WO2013014926A1 - 焼結鉱の製造方法および製造設備ならびに粉原料投射装置 - Google Patents

焼結鉱の製造方法および製造設備ならびに粉原料投射装置 Download PDF

Info

Publication number
WO2013014926A1
WO2013014926A1 PCT/JP2012/004735 JP2012004735W WO2013014926A1 WO 2013014926 A1 WO2013014926 A1 WO 2013014926A1 JP 2012004735 W JP2012004735 W JP 2012004735W WO 2013014926 A1 WO2013014926 A1 WO 2013014926A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
drum mixer
powder raw
conveyor
sintered
Prior art date
Application number
PCT/JP2012/004735
Other languages
English (en)
French (fr)
Inventor
隆英 樋口
直幸 竹内
主代 晃一
田村 浩一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280046603.4A priority Critical patent/CN103827327B/zh
Priority to KR1020147001704A priority patent/KR101511577B1/ko
Priority to BR112014001968A priority patent/BR112014001968A2/pt
Publication of WO2013014926A1 publication Critical patent/WO2013014926A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge

Definitions

  • the present invention relates to a method for producing sintered ore used as a blast furnace raw material and its production equipment. Moreover, this invention relates to the powder raw material projection apparatus used when manufacturing a sintered ore.
  • Sintered ore used as blast furnace raw material is iron ore with a particle size of 10 mm or less as the main raw material, and SiO 2 containing raw materials such as quartzite and serpentine, solid fuel such as limestone powder raw materials such as quick lime and limestone, and powder coke. It is common to produce a sintered raw material using a system powder raw material as an auxiliary raw material by granulating it with a drum mixer, and firing the granulated sintered raw material with a Dwytroid type sintering machine. The reducibility of sintered ore produced by such a method is a factor that greatly affects the operation of the blast furnace.
  • the gas utilization rate in the blast furnace has a negative correlation with the fuel ratio. For this reason, if the reducibility of the sintered ore is improved, the fuel ratio in the blast furnace decreases.
  • the cold strength of sintered ore is an important factor in ensuring air permeability in the blast furnace, and each blast furnace is operated with a lower limit set for the cold strength of the sintered ore. . Therefore, it can be said that the desired sintered ore for the blast furnace is excellent in reducibility and has high cold strength.
  • Patent Document 1 or Patent Document 2 discloses iron ore, SiO 2 -containing raw material, limestone-based powder raw material as a pretreatment of a process for producing a blast furnace sintered ore using a downward suction dwroid type sintering machine.
  • a sintering raw material comprising a solid fuel-based powder raw material with a drum mixer
  • it comprises iron ore and a SiO 2 -containing raw material excluding the limestone-based powder raw material and the solid fuel-based powder raw material from the inlet of the drum mixer
  • the limestone powder raw material and the solid fuel powder raw material are charged from the exit side of the drum mixer, and the charged limestone powder raw material and the solid fuel powder raw material are put on the outer surface of the pseudo particle.
  • a sintered raw material is charged from the inlet of the drum mixer, and a limestone powder raw material and a solid fuel powder raw material are charged from the outlet side of the drum mixer. Dispersion of limestone powder raw material and solid fuel powder raw material additionally charged from the outlet side of the drum mixer when the powder raw material and solid fuel powder raw material are adhered to the outer surface of the pseudo particle to granulate the sintered raw material.
  • a technique is described in which the conveyor is disposed obliquely with respect to the axial direction of the drum mixer and the charging position in the width direction is changed.
  • Patent Document 4 iron ore and SiO 2 -containing material are charged into a mixing drum mixer, mixed and stirred, and then the mixture discharged from the mixing drum mixer is supplied to a disk pelletizer to supply a limestone powder material. And the solid fuel-based powder raw material is granulated, and then the granulated pseudo-particle is charged into the coating drum mixer and the limestone powder raw material and the solid fuel-based powder are placed inside the coating drum mixer. A method of granulating a sintered raw material by projecting the raw material is described.
  • the powder raw material 15 dropped on the pseudo particle group 16 flows down in the y-axis direction (circumferential direction of the drum mixer 3) and toward the outlet of the drum mixer 3. In the region ⁇ , the powder raw material comes into contact with the coated pseudo particles again. For this reason, when the powder raw material 15 is projected inside the drum mixer 3 and the outer surface of the pseudo particle is coated with the powder raw material 15, coating unevenness is likely to occur, and a good sintered ore is produced as a blast furnace raw material. There was a problem that was difficult.
  • This invention is made paying attention to the problem mentioned above, and it aims at providing the manufacturing method and manufacturing equipment of the sintered ore which can manufacture a favorable sintered ore as a blast furnace raw material. It is.
  • Another object of the present invention is to provide a powder raw material projecting apparatus suitable for projecting a powder raw material such as a limestone powder raw material or a solid fuel powder raw material into the interior of a drum mixer.
  • the present invention provides a method for producing a sintered ore, a production facility for a sintered ore, and a powder raw material projecting apparatus as described below.
  • Sintered raw materials containing iron ore as the main raw material and SiO 2 containing raw material and limestone powder raw material or solid fuel powder raw material as auxiliary raw materials are granulated with a disk pelletizer,
  • the pseudo particles after granulation are charged into a coating drum mixer, and a powder raw material projection device for projecting the limestone powder raw material and / or the solid fuel powder raw material is charged into the drum mixer.
  • a method for producing a sintered ore wherein the powder raw material is charged into the drum mixer after being moved to a position off the upper position of the pseudo particle group.
  • Sintered raw materials containing iron ore as the main raw material and SiO 2 containing raw material and limestone powder raw material or solid fuel-based powder raw material as auxiliary raw materials are granulated with a drum mixer, and the granulated sintered raw material is obtained.
  • a method for producing a sintered ore produced by firing with a dweroid-type sintering machine wherein a raw material comprising the iron ore and the SiO 2 -containing raw material is charged into the drum mixer. Then, the pseudo particles after granulation are charged into a coating drum mixer, and a powder raw material projection device for projecting the limestone powder raw material and / or the solid fuel powder raw material is charged into the drum mixer.
  • a method for producing a sintered ore wherein the powder raw material is charged into the drum mixer after being moved to a position off the upper position of the pseudo particle group.
  • Sintered raw materials containing iron ore as the main raw material and SiO 2 containing raw material and limestone powder raw material or solid fuel powder raw material as auxiliary raw materials are granulated with a drum mixer, and the granulated sintered raw material is obtained.
  • a method for producing a sintered ore wherein the powder raw material is charged into the drum mixer after being moved to a detached position.
  • the powder raw material projecting apparatus includes a pair of left and right guide rails that guide the coating drum mixer in the axial direction, and a guide rail support carriage that supports the guide rails in a lateral direction orthogonal to the axial direction of the drum mixer.
  • a facility for producing sintered ore comprising:
  • the powder raw material projecting apparatus includes a pair of left and right guide rails that guide the coating drum mixer in the axial direction, and a guide rail support carriage that supports the guide rails in a lateral direction orthogonal to the axial direction of the drum mixer.
  • a facility for producing sintered ore comprising:
  • the powder raw material projecting apparatus includes a pair of left and right guide rails that guide in a direction, and a guide rail support carriage that supports the guide rails in a lateral direction perpendicular to the axial direction of the drum mixer. Sinter ore manufacturing equipment.
  • the sintered ore production facility according to any one of (9) to (11), further comprising a conveyor tilting mechanism that tilts the projection conveyor in the vertical direction with respect to the conveyor support carriage.
  • a powder raw material projection apparatus used when producing sintered ore wherein the solid fuel powder raw material or limestone powder raw material, which is a secondary raw material of the sintered ore, is conveyed and projected into a drum mixer.
  • a projection conveyor a conveyor support carriage that supports the projection conveyor so as to be movable in the axial direction of the drum mixer, a pair of left and right guide rails that guide the conveyor support carriage in the axial direction of the drum mixer, and the guide rails
  • a powder raw material projecting apparatus comprising: a guide rail support carriage that supports a slidable movement in a lateral direction perpendicular to the axial direction of the drum mixer.
  • pseudo particles obtained by granulating a mixture comprising a main raw material of sintered ore and a SiO 2 -containing raw material are charged into a drum mixer, and the pseudo particles are removed.
  • solid fuel powder raw material or limestone powder raw material When coating the surface with solid fuel powder raw material or limestone powder raw material, solid fuel powder raw material or limestone powder raw material can be attached to the outer surface of the pseudo particle without being influenced by the particle size of the pseudo particle Therefore, it is possible to provide a powder raw material projection device suitable for projecting powder raw materials such as limestone powder raw materials and solid fuel powder raw materials into the drum mixer.
  • a more suitable powder raw material projecting apparatus when projecting a powder raw material such as a limestone powder raw material or a solid fuel powder raw material into the drum mixer.
  • FIG. 1 is a diagram showing an example of a sinter ore manufacturing facility used when manufacturing a blast furnace sinter.
  • the sinter ore manufacturing facility shown in FIG. 1 includes a mixing drum mixer 1, a disk pelletizer 2, and a coating.
  • Drum mixer 3 limestone powder raw material projecting device 4, solid fuel powder raw material projecting device 5, and dwelloid type sintering machine 6.
  • the mixing drum mixer 1 mixes the main raw material of sintered ore together with the SiO 2 -containing raw material, and is composed of a mixer body formed in a cylindrical shape and a drive motor that rotationally drives the mixer body. .
  • the main raw materials for sintered ore include coarse iron ore, pellet feed, and return.
  • the disk pelletizer 2 granulates the mixture discharged from the mixing drum mixer 1, and the mixture granulated by the disk pelletizer 2 becomes, for example, pseudo particles having a particle diameter of about 3 mm to 13 mm for coating. It is supplied to the drum mixer 3.
  • the coating drum mixer 3 is for coating the outer surface of the pseudo particles granulated by the disk pelletizer 2 with a limestone powder raw material or a solid fuel powder raw material, and a mixer body formed in a cylindrical shape, It is comprised with the drive motor which rotationally drives this mixer main body.
  • the limestone powder raw material projection device 4 projects a limestone powder raw material such as limestone onto the inside of the coating drum mixer 3, and is disposed on the inlet side of the coating drum mixer 3.
  • the solid fuel-based powder raw material projecting device 5 projects a solid fuel-based powder raw material such as coke breeze into the interior of the coating drum mixer 3, and is disposed on the outlet side of the coating drum mixer 3.
  • the Dwydroid-type sintering machine 6 fires the pseudo particles discharged from the coating drum mixer 3, and conveys the pseudo particles horizontally in the direction of the arrow in the figure, and the pseudo particles on the conveyor 61. And a plurality of blowers 62 for suctioning from below. Further, the dwelloid type sintering machine 6 has an ignition furnace 63 for igniting a solid fuel-based powder raw material such as powder coke, and the ignition furnace 63 is disposed above the conveyor 61.
  • the main raw material of the sinter is charged into the mixing drum mixer 1 together with the SiO 2 -containing raw material.
  • the mixing drum mixer 1 is rotated, and the charged main raw material and the SiO 2 -containing raw material are mixed together with water.
  • the mixture discharged from the mixing drum mixer 1 was fed to the disc pelletizer 2, the mixture is granulated comprising a main raw material and the SiO 2 containing feedstock as a pseudo particles of the sintered material.
  • the granulated pseudo particles are charged into the coating drum mixer 3, and the coating drum The mixer 3 is rotated.
  • the limestone powder raw material is charged into the coating drum mixer 3 from the limestone powder raw material projecting device 4, and the solid fuel powder is fed into the coating drum mixer 3 from the solid fuel powder raw material projecting device 5.
  • the raw material is charged, and the surface of the pseudo particle is coated with the powder raw material charged in the coating drum mixer 3 to granulate the sintered raw material.
  • emitted from the drum mixer 3 for a coating is supplied to the dwroid type sintering machine 6, and the sintered ore for blast furnaces is manufactured.
  • FIG. 2 is a diagram showing an example of a powder raw material projection device used when projecting a powder raw material such as a limestone powder raw material or a solid fuel powder raw material into the interior of the coating drum mixer.
  • the projection device 7 includes a projection conveyor 8, a conveyor support carriage 9, a pair of left and right guide rails 10, a guide rail support carriage 11, and a conveyor tilt mechanism 12.
  • the projection conveyor 8 conveys and projects the powder raw material into the coating drum mixer 3 and is mounted on the conveyor support carriage 9.
  • the conveyor support carriage 9 supports the projection conveyor 8 so as to be movable in the axial direction of the coating drum mixer 3, and is placed on the guide rail 10 so as to be able to run.
  • the guide rail 10 guides the conveyor support carriage 9 in the axial direction of the coating drum mixer 3, and is installed on the guide rail support carriage 11.
  • the guide rail support carriage 11 supports the guide rail 10 so as to be movable in a lateral direction perpendicular to the axial direction of the coating drum mixer 3, and travels in a lateral direction perpendicular to the axial direction of the coating drum mixer 3.
  • a plurality of (for example, six) traveling wheels 13 are provided.
  • the conveyor tilting mechanism 12 tilts the projection conveyor 8 in the vertical direction with respect to the conveyor support carriage 9 and includes a plurality of jacks 14 disposed between the projection conveyor 8 and the conveyor support carriage 9.
  • FIG. 3 is a diagram for explaining the operation of the powder raw material projection apparatus shown in FIG. 2, and the limestone powder raw material and the solid fuel powder raw material inside the coating drum mixer 3 using the powder raw material projection apparatus 7 described above.
  • 3A as shown in FIG. 3A, the projection conveyor 8 and the conveyor support carriage 9 are arranged so that the tip of the projection conveyor 8 is not positioned above the pseudo particle group 16 charged in the drum mixer 3.
  • the guide rail 10 is moved in the lateral direction perpendicular to the axial direction of the coating drum mixer 3 by the guide rail support carriage 11, and the projection conveyor 8 is projected so that the elevation angle is a predetermined angle (for example, around 25 °).
  • the conveyor 8 is tilted by the conveyor tilting mechanism 12.
  • the powder raw material 15 projected from the projection conveyor 8 falls to a position A shown in FIG.
  • This position A is a position outside the base of the pseudo particle group 16 charged in the drum mixer 3, and the powder raw material 15 projected from the projection conveyor 8 falls on the inner peripheral surface of the drum mixer 3.
  • the powder raw material 15 dropped on the inner peripheral surface of the drum mixer 3 is indicated by an arrow in FIG.
  • the drum mixer 3 rotates, the drum mixer 3 relatively moves in the circumferential direction.
  • the powder raw material 15 wraps around the upper surface side of the pseudo particle group 16 and is supplied over the entire upper surface portion of the pseudo particle group 16. Is done.
  • the powder raw material 15 supplied to the upper surface of the quasi-particle group 16 adheres to the surface of each quasi-particle and coats the surface of the quasi-particle uniformly.
  • the powder raw material 15 such as the limestone powder raw material or the solid fuel powder raw material
  • the powder raw material 15 projected from the projection conveyor 8 of the powder raw material projection apparatus 7 falls on the inner peripheral surface of the drum mixer 3. .
  • the powder raw material 15 projected from the powder raw material projection device 7 falls on the pseudo particle group 16 and is suppressed from being discharged from the drum mixer 3 in a state of excessively adhering to the surface of the coarse particle pseudo particle 16a.
  • the pseudo particles obtained by granulating a mixture of the main raw material of sintered ore and the SiO 2 -containing raw material are charged into the coating drum mixer 3 so that the outer surface of the pseudo particles is solid fuel-based powder raw material or When coating with the limestone powder raw material, the solid fuel powder raw material or the limestone powder raw material can be attached to the outer surface of the pseudo particle 16 without being influenced by the particle diameter of the pseudo particle.
  • the position outside the base of the quasi-particle group here is a position where the adhering matter adhering to the inner surface of the drum mixer easily falls due to the centrifugal force due to the rotation of the drum mixer 3 and its own adhering force (see FIG. 23).
  • This position is a position where the powder raw material 15 is supplied, so that when the powder raw material 15 is supplied, the tip is located inside the drum mixer 3 by the powder raw material supply by the belt conveyor.
  • the position becomes acceptable.
  • the projection conveyor 8 is tilted by the conveyor tilting mechanism 12 so that the elevation angle of the projection conveyor 8 becomes a predetermined angle, the horizontal arrival distance of the powder raw material 15 projected from the projection conveyor 8 does not tilt the projection conveyor 8. Since it becomes long compared with the case, the conveyance speed of the powder raw material 15 conveyed by the projection conveyor 8 can be made small, and the powder raw material 15 can be projected inside the coating drum mixer 3.
  • the projection conveyor 8 of the powder raw material projection device 7 is moved to a position off the upper position of the pseudo particle group 16 charged in the drum mixer 3. Since the projection conveyor 8 is located at a position where it does not receive the drop impact of falling objects falling from the inner surface of the drum mixer 3, even if the tip of the projection conveyor 8 is inserted into the coating drum mixer 3, Damage to the projection conveyor 8 is reduced.
  • FIG. 1 shows an example of granulating with a disk pelletizer and coating a solid fuel powder raw material or a limestone powder raw material with a coating drum mixer.
  • a coating drum mixer can be used.
  • the drum mixer itself performs the same function as the coating drum mixer by supplying a solid fuel powder raw material or a limestone powder raw material to the discharge side of the drum mixer.
  • the raw material composed of iron ore and SiO 2 -containing raw material is charged into the drum mixer, and then the limestone powder raw material and / or solid fuel powder raw material is projected onto the discharge side of the drum mixer After moving the raw material projection device to a position off the upper position of the quasi-particle group charged and granulated in the drum mixer, the raw material powder is charged into the drum mixer and granulated in the drum mixer.
  • the sintered raw material made into particles can be coated with a solid fuel powder raw material or a limestone powder raw material.
  • FIG. 4 shows a powder raw material (solid fuel powder raw material or limestone powder raw material) projection position on the discharge side of the drum mixer 17 that mixes and granulates the sintered raw material, and the solid fuel powder raw material is produced by the powder raw material projection device.
  • FIG. 4 is a diagram in which any one of the limestone powder raw materials is projected, and is an example in which the function of the coating drum mixer 3 shown in FIG.
  • the discharge-side internal position in the drum mixer 17 is the powder raw material projection position. That is, the sintered raw material is charged into the drum mixer 17 from the charging side of the drum mixer 17, and the charged sintered raw material is mixed and granulated by the rotation of the drum mixer 17, and the sintered raw material is discharged on the discharge side.
  • This discharge side is set as the projection position of the powder raw material, and the projection position is a position outside the base of the pseudo particle group 16 in the drum mixer 17 as in FIG. 3, and the solid fuel system projected from the projection conveyor 8.
  • the powder raw material and / or the limestone powder raw material 15 is dropped onto the inner peripheral surface of the drum mixer 17.
  • the drum mixer 17 is configured as a single unit, and is used as two drum mixers as a mixing drum mixer and a granulating drum mixer assigned to each function of the mixing and granulating functions.
  • the discharge side of the granulating drum mixer is the projection position of the powder raw material.
  • FIG. 5 shows the results of examining the pseudo particles discharged from the coating drum mixer 3 and the outer surface of the pseudo particles discharged by projecting the powder raw material on the discharge side of the drum mixer 17.
  • FIG. 5A shows a case where powder coke is projected inside the coating drum mixer 3 with the projection conveyor 8 being positioned at the position shown in FIG. 23A, and FIG. The case where the powder coke is projected on the inside of the drum mixer 3 for coating in the state which has located the projection conveyor 8 in the position shown to b) is shown.
  • “+8.0 mm” in FIG. 5 indicates a pseudo particle having a particle diameter of 8.0 mm or more
  • “ ⁇ 0.25 mm” indicates a pseudo particle having a particle diameter of less than 0.25 mm.
  • the particle diameter is 4.75 mm or more. A lot of powder coke adheres.
  • the projection conveyor 8 is in the position shown in FIG. 3 (b), as shown in FIG. 5 (b), the most abundant particles among the pseudo particles charged in the coating drum mixer 3 are present. It can be seen that the powder coke also adheres to those having a diameter (1.0 to 2.8 mm) and those having a particle diameter smaller than 2.8 mm.
  • the powder raw material projecting device 7 shown in FIG. 2 as an apparatus for projecting a solid fuel-based powder raw material such as powder coke into the drum mixer, the main raw material of sintered ore and the SiO 2 -containing raw material are used.
  • the pseudo particles obtained by granulating the mixture are charged into a drum mixer and the outer surface of the pseudo particles is coated with the solid fuel powder raw material, the solid fuel powder raw material depends on the particle size of the pseudo particles. Since it becomes possible to make it adhere to the outer surface of a pseudo particle, it can manufacture a favorable sintered ore as a blast furnace raw material.
  • FIG. 6 is a diagram showing the results of investigating the relationship between the powder raw material conveyance speed of the projection conveyor shown in FIG. 2 and the coating time for coating the surface of the pseudo particles with the powder raw material projected from the projection conveyor.
  • the speed of the projection conveyor 8 is increased, the falling range of the powder raw material falling on the inner peripheral surface of the coating drum mixer 3 is widened, and the coating time is likely to vary. In order to prevent this, it is necessary to reduce the speed of the projection conveyor 8. However, if the speed of the projection conveyor 8 is reduced, the solid fuel-based powder material released from the projection conveyor 8 does not reach the pseudo particles in the drum mixer. there is a possibility.
  • FIG. 7 The result of investigating the relationship between the horizontal arrival distance of the powder raw material projected from the projection conveyor 8 of the powder raw material projection apparatus 7 shown in FIG. 2 and the fall height of the powder raw material from the tip of the projection conveyor is shown in FIG.
  • a solid line “a” indicates a case where the powder raw material is projected at a speed of 240 m / min in a state where the projection conveyor 8 is horizontal
  • a one-dot chain line “b” indicates a projection amount of the projection conveyor 8 that projects into the coating drum mixer 3. This shows a case where the powder raw material is projected at a speed of 210 m / min in a state of 300 mm.
  • the broken line c in FIG. 7 shows the case where the powder raw material is projected at a speed of 210 m / min while the height of the projection conveyor 8 is increased, and the two-dot chain line d indicates the elevation angle of the projection conveyor 8 is 25 degrees upward. In this state, the powder raw material is projected at a speed of 210 m / min. As shown in FIG. 7, when the elevation angle of the projection conveyor 8 is 25 degrees, the horizontal arrival distance of the powder raw material reaches the pseudo particles in the drum mixer even when the speed of the projection conveyor 8 is 210 m / min. I understand that
  • the projection raw material is projected to the inside of the drum mixer after the projection conveyor 8 is inclined by the conveyor inclination mechanism 12 so that the elevation angle of the projection conveyor 8 becomes a predetermined angle.
  • the horizontal reach distance is increased, thereby reducing the conveying speed of the powder raw material conveyed by the projection conveyor 8 and projecting the powder raw material to a position outside the upper position of the granulated pseudo particle group inside the drum mixer. Therefore, a better sintered ore can be produced as a blast furnace raw material.
  • solid fuel-based powder raw material such as powder coke is granulated from the outlet side of the coating drum mixer 3 when granulating the pseudo particles calcined by the dwelloid type sintering machine 6.
  • the quasi-particles are granulated by projecting, since the sintered raw material introduced into the coating drum mixer 3 is quasi-particles, the solid fuel powder raw material is introduced from the inlet side of the coating drum mixer 3. You may make it project and granulate a pseudo particle. The same applies even if the powder material projected from the projection conveyor 8 is a limestone powder material.
  • FIG. 8 is a diagram showing a method for producing a sintered ore according to the second embodiment of the present invention.
  • the second embodiment is different from the first embodiment in that the disk pelletizer for granulating pseudo particles serves as a drum mixer, and the coating drum mixer 3 is different except that a single drum mixer 17 is used as the drum mixer.
  • the iron ore and SiO 2 -containing raw material are mixed and granulated by the drum mixer 17 to become pseudo particles, and the sintered raw material that has become pseudo particles is charged into the coating drum mixer 3.
  • the limestone powder raw material is projected from the charging side, and the powder coke as the solid fuel raw material is projected from the discharge side, thereby coating the pseudo particles.
  • the limestone powder raw material adheres to the surface of the pseudo raw material of the sintered raw material, and the powdery coke adheres to the outermost layer position to improve the productivity of the sintering, and the limestone powder raw material is simulated during the sintering. Because it exists in the particle surface layer part, it is possible to produce good sintered ore as a blast furnace raw material with high-strength calcium ferrite formed on the surface of the sintered ore mass and hematite with high reducibility generated inside the mass. it can.
  • the third embodiment shown in FIG. 10 and the fourth embodiment shown in FIG. 12 are also granulated by the drum mixer 17 to become pseudo particles, and the second embodiment is that the surface of the pseudo particles is coated with the coating drum mixer 3.
  • the powder coke and the limestone powder raw material which are solid fuel powder raw materials, are projected from the charging side of the coating drum mixer 3, and the pseudo particle surface is projected. Coating.
  • group powder raw material and the limestone type powder raw material are projected from the discharge side of the drum mixer 3 for coating, and the surface of a pseudo particle is coated.
  • a mixed layer of powder coke and solid fuel-based powder raw material is formed on the surface of the pseudo particles granulated by the drum mixer 17, and combustion occurs because the powder coke exists on the surface of the pseudo particles. Since the limestone powder raw material is present on the surface of the pseudo particle during sintering, high strength calcium ferrite is added to the surface of the sintered ore lump and inside the lump. Can produce high-reducible hematite and can produce a good sintered ore as a blast furnace raw material.
  • FIG. 9 shows a projection form in which particles are coated.
  • the limestone powder raw material 15B is projected from the charging side of the coating drum mixer 3, and the limestone powder raw material 15B is projected to a position outside the base of the pseudo particle group 16 charged in the coating drum mixer 3.
  • the powder coke 15A which is a solid fuel-based powder raw material, is projected from the discharge side of the coating drum mixer 3, and the powder coke 15A is projected to a position outside the base of the pseudo particle group 16 in the coating drum mixer 3. .
  • the coke that is the limestone powder raw material and the solid fuel powder raw material is mixed in advance or simultaneously cut out on the belt of the projection conveyor 8 to form a single layer. What is necessary is just to project in the drum mixer 3 for coating by the projection conveyor 8 of this. Or you may project the powder coke which is a limestone type powder raw material and a solid fuel type powder raw material using the separate projection conveyor 8, respectively.
  • the coating drum mixer 3 may be of a size that can ensure a residence time for coating the limestone powder raw material and / or the solid fuel powder raw material, up to 15 m in consideration of the coating residence time of 10 to 90 seconds.
  • a drum mixer having a length is preferred.
  • it can carry out without trouble by projecting a limestone powder raw material and / or a solid fuel powder raw material from the discharge side.
  • FIG. 14 shows a drum mixer 1A for mixing and a drum mixer 1B for granulation used as a drum mixer.
  • powder coke which is a solid fuel-based powder raw material is projected.
  • 10 shows a fifth embodiment in which powder coke coating is performed on the particle surface.
  • the iron ore and the SiO 2 -containing raw material are supplied to the mixing drum mixer 1A, and the limestone powder raw material is added in the transport process in the part where the mixed pseudo particles are partially formed.
  • powder coke which is a solid fuel-based powder raw material is projected, and powder coke coating is performed on the surface of the pseudo particles.
  • iron ore, SiO 2 -containing raw material, and powder coke that is a solid fuel-based powder raw material are supplied to the mixing drum mixer 1A and mixed, and on the discharge side of the granulating drum mixer 1B.
  • the limestone powder raw material is projected, and the surface of the pseudo particle is coated with the limestone powder raw material.
  • the seventh embodiment shown in FIG. 16 on the discharge side of the granulating drum mixer 1B, powder coke and limestone powder raw materials that are solid fuel powder materials are projected, and powder coke and limestone are projected on the surface of the pseudo particles. Coating of the raw powder material is performed. Also in this case, when coating the powder coke / limestone powder raw material, the powder coke which is the limestone powder raw material and the solid fuel powder raw material is mixed in advance, or is laminated on the belt of the projection conveyor 8 by simultaneous cutting. If the single projection conveyor 8 projects the form into the granulating drum mixer 1B or the powder coke that is the limestone powder raw material and the solid fuel powder raw material using different projection conveyors 8 respectively. As shown in FIG.
  • the limestone powder raw material 15B and the powder coke 15A may be projected from the discharge side of the granulating drum mixer 1B, and the limestone powder raw material is distant from the powder coke by the projection conveyor 8 in the figure.
  • the powder coke 15 is projected to the vicinity by another projection conveyor (not shown) disposed below the projection conveyor 8 of the limestone powder raw material. The is accomplished by projecting the position where the discharge side of the limestone-based powder material.
  • a drum mixer having a drum length of 12 to 20 m can be used.
  • a drum mixer having a longer drum length than the mixing drum mixer for example, a drum length of 16 to 25 m is used.
  • the drum mixer can be used.
  • FIGS. 18 to 20 are embodiments showing coating examples of powder coke and limestone powder raw materials that are solid fuel powder raw materials when a single drum mixer 17 is used as the drum mixer.
  • iron ore, SiO 2 -containing raw material, and limestone powder raw material are granulated with a drum mixer 17, and powder coke that is a solid fuel powder raw material is coated on the discharge side of the drum mixer 17. Is done.
  • iron ore, SiO 2 -containing raw material, and powder coke that is a solid fuel-based powder raw material are granulated by the drum mixer 17, and on the discharge side of the drum mixer 17, the surface of the pseudo particles is limestone-based.
  • the powder raw material is coated.
  • iron ore and SiO 2 -containing raw material are granulated by the drum mixer 17, and powder coke and limestone based solid fuel-based powder raw material are formed on the pseudo particle surface on the discharge side of the drum mixer 17.
  • the powder raw material is coated.
  • the single drum mixer 17 can be a drum mixer having a drum length of 20 to 25 m, and mixing and granulation can be performed by securing the granulation time of the sintered raw material to 300 to 500 seconds. Can do.
  • the present inventors investigated the CaO concentration of the sintered raw material granulated by the method shown in FIG. 23 (conventional method) and the sintered raw material granulated by the method of the present invention.
  • the investigation results are shown in FIG. In FIG. 21, “+8.0 mm”, “+4.75 mm”, “+2.75 mm”, “+1.0 mm”, “+0.5 mm”, and “+0.25 mm” have a particle diameter of 8.0 mm or more. .75 mm or more, 2.75 mm or more, 1.0 mm or more, 0.5 mm or more, 0.25 mm or more sintering raw materials are indicated, and “ ⁇ 0.25 mm” indicates a sintering raw material having a particle diameter of less than 0.25 mm.
  • the CaO concentration was investigated using the apparatus shown in FIG. When the CaO concentration of the sintered raw material obtained by the conventional method and the CaO concentration of the sintered raw material obtained by the method of the present invention are compared, the particle diameter of the sintered raw material obtained by the method of the present invention is 8.0 mm or more. It was found that the CaO concentration was lower than that of the sintered raw material obtained by the conventional method.
  • the sintered raw materials obtained by the method of the present invention those having a particle diameter of 2.8 mm or more and those having a particle diameter of 1.0 mm or more are higher in CaO concentration than the sintered raw materials obtained by the conventional method. It has been found. This means that the powder raw material charged in the drum mixer is suppressed from excessively adhering to the surface of the coarse quasi-particles segregated in the drum mixer, and uniform adhesion is realized.
  • the present inventors divided the sintering raw material obtained by the conventional method and the method of the present invention for each particle size, Firing was performed at 1300 ° C. for 5 minutes in an electric furnace. And the sample after baking was grind
  • the existing ratio of the hematite structure after firing is about 60% when the particle diameter is 8.0 mm or more.
  • the particle diameter of 4.75 mm is about 40%
  • the abundance ratio of the hematite structure after firing is 90% or more when the particle diameter is 8.0 mm or more, and the particle diameter is 4.75 mm. It became more than 70%.
  • the total abundance ratio of the hematite structure and the calcium ferrite structure after firing is about 60% when the particle size is 2.8 mm, whereas in the method of the present invention, the hematite structure and the calcium ferrite structure after firing.
  • the total abundance ratio was 70% or more when the particle diameter was 2.8 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Glanulating (AREA)

Abstract

高炉原料として良好な焼結鉱を製造することのできる焼結鉱の製造方法を提供する。ドラムミキサー3に擬似粒子コーティング用の粉原料15を装入するに際して、ドラムミキサー3に粉原料15を投射する投射コンベア8をドラムミキサー3に装入された擬似粒子群16の上方位置から外れた位置に移動させた後、粉原料15をドラムミキサー3に投射し、投射コンベア8から投射された粉原料15が擬似粒子群16の上に落下することを防止する。

Description

焼結鉱の製造方法および製造設備ならびに粉原料投射装置
 本発明は、高炉原料として用いられる焼結鉱を製造する方法とその製造設備に関する。また、本発明は焼結鉱を製造するときに用いられる粉原料投射装置に関する。
 高炉原料として用いられる焼結鉱は、粒径10mm以下の鉄鉱石を主原料とし、かつ珪石、蛇紋岩等のSiO含有原料と生石灰、石灰石等の石灰石系粉原料および粉コークス等の固体燃料系粉原料を副原料とする焼結原料をドラムミキサーで造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造されるのが一般的である。
 このような方法により製造される焼結鉱の被還元性は、高炉の操業を大きく左右する因子となる。例えば、焼結鉱の被還元性と高炉でのガス利用率との間には正の相関があり、高炉でのガス利用率は燃料比との間に負の相関がある。このため、焼結鉱の被還元性を向上させると、高炉での燃料比は低下する。また、焼結鉱の冷間強度も高炉での通気性を確保する上で重要な因子であり、各々の高炉では、焼結鉱の冷間強度に下限基準を設定して操業を行っている。従って、高炉にとって望ましい焼結鉱とは、被還元性に優れ、冷間強度が高いものであると言える。
 そこで、特許文献1あるいは特許文献2には、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーで造粒するに際し、ドラムミキサーの装入口から石灰石系粉原料と固体燃料系粉原料を除いた、鉄鉱石とSiO含有原料とからなる焼結原料を装入すると共に、ドラムミキサーの出側から石灰石系粉原料と固体燃料系粉原料を装入し、装入された石灰石系粉原料と固体燃料系粉原料を擬似粒子の外表面に付着させて焼結原料を造粒する方法が記載されている。
 また、特許文献3には、ドラムミキサーの装入口から焼結原料を装入すると共に、ドラムミキサーの出側から石灰石系粉原料と固体燃料系粉原料を装入し、装入された石灰石系粉原料と固体燃料系粉原料を擬似粒子の外表面に付着させて焼結原料を造粒するに際して、ドラムミキサーの出側から追加装入される石灰石系粉原料と固体燃料系粉原料の分散幅を拡げて擬似粒子の外表面に付着させるために、コンベアをドラムミキサーの軸方向に対し斜めに配置して、幅方向の装入位置を変更する技術が記載されている。
 また、特許文献4には、鉄鉱石とSiO含有原料を混合用ドラムミキサーに装入して混合攪拌し、次いで混合用ドラムミキサーから排出された混合物をディスクペレタイザーに供給して石灰石系粉原料と固体燃料系粉原料とを含まない擬似粒子を造粒した後、造粒された擬似粒子をコーティング用ドラムミキサーに装入すると共にコーティング用ドラムミキサーの内部に石灰石系粉原料と固体燃料系粉原料とを投射して焼結原料を造粒する方法が記載されている。
特許第3755452号公報 特許第3656632号公報 国際公開WO2004/055224パンフレット 特開2011-32577号公報
 特許文献1~4に記載された方法によると、被還元性に優れ、かつ冷間強度が高い高炉用焼結鉱を製造することが可能であるが、次のような問題点があった。すなわち、石灰石系粉原料や固体燃料系粉原料などの粉原料を図23(a)に示す投射コンベア8からドラムミキサー3に投射すると、投射コンベア8から投射された粉原料15の大部分は、粉原料15よりも先にドラムミキサー3に装入され造粒された擬似粒子群16の上に落下する。このとき擬似粒子群16の中に粗粒の擬似粒子16aが存在すると、擬似粒子群16の上に落下した粉原料15が粗粒擬似粒子16aの表面に過剰に付着した状態でドラムミキサー3から排出される。さらに、ドラムミキサー3の内面には付着物が生成されやすく、ドラムミキサー3の内面に付着した付着物が成長すると、付着物自身の付着力とドラムミキサー3の回転による遠心力でドラムミキサー3の内面に付着していた付着物16bが投射コンベア8の上に落下しやすい。このため、ドラムミキサー3の出側から粉原料15を投射コンベア8により供給する際には、投射コンベア8の先端がドラムミキサー3の内部に位置しないように遠方からの投射が必要であった。
 また、図23(b)に示すように、擬似粒子群16の上に投下された粉原料15はy軸方向(ドラムミキサー3の円周方向)に流れ落ちるものと、ドラムミキサー3の出口に向かって移動するものとに分かれ、領域αでは、被覆済みの擬似粒子に粉原料が再接触する。このため、ドラムミキサー3の内部に粉原料15を投射して擬似粒子の外表面を粉原料15でコーティングする際にコーティングむらが発生しやすくなり、高炉原料として良好な焼結鉱を製造することが難しいという問題があった。
 本発明は、上述した問題点に着目してなされたものであり、高炉原料として良好な焼結鉱を製造することのできる焼結鉱の製造方法および製造設備を提供することを目的とするものである。また、本発明の他の目的は、石灰石系粉原料や固体燃料系粉原料などの粉原料をドラムミキサーの内部に投射するときに好適な粉原料投射装置を提供することにある。
 上記目的を達成するために、本発明は、下記に記載の焼結鉱の製造方法、焼結鉱の製造設備と粉原料投射装置を、提供する。
(1)鉄鉱石を主原料とし、かつSiO含有原料および石灰石系粉原料や固体燃料系粉原料を副原料とする焼結原料をディスクペレタイザーで造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造方法であって、前記焼結原料の内、前記鉄鉱石と前記SiO含有原料とからなる原料を前記ディスクペレタイザーに装入して造粒し、次いで造粒後の擬似粒子をコーティング用ドラムミキサーに装入し、前記石灰石系粉原料および/または前記固体燃料系粉原料を投射する粉原料投射装置を前記ドラムミキサーに装入された擬似粒子群の上方位置から外れた位置に移動させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする焼結鉱の製造方法。
(2)鉄鉱石を主原料とし、かつSiO含有原料および石灰石系粉原料や固体燃料系粉原料を副原料とする焼結原料をドラムミキサーで造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造方法であって、前記焼結原料の内、前記鉄鉱石と前記SiO含有原料とからなる原料を前記ドラムミキサーに装入して造粒し、次いで造粒後の擬似粒子をコーティング用ドラムミキサーに装入し、前記石灰石系粉原料および/または前記固体燃料系粉原料を投射する粉原料投射装置を前記ドラムミキサーに装入された擬似粒子群の上方位置から外れた位置に移動させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする焼結鉱の製造方法。
(3)鉄鉱石を主原料とし、かつSiO含有原料および石灰石系粉原料や固体燃料系粉原料を副原料とする焼結原料をドラムミキサーで造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造方法であって、前記焼結原料の内、前記鉄鉱石と前記SiO含有原料とからなる原料を前記ドラムミキサーに装入して造粒し、次いで前記ドラムミキサーの排出側に前記石灰石系粉原料および/または前記固体燃料系粉原料を投射する粉原料投射装置を前記ドラムミキサーに装入された擬似粒子群の上方位置から外れた位置に移動させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする焼結鉱の製造方法。
(4)前記粉原料投射装置の移動位置が前記擬似粒子群の裾野を外れた位置であることを特徴とする(1)~(3)のいずれかに記載の焼結鉱の製造方法。
(5)前記粉原料投射装置として、前記粉原料を前記ドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車と、を有するものを用い、前記投射コンベア、前記コンベア支持台車および前記ガイドレールを前記ガイドレール支持台車により所定位置に移動させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする(1)~(3)のいずれかに記載の焼結鉱の製造方法。 
(6)前記粉原料投射装置として、前記コンベア支持台車に対して前記投射コンベアを上下方向に傾けるコンベア傾斜機構を有するものを用い、前記投射コンベアの先端部が上向きになるように前記投射コンベアを前記コンベア傾斜機構により傾斜させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする(5)に記載の焼結鉱の製造方法。
(7)前記コーティング用ドラムミキサーの内部に前記粉原料を前記ドラムミキサーの出口側から装入することを特徴とする(1)~(6)のいずれかに記載の焼結鉱の製造方法。
(8)前記コーティング用ドラムミキサーの内部に前記粉原料を前記ドラムミキサーの入口側から装入することを特徴とする(1)~(6)のいずれかに記載の焼結鉱の製造方法。
(9)鉄鉱石を主原料とし、かつSiO含有原料、石灰石系粉原料および固体燃料系粉原料を副原料とする焼結原料を造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造設備であって、
 前記焼結原料を造粒するディスクペレタイザーと、前記焼結原料の表面をコーティングするコーティング用ドラムミキサーと、該ドラムミキサーの内部に粉原料を投射する粉原料投射装置とを備え、
 前記粉原料を前記コーティング用ドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記コーティング用ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記コーティング用ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車とを前記粉原料投射装置が有することを特徴とする焼結鉱の製造設備。
(10)鉄鉱石を主原料とし、かつSiO含有原料、石灰石系粉原料および固体燃料系粉原料を副原料とする焼結原料を造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造設備であって、
 前記焼結原料を造粒するドラムミキサーと、前記焼結原料の表面をコーティングするコーティング用ドラムミキサーと、該コーティング用ドラムミキサーの内部に粉原料を投射する粉原料投射装置とを備え、
 前記粉原料を前記コーティング用ドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記コーティング用ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記コーティング用ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車とを前記粉原料投射装置が有することを特徴とする焼結鉱の製造設備。
(11)鉄鉱石を主原料とし、かつSiO含有原料、石灰石系粉原料および固体燃料系粉原料を副原料とする焼結原料を造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造設備であって、
 前記焼結原料を造粒するドラムミキサーと、該造粒するドラムミキサーの排出側からドラムミキサー内部に粉原料を投射する粉原料投射装置とを備え、
 前記粉原料を前記ドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車とを前記粉原料投射装置が有することを特徴とする焼結鉱の製造設備。
(12)前記コンベア支持台車に対して前記投射コンベアを上下方向に傾けるコンベア傾斜機構をさらに備えたことを特徴とする(9)~(11)のいずれかに記載の焼結鉱の製造設備。
(13)焼結鉱を製造するときに用いられる粉原料投射装置であって、前記焼結鉱の副原料である固体燃料系粉原料または石灰石系粉原料をドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車とを備えたことを特徴とする粉原料投射装置。
(14)前記コンベア支持台車に対して前記投射コンベアを上下方向に傾けるコンベア傾斜機構をさらに備えたことを特徴とする(13)に記載の粉原料投射装置。
 (1)~(10)の発明によれば、ドラムミキサーに粉原料を装入する際にドラムミキサーに装入され造粒された擬似粒子群の上に粉原料が落下することを防止でき、粉原料投射装置から投射された粉原料がドラムミキサーの内周面上に落下するため、粉原料投射装置から投射された粉原料がドラムミキサーの内周面上に堆積する擬似粒子堆積層の上に滞留したままの状態でドラムミキサーから排出されることを抑制することが可能となる。これにより、擬似粒子の外表面を粉コークス等の固体燃料系粉原料や石灰石系粉原料でコーティングする際に擬似粒子の粒子径に左右されることなく擬似粒子の外表面を固体燃料系粉原料や石灰石系粉原料でコーティングすることが可能となるので、高炉原料として良好な焼結鉱を製造することができる。
 (11),(12)の発明によれば、焼結鉱の主原料とSiO含有原料とからなる混合物を造粒して得られた擬似粒子をドラムミキサーに装入して擬似粒子の外表面を固体燃料系粉原料や石灰石系粉原料でコーティングする際に固体燃料系粉原料や石灰石系粉原料を擬似粒子の粒子径に左右されることなく擬似粒子の外表面に付着させることが可能となるので、石灰石系粉原料や固体燃料系粉原料などの粉原料をドラムミキサーの内部に投射するときに好適な粉原料投射装置を提供できる。
 (13),(14)の発明によれば、石灰石系粉原料や固体燃料系粉原料などの粉原料をドラムミキサーの内部に投射するときにより好適な粉原料投射装置を提供できる。
焼結鉱製造設備の一例を示す図である。 粉原料投射装置の一例を示す図である。 図2に示す粉原料投射装置の作用を説明するための図である。 石灰石系粉原料や固体燃料系粉原料を除いた焼結原料をドラムミキサーで混合・造粒する場合の一実施形態を説明するための図である。 ドラムミキサーから排出された擬似粒子の外表面を調査した結果を示す図である。 図2に示す投射コンベアの粉原料搬送速度と投射コンベアから投射された粉原料により擬似粒子の表面をコーティングするコーティング時間との関係を調査した結果を示す図である。 図2に示す粉原料投射装置の投射コンベアから投射された粉原料の水平到達距離と投射コンベア先端からの粉原料の落下高さとの関係を調査した結果を示す図である。 本発明の第2の実施形態に係る焼結鉱の製造方法を示す図である。 第2の実施形態でコーティング用ドラムミキサー内に投射される石灰石系粉原原料と固体燃料系粉原料の投射位置を示す図である。 本発明の第3の実施形態に係る焼結鉱の製造方法を示す図である。 第3の実施形態でコーティング用ドラムミキサー内に投射される石灰石系粉原原料と固体燃料系粉原料の投射位置を示す図である。 本発明の第4の実施形態に係る焼結鉱の製造方法を示す図である。 第4の実施形態でコーティング用ドラムミキサー内に投射される石灰石系粉原原料と固体燃料系粉原料の投射位置を示す図である。 本発明の第5の実施形態に係る焼結鉱の製造方法を示す図である。 本発明の第6の実施形態に係る焼結鉱の製造方法を示す図である。 本発明の第7の実施形態に係る焼結鉱の製造方法を示す図である。 第7の実施形態で造粒用ドラムミキサー内に投射される石灰石系粉原原料と固体燃料系粉原料の投射位置を示す図である。 本発明の第8の実施形態に係る焼結鉱の製造方法を示す図である。 本発明の第9の実施形態に係る焼結鉱の製造方法を示す図である。 本発明の第10の実施形態に係る焼結鉱の製造方法を示す図である。 従来方法で造粒された焼結原料と本発明方法で造粒された焼結原料のCaO濃度を示す図である。 焼成後の焼結原料中に存在するヘマタイト組織、マグネタイト組織、カルシウムフェライト組織およびシリケートスラグ組織の存在比率を示す図である。 従来技術の問題点を説明するための図である。
 以下、図1~図22を参照して本発明の実施の形態について説明する。
 図1は高炉用焼結鉱を製造するときに用いられる焼結鉱製造設備の一例を示す図であり、図1に示される焼結鉱製造設備は混合用ドラムミキサー1、ディスクペレタイザー2、コーティング用ドラムミキサー3、石灰石系粉原料投射装置4、固体燃料系粉原料投射装置5およびドワイトロイド式焼結機6を備えている。
 混合用ドラムミキサー1は焼結鉱の主原料をSiO含有原料と共に混合するものであって、円筒状に形成されたミキサー本体と、このミキサー本体を回転駆動する駆動モータとで構成されている。なお、焼結鉱の主原料としては、粗粒鉄鉱石、ペレットフィード、返鉱などが挙げられる。
 ディスクペレタイザー2は混合用ドラムミキサー1から排出された混合物を造粒するものであって、このディスクペレタイザー2で造粒された混合物は例えば粒径が3mm~13mm程度の擬似粒子となってコーティング用ドラムミキサー3に供給される。
 コーティング用ドラムミキサー3はディスクペレタイザー2で造粒された擬似粒子の外表面を石灰石系粉原料や固体燃料系粉原料でコーティングするためのものであって、円筒状に形成されたミキサー本体と、このミキサー本体を回転駆動する駆動モータとで構成されている。
 石灰石系粉原料投射装置4は石灰石等の石灰石系粉原料をコーティング用ドラムミキサー3の内部に投射するものであって、コーティング用ドラムミキサー3の入口側に配置されている。
 固体燃料系粉原料投射装置5は粉コークス等の固体燃料系粉原料をコーティング用ドラムミキサー3の内部に投射するものであって、コーティング用ドラムミキサー3の出口側に配置されている。
 ドワイトロイド式焼結機6はコーティング用ドラムミキサー3から排出された擬似粒子を焼成するものであって、擬似粒子を図中矢印方向に水平搬送するコンベア61と、このコンベア61上の擬似粒子を下方から吸引する複数のブロワー62とを有している。また、ドワイトロイド式焼結機6は粉コークス等の固体燃料系粉原料を点火する点火炉63を有し、この点火炉63はコンベア61の上方に配置されている。
 図1に示される焼結鉱製造設備により高炉用焼結鉱を製造する場合は、まず、焼結鉱の主原料をSiO含有原料と共に混合用ドラムミキサー1に装入する。次に、混合用ドラムミキサー1を回転させ、装入された主原料とSiO含有原料を水と共に混合する。そして、混合用ドラムミキサー1から排出された混合物をディスクペレタイザー2に供給し、主原料とSiO含有原料とからなる混合物を焼結原料の擬似粒子として造粒する。
 このようして石灰石系粉原料と固体燃料系粉原料を含まない擬似粒子をディスクペレタイザー2で造粒したならば、造粒された擬似粒子をコーティング用ドラムミキサー3に装入し、コーティング用ドラムミキサー3を回転させる。次に、石灰石系粉原料投射装置4からコーティング用ドラムミキサー3の内部に石灰石系粉原料を装入すると共に、固体燃料系粉原料投射装置5からコーティング用ドラムミキサー3の内部に固体燃料系粉原料を装入し、コーティング用ドラムミキサー3に装入された粉原料で擬似粒子の表面をコーティングして焼結原料を造粒する。そして、コーティング用ドラムミキサー3から排出された焼結原料をドワイトロイド式焼結機6に供給して高炉用焼結鉱を製造する。
 図2はコーティング用ドラムミキサーの内部に石灰石系粉原料や固体燃料系粉原料などの粉原料を投射するときに用いられる粉原料投射装置の一例を示す図であり、図2に示される粉原料投射装置7は投射コンベア8、コンベア支持台車9、左右一対のガイドレール10、ガイドレール支持台車11およびコンベア傾斜機構12を備えている。
 投射コンベア8はコーティング用ドラムミキサー3の内部に粉原料を搬送して投射するものであって、コンベア支持台車9の上に搭載されている。
 コンベア支持台車9は投射コンベア8をコーティング用ドラムミキサー3の軸方向に移動可能に支持するものであって、ガイドレール10の上に走行可能に載置されている。
 ガイドレール10はコンベア支持台車9をコーティング用ドラムミキサー3の軸方向に案内するものであって、ガイドレール支持台車11の上に設置されている。
 ガイドレール支持台車11はガイドレール10をコーティング用ドラムミキサー3の軸方向と直交する横方向に移動可能に支持するものであって、コーティング用ドラムミキサー3の軸方向と直交する横方向に走行する複数(例えば6つ)の走行車輪13を有している。
 コンベア傾斜機構12はコンベア支持台車9に対して投射コンベア8を上下方向に傾けるものであって、投射コンベア8とコンベア支持台車9との間に配置された複数のジャッキ14から構成されている。
 図3は図2に示す粉原料投射装置の作用を説明するための図であり、上述した粉原料投射装置7を用いてコーティング用ドラムミキサー3の内部に石灰石系粉原料や固体燃料系粉原料を投射する場合は、図3(a)に示すように、ドラムミキサー3に装入された擬似粒子群16の上方に投射コンベア8の先端部が位置しないように投射コンベア8、コンベア支持台車9及びガイドレール10をガイドレール支持台車11によりコーティング用ドラムミキサー3の軸方向と直交する横方向に移動させるとともに、投射コンベア8の俯仰角度が所定の角度(例えば25°前後)となるように投射コンベア8をコンベア傾斜機構12により傾斜させる。そして、投射コンベア8が所定位置に移動したならば投射コンベア8から粉原料15をコーティング用ドラムミキサー3の内部に投射する。
 このとき投射コンベア8から投射された粉原料15は、図3(b)に示す位置Aに落下する。この位置Aはドラムミキサー3に装入された擬似粒子群16の裾野を外れた位置であり、投射コンベア8から投射された粉原料15はドラムミキサー3の内周面上に落下する。
 投射コンベア8から投射された粉原料15がドラムミキサー3の内周面上に落下すると、ドラムミキサー3の内周面上に落下した粉原料15は、図3(b)に矢印で示すように、ドラムミキサー3の回転に伴ってドラムミキサー3の円周方向に相対移動する。そして、ドラムミキサー3の円周方向に相対移動した粉原料15が図3(b)に示す位置Bに到達すると、擬似粒子群16の上面側に回り込み、擬似粒子群16の上面部全体にわたって供給される。このとき擬似粒子群16の上面部に供給された粉原料15は各擬似粒子の表面に付着し、擬似粒子の表面を均一に被覆する。
 このように、石灰石系粉原料や固体燃料系粉原料などの粉原料15をドラムミキサー3に装入するに際して、粉原料投射装置7をドラムミキサー3に装入された擬似粒子群16の上方位置から外れた位置に移動させた後、粉原料15をドラムミキサー3に装入すると、粉原料投射装置7の投射コンベア8から投射された粉原料15がドラムミキサー3の内周面上に落下する。これにより、粉原料投射装置7から投射された粉原料15が擬似粒子群16の上に落下し、粗粒擬似粒子16aの表面に過剰に付着した状態でドラムミキサー3から排出されることを抑制できると共に、表面に粉原料15が均一に付着した焼結原料を造粒することが可能となる。従って、焼結鉱の主原料とSiO含有原料とからなる混合物を造粒して得られた擬似粒子をコーティング用ドラムミキサー3に装入して擬似粒子の外表面を固体燃料系粉原料や石灰石系粉原料でコーティングする際に、固体燃料系粉原料や石灰石系粉原料を擬似粒子の粒子径に左右されることなく擬似粒子16の外表面に付着させることができる。
 また、ここでいう擬似粒子群の裾野を外れた位置とは、ドラムミキサー3の回転による遠心力と自身の付着力でドラムミキサー内面に付着していた付着物が落下しやすい位置(図23参照)から外れた位置のことであり、この位置が粉原料15の供給位置となるため、粉原料15を供給する際、ベルトコンベアによる粉原料供給で、その先端がドラムミキサー3の内部に位置したとしても許容される位置となる利点がある。
 また、投射コンベア8の俯仰角度が所定の角度となるように投射コンベア8をコンベア傾斜機構12により傾斜させると、投射コンベア8から投射される粉原料15の水平到達距離が投射コンベア8を傾斜させない場合と比較して長くなるので、投射コンベア8により搬送される粉原料15の搬送速度を小さくしてコーティング用ドラムミキサー3の内部に粉原料15を投射することができる。
 また、投射コンベア8の先端部をコーティング用ドラムミキサー3の内部に奥深くまで挿入しなくても粉原料15の落下位置を所定の位置に確保することが可能となり、これにより、コーティング用ドラムミキサー3の内面から落下する落下物によって投射コンベア8が損傷することを防止することができる。
 さらにまた、粉原料15をドラムミキサー3に装入する際に粉原料投射装置7の投射コンベア8をドラムミキサー3に装入された擬似粒子群16の上方位置から外れた位置に移動させることで、ドラムミキサー3の内面から落下する落下物の落下衝撃を受けない位置に投射コンベア8が位置することになるため、投射コンベア8の先端部をコーティング用ドラムミキサー3の内部に挿入したとしても、投射コンベア8が損傷を受けることが軽減される。
 また、図1で示した例は、ディスクペレタイザーで造粒し、固体燃料系粉原料や石灰石系粉原料をコーティング用ドラムミキサーで被覆する例を示しているが、焼結用原料をドラムミキサーを用いて造粒し、擬似粒子とした焼結原料に対し、固体燃料系粉原料や石灰石系粉原料を被覆する場合も同様であり、コーティング用ドラムミキサーを用いることができる。
 さらに、ドラムミキサーによる造粒の場合は、ドラムミキサーの排出側に固体燃料系粉原料や石灰石系粉原料を供給することによりドラムミキサー自体がコーティング用ドラムミキサーと同じ機能を果たすことになる。
 すなわち、焼結原料のうち、鉄鉱石とSiO含有原料とからなる原料をドラムミキサーに装入し、次いでドラムミキサーの排出側に石灰石系粉原料および/または固体燃料系粉原料を投射する粉原料投射装置をドラムミキサーに装入され造粒された擬似粒子群の上方位置から外れた位置に移動させた後、粉原料をドラムミキサーに装入することにより、ドラムミキサー内で造粒され擬似粒子とした焼結原料に対し、固体燃料系粉原料や石灰石系粉原料を被覆することができる。
 図4は、焼結原料を混合・造粒するドラムミキサー17の排出側に粉原料(固体燃料系粉原料や石灰石系粉原料)投射位置を配置し、粉原料投射装置により固体燃料系粉原料、石灰石系粉原料のいずれかを投射した図であり、図3で示すコーティング用ドラムミキサー3の機能を、ドラムミキサー17の排出側に持たせた例である。図4の場合は、ドラムミキサー17内の排出側内部位置が、粉原料の投射位置となる。すなわち、焼結原料は、ドラムミキサー17の装入側からドラムミキサー17内に装入され、装入された焼結原料はドラムミキサー17の回転によって混合・造粒され、排出側では焼結原料は擬似粒子化されている。この排出側を粉原料の投射位置とするのであり、投射位置は図3と同様にドラムミキサー17内の擬似粒子群16の裾野を外れた位置であり、投射コンベア8から投射された固体燃料系粉原料および/または石灰石系粉原料15をドラムミキサー17の内周面上に落下させるのである。
 なお、ドラムミキサー17は、単体で構成されるほか、混合・造粒機能の各機能に分担された、混合用ドラムミキサー及び造粒用ドラムミキサーとして2機のドラムミキサーとして使用が行われているものであり、この場合は、造粒用ドラムミキサーの排出側を粉原料の投射位置とする。
 コーティング用ドラムミキサー3から排出された擬似粒子およびドラムミキサー17の排出側で粉原料を投射し排出された擬似粒子の外表面を調査した結果を図5に示す。図5(a)は図23(a)に示す位置に投射コンベア8を位置させた状態で粉コークスをコーティング用ドラムミキサー3の内部に投射した場合を示し、図5(b)は図3(b)に示す位置に投射コンベア8を位置させた状態で粉コークスをコーティング用ドラムミキサー3の内部に投射した場合を示している。また、図5の「+8.0mm」は粒子径が8.0mm以上の擬似粒子を示し、「-0.25mm」は粒子径が0.25mm未満の擬似粒子を示している。
 投射コンベア8が図23(a)に示す位置にある場合は、図5(a)に示すように、コーティング用ドラムミキサー3に装入された擬似粒子のうち粒子径が4.75mm以上のものに粉コークスが多く付着する。これに対し、投射コンベア8が図3(b)に示す位置にある場合は、図5(b)に示すように、コーティング用ドラムミキサー3に装入された擬似粒子のうち最も多く存在する粒子径(1.0~2.8mm)のものや粒子径が2.8mmより小さいものにも粉コークスが付着することがわかる。これは、ドラムミキサー内部において、造粒物(擬似粒子)の堆積面では、粒度偏析が起こっており、堆積面の上層ほど粗粒のものが多く存在し、堆積面の下層ほど細粒のものが多いことが知られている。
本発明によると、堆積面の上層部に存在する粗粒造粒物への外装材(石灰石系粉原料や固体燃料系粉原料)の付着過多を抑制できることを示している。
 したがって、ドラムミキサーの内部に粉コークス等の固体燃料系粉原料を投射する装置として、図2に示した粉原料投射装置7を用いることで、焼結鉱の主原料とSiO含有原料とからなる混合物を造粒して得られた擬似粒子をドラムミキサーに装入して擬似粒子の外表面を固体燃料系粉原料でコーティングする際に固体燃料系粉原料を擬似粒子の粒子径に左右されることなく擬似粒子の外表面に付着させることが可能となるので、高炉原料として良好な焼結鉱を製造することができる。
 図6は図2に示す投射コンベアの粉原料搬送速度と投射コンベアから投射された粉原料により擬似粒子の表面をコーティングするコーティング時間との関係を調査した結果を示す図であり、図6に示されるように、投射コンベア8の速度を増加させると、コーティング用ドラムミキサー3の内周面に落下する粉原料の落下範囲が広くなり、コーティング時間にばらつきが発生しやすくなる。これを防止するためには投射コンベア8の速度を小さくする必要があるが、投射コンベア8の速度を小さくすると投射コンベア8から放出された固体燃料系粉原料がドラムミキサー内の擬似粒子まで到達しない可能性がある。
 図2に示す粉原料投射装置7の投射コンベア8から投射された粉原料の水平到達距離と投射コンベア先端からの粉原料の落下高さとの関係を調査した結果を図7に示す。
 図7中実線aは投射コンベア8を水平にした状態で粉原料を240m/minの速度で投射した場合を示し、一点鎖線bはコーティング用ドラムミキサー3の内部に突出する投射コンベア8の突出量を300mmにした状態で粉原料を210m/minの速度で投射した場合を示している。
 また、図7中破線cは投射コンベア8の高さを高くした状態で粉原料を210m/minの速度で投射した場合を示し、二点鎖線dは投射コンベア8の俯仰角度を上向きに25度にした状態で粉原料を210m/minの速度で投射した場合を示している。
 図7に示されるように、投射コンベア8の俯仰角度を25度にすると、投射コンベア8の速度が210m/minであっても粉原料の水平到達距離がドラムミキサー内の擬似粒子に届く距離となることがわかる。
 したがって、上述のように、投射コンベア8の俯仰角度が所定の角度となるように投射コンベア8をコンベア傾斜機構12により傾斜させてから粉原料をドラムミキサーの内部に投射することで、粉原料の水平到達距離が増大し、これにより、投射コンベア8により搬送される粉原料の搬送速度を小さくしてドラムミキサー内部の造粒された擬似粒子群の上方位置から外れた位置に粉原料を投射することが可能となるので、高炉原料としてより良好な焼結鉱を製造することができる。
 上述した本発明の第1の実施形態では、ドワイトロイド式焼結機6で焼成される擬似粒子を造粒する際に粉コークス等の固体燃料系粉原料をコーティング用ドラムミキサー3の出口側から投射して擬似粒子を造粒するようにしたが、コーティング用ドラムミキサー3に導入される焼結原料は擬似粒子となっているため、固体燃料系粉原料をコーティング用ドラムミキサー3の入口側から投射して擬似粒子を造粒するようにしてもよい。また、投射コンベア8から投射される粉原料が石灰石系粉原料であっても同様である。
 図8は、本発明の第2の実施形態に係る焼結鉱の製造方法を示す図である。この第2の実施形態が第1の実施形態と異なる点は擬似粒子を造粒するディスクペレタイザーがドラムミキサーとなり、ドラムミキサーとして単一のドラムミキサー17を用いる点が異なる他はコーティング用ドラムミキサー3を用いる点で同じである。図8に示す実施形態では、鉄鉱石、SiO2含有原料がドラムミキサー17で混合・造粒されて擬似粒子となり、擬似粒子となった焼結原料がコーティング用ドラムミキサー3に装入される。そして、コーティング用ドラムミキサー3において、その装入側から石灰石系粉原料が投射され、排出側から固体燃料系原料である粉コークスが投射されることで擬似粒子のコーティングが行われる。その結果、焼結原料の擬似粒子表面に石灰石系粉原料が付着し、その最外層位置に粉コークスが付着することで焼結の生産性が向上し、しかも焼結時に石灰石系粉原料が擬似粒子表層部に存在するため、焼結鉱の塊表面に強度の高いカルシウムフェライトを、また塊内部には被還元性の高いヘマタイトを生成した、高炉原料として良好な焼結鉱を製造することができる。
 図10に示す第3の実施形態や図12に示す第4の実施形態も、ドラムミキサー17により造粒されて擬似粒子となり、コーティング用ドラムミキサー3で擬似粒子表面をコーティングする点では第2の実施形態と同じであるが、図10に示す第3の実施形態では、コーティング用ドラムミキサー3の装入側から固体燃料系粉原料である粉コークスと石灰石系粉原料を投射して擬似粒子表面のコーティングを行っている。一方、図12に示す第4の実施形態では、コーティング用ドラムミキサー3の排出側から固体燃料系粉原料である粉コークスと石灰石系粉原料を投射して擬似粒子表面のコーティングを行っている。
 図10及び図12に示す実施形態では、ドラムミキサー17で造粒された擬似粒子の表面に粉コークスと固体燃料系粉原料の混合層が形成され、粉コークスが擬似粒子表面に存在するため燃焼性が良好となり、焼結の生産性が向上し、しかも焼結時に石灰石系粉原料が擬似粒子表層部に存在するため、焼結鉱の塊表面に強度の高いカルシウムフェライトを、また塊内部には被還元性の高いヘマタイトを生成した、高炉原料として良好な焼結鉱を製造することができる。
 なお、図8に示すコーティング用ドラムミキサー3の使用において、コーティング用ドラムミキサー3の装入側から石灰石系粉原料が投射され、排出側から固体燃料系粉原料である粉コークスが投射されて擬似粒子のコーティングが行われる投射形態を図9に示す。
コーティング用ドラムミキサー3の装入側より、石灰石系粉原料15Bが投射され、コーティング用ドラムミキサー3内に装入された擬似粒子群16の裾野を外れた位置に石灰石系粉原料15Bを投射する。一方、固体燃料系粉原料である粉コークス15Aは、コーティング用ドラムミキサー3の排出側から投射し、コーティング用ドラムミキサー3内の擬似粒子群16の裾野を外れた位置に粉コークス15Aを投射する。
 図10及び図12に示した実施形態では、石灰石系粉原料および固体燃料系粉原料である粉コークスを、予め混合、あるいは投射コンベア8のベルト上に同時切り出しすることにより積層状態とし、単一の投射コンベア8により、コーティング用ドラムミキサー3内に投射すればよい。または、石灰石系粉原料および固体燃料系粉原料である粉コークスをそれぞれ別の投射コンベア8を用いて投射してもよい。
 擬似粒子表面に石灰石系粉原料、擬似粒子の最外層に粉コークス層をコーティングする場合、図10に示す実施形態では、図11に示すように、コーティング用ドラムミキサー3の装入側から石灰石系粉原料15Bと粉コークス15Aを投射し、コーティング用ドラムミキサー3内に石灰石系粉原料15B、それより排出側位置となる部分に粉コークス15Aを投射すればよく、粉コークス15Aを投射する投射コンベア8より下方位置で別の投射コンベア(図示省略)で石灰石系粉原料15Bを投射することで達成される。
 図12に示す実施形態では、図13に示すように、コーティング用ドラムミキサー3の排出側から石灰石系粉原料と粉コークスをそれぞれ投射し、コーティング用ドラムミキサー3内に石灰石系粉原料15B、それより排出側位置となる部分に粉コークス15Aを投射すればよく、石灰石系粉原料投射コンベア8と粉コークス投射コンベア(図示省略)とを用い、遠方になる石灰石系粉原料15Bの投射を石灰石系粉原料投射コンベア8で、近傍になる粉コークス15Aの投射を、石灰石系粉原料投射コンベア8より下方に配置した粉コークス投射コンベア(図示省略)で行えばよい。なお、コーティング用ドラムミキサー3は、石灰石系粉原料および/または固体燃料系粉原料をコーティングする滞留時間を確保できる大きさとすればよく、10~90秒のコーティング用滞留時間を考慮すると15mまでの長さを有するドラムミキサーが好ましい。また、長さの長いドラムミキサーをコーティング用ドラムミキサー3として使用する場合は、その排出側から石灰石系粉原料および/または固体燃料系粉原料を投射することで支障なく実施できる。
 図14は、ドラムミキサーとして混合用ドラムミキサー1Aと、造粒用ドラムミキサー1Bとを使用し、造粒用ドラムミキサー1Bの排出側で、固体燃料系粉原料である粉コークスが投射され、疑似粒子表面に粉コークスコーティングが行われる第5の実施形態を示している。図14に示す第5の実施形態では、鉄鉱石、SiO2含有原料が混合用ドラムミキサー1Aに供給され、混合疑似粒子が一部形成された部分で石灰石系粉原料が輸送過程で添加され、造粒用ドラムミキサー1Bの排出側で、固体燃料系粉原料である粉コークスが投射され、疑似粒子表面に粉コークスコーティングが行われる。このドラムミキサーとして混合用ドラムミキサー1A、造粒用ドラムミキサー1Bを使用するケースでは、固体燃料系粉原料である粉コークスの投射に代え、図15、図16に示すように、石灰石系粉原料の投射に代えることもできる。
 図15に示す第6の実施形態では、鉄鉱石、SiO2含有原料、固体燃料系粉原料である粉コークスが混合用ドラムミキサー1Aに供給されて混合され、造粒用ドラムミキサー1Bの排出側で、石灰石系粉原料が投射され疑似粒子表面に石灰石系粉原料のコーティングが行われる。
 また、図16に示す第7の実施形態では、造粒用ドラムミキサー1Bの排出側で、固体燃料系粉原料である粉コークスおよび石灰石系粉原料が投射され、疑似粒子表面に粉コークスと石灰石系粉原料のコーティングが行われる。
 この場合も、粉コークス・石灰石系粉原料のコーティングを行う場合は、石灰石系粉原料および固体燃料系粉原料である粉コークスを予め混合、あるいは投射コンベア8のベルト上に同時切り出しにより積層状態とし、単一の投射コンベア8により、造粒用ドラムミキサー1B内に投射する形態、または、石灰石系粉原料および固体燃料系粉原料である粉コークスをそれぞれ別の投射コンベア8を用いて投射すればよく、図17に示すように、造粒用ドラムミキサー1Bの排出側から石灰石系粉原料15B、粉コークス15Aを投射すればよく、図中の投射コンベア8で石灰石系粉原料を粉コークスより遠方に投射し、石灰石系粉原料の投射コンベア8より下方に配した別の投射コンベア(図示省略)により、近傍位置となる粉コークス15Aを石灰石系粉原料より排出側となる位置に投射することで達成される。混合用ドラムミキサー1Aとしてはドラム長さが12~20mのドラムミキサーを使用でき、造粒用ドラムミキサー1Bとしてはドラム長さが混合用ドラムミキサーより長いドラムミキサー、例えばドラム長さが16~25mのドラムミキサーを使用できる。
 図18~図20は、ドラムミキサーとして単一のドラムミキサー17を用いる際の、固体燃料系粉原料である粉コークスおよび石灰石系粉原料のコーティング例を示す実施形態である。図18に示す第8の実施形態では、鉄鉱石、SiO2含有原料、石灰石系粉原料をドラムミキサー17で造粒し、ドラムミキサー17の排出側で固体燃料系粉原料である粉コークスのコーティングが行われる。
 図19に示す第9の実施形態では、鉄鉱石、SiO2含有原料、固体燃料系粉原料である粉コークスをドラムミキサー17で造粒し、ドラムミキサー17の排出側で疑似粒子表面に石灰石系粉原料のコーティングが行われる。
 図20に示す第10の実施形態では、鉄鉱石、SiO2含有原料をドラムミキサー17で造粒し、ドラムミキサー17の排出側で疑似粒子表面に固体燃料系粉原料である粉コークスと石灰石系粉原料のコーティングが行われる。
 なお、単一のドラムミキサー17は、ドラム長さが20~25mのドラムミキサーを使用でき、焼結原料の造粒用時間を300~500秒に確保することで、混合・造粒を行うことができる。
 本発明者らは、図23に示す方法(従来法)で造粒された焼結原料と本発明方法で造粒された焼結原料のCaO濃度について調査した。その調査結果を図21に示す。
 なお、図21の「+8.0mm」、「+4.75mm」、「+2.75mm」、「+1.0mm」、「+0.5mm」、「+0.25mm」は粒子径が8.0mm以上、4.75mm以上、2.75mm以上、1.0mm以上、0.5mm以上、0.25mm以上の焼結原料を示し、「-0.25mm」は粒子径が0.25mm未満の焼結原料を示している。また、CaO濃度の調査は、図12または図14に示す装置を用いて行った。
 従来法で得られた焼結原料のCaO濃度と本発明方法で得られた焼結原料のCaO濃度とを比較すると、本発明方法で得られた焼結原料のうち粒子径が8.0mm以上のものと、4.75mm以上のものは、従来法で得られた焼結原料よりもCaO濃度が低くなることが判明した。
 また、本発明方法で得られた焼結原料のうち粒子径が2.8mm以上のものと、1.0mm以上のものは、従来法で得られた焼結原料よりもCaO濃度よりも高くなることが判明した。これは、ドラムミキサーに装入された粉原料がドラムミキサー内で偏析した粗粒擬似粒子の表面に過剰に付着することが抑制され、均一な付着が実現されていることを意味する。
 次に、本発明者らは、石灰石系粉原料の付着状態が焼結性状に及ぼす影響を調査するため、従来法と本発明方法で得られた焼結原料を粒度毎に分け、大気雰囲気の電気炉にて1300℃で5分間焼成した。そして、焼成後のサンプルを粉砕し、粉末X線解析法により、ヘマタイト組織、マグネタイト組織、カルシウムフェライト組織、シリケートスラグ組織の存在割合を算出した。その結果を表1と図22に示す。
Figure JPOXMLDOC01-appb-T000001
 従来法で得られた焼結原料と本発明法で得られた焼結原料とを比較すると、従来法では焼成後のヘマタイト組織の存在比率が粒子径8.0mm以上のもので60%程度、粒子径4.75mmのもので40%程度になるのに対し、本発明方法では焼成後のヘマタイト組織の存在比率が粒子径8.0mm以上のもので90%以上、粒子径4.75mmのもので70%以上になった。
 また、従来法では焼成後のヘマタイト組織とカルシウムフェライト組織の合計存在比率が粒子径2.8mmのもので60%弱程度になるのに対し、本発明方法では焼成後のヘマタイト組織とカルシウムフェライト組織の合計存在比率が粒子径2.8mmのもので70%以上になった。
 これらのことから、本発明法では、粗粒擬似粒子の表面に石灰石系粉原料が過剰に付着することを抑制することができ、被還元性・強度に優れたヘマタイト組織を多く存在させ、さらにカルシウムフェライト組織を生成させることができることがわかった。
 1,1A…混合用ドラムミキサー
 1B…造粒用ドラムミキサー
 2…ディスクペレタイザー
 3…コーティング用ドラムミキサー
 4…石灰石系粉原料投射装置
 5…固体燃料系粉原料投射装置
 6…ドワイトロイド式焼結機
 61…コンベア
 62…ブロワー
 63…点火炉
 7…粉原料投射装置
 8…投射コンベア
 9…コンベア支持台車
 10…ガイドレール
 11…ガイドレール支持台車
 12…コンベア昇降機構
 13…走行車輪
 14…ジャッキ
 15…粉原料
 16…擬似粒子群
 16a…粗粒擬似粒子
 17…ドラムミキサー

Claims (14)

  1.  鉄鉱石を主原料とし、かつSiO含有原料および石灰石系粉原料や固体燃料系粉原料を副原料とする焼結原料をディスクペレタイザーで造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造方法であって、前記焼結原料の内、前記鉄鉱石と前記SiO含有原料とからなる原料を前記ディスクペレタイザーに装入して造粒し、次いで造粒後の擬似粒子をコーティング用ドラムミキサーに装入し、前記石灰石系粉原料および/または前記固体燃料系粉原料を投射する粉原料投射装置を前記ドラムミキサーに装入された擬似粒子群の上方位置から外れた位置に移動させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする焼結鉱の製造方法。
  2.  鉄鉱石を主原料とし、かつSiO含有原料および石灰石系粉原料や固体燃料系粉原料を副原料とする焼結原料をドラムミキサーで造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造方法であって、前記焼結原料の内、前記鉄鉱石と前記SiO含有原料とからなる原料を前記ドラムミキサーに装入して造粒し、次いで造粒後の擬似粒子をコーティング用ドラムミキサーに装入し、前記石灰石系粉原料および/または前記固体燃料系粉原料を投射する粉原料投射装置を前記ドラムミキサーに装入された擬似粒子群の上方位置から外れた位置に移動させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする焼結鉱の製造方法。
  3.  鉄鉱石を主原料とし、かつSiO含有原料および石灰石系粉原料や固体燃料系粉原料を副原料とする焼結原料をドラムミキサーで造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造方法であって、前記焼結原料の内、前記鉄鉱石と前記SiO含有原料とからなる原料を前記ドラムミキサーに装入して造粒し、次いで前記ドラムミキサーの排出側に前記石灰石系粉原料および/または前記固体燃料系粉原料を投射する粉原料投射装置を前記ドラムミキサーに装入された擬似粒子群の上方位置から外れた位置に移動させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする焼結鉱の製造方法。
  4.  前記粉原料投射装置の移動位置が前記擬似粒子群の裾野を外れた位置であることを特徴とする請求項1~3のいずれか一項に記載の焼結鉱の製造方法。
  5.  前記粉原料投射装置として、前記粉原料を前記ドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車と、を有するものを用い、前記投射コンベア、前記コンベア支持台車および前記ガイドレールを前記ガイドレール支持台車により所定位置に移動させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする請求項1~3のいずれか一項に記載の焼結鉱の製造方法。
  6.  前記粉原料投射装置として、前記コンベア支持台車に対して前記投射コンベアを上下方向に傾けるコンベア傾斜機構を有するものを用い、前記投射コンベアの先端部が上向きになるように前記投射コンベアを前記コンベア傾斜機構により傾斜させた後、前記粉原料を前記ドラムミキサーに装入することを特徴とする請求項5に記載の焼結鉱の製造方法。
  7.  前記コーティング用ドラムミキサーの内部に前記粉原料を前記ドラムミキサーの出口側から装入することを特徴とする請求項1~6のいずれか一項に記載の焼結鉱の製造方法。
  8.  前記コーティング用ドラムミキサーの内部に前記粉原料を前記ドラムミキサーの入口側から装入することを特徴とする請求項1~6のいずれか一項に記載の焼結鉱の製造方法。
  9.  鉄鉱石を主原料とし、かつSiO含有原料、石灰石系粉原料および固体燃料系粉原料を副原料とする焼結原料を造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造される焼結鉱の製造設備であって、
     前記焼結原料を造粒するディスクペレタイザーと、前記焼結原料の表面をコーティングするコーティング用ドラムミキサーと、該ドラムミキサーの内部に粉原料を投射する粉原料投射装置とを備え、
     前記粉原料を前記コーティング用ドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記コーティング用ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記コーティング用ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車とを前記粉原料投射装置が有することを特徴とする焼結鉱の製造設備。
  10.  鉄鉱石を主原料とし、かつSiO含有原料、石灰石系粉原料および固体燃料系粉原料を副原料とする焼結原料を造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造する焼結鉱の製造設備であって、
     前記焼結原料を造粒するドラムミキサーと、前記焼結原料の表面をコーティングするコーティング用ドラムミキサーと、該コーティング用ドラムミキサーの内部に粉原料を投射する粉原料投射装置とを備え、
     前記粉原料を前記コーティング用ドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記コーティング用ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記コーティング用ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車とを前記粉原料投射装置が有することを特徴とする焼結鉱の製造設備。
  11.  鉄鉱石を主原料とし、かつSiO含有原料、石灰石系粉原料および固体燃料系粉原料を副原料とする焼結原料を造粒し、造粒された焼結原料をドワイトロイド式焼結機により焼成して製造される焼結鉱の製造設備であって、
     前記焼結原料を造粒するドラムミキサーと、該造粒するドラムミキサーの排出側からドラムミキサー内部に粉原料を投射する粉原料投射装置とを備え、
     前記粉原料を前記ドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車とを前記粉原料投射装置が有することを特徴とする焼結鉱の製造設備。
  12.  前記コンベア支持台車に対して前記投射コンベアを上下方向に傾けるコンベア傾斜機構をさらに備えたことを特徴とする請求項9~11のいずれか一項に記載の焼結鉱の製造設備。
  13.  焼結鉱を製造するときに用いられる粉原料投射装置であって、前記焼結鉱の副原料である固体燃料系粉原料または石灰石系粉原料をドラムミキサーの内部に搬送して投射する投射コンベアと、該投射コンベアを前記ドラムミキサーの軸方向に移動可能に支持するコンベア支持台車と、該コンベア支持台車を前記ドラムミキサーの軸方向に案内する左右一対のガイドレールと、該ガイドレールを前記ドラムミキサーの軸方向と直交する横方向に移動可能に支持するガイドレール支持台車とを備えたことを特徴とする粉原料投射装置。
  14.  前記コンベア支持台車に対して前記投射コンベアを上下方向に傾けるコンベア傾斜機構をさらに備えたことを特徴とする請求項13に記載の粉原料投射装置。
     
PCT/JP2012/004735 2011-07-28 2012-07-25 焼結鉱の製造方法および製造設備ならびに粉原料投射装置 WO2013014926A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280046603.4A CN103827327B (zh) 2011-07-28 2012-07-25 烧结矿的制造方法、制造设备以及原料粉投射装置
KR1020147001704A KR101511577B1 (ko) 2011-07-28 2012-07-25 소결광의 제조 방법 및 제조 설비 그리고 가루 원료 투사 장치
BR112014001968A BR112014001968A2 (pt) 2011-07-28 2012-07-25 método e equipamento para produzir minério sinterizado, e aparelho para projetar material em pó

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-165730 2011-07-28
JP2011165730 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013014926A1 true WO2013014926A1 (ja) 2013-01-31

Family

ID=47600788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004735 WO2013014926A1 (ja) 2011-07-28 2012-07-25 焼結鉱の製造方法および製造設備ならびに粉原料投射装置

Country Status (5)

Country Link
JP (1) JP5263431B2 (ja)
KR (1) KR101511577B1 (ja)
CN (1) CN103827327B (ja)
BR (1) BR112014001968A2 (ja)
WO (1) WO2013014926A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040332B2 (ja) * 2018-07-19 2022-03-23 日本製鉄株式会社 焼結鉱の製造方法
CN113000361B (zh) * 2021-02-08 2022-08-16 中冶长天国际工程有限责任公司 一种烧结矿混合筛分方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111288U (ja) * 1973-01-22 1974-09-24
WO2001092588A1 (fr) * 2000-05-29 2001-12-06 Kawasaki Steel Corporation Matiere premiere pour frittage sous forme de pseudograins et procede de production de ladite matiere
JP2005248271A (ja) * 2004-03-05 2005-09-15 Jfe Steel Kk 焼結原料の造粒方法
JP2009287122A (ja) * 2009-09-01 2009-12-10 Nippon Steel Corp 微粉原料の造粒方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU688592B2 (en) * 1994-09-21 1998-03-12 Kawasaki Steel Corporation Sintered ore manufacturing method using high crystal water iron ore as raw material
JP2005171388A (ja) * 2000-05-29 2005-06-30 Jfe Steel Kk 焼結用擬似粒子原料、高炉用焼結鉱および焼結用擬似粒子原料の製造方法
KR101018931B1 (ko) * 2005-12-02 2011-03-02 교오자이 고오교오 가부시끼가이샤 소결 원료의 조립 방법 및 소결광 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111288U (ja) * 1973-01-22 1974-09-24
WO2001092588A1 (fr) * 2000-05-29 2001-12-06 Kawasaki Steel Corporation Matiere premiere pour frittage sous forme de pseudograins et procede de production de ladite matiere
JP2005248271A (ja) * 2004-03-05 2005-09-15 Jfe Steel Kk 焼結原料の造粒方法
JP2009287122A (ja) * 2009-09-01 2009-12-10 Nippon Steel Corp 微粉原料の造粒方法

Also Published As

Publication number Publication date
JP2013047376A (ja) 2013-03-07
JP5263431B2 (ja) 2013-08-14
BR112014001968A2 (pt) 2017-02-21
CN103827327B (zh) 2015-10-07
CN103827327A (zh) 2014-05-28
KR101511577B1 (ko) 2015-04-13
KR20140024468A (ko) 2014-02-28

Similar Documents

Publication Publication Date Title
KR19990076960A (ko) 환원철의 제조방법 및 장치
JP5263431B2 (ja) 焼結鉱の製造方法および製造設備ならびに粉原料投射装置
EP3492852A1 (en) Sintering apparatus and method for manufacturing sintered ore using same
JP6734370B2 (ja) 原料処理装置及び原料処理方法
KR101751286B1 (ko) 원료 장입장치
TWI231828B (en) Process for producing sintering feedstock and apparatus thereof
JP5515288B2 (ja) 高炉への原料装入方法
JP5857977B2 (ja) 高炉用焼結原料の製造装置および高炉用焼結鉱の製造方法
WO2012015063A1 (ja) 焼結用原料の製造方法
KR101427311B1 (ko) 펠리타이저
JP5821362B2 (ja) 焼結用原料の製造方法
JP5338309B2 (ja) 高炉への原料装入方法
KR101304823B1 (ko) 호퍼 장입장치 및 배합원료의 호퍼 장입방법
JP6724677B2 (ja) 焼結原料の造粒装置及び造粒方法
KR101723447B1 (ko) 표면처리장치 및 이를 구비하는 원료처리설비
JP2010150642A (ja) 高炉への原料装入方法
JP2010150644A (ja) 高炉への原料装入方法
KR101977356B1 (ko) 원료 장입 장치
JP4617689B2 (ja) ベルレス原料装入装置を備えた高炉での原料装入方法
JP2004197141A (ja) 焼結原料の擬似粒子化方法および装置
KR101505245B1 (ko) 소결광 제조방법
JP3536681B2 (ja) 焼結鉱の製造方法
JP5338311B2 (ja) 高炉への原料装入方法
JP2005248271A (ja) 焼結原料の造粒方法
KR101368436B1 (ko) 원료의 장입장치 및 장입방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147001704

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014001968

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12817783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014001968

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140127