WO2013005372A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2013005372A1
WO2013005372A1 PCT/JP2012/003732 JP2012003732W WO2013005372A1 WO 2013005372 A1 WO2013005372 A1 WO 2013005372A1 JP 2012003732 W JP2012003732 W JP 2012003732W WO 2013005372 A1 WO2013005372 A1 WO 2013005372A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
nitride semiconductor
semiconductor device
electrode
Prior art date
Application number
PCT/JP2012/003732
Other languages
English (en)
French (fr)
Inventor
智洋 村田
柴田 大輔
上田 哲三
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013522712A priority Critical patent/JP5942204B2/ja
Publication of WO2013005372A1 publication Critical patent/WO2013005372A1/ja
Priority to US14/140,325 priority patent/US20140110759A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Definitions

  • the present invention relates to a semiconductor device applicable to, for example, a power device.
  • GaN gallium nitride
  • AlN aluminum nitride
  • InN indium nitride
  • Patent Document 1 a Schottky-Barrier-Diode (hereinafter abbreviated as SBD) having a heterostructure made of AlGaN / GaN using a plurality of 2DEG (multiple 2DEG) channels.
  • SBD Schottky-Barrier-Diode
  • HFET Heterojunction field-effect transistors
  • AlGaN parameters that is, Al composition and thickness, are studied for improving 2DEG concentration in a multiple 2DEG channel.
  • the present inventors have found that the conventional SBD and HFET have difficulty in obtaining a high current density even when the 2DEG channels are multiplexed.
  • FIG. 14 shows the result of comparing the current-voltage (IV) characteristics of a conventional GaN-based SBD with multiple 2DEG as a channel with a conventional single channel SBD having one 2DEG.
  • the three-channel type SBD has, for example, a GaN layer 11, an AlGaN layer 12, a GaN layer 13, an AlGaN layer 14, a GaN layer 15, and an AlGaN layer 16 that are sequentially epitaxially grown on the substrate 10.
  • 2DEG channels 20 are formed at the interface between the GaN layer 11 and the AlGaN layer 12, the interface between the GaN layer 13 and the AlGaN layer 14, and the interface between the GaN layer 15 and the AlGaN layer 16, respectively.
  • a Schottky contact type anode electrode 17 is formed on one side surface of the stacked semiconductor layers, and an ohmic contact type cathode electrode 18 is formed on the other side surface.
  • FIG. 15 shows the energy state of the lower end of the conduction band (Ec) including multiple 2DEG channels in an AlGaN / GaN-based semiconductor.
  • the positive polarization charge (+ Q, + Q ′) generated at the hetero interface made of epitaxially grown AlGaN / GaN induces a high concentration of 2DEG.
  • negative polarization charge ( ⁇ Q, ⁇ Q ′) is present at the GaN / AlGaN interface opposite to the interface where 2DEG is generated, and positive polarization charge ( ⁇ + Q, + Q ').
  • This negative polarization charge (-Q, -Q ') extends the interface depletion layer, boosts the potential of the 2DEG channel, and lowers the electron concentration.
  • the present invention is to solve the above-mentioned problems, and to effectively increase the current density in a group III nitride semiconductor device using multiple 2DEG as a channel, and to realize a small and high output semiconductor device. Objective.
  • the present invention provides a semiconductor device in which a negative polarization charge generated in another nitride semiconductor layer with a small band gap sandwiched between nitride semiconductor layers with a large band gap constituting a heterojunction.
  • the decrease in the electron concentration in the 2DEG due to the above is suppressed by optimizing (adjusting) the thickness of the other nitride semiconductor layer.
  • a first nitride semiconductor layer and a second nitride semiconductor layer having a band gap larger than that of the first nitride semiconductor layer are joined to each other.
  • the first heterojunction the third nitride semiconductor layer formed on the first heterojunction, and the fourth nitride semiconductor layer having a band gap larger than that of the third nitride semiconductor layer.
  • a second heterojunction formed by bonding, a first electrode in Schottky contact with at least the fourth nitride semiconductor layer, and a second in ohmic contact with the first heterojunction and the second heterojunction.
  • the first nitride semiconductor layer has a thickness that does not lower the electron concentration of the two-dimensional electron gas (2DEG layer) formed in the first nitride semiconductor layer,
  • the third nitride semiconductor layer is formed of the third nitride semiconductor layer.
  • the electron density of the two-dimensional electron gas (2DEG layer) has a thickness that does not decrease, which is formed in the layer.
  • the first nitride semiconductor layer or the third nitride semiconductor layer has a thickness that does not lower the electron concentration of the two-dimensional electron gas layer formed in each semiconductor layer. ing. That is, the first nitride semiconductor layer or the third nitride semiconductor layer has a sufficient thickness that does not decrease the electron concentration of the 2DEG layer. For this reason, the first nitride semiconductor layer or the third nitride semiconductor layer having a specific thickness alleviates the influence of negative polarization charges appearing on the upper surface of the second nitride semiconductor layer on the 2DEG layer. Therefore, a sufficiently high electron concentration can be obtained in the 2DEG layer.
  • the thickness of the first nitride semiconductor layer or the thickness of the third nitride semiconductor layer is preferably 80 nm or more.
  • the third nitride semiconductor layer may have a first region doped with an n-type impurity on the interface side in contact with the second nitride semiconductor layer.
  • the first nitride semiconductor layer has the first region doped with the n-type impurity on the interface side in contact with the second nitride semiconductor layer in the third nitride semiconductor layer.
  • the electron concentration in the formed 2DEG layer can be improved.
  • the third nitride semiconductor layer is formed in contact with the first region between the first region and the fourth nitride semiconductor layer, and is a second region doped with p-type impurities. You may have.
  • the electric field strength in the channel direction is increased.
  • the depletion layer at the pn junction extends, thereby suppressing the concentration of the electric field. As a result, the breakdown voltage of the semiconductor device can be ensured.
  • the first electrode is a gate electrode
  • the second electrode is a source electrode formed in each of regions on both sides of the gate electrode in the first heterojunction body and the second heterojunction body
  • the drain electrode is preferably operated as a field effect transistor.
  • the first electrode is a first gate electrode
  • the semiconductor device of the present invention further includes a substrate that holds the first heterojunction, and the substrate is a region opposite to the first gate electrode.
  • a second gate electrode that is in contact with at least the first heterojunction exposed from the opening is formed on the substrate. Also good.
  • the gate electrode of the field effect transistor on both the front surface side and the back surface side, it is possible to improve the controllability of the drain current by applying the gate voltage to the channel at a deep position.
  • the first electrode is an anode electrode
  • the second electrode is a cathode electrode, and preferably operates as a Schottky barrier diode.
  • the thickness of the third semiconductor layer may be 350 nm or less.
  • the current density can be effectively increased, and a small and high output semiconductor device can be realized.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the thickness of the second channel layer and the measured resistance value in the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3 shows a 2DEG channel on the surface side when the Al composition and thickness of each barrier layer are changed and the thickness of the second channel layer is changed in the semiconductor device according to the first embodiment of the present invention. It is a graph which shows the result of having calculated the change of electron concentration.
  • FIG. 4 is a schematic cross-sectional view showing a semiconductor device according to a first modification of the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a semiconductor device according to a second modification of the first embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between the thickness of the second channel layer and the actually measured reverse leakage current in the semiconductor device according to the second modification of the first embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a semiconductor device according to a third modification of the first embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing a semiconductor device according to another example of the third modification of the first embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing a semiconductor device according to a fourth modification of the first embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing a semiconductor device according to a fifth modification of the first embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing a semiconductor device according to a sixth modification of the first embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 13 shows the electron concentration of the 2DEG channel in the first channel layer when the n-type impurity concentration in the first region in the second channel layer is changed in the semiconductor device according to the second embodiment of the present invention. It is a graph which shows the result of having calculated change.
  • FIG. 13 shows the electron concentration of the 2DEG channel in the first channel layer when the n-type impurity concentration in the first region in the second channel layer is changed in the semiconductor device according to the second embodiment of the present invention. It is a graph which shows the result of having calculated change.
  • FIG. 14 is a schematic cross-sectional view showing a semiconductor device according to a conventional example, and a graph showing one measurement example of its current-voltage characteristics.
  • FIG. 15 is a schematic diagram showing the lower end of a conduction band (Ec) containing multiple two-dimensional electron gas (2DEG) in an AlGaN / GaN semiconductor device.
  • Ec conduction band
  • the semiconductor device 101 is a GaN-based field effect transistor.
  • the field effect transistor is, for example, a first channel layer 103 made of GaN that is epitaxially grown on a substrate 102 made of silicon (Si) by a metal-organic-chemical-vapor-deposition (MOCVD) method or the like.
  • the first heterojunction is formed from the first channel layer 103 and the first barrier layer 104
  • the second heterojunction is formed from the second channel layer 105 and the second barrier layer 106.
  • a joined body is formed.
  • the substrate 102 for crystal growth is not limited to silicon, and silicon carbide (SiC), sapphire (Al 2 O 3 ), gallium nitride (GaN), or the like can be used. Further, a buffer layer that relaxes lattice mismatch with the substrate 102 may be formed between the substrate 102 and the first channel layer 103.
  • a two-dimensional electron gas (2DEG) channel is provided in the vicinity of the interface with the first barrier layer 104 in the first channel layer 103 and in the vicinity of the interface with the second barrier layer 106 in the second channel layer 105. 112 and 113 are formed.
  • the epitaxial layer includes the active layers of the plurality of semiconductor devices 101 and is entirely and flatly formed on the main surface of the wafer. Thereafter, a recess for forming an ohmic electrode capable of contacting the 2DEG channels 112 and 113 of the channel layers 103 and 105 is formed for each semiconductor device 101.
  • the metal material that can be in ohmic contact with the nitride semiconductor layer for example, a laminated film of titanium (Ti) and aluminum (Al) can be used.
  • a gate electrode 111 that is in Schottky contact with the second barrier layer 106 is formed in a region between the source electrode 109 and the drain electrode 110 on the second barrier layer 106.
  • nickel (Ni) or palladium (Pd) can be used as the metal material capable of being in Schottky contact with the nitride semiconductor layer.
  • the first channel layer 103 made of GaN is formed below the first barrier layer 104 made of AlGaN having a larger band gap than the first channel layer 103.
  • the second channel layer 105 made of GaN is formed below the second barrier layer 106 made of AlGaN having a larger band gap than the second channel layer 105.
  • the thickness of the first channel layer 103 is such that the electron concentration in the 2DEG 112 formed in the first channel layer 103 does not decrease
  • the thickness of the second channel layer 105 The thickness is such that the electron concentration in the 2DEG 113 formed in the second channel layer 105 does not decrease.
  • FIG. 2 is a graph showing the relationship between the thickness of the second channel layer made of GaN and the resistance value.
  • the resistance value between the source electrode 109 and the drain electrode 110 is measured by preparing a plurality of samples having different thicknesses of the second channel layer 105.
  • the resistance value of the second channel layer 105 can be lowered by setting the thickness of the second channel layer 105 to 80 nm or more.
  • FIG. 3 shows a case where the Al composition and the thickness of the first barrier layer 104 and the second barrier layer 106 made of AlGaN are changed, and the thickness of the second channel layer 105 is changed.
  • the calculation result of the electron concentration of 2DEG is shown.
  • the Al composition in each barrier layer is changed to 15%, 25% and 35%, and the thickness is changed in the range of 15 nm or more and 50 nm or less.
  • the electron concentration of 2DEG 113 is saturated if the thickness of the second channel layer 105 is set to 80 nm or more.
  • FIG. 4 shows a semiconductor device 101A according to a first modification of the first embodiment.
  • the semiconductor device 101A shown in FIG. 4 is provided with a second gate electrode 115 in contact with the back surface of the first channel layer 103 on the back surface of the substrate 102 of the semiconductor device 101 according to the first embodiment.
  • a recess 102a that exposes the first channel layer 103 is formed in a region of the substrate 101 opposite to the gate electrode 111 (hereinafter referred to as the first gate electrode 111 in this modification). Yes.
  • a second gate electrode 115 is formed on the back surface of the substrate 102 along the wall surface of the recess 102a and in Schottky contact with the exposed portion of the first channel layer 103 from the bottom surface of the recess 102a. Yes.
  • FIG. 5 shows a semiconductor device 101B according to a second modification of the first embodiment.
  • the semiconductor device 101B according to the second modification example includes a Schottky barrier diode (SBD) including an anode electrode 116 in Schottky contact with the 2DEG channels 112 and 113 and a cathode electrode 117 in ohmic contact, respectively. ).
  • SBD Schottky barrier diode
  • nickel (Ni) or palladium (Pd) can be used for the anode electrode 116.
  • the cathode electrode 117 a laminated film of titanium (Ti) and aluminum (Al) can be used.
  • the thickness of the second channel layer 105 is 350 nm or less. Furthermore, 300 nm or less is more desirable.
  • FIG. 6 shows the measurement results of the relationship between the thickness of the second channel layer 105 and the leakage current in the reverse direction. From FIG. 6, when the thickness of the second channel layer 105 is 350 nm or more, the electron concentration in the 2DEG that becomes the channel increases, but the Schottky barrier at the time of reverse bias becomes thin. It can be seen that the reverse leakage current flowing through the tunnel increases.
  • the multiplexed 2DEG channel structure is 2 channels, but may be 3 channels or more.
  • the channel layers 103 and 105 are GaN and the barrier layers 104 and 106 are AlGaN.
  • the band layers of the barrier layers 104 and 106 are III group nitride semiconductors. It is sufficient that the gap has a composition that is larger than the band gap of each of the channel layers 103 and 105, but this is not restrictive.
  • FIG. 7 shows a semiconductor device 101C according to a third modification of the first embodiment.
  • an insulating film 114 is provided on the second barrier layer 106 in the semiconductor device 101 according to the first embodiment, and a gate electrode is formed on the insulating film 114. 111 is formed.
  • the insulating film 114 is selectively provided on the gate electrode 111 and its peripheral portion.
  • the insulating film 114 for example, a nitride film typified by silicon nitride (SiN) and aluminum nitride (AlN), or an oxide film typified by aluminum oxide (AlO) and hafnium oxide (HfO), or these, for example, Is used.
  • the thickness of the insulating film 114 can be 1 nm or more and 100 nm or less. The thickness of the insulating film 114 that is often used is about 5 nm.
  • This configuration also has the same effect as that of the semiconductor device 101 according to the first embodiment.
  • the semiconductor device 101D illustrated in FIG. 8 is another example, and the insulating film 114 is not limited to the gate electrode 111 and its peripheral portion, but reaches the source electrode 109 and the drain electrode 110. Forming. Further, the source electrode 109 and the drain electrode 110 are formed so as to cover each end portion of the insulating film 114. Even such a configuration has the same effect as the semiconductor device 101C according to the third modification shown in FIG.
  • FIG. 9 shows a semiconductor device 101E according to a fourth modification of the first embodiment.
  • a semiconductor device 101E according to the fourth modification shown in FIG. 9 is provided with a p-type semiconductor layer 118 on the second barrier layer 106 in the semiconductor device 101 according to the first embodiment.
  • a gate electrode 111 is formed thereon. Note that the gate electrode 111 may have an ohmic property with respect to the p-type semiconductor layer 118.
  • the p-type semiconductor layer 118 for example, a Mg-doped GaN layer, a Mg-doped AlGaN layer, a Mg-doped AlInN layer, or a Mg-doped AlGaN layer is used.
  • the thickness of the p-type semiconductor layer 118 is not particularly limited, and a commonly used thickness is about 100 nm.
  • the p-type semiconductor layer 118 may have a multilayer structure of two or more of an Mg-doped GaN layer and an Mg-doped AlGaN layer.
  • an oxide semiconductor layer represented by nickel oxide (NiO) can be used as the p-type semiconductor layer 118.
  • This configuration also has the same effect as that of the semiconductor device according to the first embodiment.
  • FIG. 10 shows a semiconductor device 101F according to a fifth modification of the first embodiment.
  • the semiconductor device 101F according to the fifth modification includes an anode electrode 116 that is in Schottky contact with the 2DEG channels 112 and 113, and a cathode electrode 117 that is in ohmic contact, and includes the second barrier layer 106.
  • the insulating film 119 for example, a nitride film typified by silicon nitride (SiN) and aluminum nitride (AlN), an oxide film typified by aluminum oxide (AlO) and hafnium oxide (HfO), or these, for example, A combined multilayer film is used.
  • the thickness of the insulating film 1119 can be 1 nm or more and 100 nm or less.
  • the thickness of the insulating film 119 that is often used is about 5 nm.
  • This configuration also has the same effect as that of the semiconductor device according to the second modification of the first embodiment.
  • nickel (Ni) or palladium (Pd) can be used for the anode electrode 116.
  • the cathode electrode 117 a laminated film of titanium (Ti) and aluminum (Al) can be used.
  • FIG. 11 shows a semiconductor device 101G according to a sixth modification of the first embodiment.
  • the semiconductor device 101G includes an anode electrode 116 that makes Schottky contact with the 2DEG channels 112 and 113, and a cathode electrode 117 that makes ohmic contact, respectively, and the second barrier layer 106
  • a p-type semiconductor layer 120 is provided on the anode electrode 116 side above the Schottky barrier diode (SBD) provided so that the anode electrode 116 covers a part of the p-type semiconductor layer 120.
  • SBD Schottky barrier diode
  • the p-type semiconductor layer 120 for example, an Mg-doped GaN layer, an Mg-doped AlGaN layer, an Mg-doped AlInN layer, or an Mg-doped AlGaN layer is used.
  • the thickness of the p-type semiconductor layer 120 is not particularly limited, and a commonly used thickness is about 100 nm. Note that the p-type semiconductor layer 120 may have a multilayer structure of two or more of an Mg-doped GaN layer and an Mg-doped AlGaN layer.
  • This configuration also has the same effect as that of the semiconductor device according to the second modification of the first embodiment.
  • the anode electrode 116 only needs to be in ohmic contact with the p-type semiconductor layer 120.
  • nickel (Ni) or palladium (Pd) can be used.
  • the cathode electrode 117 a laminated film of titanium (Ti) and aluminum (Al) can be used.
  • the semiconductor device 101C according to the second embodiment is a GaN-based field effect transistor.
  • the same components as those of the semiconductor device 101 according to the first embodiment are denoted by the same reference numerals.
  • the second channel layer 105 in the field effect transistor according to the second embodiment is characterized by being divided into a plurality of regions (layers) having different conductivity types.
  • the first region 105a in contact with the first barrier layer 104 in which the negative polarization charge is generated is doped n-type
  • the first channel layer 105 is made of n-type
  • the second region 105b in contact with the opposite side of the first barrier layer 104 in the region 105a is doped p-type.
  • a region between the second region 105b and the second barrier layer 106 is an undoped third region 105c.
  • the n-type impurity concentration of the first region 105a is, for example, 1 ⁇ 10 19 cm ⁇ 3 , and the thickness is, for example, 10 nm.
  • the p-type impurity concentration of the second region 105b is, for example, 5 ⁇ 10 17 cm ⁇ 3 and the thickness thereof is, for example, 200 nm.
  • the impurity concentration and thickness of each of the regions 105a and 105b are not limited to this.
  • silicon (Si) can be used as the n-type dopant in the first region 105a
  • magnesium (Mg) can be used as the p-type dopant in the second region 105b.
  • the 2DEG channel 112 in the first channel layer 103 is formed by forming the first region 105 a doped with the n-type impurity so as to be in contact with the first barrier layer 104.
  • the electron concentration can be improved.
  • FIG. 13 shows the result of calculating the relationship between the n-type impurity concentration in the first region 105 a and the electron concentration of the 2DEG channel 112 in the first channel layer 103. From FIG. 13, it can be seen that the electron concentration of the 2DEG channel 112 in the first channel layer 103 is improved by setting the n-type impurity concentration of the first region 105a to 8 ⁇ 10 18 cm ⁇ 3 or more.
  • the depletion layer extends to the second channel layer 105 side due to the negative polarization charge generated on the upper surface of the first barrier layer 104 by setting the conductivity type of the first region 105a to n-type. This is because it can be suppressed. Thereby, an increase in potential of the first barrier layer 104 and the first channel layer 103 is suppressed, and the electron concentration of the 2DEG channel 112 in the first channel layer 103 can be improved.
  • the semiconductor device 101 ⁇ / b> C according to the second embodiment has a 2DEG in the first channel layer 103 in the case of a multiple 2DEG configuration in which the second channel layer 105 is stacked on the first barrier layer 104.
  • the effect of improving the electron concentration of the channel 112 can be obtained.
  • the total doping amount of n-type impurities (the value obtained by integrating the impurity concentration with the thickness) in the first region 105a and the total doping amount of p-type impurities in the second region 105b are approximately equal.
  • the electric field strength in the direction along the channel increases, the first region 105a and the second region 105b are depleted, and the extension of the depletion layer causes the electric field to be reduced. Since concentration can be suppressed, the breakdown voltage of the semiconductor device 101C can be improved.
  • the p-type second region 105b is thinned, or further, the p-type second region 105b. May not be provided. Even in this case, the effect of improving the electron concentration of the 2DEG channel 112 in the first channel layer 103 can be obtained.
  • the thickness of the second channel layer 105 is desirably 80 nm or more, but the thickness of each of the n-type first region 105a and the p-type second region 105b is different. This is not the case depending on the impurity concentration and thickness.
  • the first channel is formed in the region facing the first gate electrode 111 on the back surface of the substrate 102.
  • a recess 102a that exposes the layer 103 may be formed, and a second gate electrode 115 that is in Schottky contact with the bottom of the formed recess 102a may be formed.
  • the semiconductor device 101C in combination with the first gate electrode 111 and the second gate electrode 115, the current controllability for the multiplexed 2DEG channel can be improved.
  • a field effect transistor is used as the semiconductor device 101C.
  • a Schottky barrier diode (SBD) including an ohmic cathode electrode 117 may be used.
  • the multiplexed 2DEG channel structure is 2 channels, but may be 3 channels or more.
  • the channel layers 103 and 105 are GaN and the barrier layers 104 and 106 are AlGaN.
  • the band layers of the barrier layers 104 and 106 are a group III nitride semiconductor. It is sufficient that the gap has a composition that is larger than the band gap of each of the channel layers 103 and 105, but this is not restrictive.
  • the second embodiment and the first embodiment may be combined.
  • the second channel layer 105 is The n-type first region 105a and the p-type second region 105b according to the second embodiment are included, and the third channel layer is the undoped GaN layer according to the first embodiment. be able to.
  • the semiconductor device according to the present invention is made of a group III nitride semiconductor, and in a semiconductor device having multiple 2DEG channels, the current density can be effectively increased, and a small and high output semiconductor device can be realized. It is useful as a high-power semiconductor device suitable for power application circuits for industrial power electronics equipment or household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 半導体装置は、第1のチャネル層(103)と第1の障壁層(104)とが互いに接合した第1のヘテロ接合体と、その上に形成された第2のチャネル層(105)と第2の障壁層(106)とが互いに接合した第2のヘテロ接合体と、第2の障壁層とショットキー接触するゲート電極(111)と、第1のヘテロ接合体及び第2のヘテロ接合体とオーミック接触するソース電極(109)及びドレイン電極(110)とを備えている。第1のチャネル層及び第2のチャネル層の少なくとも一方は、該チャネル層中に形成される2DEGの電子濃度が低下しない厚さを有している。

Description

半導体装置
 本発明は、例えばパワーデバイスに適用可能な半導体装置に関する。
 近年、電力応用回路には、高出力化及び小型化が強く要望されていることから、電力応用回路に組み込まれるデバイスも、高出力化及び小型化が求められている。このような高出力デバイス用材料として、窒化ガリウム(GaN)、窒化アルミニウム(AlN)及び窒化インジウム(InN)、すなわち一般式が(InAl1-xGa1-yN(但し、x,yは、0≦x≦1、0≦y≦1である。)で表される混晶物であるIII族窒化物半導体が検討されている。これは、窒化物半導体が、バンドギャップが大きいことに起因する高耐圧特性と、AlGa1-xNとGaNとの界面に現れる高い電子濃度を持つ2次元電子ガス(2 Dimensional Electron Gas:以下、2DEGと略す。)に起因する高電流密度性とを併せ持つためである。
 また、デバイスの小型化のために、チャネルの電流密度を向上する取り組みが行われている。下記の特許文献1及び特許文献2には、複数の2DEG(多重2DEG)をチャネルとするAlGaN/GaNからなるヘテロ構造を有するショットキーバリアダイオード(Schottky Barrier Diode:以下、SBDと略す。)と、ヘテロ接合電界効果トランジスタ(Hetero-junction Field Effect Transistor:以下、HFETと略す。)とが提案されている。特許文献1においては、多重2DEGチャネルにおける2DEG濃度の向上に向けたAlGaNパラメータ、すなわちAl組成及び厚さの検討が行われている。
特開2009-117485号公報 国際公開第2000/65663号パンフレット
 しかしながら、本願発明者らは、種々検討を行った結果、前記従来のSBD及びHFETは、2DEGチャネルを多重化しても高い電流密度を得るのが困難であるという問題を見出している。
 図14は、多重2DEGをチャネルとする従来のGaN系SBDにおける電流電圧(I-V)特性を1つの2DEGを有する従来のシングルチャネル型SBDと比較した結果を示している。
 図14の断面図に示すように、3チャネル型のSBDは、例えば、基板10の上に順次エピタキシャル成長したGaN層11、AlGaN層12、GaN層13、AlGaN層14、GaN層15及びAlGaN層16を有し、GaN層11とAlGaN層12との界面、GaN層13とAlGaN層14との界面、及びGaN層15とAlGaN層16との界面にそれぞれ2DEGチャネル20が形成される。また、積層された半導体層の一方の側面には、ショットキー接触型のアノード電極17が形成され、他方の側面には、オーミック接触型のカソード電極18が形成される。
 図14のグラフからは、2DEGチャネル20を3チャネルとしているにも拘わらず、2DEGチャネル20の多重化による電流の増加はほとんど確認できない。
 この理由は、以下のように考えられる。
 まず、図15に、AlGaN/GaN系の半導体における多重2DEGチャネルを含む伝導帯(Ec)の下端のエネルギー状態を示す。図15に示すように、エピタキシャル成長されたAlGaN/GaNからなるヘテロ界面に発生する正の分極電荷(+Q、+Q’)は高濃度の2DEGを誘起する。しかしながら、分極によって正負一対の双極子が形成されるため、2DEGが発生する界面と反対側のGaN/AlGaNの界面には負の分極電荷(-Q、-Q’)が、正の分極電荷(+Q、+Q’)と同量だけ存在する。この負の分極電荷(-Q、-Q’)は界面空乏層を伸長させて、2DEGチャネルのポテンシャルを押し上げて、電子濃度を低下させる。
 従来のAlGaN/GaN系デバイスは、2DEGにおける電子濃度の向上に向けて、AlGaNパラメータ、すなわちAl組成及び厚さ等の検討が行われている。これは、分極電荷量がAlGaN層のパラメータで決定され、2DEGを誘起する正の分極電荷を増やすことにより、2DEGにおける電子濃度を高くすることができるためである。しかしながら、図14に示す実験結果は、多重2DEGの場合にAlGaN層に着目した従来の方法だけでは不十分であり、電子濃度を低減する負の分極電荷についても考慮する必要があることを示唆している。
 本発明は、前記の問題を解決し、多重2DEGをチャネルとするIII族窒化物半導体装置において、電流密度を効果的に上昇し、小型で且つ高出力な半導体装置を実現できるようにすることを目的とする。
 前記の目的を達成するため、本発明は、半導体装置を、ヘテロ接合を構成するバンドギャップが大きい窒化物半導体層に挟まれた、バンドギャップが小さい他の窒化物半導体層に生じる負の分極電荷による2DEG内の電子濃度の低下を該他の窒化物半導体層の厚さを最適化(調節)することにより抑制する構成とする。
 具体的に、本発明に係る半導体装置は、第1の窒化物半導体層と該第1の窒化物半導体層よりもバンドギャップが大きい第2の窒化物半導体層とが互いに接合してなる第1のヘテロ接合体と、第1のヘテロ接合体の上に形成された第3の窒化物半導体層と該第3の窒化物半導体層よりもバンドギャップが大きい第4の窒化物半導体層とが互いに接合してなる第2のヘテロ接合体と、少なくとも第4の窒化物半導体層とショットキー接触する第1の電極と、第1のヘテロ接合体及び第2のヘテロ接合体とオーミック接触する第2の電極とを備え、第1の窒化物半導体層は、該第1の窒化物半導体層中に形成される2次元電子ガス(2DEG層)の電子濃度が低下しない厚さを有しているか、又は第3の窒化物半導体層は、該第3の窒化物半導体層中に形成される2次元電子ガス(2DEG層)の電子濃度が低下しない厚さを有している。
 本発明の半導体装置によると、第1の窒化物半導体層又は第3の窒化物半導体層は、それぞれの半導体層中に形成される2次元電子ガス層の電子濃度が低下しない厚さを有している。すなわち、第1の窒化物半導体層又は第3の窒化物半導体層は、2DEG層の電子濃度を低下させない程度に十分な厚さを有している。このため、特定の厚さを有する第1の窒化物半導体層又は第3の窒化物半導体層が、2DEG層に及ぼす第2の窒化物半導体層の上面に現れる負の分極電荷の影響を緩和するので、2DEG層に十分に高い電子濃度を得ることができる。
 本発明の半導体装置において、第1の窒化物半導体層の厚さ又は第3の窒化物半導体層の厚さは80nm以上であることが好ましい。
 このようにすると、負の分極電荷による2DEG層内の電子濃度の低下を確実に抑えることができる。
 本発明の半導体装置において、第3の窒化物半導体層は、第2の窒化物半導体層と接する界面側にn型不純物がドープされた第1の領域を有していてもよい。
 このように、第3の窒化物半導体層における第2の窒化物半導体層と接する界面側にn型不純物がドープされた第1の領域を有しているため、第1の窒化物半導体層に形成される2DEG層内の電子濃度を向上することができる。
 この場合に、第3の窒化物半導体層は、第1の領域と第4の窒化物半導体層との間に第1の領域と接して形成され、p型不純物がドープされた第2の領域を有していてもよい。
 このように、第3の窒化物半導体層における第1の領域と接する第2の領域にn型不純物と総量がバランスしたp型不純物層を設ける場合には、チャネル方向の電界強度が大きくなったときに、pn接合における空乏層が伸長することにより、電界の集中が抑制される。その結果、該半導体装置の耐圧を確保することができる。
 本発明の半導体装置において、第1の電極はゲート電極であり、第2の電極は第1のヘテロ接合体及び第2のヘテロ接合体におけるゲート電極の両側の領域にそれぞれ形成されたソース電極及びドレイン電極であり、電界効果トランジスタとして動作することが好ましい。
 このようにすると、電界効果トランジスタのドレイン電流における電流密度を向上することができる。
 この場合に、第1の電極は第1のゲート電極であり、本発明の半導体装置は第1のヘテロ接合体を保持する基板をさらに備え、基板は、第1のゲート電極と反対側の領域に形成され、第1のヘテロ接合体を露出する開口部を有しており、基板には、少なくとも開口部から露出する第1のヘテロ接合体と接触する第2のゲート電極が形成されていてもよい。
 このように、電界効果トランジスタのゲート電極を表面側と裏面側との双方に設けることにより、深い位置にあるチャネルについてもゲート電圧の印加によるドレイン電流の制御性を向上することができる。
 本発明の半導体装置において、第1の電極は、アノード電極であり、第2の電極は、カソード電極であり、ショットキーバリアダイオードとして動作することが好ましい。
 このようにすると、電流密度が高いショットキーバリアダイオード(SBD)を得ることができる。
 この場合に、第3の半導体層の厚さは、350nm以下であってよい。
 このようにすると、2DEG層の濃度向上に伴うショットキー障壁の薄層化とリーク電流の増加とを抑制することができる。
 本発明に係る半導体装置によると、III族窒化物半導体からなり、多重2DEGをチャネルとする半導体装置において、電流密度を効果的に上昇し、小型で且つ高出力な半導体装置を実現することができる。
図1は本発明の第1の実施形態に係る半導体装置を示す模式的な断面図である。 図2は本発明の第1の実施形態に係る半導体装置において、第2のチャネル層の厚さと測定した抵抗値との関係を示すグラフである。 図3は本発明の第1の実施形態に係る半導体装置において、各障壁層のAl組成と厚さとを変化させ、且つ第2のチャネル層の厚さを変化させた際の表面側の2DEGチャネルの電子濃度の変化を計算した結果を示すグラフである。 図4は本発明の第1の実施形態の第1変形例に係る半導体装置を示す模式的な断面図である。 図5は本発明の第1の実施形態の第2変形例に係る半導体装置を示す模式的な断面図である。 図6は本発明の第1の実施形態の第2変形例に係る半導体装置において、第2のチャネル層の厚さと実測した逆方向のリーク電流との関係を示すグラフである。 図7は本発明の第1の実施形態の第3変形例に係る半導体装置を示す模式的な断面図である。 図8は本発明の第1の実施形態の第3変形例の他の例に係る半導体装置を示す模式的な断面図である。 図9は本発明の第1の実施形態の第4変形例に係る半導体装置を示す模式的な断面図である。 図10は本発明の第1の実施形態の第5変形例に係る半導体装置を示す模式的な断面図である。 図11は本発明の第1の実施形態の第6変形例に係る半導体装置を示す模式的な断面図である。 図12は本発明の第2の実施形態に係る半導体装置を示す模式的な断面図である。 図13は本発明の第2の実施形態に係る半導体装置において、第2のチャネル層における第1の領域のn型不純物濃度を変化させた際の第1のチャネル層における2DEGチャネルの電子濃度の変化を計算した結果を示すグラフである。 図14は従来例に係る半導体装置を示す模式的な断面図と、その電流-電圧特性の一測定例を示すグラフである。 図15はAlGaN/GaN系半導体装置における多重2次元電子ガス(2DEG)を含む伝導帯(Ec)の下端を表す模式図である。
 (第1の実施形態)
 本発明の第1の実施形態に係る半導体装置について図1を参照しながら説明する。
 図1に示すように、第1の実施形態に係る半導体装置101は、GaN系の電界効果トランジスタである。
 電界効果トランジスタは、例えば、シリコン(Si)からなる基板102の上に、有機金属化学気層成長(metal organic chemical vapor deposition:MOCVD)法等により順次エピタキシャル成長した、GaNからなる第1のチャネル層103、AlGaNからなる第1の障壁層104、GaNからなる第2のチャネル層105及びAlGaNからなる第2の障壁層106を有している。
 このように、第1のチャネル層103と第1の障壁層104とから、第1のヘテロ接合体が形成され、第2のチャネル層105と第2の障壁層106とから、第2のヘテロ接合体が形成される。
 なお、結晶成長用の基板102は、シリコンに限られず、炭化シリコン(SiC)、サファイア(Al)又は窒化ガリウム(GaN)等を用いることができる。また、基板102と第1のチャネル層103との間には、基板102との格子不整合を緩和するバッファ層を形成してもよい。
 第1のチャネル層103における第1の障壁層104との界面の近傍、及び第2のチャネル層105における第2の障壁層106との界面の近傍には、それぞれ2次元電子ガス(2DEG)チャネル112、113が形成される。
 エピタキシャル層を形成した直後のウェハ状態にあっては、該エピタキシャル層は複数の半導体装置101の能動層を含むと共に、ウェハの主面上に全面的に且つ平坦に形成されている。その後、個々の半導体装置101ごとに、各チャネル層103、105の2DEGチャネル112、113と接触可能なオーミック電極を形成するための凹部が形成される。
 エピタキシャル層の段差部107には、各チャネル層103、105及び各障壁層104、106とそれぞれオーミック接触するソース電極109及びドレイン電極110が形成されている。窒化物半導体層とオーミック接触可能な金属材料には、例えば、チタン(Ti)とアルミニウム(Al)との積層膜を用いることができる。
 また、第2の障壁層106上におけるソース電極109とドレイン電極110との間の領域には、第2の障壁層106とショットキー接触するゲート電極111が形成されている。窒化物半導体層とショットキー接触可能な金属材料には、例えば、ニッケル(Ni)又はパラジウム(Pd)を用いることができる。
 第1の実施形態においては、GaNからなる第1のチャネル層103は、該第1のチャネル層103よりもバンドギャップが大きいAlGaNからなる第1の障壁層104の下側に形成されている。同様に、GaNからなる第2のチャネル層105は、該第2のチャネル層105よりもバンドギャップが大きいAlGaNからなる第2の障壁層106の下側に形成されている。
 この場合の第1のチャネル層103の厚さは、該第1のチャネル層103中に形成される2DEG112における電子濃度が低下しない程度の厚さであり、また、第2のチャネル層105の厚さは、該第2のチャネル層105中に形成される2DEG113における電子濃度が低下しない程度の厚さである。
 図2はGaNからなる第2のチャネル層の厚さと抵抗値との関係を示すグラフである。ここでは、ソース電極109とドレイン電極110との間の抵抗値を、第2のチャネル層105の厚さが異なる複数のサンプルを作製して測定している。
 図2に示すように、第2のチャネル層105の厚さを80nm以上に設定することにより、第2のチャネル層105の抵抗値を下げることができる。
 また、図3に、それぞれAlGaNからなる第1の障壁層104及び第2の障壁層106におけるAl組成と厚さとを変化させ、且つ、第2のチャネル層105の厚さを変化させた際の2DEGの電子濃度の計算結果を示す。各障壁層におけるAl組成は15%、25%及び35%と変化させ、厚さは15nm以上且つ50nm以下の範囲で変化させている。その結果、第2のチャネル層105の厚さを80nm以上に設定すれば、2DEG113の電子濃度が飽和することが分かる。
 以上の測定及び計算の結果から、第2のチャネル層105の厚さを80nm以上とすることにより、第2のチャネル層105に生じる2DEG113の電子濃度が低下することがない多重2DEGチャネル構造を得ることができる。
 (第1の実施形態の第1変形例)
 図4に第1の実施形態の第1変形例に係る半導体装置101Aを示す。
 図4に示す半導体装置101Aは、第1の実施形態に係る半導体装置101の基板102の裏面に、第1のチャネル層103の裏面と接触する第2のゲート電極115が設けられていることを特徴とする。
 具体的には、基板101におけるゲート電極111(以下、本変形例において第1のゲート電極111と呼ぶ。)の反対側の領域に、第1のチャネル層103を露出する凹部102aが形成されている。基板102の裏面には、該凹部102aの壁面に沿って形成され、且つ、第1のチャネル層103における凹部102aの底面からの露出部分とショットキー接触する第2のゲート電極115が形成されている。
 このように、第1のゲート電極111だけでなく、該第1のゲート電極111と基板102側から対向する第2のゲート電極を組み合わせて用いることにより、多重2DEGチャネルに対する電流制御性を向上することができる。
 (第1の実施形態の第2変形例)
 図5に第1の実施形態の第2変形例に係る半導体装置101Bを示す。
 図5に示すように、第2変形例に係る半導体装置101Bは、それぞれ2DEGチャネル112、113とショットキー接触するアノード電極116と、オーミック接触するカソード電極117とを備えたショットキーバリアダイオード(SBD)である。
 ここで、アノード電極116には、ニッケル(Ni)又はパラジウム(Pd)を用いることができる。カソード電極117には、チタン(Ti)とアルミニウム(Al)との積層膜を用いることができる。
 なお、第2変形例に係るSBDにおいては、第2のチャネル層105の厚さを350nm以下とすることが望ましい。さらには、300nm以下がより望ましい。
 図6に、第2のチャネル層105の厚さと逆方向のリーク電流との関係を測定した結果を示す。図6からは、第2のチャネル層105の厚さを350nm以上とすると、チャネルとなる2DEG内の電子濃度は高くなるものの、逆バイアス時のショットキー障壁が薄くなるため、該ショットキー障壁をトンネルして流れる逆方向のリーク電流が増加することが分かる。
 なお、第1の実施形態及びその変形例においては、多重2DEGチャネル構造を2チャネルとしたが、3チャネル以上としてもよい。
 また、第1の実施形態及びその変形例において、各チャネル層103、105はGaNとし、各障壁層104、106はAlGaNとしたが、III族窒化物半導体で且つ各障壁層104、106のバンドギャップが各チャネル層103、105のバンドギャップよりも大きくなる組成を有していればよく、この限りではない。
 (第1の実施形態の第3変形例)
 図7に第1の実施形態の第3変形例に係る半導体装置101Cを示す。
 図7に示す第3変形例に係る半導体装置101Cは、第1の実施形態に係る半導体装置101における第2の障壁層106の上に絶縁膜114を設け、該絶縁膜114の上にゲート電極111が形成される構成を有している。ここで、絶縁膜114は、ゲート電極111及びその周辺部に選択的に設けられている。
 絶縁膜114として、例えば、窒化珪素(SiN)及び窒化アルミニウム(AlN)に代表される窒化膜、又は例えば、酸化アルミニウム(AlO)及び酸化ハフニウム(HfO)に代表される酸化膜、又は例えば、これらを組み合わせた多層膜が用いられる。絶縁膜114の厚さとしては、1nm以上且つ100nm以下の範囲で用いることができる。よく用いられる絶縁膜114の厚さは、約5nmである。
 この構成もまた、第1の実施形態に係る半導体装置101が有する効果と同様の効果を有する。
 なお、図8に示す半導体装置101Dは、他の例であって、絶縁膜114をゲート電極111及びその周辺部に限定して設けるのではなく、ソース電極109及びドレイン電極110にまで達するように形成している。さらには、ソース電極109及びドレイン電極110が絶縁膜114の各端部を覆ように形成している。このような構成であっても、図7に示す第3変形例に係る半導体装置101Cと同様の効果を有する。
 (第1の実施形態の第4変形例)
 図9に第1の実施形態の第4変形例に係る半導体装置101Eを示す。
 図9に示す第4変形例に係る半導体装置101Eは、第1の実施形態に係る半導体装置101における第2の障壁層106の上にp型半導体層118を設け、該p型半導体層118の上にゲート電極111が形成されている。なお、ゲート電極111は、p型半導体層118に対してオーミック性を有していてもよい。
 p型半導体層118として、例えば、MgドープGaN層、MgドープAlGaN層、MgドープAlInN層、又はMgドープAlGaN層が用いられる。p型半導体層118の厚さは、特に限定されず、よく用いられる厚さは、約100nmである。なお、p型半導体層118は、MgドープGaN層とMgドープAlGaN層との2層又はそれ以上の多層構造であってもよい。また、p型半導体層118として、例えば酸化ニッケル(NiO)で示される酸化物半導体層を用いることもできる。
 この構成もまた、第1の実施形態に係る半導体装置が有する効果と同様の効果を有する。
 (第1の実施形態の第5変形例)
 図10に第1の実施形態の第5変形例に係る半導体装置101Fを示す。
 図10に示すように、第5変形例に係る半導体装置101Fは、それぞれ2DEGチャネル112、113とショットキー接触するアノード電極116と、オーミック接触するカソード電極117とを備え、第2の障壁層106の上に絶縁膜119を設けたショットキーバリアダイオード(SBD)である。
 絶縁膜119として、例えば窒化珪素(SiN)及び窒化アルミニウム(AlN)に代表される窒化膜、又は、例えば酸化アルミニウム(AlO)及び酸化ハフニウム(HfO)に代表される酸化膜、又は例えば、これらを組み合わせた多層膜が用いられる。絶縁膜1119の厚さとしては、1nm以上且つ100nm以下の範囲で用いることができる。よく用いられる絶縁膜119の厚さは、約5nmである。
 この構成もまた、第1の実施形態の第2変形例に係る半導体装置が有する効果と同様の効果を有する。
 ここで、アノード電極116には、ニッケル(Ni)又はパラジウム(Pd)を用いることができる。カソード電極117には、チタン(Ti)とアルミニウム(Al)との積層膜を用いることができる。
 (第1の実施形態の第6変形例)
 図11に第1の実施形態の第6変形例に係る半導体装置101Gを示す。
 図11に示すように、第5変形例に係る半導体装置101Gは、それぞれ2DEGチャネル112、113とショットキー接触するアノード電極116と、オーミック接触するカソード電極117とを備え、第2の障壁層106の上のアノード電極116側にp型半導体層120を設け、アノード電極116が該p型半導体層120の一部を覆うように設けられたショットキーバリアダイオード(SBD)である。
 p型半導体層120として、例えばMgドープGaN層、MgドープAlGaN層、MgドープAlInN層又はMgドープAlGaN層が用いられる。p型半導体層120の厚さは、特に限定されず、よく用いられる厚さは、約100nmである。なお、p型半導体層120は、MgドープGaN層とMgドープAlGaN層との2層又はそれ以上の多層構造であってもよい。
 この構成もまた、第1の実施形態の第2変形例に係る半導体装置が有する効果と同様の効果を有する。
 ここで、アノード電極116はp型半導体層120とオーミック接触していればよく、例えばニッケル(Ni)又はパラジウム(Pd)を用いることができる。カソード電極117には、チタン(Ti)とアルミニウム(Al)との積層膜を用いることができる。
 (第2の実施形態)
 以下、本発明の第2の実施形態に係る半導体装置について図12を参照しながら説明する。
 図12に示すように、第2の実施形態に係る半導体装置101Cは、GaN系の電界効果トランジスタである。ここで、第2の実施形態に係る半導体装置101Cは、第1の実施形態に係る半導体装置101と同一の構成部材には、同一の符号を付している。
 第2の実施形態に係る電界効果トランジスタにおける第2のチャネル層105は、導電型がそれぞれ異なる複数の領域(層)に分けて構成されていることを特徴とする。
 具体的には、GaNからなる第2のチャネル層105において、負の分極電荷が生じている第1の障壁層104と接する第1の領域105aはn型にドープされており、且つ、第1の領域105aにおける第1の障壁層104と反対側に接する第2の領域105bはp型にドープされている。また、第2の領域105bと第2の障壁層106との間は、アンドープの第3の領域105cである。
 第1の領域105aのn型不純物濃度は、例えば1×1019cm-3であり、その厚さは、例えば10nmである。また、第2の領域105bのp型不純物濃度は、例えば5×1017cm-3であり、その厚さは、例えば200nmである。但し、各領域105a、105bの不純物濃度及び厚さは、これに限られない。
 第1の領域105aには、n型ドーパントとして、例えばシリコン(Si)を用いることができ、第2の領域105bには、p型ドーパントとして、例えばマグネシウム(Mg)を用いることができる。
 このように、第2の実施形態によると、第1の障壁層104と接するようにn型不純物がドープされた第1の領域105aを形成することにより、第1のチャネル層103における2DEGチャネル112の電子濃度を向上することができる。
 図13に、第1の領域105aにおけるn型不純物濃度と第1のチャネル層103における2DEGチャネル112の電子濃度との関係を計算した結果を示す。図13からは、第1の領域105aのn型不純物濃度を8×1018cm-3以上とすることにより、第1のチャネル層103における2DEGチャネル112の電子濃度が向上することが分かる。
 これは、第1の領域105aの導電型をn型とすることにより、第1の障壁層104の上面に生じている負の分極電荷による空乏層の第2のチャネル層105側への伸長を抑制できるからである。これにより、第1の障壁層104及び第1のチャネル層103のポテンシャルの上昇が抑制されて、第1のチャネル層103における2DEGチャネル112の電子濃度を向上することができる。
 以上のように、第2の実施形態に係る半導体装置101Cは、第1の障壁層104の上に第2のチャネル層105を積層する多重2DEG構成の場合に、第1のチャネル層103における2DEGチャネル112の電子濃度を向上するという効果を得られる。
 なお、第1の領域105aに対するn型不純物のドープ総量(不純物濃度を厚さで積分した値)と、第2の領域105bに対するp型不純物のドープ総量とは、おおよそ等しいことが望ましい。このようにすると、チャネルに沿った方向(電子が流れる方向)における電界強度が大きくなった場合に、第1の領域105aと第2の領域105bとが空乏化し、この空乏層の伸長によって電界の集中を抑制できるため、半導体装置101Cの耐圧を向上することができる。
 また、半導体装置101Cの動作特性において、高耐圧性能よりも高電流密度が優先される場合等には、p型の第2の領域105bを薄くするか、さらにはp型の第2の領域105bを設けなくてもよい。この場合でも、第1のチャネル層103における2DEGチャネル112の電子濃度を向上できるという効果は得ることができる。
 また、第1の実施形態と同様に、第2のチャネル層105の厚さは80nm以上であることが望ましいが、n型の第1の領域105a及びp型の第2の領域105bにおけるそれぞれの不純物濃度及び厚さによっては、この限りではない。
 また、図4に示した第1の実施形態の第1変形例と同様に、第2の実施形態においても、基板102の裏面における第1のゲート電極111と対向する領域に、第1のチャネル層103を露出する凹部102aを形成し、形成した凹部102aの底部とショットキー接触する第2のゲート電極115を形成してもよい。
 このようにすると、半導体装置101Cに対して、第1のゲート電極111と第2のゲート電極115とを組み合わせて制御することにより、多重2DEGチャネルに対する電流制御性を向上することができる。
 また、第2の実施形態においては、半導体装置101Cとして、電界効果トランジスタを挙げたが、図5に示した第1の実施形態の第2変形例と同様に、ショットキー性のアノード電極116とオーミック性のカソード電極117とを備えたショットキーバリアダイオード(SBD)としてもよい。
 また、第2の実施形態及びその変形例においては、多重2DEGチャネル構造を2チャネルとしたが、3チャネル以上としてもよい。
 また、第2の実施形態及びその変形例において、各チャネル層103、105はGaNとし、各障壁層104、106はAlGaNとしたが、III族窒化物半導体で且つ各障壁層104、106のバンドギャップが各チャネル層103、105のバンドギャップよりも大きくなる組成を有していればよく、この限りではない。
 なお、第2の実施形態と第1の実施形態とを組み合わせた構成とすることも可能である。例えば、第2の障壁層106の上に、さらに第3のチャネル層と第3の障壁層とからなる第3のヘテロ接合体を設けた構成の場合に、第2のチャネル層105を、第2の実施形態に係るn型の第1の領域105a及びp型の第2の領域105bを含む構成とし、第3のチャネル層を第1の実施形態に係るアンドープのGaN層とする構成とすることができる。
 本発明に係る半導体装置は、III族窒化物半導体からなり、多重2DEGチャネルを有する半導体装置において、電流密度を効果的に上昇し、小型で且つ高出力な半導体装置を実現することができ、例えば、産業用パワーエレクトロニクス機器又は家電機器用途の電力応用回路に好適な高出力半導体装置等として有用である。
101  半導体装置(電界効果トランジスタ)
101A 半導体装置(電界効果トランジスタ)
101B 半導体装置(ショットキーバリアダイオード)
101C 半導体装置(電界効果トランジスタ)
101D 半導体装置(電界効果トランジスタ)
101E 半導体装置(電界効果トランジスタ)
101F 半導体装置(ショットキーバリアダイオード)
101G 半導体装置(ショットキーバリアダイオード)
102  基板
102a 凹部
103  第1のチャネル層
104  第1の障壁層
105  第2のチャネル層
105a 第1の領域
105b 第2の領域
105c 第3の領域
106  第2の障壁層
107  段差部
108  段差部
109  ソース電極
110  ドレイン電極
111  (第1の)ゲート電極
112  2DEGチャネル
113  2DEGチャネル
114  絶縁膜
115  第2のゲート電極
116  アノード電極
117  カソード電極
118  p型半導体層
119  絶縁膜
120  p型半導体層

Claims (8)

  1.  第1の窒化物半導体層と該第1の窒化物半導体層よりもバンドギャップが大きい第2の窒化物半導体層とが互いに接合してなる第1のヘテロ接合体と、
     前記第1のヘテロ接合体の上に形成された第3の窒化物半導体層と該第3の窒化物半導体層よりもバンドギャップが大きい第4の窒化物半導体層とが互いに接合してなる第2のヘテロ接合体と、
     少なくとも前記第4の窒化物半導体層とショットキー接触する第1の電極と、
     前記第1のヘテロ接合体及び第2のヘテロ接合体とオーミック接触する第2の電極とを備え、
     前記第1の窒化物半導体層は、該第1の窒化物半導体層中に形成される2次元電子ガス層の電子濃度が低下しない厚さを有しているか、
     又は前記第3の窒化物半導体層は、該第3の窒化物半導体層中に形成される2次元電子ガス層の電子濃度が低下しない厚さを有している半導体装置。
  2.  請求項1において、
     前記第1の窒化物半導体層の厚さ又は前記第3の窒化物半導体層の厚さは、80nm以上である半導体装置。
  3.  請求項1又は2において、
     前記第3の窒化物半導体層は、前記第2の窒化物半導体層と接する界面側にn型不純物がドープされた第1の領域を有している半導体装置。
  4.  請求項3において、
     前記第3の窒化物半導体層は、前記第1の領域と前記第4の窒化物半導体層との間に前記第1の領域と接して形成され、p型不純物がドープされた第2の領域を有している半導体装置。
  5.  請求項1~4のいずれか1項において、
     前記第1の電極は、ゲート電極であり、
     前記第2の電極は、前記第1のヘテロ接合体及び第2のヘテロ接合体における前記ゲート電極の両側の領域にそれぞれ形成されたソース電極及びドレイン電極であり、
     電界効果トランジスタとして動作する半導体装置。
  6.  請求項5において、
     前記第1の電極は、第1のゲート電極であり、
     前記第1のヘテロ接合体を保持する基板をさらに備え、
     前記基板は、前記第1のゲート電極と反対側の領域に形成され、前記第1のヘテロ接合体を露出する開口部を有しており、
     前記基板には、少なくとも前記開口部から露出する前記第1のヘテロ接合体と接触する第2のゲート電極が形成されている半導体装置。
  7.  請求項1~4のいずれか1項において、
     前記第1の電極は、アノード電極であり、
     前記第2の電極は、カソード電極であり、
     ショットキーバリアダイオードとして動作する半導体装置。
  8.  請求項7において、
     前記第3の半導体層の厚さは、350nm以下である半導体装置。
PCT/JP2012/003732 2011-07-01 2012-06-07 半導体装置 WO2013005372A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013522712A JP5942204B2 (ja) 2011-07-01 2012-06-07 半導体装置
US14/140,325 US20140110759A1 (en) 2011-07-01 2013-12-24 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011147646 2011-07-01
JP2011-147646 2011-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/140,325 Continuation US20140110759A1 (en) 2011-07-01 2013-12-24 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2013005372A1 true WO2013005372A1 (ja) 2013-01-10

Family

ID=47436740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003732 WO2013005372A1 (ja) 2011-07-01 2012-06-07 半導体装置

Country Status (3)

Country Link
US (1) US20140110759A1 (ja)
JP (1) JP5942204B2 (ja)
WO (1) WO2013005372A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056998A (ja) * 2012-09-13 2014-03-27 Toyota Central R&D Labs Inc InAlN層とGaN層を含む積層型窒化物半導体装置
US20150041821A1 (en) * 2013-08-09 2015-02-12 Renesas Electronics Corporation Semiconductor device and method for manufacturing semiconductor device
KR20150063682A (ko) * 2013-12-02 2015-06-10 엘지이노텍 주식회사 반도체 소자 및 이를 포함하는 반도체 회로
JP2017010957A (ja) * 2015-06-16 2017-01-12 富士通株式会社 化合物半導体装置及びその製造方法
WO2018181237A1 (ja) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 半導体装置
WO2024018892A1 (ja) * 2022-07-22 2024-01-25 ローム株式会社 半導体装置およびその製造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907378B2 (en) * 2013-03-15 2014-12-09 Mitsubishi Electric Research Laboratories, Inc. High electron mobility transistor with multiple channels
CN104037215B (zh) * 2014-07-02 2017-01-18 西安电子科技大学 一种基于聚合物的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN104037219B (zh) * 2014-07-02 2017-01-18 西安电子科技大学 一种基于栅结构的增强型AlGaN/GaN HEMT器件结构及其制作方法
CN104037221B (zh) * 2014-07-02 2017-01-25 西安电子科技大学 一种基于极化效应的复合场板高性能AlGaN/GaN HEMT器件结构及制作方法
CN104037220B (zh) * 2014-07-02 2017-01-25 西安电子科技大学 一种基于偶极子层浮栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
WO2016043748A1 (en) 2014-09-18 2016-03-24 Intel Corporation Wurtzite heteroepitaxial structures with inclined sidewall facets for defect propagation control in silicon cmos-compatible semiconductor devices
KR102203497B1 (ko) 2014-09-25 2021-01-15 인텔 코포레이션 독립형 실리콘 메사들 상의 iii-n 에피택셜 디바이스 구조체들
US9419120B2 (en) * 2014-11-05 2016-08-16 Northrop Grumman Systems Corporation Multichannel devices with improved performance
US10573647B2 (en) 2014-11-18 2020-02-25 Intel Corporation CMOS circuits using n-channel and p-channel gallium nitride transistors
US10056456B2 (en) 2014-12-18 2018-08-21 Intel Corporation N-channel gallium nitride transistors
WO2016186654A1 (en) * 2015-05-19 2016-11-24 Intel Corporation Semiconductor devices with raised doped crystalline structures
US9490430B1 (en) * 2015-06-26 2016-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Field effect transistors and methods of forming same
WO2016209283A1 (en) 2015-06-26 2016-12-29 Intel Corporation Heteroepitaxial structures with high temperature stable substrate interface material
WO2017111869A1 (en) 2015-12-24 2017-06-29 Intel Corporation Transition metal dichalcogenides (tmdcs) over iii-nitride heteroepitaxial layers
KR102034175B1 (ko) 2017-05-30 2019-10-18 한국과학기술연구원 수평 배열된 반도체 채널을 가지는 반도체 소자 및 이의 제조 방법
WO2018236406A1 (en) * 2017-06-24 2018-12-27 Intel Corporation GROUP III NITRIDE HETEROGRAPHY DIODES
TW201911583A (zh) * 2017-07-26 2019-03-16 新唐科技股份有限公司 異質接面蕭特基二極體元件
US11373995B2 (en) 2017-09-29 2022-06-28 Intel Corporation Group III-nitride antenna diode
US10217854B1 (en) * 2017-09-29 2019-02-26 Vanguard International Semiconductor Corporation Semiconductor device and method of manufacturing the same
EP3688818A4 (en) 2017-09-29 2021-07-28 Intel Corporation GROUP III NITRIDE SCHOTTKY DIODES
WO2019066953A1 (en) 2017-09-29 2019-04-04 Intel Corporation REDUCED CONTACT RESISTANCE GROUP III (N-N) NITRIDE DEVICES AND METHODS OF MAKING SAME
US10879368B2 (en) 2017-10-17 2020-12-29 Mitsubishi Electric Research Laboratories, Inc. Transistor with multi-metal gate
US10658501B2 (en) * 2018-02-21 2020-05-19 Mitsubishi Electric Research Laboratories, Inc. Vertically stacked multichannel pyramid transistor
US11387328B2 (en) * 2018-09-27 2022-07-12 Intel Corporation III-N tunnel device architectures and high frequency mixers employing a III-N tunnel device
EP4016586A4 (en) * 2020-06-01 2022-10-12 Nuvoton Technology Corporation Japan SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING SEMICONDUCTOR DEVICE
CN113964192A (zh) * 2021-09-06 2022-01-21 西安电子科技大学 基于非极性GaN的肖特基二极管及其制备方法
CN114038907A (zh) * 2021-10-21 2022-02-11 华南师范大学 一种双栅控制的高耐压双沟道增强型hemt及其制备方法
CN114388615B (zh) * 2022-01-17 2023-05-09 东莞源礼灯饰有限公司 一种立体复数堆叠外延结构芯片
KR102655449B1 (ko) * 2023-11-24 2024-04-09 주식회사 멤스 쇼트키 다이오드 및 이의 형성 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132043A (ja) * 1989-10-18 1991-06-05 Hitachi Ltd 半導体装置、半導体基板およびそれらの製造方法
JP2002270618A (ja) * 2001-03-06 2002-09-20 Furukawa Electric Co Ltd:The GaN系電界効果トランジスタ
JP2007134607A (ja) * 2005-11-11 2007-05-31 National Institute Of Advanced Industrial & Technology 半導体素子
JP2010135640A (ja) * 2008-12-05 2010-06-17 Panasonic Corp 電界効果トランジスタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611002B2 (en) * 2001-02-23 2003-08-26 Nitronex Corporation Gallium nitride material devices and methods including backside vias
JP4457564B2 (ja) * 2002-04-26 2010-04-28 沖電気工業株式会社 半導体装置の製造方法
JP2009117485A (ja) * 2007-11-02 2009-05-28 Panasonic Corp 窒化物半導体装置
US7884394B2 (en) * 2009-02-09 2011-02-08 Transphorm Inc. III-nitride devices and circuits
JP5675084B2 (ja) * 2009-12-08 2015-02-25 古河電気工業株式会社 窒化物系ダイオード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132043A (ja) * 1989-10-18 1991-06-05 Hitachi Ltd 半導体装置、半導体基板およびそれらの製造方法
JP2002270618A (ja) * 2001-03-06 2002-09-20 Furukawa Electric Co Ltd:The GaN系電界効果トランジスタ
JP2007134607A (ja) * 2005-11-11 2007-05-31 National Institute Of Advanced Industrial & Technology 半導体素子
JP2010135640A (ja) * 2008-12-05 2010-06-17 Panasonic Corp 電界効果トランジスタ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056998A (ja) * 2012-09-13 2014-03-27 Toyota Central R&D Labs Inc InAlN層とGaN層を含む積層型窒化物半導体装置
US20150041821A1 (en) * 2013-08-09 2015-02-12 Renesas Electronics Corporation Semiconductor device and method for manufacturing semiconductor device
US9985108B2 (en) * 2013-08-09 2018-05-29 Renesas Electronics Corporation Semiconductor device and method for manufacturing semiconductor device including Al electrode formed on AlxGa(1-x)N layer
KR20150063682A (ko) * 2013-12-02 2015-06-10 엘지이노텍 주식회사 반도체 소자 및 이를 포함하는 반도체 회로
WO2015083887A1 (en) * 2013-12-02 2015-06-11 Lg Innotek Co., Ltd. Semiconductor device and semiconductor circuit including the device
CN105793997A (zh) * 2013-12-02 2016-07-20 Lg伊诺特有限公司 半导体器件和包括半导体器件的半导体电路
US9825026B2 (en) 2013-12-02 2017-11-21 LG Innotek., Ltd. Semiconductor device and semiconductor circuit including the semiconductor device with enhanced current-voltage characteristics
CN105793997B (zh) * 2013-12-02 2019-06-28 Lg伊诺特有限公司 半导体器件和包括半导体器件的半导体电路
KR102182016B1 (ko) 2013-12-02 2020-11-23 엘지이노텍 주식회사 반도체 소자 및 이를 포함하는 반도체 회로
JP2017010957A (ja) * 2015-06-16 2017-01-12 富士通株式会社 化合物半導体装置及びその製造方法
WO2018181237A1 (ja) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 半導体装置
WO2024018892A1 (ja) * 2022-07-22 2024-01-25 ローム株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JPWO2013005372A1 (ja) 2015-02-23
JP5942204B2 (ja) 2016-06-29
US20140110759A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5942204B2 (ja) 半導体装置
US9837519B2 (en) Semiconductor device
JP5469098B2 (ja) 電界効果トランジスタ及びその製造方法
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
US9466705B2 (en) Semiconductor device and method of manufacturing the same
TWI462293B (zh) 增強型電晶體及其形成方法
WO2010064383A1 (ja) 電界効果トランジスタ及びその製造方法
US9755045B2 (en) Rectifier structures with low leakage
TW201403814A (zh) 半導體裝置及其製造方法
JP6330148B2 (ja) 半導体装置
US9680001B2 (en) Nitride semiconductor device
JP2012227456A (ja) 半導体装置
JP6649208B2 (ja) 半導体装置
WO2013161478A1 (ja) 窒化物系半導体素子
JP2010258313A (ja) 電界効果トランジスタ及びその製造方法
JP5581601B2 (ja) 化合物半導体装置及びその製造方法
JP5721782B2 (ja) 半導体装置
JP2011066464A (ja) 電界効果トランジスタ
JP6639593B2 (ja) 半導体装置および半導体装置の製造方法
JP6437381B2 (ja) 窒化物半導体装置及びその製造方法
JP7361723B2 (ja) 窒化物半導体装置
US9627489B2 (en) Semiconductor device
JP2016213389A (ja) 窒化物半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807416

Country of ref document: EP

Kind code of ref document: A1