WO2013008706A1 - 結晶子径を制御された微粒子の製造方法 - Google Patents

結晶子径を制御された微粒子の製造方法 Download PDF

Info

Publication number
WO2013008706A1
WO2013008706A1 PCT/JP2012/067164 JP2012067164W WO2013008706A1 WO 2013008706 A1 WO2013008706 A1 WO 2013008706A1 JP 2012067164 W JP2012067164 W JP 2012067164W WO 2013008706 A1 WO2013008706 A1 WO 2013008706A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
substance
raw material
precipitation
processing
Prior art date
Application number
PCT/JP2012/067164
Other languages
English (en)
French (fr)
Inventor
青柳志保
荒木加永子
前川昌輝
淳 倉木
榎村眞一
Original Assignee
エム・テクニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・テクニック株式会社 filed Critical エム・テクニック株式会社
Priority to EP19209467.0A priority Critical patent/EP3628399A1/en
Priority to CN201280034515.2A priority patent/CN103648634B/zh
Priority to US14/232,124 priority patent/US9492763B2/en
Priority to EP12811710.8A priority patent/EP2732871A4/en
Priority to KR1020137033773A priority patent/KR20140038467A/ko
Publication of WO2013008706A1 publication Critical patent/WO2013008706A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • B01D9/0054Use of anti-solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1887Stationary reactors having moving elements inside forming a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00085Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00177Controlling or regulating processes controlling the pH

Definitions

  • the present invention relates to a method for producing fine particles with controlled crystallite diameter.
  • a crystallite means the largest group that can be regarded as a single crystal, and the size of the crystallite is called a crystallite diameter.
  • Crystallite diameter D K ⁇ ⁇ / ( ⁇ ⁇ cos ⁇ ) (Scherrer's formula)
  • K is a Scherrer constant
  • K 0.9.
  • is calculated using the wavelength of the X-ray tube used, ⁇ is the half width, and ⁇ is calculated using the diffraction angle.
  • a method for controlling the crystallite size of the fine particles a method in which a metal simple substance, a metal ion, a metal compound or a metal solution obtained by dissolving them in a solvent is subjected to a solvothermal method as shown in Patent Document 1, 4 include a hydrothermal treatment method in a subcritical or supercritical state as shown in FIG. 4 and a heat treatment method in an inert atmosphere.
  • a hydrothermal treatment method in a subcritical or supercritical state as shown in FIG. 4
  • a heat treatment method in an inert atmosphere an apparatus or an inert atmosphere excellent in heat resistance and pressure resistance is used.
  • the energy cost is high because it requires a lower level and more time is required for processing.
  • the applicant of the present application provided the method for producing fine particles shown in Patent Document 5, and disclosed the control of the particle size, but did not specifically disclose the control method of the crystallite size.
  • an object of the present invention is to provide a method for producing fine particles having a controlled crystallite size.
  • the present inventor as a fluid to be processed, is disposed between at least two processing surfaces disposed opposite to each other and capable of approaching / separating at least one rotating relative to the other.
  • the raw material fluid containing at least one kind of depositing substance and the precipitation fluid containing at least one kind of substance for depositing the substance to be deposited are mixed to deposit fine particles of the substance to be deposited.
  • the inventors have found that fine particles of a deposited substance having a controlled crystallite diameter can be obtained by changing specific conditions regarding at least one of the fluid and the present invention has been completed.
  • the present invention uses at least two kinds of fluids to be treated, of which at least one kind of fluid to be treated is a raw material fluid containing at least one kind of substance to be deposited.
  • the at least one kind of fluid to be treated is a precipitation fluid containing at least one kind of substance for precipitating the substance to be deposited, and the fluid to be treated is disposed so as to face and separate.
  • a method for producing fine particles in which at least one is mixed in a thin film fluid formed between at least two processing surfaces that rotate relative to the other, and a deposited substance with a controlled crystallite diameter is deposited. By changing a specific condition regarding at least one of the raw material fluid and the deposition fluid introduced between the at least two processing surfaces, the deposition of the deposition target substance is performed.
  • the diameter is controlled, and the specific condition is that at least one of the at least one substance to be deposited contained in the raw material fluid and at least one kind of substance contained in the deposition fluid ,
  • the concentration of at least one of the at least one kind of deposition substance contained in the raw material fluid and the at least one kind of substance contained in the precipitation fluid, the raw material fluid and the precipitation fluid At least one of the pH, the introduction temperature of at least one of the source fluid and the precipitation fluid, and the introduction rate of at least one of the source fluid and the precipitation fluid
  • a method for producing fine particles characterized in that at least two kinds selected from the group consisting of: In changing the specific condition regarding at least one of the raw material fluid and the precipitation fluid introduced between the at least two processing surfaces, specifically, (A) a substance to be precipitated contained in the raw material fluid And / or control of the type of the substance for precipitating the deposition material contained in the deposition fluid, and (B) the deposition material contained in the source fluid and / or the deposition material contained in the
  • the introduction speed is changed with respect to at least one kind of deposition fluid.
  • the introduction speed is changed for at least one kind of raw material fluid and at least one kind of precipitation fluid.
  • this invention can be implemented as changing only the crystallite diameter of the said to-be-deposited substance, without changing the particle diameter of the to-be-deposited substance.
  • this invention can be implemented as what changes both the particle diameter of the said to-be-deposited substance, and the crystallite diameter of the to-be-deposited substance.
  • the present invention uses at least two kinds of fluids to be treated, and at least one kind of fluid to be treated is a raw material fluid containing at least one kind of substance to be deposited.
  • At least one kind of fluid to be treated is a deposition fluid containing at least one kind of substance for precipitating the substance to be deposited, and the fluid to be treated is disposed so as to face each other.
  • the crystallite diameter is controlled, and the specific condition is that the pH of at least one of the raw material fluid and the precipitation fluid, and at least one of the raw material fluid and the precipitation fluid. It can be implemented as at least one selected from the group consisting of the introduction temperature and the introduction speed of at least one of the raw material fluid and the precipitation fluid.
  • a fluid pressure applying mechanism that applies pressure to a fluid to be processed and a first process including a first processing surface among the at least two processing surfaces.
  • the processing surface constitutes a part of a sealed flow path through which the fluid to be processed to which the pressure is applied flows, and among the first processing part and the second processing part,
  • At least the second processing portion includes a pressure receiving surface, and at least a part of the pressure receiving surface is constituted by the second processing surface, and the fluid pressure applying mechanism is flowed by the fluid pressure applying mechanism.
  • the second processing surface is separated from the first processing surface under pressure applied to the body. Between the first processing surface and the second processing surface, which are disposed opposite to each other and are capable of approaching / separating and at least one of which rotates relative to the other. Fine particles for forming a thin film fluid in the thin film fluid through which the liquid to be treated to which the pressure is applied are passed, and for depositing a substance to be deposited whose crystallite diameter is controlled in the thin film fluid. It can implement as a manufacturing method.
  • At least any one of the fluids to be processed passes between the processing surfaces while forming the thin film fluid
  • a separate introduction path independent of the flow path through which at least one of the fluids flows is provided, and at least one of the first processing surface and the second processing surface is in the introduction path.
  • At least one opening that communicates, and at least one fluid different from the at least one fluid is introduced between the processing surfaces from the opening, and the fluid to be treated is formed into the thin film. It can be implemented as a method for producing fine particles that are mixed in a fluid and deposit a substance to be deposited whose crystallite diameter is controlled in the thin film fluid.
  • the present invention makes it possible to control the crystallite diameter of fine particles, which has been difficult with conventional production methods, and makes it possible to easily and continuously produce fine particles with controlled crystallite diameter.
  • the particle diameter and the crystallite diameter of the fine particles can be changed simultaneously, and only the crystallite diameter can be changed without changing the particle diameter. It is possible to impart desired characteristics to the fine particles.
  • FIG. 1 is a schematic cross-sectional view of a fluid processing apparatus according to an embodiment of the present invention.
  • A is a schematic plan view of a first processing surface of the fluid processing apparatus shown in FIG. 1, and
  • B) is an enlarged view of a main part of the processing surface of the apparatus.
  • A) is sectional drawing of the 2nd introducing
  • B) is the principal part enlarged view of the processing surface for demonstrating the 2nd introducing
  • 2 is a TEM photograph (magnification of 500,000 times, horizontal width of field: 52 nm) of yttria-stabilized zirconia fine particles produced in Example 1.
  • 4 is a TEM photograph (magnification of 500,000 times, horizontal width of field: 52 nm) of yttria-stabilized zirconia fine particles produced in Example 2.
  • 4 is a TEM photograph (magnification of 500,000 times, horizontal width of field: 52 nm) of yttria-stabilized zirconia fine particles produced in Example 3.
  • It is a TEM photograph (magnification of 800,000 times, horizontal width of the field of 33.2 nm) of the copper fine particles produced in Example 4.
  • It is a TEM photograph (magnification 400,000 times, horizontal width of the field 64.4 nm) of the copper fine particles produced in Example 5.
  • 7 is a TEM photograph (magnification of 500,000 times, horizontal width of field: 52 nm) of copper fine particles produced in Example 6.
  • the raw material fluid in the present invention is obtained by mixing or dissolving a material to be deposited, which is a raw material, in a solvent described later (hereinafter simply referred to as dissolution).
  • the substance to be deposited in the present invention is not particularly limited, and examples thereof include organic substances, inorganic substances, and organic-inorganic composites. Examples thereof include simple elements of metal elements and nonmetallic elements, and compounds thereof. Examples of the compound include salts, oxides, hydroxides, hydroxide oxides, nitrides, carbides, complexes, organic compounds, hydrates and organic solvates thereof. These may be a single substance to be deposited or a mixture in which a plurality of substances are mixed.
  • the said depositing substance may be the same or different in the state of the depositing substance used as a starting material, and the depositing substance precipitated by mixing with the precipitation fluid mentioned later.
  • the material to be deposited used as the starting material may be a metal compound, and the material to be deposited by mixing with the deposition fluid described later may be a single metal constituting the metal compound, and used as the starting material.
  • the deposited substance is a mixture of a plurality of types of metal compounds, and the deposited substance deposited by mixing with the deposition fluid described later is a deposited substance used as a starting material.
  • the reaction substance which the substance for depositing the to-be-precipitated substance contained in reacts may be sufficient.
  • the material to be deposited used as a starting material may be a single metal, and the material to be deposited by mixing with a deposition fluid described later may also be the same simple metal.
  • the precipitation fluid in the present invention includes at least one kind of substance for precipitating the substance to be deposited.
  • a solvent as described later may be used alone, or the following substances may be contained in the solvent as a substance for precipitating the substance to be deposited.
  • the above-mentioned substances are not particularly limited, but for example, acidic substances such as hydrochloric acid, sulfuric acid, nitric acid, aqua regia, trichloroacetic acid, trifluoroacetic acid, phosphoric acid, citric acid, ascorbic acid, and other inorganic or organic acids, Examples thereof include alkali hydroxides such as sodium and potassium hydroxide, basic substances such as amines such as triethylamine and dimethylaminoethanol, and salts of the above acidic substances and basic substances.
  • acidic substances such as hydrochloric acid, sulfuric acid, nitric acid, aqua regia, trichloroacetic acid, trifluoroacetic acid, phosphoric acid, citric acid, ascorbic acid, and other inorganic or organic acids
  • alkali hydroxides such as sodium and potassium hydroxide
  • basic substances such as amines such as triethylamine and dimethylaminoethanol
  • the reducing agent which can reduce the said to-be-deposited substance for example, the reducing agent which can reduce
  • metal ion contained in a metal solution is mentioned.
  • the reducing agent is not particularly limited, but hydrazine or hydrazine monohydrate, formaldehyde, sodium sulfoxylate, borohydride metal salt, aluminum hydride metal salt, triethylborohydride metal salt, glucose, citric acid, ascorbic acid, tannic acid, dimethyl formamide, pyrogallol, tetrabutylammonium borohydride, sodium hypophosphite (NaH 2 PO 2 ⁇ H 2 O), Rongalite C (NaHSO 2 ⁇ CH 2 O ⁇ 2H 2 O), a metal compound or their Or a transition metal compound or an ion thereof (iron, titanium, etc.).
  • the reducing agents listed above include their hydrates, organic solvates, or anhydrides. These substances for precipitating the substances to be deposited may be used alone or as a mixture in which a plurality of substances are mixed. In addition, when using the said solvent independently as a precipitation fluid, the said solvent turns into a substance for depositing the said to-be-deposited material.
  • solvent Although it does not specifically limit as a solvent used for the raw material fluid and precipitation fluid in this invention, Water, such as ion-exchange water, RO water, a pure water, an ultrapure water, alcohol type organic solvents like methanol and ethanol, ethylene glycol Polypropylene (polyhydric alcohol) organic solvent such as polyethylene glycol or glycerin, ketone organic solvent such as acetone or methyl ethyl ketone, ester type such as ethyl acetate or butyl acetate Examples thereof include organic solvents, ether organic solvents such as dimethyl ether and dibutyl ether, aromatic organic solvents such as benzene, toluene and xylene, and aliphatic hydrocarbon organic solvents such as hexane and pentane.
  • Water such as ion-exchange water, RO water, a pure water, an ultrapure water, alcohol type organic solvents like methanol and ethanol, ethylene glycol Polypropy
  • the solvent itself works as a reducing agent.
  • the solvent may be used alone or in combination of two or more.
  • the precipitation fluid as described above, the solvent can be used alone as the precipitation fluid. In other words, even if the said solvent is individual, it can become a substance for depositing a to-be-deposited substance.
  • the raw material fluid and / or precipitation fluid in the present invention can be carried out even if it contains a dispersion or slurry.
  • the fluid processing apparatus shown in FIGS. 1 to 3 is the same as the apparatus described in Patent Document 5, and is provided between processing surfaces in a processing unit in which at least one of approaching and separating can rotate relative to the other.
  • a first fluid that is a first fluid to be treated among the fluids to be treated is introduced between the processing surfaces, and a flow path into which the first fluid is introduced.
  • the second fluid which is the second fluid to be treated among the fluids to be treated, is introduced between the processing surfaces from another flow path having an opening communicating between the processing surfaces. It is an apparatus that performs processing by mixing and stirring the first fluid and the second fluid between the surfaces.
  • U indicates the upper side
  • S indicates the lower side.
  • the upper, lower, front, rear, left and right only indicate a relative positional relationship, and do not specify an absolute position.
  • R indicates the direction of rotation.
  • C indicates the centrifugal force direction (radial direction).
  • This apparatus uses at least two kinds of fluids as a fluid to be treated, and at least one kind of fluid includes at least one kind of an object to be treated and is opposed to each other so as to be able to approach and separate.
  • a processing surface at least one of which rotates with respect to the other, and the above-mentioned fluids are merged between these processing surfaces to form a thin film fluid.
  • An apparatus for processing an object to be processed As described above, this apparatus can process a plurality of fluids to be processed, but can also process a single fluid to be processed.
  • This fluid processing apparatus includes first and second processing units 10 and 20 that face each other, and at least one of the processing units rotates.
  • the opposing surfaces of both processing parts 10 and 20 are processing surfaces.
  • the first processing unit 10 includes a first processing surface 1
  • the second processing unit 20 includes a second processing surface 2.
  • Both the processing surfaces 1 and 2 are connected to the flow path of the fluid to be processed and constitute a part of the flow path of the fluid to be processed.
  • the distance between the processing surfaces 1 and 2 can be changed as appropriate, but is usually adjusted to 1 mm or less, for example, a minute distance of about 0.1 ⁇ m to 50 ⁇ m.
  • the fluid to be processed that passes between the processing surfaces 1 and 2 becomes a forced thin film fluid forced by the processing surfaces 1 and 2.
  • the apparatus When a plurality of fluids to be processed are processed using this apparatus, the apparatus is connected to the flow path of the first fluid to be processed and forms a part of the flow path of the first fluid to be processed. At the same time, a part of the flow path of the second fluid to be treated is formed separately from the first fluid to be treated. And this apparatus performs processing of fluid, such as making both flow paths merge and mixing both the to-be-processed fluids between the processing surfaces 1 and 2, and making it react.
  • “treatment” is not limited to a form in which the object to be treated reacts, but also includes a form in which only mixing and dispersion are performed without any reaction.
  • the first holder 11 that holds the first processing portion 10 the second holder 21 that holds the second processing portion 20, a contact pressure applying mechanism, a rotation drive mechanism, A first introduction part d1, a second introduction part d2, and a fluid pressure imparting mechanism p are provided.
  • the first processing portion 10 is an annular body, more specifically, a ring-shaped disk.
  • the second processing unit 20 is also a ring-shaped disk.
  • the materials of the first and second processing parts 10 and 20 are metal, carbon, ceramic, sintered metal, wear-resistant steel, sapphire, and other metals that have undergone hardening treatment, Those with coating, plating, etc. can be used.
  • at least a part of the first and second processing surfaces 1 and 2 facing each other is mirror-polished in the processing units 10 and 20.
  • the surface roughness of this mirror polishing is not particularly limited, but is preferably Ra 0.01 to 1.0 ⁇ m, more preferably Ra 0.03 to 0.3 ⁇ m.
  • At least one of the holders can be rotated relative to the other holder by a rotational drive mechanism (not shown) such as an electric motor.
  • Reference numeral 50 in FIG. 1 denotes a rotation shaft of the rotation drive mechanism.
  • the first holder 11 attached to the rotation shaft 50 rotates and is used for the first processing supported by the first holder 11.
  • the unit 10 rotates with respect to the second processing unit 20.
  • the second processing unit 20 may be rotated, or both may be rotated.
  • the first and second holders 11 and 21 are fixed, and the first and second processing parts 10 and 20 are rotated with respect to the first and second holders 11 and 21. May be.
  • At least one of the first processing unit 10 and the second processing unit 20 can be approached / separated from at least either one, and both processing surfaces 1 and 2 can be approached / separated. .
  • the second processing unit 20 approaches and separates from the first processing unit 10, and the second processing unit 20 is disposed in the storage unit 41 provided in the second holder 21. It is housed in a hauntable manner.
  • the first processing unit 10 may approach or separate from the second processing unit 20, and both the processing units 10 and 20 may approach or separate from each other. It may be a thing.
  • the accommodating portion 41 is a concave portion that mainly accommodates a portion of the second processing portion 20 on the side opposite to the processing surface 2 side, and is a groove that has a circular shape, that is, is formed in an annular shape in plan view. .
  • the accommodating portion 41 accommodates the second processing portion 20 with a sufficient clearance that allows the second processing portion 20 to rotate.
  • the second processing unit 20 may be arranged so that only the parallel movement in the axial direction is possible, but by increasing the clearance, the second processing unit 20
  • the center line of the processing part 20 may be inclined and displaced so as to break the relationship parallel to the axial direction of the storage part 41. Further, the center line of the second processing part 20 and the storage part 41 may be displaced. The center line may be displaced so as to deviate in the radial direction. As described above, it is desirable to hold the second processing unit 20 by the floating mechanism that holds the three-dimensionally displaceably.
  • the above-described fluid to be treated is subjected to both treatment surfaces from the first introduction part d1 and the second introduction part d2 in a state where pressure is applied by a fluid pressure application mechanism p configured by various pumps, potential energy, and the like. It is introduced between 1 and 2.
  • the first introduction part d1 is a passage provided in the center of the annular second holder 21, and one end of the first introduction part d1 is formed on both processing surfaces from the inside of the annular processing parts 10, 20. It is introduced between 1 and 2.
  • the second introduction part d2 supplies the second processing fluid to be reacted with the first processing fluid to the processing surfaces 1 and 2.
  • the second introduction part d ⁇ b> 2 is a passage provided inside the second processing part 20, and one end thereof opens at the second processing surface 2.
  • the first fluid to be processed that has been pressurized by the fluid pressure imparting mechanism p is introduced from the first introduction part d1 into the space inside the processing parts 10 and 20, and the first processing surface 1 and the second processing surface 2 are supplied. It passes between the processing surfaces 2 and tries to pass outside the processing portions 10 and 20. Between these processing surfaces 1 and 2, the second fluid to be treated pressurized by the fluid pressure applying mechanism p is supplied from the second introduction part d 2, merged with the first fluid to be treated, and mixed.
  • the above-mentioned contact surface pressure applying mechanism applies a force that acts in a direction in which the first processing surface 1 and the second processing surface 2 approach each other to the processing portion.
  • the contact pressure applying mechanism is provided in the second holder 21 and biases the second processing portion 20 toward the first processing portion 10.
  • the contact surface pressure applying mechanism is a force that pushes in a direction in which the first processing surface 1 of the first processing unit 10 and the second processing surface 2 of the second processing unit 20 approach (hereinafter referred to as contact pressure). It is a mechanism for generating.
  • a thin film fluid having a minute film thickness of nm to ⁇ m is generated by the balance between the contact pressure and the force for separating the processing surfaces 1 and 2 such as fluid pressure. In other words, the distance between the processing surfaces 1 and 2 is kept at a predetermined minute distance by the balance of the forces.
  • the contact surface pressure applying mechanism is arranged between the accommodating portion 41 and the second processing portion 20.
  • a spring 43 that biases the second processing portion 20 in a direction approaching the first processing portion 10 and a biasing fluid introduction portion 44 that introduces a biasing fluid such as air or oil.
  • the contact surface pressure is applied by the spring 43 and the fluid pressure of the biasing fluid. Any one of the spring 43 and the fluid pressure of the urging fluid may be applied, and other force such as magnetic force or gravity may be used.
  • the second processing unit 20 causes the first treatment by the separation force generated by the pressure or viscosity of the fluid to be treated which is pressurized by the fluid pressure imparting mechanism p against the bias of the contact surface pressure imparting mechanism.
  • the first processing surface 1 and the second processing surface 2 are set with an accuracy of ⁇ m by the balance between the contact surface pressure and the separation force, and a minute amount between the processing surfaces 1 and 2 is set. An interval is set.
  • the separation force includes the fluid pressure and viscosity of the fluid to be processed, the centrifugal force due to the rotation of the processing part, the negative pressure when the urging fluid introduction part 44 is negatively applied, and the spring 43 is pulled.
  • the force of the spring when it is used as a spring can be mentioned.
  • This contact surface pressure imparting mechanism may be provided not in the second processing unit 20 but in the first processing unit 10 or in both.
  • the second processing unit 20 has the second processing surface 2 and the inside of the second processing surface 2 (that is, the first processing surface 1 and the second processing surface 2).
  • a separation adjusting surface 23 is provided adjacent to the second processing surface 2 and located on the entrance side of the fluid to be processed between the processing surface 2 and the processing surface 2.
  • the separation adjusting surface 23 is implemented as an inclined surface, but may be a horizontal surface.
  • the pressure of the fluid to be processed acts on the separation adjusting surface 23 to generate a force in a direction in which the second processing unit 20 is separated from the first processing unit 10. Accordingly, the pressure receiving surfaces for generating the separation force are the second processing surface 2 and the separation adjusting surface 23.
  • the proximity adjustment surface 24 is formed on the second processing portion 20.
  • the proximity adjustment surface 24 is a surface opposite to the separation adjustment surface 23 in the axial direction (upper surface in FIG. 1), and the pressure of the fluid to be processed acts on the second processing portion 20. A force is generated in a direction that causes the first processing unit 10 to approach the first processing unit 10.
  • the pressure of the fluid to be processed that acts on the second processing surface 2 and the separation adjusting surface 23, that is, the fluid pressure, is understood as a force constituting an opening force in the mechanical seal.
  • the projected area A1 of the proximity adjustment surface 24 projected on a virtual plane orthogonal to the approaching / separating direction of the processing surfaces 1 and 2, that is, the protruding and protruding direction (axial direction in FIG. 1) of the second processing unit 20 The area ratio A1 / A2 of the total area A2 of the projected areas of the second processing surface 2 and the separation adjusting surface 23 of the second processing unit 20 projected onto the virtual plane is called a balance ratio K. This is important for the adjustment of the opening force.
  • the opening force can be adjusted by the pressure of the fluid to be processed, that is, the fluid pressure, by changing the balance line, that is, the area A1 of the adjustment surface 24 for proximity.
  • P1 represents the pressure of the fluid to be treated, that is, the fluid pressure
  • K represents the balance ratio
  • k represents the opening force coefficient
  • Ps represents the spring and back pressure
  • the proximity adjustment surface 24 may be implemented with a larger area than the separation adjustment surface 23.
  • the fluid to be processed becomes a thin film fluid forced by the two processing surfaces 1 and 2 holding the minute gaps, and tends to move to the outside of the annular processing surfaces 1 and 2.
  • the mixed fluid to be processed does not move linearly from the inside to the outside of the two processing surfaces 1 and 2, but instead has an annular radius.
  • a combined vector of the movement vector in the direction and the movement vector in the circumferential direction acts on the fluid to be processed and moves in a substantially spiral shape from the inside to the outside.
  • the rotating shaft 50 is not limited to what was arrange
  • At least one of the first and second processing parts 10 and 20 may be cooled or heated to adjust the temperature.
  • the first and second processing parts 10 and 10 are adjusted.
  • 20 are provided with temperature control mechanisms (temperature control mechanisms) J1, J2.
  • the temperature of the introduced fluid to be treated may be adjusted by cooling or heating. These temperatures can also be used for the deposition of the treated material, and also to generate Benard convection or Marangoni convection in the fluid to be treated between the first and second processing surfaces 1 and 2. May be set.
  • a groove-like recess 13 extending from the center side of the first processing portion 10 to the outside, that is, in the radial direction is formed on the first processing surface 1 of the first processing portion 10. May be implemented.
  • the planar shape of the recess 13 is curved or spirally extending on the first processing surface 1, or is not shown, but extends straight outward, L It may be bent or curved into a letter shape or the like, continuous, intermittent, or branched.
  • the recess 13 can be implemented as one formed on the second processing surface 2, and can also be implemented as one formed on both the first and second processing surfaces 1, 2.
  • the base end of the recess 13 reaches the inner periphery of the first processing unit 10.
  • the tip of the recess 13 extends toward the outer peripheral surface of the first processing surface 1, and the depth (cross-sectional area) gradually decreases from the base end toward the tip.
  • a flat surface 16 without the recess 13 is provided between the tip of the recess 13 and the outer peripheral surface of the first processing surface 1.
  • the opening d20 of the second introduction part d2 is provided in the second processing surface 2, it is preferably provided at a position facing the flat surface 16 of the facing first processing surface 1.
  • the opening d20 is desirably provided on the downstream side (outside in this example) from the concave portion 13 of the first processing surface 1.
  • it is installed at a position facing the flat surface 16 on the outer diameter side from the point where the flow direction when introduced by the micropump effect is converted into a laminar flow direction in a spiral shape formed between the processing surfaces. It is desirable to do.
  • the distance n in the radial direction from the outermost position of the recess 13 provided in the first processing surface 1 is preferably about 0.5 mm or more.
  • the shape of the opening d20 may be circular as shown in FIGS. 2B and 3B, and although not shown, a concentric circle surrounding the central opening of the processing surface 2 that is a ring-shaped disk.
  • An annular shape may be used. Further, when the opening has an annular shape, the annular opening may be continuous or discontinuous.
  • the second introduction part d2 can have directionality.
  • the introduction direction from the opening d20 of the second processing surface 2 is inclined with respect to the second processing surface 2 at a predetermined elevation angle ( ⁇ 1).
  • the elevation angle ( ⁇ 1) is set to be more than 0 degrees and less than 90 degrees, and in the case of a reaction with a higher reaction rate, it is preferably set at 1 to 45 degrees.
  • the introduction direction from the opening d ⁇ b> 20 of the second processing surface 2 has directionality in the plane along the second processing surface 2.
  • the introduction direction of the second fluid is a component in the radial direction of the processing surface that is an outward direction away from the center and a component with respect to the rotation direction of the fluid between the rotating processing surfaces. Is forward.
  • a line segment in the radial direction passing through the opening d20 and extending outward is defined as a reference line g and has a predetermined angle ( ⁇ 2) from the reference line g to the rotation direction R. This angle ( ⁇ 2) is also preferably set to more than 0 degree and less than 90 degrees.
  • This angle ( ⁇ 2) can be changed and implemented in accordance with various conditions such as the type of fluid, reaction speed, viscosity, and rotational speed of the processing surface.
  • the second introduction part d2 may not have any directionality.
  • the number of fluids to be treated and the number of flow paths are two, but may be one, or may be three or more.
  • the second fluid is introduced between the processing surfaces 1 and 2 from the second introduction part d2, but this introduction part may be provided in the first processing part 10 or provided in both. Good. Moreover, you may prepare several introduction parts with respect to one type of to-be-processed fluid.
  • the shape, size, and number of the opening for introduction provided in each processing portion are not particularly limited, and can be appropriately changed. Further, an opening for introduction may be provided immediately before or between the first and second processing surfaces 1 and 2 or further upstream.
  • the second fluid is introduced from the first introduction part d1 and the first fluid is introduced from the second introduction part d2 contrary to the above. May be introduced.
  • the expressions “first” and “second” in each fluid have only an implication for identification that they are the nth of a plurality of fluids, and a third or higher fluid may exist.
  • processes such as precipitation / precipitation or crystallization are disposed so as to face each other so as to be able to approach / separate, and at least one of the processing surfaces 1 rotates relative to the other. Occurs with forcible uniform mixing between the two.
  • the particle size and monodispersity of the processed material to be processed are the rotational speed and flow velocity of the processing parts 10 and 20, the distance between the processing surfaces 1 and 2, the raw material concentration of the processed fluid, or the processed fluid. It can be controlled by appropriately adjusting the solvent species and the like.
  • a raw material fluid containing at least one kind of deposition substance and a precipitation fluid containing at least one kind of substance for depositing the deposition substance are mixed, and fine particles of the deposition substance whose crystallite diameter is controlled are obtained.
  • the crystallite diameter of the substance to be deposited is controlled by changing a specific condition regarding at least one of the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2.
  • Specific conditions include at least one kind of at least one kind of substances contained in the raw material fluid and at least one kind of substance contained in the precipitation fluid, and at least one contained in the raw material fluid.
  • the pH of at least one of the raw material fluid and the precipitation fluid It may be at least one selected from the group consisting of the introduction temperature of at least one of the raw material fluid and the precipitation fluid and the introduction speed of at least one of the raw material fluid and the precipitation fluid.
  • the fine particle precipitation reaction described above is forced between the processing surfaces 1 and 2 of the apparatus shown in FIG. 1 of the present application, which are disposed so as to be able to approach and separate from each other and at least one rotates with respect to the other. Occurs with uniform mixing.
  • a deposition fluid containing at least one kind of substance for depositing a deposition substance as a first fluid is disposed opposite to each other so as to be capable of approaching and separating. At least one is introduced between the processing surfaces 1 and 2 that rotate with respect to the other, and a first fluid film that is a thin film fluid composed of the first fluid is formed between the processing surfaces.
  • a raw material fluid containing at least one kind of deposition substance as a second fluid is directly introduced into the first fluid film formed between the processing surfaces 1 and 2 from the second introduction part d2 which is another flow path.
  • the first fluid and the second fluid are disposed between the processing surfaces 1 and 2 whose distance is fixed by the pressure balance between the supply pressure of the fluid to be processed and the pressure applied between the rotating processing surfaces. And a precipitation reaction of fine particles of a substance to be precipitated whose crystallite diameter is controlled.
  • the second fluid is introduced from the first introduction part d1 and the first fluid is introduced from the second introduction part d2, contrary to the above. May be introduced.
  • the expressions “first” and “second” in each fluid have only an implication for identification that they are the nth of a plurality of fluids, and a third or higher fluid may exist.
  • a third introduction part can be provided in the processing apparatus.
  • the first fluid the first fluid is supplied from each introduction part. It is possible to introduce separately the fluid containing the pH adjusting substance which will be described later as the second fluid and the third fluid into the processing apparatus. If it does so, the density
  • the pH adjusting substance only needs to be contained in at least the third fluid, and may be contained in at least one of the first fluid and the second fluid. And the second fluid may not be included.
  • the temperature of the fluid to be processed such as the first and second fluids is controlled, and the temperature difference between the first fluid and the second fluid (that is, the temperature difference between the supplied fluids to be processed) is controlled.
  • the temperature of each processed fluid is measured. It is also possible to add a mechanism for heating or cooling each fluid to be processed introduced between the processing surfaces 1 and 2.
  • the obtained material to be deposited is changed. It is possible to control the crystallite size of the fine particles.
  • the introduction speed of the fluid to be treated of at least one of the raw material fluid and the precipitation fluid By changing the introduction speed of the fluid to be treated of at least one of the raw material fluid and the precipitation fluid, the mixing ratio of the material for precipitating the material to be deposited with respect to the material to be deposited can be easily controlled. As a result, it is possible to easily control the crystallite size of the resulting fine particles, so that it is not necessary to study complicated prescriptions as before, and it is possible to make fine particles with a crystallite size according to the purpose. Is possible.
  • the introduction speed of at least one of the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2, and the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2, At least one selected from a group constituting a specific condition regarding at least one of the raw material fluid and the deposition fluid introduced between the processing surfaces 1 and 2 other than the introduction speed of at least one of One type can be implemented in combination.
  • the method of changing the introduction speed of at least one of the raw fluid and the deposition fluid introduced between the processing surfaces 1 and 2 is not particularly limited.
  • the introduction speed of at least one of the raw material fluid and the deposition fluid introduced between the processing surfaces 1 and 2 may be changed, You may change the introduction speed
  • the crystallite diameter of the fine particles of the material to be deposited is changed by changing the pH of at least one of the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2. It can be easily controlled.
  • the pH may be changed by including a pH adjusting substance described later in at least one of the raw material fluid and the precipitation fluid, or the raw material contained in the raw material fluid
  • the pH may be changed by changing the concentration of the substance to be deposited in the solvent or changing the concentration of the substance for precipitating the substance to be precipitated contained in the precipitation fluid.
  • At least one of the raw material fluid and the deposition fluid may be obtained by a method of dissolving a plurality of types of deposition materials in a solvent or a method of including a material for precipitating a plurality of types of deposition materials in the deposition fluid. It can also be carried out by changing the pH of either one. By adjusting the pH, the crystallite size of the fine particles can be easily controlled, and fine particles having a crystallite size suitable for the purpose can be produced.
  • the pH of at least one of the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2 and the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2. At least one selected from the group constituting a specific condition regarding at least one of the raw material fluid and the deposition fluid introduced between the processing surfaces 1 and 2 other than the pH of at least one of them Can be implemented in combination.
  • the pH adjusting substance for adjusting the pH is not particularly limited, but it may be an inorganic or organic acid such as hydrochloric acid, sulfuric acid, nitric acid, aqua regia, trichloroacetic acid, trifluoroacetic acid, phosphoric acid, citric acid, and ascorbic acid.
  • basic substances such as alkali substances such as sodium hydroxide and potassium hydroxide, amines such as triethylamine and dimethylaminoethanol, and salts of the above acidic substances and basic substances.
  • the above pH adjusting substances may be used alone or in combination of two or more.
  • the pH of at least one of the raw material fluid and the precipitation fluid is changed by changing the mixing amount of the pH adjusting substance in the raw material fluid and / or the precipitation fluid and the concentration of the raw material fluid and / or the precipitation fluid. It is possible.
  • the pH adjusting substance may be contained in the raw material fluid, the precipitation fluid, or both.
  • the pH adjusting substance may be contained in a third fluid that is different from the raw material fluid and the deposition fluid.
  • the pH of the raw material fluid and / or the precipitation fluid in the present invention is not particularly limited. It can be appropriately changed depending on the purpose and the material to be deposited, the crystallite diameter, and the like.
  • various dispersants and surfactants can be used according to the purpose and necessity. Although it does not specifically limit, As a surfactant and a dispersing agent, various commercially available products generally used, products, or newly synthesized products can be used. Examples include anionic surfactants, cationic surfactants, nonionic surfactants, dispersants such as various polymers, and the like. These may be used alone or in combination of two or more.
  • the above surfactant and dispersant may be contained in the raw material fluid or the deposition fluid, or both. Further, the above surfactant and dispersant may be contained in a third fluid different from the raw material fluid and the deposition fluid.
  • the temperature at which the raw material fluid and the precipitation fluid are mixed is not particularly limited. It can be carried out at an appropriate temperature depending on the kind of the substance to be deposited as the starting material, the kind of the substance for precipitating the substance to be deposited, the kind of the substance to be deposited as the subject of deposition, the above pH, and the like.
  • the deposition target obtained by changing the introduction temperature of at least one of the raw fluid and the deposition fluid introduced between the processing surfaces 1 and 2. It is possible to control the crystallite size of the fine particles of the substance. Specifically, although not particularly limited, as described above, each temperature of the raw material fluid and the deposition fluid (processing device, more specifically, the temperature immediately before being introduced between the processing surfaces 1 and 2) is measured. It is possible to add a mechanism for heating or cooling the raw material fluid and the deposition fluid introduced between the processing surfaces 1 and 2.
  • the introduction temperature of at least one of the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2, and the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2, At least one selected from a group constituting a specific condition regarding at least one of the raw material fluid and the deposition fluid introduced between the processing surfaces 1 and 2 other than the introduction temperature of at least one of One type can be implemented in combination.
  • the pH of at least one of the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2 and the processing surfaces 1 and 2 described above is introduced.
  • the type of the starting material to be deposited, the type of the material for precipitating the material to be deposited, the material type of the material to be deposited and the concentration of each are within the range not departing from the object of the present invention. It is possible to select and implement.
  • “from the center” means “from the first introduction part d1” of the processing apparatus shown in FIG. 1, and the first fluid is introduced from the first introduction part d1.
  • the first fluid to be treated refers to the second fluid to be treated, which is introduced from the second introduction part d2 of the treatment apparatus shown in FIG.
  • PH measurement A pH meter of model number D-51 manufactured by HORIBA was used for pH measurement. Before introducing each fluid to be treated into the fluid treatment apparatus, the pH of the fluid to be treated was measured at room temperature.
  • TEM electron microscope
  • TEM electron microscope
  • JEM-2100 JEM-2100 manufactured by JEOL Ltd.
  • an acceleration voltage was set to 200 kV, and average values at three locations were used at a magnification of 400,000 to 800,000.
  • the primary particle diameter confirmed by TEM observation is defined as the particle diameter.
  • yttria-stabilized zirconia fine particles were prepared by the following procedure.
  • yttrium nitrate was dissolved in pure water so that the zirconium nitrate oxide dihydrate was 11.8 wt% and 0.18 wt%.
  • the yttria-stabilized zirconia precursor fine particles were deposited in a thin film fluid.
  • a basic aqueous solution (precipitation fluid) is fed as a second fluid while feeding a basic aqueous solution (deposition fluid) at a supply pressure of 0.50 MPaG, a rotation speed of 1700 rpm, a feeding temperature of 25 ° C., and an introduction speed of 200 ml / min.
  • the metal salt mixture (raw material fluid) was introduced between the processing surfaces 1 and 2 at an introduction rate of 10 ml / min, and the first fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • the yttria-stabilized zirconia precursor fine particle dispersion discharged from the processing surface is precipitated by using a centrifuge at 10,000 ⁇ g for 5 minutes to precipitate the yttria-stabilized zirconia precursor fine particles. Then, the operation of washing with pure water was performed three times, and drying was performed at 60 ° C. and ⁇ 0.1 MPa using a vacuum dryer, followed by firing at 1000 ° C. for 4 hours using a furnace. As a result of XRD measurement after firing, it was confirmed that yttria-stabilized zirconia fine particles without impurities were produced. Further, the particle diameter and crystallite diameter of the obtained yttria-stabilized zirconia fine particles were confirmed by TEM observation.
  • Table 1 shows the processing conditions and the particle diameter and crystallite diameter of the yttria-stabilized zirconia fine particles obtained.
  • 4 to 6 show TEM photographs of the yttria-stabilized zirconia fine particles obtained in Examples 1 to 3.
  • FIG. 1 shows the processing conditions and the particle diameter and crystallite diameter of the yttria-stabilized zirconia fine particles obtained.
  • Example 1 and Example 2 yttria-stabilized zirconia fine particles having a large crystallite diameter are obtained by changing the substance type of the basic substance contained in the first fluid and further increasing the pH. Obtained.
  • Example 1 and Example 2 yttria-stabilized zirconia fine particles having a large particle diameter were obtained by changing the substance type of the basic substance contained in the first fluid and further increasing the pH.
  • Example 1 and Example 2 the particle size and crystallites of yttria-stabilized zirconia fine particles were changed by changing the material type of the basic substance contained in the first fluid and further increasing the pH. It was confirmed that the diameter can be changed together.
  • Example 3 unlike Examples 1 and 2, yttria-stabilized zirconia fine particles having different particle diameters and crystallite diameters were obtained.
  • a metal salt solution raw material fluid
  • a reducing agent solution precipitation fluid having a pH of 10.55 in which hydrazine monohydrate was dissolved in ethylene glycol so as to be 2 wt% was mixed as an agent to precipitate copper fine particles in the thin film fluid.
  • a reducing agent solution (deposition fluid) is supplied at a supply pressure of 0.50 MPaG, a rotation speed of 1700 rpm, a liquid supply temperature of 100 ° C., and an introduction speed of 300 ml / min.
  • the metal salt solution (raw material fluid) was introduced between the processing surfaces 1 and 2 at an introduction rate of 5 ml / min, and the first fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • Example 5 Copper fine particles were produced by the following procedure using the apparatus shown in FIG.
  • a reducing agent solution (deposition fluid) is supplied at a supply pressure of 0.50 MPaG, a rotation speed of 1700 rpm, a liquid supply temperature of 100 ° C., and an introduction speed of 300 ml / min.
  • the metal salt solution (raw material fluid) was introduced between the processing surfaces 1 and 2 at an introduction rate of 5 ml / min, and the first fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • a metal salt solution raw material fluid
  • a reducing agent solution deposition fluid having a pH of 10.55 in which hydrazine monohydrate was dissolved in ethylene glycol so as to be 2 wt% as a reducing agent was mixed to precipitate copper fine particles in the thin film fluid.
  • a reducing agent solution (deposition fluid) is supplied at a supply pressure of 0.50 MPaG, a rotation speed of 1700 rpm, a liquid supply temperature of 100 ° C., and an introduction speed of 300 ml / min.
  • the metal salt solution (raw material fluid) was introduced between the processing surfaces 1 and 2 at an introduction rate of 5 ml / min, and the first fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • Example 7 Copper fine particles were produced by the following procedure using the apparatus shown in FIG.
  • a reducing agent solution (deposition fluid) is supplied at a supply pressure of 0.50 MPaG, a rotation speed of 1700 rpm, a liquid supply temperature of 130 ° C., and an introduction speed of 300 ml / min.
  • the metal salt solution (raw material fluid) was introduced between the processing surfaces 1 and 2 at an introduction rate of 5 ml / min, and the first fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • a reducing agent solution (deposition fluid) is supplied at a supply pressure of 0.50 MPaG, a rotation speed of 1700 rpm, a liquid supply temperature of 100 ° C., and an introduction speed of 300 ml / min.
  • the metal salt solution (raw material fluid) was introduced between the processing surfaces 1 and 2 at an introduction rate of 5 ml / min, and the first fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • a reducing agent solution (deposition fluid) is supplied at a supply pressure of 0.50 MPaG, a rotation speed of 1700 rpm, a liquid supply temperature of 100 ° C., and an introduction speed of 100 ml / min.
  • the metal salt solution (raw material fluid) was introduced between the processing surfaces 1 and 2 at an introduction rate of 5 ml / min, and the first fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • the copper fine particle dispersion was discharged from the processing surface by mixing the first fluid and the second fluid introduced between the processing surfaces 1 and 2 in the thin film fluid.
  • the discharged copper fine particle dispersion was centrifuged at 10,000 ⁇ g for 5 minutes using a centrifugal separator, the supernatant was removed, and washing with methanol was performed three times. And dried at 50 ° C. and ⁇ 0.1 MPa. As a result of XRD measurement of the dried copper fine particles, it was confirmed that copper was produced. Moreover, the particle diameter and crystallite diameter of the copper fine particles were confirmed by TEM observation.
  • Table 2 shows the processing conditions and the particle diameter and crystallite diameter of the obtained copper fine particles. 7 to 9 show TEM photographs of the copper fine particles obtained in Examples 4 to 6. FIG.
  • the crystallite diameter of the obtained copper fine particles can be controlled by changing specific conditions.
  • the reducing agent concentration in the first fluid (deposition fluid) is lowered to lower the pH
  • the metal salt concentration in the second fluid (raw material fluid) is raised to lower the pH
  • the crystallite diameter and particle diameter of the copper fine particles were increased.
  • Example 4 and Example 6 when the pH was lowered by changing the kind of metal salt and the concentration of metal salt in the second fluid, the crystallite diameter and particle diameter of the copper fine particles were increased.
  • Example 4 and Example 7 the reducing agent concentration in the first fluid is lowered to lower the pH, the metal salt concentration in the second fluid is raised to lower the pH, and the introduction temperature of the first fluid is further raised, The crystallite diameter and particle diameter of the copper fine particles were increased.
  • Example 7 and Example 8 by adding benzotriazole to the metal salt solution in the second fluid to lower the pH and further lowering the introduction temperature in the first fluid, the crystallite size and particle size of the copper fine particles are It has become smaller.
  • Example 7 and Example 9 the crystallite diameter and particle diameter of the copper fine particles were reduced by lowering the introduction speed and introduction temperature of the first fluid.
  • Example 5 and Example 6 the crystallite diameter and particle diameter of the copper fine particles are increased by increasing the reducing agent concentration in the first fluid to increase the pH and changing the type and concentration of the metal salt in the second fluid. Became bigger.
  • Example 6 and 7 the type and concentration of the metal salt in the second fluid are changed, and the reducing agent concentration in the first fluid is lowered to lower the pH and the introduction temperature is raised. The child diameter and particle diameter increased.
  • Example 6 and Example 8 the type and concentration of the metal salt in the second fluid are changed, benzotriazole is added to the metal salt solution to lower the pH, and the reducing agent concentration in the first fluid is further lowered. By reducing the pH, the crystallite size and particle size of the copper fine particles were reduced.
  • Example 6 and Example 9 by changing the type and concentration of the metal salt in the second fluid, and further reducing the reducing agent concentration and introduction rate of the first fluid, the crystallite size and particle size of the copper fine particles Became smaller. From the above, it is contained in the to-be-deposited substance and / or precipitation fluid which are the specific conditions regarding at least any one of the raw material fluid introduced into between the processing surfaces 1 and 2, and the precipitation fluid.
  • the crystallite diameter of the copper fine particles can be controlled by changing at least two selected from the group consisting of the introduction rate of the fluid and / or the precipitation fluid. In most of the above examples, it was confirmed that both the particle diameter and the crystallite diameter of the copper fine particles can be changed by changing the specific conditions. In Examples 5 and 7, the introduction temperature of the first fluid is changed, and in Examples 5 and 8, the pH of the second fluid is changed. In Example 9, it was confirmed that the crystallite size of the copper fine particles can be changed by changing the introduction speed of the first fluid.
  • the raw material fluid and / or the precipitation which is a specific condition regarding at least one of the raw material fluid and the precipitation fluid introduced between the processing surfaces 1 and 2, is provided.
  • the crystallite diameter of the copper fine particles It was confirmed that it can be controlled.
  • both the particle diameter and the crystallite diameter of the copper fine particles can be changed by changing the specific conditions described above.
  • Example 5 and Example 9 it was confirmed that only the crystallite diameter of the copper fine particles was changed without changing the particle diameter of the copper fine particles by changing the specific conditions described above. . Further, in Example 9, different from Examples 4 to 8, copper fine particles having different particle diameters and crystallite diameters were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Accessories For Mixers (AREA)

Abstract

 結晶子径を制御された微粒子の製造方法を提供することを課題とする。 被析出物質を含む原料流体と上記被析出物質を析出させるための物質を含む析出流体との、少なくとも2種類の被処理流動体を、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面間にできる薄膜流体中で混合し、結晶子径が制御された被析出物質を析出させる。その際、処理用面間に導入される被処理流動体に関する特定の条件を変化させて、被析出物質の結晶子径を制御する。上記特定の条件は、原料流体に含まれる被析出物質及び/又は析出流体に含まれる物質の種類と、原料流体に含まれる被析出物質及び/又は析出流体に含まれる物質の濃度と、原料流体及び/又は析出流体のpHと、原料流体及び/又は析出流体の導入温度と、原料流体及び/又は析出流体の導入速度とからなる群から選択された少なくとも2種とする。

Description

結晶子径を制御された微粒子の製造方法
 本発明は結晶子径を制御された微粒子の製造方法に関する。
 近年、微粒子は、光学材料、磁性材料、導電材料、電子材料、機能性セラミックス、蛍光材料、触媒材料、化学材料など、産業分野において多方面で幅広く使用されている。商品の多機能化や小型化などへの要求に伴って、出来るだけ多くの機能を詰め込み、且つ今より小型、軽量にすることが課題となっており、それらのニーズに応えるために微粒子が必要とされている。また微粒子化することによって粒子が活性となることや透明性が高くなるなど、新たな物性を獲得することができる。しかし、例えば誘導体薄膜に用いられるチタン酸バリウムなどでは、微粒子における結晶子径が小さくなりすぎると目的とする物性が得られないなど、結晶子径と微粒子の特性とは密接な関係があることが知られている。そのため、微粒子についてはその粒子径を制御するだけでなく、結晶子径を制御することが必要とされている。
 一般に結晶子とは、単結晶とみなせる最大の集まりのことをいい、その結晶子の大きさのことを結晶子径という。結晶子径の測定方法には、電子顕微鏡を用いて結晶子の格子縞を確認する方法と、X線回折装置を用いて回折パターンとScherrerの式より結晶子径を算出する方法とがある。
 結晶子径 D=K・λ/(β・cosθ) ・・・Scherrerの式
 ここで、KはScherrer定数であり、K=0.9とする。λは使用したX線管球の波長、βは半値幅、θは回折角を用いて算出する。
 微粒子の結晶子径の制御方法については、金属単体、金属イオン、金属化合物やそれらを溶媒に溶解した金属溶液を、特許文献1に示したようなソルボサーマル法に供する方法や、特許文献2~4で示したような亜臨界または超臨界状態で水熱処理する方法や不活性雰囲気下で熱処理する方法などが挙げられるが、これらの方法では耐熱性、耐圧力性に優れた装置や不活性雰囲気下であることを必要とし、さらに処理に時間を要するため、エネルギーコストが高くなるなどの問題点がある。
 また、本願出願人によって特許文献5に示す微粒子の製造方法が提供され、粒子径の制御については開示されたが、結晶子径の制御方法については具体的に開示されていなかった。
特開2008-30966号公報 特開2008-289985号公報 特開2010-24478号公報 特開2011-11956号公報 特開2010-201344号公報
 本発明は上記に鑑み、結晶子径を制御された微粒子の製造方法を提供することを課題とする。
 本発明者は鋭意検討の結果、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面間において、被処理流動体として被析出物質を少なくとも1種類含む原料流体と、上記被析出物質を析出させるための物質を少なくとも1種類含む析出流体とを混合して、被析出物質の微粒子を析出させる際に、上記原料流体と析出流体との少なくともいずれか一方に関する特定の条件を変化させることによって、結晶子径を制御された被析出物質の微粒子が得られることを見出し、本発明を完成させた。
 本発明は、少なくとも2種類の被処理流動体を用いるものであり、そのうちで少なくとも1種類の被処理流動体は、被析出物質を少なくとも1種類含む原料流体であり、上記以外の被処理流動体で少なくとも1種類の被処理流動体は、上記被析出物質を析出させるための物質を少なくとも1種類含む析出流体であり、上記の被処理流動体を、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間にできる薄膜流体中で混合し、結晶子径を制御された被析出物質を析出させる微粒子の製造方法において、上記少なくとも2つの処理用面間に導入される上記原料流体と上記析出流体との少なくとも何れか一方に関する特定の条件を変化させることによって、上記被析出物質の結晶子径を制御するものであり、上記特定の条件が、上記原料流体に含まれる少なくとも1種類の被析出物質と上記析出流体に含まれる少なくとも1種類の物質とのうちの少なくともいずれか一方の物質の種類と、上記原料流体に含まれる少なくとも1種類の被析出物質と上記析出流体に含まれる少なくとも1種類の物質とのうちの少なくともいずれか一方の物質の濃度と、上記原料流体と上記析出流体とのうちの少なくともいずれか一方のpHと、上記原料流体と上記析出流体とのうちの少なくともいずれか一方の導入温度と、上記原料流体と上記析出流体とのうちの少なくともいずれか一方の導入速度とからなる群から選択された少なくとも2種であることを特徴とする、微粒子の製造方法を提供する。
 上記少なくとも2つの処理用面間に導入される原料流体と析出流体との少なくともいずれか一方に関する特定の条件を変化させることにおいて、具体的には、(A)上記原料流体に含まれる被析出物質及び/又は上記析出流体に含まれる上記被析出物質を析出させるための物質の種類の制御と、(B)上記原料流体に含まれる被析出物質及び/又は上記析出流体に含まれる上記被析出物質を析出させるための物質の濃度の制御と、(C)上記原料流体及び/又は上記析出流体のpHの制御と、(D)上記原料流体及び/又は上記析出流体の導入温度の制御と、(E)上記原料流体及び/又は上記析出流体の導入速度の制御とがあり、それぞれの制御方法については、下記の(1)~(15)を挙げることができる。そして、(1)~(15)のうちの少なくとも2種を選択し、夫々組合せて実施することができる。
(A)原料流体に含まれる被析出物質及び/又は析出流体に含まれる被析出物質を析出させるための物質の種類の制御
 (1)少なくとも1種の原料流体について、被析出物質の種類を変化させる。
 (2)少なくとも1種の析出流体について、被析出物質を析出させるための物質の種類を変化させる。
 (3)少なくとも1種の原料流体中の被析出物質と、少なくとも1種の析出流体中の被析出物質を析出させるための物質の双方について、種類を変化させる。
(B)原料流体に含まれる被析出物質及び/又は析出流体に含まれる被析出物質を析出させるための物質の濃度の制御
 (4)少なくとも1種の原料流体について、被析出物質の濃度を変化させる。
 (5)少なくとも1種の析出流体について、被析出物質を析出させるための物質の濃度を変化させる。
 (6)少なくとも1種の原料流体中の被析出物質と、少なくとも1種の析出流体中の被析出物質を析出させるための物質の双方について、濃度を変化させる。
(C)原料流体及び/又は析出流体のpHの制御
 (7)少なくとも1種の原料流体について、pHを変化させる。
 (8)少なくとも1種の析出流体について、pHを変化させる。
 (9)少なくとも1種の原料流体と、少なくとも1種の析出流体の双方について、pHを変化させる。
(D)原料流体及び/又は析出流体の導入温度の制御
 (10)少なくとも1種の原料流体について、導入温度を変化させる。
 (11)少なくとも1種の析出流体について、導入温度を変化させる。
 (12)少なくとも1種の原料流体と、少なくとも1種の析出流体の双方について、導入温度を変化させる。
(E)原料流体及び/又は析出流体の導入速度の制御
 (13)少なくとも1種の原料流体について、導入速度を変化させる。
 (14)少なくとも1種の析出流体について、導入速度を変化させる。
 (15)少なくとも1種の原料流体と、少なくとも1種の析出流体の双方について、導入速度を変化させる。
 また、本発明は、上記被析出物質の粒子径を変化させず、上記被析出物質の結晶子径のみを変化させるものとして実施することができる。
 また、本発明は、上記被析出物質の粒子径と、上記被析出物質の結晶子径とを、ともに変化させるものとして実施することができる。
 また、本発明は、少なくとも2種類の被処理流動体を用いるものであり、そのうちで少なくとも1種類の被処理流動体は、被析出物質を少なくとも1種類含む原料流体であり、上記以外の被処理流動体で少なくとも1種類の被処理流動体は、上記被析出物質を析出させるための物質を少なくとも1種類含む析出流体であり、上記の被処理流動体を、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間に出来る薄膜流体中で混合し、結晶子径を制御された被析出物質を析出させる微粒子の製造方法において、上記少なくとも2つの処理用面間に導入される上記原料流体と上記析出流体との少なくとも何れか一方に関する特定の条件を変化させることによって、被析出物質の結晶子径を制御するものであり、上記特定の条件が、上記原料流体と上記析出流体とのうちの少なくともいずれか一方のpHと、上記原料流体と上記析出流体とのうちの少なくともいずれか一方の導入温度と、上記原料流体と上記析出流体とのうちの少なくともいずれか一方の導入速度とからなる群から選択された少なくとも1種であるものとして実施することができる。
 上記本発明の実施の態様の単なる一例を示せば、被処理流動体に圧力を付与する流体圧付与機構と、上記少なくとも2つの処理用面のうちの第1処理用面を備えた第1処理用部と、上記少なくとも2つの処理用面のうちの第2処理用面を備えた第2処理用部と、これらの処理用部を相対的に回転させる回転駆動機構とを備え、上記の各処理用面は、上記の圧力が付与された被処理流動体が流される、密封された流路の一部を構成するものであり、上記第1処理用部と第2処理用部のうち、少なくとも第2処理用部は受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記第2処理用面により構成され、この受圧面は、上記の流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転する第1処理用面と第2処理用面との間に上記の圧力が付与された被処理流動体が通されることにより、上記被処理流動体が上記薄膜流体を形成し、この薄膜流体中において結晶子径を制御された被析出物質を析出させる微粒子の製造方法として実施することができる。
 また、上記本発明の実施の態様の単なる一例を示せば、上記の被処理流動体のうちの少なくともいずれか1種の流体が上記薄膜流体を形成しながら上記両処理用面間を通過し、上記少なくともいずれか1種の流体が流される流路とは独立した別途の導入路を備えており、上記第1処理用面と第2処理用面の少なくとも何れか一方が、上記の導入路に通じる開口部を少なくとも一つ備え、上記少なくともいずれか1種の流体とは異なる少なくとも1種の流体を、上記開口部から上記処理用面の間に導入し、上記の被処理流動体を上記薄膜流体中で混合し、この薄膜流体中において結晶子径を制御された被析出物質を析出させる微粒子の製造方法として実施することができる。
 本発明は、従来の製造方法では困難であった、微粒子の結晶子径の制御を可能とし、結晶子径を制御された微粒子を簡単かつ連続的に製造することを可能とした。また、特定の条件を変化させるという簡単な処理条件の変更によって、得られる微粒子の結晶子径を制御することが可能となったため、これまで以上に低コスト、低エネルギーで目的に応じた異なる結晶子径の微粒子を作り分けることが可能となり、安価かつ安定的に目的とする結晶子径の微粒子を提供することができる。さらに、本発明においては、微粒子の粒子径と結晶子径とを同時に変化させることができ、また、粒子径を変化させずに結晶子径のみを変化させることができるため、所望する粒子径の微粒子に目的とする特性を付与させることが可能である。
本発明の実施の形態に係る流体処理装置の略断面図である。 (A)は図1に示す流体処理装置の第1処理用面の略平面図であり、(B)は同装置の処理用面の要部拡大図である。 (A)は同装置の第2導入部の断面図であり、(B)は同第2導入部を説明するための処理用面の要部拡大図である。 実施例1において作製したイットリア安定化ジルコニア微粒子のTEM写真(倍率50万倍、フィールドの水平幅52nm)である。 実施例2において作製したイットリア安定化ジルコニア微粒子のTEM写真(倍率50万倍、フィールドの水平幅52nm)である。 実施例3において作製したイットリア安定化ジルコニア微粒子のTEM写真(倍率50万倍、フィールドの水平幅52nm)である。 実施例4において作製した銅微粒子のTEM写真(倍率80万倍、フィールドの水平幅33.2nm)である。 実施例5において作製した銅微粒子のTEM写真(倍率40万倍、フィールドの水平幅64.4nm)である。 実施例6において作製した銅微粒子のTEM写真(倍率50万倍、フィールドの水平幅52nm)である。
 以下に、本発明の実施の形態の一例について、具体的に説明する。
 本発明における原料流体は、原料である被析出物質を、後述する溶媒に混合または溶解(以下、単に、溶解とする。)したものである。
 本発明における被析出物質は特に限定されないが、有機物や無機物、有機無機の複合物などが挙げられ、例えば、金属元素や非金属元素の単体、またそれらの化合物などが挙げられる。化合物としては、塩、酸化物、水酸化物、水酸化酸化物、窒化物、炭化物、錯体、有機化合物や、それらの水和物や有機溶媒和物などが挙げられる。これらは単一の被析出物質であっても良く、複数以上が混合された混合物であっても良い。
 なお、上記の被析出物質は、出発原料として用いられる被析出物質と、後述する析出流体との混合によって析出される被析出物質の状態は同じであっても異なっていてもよい。例えば、出発原料として用いられる被析出物質が金属化合物であって、後述する析出流体との混合によって析出される被析出物質が上記金属化合物を構成する金属単体であってもよく、出発原料として用いられる被析出物質が複数種の金属化合物の混合物であって、後述する析出流体との混合によって析出される被析出物質が、出発原料として用いられる被析出物質である複数種の金属化合物と析出流体に含まれる被析出物質を析出させるための物質とが反応した反応物質であってもよい。さらに、出発原料として用いられる被析出物質が金属単体であって、後述する析出流体との混合によって析出される被析出物質も同じ金属単体であってもよい。
 本発明における析出流体は、上記被析出物質を析出させるための物質を少なくとも1種類含むものとする。析出流体としては、後述するような溶媒を単独で用いても良く、上記被析出物質を析出させるための物質として、下記の物質を上記溶媒中に含むものであっても良い。上記物質は特に限定されないが、例えば、塩酸や硫酸、硝酸や王水、トリクロロ酢酸やトリフルオロ酢酸、リン酸やクエン酸、アスコルビン酸などの無機または有機の酸のような酸性物質や、水酸化ナトリウムや水酸化カリウムなどの水酸化アルカリや、トリエチルアミンやジメチルアミノエタノールなどのアミン類などの塩基性物質、上記の酸性物質や塩基性物質の塩などが挙げられる。また、上記被析出物質を還元することができる還元剤、例えば、金属溶液中に含まれる、金属及び/または金属化合物、好ましくは金属イオンを還元することができる還元剤も挙げられる。上記還元剤は特に限定されないが、ヒドラジンまたはヒドラジン一水和物、ホルムアルデヒド、スルホキシル酸ナトリウム、水素化ホウ素金属塩、水素化アルミニウム金属塩、水素化トリエチルホウ素金属塩、グルコース、クエン酸、アスコルビン酸、タンニン酸、ジメチルホルムアミド、ピロガロール、テトラブチルアンモニウムボロヒドリド、次亜リン酸ナトリウム(NaHPO・HO)、ロンガリットC(NaHSO・CHO・2HO)、金属の化合物またはそれらのイオン、好ましくは遷移金属の化合物またはそれらのイオン(鉄、チタンなど)などが挙げられる。上記に挙げた還元剤には、それらの水和物や有機溶媒和物、または無水物などを含む。これらの被析出物質を析出させるための物質は、それぞれ単体で使用しても良く、複数以上が混合された混合物として使用しても良い。なお、析出流体として上記溶媒を単独で用いる場合には、上記溶媒が、上記被析出物質を析出させるための物質となる。
(溶媒)
 本発明における原料流体や析出流体に用いる溶媒としては特に限定されないが、イオン交換水やRO水、純水や超純水などの水や、メタノールやエタノールのようなアルコール系有機溶媒や、エチレングリコールやプロピレングリコール、トリメチレングリコールやテトラエチレングリコール、またはポリエチレングリコールやグリセリンなどのポリオール(多価アルコール)系有機溶媒、アセトンやメチルエチルケトンのようなケトン系有機溶媒、酢酸エチルや酢酸ブチルのようなエステル系有機溶媒、ジメチルエーテルやジブチルエーテルなどのエーテル系有機溶媒、ベンゼンやトルエン、キシレンなどの芳香族系有機溶媒、ヘキサンや、ペンタンなどの脂肪族炭化水素系有機溶媒などが挙げられる。また上記アルコール系有機溶媒やポリオール系有機溶媒を溶媒として用いた場合には、溶媒そのものが還元剤としても働く利点がある。上記溶媒はそれぞれ単独で使用しても良く、複数以上を混合して使用しても良い。特に、析出流体に関しては、上述の通り、上記溶媒を単独で析出流体として用いることも可能である。言い換えると、上記溶媒は単独であっても被析出物質を析出させるための物質となりうる。
 本発明における原料流体及び/又は析出流体には、分散液やスラリーなどの状態のものを含んでいても実施できる。
(流体処理装置)
 本発明においては、少なくとも1種類の被析出物質を含む原料流体と、被析出物質を析出させるための、少なくとも1種類の物質を含む析出流体との混合を、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間にできる、薄膜流体中で均一に攪拌・混合する方法を用いて行うことが好ましく、例えば、本願出願人による、特許文献5に示される装置と同様の原理の装置を用いて混合する事によって微粒子を析出させることが好ましい。このような原理の装置を用いる事によって、均一且つ均質に結晶子径が制御された微粒子を作製する事が可能である。
 以下、図面を用いて上記流体処理装置の実施の形態について説明する。
 図1~図3に示す流体処理装置は、特許文献5に記載の装置と同様であり、接近・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物を処理するものであって、被処理流動体のうちの第1の被処理流動体である第1流体を処理用面間に導入し、前記第1流体を導入した流路とは独立し、処理用面間に通じる開口部を備えた別の流路から被処理流動体のうちの第2の被処理流動体である第2流体を処理用面間に導入して処理用面間で上記第1流体と第2流体を混合・攪拌して処理を行う装置である。なお、図1においてUは上方を、Sは下方をそれぞれ示しているが、本発明において上下前後左右は相対的な位置関係を示すに止まり、絶対的な位置を特定するものではない。図2(A)、図3(B)においてRは回転方向を示している。図3(B)においてCは遠心力方向(半径方向)を示している。
 この装置は、被処理流動体として少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面を備え、これらの処理用面の間で上記の各流体を合流させて薄膜流体とするものであり、当該薄膜流体中において上記の被処理物を処理する装置である。この装置は、上述のとおり、複数の被処理流動体を処理することができるが、単一の被処理流動体を処理することもできる。
 この流体処理装置は、対向する第1及び第2の、2つの処理用部10,20を備え、少なくとも一方の処理用部が回転する。両処理用部10,20の対向する面が、夫々処理用面となる。第1処理用部10は第1処理用面1を備え、第2処理用部20は第2処理用面2を備える。
 両処理用面1,2は、被処理流動体の流路に接続され、被処理流動体の流路の一部を構成する。この両処理用面1,2間の間隔は、適宜変更して実施することができるが、通常は、1mm以下、例えば0.1μmから50μm程度の微小間隔に調整される。これによって、この両処理用面1,2間を通過する被処理流動体は、両処理用面1,2によって強制された強制薄膜流体となる。
 この装置を用いて複数の被処理流動体を処理する場合、この装置は、第1の被処理流動体の流路に接続され、当該第1被処理流動体の流路の一部を形成すると共に、第1被処理流動体とは別の、第2被処理流動体の流路の一部を形成する。そして、この装置は、両流路を合流させて、処理用面1,2間において、両被処理流動体を混合し、反応させるなどの流体の処理を行なう。なお、ここで「処理」とは、被処理物が反応する形態に限らず、反応を伴わずに混合・分散のみがなされる形態も含む。
 具体的に説明すると、上記の第1処理用部10を保持する第1ホルダ11と、第2処理用部20を保持する第2ホルダ21と、接面圧付与機構と、回転駆動機構と、第1導入部d1と、第2導入部d2と、流体圧付与機構pとを備える。
 図2(A)へ示す通り、この実施の形態において、第1処理用部10は、環状体であり、より詳しくはリング状のディスクである。また、第2処理用部20もリング状のディスクである。第1、第2処理用部10、20の材質は、金属、カーボンの他、セラミックや焼結金属、耐磨耗鋼、サファイア、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用することができる。この実施の形態において、両処理用部10,20は、互いに対向する第1、第2の処理用面1、2の少なくとも一部が鏡面研磨されている。
 この鏡面研磨の面粗度は、特に限定されないが、好ましくはRa0.01~1.0μm、より好ましくはRa0.03~0.3μmとする。
 少なくとも一方のホルダは、電動機などの回転駆動機構(図示せず)にて、他方のホルダに対して相対的に回転することができる。図1の50は、回転駆動機構の回転軸を示しており、この例では、この回転軸50に取り付けられた第1ホルダ11が回転し、この第1ホルダ11に支持された第1処理用部10が第2処理用部20に対して回転する。もちろん、第2処理用部20を回転させるようにしてもよく、双方を回転させるようにしてもよい。また、この例では、第1、第2ホルダ11、21を固定しておき、この第1、第2ホルダ11、21に対して第1、第2処理用部10、20が回転するようにしてもよい。
 第1処理用部10と第2処理用部20とは、少なくとも何れか一方が、少なくとも何れか他方に、接近・離反可能となっており、両処理用面1,2は、接近・離反できる。
 この実施の形態では、第1処理用部10に対して、第2処理用部20が接近・離反するもので、第2ホルダ21に設けられた収容部41に、第2処理用部20が出没可能に収容されている。但し、これとは、逆に、第1処理用部10が、第2処理用部20に対して接近・離反するものであってもよく、両処理用部10,20が互いに接近・離反するものであってもよい。
 この収容部41は、第2処理用部20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、円を呈する、即ち環状に形成された、溝である。この収容部41は、第2処理用部20を回転させ得る十分なクリアランスを持って、第2処理用部20を収容する。なお、第2処理用部20は軸方向に平行移動のみが可能なように配置してもよいが、上記クリアランスを大きくすることにより、第2処理用部20は、収容部41に対して、処理用部20の中心線を、上記収容部41の軸方向と平行の関係を崩すように傾斜して変位できるようにしてもよく、さらに、第2処理用部20の中心線と収容部41の中心線とが半径方向にずれるように変位できるようにしてもよい。
 このように、3次元的に変位可能に保持するフローティング機構によって、第2処理用部20を保持することが望ましい。
 上記の被処理流動体は、各種のポンプや位置エネルギーなどによって構成される流体圧付与機構pによって圧力が付与された状態で、第1導入部d1と、第2導入部d2から両処理用面1、2間に導入される。この実施の形態において、第1導入部d1は、環状の第2ホルダ21の中央に設けられた通路であり、その一端が、環状の両処理用部10、20の内側から、両処理用面1、2間に導入される。第2導入部d2は、第1の被処理流動体と反応させる第2の被処理流動体を処理用面1,2へ供給する。この実施の形態において、第2導入部d2は、第2処理用部20の内部に設けられた通路であり、その一端が、第2処理用面2にて開口する。流体圧付与機構pにより加圧された第1の被処理流動体は、第1導入部d1から、両処理用部10,20の内側の空間に導入され、第1処理用面1と第2処理用面2との間を通り、両処理用部10,20の外側に通り抜けようとする。これらの処理用面1,2間において、第2導入部d2から流体圧付与機構pにより加圧された第2の被処理流動体が供給され、第1の被処理流動体と合流し、混合、攪拌、乳化、分散、反応、晶出、晶析、析出などの種々の流体処理がなされ、両処理用面1,2から、両処理用部10,20の外側に排出される。なお、減圧ポンプにより両処理用部10,20の外側の環境を負圧にすることもできる。
 上記の接面圧付与機構は、第1処理用面1と第2処理用面2とを接近させる方向に作用させる力を、処理用部に付与する。この実施の形態では、接面圧付与機構は、第2ホルダ21に設けられ、第2処理用部20を第1処理用部10に向けて付勢する。
 前記の接面圧付与機構は、第1処理用部10の第1処理用面1と第2処理用部20の第2処理用面2とが接近する方向に押す力(以下、接面圧力という)を発生させるための機構である。この接面圧力と、流体圧力などの両処理用面1、2間を離反させる力との均衡によって、nm単位ないしμm単位の微小な膜厚を有する薄膜流体を発生させる。言い換えれば、上記力の均衡によって、両処理用面1、2間の間隔を所定の微小間隔に保つ。
 図1に示す実施の形態において、接面圧付与機構は、上記の収容部41と第2処理用部20との間に配位される。具体的には、第2処理用部20を第1処理用部10に近づく方向に付勢するスプリング43と、空気や油などの付勢用流体を導入する付勢用流体導入部44とにて構成され、スプリング43と上記付勢用流体の流体圧力とによって、上記の接面圧力を付与する。このスプリング43と上記付勢用流体の流体圧力とは、いずれか一方が付与されるものであればよく、磁力や重力などの他の力であってもよい。この接面圧付与機構の付勢に抗して、流体圧付与機構pにより加圧された被処理流動体の圧力や粘性などによって生じる離反力によって、第2処理用部20は、第1処理用部10から遠ざかり、両処理用面間に微小な間隔を開ける。このように、この接面圧力と離反力とのバランスによって、第1処理用面1と第2処理用面2とは、μm単位の精度で設定され、両処理用面1,2間の微小間隔の設定がなされる。上記離反力としては、被処理流動体の流体圧や粘性と、処理用部の回転による遠心力と、付勢用流体導入部44に負圧を掛けた場合の当該負圧、スプリング43を引っ張りスプリングとした場合のバネの力などを挙げることができる。この接面圧付与機構は、第2処理用部20ではなく、第1処理用部10に設けてもよく、双方に設けてもよい。
 上記の離反力について、具体的に説明すると、第2処理用部20は、上記の第2処理用面2と共に、第2処理用面2の内側(即ち、第1処理用面1と第2処理用面2との間への被処理流動体の進入口側)に位置して当該第2処理用面2に隣接する離反用調整面23を備える。この例では、離反用調整面23は、傾斜面として実施されているが、水平面であってもよい。被処理流動体の圧力が、離反用調整面23に作用して、第2処理用部20を第1処理用部10から離反させる方向への力を発生させる。従って、離反力を発生させるための受圧面は、第2処理用面2と離反用調整面23とになる。
 さらに、この図1の例では、第2処理用部20に近接用調整面24が形成されている。この近接用調整面24は、離反用調整面23と軸方向において反対側の面(図1においては上方の面)であり、被処理流動体の圧力が作用して、第2処理用部20を第1処理用部10に接近させる方向への力を発生させる。
 なお、第2処理用面2及び離反用調整面23に作用する被処理流動体の圧力、即ち流体圧は、メカニカルシールにおけるオープニングフォースを構成する力として理解される。処理用面1,2の接近・離反の方向、即ち第2処理用部20の出没方向(図1においては軸方向)と直交する仮想平面上に投影した近接用調整面24の投影面積A1と、当該仮想平面上に投影した第2処理用部20の第2処理用面2及び離反用調整面23との投影面積の合計面積A2との、面積比A1/A2は、バランス比Kと呼ばれ、上記オープニングフォースの調整に重要である。このオープニングフォースについては、上記バランスライン、即ち近接用調整面24の面積A1を変更することで、被処理流動体の圧力、即ち流体圧により調整できる。
 摺動面の実面圧P、即ち、接面圧力のうち流体圧によるものは次式で計算される。
 P=P1×(K-k)+Ps
 ここでP1は、被処理流動体の圧力即ち流体圧を示し、Kは上記のバランス比を示し、kはオープニングフォース係数を示し、Psはスプリング及び背圧力を示す。
 このバランスラインの調整により摺動面の実面圧Pを調整することで処理用面1,2間を所望の微小隙間量にし、被処理流動体による流動体膜を形成させ、生成物などの処理された被処理物を微細とし、また、均一な反応処理を行うのである。
 なお、図示は省略するが、近接用調整面24を離反用調整面23よりも広い面積を持ったものとして実施することも可能である。
 被処理流動体は、上記の微小な隙間を保持する両処理用面1,2によって強制された薄膜流体となり、環状の両処理用面1、2の外側に移動しようとする。ところが、第1処理用部10は回転しているので、混合された被処理流動体は、環状の両処理用面1,2の内側から外側へ直線的に移動するのではなく、環状の半径方向への移動ベクトルと周方向への移動ベクトルとの合成ベクトルが被処理流動体に作用して、内側から外側へ略渦巻き状に移動する。
 尚、回転軸50は、鉛直に配置されたものに限定するものではなく、水平方向に配位されたものであってもよく、傾斜して配位されたものであってよい。被処理流動体は両処理用面1,2間の微細な間隔にて処理がなされるものであり、実質的に重力の影響を排除できるからである。また、この接面圧付与機構は、前述の第2処理用部20を変位可能に保持するフローティング機構と併用することによって、微振動や回転アライメントの緩衝機構としても機能する。
 第1、第2処理用部10、20は、その少なくともいずれか一方を、冷却或いは加熱して、その温度を調整するようにしてもよく、図1では、第1、第2処理用部10、20に温調機構(温度調整機構)J1,J2を設けた例を図示している。また、導入される被処理流動体を冷却或いは加熱して、その温度を調整するようにしてもよい。これらの温度は、処理された被処理物の析出のために用いることもでき、また、第1、第2処理用面1、2間における被処理流動体にベナール対流若しくはマランゴニ対流を発生させるために設定してもよい。
 図2に示すように、第1処理用部10の第1処理用面1には、第1処理用部10の中心側から外側に向けて、即ち径方向について伸びる溝状の凹部13を形成して実施してもよい。この凹部13の平面形状は、図2(B)へ示すように、第1処理用面1上をカーブして或いは渦巻き状に伸びるものや、図示はしないが、真っ直ぐ外方向に伸びるもの、L字状などに屈曲あるいは湾曲するもの、連続したもの、断続するもの、枝分かれするものであってもよい。また、この凹部13は、第2処理用面2に形成するものとしても実施可能であり、第1及び第2の処理用面1,2の双方に形成するものとしても実施可能である。この様な凹部13を形成することによりマイクロポンプ効果を得ることができ、被処理流動体を第1及び第2の処理用面1,2間に吸引することができる効果がある。
 この凹部13の基端は第1処理用部10の内周に達することが望ましい。この凹部13の先端は、第1処理用面1の外周面側に向けて伸びるもので、その深さ(横断面積)は、基端から先端に向かうにつれて、漸次減少するものとしている。
 この凹部13の先端と第1処理用面1の外周面との間には、凹部13のない平坦面16が設けられている。
 前述の第2導入部d2の開口部d20を第2処理用面2に設ける場合は、対向する上記第1処理用面1の平坦面16と対向する位置に設けることが好ましい。
 この開口部d20は、第1処理用面1の凹部13からよりも下流側(この例では外側)に設けることが望ましい。特に、マイクロポンプ効果によって導入される際の流れ方向が処理用面間で形成されるスパイラル状で層流の流れ方向に変換される点よりも外径側の平坦面16に対向する位置に設置することが望ましい。具体的には、図2(B)において、第1処理用面1に設けられた凹部13の最も外側の位置から、径方向への距離nを、約0.5mm以上とするのが好ましい。特に、流体中から微粒子を析出させる場合には、層流条件下にて複数の被処理流動体の混合と、微粒子の析出が行なわれることが望ましい。開口部d20の形状は、図2(B)や図3(B)に示すように円形状であってもよく、図示しないが、リング状ディスクである処理用面2の中央の開口を取り巻く同心円状の円環形状であってもよい。また、開口部を円環形状とした場合、その円環形状の開口部は連続していてもよいし、不連続であってもよい。
 この第2導入部d2は方向性を持たせることができる。例えば、図3(A)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、第2処理用面2に対して所定の仰角(θ1)で傾斜している。この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
 また、図3(B)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、上記の第2処理用面2に沿う平面において、方向性を有するものである。この第2流体の導入方向は、処理用面の半径方向の成分にあっては中心から遠ざかる外方向であって、且つ、回転する処理用面間における流体の回転方向に対しての成分にあっては順方向である。言い換えると、開口部d20を通る半径方向であって外方向の線分を基準線gとして、この基準線gから回転方向Rへの所定の角度(θ2)を有するものである。この角度(θ2)についても、0度を超えて90度未満に設定されることが好ましい。
 この角度(θ2)は、流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。また、第2導入部d2に方向性を全く持たせないこともできる。
 上記の被処理流動体の種類とその流路の数は、図1の例では、2つとしたが、1つであってもよく、3つ以上であってもよい。図1の例では、第2導入部d2から処理用面1,2間に第2流体を導入したが、この導入部は、第1処理用部10に設けてもよく、双方に設けてもよい。また、一種類の被処理流動体に対して、複数の導入部を用意してもよい。また、各処理用部に設けられる導入用の開口部は、その形状や大きさや数は特に制限はなく適宜変更して実施し得る。また、上記第1及び第2の処理用面間1、2の直前或いはさらに上流側に導入用の開口部を設けてもよい。
 なお、処理用面1,2間にて上記処理を行う事が出来れば良いので、上記とは逆に、第1導入部d1より第2流体を導入し、第2導入部d2より第1流体を導入するものであっても良い。つまり、各流体における第1、第2という表現は、複数存在する流体の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、第3以上の流体も存在し得る。
 上記装置においては、析出・沈殿または結晶化のような処理が、図1に示すように、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1、2の間で強制的に均一混合しながら起こる。処理された被処理物の粒子径や単分散度は処理用部10、20の回転数や流速、処理用面1,2間の距離や、被処理流動体の原料濃度、または被処理流動体の溶媒種等を適宜調整することにより、制御することができる。
 以下、上記の装置を用いて行う結晶子径を制御された微粒子の製造方法の具体的な態様について説明する。
 上記の装置において、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する処理用面1,2の間に形成される薄膜流体中で、被処理流動体として、被析出物質を少なくとも1種類含む原料流体と、上記被析出物質を析出させるための物質を少なくとも1種類含む析出流体とを混合させ、結晶子径を制御された被析出物質の微粒子を析出させる。その際、処理用面1,2間に導入される原料流体と析出流体とのうちの少なくともいずれか一方に関する特定の条件を変化させることによって被析出物質の結晶子径を制御する。特定の条件としては、原料流体に含まれる少なくとも1種類の被析出物質と析出流体に含まれる少なくとも1種類の物質とのうちの少なくともいずれか一方の物質の種類と、原料流体に含まれる少なくとも1種類の被析出物質と析出流体に含まれる少なくとも1種類の物質とのうちの少なくともいずれか一方の物質の濃度と、原料流体と析出流体とのうちの少なくともいずれか一方のpHと、原料流体と析出流体とのうちの少なくともいずれか一方の導入温度と、原料流体と析出流体とのうちの少なくともいずれか一方の導入速度とからなる群から選択された少なくとも2種とする。また、処理用面1,2間に導入される原料流体と析出流体とのうちの少なくともいずれか一方に関する特定の条件としては、原料流体と析出流体とのうちの少なくともいずれか一方のpHと、原料流体と析出流体とのうちの少なくともいずれか一方の導入温度と、原料流体と析出流体とのうちの少なくともいずれか一方の導入速度とからなる群から選択された少なくとも1種であってもよい。
 上記の微粒子の析出反応は、本願の図1に示す装置の、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間で強制的に均一混合しながら起こる。
 まず、一つの流路である第1導入部d1より、第1流体として被析出物質を析出させるための物質を少なくとも1種類含む析出流体を、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間に導入して、この処理用面間に第1流体から構成された薄膜流体である第1流体膜を作る。
 次いで別流路である第2導入部d2より、第2流体として少なくとも1種類の被析出物質を含む原料流体を、上記処理用面1,2間に作られた第1流体膜に直接導入する。
 上記のように、被処理流動体の供給圧と回転する処理用面の間にかかる圧力との圧力バランスによって距離を固定された処理用面1,2間にて、第1流体と第2流体とが混合され、結晶子径を制御された被析出物質の微粒子の析出反応を行う事が出来る。
 なお、処理用面1,2間にて上記反応を行う事が出来れば良いので、上記とは逆に、第1導入部d1より第2流体を導入し、第2導入部d2より第1流体を導入するものであっても良い。つまり、各流体における第1、第2という表現は、複数存在する流体の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、第3以上の流体も存在し得る。
 前述のように、第1導入部d1、第2導入部d2以外に第3導入部を処理装置に設けることもできるが、この場合にあっては、例えば各導入部から、第1流体、第2流体、第3流体として後述するpH調整物質を含む流体をそれぞれ別々に処理装置に導入することが可能である。そうすると、各溶液の濃度や圧力を個々に管理することができ、析出反応及び微粒子の結晶子径をより精密に制御することができる。なお、各導入部へ導入する被処理流動体(第1流体~第3流体)の組み合わせは、任意に設定できる。第4以上の導入部を設けた場合も同様であって、このように処理装置へ導入する流体を細分化できる。この場合、pH調整物質は、少なくとも上記の第3流体に含まれていればよく、上記の第1流体、上記の第2流体の少なくともいずれか一方に含まれていてもよく、上記第1流体及び第2流体の双方に含まれていなくてもよい。
 さらに、第1、第2流体等の被処理流動体の温度を制御したり、第1流体と第2流体等との温度差(即ち、供給する各被処理流動体の温度差)を制御することもできる。供給する各被処理流動体の温度や温度差を制御するために、各被処理流動体の温度(処理装置、より詳しくは、処理用面1,2間に導入される直前の温度)を測定し、処理用面1,2間に導入される各被処理流動体の加熱又は冷却を行う機構を付加して実施することも可能である。
(導入速度変更)
 本発明においては、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の被処理流動体の導入速度を変化させる事によって、得られる被析出物質の微粒子の結晶子径を制御する事が可能である。原料流体と析出流体とのうちの少なくともいずれか一方の被処理流動体の導入速度を変化させることによって、原料である被析出物質に対する被析出物質を析出させるための物質の混合比を容易に制御できる利点があり、結果として作製される微粒子の結晶子径を容易に制御できるため、これまでのように複雑な処方検討を必要とせず、目的に応じた結晶子径の微粒子を作りわけることが可能である。
 また、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の導入速度と、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の導入速度以外の、処理用面1,2間に導入される原料流体と析出流体とのうちの少なくともいずれか一方に関する特定の条件を構成する群から選択された少なくとも1種とを、組み合わせて実施することができる。
 処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の被処理流動体の導入速度を変化させる方法としては、特に限定されない。上記流体処理装置の流体圧付与機構pを用いて、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の導入速度を変化させてもよいし、ポンプ等の送液装置を用いて、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の導入速度を変化させてもよい。上記の流体圧付与機構pとポンプ等の送液装置とを組み合わせて実施してもよい。
(pH調製)
 また、本発明においては、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方のpHを変化させることによって、被析出物質の微粒子の結晶子径を容易に制御する事が可能である。具体的には、特に限定されないが、原料流体と析出流体とのうちの少なくともいずれか一方に、後述するpH調整物質を含む事によってpHを変化させても良いし、原料流体に含まれる、原料である被析出物質の溶媒への溶解濃度の変更や、析出流体に含まれる被析出物質を析出させるための物質の濃度の変更によって、pHを変化させても良い。さらに、複数種の被析出物質を溶媒に溶解するような方法や、析出流体に複数種の被析出物質を析出させるための物質を含むなどの方法によって、原料流体と析出流体とのうちの少なくともいずれか一方のpHを変化させても実施できる。これらのpH調製によって、微粒子の結晶子径を容易に制御でき、目的に応じた結晶子径の微粒子を作りわけることが可能である。
 また、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方のpHと、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方のpH以外の、処理用面1,2間に導入される原料流体と析出流体とのうちの少なくともいずれか一方に関する特定の条件を構成する群から選択された少なくとも1種とを、組み合わせて実施することができる。
(pH調製物質)
 pHを調製するためのpH調整物質としては、特に限定されないが、塩酸や硫酸、硝酸や王水、トリクロロ酢酸やトリフルオロ酢酸、リン酸やクエン酸、アスコルビン酸などの無機または有機の酸のような酸性物質や、水酸化ナトリウムや水酸化カリウムなどの水酸化アルカリや、トリエチルアミンやジメチルアミノエタノールなどのアミン類などの塩基性物質、また上記酸性物質や塩基性物質の塩などが挙げられる。上記pH調整物質は、それぞれ単独で使用しても良く、複数以上を混合して使用しても良い。原料流体及び/または析出流体への上記pH調整物質の混合量や原料流体及び/または析出流体の濃度を変化させることによって、原料流体と析出流体とのうちの少なくともいずれか一方のpHを変化させることが可能である。
 上記pH調整物質は、原料流体もしくは析出流体、またはその両方に含まれていてもよい。また、上記pH調整物質は、原料流体とも析出流体とも異なる第3の流体に含まれていてもよい。
(pH領域)
 本発明における原料流体及び/または析出流体のpHは特に限定されない。目的や対象となる原料である被析出物質、結晶子径などによって、適宜変更する事が可能である。
(分散剤等)
 また、本発明においては、目的や必要に応じて各種分散剤や界面活性剤を用いる事ができる。特に限定されないが、界面活性剤及び分散剤としては一般的に用いられる様々な市販品や、製品または新規に合成したものなどを使用できる。一例として、陰イオン性界面活性剤、陽イオン性界面活性剤、非イオン性界面活性剤や、各種ポリマーなどの分散剤などを挙げることができる。これらは単独で使用してもよく、2種以上を併用してもよい。
 上記の界面活性剤及び分散剤は、原料流体もしくは析出流体、またはその両方に含まれていてもよい。また、上記の界面活性剤及び分散剤は、原料流体とも析出流体とも異なる第3の流体に含まれていてもよい。
(温度)
 本発明においては、原料流体と析出流体とを混合する際の温度は特に限定されない。出発原料である被析出物質の種類や被析出物質を析出させるための物質の種類、析出対象となる被析出物質の物質種または上記pHなどによって適切な温度で実施することが可能である。
 また、本発明においては、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の被処理流動体の導入温度を変化させる事によって、得られる被析出物質の微粒子の結晶子径を制御する事が可能である。具体的には、特に限定されないが、上述のように、原料流体と析出流体のそれぞれの温度(処理装置、より詳しくは、処理用面1,2間に導入される直前の温度)を測定し、処理用面1,2間に導入される原料流体と析出流体の加熱又は冷却を行う機構を付加して実施することなどが可能である。
 また、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の導入温度と、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の導入温度以外の、処理用面1,2間に導入される原料流体と析出流体とのうちの少なくともいずれか一方に関する特定の条件を構成する群から選択された少なくとも1種とを、組み合わせて実施することができる。
 また、本発明においては、上述した、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方のpHと、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の導入温度と、処理用面1,2間に導入される、原料流体と析出流体とのうちの少なくともいずれか一方の導入速度とに加えて、処理用面1,2間に導入される、原料流体に含まれる少なくとも1種類の被析出物質と析出流体に含まれる少なくとも1種類の物質とのうちの少なくともいずれか一方の物質の種類と、処理用面1,2間に導入される、原料流体に含まれる少なくとも1種類の被析出物質と析出流体に含まれる少なくとも1種類の物質とのうちの少なくともいずれか一方の物質の濃度とからなる群から選択された少なくとも2種の特定の条件を変化させることによって、得られる被析出物質の微粒子の結晶子径を制御する事が可能である。出発原料である被析出物質の種類や、被析出物質を析出させるための物質の種類、析出対象となる被析出物質の物質種やそれぞれの濃度は、本発明の目的を逸脱しない範囲において、適宜選択して実施することが可能である。
 以下、実施例を挙げて本発明をさらに具体的に説明する。しかし、本発明は下記の実施例に限定されるものではない。
 尚、以下の実施例において、「中央から」というのは、図1に示す処理装置の「第1導入部d1から」という意味であり、第1流体は、第1導入部d1から導入される、前述の第1被処理流動体を指し、第2流体は、図1に示す処理装置の第2導入部d2から導入される、前述の第2被処理流動体を指す。
(pH測定)
 pH測定には、HORIBA製の型番D-51のpHメーターを用いた。各被処理流動体を流体処理装置に導入する前に、その被処理流動体のpHを室温にて測定した。
(電子顕微鏡観察)
 電子顕微鏡(TEM)観察には、電子顕微鏡(TEM):日本電子製のJEM-2100を使用し、一次粒子径並びに結晶子径を観察した。測定及び観察条件としては、加速電圧を200kVとし、40万~80万の倍率で3箇所の平均値を用いた。以下、TEM観察にて確認された一次粒子径を、粒子径とする。
(実施例1)
 図1に示される装置を用いてイットリア安定化ジルコニア微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で、硝酸酸化ジルコニウム二水和物を11.8wt%となるように、硝酸イットリウムを0.18wt%となるように純水に溶解させたpH=0.12の金属塩の混合液(原料流体)と、水酸化ナトリウムを1wt%となるように純水に溶解させたpH=13.03の塩基性水溶液(析出流体)とを混合し、薄膜流体中でイットリア安定化ジルコニアの前駆体微粒子を析出させた。
(実施例2)
 図1に示される装置を用いてイットリア安定化ジルコニア微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で、硝酸酸化ジルコニウム二水和物を11.8wt%となるように、硝酸イットリウムを0.18wt%となるように純水に溶解させたpH=0.12の金属塩の混合液(原料流体)と、28.0%アンモニアを含むアンモニア水を1wt%アンモニアとなるように純水に溶解させたpH=11.33の塩基性水溶液(析出流体)とを混合し、薄膜流体中でイットリア安定化ジルコニアの前駆体微粒子を析出させた。
(実施例3)
 図1に示される装置を用いてイットリア安定化ジルコニア微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で、硝酸酸化ジルコニウム二水和物を11.8wt%となるように、硝酸イットリウムを0.18wt%となるように純水に溶解させたpH=0.12の金属塩の混合液(原料流体)と、炭酸水素カリウムを1wt%となるように純水に溶解させたpH=8.46の塩基性水溶液(析出流体)とを混合し、薄膜流体中でイットリア安定化ジルコニアの前駆体微粒子を析出させた。
 中央から第1流体として塩基性水溶液(析出流体)を、供給圧力=0.50MPaG、回転数1700rpm、送液温度25℃、導入速度200ml/minで送液しながら、第2流体として、25℃の金属塩の混合液(原料流体)を導入速度10ml/minで処理用面1,2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。処理用面より吐出されたイットリア安定化ジルコニアの前駆体微粒子分散液を、10,000×g、5分間の条件で遠心分離機を用いてイットリア安定化ジルコニアの前駆体微粒子を沈降させ上澄みを除去し、純水にて洗浄する作業を3回行い、真空乾燥機を用いて60℃、-0.1MPaの条件にて乾燥した後に炉を用いて1000℃で4時間焼成した。焼成後のXRD測定の結果、不純物のないイットリア安定化ジルコニア微粒子が作製されたことが確認された。また、得られたイットリア安定化ジルコニア微粒子の粒子径及び結晶子径をTEM観察にて確認した。
 表1に、処理条件及び得られたイットリア安定化ジルコニア微粒子の粒子径及び結晶子径を示す。また、図4~図6に、実施例1~3において得られたイットリア安定化ジルコニア微粒子のTEM写真を示す。
Figure JPOXMLDOC01-appb-T000001
 図4~図6と表1から、塩基性水溶液として純水に溶解した塩基性物質の種類及びpHを変化させることによって、得られたイットリア安定化ジルコニア微粒子の結晶子径が制御できることを確認できた。
 具体的には、実施例1と実施例2においては、第1流体に含まれる塩基性物質の物質種を変更し、さらにpHを高くすることによって、結晶子径が大きいイットリア安定化ジルコニア微粒子が得られた。また、実施例1と実施例2においては、第1流体に含まれる塩基性物質の物質種を変更し、さらにpHを高くすることによって、粒子径が大きいイットリア安定化ジルコニア微粒子が得られた。以上のことから、実施例1と実施例2においては、第1流体に含まれる塩基性物質の物質種を変更し、さらにpHを高くすることによって、イットリア安定化ジルコニア微粒子の粒子径と結晶子径とを、ともに変化させることができることが確認できた。
 また、実施例3においては、実施例1,2とは異なり、粒子径と結晶子径の大きさが異なるイットリア安定化ジルコニア微粒子が得られた。
(実施例4)
 図1に示される装置を用いて銅微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で、塩化銅(無水)を2wt%となるようにエチレングリコールに溶解させたpH=2.35の金属塩溶液(原料流体)と、還元剤としてヒドラジン一水和物を2wt%となるようにエチレングリコールに溶解させたpH=10.55の還元剤溶液(析出流体)とを混合し、薄膜流体中で銅微粒子を析出させた。
 中央から第1流体として還元剤溶液(析出流体)を、供給圧力=0.50MPaG、回転数1700rpm、送液温度100℃、導入速度300ml/minで送液しながら、第2流体として、25℃の金属塩溶液(原料流体)を導入速度5ml/minで処理用面1,2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。
(実施例5)
 図1に示される装置を用いて銅微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で、塩化銅(無水)を6wt%となるようにエチレングリコールに溶解させたpH=2.11の金属塩溶液(原料流体)と、還元剤としてヒドラジン一水和物を1wt%となるようにエチレングリコールに溶解させたpH=10.34の還元剤溶液(析出流体)とを混合し、薄膜流体中で銅微粒子を析出させた。
 中央から第1流体として還元剤溶液(析出流体)を、供給圧力=0.50MPaG、回転数1700rpm、送液温度100℃、導入速度300ml/minで送液しながら、第2流体として、25℃の金属塩溶液(原料流体)を導入速度5ml/minで処理用面1,2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。
(実施例6)
 図1に示される装置を用いて銅微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で、硝酸銅三水和物を10wt%となるようにエチレングリコールに溶解させたpH=2.08の金属塩溶液(原料流体)と、還元剤としてヒドラジン一水和物を2wt%となるようにエチレングリコールに溶解させたpH=10.55の還元剤溶液(析出流体)とを混合し、薄膜流体中で銅微粒子を析出させた。
 中央から第1流体として還元剤溶液(析出流体)を、供給圧力=0.50MPaG、回転数1700rpm、送液温度100℃、導入速度300ml/minで送液しながら、第2流体として、25℃の金属塩溶液(原料流体)を導入速度5ml/minで処理用面1,2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。
(実施例7)
 図1に示される装置を用いて銅微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で、塩化銅(無水)を6wt%となるようにエチレングリコールに溶解させたpH=2.11の金属塩溶液(原料流体)と、還元剤としてヒドラジン一水和物を1wt%となるようにエチレングリコールに溶解させたpH=10.34の還元剤溶液(析出流体)とを混合し、薄膜流体中で銅微粒子を析出させた。
 中央から第1流体として還元剤溶液(析出流体)を、供給圧力=0.50MPaG、回転数1700rpm、送液温度130℃、導入速度300ml/minで送液しながら、第2流体として、25℃の金属塩溶液(原料流体)を導入速度5ml/minで処理用面1,2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。
(実施例8)
 図1に示される装置を用いて銅微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で塩化銅(無水)を6wt%となるように、ベンゾトリアゾールを0.015wt%となるようにそれぞれエチレングリコールに溶解させたpH=1.49の金属塩溶液(原料流体)と、還元剤としてヒドラジン一水和物を1wt%となるようにエチレングリコールに溶解させたpH=10.34の還元剤溶液(析出流体)とを混合し、薄膜流体中で銅微粒子を析出させた。
 中央から第1流体として還元剤溶液(析出流体)を、供給圧力=0.50MPaG、回転数1700rpm、送液温度100℃、導入速度300ml/minで送液しながら、第2流体として、25℃の金属塩溶液(原料流体)を導入速度5ml/minで処理用面1,2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。
(実施例9)
 図1に示される装置を用いて銅微粒子を以下の手順にて作製した。処理用面1,2間に形成される薄膜流体中で塩化銅(無水)を6wt%となるようにエチレングリコールに溶解させたpH=2.11の金属塩溶液(原料流体)と、還元剤としてヒドラジン一水和物を1wt%となるようにエチレングリコールに溶解させたpH=10.34の還元剤溶液(析出流体)とを混合し、薄膜流体中で銅微粒子を析出させた。
 中央から第1流体として還元剤溶液(析出流体)を、供給圧力=0.50MPaG、回転数1700rpm、送液温度100℃、導入速度100ml/minで送液しながら、第2流体として、25℃の金属塩溶液(原料流体)を導入速度5ml/minで処理用面1,2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1,2間に導入される直前)にて測定した。
 処理用面1,2間に導入された第1流体と第2流体とを薄膜流体中で混合することで、銅微粒子分散液が処理用面より吐出された。吐出された銅微粒子分散液を、10,000×g、5分間の条件で遠心分離機を用いて銅微粒子を沈降させ上澄みを除去し、メタノールにて洗浄する作業を3回行い、真空乾燥機を用いて50℃、-0.1MPaの条件にて乾燥した。乾燥した銅微粒子のXRD測定の結果、銅が作製されたことが確認された。また、銅微粒子の粒子径及び結晶子径をTEM観察にて確認した。
 表2に、処理条件及び得られた銅微粒子の粒子径及び結晶子径を示す。また図7~図9に、実施例4~6において得られた銅微粒子のTEM写真を示す。
Figure JPOXMLDOC01-appb-T000002
 図7~図9と表2から、特定の条件を変化させることによって、得られた銅微粒子の結晶子径を制御できることを確認した。例えば、実施例4と実施例5においては、第1流体(析出流体)における還元剤濃度を下げてpHを下げ、第2流体(原料流体)における金属塩濃度を上げてpHを下げることで、銅微粒子の結晶子径及び粒子径は大きくなった。実施例4と実施例6においては、第2流体における金属塩の種類と金属塩の濃度とを変化させてpHを下げると、銅微粒子の結晶子径及び粒子径は大きくなった。実施例4と実施例7においては、第1流体における還元剤濃度を下げてpHを下げ、第2流体における金属塩濃度を上げてpHを下げ、さらに第1流体の導入温度を上げることで、銅微粒子の結晶子径及び粒子径は大きくなった。実施例7と実施例8においては、第2流体における金属塩溶液にベンゾトリアゾールを添加してpHを下げ、さらに第1流体における導入温度を下げることで、銅微粒子の結晶子径及び粒子径は小さくなった。実施例7と実施例9においては、第1流体の導入速度と導入温度を下げることで、銅微粒子の結晶子径及び粒子径は小さくなった。実施例5と実施例6においては、第1流体における還元剤濃度を上げてpHを上げ、第2流体における金属塩の種類とその濃度を変化させることで、銅微粒子の結晶子径及び粒子径は大きくなった。実施例6と実施例7においては、第2流体における金属塩の種類とその濃度を変化させ、さらに第1流体の還元剤濃度を下げpHを下げるとともに導入温度を上げることで、銅微粒子の結晶子径及び粒子径は大きくなった。実施例6と実施例8においては、第2流体における金属塩の種類とその濃度を変化させるとともにその金属塩溶液にベンゾトリアゾールを添加してpHを下げ、さらに第1流体の還元剤濃度を下げpHを下げることで、銅微粒子の結晶子径及び粒子径は小さくなった。実施例6と実施例9においては、第2流体における金属塩の種類とその濃度を変化させ、さらに第1流体の還元剤濃度と導入速度を下げることで、銅微粒子の結晶子径及び粒子径は小さくなった。以上のことから、処理用面1,2間に導入される原料流体と析出流体との少なくともいずれか一方に関する特定の条件である、原料流体に含まれる被析出物質及び/又は析出流体に含まれる物質の種類と、原料流体に含まれる被析出物質及び/又は析出流体に含まれる物質の濃度と、原料流体及び/又は析出流体のpHと、原料流体及び/又は析出流体の導入温度と、原料流体及び/又は析出流体の導入速度とからなる群から選択された少なくとも2種を変化させることによって、銅微粒子の結晶子径を制御することができることが確認できた。また、上記の実施例のほとんどにおいては、上記の特定の条件を変化させることによって、銅微粒子の粒子径と結晶子径とを、ともに変化させることができることが確認できた。
 また、実施例5と実施例7においては、第1流体の導入温度を変化させることによって、実施例5と実施例8においては、第2流体のpHを変化させることによって、実施例5と実施例9においては、第1流体の導入速度を変化させることによって、銅微粒子の結晶子径の大きさを変化させることができることが確認できた。以上のことから、実施例5,7~9においては、処理用面1,2間に導入される原料流体と析出流体との少なくともいずれか一方に関する特定の条件である、原料流体及び/又は析出流体のpHと、原料流体及び/又は析出流体の導入温度と、原料流体及び/又は析出流体の導入速度とからなる群から選択された少なくとも1種を変化させることによって、銅微粒子の結晶子径を制御することができることが確認できた。また、実施例5と実施例7、実施例5と実施例8においては、上記の特定の条件を変化させることによって、銅微粒子の粒子径と結晶子径とを、ともに変化させることができることが確認でき、実施例5と実施例9においては、上記の特定の条件を変化させることによって、銅微粒子の粒子径を変化させずに、銅微粒子の結晶子径のみを変化させることが確認できた。
 さらに、実施例9においては、実施例4~8とは異なり、粒子径と結晶子径の大きさが異なる銅微粒子が得られた。
  1   第1処理用面
  2   第2処理用面
  10  第1処理用部
  11  第1ホルダ
  20  第2処理用部
  21  第2ホルダ
  d1  第1導入部
  d2  第2導入部
  d20 開口部

Claims (4)

  1.  少なくとも2種類の被処理流動体を用いるものであり、
    そのうちで少なくとも1種類の被処理流動体は、被析出物質を少なくとも1種類含む原料流体であり、
    上記以外の被処理流動体で少なくとも1種類の被処理流動体は、上記被析出物質を析出させるための物質を少なくとも1種類含む析出流体であり、
    上記の被処理流動体を、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間に出来る薄膜流体中で混合し、結晶子径を制御された被析出物質を析出させる微粒子の製造方法において、
    上記少なくとも2つの処理用面間に導入される上記原料流体と上記析出流体との少なくともいずれか一方に関する特定の条件を変化させることによって、上記被析出物質の結晶子径を制御するものであり、
    上記特定の条件が、上記原料流体に含まれる少なくとも1種類の被析出物質と上記析出流体に含まれる少なくとも1種類の物質とのうちの少なくともいずれか一方の物質の種類と、上記原料流体に含まれる少なくとも1種類の被析出物質と上記析出流体に含まれる少なくとも1種類の物質とのうちの少なくともいずれか一方の物質の濃度と、上記原料流体と上記析出流体とのうちの少なくともいずれか一方のpHと、上記原料流体と上記析出流体とのうちの少なくともいずれか一方の導入温度と、上記原料流体と上記析出流体とのうちの少なくともいずれか一方の導入速度とからなる群から選択された少なくとも2種であることを特徴とする、微粒子の製造方法。
  2.  上記被析出物質の粒子径を変化させず、上記被析出物質の結晶子径のみを変化させることを特徴とする、請求項1に記載の微粒子の製造方法。
  3.  上記被析出物質の粒子径と、上記被析出物質の結晶子径とを、ともに変化させることを特徴とする、請求項1又は2に記載の微粒子の製造方法。
  4.  少なくとも2種類の被処理流動体を用いるものであり、
    そのうちで少なくとも1種類の被処理流動体は、被析出物質を少なくとも1種類含む原料流体であり、
    上記以外の被処理流動体で少なくとも1種類の被処理流動体は、上記被析出物質を析出させるための物質を少なくとも1種類含む析出流体であり、
    上記の被処理流動体を、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転する少なくとも2つの処理用面の間に出来る薄膜流体中で混合し、結晶子径を制御された被析出物質を析出させる微粒子の製造方法において、
    上記少なくとも2つの処理用面間に導入される上記原料流体と上記析出流体との少なくとも何れか一方に関する特定の条件を変化させることによって、被析出物質の結晶子径を制御するものであり、
    上記特定の条件が、上記原料流体と上記析出流体とのうちの少なくともいずれか一方のpHと、上記原料流体と上記析出流体とのうちの少なくともいずれか一方の導入温度と、上記原料流体と上記析出流体とのうちの少なくともいずれか一方の導入速度とからなる群から選択された少なくとも1種である事を特徴とする、微粒子の製造方法。 
PCT/JP2012/067164 2011-07-13 2012-07-05 結晶子径を制御された微粒子の製造方法 WO2013008706A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19209467.0A EP3628399A1 (en) 2011-07-13 2012-07-05 Method for producing microparticles having controlled crystallite diameter
CN201280034515.2A CN103648634B (zh) 2011-07-13 2012-07-05 控制了微晶粒径的微粒的制造方法
US14/232,124 US9492763B2 (en) 2011-07-13 2012-07-05 Method for producing microparticles having controlled crystallite diameter
EP12811710.8A EP2732871A4 (en) 2011-07-13 2012-07-05 PROCESS FOR PRODUCING MICROPARTICLES WITH CONTROLLED CRYSTALLITE DIAMETER
KR1020137033773A KR20140038467A (ko) 2011-07-13 2012-07-05 결정자 지름이 제어된 미립자의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011155115 2011-07-13
JP2011-155115 2011-07-13

Publications (1)

Publication Number Publication Date
WO2013008706A1 true WO2013008706A1 (ja) 2013-01-17

Family

ID=47505997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067164 WO2013008706A1 (ja) 2011-07-13 2012-07-05 結晶子径を制御された微粒子の製造方法

Country Status (6)

Country Link
US (1) US9492763B2 (ja)
EP (2) EP2732871A4 (ja)
JP (2) JPWO2013008706A1 (ja)
KR (1) KR20140038467A (ja)
CN (1) CN103648634B (ja)
WO (1) WO2013008706A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042227A1 (ja) 2012-09-12 2014-03-20 エム・テクニック株式会社 金属微粒子の製造方法
WO2014178387A1 (ja) 2013-04-30 2014-11-06 エム・テクニック株式会社 流体処理方法
WO2016010018A1 (ja) * 2014-07-14 2016-01-21 エム・テクニック株式会社 単結晶酸化亜鉛ナノ粒子の製造方法
WO2017010557A1 (ja) * 2015-07-14 2017-01-19 エム・テクニック株式会社 酸化物粒子の製造方法
JP7418849B2 (ja) 2019-02-27 2024-01-22 国立研究開発法人科学技術振興機構 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103561857B (zh) * 2011-05-28 2016-06-15 M技术株式会社 使用了强制薄膜式流体处理装置的微粒的生产量增加方法
CN104411428B (zh) * 2012-09-12 2017-05-03 M技术株式会社 镍微粒的制造方法
WO2016098785A1 (ja) * 2014-12-15 2016-06-23 エム・テクニック株式会社 有機物微粒子の製造方法及び有機物微粒子の改質方法
US10208208B2 (en) 2014-12-15 2019-02-19 M. Technique Co., Ltd. Composite phthalocyanine microparticles and method for producing same
DK3350165T3 (da) 2015-09-16 2023-09-25 Organovo Inc Farnesoid-X-receptoragonister og anvendelser deraf
CN106853295A (zh) * 2015-12-09 2017-06-16 北大方正集团有限公司 一种基于膜分散的结晶方法
SG11201908330PA (en) 2017-03-15 2019-10-30 Metacrine Inc Farnesoid x receptor agonists and uses thereof
EP3596053B1 (en) 2017-03-15 2023-08-16 Organovo, Inc. Farnesoid x receptor agonists and uses thereof
CN107899266B (zh) * 2017-11-03 2019-04-05 大连理工大学 一种多级膜控制的连续结晶方法
MX2021003110A (es) 2018-09-18 2021-05-13 Metacrine Inc Agonistas del receptor x farnesoide y usos de los mismos.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262061A (ja) * 1993-03-10 1994-09-20 Tatsuaki Yamaguchi 金属酸化物超微粒子の製造法
JP2004115287A (ja) * 2002-09-24 2004-04-15 Tokuyama Corp 錫系酸化物ゾルの製造方法
JP2006124787A (ja) * 2004-10-29 2006-05-18 Hideaki Maeda 高結晶性ナノ銀粒子スラリー及びその製造方法
JP2008030966A (ja) 2006-07-26 2008-02-14 Mitsubishi Chemicals Corp 金属酸化物ナノ結晶の製造方法
JP2008289985A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp 排ガス浄化触媒担体の製造方法
JP2009082902A (ja) * 2007-07-06 2009-04-23 M Technique Co Ltd 強制超薄膜回転式処理法を用いたナノ粒子の製造方法
JP2010024478A (ja) 2008-07-16 2010-02-04 Sumitomo Osaka Cement Co Ltd 鉄微粒子及びその製造方法
JP2010201344A (ja) 2009-03-03 2010-09-16 M Technique Co Ltd 微粒子の製造方法
JP2011011956A (ja) 2009-07-03 2011-01-20 Teijin Ltd カルコパイライト系微粒子、及びその製造方法
JP2011080094A (ja) * 2009-10-02 2011-04-21 Toda Kogyo Corp 銀微粒子及びその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340725A (ja) * 1986-08-07 1988-02-22 Toray Ind Inc ジルコニア微粉末の製造方法
GB2416500A (en) * 2004-07-19 2006-02-01 Protensive Ltd Spinning disc reactor with shroud or plate for improving gas/liquid contact
JP5401754B2 (ja) * 2006-03-31 2014-01-29 三菱化学株式会社 金属酸化物ナノ結晶の製造方法
JP4687599B2 (ja) * 2006-07-26 2011-05-25 住友金属鉱山株式会社 銅微粉とその製造方法及び導電性ペースト
CN101784258B (zh) * 2007-07-06 2013-07-17 M技术株式会社 生物摄取物微粒子及其制造方法、分散体、医药组成物
KR101378048B1 (ko) * 2007-07-06 2014-03-27 엠. 테크닉 가부시키가이샤 금속 미립자의 제조 방법 및 그 금속 미립자를 함유하는 금속 콜로이드 용액
JP5356665B2 (ja) * 2007-08-27 2013-12-04 東ソー株式会社 ジルコニア焼結体
CN101801520B (zh) * 2007-09-21 2013-08-28 M技术株式会社 微粒的制造方法
EP2193865B1 (en) * 2007-09-27 2016-07-20 M Technique Co., Ltd. Process for producing magnetic microparticles and process for producing a magnetic product
JP4399612B2 (ja) * 2007-11-09 2010-01-20 エム・テクニック株式会社 磁性体微粒子の製造方法、これにより得られた磁性体微粒子及び磁性流体、磁性体製品
JP5285412B2 (ja) * 2008-03-11 2013-09-11 三井金属鉱業株式会社 錫ドープ酸化インジウム粒子及びその製造方法
JP5472589B2 (ja) * 2008-07-10 2014-04-16 国立大学法人東北大学 Ito粒子の製造方法
JP5355007B2 (ja) * 2008-09-17 2013-11-27 Dowaエレクトロニクス株式会社 球状銀粉の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262061A (ja) * 1993-03-10 1994-09-20 Tatsuaki Yamaguchi 金属酸化物超微粒子の製造法
JP2004115287A (ja) * 2002-09-24 2004-04-15 Tokuyama Corp 錫系酸化物ゾルの製造方法
JP2006124787A (ja) * 2004-10-29 2006-05-18 Hideaki Maeda 高結晶性ナノ銀粒子スラリー及びその製造方法
JP2008030966A (ja) 2006-07-26 2008-02-14 Mitsubishi Chemicals Corp 金属酸化物ナノ結晶の製造方法
JP2008289985A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp 排ガス浄化触媒担体の製造方法
JP2009082902A (ja) * 2007-07-06 2009-04-23 M Technique Co Ltd 強制超薄膜回転式処理法を用いたナノ粒子の製造方法
JP2010024478A (ja) 2008-07-16 2010-02-04 Sumitomo Osaka Cement Co Ltd 鉄微粒子及びその製造方法
JP2010201344A (ja) 2009-03-03 2010-09-16 M Technique Co Ltd 微粒子の製造方法
JP2011011956A (ja) 2009-07-03 2011-01-20 Teijin Ltd カルコパイライト系微粒子、及びその製造方法
JP2011080094A (ja) * 2009-10-02 2011-04-21 Toda Kogyo Corp 銀微粒子及びその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2732871A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150054715A (ko) 2012-09-12 2015-05-20 엠. 테크닉 가부시키가이샤 금속 미립자의 제조 방법
US9827613B2 (en) 2012-09-12 2017-11-28 M. Technique Co., Ltd. Method for producing metal microparticles
WO2014042227A1 (ja) 2012-09-12 2014-03-20 エム・テクニック株式会社 金属微粒子の製造方法
JPWO2014178387A1 (ja) * 2013-04-30 2017-02-23 エム・テクニック株式会社 流体処理方法
WO2014178387A1 (ja) 2013-04-30 2014-11-06 エム・テクニック株式会社 流体処理方法
KR20160002749A (ko) 2013-04-30 2016-01-08 엠. 테크닉 가부시키가이샤 유체 처리 방법
JPWO2016010018A1 (ja) * 2014-07-14 2017-06-08 エム・テクニック株式会社 単結晶酸化亜鉛ナノ粒子の製造方法
KR20170031082A (ko) * 2014-07-14 2017-03-20 엠. 테크닉 가부시키가이샤 단결정 산화아연 나노 입자의 제조 방법
WO2016010018A1 (ja) * 2014-07-14 2016-01-21 エム・テクニック株式会社 単結晶酸化亜鉛ナノ粒子の製造方法
US10364508B2 (en) 2014-07-14 2019-07-30 M. Technique Co., Ltd. Method for producing single crystalline zinc oxide nanoparticles
KR102440016B1 (ko) 2014-07-14 2022-09-05 엠. 테크닉 가부시키가이샤 단결정 산화아연 나노 입자의 제조 방법
WO2017010557A1 (ja) * 2015-07-14 2017-01-19 エム・テクニック株式会社 酸化物粒子の製造方法
KR20180029198A (ko) * 2015-07-14 2018-03-20 엠. 테크닉 가부시키가이샤 산화물 입자의 제조 방법
JPWO2017010557A1 (ja) * 2015-07-14 2018-04-26 エム・テクニック株式会社 酸化物粒子の製造方法
US10196267B2 (en) 2015-07-14 2019-02-05 M. Technique Co., Ltd. Method of producing oxide particles
KR102525331B1 (ko) 2015-07-14 2023-04-25 엠. 테크닉 가부시키가이샤 산화물 입자의 제조 방법
JP7418849B2 (ja) 2019-02-27 2024-01-22 国立研究開発法人科学技術振興機構 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒

Also Published As

Publication number Publication date
CN103648634B (zh) 2016-05-18
JP2017113751A (ja) 2017-06-29
CN103648634A (zh) 2014-03-19
EP2732871A1 (en) 2014-05-21
US20140155247A1 (en) 2014-06-05
EP3628399A1 (en) 2020-04-01
JPWO2013008706A1 (ja) 2015-02-23
KR20140038467A (ko) 2014-03-28
US9492763B2 (en) 2016-11-15
EP2732871A4 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2013008706A1 (ja) 結晶子径を制御された微粒子の製造方法
JP5590639B2 (ja) 金属微粒子の製造方法
JP4868558B1 (ja) 酸化物・水酸化物の製造方法
JP5126862B1 (ja) 金属微粒子の製造方法
WO2012014530A1 (ja) 粒子径を制御された微粒子の製造方法
JP5831821B2 (ja) 金属微粒子の製造方法
WO2014041706A1 (ja) ニッケル微粒子の製造方法
JP5950476B2 (ja) 微粒子の製造方法
WO2012137628A1 (ja) バリウムチタニル塩及びチタン酸バリウムの製造方法
JP5376483B1 (ja) ニッケル微粒子の製造方法
JP5598989B2 (ja) ドープ元素量を制御された析出物質の製造方法
JP6047833B2 (ja) ガーネット前駆体微粒子及びガーネット構造の微粒子の製造方法
JP5261780B1 (ja) 金属微粒子の製造方法
JP2013231226A (ja) 微粒子の製造方法
JP6442715B2 (ja) 微粒子の製造方法
JP6123054B2 (ja) 微粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523911

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033773

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012811710

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14232124

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE