WO2013002411A1 - 6サイクルエンジン - Google Patents

6サイクルエンジン Download PDF

Info

Publication number
WO2013002411A1
WO2013002411A1 PCT/JP2012/066919 JP2012066919W WO2013002411A1 WO 2013002411 A1 WO2013002411 A1 WO 2013002411A1 JP 2012066919 W JP2012066919 W JP 2012066919W WO 2013002411 A1 WO2013002411 A1 WO 2013002411A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
stroke
engine
ignition
cylinder
Prior art date
Application number
PCT/JP2012/066919
Other languages
English (en)
French (fr)
Inventor
映 塚原
拓朗 神近
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP12805117.4A priority Critical patent/EP2728139B1/en
Priority to JP2013523016A priority patent/JP5580480B2/ja
Priority to US14/129,568 priority patent/US9010288B2/en
Publication of WO2013002411A1 publication Critical patent/WO2013002411A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B75/021Engines characterised by their cycles, e.g. six-stroke having six or more strokes per cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D39/00Other non-electrical control
    • F02D39/04Other non-electrical control for engines with other cycles than four-stroke, e.g. two-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/16Indirect injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a 6-cycle engine equipped with an in-cylinder injector that directly injects fuel into a combustion chamber.
  • the engine disclosed in Patent Document 1 is configured to generate a tumble that is a swirling flow of intake air in a cylinder in order to collect a small amount of fuel in the vicinity of the spark plug.
  • the tumble is generated when the intake air flowing into the cylinder from the intake port flows in the axial direction of the cylinder and is reversed at the top of the piston.
  • the intake port of the engine shown in Patent Document 1 and the top of the piston are formed in a special shape so that the tumble is maintained even in the latter half of the compression stroke.
  • the intake port is formed so that the inclination angle with respect to the cylinder axis is smaller than usual.
  • a spherical recess is formed at the top of the piston.
  • a 6-cycle engine is known as an engine capable of improving fuel consumption.
  • the six-cycle engine is operated with one stroke consisting of six strokes, which are a four-stroke process including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke, plus a compression stroke and an expansion stroke.
  • a conventional 6-cycle engine is described in Patent Document 2.
  • the 6-cycle engine disclosed in Patent Document 2 includes an intake stroke, a compression stroke without ignition, an expansion stroke without combustion, a compression stroke with ignition, an expansion stroke with combustion, and an exhaust stroke. It is operated by carrying out the six strokes consisting of in this order.
  • fuel is supplied to the cylinder or the intake passage in the intake stroke, and the intake and fuel are agitated and mixed in the cylinder in the compression stroke without ignition and the expansion stroke without combustion. Is done.
  • the intake port shown in Patent Document 1 is formed so that the direction of intake air flow can be changed greatly in order to generate tumble. Further, in the engine shown in Patent Document 1, the shape of the intake port, the shape of the piston top, and the shape of fuel injected from the in-cylinder injector (spray shape) must be formed in optimum shapes, respectively. Is. For this reason, in the engine shown in patent document 1, since the amount of intake air decreases, there is a limit in improving output. In the 6-cycle engine shown in Patent Document 2, stratified combustion cannot be performed, and it is difficult to further improve fuel consumption.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a 6-cycle engine capable of realizing stratified combustion while increasing the intake air amount.
  • a six-cycle engine includes a cylinder, a piston inserted into the cylinder, a cylinder head attached to the cylinder, the cylinder, the piston, and the cylinder head.
  • a combustion chamber surrounded and formed, an in-cylinder injector that directly injects fuel into the combustion chamber, a spark plug attached to a wall of the combustion chamber, and a downstream end that opens to the combustion chamber.
  • An operation method of a 6-cycle engine according to the present invention is formed by being surrounded by a cylinder, a piston inserted into the cylinder, a cylinder head attached to the cylinder, the cylinder, the piston and the cylinder head. Formed in the cylinder head so that a downstream end is opened to the combustion chamber, an in-cylinder injector that directly injects fuel into the combustion chamber, an ignition plug attached to a wall of the combustion chamber, and An intake port, an exhaust port formed in the cylinder head so that an upstream end thereof opens to the combustion chamber, an intake valve provided in the cylinder head to open and close the intake port, and provided in the cylinder head An engine equipped with an exhaust valve that opens and closes the exhaust port, an intake stroke, a compression stroke without ignition, and a fuel 6 strokes including an expansion stroke without ignition, a compression stroke with ignition, an expansion stroke with combustion, and an exhaust stroke are executed in this order, and fuel is supplied to the in-cylinder injector in the compression stroke with ignition. It is carried out by injecting and energizing
  • the air sucked into the cylinder in the intake stroke is compressed in the compression stroke without ignition and expanded in the expansion stroke without subsequent combustion.
  • the intake air is compressed and expanded in this way, the flow of the intake air is attenuated in the cylinder and becomes extremely small.
  • the fuel is directly injected by the in-cylinder injector into the cylinder in which the intake air is almost stopped. Therefore, according to the present invention, fuel can be accurately supplied to the vicinity of the spark plug in an amount suitable for stratified combustion without using the swirl flow of the intake air.
  • the intake port of the 6-cycle engine according to the present invention does not need to swir the intake air, there is no restriction for forming a swirl flow. For this reason, this intake port can be formed in a shape that reduces the intake resistance, and a so-called high flow rate port is obtained. Therefore, according to the present invention, stratified combustion can be realized while increasing the intake air amount in a 6-cycle engine. Such a 6-cycle engine can improve the output because the amount of intake air increases, and can improve the fuel consumption because stratified combustion is realized.
  • FIG. 1 is a cross-sectional view showing a configuration of main parts of a 6-cycle engine according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a form in which the mounting position of the in-cylinder injector is different. This figure shows a first modification of the first embodiment.
  • FIG. 3 is a time chart for explaining the execution pattern of the process according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing a configuration of a main part of a 6-cycle engine provided with an intake manifold injector. This figure shows a second modification of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a configuration of a main part of a 6-cycle engine provided with an intake manifold injector.
  • FIG. 6 is a diagram showing a configuration of a six-cycle engine according to the first embodiment provided with a variable capacity supercharger.
  • FIG. 7 is a block diagram illustrating a configuration of the control device according to the first embodiment.
  • FIG. 8 is a cross-sectional view showing a configuration of a main part of a 6-cycle engine according to the second embodiment provided with an execution pattern changing mechanism.
  • FIG. 9 is a cross-sectional view showing a configuration of a main part of a 6-cycle engine provided with an execution pattern changing mechanism.
  • FIG. 10 is a time chart for explaining the first and second execution patterns according to the second embodiment.
  • FIG. 11A is a graph showing an operation region to which the first and second execution patterns according to the modification of the second embodiment are applied.
  • FIG. 11B is a graph showing an operation region to which the first execution pattern according to the second embodiment is applied.
  • FIG. 11C is a graph showing an operation region to which the second execution pattern according to the second embodiment is applied.
  • FIG. 12 is a cross-sectional view of a cylinder head used in a 6-cycle engine according to the second embodiment.
  • FIG. 13 is a bottom view showing the ceiling wall of the combustion chamber according to the second embodiment.
  • FIG. 14 is an enlarged plan view showing a part of the valve gear according to the second embodiment.
  • FIG. 15 is an enlarged side view showing a part of the valve gear according to the second embodiment.
  • FIG. 16 is a sectional view of a rocking cam and a rocker arm according to the second embodiment.
  • 17 is a cross-sectional view taken along the line XVII-XVII of the intake camshaft and the slider in FIG. 18 is a cross-sectional view of the driving device in FIG. 14 taken along line XVIII-XVIII.
  • 19 is a cross-sectional view of the support shaft portion taken along line XIX-XIX in FIG.
  • FIG. 20 is a perspective view showing a large-diameter portion of the intake cam according to the second embodiment.
  • FIG. 21 is an exploded perspective view of the transmission mechanism for the intake camshaft according to the second embodiment.
  • FIG. 22 is a graph showing the relationship between the crank angle according to the second embodiment, the valve lift amount of the intake valve by the first and second intake cams, the position and depth of each groove.
  • FIG. 23 is a side view for explaining the drive device when switching from the first execution pattern to the second execution pattern according to the second embodiment is started.
  • FIG. 24 is a side view for explaining the switching driving device according to the second embodiment.
  • FIG. 25 is a side view for explaining the drive device after switching according to the second embodiment.
  • FIG. 26 is a side view for explaining the driving device when switching from the second execution pattern to the first execution pattern according to the second embodiment is started.
  • FIG. 27 is a graph showing the relationship between the air-fuel ratio and the combustion fluctuation rate according to the second embodiment.
  • FIG. 28 is a block diagram illustrating a configuration of a control device according to the second embodiment.
  • FIG. 29 is a flowchart for explaining the switching operation of the control device according to the second embodiment.
  • FIG. 30 is a time chart for explaining the first and second execution patterns according to the third embodiment.
  • a six-cycle engine 1 shown in FIG. 1 includes an in-cylinder injector 3 that directly injects fuel (for example, gasoline) into a combustion chamber 2.
  • the 6-cycle engine 1 can be configured as a single cylinder engine or a multi-cylinder engine.
  • the 6-cycle engine 1 can also be configured as an in-line multi-cylinder engine or a V-type engine.
  • the combustion chamber 2 is formed by being surrounded by a cylinder 4, a piston 5, and a cylinder head 6.
  • the cylinder 4 and the cylinder head 6 are cooled by a water-cooling type cooling device (not shown).
  • the in-cylinder injector 3 shown in FIG. 1 is attached to a portion between the intake valve 7 and the spark plug 8 in the ceiling wall 2a of the combustion chamber 2.
  • the in-cylinder injector 3 injects the fuel 9 so as to reach the vicinity of the spark plug 8.
  • the timing at which the in-cylinder injector 3 injects the fuel 9 is controlled by an injector control unit 10a (see FIG. 7) of the engine control device 10. That is, the control device 10 causes the in-cylinder injector 3 to inject fuel at a predetermined injection timing.
  • the control device 10 includes a load detection sensor 100 for detecting a load, a throttle opening sensor 101 for detecting the opening of a throttle valve (not shown), and an engine for detecting the rotational speed of the engine.
  • a rotational speed sensor 102 is connected to a crank position sensor 104 and a cam position sensor 105 for detecting the rotational angle of the crankshaft 103 (see FIG. 1).
  • Any load detection sensor 100 can be used as long as it can detect the amount of intake air, such as an air flow meter.
  • the throttle valve is for controlling the flow rate of intake air sucked into the combustion chamber 2.
  • a variable valve mechanism having a function equivalent to that of the throttle valve may be used without using the throttle valve.
  • This variable valve mechanism can freely change the lift amount and opening / closing timing of the intake valve 7.
  • the engine rotation speed sensor 102 can be configured by detecting the rotation speed of the engine using the rotation angle of the crankshaft 103 (see FIG. 1), the number of energizations to the spark plug 8, and the like. As shown in FIG. 1, the crankshaft 103 is connected to the piston 5 via a connecting rod 106.
  • the control device 10 includes the injector control unit 10a, a load calculation unit 10b, a rotation speed calculation unit 10c, and an ignition unit 10d.
  • the load calculation unit 10b calculates the intake air amount by calculation based on the detection value of the load detection sensor 100.
  • the rotational speed calculation unit 10c obtains the rotational speed of the engine based on the detection value of the engine rotational speed sensor 102.
  • the ignition unit 10d energizes the spark plug 8 at a predetermined ignition timing.
  • the injection amount of the fuel 9 is set so that an air-fuel mixture in which air and the fuel 9 are mixed at a combustible mixing ratio is generated in the vicinity of the spark plug 8.
  • the mixing ratio is set by the injector control unit 10a based on the intake air amount obtained by the load calculation unit 10b, the engine rotation speed obtained by the rotation speed calculation unit 10c, and the like. That is, the six-cycle engine 1 is configured so that stratified combustion is realized and so-called super lean burn is possible.
  • the in-cylinder injector 3 can be used as long as it can inject the fuel 9 into the combustion chamber 2.
  • an outer valve injector, a multi-hole injector, a swirl injector, a single hole injector, a slit injector, or the like can be used.
  • the exhaust valve 11 opens and closes the exhaust port 12.
  • the intake valve 7 opens and closes the intake port 13.
  • These intake valve 7 and exhaust valve 11 are each driven by a valve gear 14 described later.
  • the intake port 13 is formed as a so-called high flow rate port so that the intake air amount is as large as possible. That is, the intake port 13 is not shaped to generate tumble in the cylinder 4, but is shaped to reduce the resistance when intake air flows as much as possible.
  • the spark plug 8 is attached to a central portion of a ceiling wall 2a formed in a circular shape when viewed from the axial direction of the cylinder 4. The ignition timing of the spark plug 8 is controlled by the ignition unit 10d of the control device 10.
  • the six-cycle engine 1 is characterized by an operation method. This operation method is implemented using the valve gear 14, the in-cylinder injector 3, and the control device 10. As shown in FIG. 3, the valve operating device 14 is configured to perform six strokes. The six strokes are an intake stroke, a compression stroke without ignition, an expansion stroke without combustion, a compression stroke with ignition, an expansion stroke with combustion, and an exhaust stroke.
  • the valve gear 14 operates the intake valve 7 and the exhaust valve 11 so that the six strokes are executed in the order described above.
  • the piston 5 moves from the top dead center toward the bottom dead center with the intake valve 7 open and the exhaust valve 11 closed, and fresh air is drawn into the cylinder 4.
  • the movement of the piston 5 from the top dead center toward the bottom dead center is simply referred to as the piston 5 descending.
  • the movement of the piston 5 from the bottom dead center toward the top dead center is simply referred to as the piston 5 rising.
  • the piston 5 rises with the intake valve 7 and the exhaust valve 11 being closed, and the air in the cylinder 4 is compressed.
  • the piston 5 is lowered while the intake valve 7 and the exhaust valve 11 are closed, and the compressed air expands and is restored.
  • the piston 5 rises with the intake valve 7 and the exhaust valve 11 being closed, and the air in the cylinder 4 is compressed again.
  • the in-cylinder injector 3 injects fuel 9 under the control of the control device 10 in the compression stroke that accompanies this ignition.
  • the spark plug 8 is energized by the control device 10 at the end of this stroke, and ignites the fuel 9.
  • the characteristic operation method described above is an operation method in which the fuel 9 is injected in the compression stroke with ignition after the compression stroke without ignition and the expansion stroke without combustion.
  • the piston 5 In the expansion stroke accompanying combustion, the piston 5 is lowered by the combustion pressure while the intake valve 7 and the exhaust valve 11 are closed. In the exhaust stroke, the piston 5 rises with the exhaust valve 11 opened and the intake valve 7 closed, and the exhaust gas in the cylinder 4 is discharged to the exhaust port.
  • a large amount of air is sucked into the cylinder 4 in the intake stroke. This is because the intake port 13 is formed so as to reduce the resistance when the intake air flows.
  • a large amount of air (intake air) sucked into the cylinder 4 in the intake stroke flows in the cylinder 4 toward the piston 5 due to inertia.
  • the intake air is compressed in a compression stroke that is not accompanied by ignition, and further expanded in an expansion stroke that is not accompanied by combustion. As the intake air is compressed and expanded in this way, the kinetic energy of the intake air is lost, and the flow of the intake air is attenuated and reduced in the cylinder 4.
  • the fuel 9 can be accurately supplied in the vicinity of the spark plug 8 by an amount suitable for stratified combustion without using the intake swirl flow.
  • the air-fuel mixture composed of the fuel 9 and air injected in the vicinity of the spark plug 8 is ignited by the spark plug 8 at the end of the compression stroke that involves ignition. Therefore, according to this embodiment, it is possible to provide a 6-cycle engine capable of realizing stratified combustion while increasing the intake air amount.
  • the 6-cycle engine 1 can improve the output because the amount of intake air increases, and can improve fuel efficiency because stratified combustion is realized.
  • the only element that needs to be optimized in order to realize stratified combustion is the spray shape of the in-cylinder injector 3. For this reason, there is no restriction of other factors in determining the spray shape. Therefore, the six-cycle engine 1 according to this embodiment can realize stable stratified combustion very easily.
  • the timing at which the in-cylinder injector 3 injects the fuel 9 is not limited to the compression stroke with ignition. That is, the in-cylinder injector 3 may inject the fuel 9 in advance at least once before injecting the fuel 9 in the compression stroke with ignition.
  • the in-cylinder injector 3 can adopt a configuration in which fuel 9 is injected in each stroke, as indicated by two-dot chain lines A to C in FIG. By adopting this configuration, the fuel 9 is dispersed over a wide range in the cylinder 4, so that so-called weak stratification is achieved and the overconcentrated region is eliminated.
  • the in-cylinder injector 3 can be attached to the outer peripheral portion of the ceiling wall 2a as in the first modification according to the first embodiment shown in FIG. 2, the same or equivalent members as described with reference to FIG. 1 are denoted with the same reference numerals, and detailed description thereof is omitted as appropriate.
  • the in-cylinder injector 3 shown in FIG. 2 is positioned on the outer side in the radial direction of the cylinder 4 from the intake valve 7.
  • the six-cycle engine 1 according to the first embodiment is equipped with an injector on the intake passage side as shown in FIGS. 4 and 5 as further second and third modifications of the first embodiment.
  • an injector on the intake passage side as shown in FIGS. 4 and 5 as further second and third modifications of the first embodiment.
  • FIGS. 4 and 5 members identical or equivalent to those described with reference to FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
  • the cylinder head 6 shown in FIGS. 4 and 5 includes an in-cylinder injector 15 in addition to the in-cylinder injector 3.
  • the intake passage injector 15 injects fuel 9 into the intake passage 13a including the intake port 13 in the intake stroke.
  • the air-fuel mixture can be sucked into the cylinder 4 during the intake stroke, so that weak stratification is achieved and the air-fuel mixture becomes excessive. It is possible to provide a 6-cycle engine in which a dark region does not occur.
  • the cooling of the engine proceeds in the compression stroke without ignition and the expansion stroke without combustion. That is, the cycle average exhaust temperature of the six-cycle engine 1 that exhausts once every three revolutions is lower than the cycle average exhaust temperature of the four-cycle engine that exhausts once every two revolutions. Therefore, as shown in FIG. 6, the six-cycle engine 1 according to this embodiment can be equipped with a variable capacity turbocharger (Variable ⁇ Giometry ⁇ ⁇ Turbo) 16 that cannot be used when the exhaust temperature is high.
  • Variable ⁇ Giometry ⁇ ⁇ Turbo variable capacity turbocharger
  • the 6-cycle engine 1 shown in FIG. 6 is of an in-line 4-cylinder type that uses gasoline as fuel. Exhaust gas discharged from each cylinder of the six-cycle engine 1 is guided from the exhaust port 12 of each cylinder to the variable capacity supercharger 16 through the exhaust pipe 17.
  • the variable capacity supercharger 16 is a known one that includes a variable nozzle (not shown) for controlling the flow rate, direction, and the like of exhaust gas sent to the exhaust turbine 16a.
  • the six-cycle engine 1 according to this embodiment includes an intercooler 18 for cooling the air sent from the compressor 16b of the variable capacity supercharger 16. The air cooled by the intercooler 18 is sent to the intake port 13 of each cylinder through a throttle valve (not shown) provided in the intake pipe 19.
  • variable nozzle is susceptible to damage to moving parts due to high temperature exhaust. For this reason, the variable capacity supercharger cannot be used for an engine in which the exhaust becomes extremely hot. However, the 6-cycle engine has a low cycle average exhaust temperature, so that the variable displacement supercharger can be used effectively over the entire operation range.
  • the variable displacement supercharger 16 since the intake air is supercharged by the variable displacement supercharger 16 having a wide dynamic range, it is possible to provide a 6-cycle engine capable of obtaining a higher output.
  • FIG. 8 shows an example in which the invention according to claim 4 is applied to a 6-cycle engine in which the in-cylinder injector is located in the vicinity of the spark plug.
  • FIG. 9 shows a first modification when the invention according to claim 4 is applied to a 6-cycle engine in which the in-cylinder injector is located on the outer peripheral side of the combustion chamber.
  • the six-cycle engine 21 according to the second embodiment employs a characteristic operation method in which two types of execution patterns composed of six strokes are switched in accordance with the engine operation load.
  • the execution pattern is switched by the execution pattern changing mechanism 22 shown in FIGS.
  • the execution pattern changing mechanism 22 changes the opening timing of the intake valve 7 and is configured by using a part of the valve operating device 14. The detailed structure of the execution pattern changing mechanism 22 will be described later.
  • the execution pattern change mechanism 22 switches the execution pattern of the six strokes to a first execution pattern to be described later under the control of the control device 10 when the engine operation region is in the low load and low speed operation region.
  • the execution pattern changing mechanism 22 switches the execution pattern of the six strokes to a second execution pattern, which will be described later, under the control of the control device 10 when the engine operation region is not the low load and low speed operation region.
  • the low load and low speed operation regions are when the engine operating load (hereinafter simply referred to as load) is relatively low, that is, when the engine load value is lower than a preset load threshold, and This is the case where the rotational speed is relatively low, that is, the rotational speed is lower than a predetermined rotational speed threshold.
  • the engine load is obtained by the load calculation unit 10b (see FIG. 28) of the control device 10 based on the intake air amount detected by the load detection sensor 100.
  • the rotational speed of the engine is obtained by a rotational speed calculation unit 10c (see FIG. 28) of the control device 10.
  • the control device 10 includes an execution pattern switching unit in addition to the injector control unit 10a, the load calculation unit 10b, the rotation speed calculation unit 10c, and the ignition unit 10d described above. 10e.
  • the execution pattern switching unit 10 e is for controlling the operation of the execution pattern changing mechanism 22.
  • the execution pattern switching unit 10e causes the valve operating device 14 (execution pattern changing mechanism 22) to change the execution pattern based on the magnitude of the engine load obtained by the load calculation unit 10b.
  • Control device 10 The switching between the first execution pattern and the second execution pattern can be performed based on the engine rotation speed and the engine load, as shown in FIGS. 11A to 11C.
  • the graph shown in FIG. 11A constitutes a map showing an operation region to which the first execution pattern is applied and an operation region to which the second execution pattern is applied.
  • the first execution pattern is applied when the engine speed and the load are in the region indicated by symbol A in FIG. 11A.
  • the second execution pattern is applied when the engine speed and the load are in the region indicated by symbol B in FIG. 11A.
  • the map shown in FIG. 11A can be expressed as shown in FIGS. 11B and 11C.
  • the engine operating region is A, as shown in FIG. 11B.
  • the load threshold L0 shown in FIG. 11B is the load threshold L0 of the operation region a in which the load including the time of starting the engine is the smallest among the plurality of operation regions a to d divided in stages according to the magnitude of the engine load. Value.
  • the rotation speed threshold R1 shown in FIG. 11B is an operation area e in which the rotation speed including the time of engine start is the smallest among a plurality of operation areas e to j divided in stages according to the magnitude of the engine rotation speed. The rotation speed is negative.
  • the execution pattern switching unit 10e of the control device 10 is configured such that the load value obtained by the load computing unit 10b is lower than the load threshold L0 and the rotational speed obtained by the rotational speed computing unit 10c is set in advance.
  • the execution pattern of 6 strokes is set as the first execution pattern at the time of low load and low rotation lower than the set rotation speed threshold value R0.
  • FIG. 11C When the engine operating region is B in the map shown in FIG. 11A, it is a case where hatching is shown in FIG. 11C.
  • FIG. 11C the region at the time of medium load and medium rotation is indicated by hatching made up of diagonal lines inclined downward to the left in the drawing.
  • FIG. 11C the area
  • the execution pattern switching unit 10e of the control device 10 sets the execution pattern of the six strokes as the second execution pattern in any one of the medium load and medium rotation and the high load and high rotation.
  • the load value obtained by the load calculation unit 10b is not less than the load threshold L0 and smaller than the first load value L1.
  • the first load value L1 is larger than the load threshold L0.
  • the rotation speed obtained by the rotation speed calculation unit 10c is equal to or higher than a preset rotation speed threshold value R0 and is smaller than the first rotation speed R1.
  • the first rotation speed R1 is greater than the rotation speed threshold value R1.
  • the load value obtained by the load calculation unit 10b is equal to or higher than the first load value L1
  • the rotation speed obtained by the rotation speed calculation unit 10c is the first load value. It becomes more than the rotation speed R1.
  • the load threshold L0, the first load value L1, the rotation speed threshold R0, and the first rotation speed R1 may be appropriately selected based on engine performance.
  • the first execution pattern is the same pattern as the execution pattern shown in FIG. As shown in FIG. 10, the second execution pattern includes an intake stroke, a compression stroke with ignition, an expansion stroke with combustion, an exhaust stroke, an expansion stroke without combustion, and a compression without ignition.
  • the process is a pattern executed in this order.
  • the first execution pattern and the second execution pattern are different in the timing and order of performing the two strokes of the expansion stroke without combustion and the compression stroke without ignition. That is, the first execution pattern is configured by adding a compression stroke without ignition and an expansion stroke without combustion between an intake stroke and a compression stroke with ignition in a normal four-cycle engine. Yes. On the other hand, the second execution pattern is configured by adding an expansion stroke without combustion and a compression stroke without ignition between an exhaust stroke and an intake stroke in a normal four-cycle engine.
  • switching between the first execution pattern and the second execution pattern is performed by changing the opening / closing timing of the intake valve 7. Since this switching is performed during operation, it is necessary to perform the switching so that the engine rotation does not fluctuate greatly.
  • the period is switched to a period in which the intake valve 7 is closed in both the first and second execution patterns and does not adversely affect the operation of the engine. Done. That is, the switching is performed between a compression stroke accompanied by ignition and an exhaust stroke.
  • the in-cylinder injector 3 When operating in the second execution pattern, since a homogeneous mixture is desirable, the in-cylinder injector 3 directly injects the fuel 9 into the combustion chamber 2 during the intake stroke, and a compression stroke with ignition as necessary. You may inject with.
  • the fuel 9 may be supplied in combination with the in-cylinder injector 3 and the intake manifold injector 15 as shown in FIGS.
  • the fuel injection amount when operating in the second execution pattern is set so that air and fuel 9 are mixed at an ideal concentration for the engine and completely burned.
  • the spark plug 8 is energized by the control device 10 at the end of the compression stroke involving ignition.
  • the 6-cycle engine 21 according to the second embodiment When the 6-cycle engine 21 according to the second embodiment is operated in the first execution pattern, the stratification is performed in a state where the intake air amount is increased as in the case of adopting the first embodiment described above. Combustion is realized and fuel efficiency can be improved while improving output.
  • this 6-cycle engine 21 When this 6-cycle engine 21 is operated in the second execution pattern, air and fuel 9 are mixed at an ideal concentration and completely combusted, so that a further high output can be obtained.
  • the 6-cycle engine 21 can switch between an operation mode that prioritizes fuel consumption and an operation mode that prioritizes output. Therefore, according to this embodiment, it is possible to provide a 6-cycle engine that can achieve both improved fuel efficiency and improved output.
  • the cycle average exhaust temperature of the six-cycle engine 21 is lower than the cycle average exhaust temperature of the four-cycle engine. As described above, the engine cycle average exhaust temperature is relatively low. Therefore, the variable capacity supercharger 16 as shown in FIG. 6 can also be used in the 6-cycle engine 21 according to this embodiment. it can.
  • switching between the first execution pattern and the second execution pattern is performed by changing the opening / closing timing of the intake valve 7.
  • the opening / closing timing of the exhaust valve 11 does not change with pattern switching. For this reason, it is not necessary to change the ignition timing when switching between the first execution pattern and the second execution pattern. Therefore, according to this embodiment, there is provided a 6-cycle engine capable of easily controlling the operation despite adopting a configuration for switching between the first execution pattern and the second execution pattern. can do.
  • the period during which the first and second execution patterns can be switched becomes relatively long. If the switching period can be made longer, the operating speed of the mechanism for performing the switching can be reduced, so that the load on the mechanism can be reduced, so the durability of the mechanism is improved. To do. Therefore, the fuel efficiency of the 6-cycle engine 21 according to this embodiment is improved when the operation range shown in FIG. 11A is A, that is, in a practical range including idling operation. Further, the six-cycle engine 21 can obtain a high output when the operation region shown in FIG. 11A is B, that is, in the middle rotation / medium load operation region or the high rotation / high load operation region.
  • the execution pattern changing mechanism 22 of the 6-cycle engine 21 described above can be formed as shown in FIGS.
  • FIGS. the same or equivalent members as those described with reference to FIGS. 1 to 11C are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
  • 12 includes a ceiling wall 2a of the combustion chamber 2, an exhaust port 12, an intake port 13, an injector housing (not shown), a spark plug housing 31, a cooling water jacket. 32 and the like are formed.
  • the cylinder head 6 is provided with two exhaust valves 11 and two intake valves 7 per cylinder, and a valve gear 14 for driving the exhaust valves 11 and the intake valves 7.
  • the intake port 13 is formed in a bifurcated shape inside the cylinder head 6.
  • An upstream end 13 a of the intake port 13 is open at one side of the cylinder head 6.
  • the downstream end 13 b of the intake port 13 opens to the ceiling wall 2 a of the combustion chamber 2.
  • the intake outlets 33 constituting the downstream end 13b of the intake port 13 are arranged in a state of being spaced apart at a predetermined interval in an axial direction of the intake camshaft 34 described later (vertical direction in FIG. 13). Between these two intake outlets 33, 33, a hole 35 of an injector housing portion is opened when the in-cylinder injector 3 is disposed in the vicinity of the spark plug 8 (see FIG. 8).
  • the injector accommodating portion is for attaching the in-cylinder injector 3 to the cylinder head 6.
  • a hole 35 a indicated by a two-dot chain line in FIG. 13 is a hole in the injector housing portion when the in-cylinder injector 3 is disposed on the outer peripheral side of the combustion chamber 2.
  • the intake port 13 is a high flow port formed in a shape that reduces the intake resistance as much as possible. That is, the intake port 13 extends in a straight line obliquely from the upstream end 13 a toward the combustion chamber 2 and is formed in a shape that bends gently in the vicinity of the intake valve 7.
  • the exhaust port 12 extends from two exhaust inlets 36 that open to the ceiling wall 2 a to one exhaust outlet 37 that opens to the other side of the cylinder head 6.
  • a hole 38 of the spark plug housing 31 is opened in a portion surrounded by the two intake outlets 33, 33 of the intake port 13 and the two exhaust inlets 36, 36 of the exhaust port 12.
  • the spark plug accommodating portion 31 is for attaching the spark plug 8 to the cylinder head 6.
  • the exhaust valve 11 includes a valve body 39 that opens and closes the exhaust inlet 36 of the exhaust port 12 and a shaft-like stem 40.
  • the intake valve 7 includes a valve body 41 that opens and closes an intake outlet 33 of the intake port 13 and a shaft-shaped stem 42.
  • the exhaust valves 11 and the stems 40 and 42 of the intake valve 7 are movably supported by the cylinder head 6 and are urged in a closing direction by a valve spring 43. Shims 40a and 42a are attached to the distal ends of the stems 40 and 42, respectively.
  • the valve operating device 14 includes an intake camshaft 34, an exhaust camshaft 44, an intake camshaft transmission mechanism 45, an exhaust camshaft transmission mechanism 46, the intake camshaft 34, the exhaust camshaft 44, and a crankshaft 103. And a transmission mechanism 107 (see FIGS. 1 and 2) for transmitting the rotation.
  • the intake cam shaft 34 and the exhaust cam shaft 44 are rotatably supported by a support member 47 and a cam cap 48, respectively.
  • the support member 47 is attached to the cylinder head 6.
  • the cam cap 48 is attached to the support member 47 with the intake cam shaft 34 and the exhaust cam shaft 44 sandwiched with the support member 47.
  • the intake camshaft 34 includes a first intake cam 51 for a first execution pattern and a second intake cam 52 for a second execution pattern. These first and second intake cams 51 and 52 are provided for each intake valve 7. As shown in FIG. 14, the first intake cam 51 and the second intake cam 52 are arranged at a predetermined interval in the axial direction of the intake cam shaft 34. Further, as shown in FIG. 12, the first and second intake cams 51 and 52 are configured by base circular portions 51a and 52a and nose portions 51b and 52b, respectively.
  • the rotation direction of the intake camshaft 34 according to this embodiment is clockwise in FIG.
  • the base circle portions 51a and 52a are formed so that the intake valve 7 does not open.
  • the nose parts 51b and 52b are formed so that the intake valve 7 opens at a predetermined opening at a predetermined time.
  • the cam profiles of the nose portions 51b and 52b according to this embodiment are formed in a shape that divides an ellipse in the longitudinal direction.
  • the exhaust cam shaft 44 includes an exhaust cam 53 for each exhaust valve 11.
  • the intake camshaft transmission mechanism 45 converts the rotation of the intake camshaft 34 into a reciprocating motion and transmits it to the intake valve 7.
  • the intake camshaft transmission mechanism 45 has a function of switching between the first execution pattern and the second execution pattern described above.
  • the intake camshaft transmission mechanism 45 includes a swing cam 54 positioned near the intake camshaft 34, and a rocker arm 55 positioned between the swing cam 54 and the intake valve 7. It has.
  • the swing cam 54 and the rocker arm 55 are provided for each intake valve 7.
  • the exhaust camshaft transmission mechanism 46 converts the rotation of the exhaust camshaft 44 into a reciprocating motion and transmits it to the exhaust valve 11.
  • the exhaust camshaft transmission mechanism 46 is different from the intake camshaft transmission mechanism 45 in that it does not include a mechanism for changing the execution pattern and that the target of driving is the exhaust valve 11.
  • the other configuration of the exhaust camshaft transmission mechanism 46 is the same as that of the intake camshaft transmission mechanism 45.
  • members having the same functions as those of the intake camshaft transmission mechanism 45 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
  • the swing cam 54 of the intake camshaft transmission mechanism 45 is rotated by a swing cam body 57 through which a support shaft 56 parallel to the intake camshaft 34 passes.
  • the roller 58 is freely attached.
  • the axis of the roller 58 is parallel to the axis of the intake camshaft 34.
  • the support shaft 56 is provided at a position away from the intake cam shaft 34 toward the exhaust cam shaft 44, and is supported by the support member 47 so as to be movable in the axial direction and cannot rotate.
  • the support shaft 56 is provided for each cylinder. Further, as shown in FIG. 19, the support shaft 56 supports two swing cams 54 per cylinder so as to be in the same support state.
  • a drive device 61 described later is connected to the support shaft 56.
  • the driving device 61 moves the support shaft 56 in the axial direction by a predetermined switching length L (see FIG. 14). The detailed structure of the drive device 61 will be described later. This driving device 61 is also provided for each cylinder.
  • the switching length L is a length corresponding to the formation interval between the first intake cam 51 and the second intake cam 52. This formation interval refers to the length between the axial center of the first intake cam 51 and the axial center of the second intake cam 52.
  • the direction in which the support shaft 56 moves when switching from the second execution pattern to the first execution pattern is the left side in FIG. 14, and is the direction from the second intake cam 52 toward the first intake cam 51. It is.
  • the movement direction of the support shaft 56 when switching from the first execution pattern to the second execution pattern is rightward in FIG. 14 and is a direction from the first intake cam 51 toward the second intake cam 52. .
  • the direction from the second intake cam 52 toward the first intake cam 51 is referred to as “one of the axial directions”, and the opposite direction is referred to as “the other in the axial direction”.
  • the rocking cam main body 57 is supported by the support shaft 56 so as to freely rock. Further, the swing cam body 57 is sandwiched between E-rings 56a (see FIG. 14) attached to the support shaft 56 so that the swing cam body 57 cannot move in the axial direction of the support shaft 56. That is, the swing cam 54 moves in the axial direction integrally with the support shaft 56 when the support shaft 56 is moved in the axial direction by the drive device 61.
  • a cam surface 62 that comes into contact with a rocker arm 55 described later is formed at the swing end of the swing cam main body 57.
  • the cam surface 62 is formed to have a predetermined width in the axial direction of the intake camshaft 34.
  • the predetermined width is equal to the length obtained by adding the axial width of the first intake cam 51, the axial width of the second intake cam 52, and the width of the gap between the two cams.
  • the width is formed. That is, the cam surface 62 is formed so as to be kept in contact with the rocker arm 55 described later even if the swing cam 54 moves in the axial direction together with the support shaft 56.
  • the contact portion between the rocking cam 54 and the rocker arm 55 is formed in a shape that allows the rocking cam 54 to move in the axial direction while keeping these two members in contact.
  • the cam surface 62 is composed of a base circle portion 62a and a lift portion 62b.
  • the base circle portion 62a and the lift portion 62b are formed continuously in the direction in which the swing cam 54 swings.
  • the base circle part 62a is located in front of the lift part 62b in the direction in which the swing cam 54 swings when the valve is opened.
  • the base circle portion 62 a is formed in an arc shape centered on the axis of the support shaft 56 when viewed from the axial direction of the intake cam shaft 34.
  • the lift part 62b is formed such that the distance from the axis of the support shaft 56 gradually increases as the distance from the base circle part 62a increases.
  • the roller 58 is attached to the swing cam body 57 so as to protrude from the swing cam body 57 to the intake cam shaft 34 side.
  • the roller 58 rotates in contact with the first intake cam 51 in a state where the support shaft 56 is moved in one of the axial directions. Further, the roller 58 rotates in contact with the second intake cam 52 in a state in which the support shaft 56 is moved in the other axial direction.
  • the swing cam 54 according to this embodiment is urged by a torsion coil spring 63 (see FIG. 14) so that the roller 58 is always in contact with the first intake cam 51 or the second intake cam 52. .
  • the torsion coil spring 63 is supported by the support shaft 56 with the support shaft 56 penetrating therethrough.
  • the driving device 61 that drives the support shaft 56 has a large-diameter portion 64 of the intake camshaft 34, a slider 65 through which the large-diameter portion 64 passes, and a position adjacent to the slider 65.
  • the actuator 66 is provided.
  • the large diameter portion 64 is formed to have an outer diameter larger than that of the shaft portion 67 of the intake camshaft 34.
  • the large-diameter portion 64 includes an annular groove 71 extending in the circumferential direction of the large-diameter portion 64, and first and second cam grooves 72 and 73 located on both sides of the annular groove 71. Is formed. As shown in FIG. 20, the annular groove 71 is formed to extend over the entire circumferential direction of the large-diameter portion 64 with a certain depth.
  • the first and second cam grooves 72 and 73 are formed of a straight portion 74 parallel to the annular groove 71 and an inclined portion 75 that connects the straight portion 74 to the annular groove 71.
  • the groove widths of the first and second cam grooves 72 and 73 are formed to be equal to the groove width of the annular groove 71.
  • the straight portion 74 of the first cam groove 72 is located on the right side in FIG. That is, the linear portion 74 of the first cam groove 72 is formed at a position separated from the annular groove 71 on the other side in the axial direction by the switching length L.
  • the straight portion 74 of the second cam groove 73 is formed at a position separated from the annular groove 71 in one of the axial directions by the switching length L.
  • the depths of these straight portions 74 are formed so as to gradually become shallower toward the front in the rotational direction of the intake camshaft 34 (upward in FIG. 18).
  • One end of the linear portion 74 located on the side opposite to the inclined portion 75 is located on the same circumferential surface as the outer circumferential surface of the other part of the large diameter portion 64.
  • the inclined portions 75 of the first cam groove 72 and the second cam groove 73 extend obliquely from the straight portion 74 toward the annular groove 71.
  • the depth of the inclined portion 75 is formed so as to gradually increase toward the rear in the rotational direction of the intake camshaft 34, as depicted as “groove depth” in FIG.
  • the depth of the inclined portion 75 finally becomes the same depth as the annular groove 71.
  • the slider 65 includes a lower half 76 and an upper half 77 that sandwich the large diameter portion 64 from both sides in the radial direction.
  • the lower half portion 76 and the upper half portion 77 are coupled to each other by a coupling bolt 78 and are movably fitted to the large diameter portion 64.
  • An arm 79 for connecting the slider 65 to the support shaft 56 is formed in the lower half 76.
  • the distal end portion of the arm 79 is formed in a C-shaped cross section that opens toward the support shaft 56, and is fitted in the groove 80 of the support shaft 56.
  • the arm 79 also has a function of restricting the slider 65 from rotating integrally with the intake camshaft 34.
  • the upper half 77 of the slider 65 includes first and second pins 81 and 82 that are parallel to each other. These first and second pins 81 and 82 are movably inserted into through holes 83 and 84 formed in the upper half 77.
  • the through holes 83 and 84 are formed so as to extend in a direction orthogonal to the axial direction of the intake cam shaft 34 and to point toward the axis of the intake cam shaft 34.
  • the interval between the through hole 83 and the through hole 84 is formed so as to coincide with the switching length L described above. That is, the first and second pins 81 and 82 are supported by the upper half 77 so that one end can be inserted into the annular groove 71 and the first and second cam grooves 72 and 73. Yes.
  • First and second lifters 85 and 86 are attached to the other ends of the first and second pins 81 and 82, respectively.
  • the first and second lifters 85 and 86 are supported by the upper half 77 so as to be movable.
  • the first and second lifters 85 and 86 are urged in a direction away from the intake camshaft 34 by a compression coil spring 87, and first and second plungers 91 and 92 is pressed against.
  • the actuator 66 includes cylindrical first and second plungers 91 and 92 facing the lifters 85 and 86, and a solenoid 93 for driving the first and second plungers 91 and 92. And.
  • the actuator 66 is supported by the cylinder head 6 or a head cover (not shown).
  • the solenoid 93 drives the first and second plungers 91 and 92 under the control of the execution pattern switching unit 10e of the control device 10.
  • the first and second plungers 91 and 92 are moved forward or backward relative to the lifters 85 and 86 by driving by the solenoid 93. For example, as shown in FIG.
  • the second pin 82 enters the annular groove 71 and moves in the annular groove 71.
  • the second plunger 92 is moved backward and the first plunger 91 is moved forward toward the first lifter 85.
  • the first and second plungers 91 and 92 are formed so as not to be disengaged from the first and second lifters 85 and 86 when the slider 65 moves as described above.
  • the driving device 61 has first and second pins 81 and 82 within a switching period for switching between the first execution pattern and the second execution pattern. Is configured to pass through the inclined portions 75 of the first and second cam grooves 72 and 73. That is, the swing cam 54 moves in the axial direction in a state where the roller 58 of the swing cam 54 is in contact with the base circle 51a of the first intake cam 51 or the base circle 52a of the second intake cam 52. To do.
  • the rocker arm 55 is configured to transmit the swing motion of the swing cam 54 to the intake valve 7 by a plurality of swing members.
  • the plurality of swing members are a control arm 95 having a roller 94 that contacts the cam surface 62 of the swing cam 54 and a rocker arm body 96 that contacts the intake valve 7.
  • the control arm 95 and the rocker arm body 96 are supported by the rocker shaft 97 so as to be swingable.
  • the rocker shaft 97 is rotatably supported by the cylinder head 6 and the support member 47 in a state where the axis is parallel to the axis of the intake cam shaft 34.
  • the rocker shaft 97 is formed in a so-called crankshaft shape. That is, as shown in FIG. 16, the rocker shaft 97 includes a main shaft 97a located on the same axis as the portion supported by the cylinder head 6 and the support member 47, and an eccentric pin in an eccentric position with respect to the main shaft 97a. 97b.
  • the main shaft 97a is for swingably supporting the pair of arm portions 96a of the rocker arm main body 96.
  • the main shaft 97a is provided at a position corresponding to the pair of arm portions 96a.
  • the eccentric pin 97b connects the main shafts 97a.
  • the eccentric pin 97b is for supporting the control arm 95 in a swingable manner.
  • a driving mechanism such as a servo motor (not shown) is connected to one end of the rocker shaft 97.
  • the rocker shaft 97 is rotated at a predetermined rotation angle by driving by the driving mechanism.
  • the rocker arm main body 96 includes the pair of arm portions 96a and a bottom wall 96b that connects the arm portions 96a.
  • a pressing member 96c for pressing the shim 42a of the intake valve 7 is formed on the bottom wall 96b.
  • the control arm 95 includes a control arm body 95a that is rotatably supported by the eccentric pin 97b, and the roller 94 that is rotatably provided at the swinging end of the control arm body 95a. .
  • the base portion 95b connected to the eccentric pin 97b in the control arm main body 95a is formed in a C-shaped cross section that fits into the eccentric pin 97b.
  • the base portion 95b is held by a leaf spring 98 so that it cannot be separated from the eccentric pin 97b.
  • a pressing element 95c for pushing the rocker arm main body 96 is provided at the swing end of the control arm main body 95a.
  • the pressing element 95c contacts a step portion 96d formed on the inner surface of the arm portion 96a.
  • the step 96d is formed so as to extend in the longitudinal direction of the arm 96a.
  • the control arm 95 moves in the longitudinal direction of the arm portion 96a as the rocker shaft 97 rotates and the position of the eccentric pin 97b changes.
  • the control arm 95 is located close to the intake camshaft 34 as shown in FIG. 16, the lift portion 62b of the cam surface 62 pushes the roller 58 relatively much so that the intake valve 7 opens relatively large. become.
  • the position of the eccentric pin 97b changes and the control arm 95 moves to the position indicated by the two-dot chain line in the drawing, the roller 58 contacts only the base circle portion 62a of the cam surface 62, and the intake valve 7 is closed. To be kept.
  • the opening / closing timing and the lift amount of the intake valve 7 can be freely set so as to suit the operating state of the engine.
  • the driving device 61 a support shaft 56 movable in the axial direction, and a swing cam 54 having a cam surface 62 having a wide width in the axial direction.
  • the “execution pattern changing mechanism” referred to in the invention is configured.
  • step S3 the execution pattern switching unit 10e of the control device 10 determines whether or not the current load value obtained by the load calculation unit 10b is lower than the load threshold L0.
  • the execution pattern switching unit 10e determines that the current engine rotation speed obtained by the rotation speed calculation unit 10c is lower than the predetermined rotation speed threshold value R0 in step S4. It is determined whether or not.
  • step S4 when the current rotation speed is lower than the rotation speed threshold value R0, the execution pattern switching unit 10e operates the solenoid 93 of the actuator 66 so that the first execution pattern is realized.
  • the operation region in this case is an operation region indicated by hatching in FIG. 11B.
  • the solenoid 93 advances the first plunger 91 toward the lifter 85 and moves the second plunger 92 backward.
  • the six-cycle engine 21 according to the second embodiment is operated with the first execution pattern using the first intake cam 51 at the time of low load and low rotation including when the engine is started.
  • the execution pattern switching unit 10e determines YES in step S5.
  • the solenoid 93 is operated so that the second execution pattern is realized. Further, the execution pattern switching unit 10e operates the solenoid 93 so that the second execution pattern is realized also in the following two cases.
  • the first case is a case where the current load value is equal to or greater than the load threshold value L0 and lower than the first load value L1, and the current rotation speed is lower than the rotation speed threshold value R0.
  • the current load value is equal to or higher than the load threshold L0 and lower than the first load value L1
  • the current rotational speed is equal to or higher than the rotational speed threshold R0 and lower than the first rotational speed R1. It is.
  • the operation region in these cases is an operation region indicated by hatching in the left-downward oblique lines in FIG. 11C.
  • the execution pattern switching unit 10e determines YES in each of steps S5 to S8 in FIG. 29 when the engine operation region is in the medium load and medium rotation operation region, and controls the solenoid 93 to the second execution pattern.
  • the solenoid 93 moves the first plunger 91 backward and advances the second plunger 92 toward the second lifter 86.
  • the second plunger 92 pushes the second pin 82 toward the large diameter portion 64 via the second lifter 86.
  • the second pin 82 enters the straight portion 74 of the second cam groove 73 as the intake cam shaft 34 rotates.
  • the second pin 82 is pressed against the bottom of the second cam groove 73 by the pressure applied by the second plunger 92.
  • the second pin 82 enters the inclined portion 75 from the straight portion 74 of the second cam groove 73 as shown in FIG. 24 as the intake cam shaft 34 further rotates.
  • the second pin 82 comes into contact with the groove wall of the second cam groove 73 when passing through the inclined portion 75, and this groove wall causes the side (the right side in FIG. 24 and the other in the axial direction). ).
  • the slider 65 that supports the second pin 82 moves to the other side in the axial direction with respect to the intake camshaft 34.
  • the slider 65 moves in the axial direction when the roller 58 of the swing cam 54 is in contact with the base circle 51 a of the first intake cam 51.
  • the slider 65 is connected to the support shaft 56 so as to move integrally in the axial direction. For this reason, the supporting shaft 56 moves together with the slider 65 to the other side in the axial direction.
  • the pair of swing cams 54 for each cylinder moves in the same direction.
  • the roller 58 of each swing cam 54 comes into contact with the base circle 52 a of the second intake cam 52.
  • power is transmitted from the second intake cam 52 to the intake valve 7 via the swing cam 54 and the rocker arm 55.
  • six strokes are executed in the second execution pattern using the second intake cam 52.
  • the execution pattern switching unit 10e operates the solenoid 93 so that the second execution pattern is realized even when NO is determined in each of steps S3 to S8 shown in FIG.
  • the current load value is equal to or greater than the first load value L1
  • the current rotational speed is equal to or greater than the first rotational speed R1.
  • the operation area in this case is an operation area indicated by hatching in FIG. That is, the 6-cycle engine 21 according to the second embodiment is operated with the second execution pattern even when the operation region is in the high load and high rotation operation region.
  • FIG. 26 shows the state where the drive device 61 is in the state shown in FIG. become. That is, the second plunger 92 moves backward, and the first plunger 91 pushes the first lifter 85.
  • the intake cam of a 6-cycle engine has a smaller angle of rotation during the intake stroke than the intake cam of a 4-cycle engine. That is, the intake cam opens and closes the intake valve with a relatively small rotation angle.
  • the cam profile of this intake cam has a steep mountain shape. For this reason, the load when the intake cam opens the intake valve is larger than the load when the intake cam for the four-cycle engine opens the intake valve.
  • the rotation of the intake cam shaft 34 is converted into a swing operation by the first intake cam 51 or the second intake cam 52 and the swing cam 54.
  • the 6-cycle engine 21 can change the opening / closing timing of the intake valve 7 and the lift amount relatively freely by adjusting the position of the control arm 95. Therefore, the cam profiles of the first and second intake cams 51 and 52 according to the second embodiment are formed in a gentle mountain shape as shown in FIG. This also applies to the exhaust camshaft transmission mechanism 46 as it is.
  • the intake valve 7 and the exhaust valve 11 are smoothly opened and closed, it is possible to provide a 6-cycle engine with high durability of the valve gear 14.
  • the 6-cycle engine 21 according to the second embodiment was prototyped and the combustion fluctuation rate was obtained, it was found that the combustion was stabilized when operating in the first execution pattern.
  • the combustion fluctuation rate when operating with the first execution pattern was substantially constant without being greatly affected by the air-fuel ratio.
  • the wavy line in FIG. 27 indicates the combustion fluctuation rate when operating in the second execution pattern.
  • the first condition is a period during which the exhaust valve 11 is closed in both the first and second execution patterns.
  • the second condition is a time when the engine operation is not adversely affected after switching. As shown in FIG. 30, the period satisfying such a condition is an intake stroke and is a period until the fuel 9 is injected by the in-cylinder injector 3 in the second execution pattern.
  • the timing at which in-cylinder injection is performed is the first half of the intake stroke. If in-cylinder injection is performed at such timing, a sufficient switching period cannot be obtained. Therefore, in this third embodiment, at the time of switching, as shown by a two-dot chain line in FIG. 30, fuel 9 is injected in the compression stroke accompanied by ignition to ensure a switching period of a certain length. . After switching, the fuel 9 is injected in the first half of the intake stroke, as indicated by the solid line in FIG. In any case, the switching period is shorter than the switching period shown in FIG. Even when the third embodiment is adopted, the first execution pattern and the second execution pattern may be switched based on the engine rotation speed and the engine load, as shown in FIG. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

 シリンダ(4)、ピストン(5)、シリンダヘッド(6)、燃焼室(2)、筒内噴射インジェクタ(3)、点火プラグ(8)、吸気ポート(13)、排気ポート(12)、吸気弁(7)、排気弁(11)、動弁装置(14)および制御装置(10)を備える。動弁装置(14)は、吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とからなる6行程がこの順序で実行されるように吸気弁(7)と排気弁(11)とを動作させる。制御装置(10)は、点火を伴う圧縮行程で筒内噴射インジェクタ(3)に燃料を噴射させかつ点火プラグ(8)に通電する。 吸入空気量を増大させながら成層燃焼を実現可能な6サイクルエンジンを提供できる。

Description

6サイクルエンジン
 本発明は、燃焼室内に燃料を直接噴射する筒内噴射インジェクタを備えた6サイクルエンジンに関するものである。
 エンジンの燃費を向上させる従来の技術としては、少ない燃料を点火プラグの近傍に集めて燃焼させる、いわゆる成層燃焼と呼ばれる技術がある。成層燃焼を行うことが可能な従来のエンジンとしては、例えば特許文献1に記載されているものがある。
 特許文献1に開示されているエンジンは、少ない燃料を点火プラグの近傍に集めるために、シリンダ内に吸気の旋回流であるタンブルを発生させる構成が採られている。タンブルは、吸気ポートからシリンダ内に流入した吸気がシリンダの軸線方向に流れ、ピストンの頂部で反転させられることによって発生する。特許文献1に示すエンジンの吸気ポートとピストンの頂部は、タンブルが圧縮行程の後半にも保たれるように、特殊な形状に形成されている。
 吸気ポートは、シリンダの軸線に対する傾斜角度が通常より小さくなるように形成されている。ピストンの頂部には、球面状の凹部が形成されている。このエンジンにおいて、燃料は、圧縮行程で筒内噴射インジェクタによって燃焼室内に直接噴射される。この燃料は、前記タンブルによって流れる吸気に当たり、点火プラグの近傍に留まるようになる。
 ところで、燃費向上を図ることが可能なエンジンとしては、6サイクルエンジンが知られている。6サイクルエンジンは、吸入行程、圧縮行程、膨張行程、排気行程からなる4行程に圧縮行程と膨張行程とを更に加えた6行程を1サイクルとして運転されるものである。従来の6サイクルエンジンとしては、例えば特許文献2に記載されているものがある。
 特許文献2に開示されている6サイクルエンジンは、吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とからなる6行程をこの順序で実施して運転されるものである。この6サイクルエンジンにおいては、吸気行程で筒内又は吸気通路に燃料が供給され、続く点火を伴わない圧縮行程と、燃焼を伴わない膨張行程とにおいて吸気と燃料とがシリンダ内で攪拌されて混合される。
特開2001-342836号公報 特開2004-116305号公報
 特許文献1に示す吸気ポートは、タンブルを発生させるために、吸気の流れる方向が大きく変えられるように形成されている。また、特許文献1に示すエンジンは、吸気ポートの形状と、ピストン頂部の形状と、筒内噴射インジェクタから噴射された燃料の形状(噴霧形状)とがそれぞれ最適な形状に形成されていなければならないものである。このため、特許文献1に示すエンジンでは、吸入空気量が少なくなるから、出力向上を図るにも限界がある。
 特許文献2に示す6サイクルエンジンでは、成層燃焼を行うことはできず、更なる燃費向上を図ることは難しい。
 本発明は、このような問題を解決するためになされたもので、吸入空気量を増大させながら成層燃焼を実現できる6サイクルエンジンを提供することを目的とする。
 この目的を達成するために、本発明に係る6サイクルエンジンは、シリンダと、前記シリンダ内に挿入されたピストンと、前記シリンダに取付けられたシリンダヘッドと、前記シリンダ、前記ピストンおよび前記シリンダヘッドによって囲まれて形成された燃焼室と、前記燃焼室内に燃料を直接噴射する筒内噴射インジェクタと、前記燃焼室の壁に取付けられた点火プラグと、前記燃焼室に下流端が開口するように前記シリンダヘッドに形成された吸気ポートと、前記燃焼室に上流端が開口するように前記シリンダヘッドに形成された排気ポートと、前記シリンダヘッドに設けられて前記吸気ポートを開閉する吸気弁と、前記シリンダヘッドに設けられて前記排気ポートを開閉する排気弁と、前記吸気弁および排気弁を、吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とからなる6行程がこの順序で実行されるように動作させる動弁装置と、前記点火を伴う圧縮行程で前記筒内噴射インジェクタに燃料を噴射させかつ前記点火プラグに通電する制御装置とを備えているものである。
 本発明に係る6サイクルエンジンの運転方法は、シリンダと、前記シリンダ内に挿入されたピストンと、前記シリンダに取付けられたシリンダヘッドと、前記シリンダ、前記ピストンおよび前記シリンダヘッドによって囲まれて形成された燃焼室と、前記燃焼室内に燃料を直接噴射する筒内噴射インジェクタと、前記燃焼室の壁に取付けられた点火プラグと、前記燃焼室に下流端が開口するように前記シリンダヘッドに形成された吸気ポートと、前記燃焼室に上流端が開口するように前記シリンダヘッドに形成された排気ポートと、前記シリンダヘッドに設けられて前記吸気ポートを開閉する吸気弁と、前記シリンダヘッドに設けられて前記排気ポートを開閉する排気弁とを備えたエンジンに、吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とからなる6行程をこの順序で実行させ、前記点火を伴う圧縮行程で前記筒内噴射インジェクタに燃料を噴射させかつ前記点火プラグに通電することにより実施する。
 本発明において、吸気行程でシリンダ内に吸入された空気は、点火を伴わない圧縮行程で圧縮され、その後の燃焼を伴わない膨張行程で膨張する。このように吸気が圧縮・膨張することにより、吸気の流動がシリンダ内で減衰し、著しく小さくなる。燃料は、このように吸気が殆ど停止した状態となったシリンダの中に筒内噴射インジェクタによって直接噴射される。
 このため、本発明によれば、吸気の旋回流を用いることなく燃料を成層燃焼に適した量だけ点火プラグの近傍に正確に供給することができる。
 また、本発明に係る6サイクルエンジンの吸気ポートは、吸気を旋回させる必要がないので、旋回流を形成するための制約を受けることがない。このため、この吸気ポートは、吸気抵抗が小さくなる形状に形成することができ、所謂、高流量ポートが得られる。
 したがって、本発明によれば、6サイクルエンジンにおいて、吸入空気量を増大させながら成層燃焼を実現することができる。このような6サイクルエンジンは、吸入空気量が増えるために出力向上を図ることが可能で、しかも、成層燃焼が実現されるから燃費向上を図ることが可能である。
図1は、本発明の第1の実施の形態による6サイクルエンジンの要部の構成を示す断面図である。 図2は、筒内噴射インジェクタの取付位置が異なる形態を示す断面図である。同図は、第1の実施の形態の第1の変形例を示す。 図3は、第1の実施の形態による行程の実行パターンを説明するためのタイムチャートである。 図4は、吸気通路内噴射インジェクタを備えた6サイクルエンジンの要部の構成を示す断面図である。同図は、第1の実施の形態の第2の変形例を示す。 図5は、吸気通路内噴射インジェクタを備えた6サイクルエンジンの要部の構成を示す断面図である。同図は、第1の実施の形態の第3の変形例を示す。 図6は、可変容量型過給機を備えた第1の実施の形態による6サイクルエンジンの構成を示す図である。 図7は、第1の実施の形態による制御装置の構成を示すブロック図である。 図8は、実行パターン変更機構を備えた第2の実施の形態による6サイクルエンジンの要部の構成を示す断面図である。 図9は、実行パターン変更機構を備えた6サイクルエンジンの要部の構成を示す断面図である。同図は、第2の実施の形態の第1の変形例を示す。 図10は、第2の実施の形態による第1、第2の実行パターンを説明するためのタイムチャートである。 図11Aは、第2の実施の形態の変形例による第1、第2の実行パターンが適用される運転領域を示すグラフである。 図11Bは、第2の実施の形態による第1の実行パターンが適用される運転領域を示すグラフである。 図11Cは、第2の実施の形態による第2の実行パターンが適用される運転領域を示すグラフである。 図12は、第2の実施の形態による6サイクルエンジンに使用するシリンダヘッドの断面図である。 図13は、第2の実施の形態による燃焼室の天井壁を示す底面図である。 図14は、第2の実施の形態による動弁装置の一部を拡大して示す平面図である。 図15は、第2の実施の形態による動弁装置の一部を拡大して示す側面図である。 図16は、第2の実施の形態による揺動カムとロッカーアームの断面図である。 図17は、図15における吸気カム軸とスライダのXVII-XVII線断面図断面図である。 図18は、図14における駆動装置のXVIII-XVIII線断面図である。 図19は、図17における支軸部分のXIX-XIX線断面図である。 図20は、第2の実施の形態による吸気カムの大径部を示す斜視図である。 図21は、第2の実施の形態による吸気カム軸用伝動機構の分解斜視図である。 図22は、第2の実施の形態によるクランク角と第1、第2の吸気カムによる吸気弁のバルブリフト量、各溝の位置、深さとの関係を示するグラフである。 図23は、第2の実施の形態による第1の実行パターンから第2の実行パターンに切替えを開始したときの駆動装置を説明するための側面図である。 図24は、第2の実施の形態による切替中の駆動装置を説明するための側面図である。 図25は、第2の実施の形態による切替後の駆動装置を説明するための側面図である。 図26は、第2の実施の形態による第2の実行パターンから第1の実行パターンに切替えを開始したときの駆動装置を説明するための側面図である。 図27は、第2の実施の形態による空燃比と燃焼変動率との関係を示すグラフである。 図28は、第2の実施の形態による制御装置の構成を示すブロック図である。 図29は、第2の実施の形態による制御装置の切替動作を説明するためのフローチャートである。 図30は、第3の実施の形態による第1、第2の実行パターンを説明するためのタイムチャートである。
(第1の実施の形態)
 以下、本発明に係る6サイクルエンジンの第1の実施の形態を、変形例を交えて図1~図7によって詳細に説明する。
 図1に示す6サイクルエンジン1は、燃焼室2内に燃料(例えばガソリン)を直接噴射する筒内噴射インジェクタ3を備えている。なお、この6サイクルエンジン1は、単気筒エンジンや多気筒エンジンとして構成することができる。また、この6サイクルエンジン1は、直列多気筒エンジンやV型エンジンなどとしても構成することができる。
 前記燃焼室2は、シリンダ4と、ピストン5と、シリンダヘッド6とによって囲まれて形成されている。シリンダ4およびシリンダヘッド6は、図示していない水冷式の冷却装置によって冷却されるものである。図1に示す筒内噴射インジェクタ3は、燃焼室2の天井壁2aにおける吸気弁7と点火プラグ8との間の部位に取付けられている。この筒内噴射インジェクタ3は、燃料9を点火プラグ8の近傍に達するように噴射する。この実施の形態による6サイクルエンジン1においては、燃料9を点火プラグ8の近傍のみに滞留するように噴射することが望ましい。
 筒内噴射インジェクタ3が燃料9を噴射する時期は、エンジン用制御装置10のインジェクタ制御部10a(図7参照)によって制御される。すなわち、制御装置10は、所定の噴射時期に前記筒内噴射インジェクタ3に燃料を噴射させる。制御装置10には、負荷を検出するための負荷検出センサ100と、スロットル弁(図示せず)の開度を検出するためのスロットル開度センサ101と、エンジンの回転速度を検出するためのエンジン回転速度センサ102と、クランク軸103(図1参照)の回転角を検出するためのクランクポジションセンサ104およびカムポジションセンサ105などが接続されている。負荷検出センサ100は、エアフローメータなどの吸入空気量を検出できるものであれば、どのようなものでも用いることができる。
 前記スロットル弁は、燃焼室2内に吸い込まれる吸気の流量を制御するためのものである。なお、吸気の流量を制御するにあたっては、スロットル弁を使用せずに、スロットル弁と同等の機能を有する可変動弁機構を使用する場合がある。この可変動弁機構は、吸気弁7のリフト量と開閉タイミングとを自由に変更できるものである。前記エンジン回転速度センサ102は、クランク軸103(図1参照)の回転角や点火プラグ8への通電回数などを用いてエンジンの回転速度を検出するものによって構成することができる。クランク軸103は、図1に示すように、ピストン5にコンロッド106を介して連結されている。
 この実施の形態による制御装置10は、図7に示すように、前記インジェクタ制御部10aと、負荷演算部10bと、回転速度演算部10cと、点火部10dとを備えている。負荷演算部10bは、負荷検出センサ100の検出値に基づいて吸入空気量を演算によって求める。回転速度演算部10cは、前記エンジン回転速度センサ102の検出値に基づいてエンジンの回転速度を求める。点火部10dは、所定の点火時期に点火プラグ8に通電する。
 また、燃料9の噴射量は、燃焼可能な混合比で空気と燃料9とが混合された混合気が点火プラグ8の近傍に生成されるように設定されている。前記混合比は、負荷演算部10bによって求められた吸入空気量や、回転速度演算部10cによって求められたエンジン回転速度などに基づいて前記インジェクタ制御部10aによって設定される。
 すなわち、この6サイクルエンジン1は、成層燃焼が実現されていわゆる超リーンバーンが可能となるように構成されている。筒内噴射インジェクタ3は、燃料9を燃焼室2内に噴射することができるものであれば、どのようなものであっても使用することが可能である。筒内噴射インジェクタ3としては、例えば外開弁インジェクタ、マルチホールインジェクタ、スワールインジェクタ、シングルホールインジェクタ、スリットインジェクタなどを使用することができる。 
 前記排気弁11は、排気ポート12を開閉するものである。前記吸気弁7は、吸気ポート13を開閉するものである。これらの吸気弁7と排気弁11とは、それぞれ後述する動弁装置14によって駆動される。前記吸気ポート13は、吸入空気量が可及的に多くなるように、所謂、高流量ポートに形成されている。すなわち、この吸気ポート13は、シリンダ4内にタンブルが発生するような形状ではなく、吸気が流れるときの抵抗が可及的小さくなるような形状に形成されている。
 前記点火プラグ8は、シリンダ4の軸線方向から見て円形に形成された天井壁2aの中央部に取付けられている。この点火プラグ8の点火時期は、前記制御装置10の点火部10dによって制御される。
 第1の実施の形態による6サイクルエンジン1は、運転方法に特徴があるものである。この運転方法は、動弁装置14と、筒内噴射インジェクタ3と、制御装置10とを用いて実施される。
 前記動弁装置14は、図3に示すように、6つの行程が実行される構成のものである。6つの行程とは、吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とである。
 動弁装置14は、前記6つの行程が上述した順序で実行されるように吸気弁7と排気弁11とを動作させる。吸気行程においては、吸気弁7が開きかつ排気弁11が閉じている状態でピストン5が上死点から下死点に向けて移動し、シリンダ4内に新気が吸入される。なお、以下においては、ピストン5が上死点から下死点に向けて移動することを単にピストン5が下降するという。また、ピストン5が下死点から上死点に向けて移動することを単にピストン5が上昇するという。
 点火を伴わない圧縮行程においては、吸気弁7と排気弁11とが閉じている状態でピストン5が上昇し、シリンダ4内の空気が圧縮される。
 燃焼を伴わない膨張行程においては、吸気弁7と排気弁11とが閉じている状態でピストン5が下降し、圧縮されていた空気が膨張して復元する。
 点火を伴う圧縮行程においては、吸気弁7と排気弁11とが閉じている状態でピストン5が上昇し、シリンダ4内の空気が再び圧縮される。筒内噴射インジェクタ3は、この点火を伴う圧縮行程において制御装置10による制御によって燃料9を噴射する。また、点火プラグ8は、この行程の終期に制御装置10によって通電され、燃料9に点火する。上述した特徴的な運転方法とは、点火を伴わない圧縮行程と燃焼を伴わない膨張行程とを経た後の点火を伴う圧縮行程において燃料9を噴射する運転方法である。
 燃焼を伴う膨張行程においては、吸気弁7と排気弁11とが閉じている状態でピストン5が燃焼圧力によって下降する。
 排気行程においては、排気弁11が開きかつ吸気弁7が閉じている状態でピストン5が上昇し、シリンダ4内の排ガスが排気ポートに排出される。
 このように構成された6サイクルエンジン1においては、吸気行程で大量の空気がシリンダ4内に吸入される。この理由は、吸気が流れるときの抵抗が少なくなるように吸気ポート13が形成されているからである。
 前記吸気行程でシリンダ4内に大量に吸入された空気(吸気)は、慣性によってシリンダ4内をピストン5に向けて流れる。この吸気は、その後の点火を伴わない圧縮行程で圧縮され、さらに、燃焼を伴わない膨張行程で膨張する。このように吸気が圧縮・膨張することによって、吸気の運動エネルギーが失われ、吸気の流動がシリンダ4内で減衰して小さくなる。
 このため、燃焼を伴わない膨張行程から点火を伴う圧縮行程に移った後は、大部分の吸気がシリンダ4内で殆ど流動していない状態になると考えられる。燃料9は、このように吸気が殆ど停止した状態となったシリンダ4の中に筒内噴射インジェクタ3によって直接噴射される。シリンダ4内は吸気が殆ど流動しない状態であるために、燃料9がシリンダ4内で進む方向が大きく変えられることはない。筒内噴射インジェクタ3から点火プラグ8の近傍に向けて噴射された燃料9は、進む方向が変わることなく点火プラグ8の近傍に到達し、空気と混合される。
 すなわち、この実施の形態による6サイクルエンジン1においては、吸気の旋回流を用いることなく燃料9を成層燃焼に適した量だけ点火プラグ8の近傍に正確に供給することができる。点火プラグ8の近傍に噴射された前記燃料9と空気とからなる混合気は、点火を伴う圧縮行程の終期で点火プラグ8によって点火させられる。
 したがって、この実施の形態によれば、吸入空気量を増大させながら成層燃焼を実現可能な6サイクルエンジンを提供することができる。この6サイクルエンジン1は、吸入空気量が増えるために出力向上を図ることが可能で、しかも、成層燃焼が実現されるから燃費向上を図ることが可能である。
 第1の実施の形態による6サイクルエンジン1において、成層燃焼が実現されるために最適化しなければならない要素は、筒内噴射インジェクタ3の噴霧形状のみとなる。このため、この噴霧形状を決めるにあたって他の要素の制約を受けることはない。したがって、この実施の形態による6サイクルエンジン1は、きわめて容易に安定した成層燃焼を実現することができる。
 この6サイクルエンジン1において、筒内噴射インジェクタ3が燃料9を噴射する時期は、点火を伴う圧縮行程のみに限定されることはない。すなわち、筒内噴射インジェクタ3は、点火を伴う圧縮行程で燃料9を噴射する以前に少なくとも1回以上燃料9を予め噴射するものでもよい。例えば、筒内噴射インジェクタ3は、図3において二点鎖線A~Cで示すように、各行程で燃料9を噴射する構成を採ることができる。この構成を採ることにより、燃料9がシリンダ4内の広い範囲にわたって分散するから、いわゆる弱成層化が図られて過濃領域がなくなる。
(第1の実施の形態における第1の変形例)
 筒内噴射インジェクタ3は、図2に示す第1の実施の形態による第1の変形例のように、前記天井壁2aの外周部に取付けることができる。
 図2において、前記図1によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。図2に示す筒内噴射インジェクタ3は、吸気弁7よりシリンダ4の径方向の外側に位置付けられている。
(第1の実施の形態における第2、第3の変形例)
 第1の実施の形態による6サイクルエンジン1は、図4および図5に第1の実施の形態の更なる第2、第3の変形例として示すように、吸気通路側にもインジェクタを装備することができる。図4および図5において、図1および図2によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 図4および図5に示すシリンダヘッド6は、前記筒内噴射インジェクタ3の他に吸気通路内噴射インジェクタ15を備えている。この吸気通路内噴射インジェクタ15は、吸気行程で吸気ポート13を含む吸気通路13a内に燃料9を噴射する。
 このように吸気通路内噴射インジェクタ15を備えた第2、第3の変形例によれば、吸気行程でシリンダ4内に混合気を吸入できるから、弱成層化が図られ、混合気が過度に濃い領域が生じることがない6サイクルエンジンを提供することができる。
 以上述べてきた第1の実施の形態による6サイクルエンジン1は、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程とにおいてエンジンの冷却が進むものである。すなわち、3回転に1回排気する6サイクルエンジン1のサイクル平均の排気温度は、2回転に1回排気する4サイクルエンジンのサイクル平均の排気温度に較べると低くなる。このため、この実施の形態による6サイクルエンジン1は、図6に示すように、排気温度が高いと使用することができない可変容量型過給機(Variable Giometry Turbo)16を装備することができる。
 詳述すれば、図6に示す6サイクルエンジン1は、ガソリンを燃料とする直列4気筒型のものである。この6サイクルエンジン1の各気筒から排出された排ガスは、各気筒の排気ポート12から排気管17によって可変容量型過給機16に導かれる。可変容量型過給機16は、排気タービン16aに送られる排ガスの流量、方向などを制御するための可変ノズル(図示せず)を備えた公知のものである。
 この実施の形態による6サイクルエンジン1は、可変容量型過給機16のコンプレッサー16bから送られた空気を冷却するためにインタークーラー18を備えている。インタークーラー18で冷却された空気は、吸気管19に設けられたスロットル弁(図示せず)を通して各気筒の吸気ポート13に送られる。
 前記可変ノズルは、高温な排気により可動部が損傷を受け易いものである。そのため、可変容量型過給機は、排気が極めて高温になるエンジンに使用することはできなかった。しかし、6サイクルエンジンは、サイクル平均の排気温度が低くなるので、可変容量型過給機を運転領域の全領域にわたって有効に使用できる。
 第1の実施の形態によれば、ダイナミックレンジの広い可変容量型過給機16で吸気が過給されるから、より一層高い出力を得ることが可能な6サイクルエンジンを提供することができる。
(第2の実施の形態)
 次に、請求項4に記載した発明に係る6サイクルエンジンの第2の実施の形態を、変形例を交えて図8~図11Cによって詳細に説明する。この6サイクルエンジン21は、請求項11に記載した運転方法に従って運転されるものである。図8~図11Cにおいて、前記図1~図7によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 図8は、筒内噴射インジェクタが点火プラグの近傍に位置する6サイクルエンジンに請求項4記載の発明を適用した場合の一例を示す。図9は、筒内噴射インジェクタが燃焼室の外周側に位置する6サイクルエンジンに請求項4記載の発明を適用した場合の第1の変形例を示す。
 この第2の実施の形態による6サイクルエンジン21は、6つの行程からなる2種類の実行パターンをエンジンの運転負荷に対応させて切替える特徴的な運転方法が採られているものである。前記実行パターンは、図8および図9に示す実行パターン変更機構22によって切替えられる。
 前記実行パターン変更機構22は、吸気弁7の開く時期を変更するものであり、動弁装置14の一部の部品を利用して構成されている。実行パターン変更機構22の詳細な構造は後述する。
 実行パターン変更機構22は、エンジンの運転領域が低負荷、低速運転領域にある場合は、制御装置10による制御によって6つの行程の実行パターンを後述する第1の実行パターンに切替える。また、実行パターン変更機構22は、エンジンの運転領域が前記低負荷、低速運転領域ではない場合は、制御装置10による制御によって6つの行程の実行パターンを後述する第2の実行パターンに切替える。
 前記低負荷、低速運転領域は、エンジンの運転負荷(以下、単に負荷という)が相対的に低い場合、すなわちエンジンの負荷の値が予め設定された負荷閾値より低い場合であって、かつエンジンの回転速度が相対的に低い場合、すなわち回転速度が予め定めた回転速度閾値より低い場合である。
 エンジンの負荷は、負荷検出センサ100により検出された吸入空気量に基づいて制御装置10の負荷演算部10b(図28参照)によって求められる。
 エンジンの回転速度は、制御装置10の回転速度演算部10c(図28参照)によって求められる。
 この実施の形態による制御装置10は、図28に示すように、上述したインジェクタ制御部10aと、負荷演算部10bと、回転速度演算部10cと、点火部10dとに加えて、実行パターン切替部10eとを備えている。実行パターン切替部10eは、実行パターン変更機構22の動作を制御するためのものである。この実行パターン切替部10eは、前記負荷演算部10bによって求められたエンジンの負荷の大きさに基づいて前記動弁装置14(実行パターン変更機構22)に前記実行パターンを変更させる。
 制御装置10第1の実行パターンと第2の実行パターンとを切替えるにあたっては、図11A~図11Cに示すように、エンジン回転速度とエンジンの負荷とに基づいて行うことができる。図11Aに示すグラフは、第1の実行パターンが適用される運転領域と第2の実行パターンが適用される運転領域を示すマップを構成している。第1の実行パターンは、エンジンの回転速度と負荷とが図11A中に符号Aで示す領域にあるときに適用される。第2の実行パターンは、エンジンの回転速度と負荷とが図11A中に符号Bで示す領域にあるときに適用される。
 図11Aに示すマップは、図11Bおよび図11Cに示すように表現することができる。図11Aに示すマップにおいてエンジンの運転領域がAである場合は、図11Bに示すような場合である。図11Bに示す負荷閾値L0は、エンジンの負荷の大きさに応じて段階的に分けられた複数の運転領域a~dのうち、エンジン始動時を含む負荷が最も小さくなる運転領域aの負荷の値である。
 図11Bに示す回転速度閾値R1は、エンジンの回転速度の大きさに応じて段階的に分けられた複数の運転領域e~jのうち、エンジン始動時を含む回転速度が最も小さくなる運転領域eの回転速度負である。
 制御装置10の実行パターン切替部10eは、負荷演算部10bによって求められた負荷の値が前記負荷閾値L0より低い場合であって、かつ前記回転速度演算部10cによって求められた回転速度が予め設定された回転速度閾値R0より低くなる低負荷、低回転時に、6行程の実行パターンを第1の実行パターンとする。
 図11Aに示すマップにおいてエンジンの運転領域がBである場合は、図11C中にハッチングを施して示すような場合である。図11Cにおいては、中負荷、中回転時の領域を同図中に左下がりに傾斜した斜線からなるハッチングによって示す。また、図11Cにおいては、高負荷、高回転時の領域を同図中に右下がりに傾斜した斜線からなるハッチングによって示す。すなわち、制御装置10の実行パターン切替部10eは、中負荷、中回転時と、高負荷、高回転時とのいずれか一方の場合に、6行程の実行パターンを第2の実行パターンとする。
 前記中負荷、中回転時は、前記負荷演算部10bによって求められた負荷の値が前記負荷閾値L0以上であって第1の負荷値L1より小さくなる。第1の負荷値L1は、負荷閾値L0より大きい。また、中負荷、中回転時は、前記回転速度演算部10cによって求められた回転速度が予め設定された回転速度閾値R0以上であって第1の回転速度R1より小さくなる。第1の回転速度R1は、回転速度閾値R1より大きい。
 前記高負荷、高回転時は、前記負荷演算部10bによって求められた負荷の値が前記第1の負荷値L1以上になり、かつ前記回転速度演算部10cによって求められた回転速度が前記第1の回転速度R1以上になる。なお、前記負荷閾値L0、第1の負荷値L1、回転速度閾値R0および第1の回転速度R1は、エンジンの性能に基づいて適宜選択すればよい。
 前記第1の実行パターンは、図3に示した実行パターンと同一のパターンである。
 前記第2の実行パターンは、図10に示すように、吸気行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程と、燃焼を伴わない膨張行程と、点火を伴わない圧縮行程とがこの順序で実行されるパターンである。
 第1の実行パターンと第2の実行パターンとは、燃焼を伴わない膨張行程と、点火を伴わない圧縮行程との2つの行程を実施する時期、順序が異なっている。すなわち、第1の実行パターンは、通常の4サイクルエンジンにおける吸気行程と点火を伴う圧縮行程との間に、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程とが追加されて構成されている。一方、第2の実行パターンは、通常の4サイクルエンジンにおける排気行程と吸気行程との間に、燃焼を伴わない膨張行程と、点火を伴わない圧縮行程とが追加されて構成されている。
 この第2の実施の形態において、第1の実行パターンと第2の実行パターンの切替えは、吸気弁7の開閉時期を変えることによって行っている。この切替えは、運転中に行われるから、エンジンの回転が大きく変動することがないように行う必要がある。この実施の形態においては、図10に示すように、第1、第2の実行パターンで共に吸気弁7が閉じている期間であって、エンジンの運転に悪影響を及ぼすことがない期間に切替えが行われる。すなわち、前記切替えは、点火を伴う圧縮行程から排気行程の間で行われる。
 第2の実行パターンで運転されるときは、均質混合気が望ましいため、筒内噴射インジェクタ3は、吸気行程で燃料9を燃焼室2内に直接噴射し、必要に応じて点火を伴う圧縮行程で噴射してもよい。なお、燃料9は、筒内噴射インジェクタ3と、前記図4および図5に示したような吸気通路内噴射インジェクタ15を併用して供給してもよい。
 第2の実行パターンで運転されるときの燃料噴射量は、空気と燃料9とがそのエンジンにとって理想的な濃度で混合して完全燃焼するように設定されている。
 点火プラグ8は、点火を伴う圧縮行程の終期に制御装置10によって通電される。
 この第2の実施の形態による6サイクルエンジン21が前記第1の実行パターンで運転される場合は、上述した第1の実施の形態を採るときと同様に、吸入空気量が多くなる状態で成層燃焼が実現されて出力向上を図りながら燃費向上を図ることができる。この6サイクルエンジン21が前記第2の実行パターンで運転される場合は、空気と燃料9とが理想的な濃度で混合して完全燃焼するようになり、更なる高出力を得ることができる。
 また、この6サイクルエンジン21が第2の実行パターンで運転されるときは、排気行程を経てシリンダ内の残留ガスが少量となった後に燃焼を伴わない膨張行程と、点火を伴わない圧縮行程とが実行されるから、ポンピングロスが少なくなり、出力が向上するようになる。第2の実施の形態においては、このように第2の実行パターンで運転することによってポンピングロスが低減されて出力向上が図られるから、高い出力が必要になる高回転、高負荷域において第2の実行パターンで運転するようにした。
 このため、この6サイクルエンジン21は、燃費を優先する運転形態と、出力を優先する運転形態とを切替えることができるものとなる。したがって、この実施の形態によれば、燃費向上と出力向上とを両立させることが可能な6サイクルエンジンを提供することができる。
 この第2の実施の形態による6サイクルエンジン21において、第2の実行パターンでは排気行程に続く2行程(燃焼を伴わない膨張行程と点火を伴わない圧縮行程)が実行される期間は、実質的にエンジンの冷却期間になる。このため、この6サイクルエンジン21のサイクル平均の排気温度は、4サイクルエンジンのサイクル平均の排気温度に較べて低くなる。このようにエンジンのサイクル平均の排気温度が相対的に低くなるために、この実施の形態による6サイクルエンジン21においても、図6に示したような可変容量型過給機16を使用することができる。
 この実施の形態においては、前記第1の実行パターンと第2の実行パターンとの切替えを吸気弁7の開閉時期を変えて行っている。この場合、図10に示すように、排気弁11の開閉時期がパターン切替えに伴って変化することはない。このため、第1の実行パターンと第2の実行パターンとを切替えるにあたって、点火時期を変える必要はない。したがって、この実施の形態によれば、第1の実行パターンと第2の実行パターンとを切替える構成を採っているにもかかわらず、動作の制御を容易に行うことが可能な6サイクルエンジンを提供することができる。
 図10に示す形態を採ることによって、第1、第2の実行パターンの切替えを行うことができる期間が相対的に長くなる。切替期間を長くとることができると、切替えを行うための機構の動作速度を遅くすることができることに起因してこの機構の負荷を小さくすることが可能になるから、この機構の耐久性が向上する。
 このため、この実施の形態による6サイクルエンジン21は、図11Aに示す運転領域がA、すなわちアイドリング運転を含めて実用域にあるときに燃費が向上する。また、この6サイクルエンジン21は、図11Aに示す運転領域がB、すなわち中回転・中負荷運転領域または高回転・高負荷運転領域にあるときに高出力を得ることができる。
(第2の実施の形態による実行パターン変更機構の具体的な構造)
 上述した6サイクルエンジン21の実行パターン変更機構22は、図12~図26に示すように形成することができる。これらの図において、前記図1~図11Cによって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 図12に示すシリンダヘッド6には、燃焼室2の天井壁2aと、排気ポート12と、吸気ポート13と、インジェクタ収容部(図示せず)と、点火プラグ収容部31と、冷却用ウォータージャケット32などが形成されている。また、シリンダヘッド6には、1気筒あたり2本ずつある排気弁11および吸気弁7と、これらの排気弁11と吸気弁7とを駆動するための動弁装置14とが取付けられている。
 前記吸気ポート13は、シリンダヘッド6の内部で二又状に分岐する形状に形成されている。吸気ポート13の上流端13aはシリンダヘッド6の一側部に開口している。吸気ポート13の下流端13bは、図13に示すように、燃焼室2の天井壁2aに開口している。吸気ポート13の下流端13bを構成する吸気出口33は、後述する吸気カム軸34の軸線方向(図13においては上下方向)に所定の間隔をおいて離間する状態で並んでいる。これら二つの吸気出口33,33どうしの間には、点火プラグ8の近傍に筒内噴射インジェクタ3を配置する場合(図8参照)のインジェクタ収容部の穴35が開口している。インジェクタ収容部は、筒内噴射インジェクタ3をシリンダヘッド6に取付けるためのものである。なお、図13中に二点鎖線で示す穴35aは、筒内噴射インジェクタ3を燃焼室2の外周側に配置する場合のインジェクタ収容部の穴である。
 吸気ポート13は、吸気抵抗が可及的小さくなるような形状に形成された高流量ポートである。すなわち、吸気ポート13は、前記上流端13aから燃焼室2に向けて斜めに直線状に延び、吸気弁7の近傍で緩やかに曲がる形状に形成されている。
 前記排気ポート12は、前記天井壁2aに開口する二つの排気入口36からシリンダヘッド6の他側部に開口する一つの排気出口37に延びている。
 吸気ポート13の二つの吸気出口33,33と、排気ポート12の二つの排気入口36,36とに囲まれた部分には、点火プラグ収容部31の穴38が開口している。点火プラグ収容部31は、点火プラグ8をシリンダヘッド6に取付けるためのものである。 
 前記排気弁11は、前記排気ポート12の排気入口36を開閉する弁体39と、軸状のステム40とによって構成されている。前記吸気弁7は、図12に示すように、前記吸気ポート13の吸気出口33を開閉する弁体41と、軸状のステム42とによって構成されている。これら排気弁11と吸気弁7のステム40,42は、シリンダヘッド6に移動自在に支持されるとともに、バルブスプリング43によって閉じる方向に付勢されている。前記ステム40,42の先端部には、シム40a,42aが装着されている。
 前記動弁装置14は、吸気カム軸34および排気カム軸44と、吸気カム軸用伝動機構45と、排気カム軸用伝動機構46と、前記吸気カム軸34および排気カム軸44にクランク軸103の回転を伝達する伝動機構107(図1,2参照)とを備えている。吸気カム軸34と排気カム軸44は、支持部材47とカムキャップ48とによってそれぞれ回転自在に支持されている。支持部材47は、シリンダヘッド6に取付けられている。カムキャップ48は、吸気カム軸34および排気カム軸44を支持部材47とともに挟む状態で支持部材47に取付けられている。
 吸気カム軸34は、第1の実行パターン用の第1の吸気カム51と、第2の実行パターン用の第2の吸気カム52とを備えている。これらの第1、第2の吸気カム51,52は、吸気弁7毎に設けられている。第1の吸気カム51と第2の吸気カム52は、図14に示すように、吸気カム軸34の軸線方向に所定の間隔で並べられている。また、第1、第2の吸気カム51,52は、図12に示すように、それぞれベース円部51a,52aとノーズ部51b,52bとによって構成されている。この実施の形態による吸気カム軸34の回転方向は、図12において、時計方向である。
 ベース円部51a,52aは、吸気弁7が開くことがないように形成されている。ノーズ部51b,52bは、吸気弁7が所定の時期に所定の開度で開くように形成されている。この実施の形態によるノーズ部51b,52bのカムプロフィールは、図12に示すように、長円を長手方向に二分したような形状に形成されている。
 前記排気カム軸44は、排気弁11毎の排気カム53を備えている。
 前記吸気カム軸用伝動機構45は、吸気カム軸34の回転を往復運動に変換して吸気弁7に伝達するものである。吸気カム軸用伝動機構45は、上述した第1の実行パターンと第2の実行パターンとを切替える機能を有している。
 吸気カム軸用伝動機構45は、図21に示すように、吸気カム軸34の近傍に位置する揺動カム54と、この揺動カム54と吸気弁7との間に位置するロッカーアーム55とを備えている。揺動カム54とロッカーアーム55は、吸気弁7毎に設けられている。
 前記排気カム軸用伝動機構46は、排気カム軸44の回転を往復運動に変換して排気弁11に伝達するものである。この排気カム軸用伝動機構46は、前記実行パターンを変更する機構を備えていない点と、駆動の対象が排気弁11である点とで吸気カム軸用伝動機構45とは異なっている。しかし、排気カム軸用伝動機構46のその他の構成は、吸気カム軸用伝動機構45と同等である。このため、排気カム軸用伝動機構46において、吸気カム軸用伝動機構45と同等の機能を有する部材については、同一符号を付し、詳細な説明は適宜省略する。
 前記吸気カム軸用伝動機構45の揺動カム54は、図12に示すように、吸気カム軸34と平行な支軸56が貫通する揺動カム本体57と、この揺動カム本体57に回転自在に取付けられたローラ58とによって構成されている。前記ローラ58の軸線は、吸気カム軸34の軸線と平行である。
 前記支軸56は、吸気カム軸34から排気カム軸44側に離れた位置に設けられており、前記支持部材47に軸線方向へ移動自在かつ回転することができないように支持されている。この支軸56は、気筒毎に設けられている。また、この支軸56は、図19に示すように、1気筒あたり二つある揺動カム54をそれぞれ同じ支持状態となるように支持している。この支軸56には、図14に示すように、後述する駆動装置61が接続されている。
 この駆動装置61は、前記支軸56を予め定めた切替え長さL(図14参照)だけ軸線方向に移動させるものである。駆動装置61の詳細な構造は後述する。この駆動装置61も気筒毎に設けられている。前記切替え長さLは、第1の吸気カム51と第2の吸気カム52の形成間隔に相当する長さである。この形成間隔とは、第1の吸気カム51の軸線方向の中心と、第2の吸気カム52の軸線方向の中心との間の長さをいう。
 前記支軸56が前記切替え長さLだけ軸線方向に前記移動することによって、上述した第1の実行パターンと第2の実行パターンとの切替えが行われる。第2の実行パターンから第1の実行パターンに切替えられるときに支軸56が移動する方向は、図14においては左方であり、第2の吸気カム52から第1の吸気カム51に向かう方向である。第1の実行パターンから第2の実行パターンに切替えられるときの支軸56の移動方向は、図14において右方であり、第1の吸気カム51から第2の吸気カム52に向かう方向である。以下において、第2の吸気カム52から第1の吸気カム51に向かう方向については、「軸線方向の一方」といい、これとは逆の方向については、「軸線方向の他方」という。
 前記揺動カム本体57は、前記支軸56に揺動自在に支持されている。また、揺動カム本体57は、前記支軸56の軸線方向へは移動することができないように、支軸56に取付けられたEリング56a(図14参照)によって挟まれている。すなわち、揺動カム54は、前記支軸56が前記駆動装置61により軸線方向に移動させられることによって、支軸56と一体に前記軸線方向に移動する。
 揺動カム本体57の揺動端部には、後述するロッカーアーム55と接触するカム面62が形成されている。カム面62は、図15に示すように、吸気カム軸34の軸線方向に予め定めた幅を有するように形成されている。この予め定めた幅は、第1の吸気カム51の軸線方向の幅と、第2の吸気カム52の軸線方向の幅と、これら両カムどうしの間の隙間の幅とを加算した長さと同等の幅に形成されている。すなわち、カム面62は、揺動カム54が支軸56とともに軸線方向に移動したとしても後述するロッカーアーム55と接触する状態が保たれるように形成されている。言い換えれば、揺動カム54とロッカーアーム55との接触部分は、これら両部材が接触した状態を保ちながら揺動カム54が前記軸線方向に移動できる形状に形成されている。
 このカム面62は、図16に示すように、ベース円部62aとリフト部62bとによって構成されている。ベース円部62aとリフト部62bとは、揺動カム54が揺動する方向に連続して形成されている。ベース円部62aは、リフト部62bより揺動カム54が開弁時に揺動する方向の前方に位置している。
 また、ベース円部62aは、吸気カム軸34の軸線方向から見て前記支軸56の軸心を中心とする円弧状に形成されている。前記リフト部62bは、前記ベース円部62aから離れるにしたがって徐々に前記支軸56の軸心との距離が長くなるように形成されている。
 前記ローラ58は、揺動カム本体57から吸気カム軸34側に突出するように揺動カム本体57に取付けられている。このローラ58は、前記支軸56が前記軸線方向の一方に移動した状態においては、第1の吸気カム51に接触して回転する。また、このローラ58は、前記支軸56が前記軸線方向の他方に移動した状態においては、第2の吸気カム52に接触して回転する。この実施の形態による揺動カム54は、前記ローラ58が第1の吸気カム51または第2の吸気カム52に常に接触するように、捻りコイルばね63(図14参照)によって付勢されている。捻りコイルばね63は、前記支軸56が貫通する状態で支軸56に支持されている。
 前記支軸56を駆動する駆動装置61は、図15に示すように、吸気カム軸34の大径部64と、この大径部64が貫通するスライダ65と、このスライダ65と隣り合う位置に設けられたアクチュエータ66とによって構成されている。
 前記大径部64は、図20に示すように、吸気カム軸34の軸部67より外径が大きくなるように形成されている。
 この大径部64には、図18に示すように、大径部64の周方向に延びる環状溝71と、この環状溝71の両側に位置する第1、第2のカム溝72,73とが形成されている。前記環状溝71は、図20に示すように、一定の深さで大径部64の周方向の全域に延びるように形成されている。第1、第2のカム溝72,73は、前記環状溝71と平行な直線部74と、この直線部74を前記環状溝71に接続する傾斜部75とから形成されている。第1、第2のカム溝72,73の溝幅は、前記環状溝71の溝幅と等しくなるように形成されている。
 第1のカム溝72の直線部74は、環状溝71より図18において右側に位置している。すなわち、第1のカム溝72の直線部74は、環状溝71より前記軸線方向の他方に前記切替え長さLだけ離れた位置に形成されている。第2のカム溝73の直線部74は、環状溝71より前記軸線方向の一方に前記切替え長さLだけ離れた位置に形成されている。これらの直線部74の深さは、吸気カム軸34の回転方向の前方(図18においては上側)に向かうにしたがって次第に浅くなるように形成されている。直線部74における傾斜部75とは反対側に位置する一端は、大径部64の他の部分の外周面と同一周面上に位置している。
 第1のカム溝72と第2のカム溝73の前記傾斜部75は、直線部74から環状溝71に向けて斜めに延びている。傾斜部75の深さは、図22中に「溝深さ」として描いてあるように、吸気カム軸34の回転方向の後方に向かうにしたがって徐々に深くなるように形成されている。傾斜部75の深さは、最終的に環状溝71と同一の深さとなる。
 前記スライダ65は、図17に示すように、前記大径部64を径方向の両側から挟む下半部76と上半部77とを備えている。下半部76と上半部77とは、結合用ボルト78によって互いに結合されており、前記大径部64に移動自在に嵌合している。
 前記下半部76には、スライダ65を前記支軸56に連結するためのアーム79が形成されている。このアーム79の先端部は、支軸56に向けて開放する断面C字状に形成され、支軸56の溝80に嵌合している。
 このアーム79は、スライダ65が吸気カム軸34と一体に回転することを規制する機能をも有している。
 前記スライダ65の上半部77は、図18に示すように、互いに平行な円柱状の第1、第2のピン81,82を備えている。これらの第1、第2のピン81,82は、上半部77に形成された貫通孔83,84の中に移動自在に挿入されている。
 貫通孔83,84は、吸気カム軸34の軸線方向とは直交する方向に延びかつ吸気カム軸34の軸心を指向するように形成されている。貫通孔83と貫通孔84との間隔は、上述した切替え長さLと一致するように形成されている。すなわち、第1、第2のピン81,82は、前記環状溝71および第1、第2のカム溝72,73内に一端部を挿入することができるように上半部77に支持されている。
 第1、第2のピン81,82の他端部には、それぞれ第1、第2のリフタ85,86が取付けられている。これらの第1、第2のリフタ85,86は、上半部77に移動自在に支持されている。また、これらの第1、第2のリフタ85,86は、圧縮コイルばね87によって吸気カム軸34から離れる方向に付勢されており、後述するアクチュエータ66の第1、第2のプランジャー91,92に押し付けられている。
 前記アクチュエータ66は、前記各リフタ85,86と対向する円柱状の第1、第2のプランジャー91,92と、これらの第1、第2のプランジャー91,92を駆動するためのソレノイド93とを備えている。このアクチュエータ66は、シリンダヘッド6またはヘッドカバー(図示せず)に支持されている。ソレノイド93は、制御装置10の実行パターン切替部10eによる制御によって第1、第2のプランジャー91,92を駆動する。
 前記第1、第2のプランジャー91,92は、前記ソレノイド93による駆動によって各リフタ85,86に対して前進または後退させられる。例えば、図18に示すように第1のプランジャー91が圧縮コイルばね87のばね力に抗して第1のリフタ85を押すと、第1のピン81が大径部64に向けて押される。なお、第1のプランジャー91が第1のリフタ85に向けて前進するときは、第2のプランジャー92が後退させられる。第2のプランジャー92が後退すると、第2のリフタ86および第2のピン82が圧縮コイルばね87のばね力によって図19に示すように後退させられる。
 図18に示した状態から第1のプランジャー91が後退するとともに、第2のプランジャー92が前進すると、第1のピン81が第1のリフタ85とともに後退し、環状溝71の外に出る。また、このときには、第2のピン82が第2のリフタ86とともに前進し、第2のカム溝73と対応する位置において大径部64に押し付けられる。この状態で吸気カム軸34が回転することによって、第2のピン82が第2のカム溝73に入る。そして、第2のピン82が第2のカム溝73の傾斜部75を通過するときに傾斜部75の側壁に押され、スライダ65が図18の右方(前記軸線方向の一方)に移動する。その後、第2のピン82は、環状溝71に入り、環状溝71の中を移動する。
 スライダ65を上記とは逆方向に移動させる場合は、第2のプランジャー92を後退させるとともに第1のプランジャー91を第1のリフタ85に向けて前進させる。第1、第2のプランジャー91,92は、上述したようにスライダ65が移動したときに第1、第2のリフタ85,86から外れることがないように形成されている。
 この第2の実施の形態による駆動装置61は、図22に示すように、前記第1の実行パターンと前記第2の実行パターンとを切替える切替期間内で第1、第2のピン81,82が第1、第2のカム溝72,73の傾斜部75を通過するように構成されている。すなわち、第1の吸気カム51のベース円部51aまたは第2の吸気カム52のベース円部52aに揺動カム54のローラ58が接触している状態で揺動カム54が前記軸線方向に移動する。
 前記ロッカーアーム55は、前記揺動カム54の揺動動作を複数の揺動部材によって吸気弁7に伝達する構成が採られている。これら複数の揺動部材は、図16に示すように、揺動カム54の前記カム面62に接触するローラ94を有するコントロールアーム95と、吸気弁7に接触するロッカーアーム本体96である。これらのコントロールアーム95とロッカーアーム本体96は、ロッカー軸97にそれぞれ揺動自在に支持されている。
 ロッカー軸97は、軸線が吸気カム軸34の軸線と平行になる状態でシリンダヘッド6と前記支持部材47とに回転自在に支持されている。また、ロッカー軸97は、いわゆるクランク軸状に形成されている。すなわち、ロッカー軸97は、図16に示すように、前記シリンダヘッド6および支持部材47に支持される部分と同一軸線上に位置する主軸97aと、この主軸97aとは偏心した位置にある偏心ピン97bとを備えている。
 前記主軸97aは、前記ロッカーアーム本体96の一対のアーム部96aを揺動自在に支持するためのものである。この主軸97aは、前記一対のアーム部96aと対応する位置にそれぞれ設けられている。前記偏心ピン97bは、これらの主軸97aどうしを接続している。この偏心ピン97bは、前記コントロールアーム95を揺動自在に支持するためのものである。
 前記ロッカー軸97の一端部には、図示していないサーボモータ等の駆動機構が接続されている。このロッカー軸97は、前記駆動機構による駆動によって、所定の回動角度となるように回転させられる。
 前記ロッカーアーム本体96は、前記一対のアーム部96aと、これらのアーム部96aを接続する底壁96bとによって構成されている。前記底壁96bには、吸気弁7の前記シム42aを押圧するための押圧子96cが形成されている。
 前記コントロールアーム95は、前記偏心ピン97bに回動自在に支持されたコントロールアーム本体95aと、このコントロールアーム本体95aの揺動端部に回転自在に設けられた前記ローラ94とによって構成されている。コントロールアーム本体95aにおける偏心ピン97bに接続される基部95bは、偏心ピン97bに嵌合する断面C字状に形成されている。この基部95bは、板ばね98によって偏心ピン97bに離れることができないように保持されている。
 コントロールアーム本体95aの揺動端部には、前記ロッカーアーム本体96を押すための押圧子95cが設けられている。この押圧子95cは、前記アーム部96aの内側面に形成された段部96dに接触する。この段部96dは、アーム部96aの長手方向に延びるように形成されている。
 コントロールアーム95は、ロッカー軸97が回転して偏心ピン97bの位置が変わることに伴って、前記アーム部96aの長手方向に移動する。コントロールアーム95が図16に示すように吸気カム軸34に近い位置にある場合は、前記カム面62のリフト部62bがローラ58を相対的に多く押し、吸気弁7が相対的に大きく開くようになる。一方、偏心ピン97bの位置が変わってコントロールアーム95が同図中に二点鎖線で示す位置に移動すると、ローラ58がカム面62のベース円部62aにのみ接触し、吸気弁7が閉状態に保たれる。前記偏心ピン97bの位置を連続的に変更することにより、吸気弁7の開閉タイミングとリフト量とをエンジンの運転状態に適するように自由に設定できる。
 この第2の実施の形態においては、前記駆動装置61と、軸線方向に移動可能な支軸56と、軸線方向に幅が広いカム面62を有する揺動カム54とによって、請求項7記載の発明でいう「実行パターン変更機構」が構成されている。
 次に、実行パターン変更機構22および制御装置10の実行パターン切替部10eの動作を図11B、図11Cおよび図29に示すフローチャートを用いて説明する。エンジン運転時は、図29中にステップS1,S2として示すように、制御装置10の負荷演算部10bがエンジンの負荷を検出するとともに、回転速度演算部10cがエンジンの回転速度を検出する。
 そして、制御装置10の実行パターン切替部10eは、ステップS3において、負荷演算部10bによって求められた現在の負荷の値が前記負荷閾値L0より低いか否かを判別する。
 実行パターン切替部10eは、現在の負荷の値が負荷閾値L0より低い場合、ステップS4において、前記回転速度演算部10cによって求められた現在のエンジンの回転速度が予め定めた回転速度閾値R0より低いか否かを判別する。ステップS4において、現在の回転速度が回転速度閾値R0より低い場合は、実行パターン切替部10eが前記アクチュエータ66のソレノイド93を第1の実行パターンが実現されるように動作させる。この場合の運転領域は、図11B中にハッチングによって示す運転領域である。このとき、ソレノイド93は、図15に示すように、第1のプランジャー91をリフタ85に向けて前進させるとともに、第2のプランジャー92を後退させる。
 前記第1のプランジャー91が第1のリフタ85を押すと、第1のピン81が環状溝71内を通過するようになる。このため、第1の吸気カム51を用いた第1の実行パターンで6行程が実行される。
 すなわち、この第2の実施の形態による6サイクルエンジン21は、エンジン始動時を含めて低負荷、低回転時は、第1の吸気カム51を用いて第1の実行パターンで運転される。
 実行パターン切替部10eは、現在の負荷の値が負荷閾値L0より低い状態で現在の回転速度が回転速度閾値R0以上であって第1の回転速度R1より低い場合、ステップS5でYESと判別し、前記ソレノイド93を第2の実行パターンが実現されるように動作させる。また、実行パターン切替部10eは、以下の二つの場合においてもソレノイド93を第2の実行パターンが実現されるように動作させる。第1の場合は、現在の負荷の値が負荷閾値L0以上であって第1の負荷値L1より低く、かつ現在の回転速度が回転速度閾値R0より低い場合である。第2の場合は、現在の負荷の値が負荷閾値L0以上であって第1の負荷値L1より低く、かつ現在の回転速度が回転速度閾値R0以上であって第の回転速度R1より低い場合である。これらの場合の運転領域は、図11C中に左下がりの斜線からなるハッチングによって示す運転領域である。
 すなわち、実行パターン切替部10eは、エンジンの運転領域が中負荷、中回転の運転領域にある場合、図29中のステップS5~S8においてそれぞれYESと判別し、前記ソレノイド93を第2の実行パターンが実現されるように動作させる。ソレノイド93は、図23に示すように、第1のプランジャー91を後退させるとともに、第2のプランジャー92を第2のリフタ86に向けて前進させる。このとき、第2のプランジャー92は、第2のリフタ86を介して第2のピン82を大径部64に向けて押す。第2のピン82は、吸気カム軸34が回転することによって、第2のカム溝73の直線部74に入る。また、第2のピン82は、第2のプランジャー92の加圧力によって第2のカム溝73の底に押し付けられる。
 第2のピン82は、吸気カム軸34がさらに回転することによって、図24に示すように、第2のカム溝73の直線部74から傾斜部75に入る。この第2のピン82は、傾斜部75内を通過するときに第2のカム溝73の溝壁に接触し、この溝壁によって側方(図24において右方であって前記軸線方向の他方)に押される。第2のピン82がこのように側方に押されると、これを支持するスライダ65が吸気カム軸34に対して前記軸線方向の他方に移動する。スライダ65が軸線方向へ移動するときは、第1の吸気カム51のベース円部51aに揺動カム54のローラ58が接触しているときである。
 スライダ65は、支軸56に軸線方向へ一体に移動するように連結されている。このため、スライダ65とともに支軸56が前記軸線方向の他方に移動する。
 上述したように支軸56が軸線方向の他方に移動することによって、図25に示すように、気筒毎にある一対の揺動カム54が同方向に移動する。そして、各揺動カム54のローラ58が第2の吸気カム52のベース円部52aにそれぞれ接触する。この場合は、第2の吸気カム52から揺動カム54とロッカーアーム55とを介して吸気弁7に動力が伝達される。この結果、第2の吸気カム52を用いた第2の実行パターンで6行程が実行される。
 実行パターン切替部10eは、図29に示すステップS3~S8のそれぞれにおいてNOと判別した場合にも前記ソレノイド93を第2の実行パターンが実現されるように動作させる。この場合は、現在の負荷の値が第1の負荷値L1以上であって、かつ現在の回転速度が第1の回転速度R1以上の場合である。この場合の運転領域は、図11C中に右下がりに斜線からなるハッチングによって示す運転領域である。すなわち、この第2の実施の形態による6サイクルエンジン21は、運転領域が高負荷、高回転の運転領域にある場合も前記第2の実行パターンで運転される。
 エンジンの運転領域が中負荷、中回転の運転領域または高負荷、高回転の運転領域からアイドリング運転を含む低負荷、低回転の運転領域に移ろうとする時、駆動装置61が図26に示す状態になる。すなわち、第2のプランジャー92が後退し、第1のプランジャー91が第1のリフタ85を押す。この状態で吸気カム軸34が回転することによって、スライダ65、支軸56および揺動カム54が上記とは逆方向に移動し、図15に示す状態になる。図15に示す状態においては、6サイクルエンジン21は、第1の実行パターンで6行程が実行されて運転される。
 一般的に、6サイクルエンジンの吸気カムは、4サイクルエンジンの吸気カムに較べると、吸気行程の間に回転する角度が小さくなる。すなわち、この吸気カムは、相対的に少ない回転角度で吸気弁を開閉することになる。この吸気カムのカムプロフィールは、急峻な山形になる。このため、この吸気カムが吸気弁を開くときの負荷は、4サイクルエンジン用の吸気カムが吸気弁を開くときの負荷に較べて大きくなる。
 しかし、この第2の実施の形態による6サイクルエンジン21においては、第1の吸気カム51または第2の吸気カム52と揺動カム54とによって吸気カム軸34の回転が揺動動作に変換される。しかも、この6サイクルエンジン21は、コントロールアーム95の位置を調整することにより吸気弁7の開閉タイミングとリフト量とを比較的自由に変更できるものである。このため、この第2の実施の形態による第1、第2の吸気カム51,52のカムプロフィールは、図12に示すように、緩やかな山形に形成されている。このことは、排気カム軸用伝動機構46についてもそのままあてはまる。
 したがって、この実施の形態によれば、吸気弁7と排気弁11とが円滑に開閉されるから、動弁装置14の耐久性が高い6サイクルエンジンを提供することができる。
 第2の実施の形態による6サイクルエンジン21は、試作して燃焼変動率を求めたところ、第1の実行パターンで運転しているときに燃焼が安定することが分かった。第1の実行パターンで運転したときの燃焼変動率は、図27中に実線で示すように、空燃比に大きく影響を受けることなくほぼ一定であった。図27中の波線は、第2の実行パターンで運転したときの燃焼変動率を示している。
(第3の実施の形態)
 上述した第2の実施の形態においては、吸気弁7の開閉時期を変えることによって第1の実行パターンと第2の実行パターンとを切替える例を示した。しかしながら、第1の実行パターンと第2の実行パターンとの切替えは、図30に示すように、排気弁11の開閉時期を変えることによっても行うことができる。この場合は、同図に示すように、吸気弁7の開閉時期がパターン切替えに伴って変化することはない。しかし、この場合は、前記切替えに伴って点火時期を変更する必要がある。この場合の第1、第2の実行パターンの切替時期は、下記の二つの条件を満たす必要がある。
 第1の条件は、第1、第2の実行パターンのいずれにおいても排気弁11が閉じている期間である。第2の条件は、切替後にエンジンの運転に悪影響を及ぼすことがない時期である。このような条件を満たす期間は、図30に示すように、吸気行程であって、第2の実行パターンにおいて筒内噴射インジェクタ3で燃料9の噴射が行われるまでの間の期間である。
 前記第2の実行パターンで運転するときは、均質混合気とする必要があるから、このときに筒内噴射が行われるタイミングは吸気行程の前半となる。このようなタイミングで筒内噴射が行われると、十分な切替期間を得ることはできなくなる。そこで、この第3の実施の形態においては、切替時には図30中に二点鎖線で示すように、点火を伴う圧縮行程で燃料9を噴射させてある程度の長さの切替期間を確保している。切替えた後は、同図中に実線で示すように、燃料9を吸気行程の前半で噴射するようにしている。いずれにしても、切替期間は、図10に示す切替期間より短くなる。
 なお、第3の実施の形態を採る場合であっても、図11に示すように、エンジン回転速度とエンジンの負荷とに基づいて第1の実行パターンと第2の実行パターンとを切替えることができる。
 1,21…6サイクルエンジン、2…燃焼室、3…筒内噴射インジェクタ、6…シリンダヘッド、10…制御装置、10a…インジェクタ制御部、10c…回転速度検出部、10d…点火部、10e…負荷検出部、10f…実行パターン切替部、11…吸気弁、13…吸気ポート、14…動弁装置、15…吸気通路内噴射インジェクタ、34…吸気カム軸、51…第1の吸気カム、52…第2の吸気カム、54…揺動カム、55…ロッカーアーム、56…支軸、61…駆動装置、64…大径部。

Claims (11)

  1.  シリンダと、
     前記シリンダ内に挿入されたピストンと、
     前記シリンダに取付けられたシリンダヘッドと、
     前記シリンダ、前記ピストンおよび前記シリンダヘッドによって囲まれて形成された燃焼室と、
     前記燃焼室内に燃料を直接噴射する筒内噴射インジェクタと、
     前記燃焼室の壁に取付けられた点火プラグと、
     前記燃焼室に下流端が開口するように前記シリンダヘッドに形成された吸気ポートと、
     前記燃焼室に上流端が開口するように前記シリンダヘッドに形成された排気ポートと、
     前記シリンダヘッドに設けられて前記吸気ポートを開閉する吸気弁と、
     前記シリンダヘッドに設けられて前記排気ポートを開閉する排気弁と、
     前記吸気弁および排気弁を、吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とからなる6行程がこの順序で実行されるように動作させる動弁装置と、
     前記点火を伴う圧縮行程で前記筒内噴射インジェクタに燃料を噴射させかつ前記点火プラグに通電する制御装置とを備えていることを特徴とする6サイクルエンジン。
  2.  請求項1記載の6サイクルエンジンにおいて、前記制御装置は、前記吸気行程から前記点火を伴う圧縮行程に至る途中においても前記筒内噴射インジェクタに燃料を噴射させるものであることを特徴とする6サイクルエンジン。
  3.  請求項1記載の6サイクルエンジンにおいて、さらに、前記吸気ポートを含む吸気通路内に燃料を噴射する吸気通路内噴射インジェクタを備えていることを特徴とする6サイクルエンジン。
  4.  請求項1記載の6サイクルエンジンにおいて、前記動弁装置は、前記6行程の実行パターンを変更可能に形成され、
     前記制御装置は、エンジンの負荷を求める負荷演算部と、エンジンの回転速度を求める回転速度演算部と、前記負荷演算部によって求められたエンジンの負荷の大きさおよび前記回転速度演算部によって求められたエンジンの回転速度に基づいて前記動弁装置に実行パターンを変更させる実行パターン切替部とをさらに備え、
     前記実行パターンは、エンジンの運転領域が低負荷、低速運転領域にある場合の第1の実行パターンと、エンジン運転領域が前記低負荷、低速運転領域ではない場合の第2の実行パターンとからなり、
     前記低負荷、低速運転領域は、前記負荷演算部によって求められた負荷の値が予め設定された負荷閾値より低くなりかつ前記回転速度演算部によって求められたエンジンの回転速度が予め設定された回転速度閾値より低くなる運転領域であり、
     前記第1の実行パターンは、吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とがこの順で実行されるパターンであり、
     前記第2の実行パターンは、吸気行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程と、燃焼を伴わない膨張行程と、点火を伴わない圧縮行程とがこの順序で実行されるパターンであることを特徴とする6サイクルエンジン。
  5.  請求項4記載の6サイクルエンジンにおいて、前記負荷閾値は、エンジンの負荷の大きさに応じて段階的に分けられた複数の運転領域のうち、エンジン始動時を含む負荷が最も小さくなる運転領域の負荷の値であり、
     前記回転速度閾値は、エンジンの回転速度の大きさに応じて段階的に分けられた複数の運転領域のうち、エンジン始動時を含むエンジン回転速度が最も小さくなる運転領域のエンジン回転速度であることを特徴とする6サイクルエンジン。
  6.  請求項4記載の6サイクルエンジンにおいて、前記動弁装置は、前記第1の実行パターン用の第1の吸気カムと、前記第2の実行パターン用の第2の吸気カムとが所定の間隔をおいて並ぶように設けられたカム軸と、
     前記カム軸にクランク軸の回転を伝達する伝動機構と、
     前記第1の吸気カムと前記第2の吸気カムとの何れか一方を前記吸気弁に接続する実行パターン変更機構とを備えていることを特徴とする6サイクルエンジン。
  7.  請求項6記載の6サイクルエンジンにおいて、前記実行パターン変更機構は、前記カム軸と平行な支軸に揺動自在に支持されかつ前記第1の吸気カムに接触する位置と、第2の吸気カムに接触する位置との間で軸線方向に移動できるように前記支軸に支持された揺動カムと、
     前記第1、第2の吸気カムのバルブリフト量が共に0であるときに前記制御装置による制御によって前記揺動カムを前記軸線方向の一方または他方に移動させる駆動装置と、
     前記カム軸と平行なロッカー軸に揺動自在に支持され、前記揺動カムと前記吸気弁との間に設けられたロッカーアームとを備え、
     前記揺動カムと前記ロッカーアームとの接触部分は、これら両部材が接触した状態を保ちながら前記揺動カムが前記軸線方向に移動できる形状に形成されていることを特徴とする6サイクルエンジン。
  8.  請求項1記載の6サイクルエンジンにおいて、さらに、前記排気ポートに接続された排気管と、
     前記排気管に設けられた過給機とを備え、
     前記過給機は、排気タービンに送られる排ガスの流量、方向を制御可能な可変容量型のものであることを特徴とする6サイクルエンジン。
  9.  シリンダと、
     前記シリンダ内に挿入されたピストンと、
     前記シリンダに取付けられたシリンダヘッドと、
     前記シリンダ、前記ピストンおよび前記シリンダヘッドによって囲まれて形成された燃焼室と、
     前記燃焼室内に燃料を直接噴射する筒内噴射インジェクタと、
     前記燃焼室の壁に取付けられた点火プラグと、
     前記燃焼室に下流端が開口するように前記シリンダヘッドに形成された吸気ポートと、
     前記燃焼室に上流端が開口するように前記シリンダヘッドに形成された排気ポートと、
     前記シリンダヘッドに設けられて前記吸気ポートを開閉する吸気弁と、
     前記シリンダヘッドに設けられて前記排気ポートを開閉する排気弁とを備えたエンジンに、
     吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とからなる6行程をこの順序で実行させ、
     前記点火を伴う圧縮行程で前記筒内噴射インジェクタに燃料を噴射させかつ前記点火プラグに通電することを特徴とする6サイクルエンジンの運転方法。
  10.  請求項9記載の6サイクルエンジンの運転方法において、前記吸気行程から前記点火を伴う圧縮行程に至る途中においても燃料を燃焼室内に直接噴射することを特徴とする6サイクルエンジンの運転方法。
  11.  請求項9記載の6サイクルエンジンの運転方法において、エンジンの負荷の値が予め設定された負荷閾値より低くかつエンジンの回転速度が予め設定された回転速度閾値より低い場合は、吸気行程と、点火を伴わない圧縮行程と、燃焼を伴わない膨張行程と、燃焼室内への燃料噴射および点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程とからなる6行程をこの順序で実行し、
     エンジンの負荷の値とエンジンの回転速度とが前記範囲外である場合は、吸気行程と、燃焼室内への燃料噴射および点火を伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程と、燃焼を伴わない膨張行程と、点火を伴わない圧縮行程とからなる6行程をこの順序で実行することを特徴とする6サイクルエンジンの運転方法。
PCT/JP2012/066919 2011-06-30 2012-07-02 6サイクルエンジン WO2013002411A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12805117.4A EP2728139B1 (en) 2011-06-30 2012-07-02 Six-cycle engine
JP2013523016A JP5580480B2 (ja) 2011-06-30 2012-07-02 6サイクルエンジン
US14/129,568 US9010288B2 (en) 2011-06-30 2012-07-02 Six-stroke engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-145518 2011-06-30
JP2011145518 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002411A1 true WO2013002411A1 (ja) 2013-01-03

Family

ID=47424296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066919 WO2013002411A1 (ja) 2011-06-30 2012-07-02 6サイクルエンジン

Country Status (4)

Country Link
US (1) US9010288B2 (ja)
EP (1) EP2728139B1 (ja)
JP (1) JP5580480B2 (ja)
WO (1) WO2013002411A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068195A (ja) * 2013-09-27 2015-04-13 本田技研工業株式会社 6サイクルエンジン
RU2573062C1 (ru) * 2014-07-03 2016-01-20 Пётр Николаевич Стаценко Способ работы шеститактного двигателя внутреннего сгорания
DE112013007493B4 (de) * 2013-10-11 2021-05-06 Shigeru Sato Verbrennungsmotor für ein Hybrid-Antriebssystem und ein solches Antriebssystem

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053127A1 (ru) * 2014-09-29 2016-04-07 Пётр Николаевич СТАЦЕНКО Способ работы шеститактного двигателя внутреннего сгорания
FR3034467A1 (fr) * 2015-04-02 2016-10-07 Ifp Energies Now Procede de combustion d'un melange carbure d'un moteur a combustion interne
CN106930846B (zh) * 2015-12-29 2021-03-19 长城汽车股份有限公司 多冲程循环发动机的控制方法、***及车辆
JP7399745B2 (ja) 2020-03-02 2023-12-18 文化シヤッター株式会社 建具
JP7399744B2 (ja) 2020-03-02 2023-12-18 文化シヤッター株式会社 建具

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623118A (ja) * 1985-06-28 1987-01-09 Hisanori Saitou 低揮発性燃料使用機関
JPH0460111A (ja) * 1990-06-28 1992-02-26 Ishikawajima Shibaura Mach Co Ltd ディーゼルエンジンの燃焼室装置
JPH05240049A (ja) * 1992-02-28 1993-09-17 Isuzu Motors Ltd 6サイクルエンジン
JP2001342836A (ja) 2000-03-29 2001-12-14 Mazda Motor Corp 火花点火式直噴エンジン
JP2004068707A (ja) * 2002-08-06 2004-03-04 Toyota Motor Corp 内燃機関の燃焼制御装置及び方法
JP2004100666A (ja) * 2002-09-13 2004-04-02 Toyota Motor Corp 可変サイクルエンジンにおける運転サイクルの切換制御
JP2004116305A (ja) 2002-09-24 2004-04-15 Nissan Diesel Motor Co Ltd 内燃機関
JP2010031705A (ja) * 2008-07-26 2010-02-12 Shigeru Sato 内燃機関及び駆動システム
JP2011074873A (ja) * 2009-09-30 2011-04-14 Honda Motor Co Ltd 可変サイクルエンジン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2057052B (en) 1979-08-10 1983-08-03 Larson A Internal combustion engine cycles
US6443108B1 (en) * 2001-02-06 2002-09-03 Ford Global Technologies, Inc. Multiple-stroke, spark-ignited engine
US7143725B1 (en) * 2005-11-22 2006-12-05 Lung Tan Hu Dual six-stroke self-cooling internal combustion engine
JP2007303348A (ja) * 2006-05-10 2007-11-22 Toyota Motor Corp 内燃機関の制御装置
US7726268B2 (en) 2008-10-20 2010-06-01 Howard Kelem Six stroke internal combustion engine and method of operation
US8141541B2 (en) * 2009-01-09 2012-03-27 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for internal combustion engine
JP2010185440A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 内燃機関
US20100228466A1 (en) * 2009-03-04 2010-09-09 Tritel, Llc Internal combustion engine operational systems and meth0ds
JP2010229961A (ja) * 2009-03-30 2010-10-14 Toyota Motor Corp 内燃機関

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623118A (ja) * 1985-06-28 1987-01-09 Hisanori Saitou 低揮発性燃料使用機関
JPH0460111A (ja) * 1990-06-28 1992-02-26 Ishikawajima Shibaura Mach Co Ltd ディーゼルエンジンの燃焼室装置
JPH05240049A (ja) * 1992-02-28 1993-09-17 Isuzu Motors Ltd 6サイクルエンジン
JP2001342836A (ja) 2000-03-29 2001-12-14 Mazda Motor Corp 火花点火式直噴エンジン
JP2004068707A (ja) * 2002-08-06 2004-03-04 Toyota Motor Corp 内燃機関の燃焼制御装置及び方法
JP2004100666A (ja) * 2002-09-13 2004-04-02 Toyota Motor Corp 可変サイクルエンジンにおける運転サイクルの切換制御
JP2004116305A (ja) 2002-09-24 2004-04-15 Nissan Diesel Motor Co Ltd 内燃機関
JP2010031705A (ja) * 2008-07-26 2010-02-12 Shigeru Sato 内燃機関及び駆動システム
JP2011074873A (ja) * 2009-09-30 2011-04-14 Honda Motor Co Ltd 可変サイクルエンジン

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068195A (ja) * 2013-09-27 2015-04-13 本田技研工業株式会社 6サイクルエンジン
DE112013007493B4 (de) * 2013-10-11 2021-05-06 Shigeru Sato Verbrennungsmotor für ein Hybrid-Antriebssystem und ein solches Antriebssystem
RU2573062C1 (ru) * 2014-07-03 2016-01-20 Пётр Николаевич Стаценко Способ работы шеститактного двигателя внутреннего сгорания

Also Published As

Publication number Publication date
EP2728139A1 (en) 2014-05-07
EP2728139B1 (en) 2017-12-20
US9010288B2 (en) 2015-04-21
JP5580480B2 (ja) 2014-08-27
JPWO2013002411A1 (ja) 2015-02-23
EP2728139A4 (en) 2014-12-03
US20140224195A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5580480B2 (ja) 6サイクルエンジン
JP4255035B2 (ja) バルブ開口機会を増やした6サイクル機関
CN105324562B (zh) 可变气门机构的控制装置
US8001936B2 (en) Control apparatus for internal combustion engine and control method therefor
US7290524B2 (en) Control apparatus and method for four-stroke premixed compression ignition internal combustion engine
JP2006274951A (ja) 4サイクル火花点火式エンジン
JP2007239555A (ja) 内燃機関
US9945296B2 (en) Six-stroke engine and method of operating six-stroke engine
JP2008128227A (ja) 超高効率4サイクル内燃機関
JP3977374B2 (ja) 内燃機関用弁機構
US10337427B2 (en) Control device of compression self-ignition engine
US8418663B2 (en) Cam actuation mechanism with application to a variable-compression internal-combustion engine
JP5227265B2 (ja) 排気過給機を備える内燃機関
JP2007239553A (ja) 2ストロークエンジン
JP4591300B2 (ja) 4サイクル火花点火式エンジン
JP2007285204A (ja) 内燃機関
JP2018017164A (ja) 内燃機関の制御装置
JP2006348809A (ja) 内燃機関
JP3885702B2 (ja) 火花点火式エンジンの制御装置
JP4365304B2 (ja) 内燃機関の可変サイクル装置
JP7151882B2 (ja) 内燃機関
JP3922153B2 (ja) 火花点火式エンジンの制御装置
JPS6060223A (ja) 自動車用エンジン
JP2006161581A (ja) 内燃機関
JP3213039B2 (ja) 可変圧縮比エンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523016

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012805117

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14129568

Country of ref document: US