WO2013018462A1 - 太陽電池用導電性ペースト組成物 - Google Patents

太陽電池用導電性ペースト組成物 Download PDF

Info

Publication number
WO2013018462A1
WO2013018462A1 PCT/JP2012/066058 JP2012066058W WO2013018462A1 WO 2013018462 A1 WO2013018462 A1 WO 2013018462A1 JP 2012066058 W JP2012066058 W JP 2012066058W WO 2013018462 A1 WO2013018462 A1 WO 2013018462A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
glass
range
less
composition
Prior art date
Application number
PCT/JP2012/066058
Other languages
English (en)
French (fr)
Inventor
泰 吉野
裕介 川本
航介 角田
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to US14/235,684 priority Critical patent/US9312045B2/en
Priority to DE112012003168.7T priority patent/DE112012003168T5/de
Priority to CN201280038102.1A priority patent/CN103797584B/zh
Priority to JP2013526783A priority patent/JP6027968B2/ja
Priority to KR1020147005139A priority patent/KR20140054141A/ko
Publication of WO2013018462A1 publication Critical patent/WO2013018462A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive paste composition suitable for a solar cell electrode formed by a fire-through method.
  • a general silicon-based solar cell is provided with an antireflection film and a light-receiving surface electrode on an upper surface of a silicon substrate which is a p-type polycrystalline semiconductor via an n + layer, and on the lower surface via a p + layer. It has a structure provided with electrodes (hereinafter simply referred to as “electrodes” when they are not distinguished from each other), and power generated at the pn junction of the semiconductor by light reception is taken out through the electrodes.
  • the antireflection film is for reducing the surface reflectance and increasing the light receiving efficiency while maintaining a sufficient visible light transmittance, and is made of a thin film such as silicon nitride, titanium dioxide, or silicon dioxide.
  • the antireflection film Since the above-described antireflection film has a high electric resistance value, it prevents an electric power generated at the pn junction of the semiconductor from being efficiently extracted. Therefore, the light-receiving surface electrode of the solar cell is formed by a method called fire-through, for example.
  • a conductive paste that is, a paste-like electrode material is appropriately formed on the antireflection film by using, for example, a screen printing method. And apply a baking process.
  • the conductive paste is mainly composed of, for example, silver powder, glass frit (a piece of flaky or powdered glass that is crushed as necessary after melting and quenching a glass raw material), an organic vehicle, and an organic solvent.
  • the glass component in the conductive paste breaks the antireflection film, so that an ohmic contact is formed by the conductive component in the conductive paste and the n + layer (for example, patent document) (See 1).
  • conductivity is obtained by blending various trace components made of a metal or a compound such as phosphorus, vanadium, bismuth, and tungsten.
  • the process is simplified as compared with the case where the antireflection film is partially removed and an electrode is formed on the removed portion, and there is a problem of misalignment between the removed portion and the electrode forming position. There is an advantage that does not occur.
  • fluoride examples include lithium fluoride, nickel fluoride, and aluminum fluoride. It is also shown that a Group 5 element is added in addition to the above additives.
  • the glass is, for example, borosilicate glass.
  • the conductive paste contains 0.5 to 5 parts by weight of silver phosphate with respect to 100 parts by weight of silver powder to assist the action of breaking the antireflection film and to ensure ohmic contact (for example, , See Patent Document 3.) IV.
  • a glass containing zinc oxide as a main component and containing no lead and using a paste containing silver, gold, and antimony, there is no intrusion of the electrode, so that the junction does not break down and low contact resistance is obtained.
  • Patent Document 4 see, for example, Patent Document 4).
  • a silver-containing paste containing 85 to 99 (wt%) silver and 1 to 15 (wt%) glass the glass is mixed with 15 to 75 (mol%) PbO and 5 to 50 (mol%) SiO. comprises 2, it is a composition that does not contain B 2 O 3 has been proposed (e.g., see Patent Document 5.).
  • This silver-containing paste is used for forming an electrode of a solar cell, and the ohmic contact is improved by using the glass having the above composition.
  • the glass can contain 0.1 to 8.0 (mol%) of P 2 O 5 or 0.1 to 10.0 (mol%) of Sb 2 O 5 , and further 0.1 to 15.0 (mol%) of alkali metal oxidation. (Na 2 O, K 2 O, Li 2 O).
  • the glass frit is made of a glass containing PbO in the range of 46 to 57 (mol%), B 2 O 3 in the range of 1 to 7 (mol%), and SiO 2 in the range of 38 to 53 (mol%).
  • a solar cell electrode paste composition was proposed previously (see Patent Document 6).
  • the optimum firing temperature range at the time of forming the electrode of the solar cell is widened by selecting the composition range of PbO 2 , B 2 O 3 and SiO 2 as described above.
  • the optimum sintering temperature range of individual substrates may differ due to variations in the manufacturing process, the possibility that firing temperature within the range falls if wider optimum firing temperature range is increased, per production lot Average output is improved.
  • the glass frit has a Li 2 O content of 0.6-18 (mol%), a PbO content of 20-65 (mol%), a B 2 O 3 content of 1-18 (mol%), and a SiO 2 content of 20-
  • a paste composition for a solar cell electrode made of glass containing 65 (mol%) was previously proposed (see Patent Document 7).
  • This paste composition enables thinning of the light-receiving surface electrode without deteriorating ohmic contact or line resistance.
  • the softening point is sufficiently lowered by containing 0.6 to 18 (mol%) of Li 2 O. It has been shown that moderate erodibility can be obtained.
  • Li is generally desired to be avoided in semiconductor applications, and tends to give excessive erosion, especially in glass with a large amount of Pb, but in solar cell applications, the appropriate amount is included to improve fire-through. It has been found that. Moreover, since Li is a donor element, it also has an action of reducing contact resistance.
  • the short wavelength side near 400 (nm) will also contribute to power generation, so it is considered an ideal solution in terms of improving solar cell efficiency.
  • the shallow emitter has an n-layer thickness of 70 to 100 (nm) on the light-receiving surface side, which is even thinner than the conventional silicon solar cell of 100 to 200 (nm). Since the portion that cannot be effectively used by changing to heat before reaching the pn junction is reduced, there is an advantage that the short-circuit current increases and the power generation efficiency is increased.
  • the concentration of a donor element for example, phosphorus
  • the concentration of a donor element for example, phosphorus
  • the barrier barrier between Ag and Si increases, making it difficult to ensure ohmic contact of the light-receiving surface electrode.
  • the pn junction becomes shallow, it becomes very difficult to control the penetration depth so that the antireflection film is sufficiently broken by fire-through and the electrode does not penetrate the pn junction.
  • Viscosity can be reduced by adjusting the amount of alkali or the like to lower the softening point, or changing the composition ratio of Pb, Si, B? , “Change of composition”)). Since the composition change has a large effect on the erosion amount control, the alkali amount is generally increased, but the erosion rate at the time of fire-through is increased, so it is more difficult to control the firing conditions such as temperature. Become. That is, in any case, it is difficult to achieve both ohmic contact and erosion amount control.
  • the present invention has been made in the background of the above circumstances, and its purpose is to easily control the amount of intrusion of the electrode material during fire-through and to obtain an ohmic contact easily. To provide things.
  • a conductive powder, a glass frit, a solar cell conductive paste composition comprising a vehicle, the glass frit is converted to oxide It is made of glass containing SO 2 in the range of 0.05 to 5.0 (mol%).
  • the glass frit in the conductive paste composition for solar cells contains 0.05 to 5.0 (mol%) SO 2 , without increasing the amount of alkali or changing the composition, Viscosity when the glass is softened can be lowered while maintaining the same erosion as when SO 2 is not included. Therefore, since the surface tension at the time of softening is lowered, the glass component is quickly supplied to the electrode-substrate interface, so that a uniform thin glass layer is formed at the interface and good electrical characteristics are obtained. It is done. Therefore, the conductive paste composition for solar cells can be obtained in which the penetration amount of the electrode material can be easily controlled during the fire-through and the ohmic contact can be easily obtained.
  • a conductive material that can be suitably used in the case of forming an electrode by a fire-through method on a solar cell having a thin shallow emitter structure with an n-layer using a high sheet resistance substrate of about 80 to 120 ( ⁇ / ⁇ ).
  • a paste composition is obtained.
  • the SO 2 is well known as a component that lowers the viscosity of the glass, but the conductive paste containing Ag has not been studied because of the concern about the reaction between Ag and S.
  • the inventors of the present invention have also added a composition containing SO 2 to the object of evaluation in the course of examining various compositions, and at least if it is a trace amount up to about 5 (mol%) in the glass, the reaction with Ag is not It was not recognized, and it discovered that the effect which reduces a viscosity could be enjoyed suitably.
  • the present invention has been made based on such knowledge.
  • the conductive paste composition of the present invention since SO 2 is contained in the glass, even if the amount of glass remaining in the electrode is reduced, solder erosion hardly occurs. For this reason, there exists an advantage which can make an output characteristic and a solder characteristic compatible.
  • the solar cell has a low leakage current (ie, a high Rsh), a high FF value, a large current value, and a high photoelectric conversion rate.
  • a cell can be manufactured.
  • the glass has a Pb / Si (mol ratio) in the range of 0.8 to 2.3 and 0.6 to 18 (mol%) of Li 2 O in terms of oxide, and 18 to 64 ( mol%) PbO, 1 to 18 (mol%) B 2 O 3 , and 15 to 47 (mol%) SiO 2 .
  • the glass composition of the glass frit contained in the conductive paste of the present invention is not particularly limited, and various glasses can be used as long as they can be used when forming the surface electrode by the fire-through method in the manufacturing process of the solar cell. .
  • the above composition is preferable for a lead-based glass containing Li.
  • the above glass is 0.1 to 5.0 (mol%) SO 2 in terms of oxide, 1 to 15 (mol%) Li 2 O, 22 to 62 (mol%) PbO, and 1 to 15 (mol%). and B 2 O 3 in), even more preferred composition comprising a SiO 2 of 20 ⁇ 41 (mol%).
  • the glass has a Pb / Si (mol ratio) in the range of 1.4 to 2.5, 50 to 70 (mol%) of PbO in terms of oxide, and 1 to 8 (mol%).
  • the present invention is not limited to lead-based glass containing Li, and can be suitably applied to a conductive paste composition containing glass frit made of lead-based glass not containing Li. In the lead-based glass not containing Li, for example, the above composition is preferable.
  • the above glass has a Pb / Si (mol ratio) in the range of 1.7 to 2.3, 0.1 to 3.0 (mol%) of SO 2 in terms of oxide, 55 to 62 (mol%) of PbO and A composition containing 3 to 6 (mol%) of B 2 O 3 and 28 to 34 (mol%) of SiO 2 is more preferable.
  • PbO soot is a component for lowering the softening point of glass and enabling low-temperature firing.
  • the amount of PbO is less than the lower limit, the softening point becomes too high, so that vitrification becomes difficult and it is difficult to erode the antireflection film, and it becomes difficult to obtain a good ohmic contact.
  • the amount of PbO soot is more preferably 22 (mol%) or more, more preferably 62 (mol%) or less in a Li-containing system. That is, the range of 22 to 62 (mol%) is more preferable. Further, 32 (mol%) or more is more preferable, and a range of 32 to 62 (mol%) is particularly preferable. In the Li-free system, 55 (mol%) or more is more preferable, and 62 (mol%) or less is more preferable. That is, the range of 55 to 62 (mol%) is particularly preferable.
  • B 2 O 3 is a glass-forming oxide (that is, a component that forms a glass skeleton), and is a component for lowering the softening point of glass.
  • a Li-containing system is used. It is necessary that 1 to 18 (mol%) of B 2 O 3 is contained in a Li-free system.
  • the amount of B 2 O 3 is less than the lower limit value, the softening point becomes too high, so that it is difficult to erode the antireflection film, and it becomes difficult to obtain a good ohmic contact, and the moisture resistance also decreases. .
  • Voc decreases and the leakage current tends to increase.
  • the amount of B 2 O 3 is more preferably 15 (mol%) or less in a Li-containing system. Further, 3 (mol%) or more is more preferable, and 12 (mol%) or less is more preferable. That is, the range of 3 to 12 (mol%) is particularly preferable. In the Li-free system, 3 (mol%) or more is more preferable, and 6 (mol%) or less is more preferable. That is, the range of 3 to 6 (mol%) is particularly preferable.
  • SiO 2 is a glass-forming oxide, and is a component for increasing the chemical resistance of glass. In order to obtain good fire-through properties, 15 to 47 (mol%) in a Li-containing system, Li In the non-containing system, 20 to 40 (mol%) of SiO 2 is required to be contained. In either system, the glass formed with SiO 2 amount is insufficient chemical resistance is less than the lower limit becomes difficult, whereas, the anti-reflection film becomes difficult to vitrify too high softening point exceeds the upper limit value It becomes difficult to obtain good ohmic contact.
  • the amount of SiO 2 is more preferably 20 (mol%) or more, and more preferably 41 (mol%) or less in a Li-containing system. That is, the range of 20 to 41 (mol%) is more preferable.
  • 35 (mol%) or less is more preferable, and the range of 20 to 35 (mol%) is particularly preferable.
  • 28 (mol%) or more is more preferable, and 34 (mol%) or less is more preferable. That is, the range of 28 to 34 (mol%) is particularly preferable.
  • PbO and SiO 2 are not only within the above ranges, respectively, but also Pb / Si (mol ratio) may be within a range of 0.8 to 2.3 in a Li-containing system and 1.4 to 2.5 in a Li-free system. is necessary.
  • Pb / Si molar ratio when the Pb / Si molar ratio is less than the lower limit value, the fire-through property is lowered, and the contact resistance between the light-receiving surface electrode and the n layer is increased.
  • the Pb / Si molar ratio exceeds the upper limit value, the leakage current (diode current) Id increases remarkably, and in any case, the FF value decreases and sufficient output characteristics cannot be obtained.
  • Pb / Si (mol ratio) is more preferably in the range of 1.7 to 2.3 in a Li-free system.
  • Li 2 O is a component that lowers the softening point of the glass, and when it is contained in the range of 0.6 (mol%) or more and 18 (mol%) or less, good fire-through properties can be obtained. If Li 2 O is less than 0.6 (mol%), the softening point becomes too high and the erosion property to the antireflection film becomes insufficient. On the other hand, if it exceeds 18 (mol%), the erodibility becomes too strong, and the electrical characteristics deteriorate. Incidentally, Li is generally an impurity for semiconductors because it promotes diffusion, and Li tends to deteriorate the characteristics, so it is desirable to avoid it in semiconductor applications.
  • the erodibility tends to be too strong and control tends to be difficult.
  • an appropriate amount was included, thereby improving the fire-through property and improving the characteristics.
  • Li is a donor element and can reduce contact resistance.
  • the composition range of the glass capable of obtaining good fire-through properties was increased by adopting a composition containing Li.
  • the amount of Li 2 O is more preferably 1 (mol%) or more, and further preferably 15 (mol%) or less. That is, the range of 1 to 15 (mol%) is particularly preferable.
  • Li 2 O may not be included as described above. Since leakage current increases when Li diffuses into Si, it is desirable not to include Li 2 O from that viewpoint. Li is a donor element and has an effect of facilitating ohmic contact and expanding the composition range of the glass, but these may be improved by appropriately adjusting the composition.
  • the glass contains at least one of Al 2 O 3 , TiO 2 and ZnO.
  • the parallel resistance Rsh is improved, and the open circuit voltage Voc and the short circuit current Isc are further improved, so that higher electrical characteristics can be obtained. That is, the FF value is higher and the leakage current is further reduced.
  • the amount of PbO can be reduced.
  • these contents are the values in terms of oxides, Al 2 O 3 is 18 (mol%) or less, TiO 2 is 18 (mol%) or less, and ZnO is 30 (mol%) or less. is there.
  • Al 2 O 3 is 5 (mol%) or less, TiO 2 is 10 (mol%) or less, and ZnO 2 is 10 (mol%) or less in terms of oxide. Since Al 2 O 3 , TiO 2 , and ZnO tend to increase the leakage current when they are excessive, it is preferable to set the above amount as the upper limit.
  • the Al 2 O 3 is an effective component for obtaining the stability of the glass.
  • the viscosity of the glass is lowered, and further, the series resistance Rs is lowered and the FF value is increased.
  • tend to sintering temperature range is widened, because as described above and becomes excessive there is also effect of reducing rather the Voc with increasing leakage current, below 18 (mol%) in Li-containing systems, Li-free In the system, it is preferable to keep it at 5 (mol%) or less.
  • TiO 2 tends to increase the FF value, but when added excessively, the softening point rises and tends to increase the contact resistance, and also has the effect of increasing the leakage current as described above. It is preferable to keep it at 18 (mol%) or less in the Li-containing system and 10 (mol%) or less in the Li-free system.
  • the open circuit voltage Voc decreases when the content of ZnO becomes excessive, it is preferably kept at 30 (mol%) or less in a Li-containing system and 10 (mol%) or less in a Li-free system.
  • the glass may contain 0.1 to 15 (mol%) Bi 2 O 3 in terms of oxide. That is, in order to make ohmic contact, it is necessary to increase the amount of Ag solid solution in the glass layer at the electrode-silicon interface, but Pb alone has a limit. By coexisting Pb and Bi, the amount of Ag solid solution is increased as compared with the prior art. Although Ag which has been dissolved in the glass during cooling at the time of firing is precipitated as Ag particles, that Bi is present, it will calm Ag deposition to changes in firing temperature, spread firing margin . Due to the above effects, the electrical characteristics are improved.
  • Bi 2 O 3 amount Is suitably 15 (mol%) or less, more preferably 12 (mol%) or less.
  • Bi 2 O 3 can be added regardless of whether it is a Li-containing system or a Li-free system.
  • the glass has a Pb / Si (mol ratio) in the range of 0.8 to 2.3, 0.05 to 5.0 (mol%) SO 2 in terms of oxide, and 0.6 to 18 (mol%).
  • the These glasses can also contain at least one of Al 2 O 3 of 18 (mol%) or less, TiO 2 of 18 (mol%) or less, and ZnO of 30 (mol%) or less in terms of oxide. .
  • the glass has a Pb / Si (mol ratio) in the range of 1.4 to 2.5, 0.05 to 5.0 (mol%) of SO 2 in terms of oxide, and 50 to 70 (mol%) of PbO. 1 to 8 (mol%) B 2 O 3 , 20 to 40 (mol%) SiO 2 , and 0.1 to 15 (mol%) Bi 2 O 3 without Li 2 O More preferably, Pb / Si (mol ratio) is in the range of 1.7 to 2.3, 0.1 to 3.0 (mol%) of SO 2 in terms of oxide, and 55 to 62 (mol%) of PbO. And 3 to 6 (mol%) B 2 O 3 , 28 to 34 (mol%) SiO 2 , and 0.1 to 12 (mol%) Bi 2 O 3, and Li 2 O It is configured without.
  • These glasses can also contain at least one of Al 2 O 3 of 5 (mol%) or less, TiO 2 of 10 (mol%) or less, and ZnO of 10 (mol%) or less in terms of oxide. .
  • the glass contains 6.0 (mol%) or less of P 2 O 5 in terms of oxide.
  • P contained in the glass diffuses to the electrode-substrate interface and the donor concentration at the interface is increased, so that the lack of donor element concentration in the shallow emitter is compensated, and the gap between the electrode and the substrate is compensated.
  • an ohmic contact can be easily obtained.
  • the thickness of the antireflection film made of Si 3 N 4 is set to about 80 (nm), and the amount of erosion caused by the electrode is in the range of 80 to 90 (nm). It is desirable to control, that is, control with an accuracy of 10 (nm). According to the present invention, since the glass contains SO 2 , the erosion amount control is facilitated, but when the donor element concentration is compensated as described above, even if the erosion is slightly excessive to ensure conduction. Since the decrease in output due to excessive erosion is suppressed, ohmic contact can be easily obtained.
  • the glass frit has an average particle diameter (D50) of 0.3 to 3.0 ( ⁇ m). If the average particle size of the glass frit is too small, melting will be too early when the electrode is baked, resulting in a decrease in electrical characteristics. . In addition, since agglomeration is unlikely to occur, better dispersibility can be obtained during paste preparation. Also, the dispersibility of the whole powder is lowered when the average particle size of the glass frit is significantly larger than the average particle size of the conductive powder, but a better dispersibility can be obtained when it is 3.0 ( ⁇ m) or less. Moreover, a further meltability of the glass can be obtained. Therefore, the average particle diameter is preferable for obtaining a better ohmic contact.
  • D50 average particle diameter
  • the average particle size of the glass frit is a value obtained by the air permeation method.
  • the air permeation method is a method for measuring the specific surface area of a powder from the permeability of a fluid (for example, air) soot to the powder layer.
  • the basis of this measurement method is the Kozeny-Carmann equation, which shows the relationship between the wetted surface area of all particles making up the powder layer and the flow velocity and pressure drop of the fluid passing therethrough.
  • the specific surface area of the sample is obtained by measuring the flow velocity and pressure drop with respect to the powder layer filled under the conditions determined by the above.
  • the gap between the filled powder particles is regarded as pores, and the wetted surface area of the particles that resists the flow of air is determined.
  • the value is smaller than the specific surface area determined by the gas adsorption method. Show. An average particle diameter assuming powder particles can be calculated from the obtained specific surface area and particle density.
  • the conductive powder is a silver powder having an average particle diameter (D50) of 0.3 to 3.0 ( ⁇ m).
  • D50 average particle diameter
  • copper powder, nickel powder, etc. can be used as the conductive powder, silver powder is most preferable in order to obtain high conductivity.
  • the average particle size of the silver powder is 3.0 ( ⁇ m) or less, better dispersibility can be obtained, and thus higher conductivity can be obtained.
  • it is 0.3 ( ⁇ m) or more, aggregation is suppressed and better dispersibility can be obtained. Since silver powder of less than 0.3 ( ⁇ m) is extremely expensive, 0.3 ( ⁇ m) or more is preferable from the viewpoint of manufacturing cost. Further, if the average particle diameter of both the conductive powder and the glass frit is 3.0 ( ⁇ m) or less, there is an advantage that clogging hardly occurs even when the electrode is printed by a fine line pattern.
  • the silver powder is not particularly limited, and enjoys the basic effect of the present invention that thinning can be achieved while maintaining conductivity even when a powder of any shape such as a spherical shape or a scale shape is used. Can do.
  • the spherical powder when used, the printability is excellent and the filling rate of the silver powder in the coating film is increased, so that, together with the use of highly conductive silver, other shapes such as scales are used.
  • generated from the coating film becomes high. Therefore, it is particularly preferable because the line width can be further reduced while ensuring the necessary conductivity.
  • the conductive paste composition for solar cell has a viscosity ratio (that is, [10 (rpm) within a range of 150 to 250 (Pa ⁇ s) at 25 (° C.) to ⁇ 20 (rpm) ) Viscosity at] / [Viscosity at 100 (rpm)]) is 3-8.
  • a paste having such a viscosity characteristic the viscosity is suitably reduced during squeezing and transmitted through the screen mesh. After the transmission, the viscosity returns to a high viscosity and the expansion of the printing width is suppressed.
  • a fine line pattern can be easily obtained while maintaining the printability such that clogging does not occur and clogging does not occur.
  • the viscosity of the paste composition is more preferably in the range of 200 to 220 (Pa ⁇ s), and the viscosity ratio is more preferably in the range of 3.2 to 6.5.
  • a viscosity ratio of 4 to 6 mm is desirable for thinning a design line width of 100 ( ⁇ m) or less.
  • increasing the film thickness so that the cross-sectional area can be maintained even if the line width is reduced includes, for example, increasing the emulsion thickness of the printing plate, increasing the tension, and reducing the line diameter. It is also possible to widen the aperture. However, when the emulsion thickness is increased, the separation of the plate is deteriorated, so that the stability of the printed pattern shape cannot be obtained. In addition, when the tension is increased or the wire diameter is reduced, the screen mesh is easily stretched, so that it is difficult to maintain the dimensional and shape accuracy and the durability of the printing plate making is lowered. In addition, since it is provided with a large width, a bus bar that is unnecessary to increase the film thickness is also increased, resulting in a problem of waste of material.
  • the conductive paste composition for a solar cell includes the conductive powder in a proportion of 64 to 90 parts by weight and the vehicle in a range of 3 to 20 parts by weight. In this way, a paste composition can be obtained that can easily form an electrode having good printability, thin line width, and high conductivity.
  • the conductive paste composition contains the glass frit in a range of 1 to 10 parts by weight with respect to 100 parts by weight of the conductive powder. If it is contained in an amount of 1 part by weight or more, sufficient erodibility (fire-through property) can be obtained, so that a good ohmic contact can be obtained. Further, if it is kept at 10 parts by weight or less, it is difficult to form an insulating layer, and sufficient conductivity can be obtained.
  • the amount of glass with respect to 100 parts by weight of the conductive powder is more preferably 1 to 8 parts by weight, and more preferably 1 to 7 parts by weight.
  • the conductive composition of the present invention can be suitably used for the light-receiving surface electrode because it can suitably control the diffusion of silver during the electrode formation by fire-through as described above.
  • the glass frit can be synthesized from various raw materials that can be vitrified within the composition range, and examples thereof include oxides, carbonates, nitrates, etc.
  • the Si source include silicon dioxide SiO 2. and as the B source of boron oxide B 2 O 3 or boric acid H 3 BO 3, red lead Pb 3 O 4 as a Pb source, as the S source may use ammonium sulfate (NH 4) 2 SO 4.
  • lithium carbonate Li 2 CO 3 can be used as the Li source
  • ammonium dihydrogen phosphate NH 4 H 2 PO 4 can be used as the P source
  • bismuth oxide Bi 2 O 3 can be used as the Bi source.
  • the glass constituting the conductive paste of the present invention may contain other various glass components and additives as long as the properties are not impaired.
  • Na, Ca, Mg, K, Ba, Sr, etc. may be contained. These may be included within a total range of 30 (mol%) or less, for example.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a silicon-based solar cell 10 to which a conductive composition according to an embodiment of the present invention is applied.
  • a solar cell 10 includes a silicon substrate 12 which is, for example, a p-type polycrystalline semiconductor, an n layer 14 and a p + layer 16 respectively formed on the upper and lower surfaces thereof, and a reflection formed on the n layer 14.
  • a prevention film 18 and a light-receiving surface electrode 20 and a back electrode 22 formed on the p + layer 16 are provided.
  • the thickness dimension of the silicon substrate 12 is, for example, about 100 to 200 ( ⁇ m).
  • the n layer 14 and the p + layer 16 are provided by forming layers having a high impurity concentration on the upper and lower surfaces of the silicon substrate 12, and the thickness dimension of the high concentration layer is, for example, 70% for the n layer 14.
  • the p + layer 16 is about 500 (nm), for example, about ⁇ 100 (nm).
  • the n layer 14 is about 100 to 200 (nm) in a general silicon solar cell, but is thinner than that in the present embodiment, and has a structure called a shallow emitter.
  • the impurity contained in the n layer 14 is an n-type dopant such as phosphorus (P), and the impurity contained in the p + layer 16 is a p-type dopant such as aluminum (Al) or boron (B). .
  • the antireflection film 18 is a thin film made of, for example, silicon nitride Si 3 N 4 , and is provided with an optical thickness of about 1 ⁇ 4 of the visible light wavelength, for example, about 80 (nm). Less than 10 (%), for example, a very low reflectivity of about 2 (%), for example.
  • the light receiving surface electrode 20 is made of, for example, a thick film conductor having a uniform thickness. As shown in FIG. 2, the light receiving surface electrode 20 is a comb having a large number of thin line portions substantially on the entire surface of the light receiving surface 24. Are provided in a planar shape.
  • the above thick film conductor is made of thick film silver containing 1 to 10 parts by weight of glass with respect to 100 parts by weight of Ag, for example, 6.0 parts by weight.
  • B 2 O 3 in the range of 1 to 18 (mol%), for example, about 6.0 (mol%)
  • SiO 2 in the range of 15 to 47 in the range of (mol%), for example 28.0 (mol%) or so, in the range of Al 2 O 3 and 0 ⁇ 18 (mol%), for example, 6.0 (mol%) or so, the Li 2 O 0.6 ⁇ 18 (mol % ),
  • PbO and SiO 2 are contained so that the Pb / Si molar ratio is in the range of 0.8 to 2.3, for example, about 1.61.
  • the glass may further contain Bi 2 O 3 in the range of 0.1 to 15 (mol%), preferably 0.1 to 12 (mol%) in terms of oxide.
  • glass that does not contain Li in place of the above glass.
  • Its glass composition in this case in terms of the values oxide, in the range of 50 ⁇ 70 (mol%) of PbO, for example, 60 (mol%) or so, in the range of B 2 O 3 and 1 ⁇ 8 (mol%)
  • SiO 2 in the range of 20 to 40 (mol%), for example, about 28.0 (mol%)
  • Al 2 O 3 in the range of 0 to 5 (mol%), for example 1.0 ( mol%) or so
  • the range of the ZnO 0 ⁇ 10 (mol%) for example, 0 (mol%)
  • a ZrO 2 0 in the range of ⁇ 1.0 (mol%), for example, 0 (mol%)
  • the P 2 O 5 in the range of 0 ⁇ 6 (mol%), for example, 2.0 (mol%) of about, SO 2 and 0.05 ⁇
  • PbO and SiO 2 are contained so that the Pb / Si molar ratio is in the range of 1.4 to 2.5, for example, about 2.14.
  • the glass may further contain Bi 2 O 3 in the range of 0.1 to 15 (mol%), preferably 0.1 to 12 (mol%) in terms of oxide.
  • the thickness dimension of the conductor layer is, for example, in the range of 20 to 30 ( ⁇ m), for example, about 25 ( ⁇ m), and the width dimension of each thin wire portion is in the range of, for example, 80 to 130 ( ⁇ m), for example, It is about 100 ( ⁇ m) and has sufficiently high conductivity.
  • the back electrode 22 is formed by applying a full-surface electrode 26 formed by applying a thick film material containing aluminum as a conductor component on the p + layer 16 over almost the entire surface, and a strip-like application on the full-surface electrode 26.
  • the band-shaped electrode 28 made of thick film silver is formed.
  • the belt-like electrode 28 is provided in order to make it possible to solder a conducting wire or the like to the back electrode 22.
  • the light-receiving surface electrode 20 as described above is formed by a well-known fire-through method using an electrode paste made of, for example, conductor powder, glass frit, vehicle, and solvent.
  • An example of the manufacturing method of the solar cell 10 including the formation of the light receiving surface electrode will be described below.
  • the glass frit is produced.
  • boric acid H 3 BO 3 can also be used as the B source. This is put into a crucible, melted at a temperature in the range of 900 to 1200 (° C) according to the composition for about 30 minutes to 1 hour, and rapidly cooled to be vitrified. This glass is pulverized using an appropriate pulverizing apparatus such as a planetary mill or a ball mill.
  • the average particle size (D50) after pulverization is, for example, in the range of about 0.3 to 3.0 ( ⁇ m), for example, about 1.5 ( ⁇ m).
  • the average particle diameter of the said glass powder is computed using the air permeation method.
  • the conductor powder for example, a commercially available spherical silver powder having an average particle diameter (D50) of 0.3 to 3.0 ( ⁇ m), for example, an average particle diameter of about 1.6 ( ⁇ m) is prepared.
  • D50 average particle diameter
  • the vehicle is prepared by dissolving an organic binder in an organic solvent.
  • butyl carbitol acetate is used as the organic solvent
  • ethyl cellulose is used as the organic binder.
  • the ratio of ethyl cellulose in the vehicle is, for example, about 15 (wt%)%.
  • a solvent added separately from the vehicle is, for example, butyl carbitol acetate. That is, although it is not limited to this, the same solvent as that used for the vehicle may be used. This solvent is added for the purpose of adjusting the viscosity of the paste.
  • the paste materials above for example, conductor powder in the range of 77-90 (wt%) ⁇ ⁇ ⁇ , glass frit in the range of 1-8 (wt%), vehicle in the range of 5-14 (wt%) Among them, the solvent is weighed at a ratio in the range of 3 to 5 (wt%), mixed using a stirrer or the like, and then subjected to a dispersion treatment using, for example, a three-roll mill. Thereby, the electrode paste is obtained.
  • the n layer 14 and the p + layer are diffused or implanted into an appropriate silicon substrate by a well-known method such as a thermal diffusion method or ion plantation.
  • a silicon substrate 12 is produced.
  • a silicon nitride thin film is formed thereon by an appropriate method such as PE-CVD (plasma CVD), and the antireflection film 18 is provided.
  • the electrode paste is screen-printed on the antireflection film 18 with the pattern shown in FIG. This is dried, for example, at 150 (° C.), and further subjected to a baking treatment at a temperature in the range of 700 to 900 (° C.) in a near infrared furnace.
  • the glass component in the electrode paste melts the antireflection film 18 in the firing process, and the electrode paste breaks the antireflection film 18, so that the conductor component in the electrode paste, that is, silver and the n layer 14 Electrical connection is obtained, and an ohmic contact between the silicon substrate 12 and the light-receiving surface electrode 20 is obtained as shown in FIG.
  • the light receiving surface electrode 20 is formed in this way.
  • the light-receiving surface electrode 20 is provided by the fire-through method as described above, but the light-receiving surface electrode 20 contains 0.05 to 5.0 (mol%) SO 2 as described above.
  • the thick film silver paste is made of an alkali such as Li, Na and K as shown in the above composition. Without increasing the amount of metal or changing the composition, the viscosity when the glass is softened can be reduced while maintaining suitable erodibility. For this reason, a uniform thin glass layer (not shown) is formed at the interface between the light-receiving surface electrode 20 and the n-layer 14, so that the solar cell 10 having excellent electrical characteristics can be obtained.
  • the light receiving surface electrode 20 is made of glass containing SO 2 as described above. Therefore, when the glass is softened when fired for fire-through, the surface tension is lowered. The glass component is rapidly supplied to the electrode 20-substrate 12 interface. Therefore, since the thin glass layer as described above is formed at the interface between them, the penetration amount of the thick film silver can be easily controlled during the fire-through, and the ohmic contact can be easily obtained.
  • the light receiving surface electrode 20 of this embodiment has high conductivity since the glass amount is as small as about 6.0 parts by weight as described above, both the film thickness and the line width are small. Although the line resistance is low, the photoelectric conversion efficiency of the solar cell 10 is enhanced in combination with the low contact resistance.
  • the said back surface electrode 22 may be formed after the said process, it can also be formed by baking simultaneously with the light-receiving surface electrode 20.
  • FIG. When the back electrode 22 is formed, the entire surface electrode 26 made of a thick aluminum film is formed by applying, for example, an aluminum paste to the entire back surface of the silicon substrate 12 by screen printing or the like and performing a baking process. Further, the strip electrode 28 is formed by applying the electrode paste on the surface of the entire surface electrode 26 in a strip shape using a screen printing method or the like and performing a baking treatment. Thereby, the back electrode 22 which consists of the full surface electrode 26 which covers the whole back surface, and the strip
  • the result of manufacturing and evaluating the solar cell 10 according to the above manufacturing process with various changes in the glass composition will be described.
  • the output was measured using the commercially available solar simulator, and the fill factor FF value and the leakage current Id were obtained.
  • the lead wire was soldered to the light-receiving surface electrode 20, and the adhesive strength was measured.
  • the measurement of adhesive strength was performed by pulling and peeling the lead wire at an angle of 135 ° using a commercially available tensile tester, and the average value of the tensile load at the time of peeling was defined as the adhesive strength.
  • the evaluation results are shown in Tables 1 to 3 together with the glass composition. Nos.
  • the FF value is a determination as to whether or not a good ohmic contact is obtained. In general, a solar cell can be used if the FF value is 70 or more. In the examples, those having an FF value greater than 75 were considered acceptable.
  • the leakage current Id is preferably low, which is a criterion for determining whether or not an electrode has entered the pn junction.
  • the leakage current Id is a numerical value at 10 (V), and 0.1 (A) or less is ⁇ , 0.2 (A) or less is ⁇ , 0.5 (A) or less is ⁇ , and 0.5 (A) is more than ⁇ .
  • Each sample was prepared using spherical Ag powder having an average particle size of 1.6 ( ⁇ m) and glass frit having an average particle size of 1.5 ( ⁇ m).
  • the mixing ratio is based on Ag powder 83 (wt%), glass frit 5 (wt%), vehicle 7 (wt%), solvent 5 (wt%), and 25 (°C)-
  • the amount of vehicle and the amount of solvent were adjusted as appropriate so that the viscosity at 20 (rpm) ⁇ ⁇ ⁇ was 200 to 220 (Pa ⁇ s).
  • the printing plate making for forming the light-receiving surface electrode 20 was made by providing a 20 ( ⁇ m) thick emulsion on a SUS325 screen mesh having a wire diameter of 23 ( ⁇ m). The printing conditions were set so that the width of the grid line would be 80 ( ⁇ m).
  • the sheet resistance of the substrate was evaluated using 90 ⁇ 10 ( ⁇ / ⁇ ).
  • PbO—B 2 O 3 —SiO 2 constituting the basic skeleton is replaced with Al 2 O 3 , Li 2 O, TiO 2 , ZnO, ZrO 2 , P 2 O 5 , SO 10-component system of PbO—B 2 O 3 —SiO 2 —Al 2 O 3 —Li 2 O—TiO 2 —ZnO—ZrO 2 —P 2 O 5 —SO 2 to which 2 is added, and at least 6-component to 9-component glasses lacking one element are shown.
  • an adhesion strength of 3 (N) or more was obtained when SO 2 was 0.05 (mol%) or more. From this evaluation result, it is understood that when the SO 2 is in the range of 0.05 to 5.0 (mol%), the light receiving surface electrode 20 having excellent output characteristics and high adhesive strength can be obtained. From the viewpoint of each characteristic, it is considered that the SO 2 amount is particularly preferably in the range of 0.5 to 2.5 (mol%).
  • Nos. 9 to 11 examine the amount of P in the 6 to 8 component system lacking Zr.
  • Pb / Si is 1.27 ⁇ 1.31
  • PbO is 38.0 ⁇ 41.9 (mol%)
  • B 2 O 3 is 6.0 ⁇ 8.1 (mol%)
  • SiO 2 is 30.0 ⁇ 32.1 (mol%)
  • Al 2 O 3 is 0-3.0 (mol%)
  • ZnO 0-5.0 (mol%) SO 2 0.5-1.0 (mol%)
  • P 2 O 5 was set to 0 to 7.5 (mol%)
  • an FF value of 75 or more and a leakage current Id of 0.5 (A) or less were obtained when the P amount was 6.0 (mol%) or less.
  • Nos. 12-23 examined the Pb content, Si content, and Pb / Si ratio.
  • Pb / Si 0.75 to 2.32, PbO 16.0 to 65.0 (mol%), B 2 O 3 4.0 to 18.0 (mol%), SiO 2 17.0 to 50.0 (mol%), Al 2 O 3 0 to 3.0 (mol%), Li 2 O 1.0-12.0 (mol%), TiO 2 0-6.0 (mol%), ZnO 0-30.0 (mol%), ZrO 2 0-0.5 (mol%), P 2 O 5 was evaluated in the composition range of 0.5 to 1.0 (mol%) and SO 2 in the range of 0.5 to 1.0 (mol%).
  • Pb / Si 0.75 or 2.32, the FF value is 73 to 74, and the characteristics remain insufficient.
  • the leakage current Id is also not very preferable at 0.5 (A) or less. Further, when the Pb amount is 16 (mol%), the FF value is as low as 68, and the leak current Id is as large as 0.5 (A) or more. When the amount of Pb is 65 (mol%), the FF value is as low as 73. Further, when the Si amount is 50 (mol%), the FF value is as low as 72, and the leakage current Id is also less than 0.5 (A). Accordingly, it can be said that the Pb content is preferably 18 to 64 (mol%), the Si content is 47 (mol%) or less, and the Pb / Si ratio is preferably 0.8 to 2.3.
  • Nos. 24 to 29 are for examining the amount of B.
  • Pb / Si is 1.00 ⁇ 1.89
  • PbO is 20.0 ⁇ 64.0 (mol%)
  • SiO 2 is 15.0 ⁇ 36.4 (mol%)
  • Al 2 O 3 is 0 ⁇ 3.0 (mol%)
  • TiO 2 is 0 to 3.0 (mol%)
  • ZnO is 0 to 26.5 (mol%)
  • ZrO 2 is 0 to 0.5 (mol%)
  • P 2 O 5 is 0.5 to 2.0 (mol%)
  • SO In the composition range where 2 is 0.1 to 0.5 (mol%)
  • B 2 O 3 was evaluated as 0 to 21.0 (mol%).
  • the FF value is as low as 73, and the leakage current Id is 0.5 (A) or less, which is insufficient. Further, when the amount of B is 21 (mol%), the FF value is 72 and the leakage current Id is 0.5 (A) or more, which is insufficient. From this result, it can be said that the amount of B is preferably in the range of 1 to 18 (mol%). Note that even if the Si amount is 15 (mol%), the FF value is as high as 75, and it is considered that the Si amount is 15 (mol%) or more.
  • No.30 ⁇ 32 is, Al, Ti, which was considered an acceptable range of Zn, Pb / Si is 0.75 ⁇ 2.18, PbO is 35.0 ⁇ 48.0 (mol%), B 2 O 3 is 4.0 (mol%), SiO 2 is 20.0 to 22.0 (mol%), Al 2 O 3 is 3.0 to 18.0 (mol%), Li 2 O is 6.0 to 12.0 (mol%), TiO 2 is 0 to 18.0 (mol%), and ZnO is 0 Evaluation was performed in a composition range of ⁇ 30.0 (mol%), ZrO 2 of 0 to 0.5 (mol%), P 2 O 5 of 1.0 (mol%), and SO 2 of 0.5 to 1.0 (mol%).
  • Nos. 33 to 44 are examples of the optimum composition range.
  • Nos. 33 to 36 are Pb / Si 1.19 to 2.27, PbO 38.0 (mol%), B 2 O 3 6.0 to 8.0 (mol%), SiO 2 30.0 to 32.0 (mol%), Al 2 O 3 is 0 to 3.0 (mol%), Li 2 O is 12.0 (mol%), TiO 2 is 3.0 (mol%), ZnO is 2.5 to 5.0 (mol%), ZrO 2 is 0 to 0.5 (mol%) ), A composition range in which P 2 O 5 is 0 to 1.0 (mol%) and SO 2 is 2.5 (mol%) is evaluated. That is, the optimum composition when Li was 12.0 (mol%) was examined.
  • a composition lacking P and a composition lacking Al have an FF value of 77 or more, a leakage current Id of 0.2 (A) or less, and an adhesive strength of 6 ( N) Extremely high characteristics are obtained.
  • Nos. 37 to 41 are Pb / Si 1.65 to 1.83, PbO 38.0 to 47.0 (mol%), B 2 O 3 6.0 (mol%), SiO 2 23.0 to 28.0 (mol) in a system lacking Ti. %), Al 2 O 3 is 6.0 to 8.0 (mol%), Li 2 O is 6.0 (mol%), ZnO is 5 to 15.0 (mol%), ZrO 2 is 0.5 (mol%), and P 2 O 5 is The composition range of 2.0 (mol%) and SO 2 of 1.5 (mol%) was evaluated. That is, the optimum composition was examined when Li was 6.0 (mol%). Even with a composition lacking Ti, extremely high characteristics such as an FF value of 77 or more, a leakage current Id of 0.2 (A) or less, and an adhesive strength of 5 (N) or more are obtained.
  • No. 45 and 46 are compositions with a Li content of 1.0 (mol%) and evaluated the upper limit of the amount of S and the system without P. According to No. 45%, a high characteristic was obtained with an FF value of 75, a leak current Id of 0.2 (A) or less, and an adhesive strength of 6 (N) even when S was 5.0 (mol%). Also, according to No.46, there is no problem even in a system lacking both Ti and P, and a sufficiently high characteristic with an FF value of 76, a leakage current Id of 0.2 (A) or less, and an adhesive strength of 4 (N) is obtained. It has been.
  • Nos. 47 to 51 in Table 2 are for examining an appropriate range of Li content in a system lacking Zr.
  • Pb / Si is 1.27 ⁇ 1.37
  • PbO is 38.0 ⁇ 56.0 (mol%)
  • B 2 O 3 is 1.0 ⁇ 6.0 (mol%)
  • SiO 2 is 30.0 ⁇ 41.0 (mol%)
  • Al 2 O 3 is 0-3.0 (mol%)
  • ZnO 0-7.4 (mol%) P 2 O 5 0.5-1.0 (mol%)
  • SO 2 was evaluated in a composition range of 0.5 to 1.0 (mol%).
  • Nos. 52 to 65 further appropriate amounts of each component were examined.
  • the No.52 ⁇ 54 which was considered the upper limit of the B content, Pb / Si is 1.43 ⁇ 2.10, PbO is 40.0 ⁇ 42.0 (mol%), B 2 O 3 is 12.0 ⁇ 15.0 (mol%), SiO 2 Is 20.0 to 28.0 (mol%), Al 2 O 3 is 1.0 to 4.0 (mol%), Li 2 O is 3.0 to 12.0 (mol%), TiO 2 is 0 to 3.0 (mol%), ZnO is 0 to 14.5 (mol%), ZrO 2 is 0.5 (mol%), P 2 O 5 is 1.0 to 2.0 (mol%), SO 2 is 0.5 to 1.5 (mol%), and the leakage current Id is 0.2 (A) The following good results were obtained.
  • the amount of B is 12.0 (mol%)
  • the FF value is 77 or more and the adhesive strength is 5 (N). That is, the amount of B is allowed up to 18.0 (mol%), but is preferably 15.0 (mol%) or less, and more preferably 12.0 (mol%) or less.
  • Nos. 62 to 65 are studies on the upper limit of the Al amount in a composition lacking Ti.
  • Pb / Si is 1.65
  • PbO is 38.0 (mol%)
  • B 2 O 3 is 4.0 ⁇ 8.0 (mol%)
  • SiO 2 is 23.0 (mol%)
  • Al 2 O 3 is 12.0 ⁇ 21.0 (mol%)
  • Li 2 O is 12.0 (mol%)
  • ZnO is 0 ⁇ 5.0 (mol%)
  • ZrO 2 is 0.5 (mol%)
  • P 2 O 5 is 1.0 (mol%)
  • SO 2 is the composition range of 0.5 (mol%)
  • Nos. 66-69 are for examining the upper limit of Ti content.
  • Pb / Si is 1.52 ⁇ 1.54, PbO is 37.0 ⁇ 38.0 (mol%), B 2 O 3 is 4.0 ⁇ 6.0 (mol%), SiO 2 is 24.0 ⁇ 25.0 (mol%), Al 2 O 3 is 0-3.0 (mol%), Li 2 O 12.0 (mol%), TiO 2 12.0-21.0 (mol%), ZnO 0-2.0 (mol%), ZrO 2 0.5 (mol%), P 2 O 5 1.0 (mol%), where SO 2 was evaluated in the composition range of 0.5 (mol%), 18 ( mol%) until the resulting 75 or more FF values, 21 to become the FF value (mol%) is 73 Stayed in. Therefore, the amount of Ti is suitably 18 (mol%) or less. Moreover, since the tendency for FF value to fall is recognized, so that Ti amount also increases, it is thought that the one where Ti amount is also small is preferable.
  • No. 70 confirmed the lower limit of S in a system lacking P. In this case, it was also confirmed that a content of 0.1 (mol%) was sufficient. Nos. 71 to 73 are optimum compositions near the lower limit of the Li content in a system lacking TiO 2 and ZnO.
  • Pb / Si is 1.98 to 2.21, PbO is 59.5 to 62.0 (mol%), and B 2 O 3 is 4.0 ⁇ 5.0 (mol%), SiO 2 is 28.0 ⁇ 30.0 (mol%), Al 2 O 3 is 0.5 ⁇ 3.0 (mol%), Li 2 O is 1.0 (mol%), ZrO 2 is 0 ⁇ 0.5 (mol %), P 2 O 5 is 0 to 2.0 (mol%), SO 2 is 1.0 to 2.0 (mol%), the FF value is 77, the leakage current Id is 0.2 (A) or less, and the adhesive strength is 5 (N) The above good results were obtained. According to No. 74, when ZnO is 35.0 (mol%), the FF value is lowered to 74, and the characteristics cannot be obtained. Together with the result of No. 30, the amount of ZnO needs to be kept at 30 (mol%) or less.
  • the optimum composition is No. 33 to 44, No. 53 to 62, etc. with a circle in the No. column, Pb / Si is 0.80 to 2.30, and Pb is 22.0 to 48.0 (mol%).
  • B is 3.0 to 12.0 (mol%)
  • Si is 22.0 to 35.0 (mol%)
  • Al is 0 to 12.0 (mol%)
  • Li is 1.0 to 12.0 (mol%)
  • Ti is 0 to 3.0 (mol%)
  • Zn ranges from 0 to 15.5 (mol%)
  • Zr ranges from 0 to 0.5 (mol%)
  • P ranges from 0 to 4.0 (mol%)
  • S ranges from 0.5 to 3.0 (mol%).
  • extremely high characteristics with an FF value of 77 or more, a leakage current Id of 0.5 (A) or less, and an adhesive strength of 4 (N) or more can be obtained.
  • the Pb / Si ratio is 0.8-2.3
  • Pb is 18-64 (mol%)
  • B is 1-18 (mol%)
  • Si is 15-47 (mol%)
  • Li is preferably in the range of 0.6 to 18 (mol%)
  • S is in the range of 0.05 to 5.0 (mol%).
  • Al is 18 (mol%) or less
  • Ti is 18 (mol%) or less
  • Zr at 0.5 (mol%) or less.
  • Nos. 83 to 87 were examined for Pb content, Si content, and Pb / Si ratio in a system lacking Al and Zr.
  • Pb / Si was 1.35 to 2.77
  • PbO was 48.0 to 72.0 (mol%)
  • B 2 O 3 is 1.0-4.0 (mol%)
  • SiO 2 is 26.0-37.0 (mol%)
  • TiO 2 is 0-3.0 (mol%)
  • ZnO is 0-8.0 (mol%)
  • P 2 O 5 is 0.5 Evaluation was made in the composition range of ⁇ 1.0 (mol%) and SO 2 of 0.5 to 1.0 (mol%).
  • No. 83 has a high Pb of 72 (mol%), a large Pb / Si ratio of 2.77, and an FF value of 73.
  • the leakage current Id is also 0.5 (A) or less.
  • No. 86 has a small Pb / Si ratio of 1.35 and an FF value of 73.
  • No. 87 has a low Pb of 48 (mol%), a low Pb / Si ratio of 1.37, and an FF value of 74.
  • Nos. 84 and 85 having a Pb / Si ratio of 1.43 to 2.50 and a Pb amount of 50 to 70 (mol%) have a sufficiently large FF value of 75. From these results, it is preferable that the Pb / Si ratio is 1.4 to 2.5 and the Pb amount is 50 to 70 (mol%).
  • No.88 ⁇ 91 in system lacks Zr, obtained by considering the amount of Si, Pb / Si is 1.33 ⁇ 2.78, PbO is 50.0 ⁇ 58.0 (mol%), B 2 O 3 is 1.0 ⁇ 8.0 (mol% ), SiO 2 is 18.0 to 42.0 (mol%), Al 2 O 3 is 0 to 3.0 (mol%), TiO 2 is 0 to 9.0 (mol%), ZnO is 0 to 10.0 (mol%), P 2 O Evaluation was made in a composition range of 5 to 0.5 to 1.0 (mol%) and SO 2 to 0.5 to 1.0 (mol%).
  • No.88 with Si (42 mol%) has a small FF value of 70, and No.91 with Si of 18 (mol%) also has a small FF value of 72, but Si has a No of 20 to 40 (mol%). .89 and 90 have a sufficient FF value of 75. From this result, the Si amount is preferably in the range of 20 to 40 (mol%).
  • Nos. 92 to 94 were studied for the amount of B in a system lacking Al and Zr.
  • Pb / Si was 2.00 to 2.41, PbO was 50.0 to 70.0 (mol%), and B 2 O 3 was 0 to 10.0 ( mol%), SiO 2 is 25.0 ⁇ 29.0 (mol%), TiO 2 is 0 ⁇ 9.0 (mol%), ZnO is 0 ⁇ 6.0 (mol%), P 2 O 5 is 0.5 ⁇ 1.0 (mol%), SO 2 was evaluated in the composition range of 0.5 to 1.0 (mol%).
  • the FF value was as low as 70 and the leakage current Id was as large as 0.5 (A) or more.
  • the leakage current Id was as large as 0.5 (A) or more.
  • the FF value is as low as 71, both of which are insufficient.
  • the FF value was sufficiently high as 75, and the leakage current Id remained below 0.2 (A).
  • the B content is preferably 1 to 8.0 (mol%).
  • Nos. 99 to 111 and 113 are considered to be optimum composition ranges. Of these, Nos. 99 to 104 were examined for Pb / Si ratio, Pb amount, and Si amount.
  • Pb / Si was 1.76 to 2.18
  • PbO was 57.0 to 61.0 (mol%)
  • B 2 O 3 was 3.0 ⁇ 4.0 (mol%)
  • SiO 2 is 28.0 ⁇ 33.0 (mol%)
  • Al 2 O 3 is 0 ⁇ 1.0 (mol%)
  • TiO 2 is 0 ⁇ 5.0 (mol%)
  • ZnO is 0 ⁇ 2.0 (mol %)
  • ZrO 2 was evaluated in the composition range of 0 to 1.0 (mol%)
  • P 2 O 5 was 1.0 to 2.0 (mol%)
  • SO 2 was 1.5 to 3.0 (mol%).
  • the amount of Pb is preferably 57.0 to 61.0 (mol%), the amount of Si is preferably 28.0 to 33.0 (mol%), and Pb / Si is preferably 2.18 or less.
  • No.105 ⁇ 107 in the system lacks the Zn and Zr, obtained by considering the amount of B, Pb / Si is 1.93 ⁇ 2.07, PbO is 58.0 ⁇ 60.0 (mol%), B 2 O 3 is 6.0 (mol% ), SiO 2 is 28.0 to 30.0 (mol%), Al 2 O 3 is 0 to 1.0 (mol%), TiO 2 is 2.0 (mol%), P 2 O 5 is 2.0 (mol%), SO 2 is 1.0 The composition range was (mol%). In these composition ranges, extremely high results were obtained with an FF value of 78, a leakage current Id of 0.2 (A) or less, and an adhesive strength of 5 (N). In particular, in Nos.
  • the leakage current Id remains at 0.1 (A) or less, and therefore the composition containing Al is considered to be preferable.
  • the B content is preferably 6.0 (mol%) or less.
  • Nos. 108 to 113 were examined for the amount of Al and P in a system lacking Ti.
  • P 2 O 5 was evaluated in the composition range of 1.0 to 4.0 (mol%) and SO 2 was 1.0 to 3.0 (mol%).
  • extremely high results were obtained with an FF value of 77 or more, a leakage current Id of 0.2 (A) or less, and an adhesive strength of 5 (N) or more.
  • the FF value is a sufficiently high value of 75.
  • the amount of Al is preferably 3.0 (mol%) or less.
  • No. 113 has a relatively high P content of 4.0 (mol%), but extremely high properties are obtained up to this level, and is the optimum composition range.
  • the Pb / Si ratio is 1.4 to 2.5%
  • Pb is 50 to 70 (mol%)
  • B is 1.0 to 8.0 (mol%)
  • Si is 20.0 to 40.0
  • S is 0.05.
  • the range of ⁇ 5.0 (mol%) is preferable, and for optional components, Al is 5.0 (mol%) or less, Ti is 10.0 (mol%) or less, Zn is 10.0 (mol%) or less, Zr is 1.0 (mol%)
  • Sample Nos. 114 to 127 in Table 4 are cases in which Bi 2 O 3 is included as the glass composition of the conductive paste composition when forming the light-receiving surface electrode 20, and the glass is more glass than the samples in Tables 1 to 3 above. The only difference is the composition, and other conditions such as the particle size, mixing ratio, and manufacturing method of the glass frit are the same.
  • Samples Nos. 114 to 120 are Li-containing systems. Specifically, Al 2 O 3 , Li 2 O, P 2 O 5 , Bi 2 O 3 and SO 2 are added to PbO-B 2 O 3 —SiO 2.
  • Nos. 114 to 127 in Table 4 are examinations of the allowable range of Bi amount.
  • Bi amount in order to make an ohmic contact, it is necessary to increase the amount of Ag solid solution in the glass layer at the electrode-silicon interface, but there is a limit with Pb alone, and by coexistence of Pb and Bi, Ag solid solution can be obtained.
  • the amount of solution increases.
  • Ag dissolved in the glass during the temperature drop at the time of firing precipitates as Ag fine particles, but the presence of Bi makes the Ag precipitation gentle to changes in the firing temperature and widens the firing margin. . Due to the above effects, the electrical characteristics are improved, and an FF value of 75 or more, which is acceptable for both Li-containing and Li-free systems, is obtained.
  • Bi 2 O 3 amount Is suitably 15 (mol%) or less, more preferably 12 (mol%) or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)

Abstract

 ファイヤースルーの際に電極材料の侵入量の制御を容易にし且つオーミックコンタクトが容易に得られる太陽電池用導電性ペースト組成物を提供する。 太陽電池(10)は、受光面電極(20)がファイヤースルー法で設けられているが、その受光面電極(20)がSO2 を0.05~5.0(mol%)含むガラスを含む厚膜銀で構成されていることから、その厚膜銀ペーストは、Li、Na、K等のアルカリ金属量を増加させ或いは組成を変更することなく、好適な浸食性を保ちながら、ガラスが軟化したときの粘性が低下させられている。そのため、受光面電極(20)とn層(14)との界面に均一な薄いガラス層が形成されるので、電気的特性の優れた太陽電池が得られる。

Description

太陽電池用導電性ペースト組成物
 本発明は、ファイヤースルー法で形成する太陽電池電極用に好適な導電性ペースト組成物に関する。
 例えば、一般的なシリコン系太陽電池は、p型多結晶半導体であるシリコン基板の上面にn層を介して反射防止膜および受光面電極が備えられると共に、下面にp層を介して裏面電極(以下、これらを区別しないときは単に「電極」という。) が備えられた構造を有しており、受光により半導体のpn接合に生じた電力を電極を通して取り出すようになっている。上記反射防止膜は、十分な可視光透過率を保ちつつ表面反射率を低減して受光効率を高めるためのもので、窒化珪素、二酸化チタン、二酸化珪素等の薄膜から成る。
 上記の反射防止膜は電気抵抗値が高いことから、半導体のpn接合に生じた電力を効率よく取り出すことの妨げとなる。そこで、太陽電池の受光面電極は、例えば、ファイヤースルーと称される方法で形成される。この電極形成方法では、例えば、前記反射防止膜をn層上の全面に設けた後、例えばスクリーン印刷法を用いてその反射防止膜上に導電性ペーストすなわちペースト状の電極材料を適宜の形状で塗布し、焼成処理を施す。これにより、電極材料が加熱熔融させられると同時にこれに接触している反射防止膜が熔融させられ、受光面電極と半導体とが接触させられる。上記導電性ペーストは、例えば、銀粉末と、ガラスフリット(ガラス原料を熔融し急冷した後に必要に応じて粉砕したフレーク状または粉末状のガラスのかけら) と、有機質ベヒクルと、有機溶媒とを主成分とするもので、焼成過程において、この導電性ペースト中のガラス成分が反射防止膜を破るので、導電性ペースト中の導体成分とn層とによってオーミックコンタクトが形成される(例えば、特許文献1を参照。) 。この導電性ペーストには、燐、バナジウム、ビスマス、タングステン等の金属或いは化合物等から成る各種微量成分を配合することで導通性を得ることが行われている。上記電極形成方法によれば、反射防止膜を部分的に除去してその除去部分に電極を形成する場合に比較して工程が簡単になり、除去部分と電極形成位置との位置ずれの問題も生じない利点がある。
 このような太陽電池の受光面電極形成において、ファイヤースルー性を向上させてオーミックコンタクトを改善し、延いては曲線因子(FF値) やエネルギー変換効率を高める等の目的で、従来から種々の提案が為されている。例えば、導電性ペーストに燐・バナジウム・ビスマスなどの5族元素を添加することによって、ガラスおよび銀の反射防止膜に対する酸化還元作用を促進し、ファイヤースルー性を向上させたものがある(例えば、前記特許文献1を参照。) 。また、導電性ペーストに塩化物、臭化物、或いはフッ化物を添加することで、ガラスおよび銀が反射防止膜を破る作用をこれら添加物が補助してオーミックコンタクトを改善するものがある(例えば、特許文献2を参照。) 。上記フッ化物としては、フッ化リチウム、フッ化ニッケル、フッ化アルミニウムが示されている。また、上記各添加物に加えて5族元素を添加することも示されている。なお、上記ガラスは例えば硼珪酸ガラスである。
 また、導電性ペーストに銀粉末 100重量部に対して 0.5~5 重量部の燐酸銀を含むことで、反射防止膜を破る作用を補助し、オーミックコンタクトを確保することが提案されている(例えば、特許文献3を参照。) 。また、酸化亜鉛を主成分とし鉛を含まないガラスを用い、銀、金、アンチモンを含むペーストとすることで、電極の侵入が無いため接合の破壊が起こらず、低接触抵抗が得られるとするものがある(例えば、特許文献4を参照。) 。
 また、85~99(wt%) の銀および 1~15(wt%) のガラスを含む銀含有ペーストにおいて、そのガラスを15~75(mol%)のPbO および 5~50(mol%)のSiO2を含み、B2O3を含まない組成とすることが提案されている(例えば、特許文献5を参照。) 。この銀含有ペーストは、太陽電池の電極形成に用いるものであって、上記組成のガラスを用いることによって、オーミックコンタクトが改善されるものとされている。上記ガラス中には、P2O5を 0.1~8.0(mol%) 、或いはSb2Oを 0.1~10.0(mol%)含むことができ、更に、 0.1~15.0(mol%)のアルカリ金属酸化物(Na2O,K2O,Li2O) を含むことができる。
 また、本願出願人は、ガラスフリットがPbO を46~57(mol%)、B2O3を 1~7(mol%) 、SiO2を38~53(mol%)の範囲内で含むガラスから成る太陽電池電極用ペースト組成物を先に提案した(特許文献6を参照。) 。このペースト組成物は、上記のようなPbO 、B2O3、SiO2の組成範囲を選択することにより、太陽電池の電極形成時の最適焼成温度範囲を広くしたものである。個々の基板の最適焼成温度範囲は製造工程上のばらつきに起因して相違し得るが、最適焼成温度範囲が広くなればその範囲内に焼成温度が収まる可能性が高められるので、製造ロット当たりの平均出力が向上させられる。
 また、本願出願人は、ガラスフリットがLi2Oを 0.6~18(mol%)、PbO を20~65(mol%)、B2O3を 1~18(mol%)、SiO2を20~65(mol%)を含むガラスから成る太陽電池電極用ペースト組成物を先に提案した(特許文献7を参照。) 。このペースト組成物は、オーミックコンタクトやライン抵抗を悪化させることなく、受光面電極の細線化を可能としたもので、Li2Oを 0.6~18(mol%)含むことで十分に軟化点が低下して適度な浸食性が得られることが示されている。Liは、一般に半導体用途では避けることが望まれるもので、特にPb量が多いガラスでは過度の浸食性を与える傾向があるが、太陽電池用途においては適量が含まれることでファイヤースルー性が改善されることを見出したものである。また、Liはドナー元素であるから、接触抵抗を低下させる作用も有する。
特開昭62-049676号公報 特開平11-213754号公報 特開平08-148446号公報 特開昭55-103775号公報 特表2008-520094号公報 特開2010-199334号公報 特開2011-066354号公報
 ところで、上述した太陽電池において、受光面側に位置するn層を薄くすることによって表面再結合速度を低下させ、より多くの電流を取り出せるようにすること、すなわちシャローエミッタ化することが試みられている。シャローエミッタ化すると、特に400(nm) 付近の短波長側も発電に寄与するようになるため、太陽電池の効率向上の面では理想的な解と考えられている。シャローエミッタは受光面側のn層厚みが70~100(nm) と、従来のシリコン太陽電池セルの 100~200(nm) に比較して更に薄くされたもので、受光により発生した電気のうちpn接合に達する前に熱に変わって有効に利用できなかった部分が減じられるので、短絡電流が増大し、延いては発電効率が高められる利点がある。
 しかしながら、シャローエミッタでは、セルを高シート抵抗にする必要があるため表面近傍のドナー元素(例えば燐) 濃度が低下し或いはpn接合が浅くなる。表面近傍のドナー元素濃度が低下するとAg-Si 間のバリア障壁が増加し、受光面電極のオーミックコンタクトの確保が困難になる。また、pn接合が浅くなるとファイヤースルーで反射防止膜を十分に破り且つpn接合に電極が侵入しないような侵入深さ制御が非常に困難になる。
 上記ファイヤースルーによってオーミックコンタクトを確実に得るためには、電極-シリコン界面に速やか且つ均一にガラスが供給されるように、焼成温度においてガラスの粘性を低下させる必要がある。粘性を低下させる方法としては、アルカリ等の量を調節して軟化点を低下させ、或いは、組成すなわちガラスの骨格を作る成分であるPb、Si、B 、Znの構成比を変更すること(以下、「組成変更」という。) が考えられる。組成変更は浸食量制御に及ぼす影響が大きいため、一般に、アルカリ量を増加させることが行われているが、ファイヤースルー時の浸食速度が高くなるため、温度等の焼成条件の制御が一層困難になる。すなわち、何れにしても、オーミックコンタクトと浸食量制御とを両立させることが困難であった。
 本発明は、以上の事情を背景として為されたもので、その目的は、ファイヤースルーの際に電極材料の侵入量の制御を容易にし且つオーミックコンタクトが容易に得られる太陽電池用導電性ペースト組成物を提供することにある。
 斯かる目的を達成するため、本発明の要旨とするところは、導電性粉末と、ガラスフリットと、ベヒクルとを含む太陽電池用導電性ペースト組成物であって、前記ガラスフリットは、酸化物換算で0.05~5.0(mol%) の範囲内のSOを含むガラスから成ることにある。
 このようにすれば、太陽電池用導電性ペースト組成物中のガラスフリットには、0.05~5.0(mol%) のSOが含まれることから、アルカリ量を増加させ或いは組成を変更することなく、SOを含まない場合と浸食性を同程度に保ちながら、ガラスが軟化したときの粘性を低下させることができる。そのため、その軟化の際の表面張力が低下させられることから、ガラス成分が速やかに電極-基板界面に供給されるので、その界面に均一な薄いガラス層が形成され、良好な電気的特性が得られる。したがって、ファイヤースルーの際に電極材料の侵入量の制御が容易でオーミックコンタクトが容易に得られる太陽電池用導電性ペースト組成物が得られる。すなわち、例えば80~120(Ω/ □) 程度の高シート抵抗基板が用いられるn層の薄いシャローエミッタ構造の太陽電池に、ファイヤースルー法で電極を形成する場合にも、好適に用い得る導電性ペースト組成物が得られる。
 上記SOはガラスの粘性を下げる成分としてよく知られているが、Agを含む導電性ペーストには、AgとS との反応が懸念されるため検討されていなかった。本発明者等は、種々の組成を検討する過程でSOを含む組成についても評価対象に加えたところ、少なくともガラス中に5(mol%) 程度までの微量であれば、Agとの反応は認められず、粘性を下げる効果を好適に享受できることを見出した。本発明は、このような知見に基づいて為されたものである。
 また、上記のように電極-基板界面にガラスが速やかに供給されるようにすると、電極内にガラスが残留し難くなるため、はんだ付け時にはんだ食われが生じ易く、接着強度が十分に得られない問題が生じ得る。しかしながら、本発明の導電性ペースト組成物では、ガラス中にSOを含むことから、電極内に残留するガラス量が少なくなってもはんだ食われが生じ難くなる。このため、出力特性とはんだ特性とを両立し得る利点がある。
 また、上述したようにpn接合に電極材料が侵入しないように制御することによって、リーク電流が低く(すなわちRsh が高く) 、FF値が高く、電流値が大きく、且つ光電変換率の高い太陽電池セルを製造し得る。
 ここで、好適には、前記ガラスは、Pb/Si(mol 比) が 0.8~2.3 の範囲内にあり、且つ酸化物換算で 0.6~18(mol%)のLi2Oと、18~64(mol%)のPbO と、 1~18(mol%)のB2O3と、15~47(mol%)のSiO2とを含むものである。本発明の導電性ペーストに含まれるガラスフリットのガラス組成は特に限定されず、太陽電池の製造工程においてファイヤースルー法で表面電極を形成する際に用い得るものであれば、種々のガラスを用い得る。例えば、Liを含む鉛系ガラスとしては、上記組成が好ましい。上記ガラスは、酸化物換算で 0.1~5.0(mol%) のSOと、 1~15(mol%)のLi2Oと、22~62(mol%)のPbO と、 1~15(mol%)のB2O3と、20~41(mol%)のSiO2とを含む組成が一層好ましい。
 また、好適には、前記ガラスは、Pb/Si(mol 比) が 1.4~2.5 の範囲内にあり、且つ酸化物換算で50~70(mol%)のPbO と、 1~8(mol%) のB2O3と、20~40(mol%)のSiO2とを含み、Li2Oを含まないものである。本発明は、Liを含む鉛系ガラスに限られず、Liを含まない鉛系ガラスから成るガラスフリットを含む導電性ペースト組成物にも好適に適用される。Liを含まない鉛系ガラスにおいては、例えば、上記のような組成が好ましい。また、上記ガラスは、Pb/Si(mol 比) が 1.7~2.3 の範囲内にあり、且つ酸化物換算で 0.1~3.0(mol%) のSOと、55~62(mol%)のPbO と、 3~6(mol%) のB2O3と、28~34(mol%)のSiO2とを含む組成が一層好ましい。
 上記ガラスフリット組成において、PbO は、ガラスの軟化点を低下させて低温焼成を可能とするための成分である。良好なファイヤースルー性を得るためには、Li含有系においては18~64(mol%)、Li非含有系においては50~70(mol%)のPbO が含まれていることが必要である。何れの系においても、PbO 量が下限値未満では軟化点が高くなり過ぎるのでガラス化が困難になると共に反射防止膜へ浸食し難くなり、延いては良好なオーミックコンタクトを得難くなる。一方、上限値を越えると軟化点が低くなり過ぎるので浸食性が強くなり過ぎてpn接合が破壊され易くなり、延いてはFF値が小さくなる等の問題が生ずる。PbO 量は、Li含有系では22(mol%)以上が一層好ましく、62(mol%)以下が一層好ましい。すなわち、22~62(mol%)の範囲が一層好ましい。また、32(mol%)以上が更に好ましく、32~62(mol%)の範囲が特に好ましい。Li非含有系では、55(mol%)以上が一層好ましく、62(mol%)以下が一層好ましい。すなわち、55~62(mol%)の範囲が特に好ましい。
 また、B2O3は、ガラス形成酸化物(すなわちガラスの骨格を作る成分) であり、ガラスの軟化点を低くするための成分で、良好なファイヤースルー性を得るためには、Li含有系においては 1~18(mol%)、Li非含有系においては 1~8(mol%) のB2O3が含まれていることが必要である。何れの系においても、B2O3量が下限値未満では軟化点が高くなり過ぎるので反射防止膜へ浸食し難くなり、延いては良好なオーミックコンタクトを得難くなると共に、耐湿性も低下する。また、B2O3量が少なくなるとVoc が低下すると共にリーク電流が増大する傾向が生ずる問題もある。一方、上限値を越えても却ってVoc が低下すると共にリーク電流が増大し、更に、軟化点が低くなり過ぎるので浸食性が強くなり過ぎてpn接合が破壊され易くなる等の問題が生ずる。B2O3量は、Li含有系では15(mol%)以下が一層好ましい。また、3(mol%) 以上が更に好ましく、12(mol%)以下が更に好ましい。すなわち、 3~12(mol%)の範囲が特に好ましい。また、Li非含有系では3(mol%) 以上が一層好ましく、6(mol%) 以下が一層好ましい。すなわち、 3~6(mol%) の範囲が特に好ましい。
 また、SiO2は、ガラス形成酸化物であり、ガラスの耐化学性を高くするための成分で、良好なファイヤースルー性を得るためには、Li含有系では15~47(mol%)、Li非含有系では20~40(mol%)のSiO2が含まれていることが必要である。何れの系においても、SiO2量が下限値未満では耐化学性が不足すると共にガラス形成が困難になり、一方、上限値を越えると軟化点が高くなり過ぎてガラス化し難くなって反射防止膜へ浸食し難くなり、延いては良好なオーミックコンタクトが得られ難くなる。SiO2量は、Li含有系では20(mol%)以上が一層好ましく、41(mol%)以下が一層好ましい。すなわち、20~41(mol%)の範囲が一層好ましい。また、35(mol%)以下が更に好ましく、20~35(mol%)の範囲が特に好ましい。また、Li非含有系では28(mol%)以上が一層好ましく、34(mol%)以下が一層好ましい。すなわち、28~34(mol%)の範囲が特に好ましい。
 また、PbO およびSiO2がそれぞれ上記の範囲内にあるだけでなく、更にPb/Si(mol 比) が、Li含有系では 0.8~2.3 、Li非含有系では 1.4~2.5 の範囲にあることが必要である。何れの系においても、Pb/Si モル比が下限値未満ではファイヤースルー性が低下し、受光面電極とn層との接触抵抗が高くなる。一方、Pb/Si モル比が上限値を超えると、リーク電流(ダイオード電流)Id が著しく大きくなるので、何れにしてもFF値が低下し、十分な出力特性が得られなくなる。Pb/Si(mol 比) は、Li非含有系では 1.7~2.3 の範囲が一層好ましい。
 また、Li2Oは、ガラスの軟化点を低下させる成分で、0.6(mol%) 以上且つ18(mol%)以下の範囲で含まれることにより、良好なファイヤースルー性が得られる。Li2Oが0.6(mol%) 未満では軟化点が高くなり過ぎ延いては反射防止膜への浸食性が不十分になる。一方、18(mol%)を越えると浸食性が強くなり過ぎるので却って電気的特性が低下する。因みに、Liは、拡散を促進することから一般に半導体に対しては不純物であって、特性を低下させる傾向があることから半導体用途では避けることが望まれるものである。特に、通常はPb量が多い場合にLiを含むと浸食性が強くなり過ぎて制御が困難になる傾向がある。しかしながら、上記のような太陽電池用途においては、Liを含むガラスを用いて特性低下が認められず、却って適量が含まれていることでファイヤースルー性が改善され、特性向上が認められた。Liはドナー元素であり、接触抵抗を低くすることもできる。しかも、Liを含む組成とすることにより、良好なファイヤースルー性を得ることのできるガラスの組成範囲が広くなることが認められた。尤も、太陽電池用途においても、過剰に含まれると浸食性が強くなり過ぎ、電気的特性が低下する傾向にある。Li2O量は、1(mol%) 以上が一層好ましく、15(mol%)以下が一層好ましい。すなわち、 1~15(mol%)の範囲が特に好ましい。
 但し、本発明においては、前述したようにLi2Oは含まれていなくともよい。LiがSi内に拡散するとリーク電流が増大するので、その観点では、Li2Oを含まないことが望ましい。Liはドナー元素であって、オーミックコンタクトを取りやすくすると共に、ガラスの組成範囲を広げる作用を有するものであるが、これらは組成を適宜調整することで改善すれば足りる。
 なお、上記各成分および後述する各成分は、ガラス中に如何なる形態で含まれているか必ずしも特定が困難であるが、これらの割合は何れも酸化物換算した値とした。
 また、好適には、前記ガラスは、Al2O、TiO2、ZnO の少なくとも一種を含むものである。これらAl,Ti,Znを適量含む組成とすることで、並列抵抗Rsh が向上し、延いては開放電圧Voc および短絡電流Isc が向上するので、一層高い電気的特性が得られる。すなわち、FF値が一層高く且つリーク電流が一層少なくなる。また、PbO 量を少なくできる利点もある。これらの含有量は、Li含有系においては、酸化物換算した値でAl2Oが18(mol%)以下、TiO2が18(mol%)以下、およびZnO が30(mol%)以下である。また、Li非含有系においては、酸化物換算した値でAl2Oが5(mol%) 以下、TiO2が10(mol%)以下、およびZnO が10(mol%)以下である。Al2O、TiO2、ZnO は過剰になると却ってリーク電流が増大する傾向もあるので、それぞれ上記の量を上限とすることが好ましい。
 上記Al2Oはガラスの安定性を得るために有効な成分であって、Al2Oが含まれるとガラスの粘性が低くなり、更に、直列抵抗Rsを低下させてFF値を高めると共に焼成温度範囲が広くなる傾向があるが、過剰になると上述したようにリーク電流を増大させると共にVoc を却って低下させる作用もあるため、Li含有系においては18(mol%)以下に、Li非含有系においては5(mol%) 以下にそれぞれ留めることが好ましい。
 また、TiO2はFF値を高める傾向があるが、過剰に添加すると軟化点が上昇し延いては接触抵抗が高くなる傾向があると共に、上述したようにリーク電流を増大させる作用もあるため、Li含有系においては18(mol%)以下に、Li非含有系においては10(mol%)以下にそれぞれ留めることが好ましい。
 また、ZnO の含有量が過剰になると開放電圧Voc が低下するため、Li含有系においては30(mol%)以下に、Li非含有系においては10(mol%)以下にそれぞれ留めることが好ましい。
 また、前記ガラスは、酸化物換算で 0.1~15(mol%)のBi2Oを含むことができる。すなわち、オーミックコンタクトをとるためには、電極-シリコン界面のガラス層中にあるAg固溶量を増加させる必要があるが、Pbだけでは限界があった。PbとBiとを共存させることで、従来よりもAg固溶量が増加する。また、焼成時の降温中にガラス中に固溶していたAgがAg微粒子として析出するが、Biが存在することで、焼成温度の変化に対してAg析出が穏やかになり、焼成マージンが広がる。以上の効果により、電気特性が向上する。しかし、BiはPbと同様にSiを浸食する作用が強いため、添加量が多過ぎると浸食が強くなり過ぎ、電気特性の低下や焼成マージンが狭くなるといった悪影響を及ぼすため、Bi2O量は、15(mol%)以下が適当で、12(mol%)以下が一層好ましい。
 上記Bi2Oは、Li含有系かLi非含有系かに拘らず添加することができる。具体的には、前記ガラスは、Pb/Si(mol 比) が 0.8~2.3 の範囲内にあり、且つ酸化物換算で0.05~5.0(mol%) のSOと、 0.6~18(mol%)のLi2Oと、18~64(mol%)のPbO と、 1~18(mol%)のB2O3と、15~47(mol%)のSiO2と、 0.1~15(mol%)のBi2Oとを含んで構成され、更に好ましくは、酸化物換算で 0.1~5.0(mol%) のSOと、 1~15(mol%)のLi2Oと、22~62(mol%)のPbO と、 1~15(mol%)のB2O3と、20~41(mol%)のSiO2と、 0.1~12(mol%)のBi2Oとを含んで構成される。これ等のガラスについても、酸化物換算で18(mol%)以下のAl2O、18(mol%)以下のTiO2、および30(mol%)以下のZnO の少なくとも一種を含むことができる。また、前記ガラスは、Pb/Si(mol 比) が 1.4~2.5 の範囲内にあり、且つ酸化物換算で0.05~5.0(mol%) のSOと、50~70(mol%)のPbO と、 1~8(mol%) のB2O3と、20~40(mol%)のSiO2と、 0.1~15(mol%)のBi2Oとを含み、Li2Oを含むことなく構成され、更に好ましくは、Pb/Si(mol 比) が 1.7~2.3 の範囲内にあり、且つ酸化物換算で 0.1~3.0(mol%) のSOと、55~62(mol%)のPbO と、 3~6(mol%) のB2O3と、28~34(mol%)のSiO2と、 0.1~12(mol%)のBi2Oとを含み、Li2Oを含むことなく構成される。これ等のガラスについても、酸化物換算で5(mol%) 以下のAl2O、10(mol%)以下のTiO2、および10(mol%)以下のZnO の少なくとも一種を含むことができる。
 また、好適には、前記ガラスは、酸化物換算で6.0(mol%) 以下のP2O5を含むものである。このようにすれば、ガラス中に含まれるP が電極-基板界面に拡散してその界面におけるドナー濃度が高められるので、シャローエミッタにおけるドナー元素濃度の不足が補償され、電極と基板との間のオーミックコンタクトが得られ易くなる利点がある。
 また、Liを含むガラスが用いられる場合でも、シャローエミッタにおけるドナー元素濃度の不足は、そのLiによる補償効果だけでは不十分である。十分な補償効果を得るためには、ファイヤースルーの焼成温度 760~800(℃) 近傍において、Siへの不純物溶解度が 1×10-19(atom/cm3) 以上あるドナー元素を複数種類含むことが望まれる。上記P はLiと同様にドナー元素であるので、例えば、LiとP とを共に含む組成が好ましいといえる。また、これらの他、Sb、As等も用い得る。
 因みに、シャローエミッタを構成する高シート抵抗のセルでは、例えばSi3Nから成る反射防止膜の厚さ寸法を80(nm)程度として、電極による浸食量を80~90(nm)の範囲に制御すること、すなわち10(nm)の精度で制御することが望ましい。本発明によれば、ガラスがSOを含むことから、浸食量制御が容易になっているが、上記のようにドナー元素濃度を補償すると、導通確保のために僅かに浸食過剰となっても、その浸食過剰による出力低下が抑制されるので、オーミックコンタクトが得られ易くなる。
 また、前記ガラスフリットは平均粒径(D50) が 0.3~3.0(μm)の範囲内である。ガラスフリットの平均粒径が小さすぎると電極の焼成時に融解が早すぎるため電気的特性が低下するが、0.3(μm)以上であれば適度な融解性が得られるので電気的特性が一層高められる。しかも、凝集が生じ難いのでペースト調製時に一層良好な分散性が得られる。また、ガラスフリットの平均粒径が導電性粉末の平均粒径よりも著しく大きい場合にも粉末全体の分散性が低下するが、3.0(μm)以下であれば一層良好な分散性が得られる。しかも、ガラスの一層の熔融性が得られる。したがって、一層良好なオーミックコンタクトを得るためには上記平均粒径が好ましい。
 なお、上記ガラスフリットの平均粒径は空気透過法による値である。空気透過法は、粉体層に対する流体(例えば空気) の透過性から粉体の比表面積を測定する方法をいう。この測定方法の基礎となるのは、粉体層を構成する全粒子の濡れ表面積とそこを通過する流体の流速および圧力降下の関係を示すコゼニー・カーマン(Kozeny-Carmann)の式であり、装置によって定められた条件で充填された粉体層に対する流速と圧力降下を測定して試料の比表面積を求める。この方法は充填された粉体粒子の間隙を細孔と見立てて、空気の流れに抵抗となる粒子群の濡れ表面積を求めるもので、通常はガス吸着法で求めた比表面積よりも小さな値を示す。求められた上記比表面積および粒子密度から粉体粒子を仮定した平均粒径を算出できる。
 また、好適には、前記導電性粉末は平均粒径(D50) が 0.3~3.0(μm)の範囲内の銀粉末である。導電性粉末としては銅粉末やニッケル粉末等も用い得るが、銀粉末が高い導電性を得るために最も好ましい。また、銀粉末の平均粒径が3.0(μm)以下であれば一層良好な分散性が得られるので一層高い導電性が得られる。また、0.3(μm)以上であれば凝集が抑制されて一層良好な分散性が得られる。なお、0.3(μm)未満の銀粉末は著しく高価であるため、製造コストの面からも0.3(μm)以上が好ましい。また、導電性粉末、ガラスフリット共に平均粒径が3.0(μm)以下であれば、細線パターンで電極を印刷形成する場合にも目詰まりが生じ難い利点がある。
 なお、前記銀粉末は特に限定されず、球状や鱗片状等、どのような形状の粉末が用いられる場合にも導電性を保ったまま細線化が可能であるという本発明の基本的効果を享受し得る。但し、球状粉を用いた場合が印刷性に優れると共に、塗布膜における銀粉末の充填率が高くなるため、導電性の高い銀が用いられることと相俟って、鱗片状等の他の形状の銀粉末が用いられる場合に比較して、その塗布膜から生成される電極の導電率が高くなる。そのため、必要な導電性を確保したまま線幅を一層細くすることが可能となることから、特に好ましい。
 また、好適には、前記太陽電池用導電性ペースト組成物は、25(℃) -20(rpm) における粘度が 150~250(Pa・s)の範囲内、粘度比(すなわち、[10(rpm) における粘度]/ [100(rpm)における粘度]) が 3~8 である。このような粘度特性を有するペーストを用いることにより、スキージングの際に好適に低粘度化してスクリーンメッシュを透過し、その透過後には高粘度に戻って印刷幅の広がりが抑制されるので、スクリーンを容易に透過して目詰まりを生じないなど印刷性を保ったまま細線パターンが容易に得られる。ペースト組成物の粘度は、 200~220(Pa・s)の範囲が一層好ましく、粘度比は3.2 ~6.5 の範囲が一層好ましい。また、設計線幅が100(μm)以下の細線化には粘度比 4~6 が望ましい。
 なお、線幅を細くしても断面積が保たれるように膜厚を厚くすることは、例えば、印刷製版の乳剤厚みを厚くすること、テンションを高くすること、線径を細くして開口径を広げること等でも可能である。しかしながら、乳剤厚みを厚くすると版離れが悪くなるので印刷パターン形状の安定性が得られなくなる。また、テンションを高くし或いは線径を細くすると、スクリーンメッシュが伸び易くなるので寸法・形状精度を保つことが困難になると共に印刷製版の耐久性が低下する問題がある。しかも、太幅で設けられることから膜厚を厚くすることが無用なバスバーも厚くなるため、材料の無駄が多くなる問題もある。
 また、好適には、前記太陽電池用導電性ペースト組成物は、前記導電性粉末を64~90重量部、前記ベヒクルを 3~20重量部の範囲内の割合で含むものである。このようにすれば、印刷性が良好で線幅の細く導電性の高い電極を容易に形成できるペースト組成物が得られる。
 また、好適には、前記導電性ペースト組成物は、前記ガラスフリットを前記導電性粉末 100重量部に対して 1~10重量部の範囲で含むものである。 1重量部以上含まれていれば十分な浸食性(ファイヤースルー性) が得られるので、良好なオーミックコンタクトが得られる。また、10重量部以下に留められていれば絶縁層が形成され難いので十分な導電性が得られる。導電性粉末 100重量部に対するガラス量は、 1~8 重量部が一層好ましく、 1~7 重量部が更に好ましい。
 また、本願発明の導電性組成物は、前述したようにファイヤースルーによる電極形成時の銀の拡散を好適に制御し得るものであるから、受光面電極に好適に用い得る。
 また、前記ガラスフリットは、前記組成範囲でガラス化可能な種々の原料から合成することができ、例えば、酸化物、炭酸塩、硝酸塩等が挙げられるが、例えば、Si源としては二酸化珪素SiO2を、B 源としては酸化硼素B2O3或いはほう酸H3BOを、Pb源としては鉛丹Pb3Oを、S 源としては硫酸アンモニウム(NH4)2SOを用い得る。
 また、主要成分Si、B 、Pbの他に、P 、Al、Zr等の他の成分を含む組成とする場合には、例えばそれらの酸化物、水酸化物、炭酸塩、硝酸塩等を用いればよい。例えば、Li源としては炭酸リチウムLi2CO3、P 源としてはリン酸二水素アンモニウムNH4H2PO4、Bi源としては酸化ビスマスBi2Oを用い得る。
 また、本発明の導電性ペーストを構成する前記ガラスは、その特性を損なわない範囲で他の種々のガラス構成成分や添加物を含み得る。例えば、Na、Ca、Mg、K 、Ba、Sr等が含まれていても差し支えない。これらは例えば合計30(mol%)以下の範囲で含まれ得る。
本発明の一実施例の電極用ペースト組成物が受光面電極の形成に適用された太陽電池の断面構造を示す模式図である。 図1の太陽電池の受光面電極パターンの一例を示す図である。
 以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
 図1は、本発明の一実施例の導電性組成物が適用されたシリコン系太陽電池10の断面構造を模式的に示す図である。図1において、太陽電池10は、例えばp型多結晶半導体であるシリコン基板12と、その上下面にそれぞれ形成されたn層14およびp層16と、そのn層14上に形成された反射防止膜18および受光面電極20と、そのp層16上に形成された裏面電極22とを備えている。上記シリコン基板12の厚さ寸法は例えば 100~200(μm)程度である。
 上記のn層14およびp層16は、シリコン基板12の上下面に不純物濃度の高い層を形成することで設けられたもので、その高濃度層の厚さ寸法はn層14が例えば70~100(nm) 程度、p層16が例えば500(nm) 程度である。n層14は、一般的なシリコン系太陽電池では 100~200(nm) 程度であるが、本実施例ではそれよりも薄くなっており、シャローエミッタと称される構造を成している。なお、n層14に含まれる不純物は、n型のドーパント、例えば燐(P) で、p層16に含まれる不純物は、p型のドーパント、例えばアルミニウム(Al)や硼素(B) である。
 また、前記の反射防止膜18は、例えば、窒化珪素Si3N等から成る薄膜で、例えば可視光波長の1/4程度の光学的厚さ、例えば80(nm)程度で設けられることによって10(%) 以下、例えば2(%) 程度の極めて低い反射率に構成されている。
 また、前記の受光面電極20は、例えば一様な厚さ寸法の厚膜導体から成るもので、図2に示されるように、受光面24の略全面に、多数本の細線部を有する櫛状を成す平面形状で設けられている。
 上記の厚膜導体は、Agを 100重量部に対してガラスを 1~10重量部の範囲で、例えば 6.0重量部含む厚膜銀から成るもので、そのガラスは酸化物換算した値で、PbO を18~64(mol%)の範囲内、例えば45(mol%)程度、B2O3を 1~18(mol%)の範囲内、例えば6.0(mol%) 程度、SiO2を15~47(mol%)の範囲内、例えば28.0(mol%)程度、Al2Oを 0~18(mol%)の範囲内、例えば6.0(mol%) 程度、Li2Oを 0.6~18(mol%)の範囲内、例えば6.0(mol%) 程度、TiO2を 0~18(mol%)の範囲内、例えば0(mol%) 、ZnO を 0~30(mol%)の範囲内、例えば5(mol%) 、ZrO2を 0~0.5(mol%) の範囲内、例えば0.5(mol%) 、P2O5を 0~6(mol%) の範囲内、例えば2.0(mol%) 程度、SOを0.05~5.0(mol%) の範囲内、例えば1.5(mol%) 、それぞれ含む鉛ガラスである。また、上記鉛ガラスにおいて、PbO とSiO2は、Pb/Si モル比が 0.8~2.3 の範囲内、例えば1.61程度の割合となるように含まれている。上記ガラスは、更にBi2Oを酸化物換算で 0.1~15(mol%)の範囲内、好ましくは 0.1~12(mol%)の範囲内で含むことができる。
 また、上記のガラスに代えて、Liを含まないガラスを用いることも可能である。その場合のガラス組成は、酸化物換算した値で、PbO を50~70(mol%)の範囲内、例えば60(mol%)程度、B2O3を 1~8(mol%) の範囲内、例えば6.0(mol%) 程度、SiO2を20~40(mol%)の範囲内、例えば28.0(mol%)程度、Al2Oを 0~5(mol%) の範囲内、例えば1.0(mol%) 程度、TiO2を 0~10(mol%)の範囲内、例えば2.0(mol%) 程度、ZnO を 0~10(mol%)の範囲内、例えば0(mol%) 、ZrO2を 0~1.0(mol%) の範囲内、例えば0(mol%) 、P2O5を 0~6(mol%) の範囲内、例えば2.0(mol%) 程度、SOを0.05~5.0(mol%) の範囲内、例えば1.0(mol%) 、それぞれ含む鉛ガラスである。また、上記鉛ガラスにおいて、PbO とSiO2は、Pb/Si モル比が 1.4~2.5 の範囲内、例えば2.14程度の割合となるように含まれている。上記ガラスは、更にBi2Oを酸化物換算で 0.1~15(mol%)の範囲内、好ましくは 0.1~12(mol%)の範囲内で含むことができる。
 また、上記の導体層の厚さ寸法は例えば20~30(μm)の範囲内、例えば25(μm)程度で、細線部の各々の幅寸法は例えば80~130(μm)の範囲内、例えば100(μm)程度で、十分に高い導電性を備えている。
 また、前記の裏面電極22は、p層16上にアルミニウムを導体成分とする厚膜材料を略全面に塗布して形成された全面電極26と、その全面電極26上に帯状に塗布して形成された厚膜銀から成る帯状電極28とから構成されている。この帯状電極28は、裏面電極22に導線等を半田付け可能にするために設けられたものである。
 上記のような受光面電極20は、例えば、導体粉末と、ガラスフリットと、ベヒクルと、溶剤とから成る電極用ペーストを用いて良く知られたファイヤースルー法によって形成されたものである。その受光面電極形成を含む太陽電池10の製造方法の一例を以下に説明する。
 まず、上記ガラスフリットを作製する。S 源として硫酸アンモニウム(NH4)2SOを、Li源として炭酸リチウムLi2CO3を、P 源としてリン酸二水素アンモニウムNH4H2PO4を、Si源として二酸化珪素SiO2を、B 源として酸化硼素B2O3を、Pb源として鉛丹Pb3Oを、Al源として酸化アルミニウムAl2Oを、Ti源として酸化チタンTiO2を、Zn源として酸化亜鉛ZnO 、Bi源として酸化ビスマスBi2O等をそれぞれ用意し、前述した範囲内の適宜の組成となるように秤量して調合する。酸化硼素B2O3の代わりにほう酸H3BOをB 源として用いることもできる。これを坩堝に投入して組成に応じた 900~1200(℃) の範囲内の温度で、30分~1 時間程度熔融し、急冷することでガラス化させる。このガラスを遊星ミルやボールミル等の適宜の粉砕装置を用いて粉砕する。粉砕後の平均粒径(D50) は例えば 0.3~3.0(μm)程度の範囲内、例えば1.5(μm)程度である。なお、上記ガラス粉末の平均粒径は空気透過法を用いて算出したものである。
 一方、導体粉末として、例えば、平均粒径(D50) が 0.3~3.0(μm)の範囲内、例えば平均粒径が1.6(μm)程度の市販の球状の銀粉末を用意する。このような平均粒径が十分に小さい銀粉末を用いることにより、塗布膜における銀粉末の充填率を高め延いては導体の導電率を高めることができる。また、前記ベヒクルは、有機溶剤に有機結合剤を溶解させて調製したもので、有機溶剤としては、例えばブチルカルビトールアセテートが、有機結合剤としては、例えばエチルセルロースが用いられる。ベヒクル中のエチルセルロースの割合は例えば15(wt%) 程度である。また、ベヒクルとは別に添加する溶剤は、例えばブチルカルビトールアセテートである。すなわち、これに限定されるものではないが、ベヒクルに用いたものと同じ溶剤でよい。この溶剤は、ペーストの粘度調整の目的で添加される。
 以上のペースト原料をそれぞれ用意して、例えば導体粉末を77~90(wt%) の範囲内、ガラスフリットを 1~8(wt%)の範囲内、ベヒクルを 5~14(wt%) の範囲内、溶剤を 3~5(wt%)の範囲内の割合で秤量し、攪拌機等を用いて混合した後、例えば三本ロールミルで分散処理を行う。これにより、前記電極用ペーストが得られる。
 上記のようにして電極用ペーストを調製する一方、適宜のシリコン基板に例えば、熱拡散法やイオンプランテーション等の良く知られた方法で不純物を拡散し或いは注入して前記n層14およびp層16を形成することにより、前記シリコン基板12を作製する。次いで、これに例えばPE-CVD(プラズマCVD) 等の適宜の方法で窒化珪素薄膜を形成し、前記反射防止膜18を設ける。
 次いで、上記の反射防止膜18上に前記図2に示すパターンで前記電極用ペーストをスクリーン印刷する。これを例えば150(℃) で乾燥し、更に、近赤外炉において 700~900(℃) の範囲内の温度で焼成処理を施す。これにより、その焼成過程で電極用ペースト中のガラス成分が反射防止膜18を溶かし、その電極用ペーストが反射防止膜18を破るので、電極用ペースト中の導体成分すなわち銀とn層14との電気的接続が得られ、前記図1に示されるようにシリコン基板12と受光面電極20とのオーミックコンタクトが得られる。受光面電極20は、このようにして形成される。
 本実施例の太陽電池10は、上述したように受光面電極20がファイヤースルー法で設けられているが、その受光面電極20が前述したようにSOを0.05~5.0(mol%) 含むガラスを銀 100重量部に対して 1~10重量部の範囲で含む厚膜銀で構成されていることから、その厚膜銀ペーストは、前記組成に示される通り、Li、Na、K 等のアルカリ金属量を増加させ或いは組成を変更することなく、好適な浸食性を保ちながら、ガラスが軟化したときの粘性が低下させられる。そのため、受光面電極20とn層14との界面に均一な薄いガラス層(図示は省略) が形成されるので、電気的特性の優れた太陽電池10が得られる。
 すなわち、本実施例においては、受光面電極20は、上記のようにガラスがSOを含むことから、ファイヤースルーのために焼成処理を施した際にガラスが軟化すると表面張力が低くなるので、ガラス成分が電極20-基板12界面に速やかに供給される。そのため、それらの界面に上述したような薄いガラス層が形成されるので、ファイヤースルーの際に厚膜銀の侵入量の制御が容易になり、オーミックコンタクトも容易に得られることになる。
 しかも、本実施例の受光面電極20は、前述したようにガラス量が 6.0重量部程度と少量にされていることから高い導電性を有しているため、膜厚および線幅が何れも小さくされているにも拘わらずライン抵抗が低いので、接触抵抗が低いことと相俟って太陽電池10の光電変換効率が高められている。
 なお、前記裏面電極22は、上記工程の後に形成してもよいが、受光面電極20と同時に焼成して形成することもできる。裏面電極22を形成するに際しては、上記シリコン基板12の裏面全面に、例えばアルミニウムペーストをスクリーン印刷法等で塗布し、焼成処理を施すことによってアルミニウム厚膜から成る前記全面電極26を形成する。更に、その全面電極26の表面に前記電極用ペーストをスクリーン印刷法等を用いて帯状に塗布して焼成処理を施すことによって、前記帯状電極28を形成する。これにより、裏面全面を覆う全面電極26と、その表面の一部に帯状に設けられた帯状電極28とから成る裏面電極22が形成され、前記の太陽電池10が得られる。上記工程において、同時焼成で製造する場合には、受光面電極20の焼成前に印刷処理を施すことになる。
 次に、ガラス組成を種々変更して、上記の製造工程に従って太陽電池10を製造して評価した結果を説明する。太陽電池特性については、市販のソーラーシミュレータを用いてその出力を測定して、曲線因子FF値およびリーク電流Idを求めた。また、受光面電極20にリード線をはんだ付けし、その接着強度を測定した。接着強度の測定は市販の引張試験機を用いて135 °の角度でリード線を引張って剥離させることで行い、剥離したときの引張荷重の平均値を接着強度とした。評価結果を、ガラス組成と併せて表1~3に示す。表1、2のNo.1~74は、Liを含むガラス組成、表3のNo.75 ~113 は、Liを含まないガラス組成である。これら表1~3において、No. 欄の数字に△を付したものが本発明の範囲外の比較例であり、他が本発明の範囲内の実施例である。すなわち、Li含有系では、No.1、8 、11~14、23、24、29、51、65、69、74が比較例で、他が実施例、Li非含有系では、No.75 、82、83、86~88、91、92、94、95が比較例で、他が実施例である。これらの実施例のうち、No. 欄の数字に○を付したものは、後述するように本発明の範囲内の最適組成である。FF値は良好なオーミックコンタクトが得られているか否かの判定であり、一般に、太陽電池はFF値が70以上であれば使用可能とされているが、高いほど好ましいのはもちろんであり、本実施例においては、FF値が75より大きいものを合格とした。また、リーク電流Idは低い方が好ましく、pn接合に電極の侵入が起きたか否かの判定基準となる。リーク電流Idは10(V) における数値で0.1(A)以下を◎、0.2(A)以下を○、0.5(A)以下を△、0.5(A)超を×とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、各試料は平均粒径1.6(μm)の球状のAg粉と平均粒径1.5(μm)のガラスフリットとを用いて作製した。調合割合はAg粉83(wt%) 、ガラスフリット5(wt%)、ベヒクル7(wt%)、溶剤5(wt%)を基本とし、印刷性を同等とするために、25(℃) -20(rpm) における粘度が 200~220(Pa・s)になるようにベヒクル量および溶剤量を適宜調整した。また、受光面電極20を形成する際の印刷製版は、線径23(μm)のSUS325製スクリーンメッシュに20(μm)厚の乳剤を設けたものとした。また、グリッドラインの幅寸法が80(μm)となるように印刷条件を設定した。また、基板のシート抵抗は90±10(Ω/ □) を用いて評価を行った。
 上記表1、2には、実施例として、基本骨格を構成するPbO-B2O3-SiOにAl2O、Li2O、TiO2、ZnO 、ZrO2、P2O5、SOが添加されたPbO-B2O3-SiO2-Al2O3-Li2O-TiO2-ZnO-ZrO2-P2O5-SOの10成分系と、これに対して少なくとも1種の元素を欠く6成分系~9成分系のガラスが示されている。
 No.1~8 は、Znを欠く9成分系において、S 量を検討したものである。Pb/Si が1.27、PbO が39.8~40.8(mol%)、B2O3が 4.0~6.6(mol%) 、SiO2が31.4~32.2(mol%)、Al2Oが 1.7~3.0(mol%) 、Li2Oが12.0(mol%)、TiO2が 1.7~3.0(mol%) 、ZrO2が0.4(mol%) 、P2O5が2.0(mol%) の組成において、SO量を 0~7.0(mol%) としたところ、SOが5.0(mol%) 以下の範囲で75以上のFF値と、0.2(A)以下のリーク電流Idが得られた。また、SOが0.05(mol%)以上の範囲で3(N)以上の接着強度が得られた。この評価結果から、SOを0.05~5.0(mol%) の範囲とすれば、出力特性に優れ且つ接着強度の高い受光面電極20が得られることが判る。また、各特性から見て、SO量が 0.5~2.5(mol%) の範囲が特に好ましいと考えられる。
 No.9~11は、Zrを欠く6~8成分系において、P 量を検討したものである。Pb/Si が1.27~1.31、PbO が38.0~41.9(mol%)、B2O3が 6.0~8.1(mol%) 、SiO2が30.0~32.1(mol%)、Al2Oが 0~3.0(mol%) 、Li2Oが12.0(mol%)、TiO2が 0~3.0(mol%) 、ZnO が 0~5.0(mol%) 、SOが 0.5~1.0(mol%) の組成において、P2O5を 0~7.5(mol%) としたところ、P 量が6.0(mol%) 以下の範囲では75以上のFF値と0.5(A)以下のリーク電流Idが得られた。7.5(mol%) になるとFF値が73に低下し、リーク電流Idも0.5(A)以上に増大する。P は0(mol%) でも十分な特性が得られるため、必須成分ではない。この評価結果から、P は 0~6.0(mol%) の範囲が適当と考えられる。
 No.12 ~23は、Pb量、Si量およびPb/Si 比を検討したものである。Pb/Si が0.75~2.32、PbO が16.0~65.0(mol%)、B2O3が 4.0~18.0(mol%)、SiO2が17.0~50.0(mol%)、Al2Oが 0~3.0(mol%) 、Li2Oが 1.0~12.0(mol%)、TiO2が 0~6.0(mol%) 、ZnO が 0~30.0(mol%)、ZrO2が 0~0.5(mol%) 、P2O5が 0.5~1.0(mol%) 、SOが 0.5~1.0(mol%) の組成範囲で評価を行った。Pb/Si が0.75または2.32ではFF値が73~74であり、不十分な特性に留まる。リーク電流Idも0.5(A)以下と余り好ましくない。また、Pb量が16(mol%)ではFF値が68と低く、リーク電流Idが0.5(A)以上と大きくなる。Pb量が65(mol%)ではFF値が73と低い。また、Si量が50(mol%)ではFF値が72と低く、リーク電流Idも0.5(A)以下と余り好ましくない。これらにより、Pb量は18~64(mol%)、Si量は47(mol%)以下、Pb/Si 比は 0.8~2.3 の範囲が好ましいといえる。
 No.24 ~29は、B 量を検討したものである。Pb/Si が1.00~1.89、PbO が20.0~64.0(mol%)、SiO2が15.0~36.4(mol%)、Al2Oが 0~3.0(mol%) 、Li2Oが 1.0~12.0(mol%)、TiO2が 0~3.0(mol%) 、ZnO が 0~26.5(mol%)、ZrO2が 0~0.5(mol%) 、P2O5が 0.5~2.0(mol%) 、SOが 0.1~0.5(mol%) の組成範囲において、B2O3を 0~21.0(mol%)として評価した。B を含まない組成では、FF値が73と低く、リーク電流Idも0.5(A)以下と不十分な特性に留まる。また、B 量が21(mol%)になると、FF値が72、リーク電流Idが0.5(A)以上となり、不十分である。この結果から、B 量は 1~18(mol%)の範囲が好ましいといえる。なお、Si量は、15(mol%)でもFF値が75と高く、Si量は15(mol%)以上で十分と考えられる。
 No.30 ~32は、Al、Ti、Znの許容範囲を検討したもので、Pb/Si が0.75~2.18、PbO が35.0~48.0(mol%)、B2O3が4.0(mol%) 、SiO2が20.0~22.0(mol%)、Al2Oが 3.0~18.0(mol%)、Li2Oが 6.0~12.0(mol%)、TiO2が 0~18.0(mol%)、ZnO が 0~30.0(mol%)、ZrO2が 0~0.5(mol%) 、P2O5が1.0(mol%) 、SOが 0.5~1.0(mol%) の組成範囲で評価を行った。Al量が18(mol%)でもFF値が75、Ti量が18(mol%)でもFF値が75、Zn量が30(mol%)でもFF値が76の結果が得られている。他の評価結果にも示されるとおり、これらは任意の成分であるが、Alは18(mol%)以下、Tiは18(mol%)以下、Znは30(mol%)以下の範囲で含むことができるものと考えられる。
 No.33 ~44は、最適組成範囲の一例である。このうちNo.33 ~36は、Pb/Si が1.19~2.27、PbO が38.0(mol%)、B2O3が 6.0~8.0(mol%) 、SiO2が30.0~32.0(mol%)、Al2Oが 0~3.0(mol%) 、Li2Oが12.0(mol%)、TiO2が3.0(mol%) 、ZnO が 2.5~5.0(mol%) 、ZrO2が 0~0.5(mol%) 、P2O5が 0~1.0(mol%) 、SOが2.5(mol%) の組成範囲を評価したものである。すなわち、Liが12.0(mol%)の場合における最適組成を検討した。Tiを3.0(mol%) 、S を2.5(mol%) 含む系で、P を欠く組成、Alを欠く組成でもFF値が77以上、リーク電流Idが0.2(A)以下、接着強度が6(N)以上の極めて高い特性が得られている。
 No.37 ~41は、Tiを欠く系において、Pb/Si が1.65~1.83、PbO が38.0~47.0(mol%)、B2O3が6.0(mol%) 、SiO2が23.0~28.0(mol%)、Al2Oが 6.0~8.0(mol%) 、Li2Oが6.0(mol%) 、ZnO が 5~15.0(mol%)、ZrO2が0.5(mol%) 、P2O5が2.0(mol%) 、SOが1.5(mol%) の組成範囲を評価したものである。すなわち、Liが6.0(mol%) の場合における最適組成を検討した。Tiを欠く組成でも、FF値が77以上、リーク電流Idが0.2(A)以下、接着強度が5(N)以上の極めて高い特性が得られている。
 No.42 ~44は、Tiを欠く系において、Pb/Si が1.69~2.18、PbO が44.0~48.0(mol%)、B2O3が6.0(mol%) 、SiO2が22.0~26.0(mol%)、Al2Oが6.0(mol%) 、Li2Oが1.0(mol%) 、ZnO が13.0(mol%)、ZrO2が0.5(mol%) 、P2O5が2.0(mol%) 、SOが1.5(mol%) の組成範囲を評価したものである。すなわち、Liを1.0(mol%) の場合における最適組成を検討した。Tiを欠き、Liが1.0(mol%) の組成でも、FF値が77以上、リーク電流Idが0.2(A)以下、接着強度が5(N)以上の極めて高い特性が得られている。
 No.45 、46は、Liが1.0(mol%) の組成で、S 量の上限とP 無しの系をそれぞれ評価したものである。No.45 によれば、S が5.0(mol%) と多くてもFF値が75、リーク電流Idが0.2(A)以下、接着強度が6(N)と高い特性が得られた。また、No.46 によれば、Ti、P を共に欠く系でも何ら問題なく、FF値が76、リーク電流Idが0.2(A)以下、接着強度が4(N)の十分に高い特性が得られている。
 表2のNo.47 ~51は、Zrを欠く系において、Li量の適切な範囲を検討したものである。Pb/Si が1.27~1.37、PbO が38.0~56.0(mol%)、B2O3が 1.0~6.0(mol%) 、SiO2が30.0~41.0(mol%)、Al2Oが 0~3.0(mol%) 、Li2Oが 0.6~21.0(mol%)、TiO2が 0~3.0(mol%) 、ZnO が 0~7.4(mol%) 、P2O5が 0.5~1.0(mol%) 、SOが 0.5~1.0(mol%) の組成範囲で評価した。Liが 0.6~18(mol%)の範囲でFF値が75以上、リーク電流Idが0.5(A)以下、接着強度が4(N)以上の十分な特性が得られているが、21(mol%)になると、FF値が71まで低下し、出力特性が不十分になる。この結果によれば、Liは 0.6~18(mol%)の範囲が適切である。
 No.52 ~65は、更に各成分の適切な量を検討したものである。No.52 ~54は、B 量の上限を検討したもので、Pb/Si が1.43~2.10、PbO が40.0~42.0(mol%)、B2O3が12.0~15.0(mol%)、SiO2が20.0~28.0(mol%)、Al2Oが 1.0~4.0(mol%) 、Li2Oが 3.0~12.0(mol%)、TiO2が 0~3.0(mol%) 、ZnO が 0~14.5(mol%)、ZrO2が0.5(mol%) 、P2O5が 1.0~2.0(mol%) 、SOが 0.5~1.5(mol%) の組成範囲で、リーク電流Idが0.2(A)以下の良好な結果が得られた。特に、B 量が12.0(mol%)の場合には、FF値が77以上、接着強度が5(N)と一層好ましい。すなわち、B 量は18.0(mol%)まで許容されるが、15.0(mol%)以下が好ましく、12.0(mol%)以下が一層好ましいと考えられる。
 No.55 ~59は、No.37 ~41と同様に、Li量が6.0(mol%) の場合の最適組成を検討したもので、Pb/Si が1.46~2.30、PbO が38.0~47.0(mol%)、B2O3が 3.0~6.0(mol%) 、SiO2が20.0~28.0(mol%)、Al2Oが 3.0~7.0(mol%) 、Li2Oが6.0(mol%) 、TiO2が 0~3.0(mol%) 、ZnO が 7.5~13.0(mol%)、ZrO2が 0~0.5(mol%) 、P2O5が 2.0~3.0(mol%) 、SOが 1.5~3.0(mol%) の組成範囲で、FF値が77以上、リーク電流Idが0.2(A)以下、接着強度が5(N)以上の極めて良好な結果が得られた。これらのうち、B 量が4.0(mol%) 以上、Al量が6.0(mol%) 以上のNo.56 ~59では、FF値が78、リーク電流Idが0.1(A)以下の一層高い結果が得られた。
 No.60 、61は、Pb/Si 比の下限値を検討したものである。Pb/Si が0.80~0.81、PbO が22.0~28.0(mol%)、B2O3が 6.0~9.0(mol%) 、SiO2が27.0~35.0(mol%)、Al2Oが3.0(mol%) 、Li2Oが12.0~15.0(mol%)、TiO2が3.0(mol%) 、ZnO が11.0~15.5(mol%)、ZrO2が0.5(mol%) 、P2O5が 1.0~4.0(mol%) 、SOが 0.5~1.0(mol%) の組成範囲で、FF値が77、リーク電流Idが0.2(A)以下、接着強度が4(N)以上の良好な結果が得られることが確かめられた。
 No.62 ~65は、Tiを欠く組成において、Al量の上限を検討したものである。Pb/Si が1.65、PbO が38.0(mol%)、B2O3が 4.0~8.0(mol%) 、SiO2が23.0(mol%)、Al2Oが12.0~21.0(mol%)、Li2Oが12.0(mol%)、ZnO が 0~5.0(mol%) 、ZrO2が0.5(mol%) 、P2O5が1.0(mol%) 、SOが0.5(mol%) の組成範囲で評価したところ、Al量が12.0~18.0(mol%)のNo.62 ~64では、FF値が75以上、リーク電流Idが0.5(A)以下、接着強度が6(N)の十分な結果が得られた。Al量が21.0(mol%)のNo.65 は、FF値が73、リーク電流Idが0.5(A)以上と不十分な結果であった。したがって、Al量は18(mol%)以下に留める必要がある。また、Al量が多くなるほどFF値が低下する傾向も認められるので、Al量は少ない方が好ましいと考えられる。
 No.66 ~69は、Ti量の上限を検討したものである。Pb/Si が1.52~1.54、PbO が37.0~38.0(mol%)、B2O3が 4.0~6.0(mol%) 、SiO2が24.0~25.0(mol%)、Al2Oが 0~3.0(mol%) 、Li2Oが12.0(mol%)、TiO2が12.0~21.0(mol%)、ZnO が 0~2.0(mol%) 、ZrO2が0.5(mol%) 、P2O5が1.0(mol%) 、SOが0.5(mol%) の組成範囲で評価したところ、18(mol%)までは75以上のFF値が得られるが、21(mol%)になるとFF値が73に留まった。したがって、Ti量は18(mol%)以下が適当である。また、Ti量も多くなるほどFF値が低下する傾向が認められるので、Ti量も少ない方が好ましいと考えられる。
 No.70 は、P を欠く系でS の下限値を確かめたもので、この場合も0.1(mol%) の含有量で十分であることが確かめられた。また、No.71 ~73はTiO2およびZnO を欠く系におけるLi量の下限値近傍における最適組成で、Pb/Si が1.98~2.21、PbO が59.5~62.0(mol%)、B2O3が 4.0~5.0(mol%) 、SiO2が28.0~30.0(mol%)、Al2Oが 0.5~3.0(mol%) 、Li2Oが1.0(mol%) 、ZrO2が 0~0.5(mol%) 、P2O5が 0~2.0(mol%) 、SOが 1.0~2.0(mol%) の組成範囲で、FF値が77、リーク電流Idが0.2(A)以下、接着強度が5(N)以上の良好な結果が得られた。また、No.74 によれば、ZnO が35.0(mol%)になるとFF値が74に低下し、特性が得られない。前記No.30 の結果と併せて、ZnO 量は30(mol%)以下に留めることが必要である。
 上記実施例の範囲で、最適組成は、No. 欄に○を付したNo.33 ~44、No.53 ~62等で、Pb/Si が0.80~2.30、Pbが22.0~48.0(mol%)、B が 3.0~12.0(mol%)、Siが22.0~35.0(mol%)、Alが 0~12.0(mol%)、Liが 1.0~12.0(mol%)、Tiが 0~3.0(mol%) 、Znが 0~15.5(mol%)、Zrが 0~0.5(mol%) 、P が 0~4.0(mol%) 、S が 0.5~3.0(mol%) の範囲である。この範囲で、FF値が77以上、リーク電流Idが0.5(A)以下、接着強度が4(N)以上の極めて高い特性が得られる。
 以上の結果から、Li含有系においては、Pb/Si 比を 0.8~2.3 、Pbを18~64(mol%)、B を 1~18(mol%)、Siを15~47(mol%)、Liを 0.6~18(mol%)、S を0.05~5.0(mol%) の範囲にすることが好ましく、任意成分については、Alを18(mol%)以下、Tiを18(mol%)以下、Znを30(mol%)以下、Zrを0.5(mol%) 以下に留めることが好ましい。
 また、Li非含有系の表3において、No.75 ~82は、Tiを欠く系においてS 量の範囲を検討したものである。Pb/Si が1.93、PbO が58.0(mol%)、B2O3が 3.0~4.0(mol%) 、SiO2が30.0(mol%)、Al2Oが 1.0~3.0(mol%) 、ZnO が 0~3.0(mol%) 、ZrO2が 0~0.5(mol%) 、P2O5が 1.0~2.0(mol%) 、SOが 0~7.0(mol%) の組成範囲で評価した。この組成範囲では、SOが5.0(mol%) 以下であれば、FF値が75以上、リーク電流Idが0.2(A)以下の良好な出力特性が得られ、0.05(mol%)以上であれば、3(N)以上の十分な接着強度が得られる。7.0(mol%) になるとFF値が70に留まり、0(mol%) では接着強度が2(N)に留まり、何れも不十分である。したがって、SOが0.05~5.0(mol%) の範囲で出力特性と接着強度とが両立する。
 No.83 ~87は、AlおよびZrを欠く系において、Pb量、Si量、Pb/Si 比を検討したもので、Pb/Si が1.35~2.77、PbO が48.0~72.0(mol%)、B2O3が 1.0~4.0(mol%) 、SiO2が26.0~37.0(mol%)、TiO2が 0~3.0(mol%) 、ZnO が 0~8.0(mol%) 、P2O5が 0.5~1.0(mol%) 、SOが 0.5~1.0(mol%) の組成範囲で評価した。No.83 はPbが72(mol%)と多く、Pb/Si 比も2.77と大きく、FF値が73に留まる。リーク電流Idも0.5(A)以下である。また、No.86 はPb/Si 比が1.35と小さく、FF値が73に留まる。No.87 はPbが48(mol%)と少なく、Pb/Si 比も1.37と小さく、FF値が74に留まる。Pb/Si 比が1.43~2.50でPb量が50~70(mol%)のNo.84 、85は、FF値が75と十分に大きい。これらの結果から、Pb/Si 比は 1.4~2.5 、Pb量は50~70(mol%)が好適な範囲になる。
 No.88 ~91は、Zrを欠く系において、Si量を検討したもので、Pb/Si が1.33~2.78、PbO が50.0~58.0(mol%)、B2O3が 1.0~8.0(mol%) 、SiO2が18.0~42.0(mol%)、Al2Oが 0~3.0(mol%) 、TiO2が 0~9.0(mol%) 、ZnO が 0~10.0(mol%)、P2O5が 0.5~1.0(mol%) 、SOが 0.5~1.0(mol%) の組成範囲で評価した。Siが42(mol%)のNo.88 はFF値が70と小さく、Siが18(mol%)のNo.91 もFF値が72と小さいが、Siが20~40(mol%)のNo.89 、90は、FF値が75と十分な値が得られている。この結果から、Si量は20~40(mol%)が好適な範囲になる。
 No.92 ~94は、AlおよびZrを欠く系において、B 量を検討したもので、Pb/Si が2.00~2.41、PbO が50.0~70.0(mol%)、B2O3が 0~10.0(mol%)、SiO2が25.0~29.0(mol%)、TiO2が 0~9.0(mol%) 、ZnO が 0~6.0(mol%) 、P2O5が 0.5~1.0(mol%) 、SOが 0.5~1.0(mol%) の組成範囲で評価した。B を含まないNo.92 では、FF値が70と低く、リーク電流Idも0.5(A)以上と大きい結果となった。また、B が10.0(mol%)と多いNo.94 ではFF値が71と低く、何れも不十分である。B が8.0(mol%) のNo.93 ではFF値が75と十分に高く、リーク電流Idも0.2(A)以下に留まった。これらの結果と、No.76 ~90の結果と照らして、B 量は 1~8.0(mol%) が好適である。
 No.95 ~98は、TiおよびZrを欠く系において、P 量を検討したもので、Pb/Si が2.14~2.21、PbO が60.0~62.0(mol%)、B2O3が4.0(mol%) 、SiO2が28.0(mol%)、Al2Oが 0~1.0(mol%) 、ZnO が 0~3.5(mol%) 、P2O5が 0~7.5(mol%) 、SOが 0.5~2.5(mol%) の組成範囲で評価した。P を含まないNo.97 、98でもFF値は76と高い結果が得られている。また、P 量が6.0(mol%) のNo.96 ではFF値が75と十分に高いが、P 量が7.5(mol%) と多いNo.95 ではFF値が著しく低下し、67に留まる。これらの結果から、P は 0~6.0(mol%) が好適と考えられる。
 No.99 ~111 、113 は、最適組成範囲と考えられるものである。これらのうち、No.99 ~104 は、Pb/Si 比、Pb量、Si量を検討したもので、Pb/Si が1.76~2.18、PbO が57.0~61.0(mol%)、B2O3が 3.0~4.0(mol%) 、SiO2が28.0~33.0(mol%)、Al2Oが 0~1.0(mol%) 、TiO2が 0~5.0(mol%) 、ZnO が 0~2.0(mol%) 、ZrO2が 0~1.0(mol%) 、P2O5が 1.0~2.0(mol%) 、SOが 1.5~3.0(mol%) の組成範囲で評価した。これらの組成範囲では、FF値が77以上、リーク電流Idが0.2(A)以下、接着強度が5(N)以上の極めて高い結果が得られる。すなわち、Al、Ti、Zn、Zrのうち1種乃至2種を欠く組成でも高い特性を得ることができる。また、上記の結果から、Pb量は57.0~61.0(mol%)が好ましく、Si量は28.0~33.0(mol%)が好ましく、Pb/Si は2.18以下が好ましい。
 No.105~107 は、ZnおよびZrを欠く系において、B 量を検討したもので、Pb/Si が1.93~2.07、PbO が58.0~60.0(mol%)、B2O3が6.0(mol%) 、SiO2が28.0~30.0(mol%)、Al2Oが 0~1.0(mol%) 、TiO2が2.0(mol%) 、P2O5が2.0(mol%) 、SOが1.0(mol%) の組成範囲で評価した。これらの組成範囲では、FF値が78、リーク電流Idが0.2(A)以下、接着強度が5(N)の極めて高い結果が得られている。特に、Alを1.0(mol%) 含むNo.105、106 では、リーク電流Idが0.1(A)以下に留まっていることから、Alを含む組成の方が好ましいものと考えられる。また、上記結果から、B 量は6.0(mol%) 以下が好ましい。
 No.108~113 は、Tiを欠く系において、Al量やP 量などを検討したもので、Pb/Si が1.79~2.11、PbO が58.0~61.0(mol%)、B2O3が 3.0~4.0(mol%) 、SiO2が28.0~31.0(mol%)、Al2Oが 0.5~5.0(mol%) 、ZnO が 0~2.0(mol%) 、ZrO2が 0~0.5(mol%) 、P2O5が 1.0~4.0(mol%) 、SOが 1.0~3.0(mol%) の組成範囲で評価した。No.112の他は、FF値が77以上、リーク電流Idが0.2(A)以下、接着強度が5(N)以上の極めて高い結果が得られている。No.112は、Alを5.0(mol%) 含むことから、Al量が許容範囲ではあるがやや多いためであると考えられるが、この組成でもFF値は75と十分に高い値である。No.111と対比すれば、Al量は3.0(mol%) 以下が好ましいと言える。また、No.113は、P 量を4.0(mol%) と比較的多くしたものであるが、この程度までは極めて高い特性が得られ、最適組成範囲である。
 以上の結果から、Li非含有系においては、Pb/Si 比を1.4 ~2.5 、Pbを50~70(mol%)、B を 1.0~8.0(mol%) 、Siを20.0~40.0、S が0.05~5.0(mol%) の範囲が好ましく、任意成分については、Alを5.0(mol%) 以下、Tiを10.0(mol%)以下、Znを10.0(mol%)以下、Zrを1.0(mol%) 以下、P を6.0(mol%) 以下に留めることが好ましい。
 表4の試料No.114~127 は、受光面電極20を形成する際の導電性ペースト組成物のガラス組成としてBi2Oを含む場合で、前記表1~表3の試料に比べてガラス組成が異なるだけであり、ガラスフリットの粒径や混合割合、製法などの他の条件は同じである。試料No.114~120 はLi含有系で、具体的にはPbO-B2O3-SiOにAl2O、Li2O、P2O5、Bi2O、SOが添加されたPbO-B2O3-SiO2-Al2O3-Li2O-P2O5-Bi2O3-SOの8成分系のガラスであり、曲線因子FF値で評価した。また、試料No.121~127 はLi非含有系で、PbO-B2O3-SiOにAl2O、P2O5、Bi2O、SOが添加されたPbO-B2O3-SiO2-Al2O3-P2O5-Bi2O3-SO2の7成分系のガラスであり、曲線因子FF値で評価した。表4において、No. 欄の数字に△を付したものが本発明(請求項8)の範囲外の比較例であり、他が本発明の範囲内の実施例である。また、No. 欄の数字に○を付したものは最適組成である。
Figure JPOXMLDOC01-appb-T000004
 表4のNo.114~127 は、Bi量の許容範囲を検討したものである。すなわち、オーミックコンタクトをとるためには、電極-シリコン界面のガラス層中にあるAg固溶量を増加させる必要があるが、Pbだけでは限界があり、PbとBiとを共存させることでAg固溶量が増加する。また、焼成時の降温中にガラス中に固溶していたAgがAg微粒子として析出するが、Biが存在することで、焼成温度の変化に対してAg析出が穏やかになり、焼成マージンが広がる。以上の効果により、電気特性が向上し、Li含有系、Li非含有系の何れも合格範囲とされる75以上のFF値が得られる。しかし、BiはPbと同様にSiを浸食する作用が強いため、添加量が多過ぎると浸食が強くなり過ぎ、電気特性の低下や焼成マージンが狭くなるといった悪影響を及ぼすため、Bi2O量は15(mol%)以下が適当で、12(mol%)以下が一層好ましい。
 以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。
10:太陽電池 12:シリコン基板 14:n層 16:p層 18:反射防止膜 20:受光面電極 22:裏面電極 24:受光面 26:全面電極 28:帯状電極

Claims (9)

  1.  導電性粉末と、ガラスフリットと、ベヒクルとを含む太陽電池用導電性ペースト組成物であって、
     前記ガラスフリットは、酸化物換算で0.05~5.0(mol%) の範囲内のSOを含むガラスから成ることを特徴とする太陽電池用導電性ペースト組成物。
  2.  前記ガラスは、Pb/Si(mol 比) が 0.8~2.3 の範囲内にあり、且つ酸化物換算で 0.6~18(mol%)のLi2Oと、18~64(mol%)のPbO と、 1~18(mol%)のB2O3と、15~47(mol%)のSiO2とを含むものである請求項1の太陽電池用導電性ペースト組成物。
  3.  前記ガラスは、酸化物換算で 0.1~5.0(mol%) のSOと、 1~15(mol%)のLi2Oと、22~62(mol%)のPbO と、 1~15(mol%)のB2O3と、20~41(mol%)のSiO2とを含むものである請求項2の太陽電池用導電性ペースト組成物。
  4.  前記ガラスは、酸化物換算で18(mol%)以下のAl2O、18(mol%)以下のTiO2、および30(mol%)以下のZnO の少なくとも一種を含むものである請求項2または請求項3の太陽電池用導電性ペースト組成物。
  5.  前記ガラスは、Pb/Si(mol 比) が1.4 ~2.5 の範囲内にあり、且つ酸化物換算で50~70(mol%)のPbO と、 1~8(mol%) のB2O3と、20~40(mol%)のSiO2とを含み、Li2Oを含まないものである請求項1の太陽電池用導電性ペースト組成物。
  6.  前記ガラスは、Pb/Si(mol 比) が 1.7~2.3 の範囲内にあり、且つ酸化物換算で 0.1~3.0(mol%) のSOと、55~62(mol%)のPbO と、 3~6(mol%) のB2O3と、28~34(mol%)のSiO2とを含むものである請求項5の太陽電池用導電性ペースト組成物。
  7.  前記ガラスは、酸化物換算で5(mol%) 以下のAl2O、10(mol%)以下のTiO2、および10(mol%)以下のZnO の少なくとも一種を含むものである請求項5または請求項6の太陽電池用導電性ペースト組成物。
  8.  前記ガラスは、酸化物換算で 0.1~15(mol%)のBi2Oを含むものである請求項2乃至請求項7の何れかに記載の太陽電池用導電性ペースト組成物。
  9.  前記ガラスは、酸化物換算で6.0(mol%) 以下のP2O5を含むものである請求項1乃至請求項8の何れかに記載の太陽電池用導電性ペースト組成物。
PCT/JP2012/066058 2011-07-29 2012-06-22 太陽電池用導電性ペースト組成物 WO2013018462A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/235,684 US9312045B2 (en) 2011-07-29 2012-06-22 Conductive paste composition for solar cells and solar cell
DE112012003168.7T DE112012003168T5 (de) 2011-07-29 2012-06-22 Leitpastenzusammensetzung für Solarzellen
CN201280038102.1A CN103797584B (zh) 2011-07-29 2012-06-22 太阳能电池用导电性糊组合物和太阳能电池
JP2013526783A JP6027968B2 (ja) 2011-07-29 2012-06-22 太陽電池用導電性ペースト組成物、太陽電池、および、太陽電池の製造方法
KR1020147005139A KR20140054141A (ko) 2011-07-29 2012-06-22 태양 전지용 도전성 페이스트 조성물 및 태양 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-167798 2011-07-29
JP2011167798 2011-07-29
PCT/JP2012/061619 WO2013018408A1 (ja) 2011-07-29 2012-05-02 太陽電池用導電性ペースト組成物
JPPCT/JP2012/061619 2012-05-02

Publications (1)

Publication Number Publication Date
WO2013018462A1 true WO2013018462A1 (ja) 2013-02-07

Family

ID=47628949

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/061619 WO2013018408A1 (ja) 2011-07-29 2012-05-02 太陽電池用導電性ペースト組成物
PCT/JP2012/066058 WO2013018462A1 (ja) 2011-07-29 2012-06-22 太陽電池用導電性ペースト組成物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061619 WO2013018408A1 (ja) 2011-07-29 2012-05-02 太陽電池用導電性ペースト組成物

Country Status (7)

Country Link
US (1) US9312045B2 (ja)
JP (1) JP6027968B2 (ja)
KR (1) KR20140054141A (ja)
CN (1) CN103797584B (ja)
DE (1) DE112012003168T5 (ja)
TW (1) TW201306053A (ja)
WO (2) WO2013018408A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050349A (ja) * 2013-09-02 2015-03-16 株式会社ノリタケカンパニーリミテド 太陽電池素子およびその製造方法並びにファイヤースルー用アルミニウムペースト

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6966950B2 (ja) * 2018-01-23 2021-11-17 Agc株式会社 ガラス、ガラスの製造方法、導電ペーストおよび太陽電池
KR102441705B1 (ko) * 2018-08-23 2022-09-07 소에이 가가쿠 고교 가부시키가이샤 적층 세라믹 전자부품의 외부 전극 형성용 도전성 페이스트
CN114409249B (zh) * 2022-01-06 2023-11-24 江苏日御光伏新材料科技有限公司 一种硅-锂-铅体系及其导电浆料与制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338218A (ja) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd 導電性ペースト
JP2005008981A (ja) * 2003-06-16 2005-01-13 Jfe Mineral Co Ltd ニッケル合金粉末及びその製造方法
JP2007051060A (ja) * 2005-08-17 2007-03-01 Schott Ag 鉛及び砒素非含有燐酸ニオブ光学ガラス
WO2010098167A1 (ja) * 2009-02-25 2010-09-02 株式会社ノリタケカンパニーリミテド 太陽電池電極用ペースト組成物
WO2011033945A1 (ja) * 2009-09-18 2011-03-24 株式会社ノリタケカンパニーリミテド 太陽電池用電極ペースト組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103775A (en) 1979-02-02 1980-08-08 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
US4256513A (en) 1978-10-19 1981-03-17 Matsushita Electric Industrial Co., Ltd. Photoelectric conversion device
JPS6249676A (ja) 1985-08-29 1987-03-04 Sharp Corp 太陽電池
US5064784A (en) * 1989-04-18 1991-11-12 Tokai Kogyo Co., Ltd. Glass frit useful for the preparation of glass bubbles, and glass bubbles prepared by using it
JP3050064B2 (ja) 1994-11-24 2000-06-05 株式会社村田製作所 導電性ペースト、この導電性ペーストからなるグリッド電極が形成された太陽電池及びその製造方法
JP3707715B2 (ja) 1998-01-30 2005-10-19 シャープ株式会社 導電性ペースト
US20060102228A1 (en) 2004-11-12 2006-05-18 Ferro Corporation Method of making solar cell contacts
JP4964152B2 (ja) * 2005-03-04 2012-06-27 インクテック カンパニー リミテッド 導電性インク組成物及びこの製造方法
US20080090034A1 (en) * 2006-09-18 2008-04-17 Harrison Daniel J Colored glass frit
JP2009020061A (ja) * 2007-07-13 2009-01-29 Denso Corp 力学量センサ素子
EP2219416B1 (en) * 2007-11-09 2018-02-14 Asahi Glass Company, Limited Light transmitting substrate, method for manufacturing light transmitting substrate, organic led element and method for manufacturing organic led element
CN102034877A (zh) * 2009-09-30 2011-04-27 比亚迪股份有限公司 一种太阳能电池用导电浆料及其制备方法
JP5351100B2 (ja) * 2010-07-02 2013-11-27 株式会社ノリタケカンパニーリミテド 太陽電池用導電性ペースト組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338218A (ja) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd 導電性ペースト
JP2005008981A (ja) * 2003-06-16 2005-01-13 Jfe Mineral Co Ltd ニッケル合金粉末及びその製造方法
JP2007051060A (ja) * 2005-08-17 2007-03-01 Schott Ag 鉛及び砒素非含有燐酸ニオブ光学ガラス
WO2010098167A1 (ja) * 2009-02-25 2010-09-02 株式会社ノリタケカンパニーリミテド 太陽電池電極用ペースト組成物
WO2011033945A1 (ja) * 2009-09-18 2011-03-24 株式会社ノリタケカンパニーリミテド 太陽電池用電極ペースト組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050349A (ja) * 2013-09-02 2015-03-16 株式会社ノリタケカンパニーリミテド 太陽電池素子およびその製造方法並びにファイヤースルー用アルミニウムペースト

Also Published As

Publication number Publication date
WO2013018408A1 (ja) 2013-02-07
DE112012003168T5 (de) 2014-05-22
JPWO2013018462A1 (ja) 2015-03-05
CN103797584B (zh) 2016-01-20
US20140225045A1 (en) 2014-08-14
JP6027968B2 (ja) 2016-11-16
US9312045B2 (en) 2016-04-12
KR20140054141A (ko) 2014-05-08
TWI562169B (ja) 2016-12-11
CN103797584A (zh) 2014-05-14
TW201306053A (zh) 2013-02-01

Similar Documents

Publication Publication Date Title
JP5351100B2 (ja) 太陽電池用導電性ペースト組成物
JP5756447B2 (ja) 太陽電池用導電性ペースト組成物
JP5856277B1 (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP5137923B2 (ja) 太陽電池用電極ペースト組成物
JP5144857B2 (ja) 太陽電池用導電性ペースト組成物
JP5903424B2 (ja) 太陽電池用導電性ペースト組成物およびその製造方法
WO2013046903A1 (ja) 太陽電池用無鉛導電性ペースト組成物
JP5059042B2 (ja) 太陽電池電極用ペースト組成物
JP6027765B2 (ja) 太陽電池用無鉛導電性ペースト組成物
JP6027968B2 (ja) 太陽電池用導電性ペースト組成物、太陽電池、および、太陽電池の製造方法
JP5937904B2 (ja) 太陽電池電極用ペースト組成物
JP5998178B2 (ja) 太陽電池受光面電極用ペースト、その製造方法、および太陽電池セルの製造方法
JP5279699B2 (ja) 太陽電池用導電性ペースト組成物
JP2012142422A (ja) 太陽電池用導電性ペースト用ガラス
JP2013120807A (ja) 太陽電池電極用ペースト組成物
JP6131038B2 (ja) 太陽電池用導電性ペースト組成物
JP2013077774A (ja) 太陽電池用導電性ペースト組成物
JP2011035035A (ja) 太陽電池電極用導電性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820422

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013526783

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14235684

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012003168

Country of ref document: DE

Ref document number: 1120120031687

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147005139

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12820422

Country of ref document: EP

Kind code of ref document: A1