信号が制御端子に与えられ、前記所定数の映像信号のうちのいずれかが第1導通端子に与えられ、前記複数の映像信号線のうちのいずれかに第2導通端子が接続された1以上のスイッチング素子を有することを特徴とする、請求項1に記載の表示装置。
  5.  各サンプリングブロックは前記スイッチング素子を複数有することを特徴とする、請求項4に記載の表示装置。
  6.  前記表示部が複数の原色に基づくカラー画像を表示し、
     前記所定数の映像信号が前記複数の原色にそれぞれ対応し、
     各サンプリングブロックにおける前記複数のスイッチング素子の数が前記複数の原色と同数であり、
     前記表示制御回路が、各サンプリングブロックにおける前記複数のスイッチング素子の前記第1導通端子に互いに異なる前記所定数の映像信号をそれぞれ与えることを特徴とする、請求項5に記載の表示装置。
  7.  前記表示部が複数の原色に基づくカラー画像を表示し、
     各サンプリングブロックにおける前記複数のスイッチング素子の数が前記複数の原色の整数倍であり、
     前記表示制御回路が、各サンプリングブロックにおける前記複数のスイッチング素子のうちの、互いに隣接する映像信号線に前記第2導通端子が接続されたスイッチング素子の前記第1導通端子に、前記所定数の映像信号のうちの互いに異なる原色に対応する映像信号をそれぞれ与えることを特徴とする、請求項5に記載の表示装置。
  8.  前記映像信号線駆動回路は、
      前記表示部に対して一方に位置する第1映像信号線駆動回路と、
      前記表示部に対して他方に位置する第2映像信号線駆動回路とにより構成されることを特徴とする、請求項1に記載の表示装置。
  9.  前記映像信号線駆動回路が、酸化物半導体により半導体層が形成された薄膜トランジスタを用いて実現されていることを特徴とする、請求項1から8までのいずれか1項に記載の表示装置。
  10.  前記映像信号線駆動回路が、アモルファスシリコンにより半導体層が形成された薄膜トランジスタを用いて実現されていることを特徴とする、請求項1から8までのいずれか1項に記載の表示装置。
  11.  複数の映像信号線、該複数の映像信号線と交差する複数の走査信号線を含み、画像を表示するための表示部と、オンレベルとオフレベルとを周期的に繰り返すクロック信号および該表示部に表示すべき画像に対応する1以上の所定数の映像信号を出力する表示制御回路と、該表示部と一体的に形成され、該クロック信号に基づいて複数の出力信号を順次にオンレベルにするシフトレジスタおよび該複数の出力信号がそれぞれ与えられる複数のサンプリングブロックとを含む映像信号線駆動回路と、前記複数の走査信号線を駆動するための走査信号線駆動回路とを備える表示装置の駆動方法であって、
     前記複数の走査信号線が順次選択される走査期間と該複数の走査信号線のいずれもが非選択状態となる休止期間とが、該走査期間と該休止期間とからなるフレーム期間を周期として交互に現れるように前記複数の走査信号線を駆動するステップと、
     各サンプリングブロックの受け取る前記出力信号に基づいて、前記所定数の映像信号を該所定数の映像信号線に与えるステップと、
     前記走査期間における前記クロック信号の周波数よりも、前記休止期間における該クロック信号の周波数を低くするステップとを備えることを特徴とする、駆動方法。
  12.  前記休止期間における前記クロック信号の振幅が、前記走査期間における該クロック信号の振幅よりも小さいことを特徴とする、請求項11に記載の駆動方法。
  13.  前記休止期間が前記走査期間よりも長いことを特徴とする、請求項11に記載の駆動方法。
PCT/JP2012/068757 2011-08-02 2012-07-25 表示装置およびその駆動方法 WO2013018595A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013526831A JP6076253B2 (ja) 2011-08-02 2012-07-25 表示装置およびその駆動方法
CN201280048662.5A CN103843056B (zh) 2011-08-02 2012-07-25 显示装置及其驱动方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011169051 2011-08-02
JP2011-169051 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013018595A1 true WO2013018595A1 (ja) 2013-02-07

Family

ID=47629122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068757 WO2013018595A1 (ja) 2011-08-02 2012-07-25 表示装置およびその駆動方法

Country Status (3)

Country Link
JP (1) JP6076253B2 (ja)
CN (1) CN103843056B (ja)
WO (1) WO2013018595A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033844A1 (ja) * 2015-08-27 2017-03-02 シャープ株式会社 表示装置およびその電源制御方法
US20200020271A1 (en) * 2018-07-13 2020-01-16 Innolux Corporation Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174186A (ja) * 1987-12-28 1989-07-10 Sharp Corp 液晶駆動回路
JPH11296148A (ja) * 1998-04-15 1999-10-29 Seiko Epson Corp 電気光学装置の駆動回路及び駆動方法並びに電子機器
JP2001312253A (ja) * 2000-04-28 2001-11-09 Sharp Corp 表示装置の駆動方法およびそれを用いた表示装置ならびに携帯機器
JP2006053349A (ja) * 2004-08-12 2006-02-23 Citizen Watch Co Ltd 表示装置
JP2006267313A (ja) * 2005-03-23 2006-10-05 Sharp Corp 表示装置の駆動方法
JP2010192019A (ja) * 2009-02-17 2010-09-02 Sharp Corp シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001084226A1 (fr) * 2000-04-28 2001-11-08 Sharp Kabushiki Kaisha Unite d'affichage, procede d'excitation pour unite d'affichage, et appareil electronique de montage d'une unite d'affichage
JP4137394B2 (ja) * 2000-10-05 2008-08-20 シャープ株式会社 表示装置の駆動方法、それを用いた表示装置、およびその表示装置を搭載した携帯機器
JP2006091441A (ja) * 2004-09-24 2006-04-06 Sony Corp フラットディスプレイ装置及びフラットディスプレイ装置の駆動方法
CN100461252C (zh) * 2004-10-14 2009-02-11 夏普株式会社 显示装置的驱动电路及具备该电路的显示装置
KR101325314B1 (ko) * 2009-12-11 2013-11-08 엘지디스플레이 주식회사 액정표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174186A (ja) * 1987-12-28 1989-07-10 Sharp Corp 液晶駆動回路
JPH11296148A (ja) * 1998-04-15 1999-10-29 Seiko Epson Corp 電気光学装置の駆動回路及び駆動方法並びに電子機器
JP2001312253A (ja) * 2000-04-28 2001-11-09 Sharp Corp 表示装置の駆動方法およびそれを用いた表示装置ならびに携帯機器
JP2006053349A (ja) * 2004-08-12 2006-02-23 Citizen Watch Co Ltd 表示装置
JP2006267313A (ja) * 2005-03-23 2006-10-05 Sharp Corp 表示装置の駆動方法
JP2010192019A (ja) * 2009-02-17 2010-09-02 Sharp Corp シフトレジスタならびにそれを備えた走査信号線駆動回路および表示装置

Also Published As

Publication number Publication date
JPWO2013018595A1 (ja) 2015-03-05
CN103843056B (zh) 2017-02-15
CN103843056A (zh) 2014-06-04
JP6076253B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5165153B2 (ja) 走査信号線駆動回路およびそれを備えた表示装置、ならびに走査信号線の駆動方法
JP6033225B2 (ja) 表示装置および走査信号線の駆動方法
US8605029B2 (en) Shift register, display device provided with same, and method of driving shift register
US9362892B2 (en) Scanning signal line drive circuit, display device having the same, and driving method for scanning signal line
JP5248717B1 (ja) 表示装置およびその駆動方法
WO2011129126A1 (ja) 走査信号線駆動回路およびそれを備えた表示装置
WO2011074316A1 (ja) 走査信号線駆動回路およびそれを備えた表示装置
JP5972267B2 (ja) 液晶表示装置および補助容量線の駆動方法
WO2014092011A1 (ja) 表示装置およびその駆動方法
WO2012157545A1 (ja) 走査信号線駆動回路、それを備えた表示装置、および走査信号線の駆動方法
US10770018B2 (en) Scanning signal line drive circuit, display device including the same, and scanning signal line driving method
US10089949B2 (en) Display device
JP2010250030A (ja) シフトレジスタおよびそれを備えた表示装置、ならびにシフトレジスタの駆動方法
US10276119B2 (en) Shift register and display device provided therewith
JP6076253B2 (ja) 表示装置およびその駆動方法
TWI776554B (zh) 移位暫存器及顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013526831

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12820238

Country of ref document: EP

Kind code of ref document: A1