JP3977374B2 - 内燃機関用弁機構 - Google Patents

内燃機関用弁機構 Download PDF

Info

Publication number
JP3977374B2
JP3977374B2 JP2004509243A JP2004509243A JP3977374B2 JP 3977374 B2 JP3977374 B2 JP 3977374B2 JP 2004509243 A JP2004509243 A JP 2004509243A JP 2004509243 A JP2004509243 A JP 2004509243A JP 3977374 B2 JP3977374 B2 JP 3977374B2
Authority
JP
Japan
Prior art keywords
valve
engine
piston
outlet end
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004509243A
Other languages
English (en)
Other versions
JP2005520094A (ja
Inventor
ローリン エイ アーマー
Original Assignee
ローリン エイ アーマー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローリン エイ アーマー filed Critical ローリン エイ アーマー
Publication of JP2005520094A publication Critical patent/JP2005520094A/ja
Application granted granted Critical
Publication of JP3977374B2 publication Critical patent/JP3977374B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/20Shapes or constructions of valve members, not provided for in preceding subgroups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Description

〔関連出願の説明〕
本願は、2002年5月31日に出願された米国仮特許出願第60/384,274号明細書に開示された要旨を特許請求している。
〔発明の背景〕
本発明は、1以上のシリンダ内で往復動する1以上のパワーピストンを備えた内燃機関(本明細書において、「エンジン」ともいう)に関する。特に、本発明は、パワーピストンが燃料吸入行程、圧縮行程、膨張行程及び排気行程を周期的に行う4行程サイクルで動作するこの種のエンジンに関する。特に、本発明は、燃料と空気の混合気(以下、単に「混合気」ともいう)をこの種のエンジンのシリンダ内に導入する吸入弁及び弁作動コンポーネントに関する。
燃料効率は、送り出される仕事の単位馬力時当たりに消費される燃料の量(ポンド数)として定義できる。上述した種類の大抵のエンジンの燃料効率は、出力又はエンジン速度の関数として大幅に変化する。燃料効率は、エンジンがその全出力状態又はそれに近いレベルで且つ安定した速度で作動しているときに最も高い。燃料効率は、エンジンを減少出力で作動させると減少する。かかるエンジンの多くの用途では、出力を大部分の時間にわたり減少させることが必要である。これは自動車用エンジンの場合に最も顕著である。自動車用エンジンは、時々高出力期間をもたらすよう設計されている。これは例えば、車両を高速道路に入る車線(オンランプ)上又は他の車両の追い越しの際に加速するために又は速度を上り坂で維持するために必要である。出力の減少は、車両が安定した速度でフリーウェイ又はハイウェイ上を走行しているとき又は交通状態によって減速する場合に行われる。出力は、エンジンがアイドリングの状態で車両を一時的に停車させた場合にゼロになる。
これら要因の実際的な結果は、大抵の従来型自動車用エンジンは、大部分の時間にわたり減少した燃焼効率で作動するということである。これにより、運転費が増大し、非生産的なことには燃料資源が消費され、環境中への大気汚染物の放出を減少させようという技術的努力に悪影響が生じる。
この問題の原因の1つは、典型的な自動車用エンジンが全出力で又はこれに近い状態で作動しているときに最適性能をもたらす低圧縮比を有するようにエンジンが設計されていることにある。圧縮比がこれよりも高いと、エンジンが減少出力で作動されているときの期間の間効率が高いが、従来型エンジンでは、高い圧縮比により非常に迅速に燃料の燃焼が生じ、その結果、エンジンが最大出力状態又はそれに近い状態で作動しなければならない時点でデトネーション又は「ノッキング」が生じる。燃料のデトネーションは、エンジンコンポーネントを極度に傷め、望ましくない騒音を生じさせ、しかもエンジン効率を劇的に減少させる。
エンジン負荷の関数として変化する圧縮比を有するようエンジンを設計することにより一層効率的な全体的作動を実現できることがこれまで知られている。圧縮比は、負荷が軽い場合、高いものであるのがよい。というのは、その条件下においてはデトネーションが問題とならないからである。アトキンソンサイクルで作動するエンジンでは、シリンダ内のパワーピストンの運動長さを変化させて吸入行程が出力又は膨張行程よりも非常に短くなるようにする機構が設けられている。従来型エンジンの中には、パワーピストンシリンダと連通した室内で往復動する補助ピストンを有するものがある。補助ピストンの運動は、エンジン負荷の変化に応答して圧縮比を変化させる。補助ピストンは、燃焼室内で相当広いスペースを占めている。このために、吸入弁及び排気弁を最適呼吸容量に望ましい大きさよりも小型にする必要がある。これら従来型のエンジンは、嵩張った追加のコンポーネントを必要とし、かかる嵩張った追加のコンポーネントは、エンジンを実質的に複雑にすると共に迅速な摩耗を非常に生じ易い。
ミラーサイクルタイプのエンジンも又、出力の関数として圧縮比を変化させるので上述の問題を生じない。ミラーサイクルエンジンでは、シリンダの有効容積は、パワーピストンの位置に対する燃料吸入弁の閉鎖のタイミングを変えることにより変化する。例えば、燃料吸入弁の閉鎖を、ピストンの吸入行程の完了後まで遅延させるのがよく、その後圧縮行程が開始する。かくして、燃料チャージの実際の圧縮は、ピストンの圧縮行程運動が開始した後幾らか時間が経つまで開始しない。これにより、燃料吸入弁の閉鎖の遅延のタイミングにより決定される量だけ圧縮比が減少する。吸入弁作動機構は、エンジン出力を増大させる場合に遅延時間を増大させ、出力を減少させ、それにより出力が出力範囲を通じてより効率的な作動を行うために必要に応じて圧縮比を変化させる場合に遅延時間を減少させる。
従来型ミラーサイクルエンジンの上述の作動モードでは、燃焼室の有効サイズが比較的小さいことが必要である。その結果、燃料の比較的僅かなチャージを燃焼が始まる時期に通常の高い圧力に圧縮する。次の出力行程は、全シリンダ容積を利用する。この結果、出力行程中、非常に高い膨張比が生じ、それによりエンジンは、所与の燃料チャージから多くの仕事を取り出すことができる。これまで、この利点にもかかわらず、結果的にミラーサイクルエンジンは自動車において大々的には使用されていなかった。というのは、シリンダ容積に対する燃焼室の小さな有効サイズにより、従来型エンジンが1リットルのピストン押退け量当たりの出力が低くなるからである。
また、従来型ミラーサイクルエンジンの燃料吸入弁及び弁作動機構は、燃料効率に悪影響を及ぼす他の問題を解決するように設計されているわけではない。例えば、オペレータは、従来型エンジンの速度及び出力を絞り弁で制御し、この絞り弁は、空気と燃料の流路内に位置している。エンジンは、絞り弁により形成された流路絞り部を通って混合気を引き入れるために出力を消費しなければならない。この絞り損失は、絞り弁を通る流量と、弁の上流側と下流側との間の圧力差の積の関数である。絞り損失は、エンジンが最大出力で動作しているときに最小である。というのは、完全開放状態の弁前後の圧力差が最小だからである。絞り損失は又、エンジンがアイドリング速度で又はそれに近い状態で作動しているときに最小である。というのは、弁を通る流量がその時期では最小だからである。絞り損失は、エンジンの出力範囲の中間領域で実質的に上昇し、エンジン出力の30%という高い割合を消費させる場合がある。上記において指摘したように、自動車用エンジンは、この中間出力領域内で時間の大部分にわたって作動する。絞り弁及びそれに付随する絞り損失を無くすと、エンジンの燃料効率が実質的に増大する。
従来型エンジンのは、著しい追加の絞り損失を生じさせる。これは、燃料吸入弁が例えば今日のエンジンに設けられているばね押しポペット弁である場合に特に顕著である。ポペット弁は、弁の初期開放段階及び弁の最終閉鎖段階で燃料と空気の混合気の流路中に非常に大きな絞りを生じさせる。ポペット弁の開放は、開放段階の開始時には瞬間的に静止状態にあるので望ましくないことに緩やかである。弁の閉鎖も又、その期間中、静止状態にならなければならないので望ましくないことに緩やかである。吸入弁のところでのこの追加の絞り損失を減少させると、エンジンの燃料効率が一段と高まる。
大抵のエンジンは、ピストンの圧縮行程の最終段階の際、スキッシュ効果と呼ばれている状態を生じさせるよう設計されている。スパークプラグは、シリンダヘッド表面に設けられていて、燃焼室の頂部を形成する多かれ少なかれ心出しされた凹部内へ延びている。スキッシュ領域と呼ばれているシリンダヘッド表面の他の部分は、パワーピストンが上死点位置に達しているときパワーピストンに対して非常に密な接近関係をなす。これは、非常に圧縮され且つ加熱された燃料と空気の混合気を迅速且つ乱流動作でスパークプラグに向かって駆動することにより燃料燃焼プロセスを促進させる。燃焼プロセスを促進させることにより、出力が高められ、燃料デトネーションを回避することにより燃料効率が向上する。デトネーションは、非常に圧縮された燃料チャージの未燃部分が点火温度に達し、前進している火炎前面により点火される。燃料チャージの激しい全燃焼が生じ、瞬時に可聴「ノック」を生じさせる。
従来型エンジンは、高負荷時での燃焼ランブルを回避するために低負荷及び中程度負荷では望ましい大きさよりも小さなスキッシュ領域を有している。燃焼ランブルは、燃料チャージの燃焼が早すぎる場合に生じ、燃焼が瞬時ではないという点においてデトネーションとは異なっている。しかしながら、これは、過剰の負荷をエンジン軸受に加えるのに足るほど早く、ガス乱流は、冷却系統に多すぎるほどの熱を伝えるほど高い。伝えられる熱は、膨張プロセスにおいて有用な仕事に変換はできない損失エネルギである。
本発明は、上述の問題を解決することを目的としている。
一特徴では、本発明は、エンジンクランクシャフトに結合された状態でエンジンシリンダ内で往復動する少なくとも1つのパワーピストンを有する内燃機関(エンジン)を提供する。燃料吸入弁システムが、エンジンシリンダ内へ開口した出口端部を備えるスリーブを有すると共にスリーブの側壁に設けられた少なくとも1つの燃料入口ポートを有する。弁ピストンが、スリーブ内を軸方向に延びる移動経路に沿って動くことができ、弁ピストンは、入口ポートが出口端部と次第に連通する開放位置を通って出口端部から遠ざかったり、入口ポートから出口端部への燃料の流れが弁ピストンによって遮断される閉鎖位置へ出口端部に向かって近づくことができる。弁アクチュエータが、弁ピストンに相互連結されていて、カムシャフトの回転に応答して弁ピストンを開放位置と閉鎖位置との間で周期的に移動させる第1のグループをなすコンポーネントを有する。弁アクチュエータは、弁ピストンに相互連結されていて、加速制御装置の出力増大運動に応答して移動経路をシフトさせて出口端部から遠ざけたり、加速制御装置の出力減少運動に応答して移動経路をシフトさせて出口端部に近づける第2のグループをなすコンポーネントを更に有する。
別の特徴では、本発明は、エンジンシリンダ内で往復動する少なくとも1つの主又はパワーピストン、燃料をエンジンシリンダに導入する燃料吸入弁及びエンジンの出力を増大させるよう一方向に動いたりエンジンの出力を減少させるよう逆方向に動くことができる加速制御装置を有する内燃機関(エンジン)を提供する。燃料吸入弁は、エンジンシリンダに開口した出口端部を備えた弁室を有すると共に弁室の出口端部から遠くに間隔を置いた位置で弁室の側壁に設けられた少なくとも1つの燃料入口ポートを有するピストン弁である。吸入弁は、弁室内に設けられていて、弁室の出口端部に近づいたりこれから遠ざかることができる弁ピストンを有する。弁ピストンは、入口ポートを通る燃料の流れがピストンによって次第に絞られる第1の弁位置範囲を有し、入口ポートを通る燃料の流れがピストンによって完全に遮断され、ピストンが弁室の出口端部に次第に近づくようになる第2の弁位置範囲を更に有する移動経路に沿って動くことができる。弁ピストンに結合された弁作動コンポーネントが、弁ピストンをパワーピストンの燃料を吸入行程中、第1の範囲の弁位置内に位置決めし、エンジン作動サイクルの他の段階では弁ピストンを第2の範囲の弁位置内に位置決めする第1のグループをなすコンポーネントを含む。弁作動コンポーネントは、弁ピストンの移動経路をエンジン加速制御装置の運動に応答してシフトさせる第2のグループをなすコンポーネントを更に含み、移動経路は、一方向における加速制御装置の運動に応答して弁室の出口端部から遠ざかったり逆方向における加速制御装置の運動に応答して出口端部に近づく。
更に別の特徴では、本発明は、エンジンシリンダ内で往復動する少なくとも1つのパワーピストンを有すると共にエンジンの出力を増大させるよう第1の方向に動いたりエンジンの出力を減少させるよう逆方向に動くことができる加速制御装置を有する内燃機関(エンジン)用の燃料吸入弁システムを提供する。燃料吸入弁は、エンジンシリンダ内へ開口した出口端部を備える弁室を有すると共に出口端部から遠くに間隔を置いた室内の位置に燃料入口ポートを有する。燃料吸入弁は、室内に設けられていて、室の出口端部に向かって延びる移動経路に沿って動くことができる弁ピストンを更に有し、弁ピストンは、入口ポートから出口端部まで次第に大きくなる流路をもたらす開放位置を通って出口端部から遠ざかることができ、弁ピストンは、入口ポートから出口端部への燃料の流れが弁ピストンによって遮断され、弁ピストンが出口端部に次第に近づくようになった閉鎖位置まで出口端部に近づくことができる。燃料吸入弁システムは、弁ピストンを入口ポートからエンジンシリンダへの燃料の流れを可能にする開放位置と燃料の流れが遮断される閉鎖位置との間で周期的に動かす第1の弁アクチュエータ手段を有する。第2の弁アクチュエータ手段が、一方向における加速制御装置の運動に応答してピストンの移動経路を出口端部から遠ざけたり逆方向における加速制御装置の運動に応答して弁ピストンの移動経路を出口端部に近づける。
本発明は、エンジン出力の全範囲を通じて高い燃料効率をもたらすよう幾つかのエンジン作動特性を変える吸入弁構造及び弁作動コンポーネントを提供する。燃料吸入弁は、エンジンの出力又は速度を変化させるよう混合気の流量を制御する。これにより、絞り弁が不要になり、しかもそれに付随する出力損失が無くなる。吸入弁は又、エンジン負荷の全範囲を通じて高い燃料効率をもたらすようエンジンシリンダ内の圧縮比及び膨張比をエンジン負荷の関数として変化させるよう作用する。好ましい形態では、吸入弁は又、性能を一段と最適化するようエンジン負荷の変化に応答してエンジンシリンダの頂部のところの有効スキッシュ領域を変化させる。
本発明は、以下に説明する他の利点をも奏する。本発明の内容はその別の目的及び利点と共に、本発明の以下の詳細な説明及び添付の図面を参照すると一段と理解できる。
図面の図1は、単一のエンジンシリンダ13の付近に位置する内燃機関12のエンジンブロック11の一部を示している。断面の図2は、図1の2−2線矢視断面図であり、この2−2線は、燃料吸入弁14及び排気弁16の構造を良好に示すためにエンジンブロック11を横切って斜めに引かれており、燃料吸入弁及び排気弁は、エンジンブロックを通る横断方向線上ではなく、傾斜した線2−2上に心出しされた場所でシリンダ13の頂部まで延びている。
図面の図2及び図3を参照すると、本発明は、1以上のシリンダ13を有する内燃機関12に適用でき、シリンダ13内では、パワーピストン17が往復動し、シリンダは、パワーピストンが燃料吸入又は吸気行程、圧縮行程、膨張行程及び排気行程を繰り返し行う4行程サイクルで動作する。この種のエンジン12は、各シリンダ13のヘッドエンド18のところに1以上の燃料吸入又は吸気弁14及び1以上の排気弁16を有している。本発明のこの最初の実施形態は、各シリンダ13のところに単一の吸入弁14及び単一の排気弁16を有している。吸入弁14及び排気弁16は、シリンダヘッド部材19内で延び、このシリンダヘッド部材19は、エンジンブロック11に固定されており、ヘッドガスケット21が、ヘッド部材とエンジンブロックとの間に設けられている。ヘッド部材19及びエンジンブロック11は、流体冷却剤を公知の方法で循環させる内部通路22を有している。
排気弁16は、円形ヘッド23を有する従来型ポペットタイプのものであってよく、ステム24が、この円形ヘッドからシリンダヘッド部材19に設けられた凹部26内へ上方に延びている。円形ヘッド23は、ヘッド部材に設けられた排ガス流れ通路28の端部のところでヘッド部材19の下面に設けられた同形の円形弁座27に嵌合している。凹部26内に納められた圧縮ばね29が、排気弁16を弁の閉鎖位置に付勢している。後で説明する弁アクチュエータ機構は、パワーピストン17の排気行程中、排気弁16を一時的に開く。
代表的には、これ又ポペット弁タイプのものである従来型燃料吸入弁が、パワーピストンの吸入行程中、燃料と空気の混合気をエンジンシリンダ内へ導入するよう開き、エンジン作動サイクルの他の段階では、燃料の流入を遮断するよう閉じる。本発明の燃料吸入弁14は、従来必要とされている別々のコンポーネントを有する他の機能をも実行するピストンタイプの弁である。吸入弁14は、エンジン12の出力を制御するよう燃料の流入量を変化させ、それにより従来型絞り弁を不要にすると共にそれに伴う出力損失を無くす。吸入弁14は又、シリンダ13のところの圧縮比をエンジン出力の関数として変化させて出力の全範囲を通じて燃料効率を最適化する。吸入弁14は又、最小又はほぼ最小の出力時にシリンダ13の燃焼室内のスキッシュ領域を増大させて燃料消費を促進させたりこれよりも高い出力時にスキッシュ領域を減少させて過度に迅速な燃料消費を回避させると共にその副作用、例えば燃焼ランブルを無くす。
ヘッド部材19は、シリンダ13の頂部のところに位置した燃焼室延長凹部31を有している。燃料吸入弁14は一部が、ヘッド部材19内へ延びる中空円筒形スリーブ32によって形成され、このスリーブ32は、凹部31内へ開口した下端部又は出口端部33を有している。スリーブ32は、シリンダ13の中心軸線34に対し傾斜しており、中心軸線13から側方へずれていて、排気弁16及び凹部31のところでの従来型スパークプラグ36(図3参照)のスペースを提供している。スリーブ32の傾斜のために、出口端部33も又傾斜した状態で、凹部31の底部から凹部の頂部まで延びている。
スリーブ32の側壁に互いに間隔を置いて設けられた燃料入口ポート37が、スリーブの出口端部33から等距離のところに位置している。ポート37は、エンジンヘッド部材19の混合気入口通路38内に位置しており、この混合気入口通路38は、混合気を気化器又は燃料噴射器及び空気マニホルドから従来方法で受け入れる。
吸入弁14は、スリーブ32内に設けられていて、スリーブの内径と一致した直径の円筒形弁ピストン39を更に有している。弁ピストン39は、リンクロッド41によりスリーブ32内で軸方向に動くことができ、リンクロッド41は、リストピン42によって弁ピストンの上端部に装着されている。リンクロッド41は、以下に説明する弁アクチュエータ機構に連結されている。上ピストンリング43及び下ピストンリング44がそれぞれ弁ピストン39を包囲していて、スリーブ32とピストンとの間に密封状態を生じさせている。上ピストンリング43は、弁ピストンの移動の全ての段階において燃料入口ポート37の上方に存在したままの弁ピストン39上の位置にある。弁ピストンをその最も下の位置からその最も上の位置まで上昇させているとき、下ピストンリング44は、燃料入口ポート37の下の位置と燃料入口ポートの僅かに上の位置との間で移動する。
エンジンが最小出力又はほぼ最小の出力で作動しているときのスキッシュ効果を高めるため、弁ピストン39の下端部46は、弁ピストンがスリーブ32内のその最も下の位置又はその近くの位置にあるとき、凹部31内に突出するように形作られている。弁ピストン39の下端部の平らな部分47は、エンジンパワーピストン17の頂部と平行な関係をなして延び、弁ピストンがその移動の最下限にあるとき、エンジンヘッド部材19の下面と面一をなす。
特に図3を参照すると、弁ピストンの下端部46の平らな部分47は、この例では、長円形のものであり、弁ピストンの下端部を横切って部分的にしか延びておらず、下端部の他の部分48は、平らな部分によって切頭された円錐形表面である。平らな部分47は、弁ピストン39がその移動の最下限にあるとき、傾斜弁スリーブ32の出口端部33上の最も下の箇所から延びている。
エンジンヘッド部材19の燃焼室延長部31は、エンジンヘッド部材19の平らな下面のスキッシュ領域部分49がエンジンシリンダ13の頂部の一部上に延びているとき、非円形の形状を呈する。弁ピストン39の平らな部分47は、エンジンが最小出力又はほぼ最小出力で動作しているときに生じる移動の最下源又はその近くに弁ピストンが位置しているとき、追加のスキッシュ領域として機能する。平らな領域47は、エンジンが最大出力又はほぼ最大出力状態で作動しているとき、スリーブ32の出口端部33まで完全には移動せず、その状態下では、追加のスキッシュ効果を発揮しない。
略図である図4は、吸入弁14とエンジン12の他のコンポーネントとの相互連結部を示している。上述したように弁ピストン39に装着されているリンクロッド31は、弁アクチュエータ51に結合され、この弁アクチュエータ51は、弁ピストンをスリーブ32内で軸方向に延びる移動経路52に沿って動かす。弁アクチュエータ51の適当な詳細構造について以下に説明する。弁アクチュエータ51は、エンジンカムシャフト53の回転に応答して、吸入弁14を開閉する。カムシャフト53は、従来通りベルト又は歯車装置によってエンジンクランクシャフト54により回転し、クランクシャフトの速度の1/2で回転する。連結ロッド56がこれ又従来方式でパワーピストン17をクランクシャフト54のオフセンタクランク部分57に結合している。弁アクチュエータ51は、弁ピストン39の移動経路52,52a,52bをエンジンシリンダ13から外方にシフトさせると共にエンジン加速制御装置58の出力増大運動に応答して移動経路を短くしたり、移動経路をエンジンシリンダ13に向かって前進させると共に加速制御装置58の出力減少運動に応答して移動経路を長くする。
車両中の加速制御装置58は代表的には、足踏み式の加速ペダル59である。加速制御装置58の動作は、所望ならば機械的リンク装置により弁アクチュエータ51に伝達できるが、好ましくは、力増大サーボモータ62が、ペダル動作に応答して弁アクチュエータ51を調整する。この例では、電気式電位差計61は、ペダル58によって作動され、電圧をサーボモータ制御装置60に送り、この電圧は、ペダルの位置の変化に応答して変化する。サーボモータ62は、以下に説明する方法で弁アクチュエータ51を調節することにより応動する。
吸入行程の初めでは、パワーピストン17は、シリンダ13内のその上死点位置にあり、クランクシャフト54は、その回転における0゜位置と呼ばれる位置にある。カムシャフト53の回転に応答して、弁アクチュエータ51は、エンジンピストン17の各吸入行程の開始時又はその近くにおいて吸入弁14を開く、エンジンの出力は、吸入弁14の閉鎖を加速ペダル59の位置により決定される期間の間遅らせることにより制御される。加速ペダル59の出力増大運動により、吸入弁14の閉鎖をクランクシャフト54の回転の後の段階に至るまで遅らせる。加速ペダル59の出力減少運動により、クランクシャフト54の回転中、吸入弁14が開いたままである期間を短くする。これにより、エンジンピストン17の吸入行程中にシリンダ13に導入される混合気の量が変化し、それにより加速ペダル59の操作に応答してエンジンの出力又は速度が変化する。
図5〜図8は、半径方向線IOがエンジンクランクシャフトの回転に対して弁の開放のタイミングを「゜(度)」で指示する吸入弁開閉時期表示円の略図である。半径方向線ICは、吸入弁閉鎖のタイミングを示している。破線で示す半径方向線は、弁の開放間隔の中点を示している。半径方向線TDCは、エンジンのパワーピストン17がその上死点位置にあるクランクシャフト54の0゜位置を示し、半径方向線BDCは、下死点位置を示している。 比較目的のため、図5は、ポペットタイプの代表的な従来型吸入弁の吸入弁開閉時期を示している。この種の弁の開放は、弁が開き始めるときは静止しており、慣性が開放に抵抗するので比較的ゆるやかである。閉鎖も又、弁の動作が弁を静止状態に戻すためにゆっくりなので比較的ゆるやかである。ポペット吸入弁の開放は代表的には、上死点前の約20゜で始まり、下死点後の約55゜で終わる。この長い開放期間により、高出力時に良好な燃料効率が得られるが、低出力時には効率が減少する。低出力時において、エンジンピストンはその出力レベルで必要な量よりも多い混合気を引き込み、その一部をシリンダ中で実際の圧縮が始まる前に吸入弁を通って送り戻す。本発明は、吸入弁の開閉のタイミングをエンジン負荷の関数として変化させて全出力範囲を通じて高い効率をもたらす。
例えば、図6は、本発明の例における最小出力時の吸入弁のタイミングを示している。吸入弁は、エンジンピストンの上死点位置で開き、クランクシャフトをほんの50゜回転させると閉じる。図7は、中ぐらいのエンジン速度、例えば全出力の10〜15%における同一吸入弁のタイミングを示している。この弁は、エンジンパワーピストンの上死点位置で依然として開くが、クランクシャフトの85゜の回転後、閉じる。図8は、エンジンが全出力で作動しているとき、同一の吸入弁のタイミングを示している。この弁は今や、エンジンピストンの上死点位置前の約10゜で開かれ、クランクシャフトの230゜の回転後、閉じる。かくして、この弁は、開放期間の持続時間が出力を増大させるにつれて次第に増加している間、パワーピストンの上死点のところ又はその近くでは常時開いている。図6、図7及び図8の破線の半径方向線で示す弁の開放持続時間の中点は、出力を増大させているとき、パワーピストン移動の漸次後の段階で生じる。
低出力時に吸入弁を早期に閉じると、下降中のエンジンパワーピストンがエネルギを消費し、それにより吸入行程の最終段階中、エンジンシリンダ中に部分真空を生じさせる。これにより、消費したエネルギを後の圧縮行程の初期段階中に回収するので出力損失が全く生じない。部分真空は、エンジンピストンを圧縮行程の初期段階中、上方に引き上げる。
図9は、図6、図7及び図8に示す3つの互いに異なる動作条件下における吸入弁の燃料入口ポートの開閉の度合い及び持続時間の変化を示すグラフ図である。図9の曲線63は、図6のタイミング表示円の最小出力条件中における燃料入口ポートの下縁部の上方における吸入弁ピストンの移動を示している。図9の曲線64は、図7のタイミング表示円の中間出力条件中における吸入弁ピストンの移動を示している。図9の曲線66は、図8の全出力動作条件下における入口ポートに対する弁ピストン移動を示している。図9の曲線63,64,66の下且つ水平ゼロ上昇線の面積は、3つの互いに異なる動作条件下における吸入弁の呼吸能力に比例している。再び図4を参照すると、弁アクチュエータ51は、加速ペダル59の出力増大運動に応答して弁ピストン39の移動経路52をシリンダから外方に移動させたりペダルの出力減少運動に応答して移動経路をシリンダに向かって移動させる。移動経路52は又、シリンダ13から遠ざかるにつれて短くされ、シリンダに近づくにつれ長くなる。これらの動作により、エンジンシリンダ13内における有効圧縮比及び膨張比が変化する。最大出力中における吸入弁14の閉鎖位置では弁ピストン39は、図4に実線で示す位置にある。弁ピストン39は、弁スリーブ32の出口端部33から遠くに間隔を置いて位置する。弁ピストン39の下に位置するスリーブ32の下方領域67は、実際にはエンジンシリンダ13の燃焼室の延長部である。その結果、シリンダ13内の圧縮比は、比較的小さい。弁ピストン39の移動経路52の上述した運動及び延長のため、弁ピストンは、弁が閉鎖状態にあり、エンジンが最小出力で作動しているとき、図4の破線39aによって指示される位置にある。この条件下においては、弁ピストン39は、スリーブ32の下方領域67を満たし、シリンダ13内の圧縮比は最大化される。弁の閉鎖位置でのスリーブ32内の弁ピストン39の位置は、出力を増大させるにつれて次第に上昇し、出力を減少させるにつれて次第に下降する。これにより、圧縮比の漸次変化が生じ、それにより全出力範囲を通じて燃料効率が最適化される。
エンジン12の性能を最適化できるかどうかは、エンジンパワーピストン17の直径及びパワーピストンの行程の長さに対する吸入弁14の種々のコンポーネントの比率にかかっている。重要なパラメータは、図10及び図11に示されている。図11に文字Dによって指示されている本発明のこの例における弁ピストン39の直径は、エンジンパワーピストンの直径の約54%である。これにより、車両エンジン区画室のフードの下に収容できるよう適当に寸法決めされた弁アクチュエータ機構を用いながら圧縮比を上述した方法で変化させるに十分な燃焼室の容積変化が可能になる。最小出力時における弁ピストン39の閉鎖位置と、最大出力時における閉鎖位置との間の距離(この距離は、図10では文字Aによって指示されている)は、エンジンパワーピストンの行程の24%である。文字Bによって指示されているスリーブ32の出口端部33からの燃料入口ポート37の下縁部の離隔距離は、パワーピストン行程の31%である。これにより、文字Lによって指示された最小重なり距離が生じ、この重なり距離は、エンジンが最大出力で作動している状態で吸入弁を閉じたときに弁ピストン39が入口ポート37の下に延びる距離である。重なり距離Lは、その条件下においては、パワーピストン行程の7%であり、エンジンの出力を減少させると増大する。最小出力時における弁ピストン39の移動距離は、エンジンがアイドリング速度で作動した状態を保つのに十分な混合気を導入するためにBよりも僅かに大きい。文字Cは、燃料入口ポート37の高さを指示している。最大出力時における弁ピストン39の延長移動経路は、L+Cよりも僅かに大きい。
吸入弁14を通って導入される混合気の量と弁の閉鎖位置における種々の圧縮比とのマッチングは、燃料入口ポート37の形状を変えることにより微調整できる。本発明のこの例における燃料入口ポート37は、矩形の形をしている。図12は、各入口ポート37が頂部のところで広く、ポートの底部に向かって次第に狭くなる第1の変形例を示している。これにより、弁ピストン運動に応答する弁14内への流路の寸法の変化が得られ、かかる変化は、低い出力時よりも高い出力時において大々的である。図13は、ポート37が底部のところよりも頂部のところの方が狭いポート37の別の変形例を示している。これにより、高い出力時に弁ピストン運動により生じる流路の寸法の変化の度合いは、低い出力時における変化よりも小さい。
再び図10及び図11を参照すると、弁スリーブ32の出口端部33は、スリーブの下方領域67のガスの出入りを助ける円錐形ベベル68を有している。出口端部33の最も下の部分のところの小さな平坦ゾーン69は、エンジンヘッド部材の下面と面一をなすと共に弁ピストンがその最も下の位置にあるとき、弁ピストン39の底部のところのスキッシュ促進平坦領域47と面一をなすよう差し向けられている。かくして、スリーブ32それ自体は、エンジンシリンダ内へは突き出ていない。
再び図4を参照すると、上述したような比率のピストンタイプの吸入弁14は、シリンダ13内の圧縮比を最大出力時の9:1と最小出力時の19:1との間で変化させる。この範囲は、レギュラーの無鉛ガソリン燃料で作動する0.55リットルシリンダに適している。弁の比率を変化させると、他のエンジンに適した他の範囲の圧縮比にすることができる。
弁ピストン39を上述したように移動させる弁アクチュエータ51は好ましくは、図14及び図15に示す比較的コンパクトで摩耗に強い形態のものである。ただし、他の機構も又、それと同等な作用を果たすことができる。図14は、エンジン12を吸入弁14が直立して見えるような傾斜向きで示している。というのは、このようにすると、弁アクチュエータ51の作動の理解が容易になるからである。
図14と図15を併せて参照すると、吸入弁14のリンクロッド41は、第1のピボットピン72によって山形ベルクランク71の一方のアームに装着されている。ベルクランク71は、第2のピボットピン74によって山形繋留クレビス73に結合されている。繋留クレビス73は、固定アンカフレーム組立体76内へ上方に延び、アンカフレーム組立体に対して動くことができる。エンジンの出力は、クレビス73を吸入弁14から更に外方に動かすことによって増大し、クレビスを吸入弁に近付けることにより減少する。クレビス73は、アンカフレーム組立体76内に延びるパワー制御ラック77の並進によりこのように動く。図14及び図16を参照すると、ラック77は、アンカフレーム部材79に形成された軌道スロット78内で移動し、フレーム部材に固定されたリテーナ81によって定位置に保持される。ラック77は、繋留クレビス73に設けられた同形のスロット83内へ延びるランプ又は傾斜突起82を有し、この突起とスロットは、ラックの移動方向に対し傾けられている。かくして、ラック77を一方の方向に移動させると、クレビス73は吸入弁14に近づき、ラックを逆方向に移動させると、クレビスは吸入弁から一段と外方に引き離される。
特に図16を参照すると、ラック77は、上述のサーボモータ62により出力を変化させるよう並進される。雄ねじ付き親ねじ84が、ラック77からサーボモータ62内へ延びていて、サーボモータのロータのところに設けられた雌ねじ付き継手86に係合している。図16に示すラック77は、3つのエンジンシリンダのところの3つの燃料吸入弁を同時に制御するために3つの傾斜した傾斜突起82を有している。種々のエンジン設計は、エンジンシリンダ列中に種々の数のシリンダを有し、かくして、ラック77は、別の数の傾斜突起82を有してもよい。
再び図14及び図15を参照すると、弁ピストン39は、カムフォロア組立体87により吸入弁14を開閉するよう上下に動かされ、このカムフォロア組立体87は、可動リンク88のシステムにより繋留クレビス73とベルクランク71の両方に結合されると共にエンジンカムシャフト53のところに設けられている。図17及び図18を参照すると、カムフォロア組立体が設けられているカムシャフト53の部分は、第1のカム89を備え、この第1のカム89は、円形溝92によって第2のカム91から間隔を置いて位置している。潤滑油をカムシャフト53に設けられた軸方向通路90を介して溝92内に差し向けるのがよく、この軸方向通路90は、溝92の底部に位置する開口部93を有している。カムシャフト53に取り付けられた追加のカム94は、ロッカーレバー95を従来方法で回動させてエンジンパワーピストンの排気行程中、排気弁16を開く。
第1のカム89は、カムシャフト53の軸線から一段と外方に延びるサイクロイドローブ領域100と連続した一定直径のヒール領域96を有している。本発明のこの特定の例では、ヒール領域96の直径は、1.562インチ(3.967cm)であり、ローブ領域100は、カムシャフト53の軸線から更に0.35インチ(8.89mm)遠ざかって延びている。第2のカム91は、第1のカム89のプロフィールと数学的に逆のプロフィールを有している。換言すると、第1のカム89は、カムシャフト53の一方の側に位置するカムフォロアを往復動させるよう形作られている。第2のカム91は、カムシャフトの反対側で別のカムフォロアに同一の動作を与えるよう形作られている。
カム89,91のプロフィールは、吸入弁の開放期間の持続時間を定め、所望ならば、これを変更すると開放期間の持続時間を増減させることができる。
図19及び図20を参照すると、カムフォロア組立体87は、矩形のシャトルフレーム102を形成するようボルト101によって互いに接合された2つの直角フレーム部材98を有し、このシャトルフレーム102は、カム89,91相互間に位置し、カムシャフト53に対し直角に延びている。フレーム102は、2つの支承ブロック103によって支持され、これら支承ブロック103は、一緒になった状態で溝92のところでカムシャフト53を包囲していて、長手方向スロット103を有し、フレーム部材98はこの長手方向スロット103に沿って延びている。かくして、シャトルフレーム102をカムシャフト53に直角に延びる方向に並進させることができ、又支承ブロック103と共にカムシャフトに対し斜めに回転させることができる。
シャトルフレーム102の一端部のところに設けられた第1のカムフォロアローラ104が、第1のカム89と接触するよう位置決めされ、フレームの反対側の端部であってフレームの反対側に設けられた第2のカムフォロアローラ106が、第2のカム91に接触する。その結果、カムシャフト53及びカム89,91を回転させると、シャトルフレーム102がカムシャフトに対し直角に延びる方向に前後に周期的に並進する。
再び図14及び図15を参照すると、リンク装置88は、シャトルフレーム102の周期的往復動に応答して吸入弁14の弁ピストン39を弁の開放位置と閉鎖位置との間で動かす。この目的のため、リンク装置88は、レバー107を有し、このレバー107は、第2のカムフォロアローラ106のピボット軸108によりレバーに沿う中間位置がシャトルフレーム102に装着されている。レバー107の下方に延びるアーム109が、ピボット112によってレバー位置決めリンク111の一端部に結合されている。リンク111の他端部は、固定ピン113に回動自在に結合されており、この固定ピン113は、エンジンヘッド部材19から上方に延びる支柱114によって支持されている。レバー107の上方に延びるアーム116は、ピボット118によって運動伝達リンク117の一端部に結合されている。別のピボット119が、運動伝達リンク117の他端部を上述のベルクランク71に結合している。ピボット119は、ピボット74から半径方向にずれており、このピボット74は、ベルクランク71を繋留クレビス73に結合していて、ピボット72から間隔を置いて位置し、このピボット72は、ベルクランクを弁ピストンリンクロッド41に結合している。かくして、カム89,91の回転により得られるシャトルフレーム102の直線往復動は、レバー107及び運動伝達リンク117を介して作用してベルクランク71の傾斜振動を生じさせ、それにより弁ピストン39を上下動させて吸入弁14を開閉する。
ベルクランク71は、上述したようにパワー制御ラック77の運動に応答して上下する。リンク機構88は、カムシャフト53及びカム89,91に対するシャトルフレーム102の角度配向状態を変化させることにより、この垂直運動に合わせて調節を行う。この目的のため、繋留クレビス73は、レバー107に向かって延びるアーム121を有している。コネクタリンク122が、ピボット123によってアーム121の端部に結合されると共にピボット112のところでレバー107の下方アーム109に結合されている。かくして、出力の増大のための繋留クレビス73の上昇は、アーム121、リンク112及びレバー107を介して作用してシャトルフレーム102を図14で見て時計回りに回転させ、クレビスの下降は、フレームを逆方向に回転させる。シャトルフレーム102の角度配向状態の変化は、ベルクランク71の傾斜振動の程度を変化させる。これは、弁ピストン39の行程の長さをエンジン出力の関数として変化させると共に図6〜図8を参照して上述した吸入弁の開閉期間の相対的持続時間の変化を生じさせる。
弁アクチュエータ51のこれらの作用は、図21〜図24に概略的に示されており、これら図は、互いに異なる作動段階でのアクチュエータの種々のコンポーネントの相対的位置を示している。図21〜図24の破線124は、カムシャフト53の回転に起因して生じる第1及び第2のカムフォロアローラ104,106の移動経路を表している。
図21は、吸入弁14が閉じられた状態でエンジンが最小出力で動作しているときのアクチュエータ51の種々のコンポーネントの位置を示している。繋留クレビス73及び弁ピストン39は、これらの最も下の位置にある。弁ピストン39は、弁スリーブ32の下方領域を満たし、最も高い圧縮比を定める。図22は、吸入弁14が開放位置にあり、最小出力状態におけるアクチュエータ51の種々のコンポーネントの位置を示している。繋留クレビス73の位置は、不変のままである。カムシャフト53の回転により、第1のカムフォロアローラ104はカムシャフトから一段と遠ざかっており、第2のカムフォロアローラ106は、カムシャフトに引き寄せられている。その結果、レバー107は、カムシャフト53に向かって回動している。レバーの運動は、リンク117を介して作用してベルクランク71を斜めに回転させている。ベルクランク71の回転により、弁ピストン39は、燃料入口ポート87を通る混合気の最小流入量が得られるほど十分上昇している。
図23は、繋留クレビス73を上昇させて最大出力を生じさせた後における弁14の閉鎖状態における弁アクチュエータ51の種々のコンポーネントの位置を示している。弁ピストン39は、弁スリーブ32の底部までは延びておらず、かくして、圧縮比は、上述したような仕方で減少する。リンク122を介して作用するクレビスアーム121は、ピボット112を固定ピン113上に中心のある円弧に沿って上昇させ、それにより制御レバー107を上昇させ、それにより制御レバー107の角度配向状態を変化させている。これは、レバー107を介して作用してカムシャフト53に対するカムフォロアローラ104,106の移動経路124を時計回りの方向に回転させている。これら変化により、カムフォロアローラ104,106の往復動に応答するレバー107の頂部のところに位置するピボット118の辿る弧状移動経路は、図21及び図22を参照して上述した最小出力条件下における場合よりも短くなる。図24は、最大出力条件下における弁14の開放位置における種々のコンポーネントの位置の変化を示している。図23及び図24の最大出力条件下におけるベルクランク71の傾斜運動、かくして弁ピストン39の垂直行程は、図21及び図22の最小出力条件下における場合よりも短いものであるように見える。
クレビス73を上昇させて出力を増大させているときの弁ピストン39の行程の長さの漸次減少及び弁ピストンの上昇の結果として、図6、図7及び図8を参照して上述した弁14の開閉のタイミングの変化が得られる。
図21と図23を併せて参照すると、上述した弁アクチュエータ機構51の利点は、燃料点火が生じたときに弁ピストン39の受ける唐突な負荷力がリンク装置83及びカム89,91に伝達されないことにある。弁14の閉鎖位置では、ピボット42,72,74は、互いに整列状態にあると共にピストン39の中心線と整列状態にある。その結果、燃料燃焼中にピストン39の底部に加わる大きな負荷力は、リンク装置88によりカム及びカムフォロアに伝達されるのではなく、パワー制御ラック77によって受け止められる。これにより、弁アクチュエータ51のこれらコンポーネントの摩耗が減少する。
弁ピストン39がその行程の頂部に達し方向を逆転させるときにカム及びカムフォロアに作用する負荷力が慣性により生じる。これは、ピストン速度がその時点では大きいので高出力で一層顕著である。高出力状態での弁ピストン39の行程の上述の短縮により慣性力が減少し、それにより弁アクチュエータ機構の摩耗が一段と減少する。高出力時では、吸入弁14は、エンジンの圧縮行程が図8を参照して上述したように始まった後になるまで閉じない。その時点におけるエンジンシリンダ内の上昇中の圧力は、弁ピストンが閉鎖位置に近づいているときに弁ピストン39に対しクッション作用を及ぼす。これにより、その時点においてアクチュエータ機構に及ぼされる力の唐突さの度合いは低い。これらの特徴により、弁アクチュエータ機構51の種々のコンポーネントを軽く比率構成でき、しかもこれらコンポーネントは、中程度の応力を受けた状態で高速で稼働することができる。
再び図2及び図3を参照すると、本発明の上述の例は、各エンジンシリンダ13のところに設けられた単一の吸入弁14及び単一の排気弁16を有している。図25は、各シリンダのところに2つの吸入弁14a及び2つの排気弁16aを有するエンジンのヘッド部材19の下側を示している。弁14a,16aの設計及び作動は、本発明の上述の実施形態の設計及び作動と類似しているのがよく、異なる点は、これら弁が小さな直径のものであるということにあるが、圧縮比の同一の変化が得られる。
4つの弁14a,16bを各シリンダのところに設けることにより、エンジンの複雑さ及び費用が増大するが、或る特定の利点が得られる。例えば、スパークプラグ36aは、シリンダ上のより心出し位置にあってもよく、それにより燃料の迅速且つ一様な燃焼が促進される。ヘッド部材19の下面の燃焼室凹部31aは、シリンダの頂部のところのより広い固定スキッシュ領域49が得られるよう形作られたものであるのがよい。排気弁16は、軽量であってもよく、かくしてエンジンの回転速度に対してもたらす制限の度合いが低い。
本発明を例示の目的で或る特定の実施形態に関して説明したが、多くの設計変更例及び改造例を想到でき、本発明の範囲は、特許請求の範囲に記載された技術的事項によってのみ定められる。
内燃機関(エンジン)のエンジンブロックの一部の平面図であり、エンジンシリンダのうちの1つの中に位置するパワーピストンの頂部を示す図である。 図1の2−2線矢視断面図であり、パワーピストンの上方のヘッド部材内に位置した吸入弁及び排気弁を示す図である。 図2の3−3線矢視断面図であり、エンジンヘッド部材の下面及びヘッド部材の下面まで延びる種々のコンポーネントを示す図である。 図1〜図3のエンジンの追加の種々のコンポーネントを示すと共にこれらコンポーネントの相互作用を示す図である。 従来型ポケットタイプの吸入弁のパワーピストン位置に対する吸入弁の開閉のタイミングを示す吸入弁開閉時期表示円の略図である。 エンジンがアイドリング状態にあり又は最小出力で動作しているときにおける本発明の一例の吸入弁の開閉のタイミングを示す吸入弁開閉時期表示円の略図である。 エンジンがアイドリング状態にあり又は中程度の出力で動作しているときにおける本発明の一例の吸入弁の開閉のタイミングを示す吸入弁開閉時期表示円の略図である。 エンジンが最大出力で動作しているときにおける本発明の一例の吸入弁の開閉のタイミングを示す吸入弁開閉時期表示円の略図である。 最小出力、中程度の出力及び最大出力時におけるエンジンクランクシャフト回転に対する本発明の吸入弁の開閉のタイミングを示すグラフ図であり、種々の出力における吸入弁の開放度の変化を示す図である。 エンジンの吸入弁の縦断面図である。 図10の吸入弁の下面の11−11線矢視図である。 弁ピストン運動に応答して燃料流入量の変化率を変更する吸入弁の燃料入口ポートの形状の第1の変形例を示す図である。 弁ピストン運動に応答して燃料流入量の変化率を逆の仕方で変更する吸入弁の燃料入口ポートの形状の第2の変形例を示す図である。 図1〜図13のエンジンの弁アクチュエータ機構の断面図である。 図14の弁アクチュエータ機構の断面図である。 図14の弁ピストン行程変化組立体の構成部品を良好に示す分解図である。 図1〜図16のエンジンのカムシャフトの一部の側面図である。 図17に示すカムシャフトの一部の端面図である。 図14及び図15の弁アクチュエータ機構の一コンポーネントであるカム作動式シャトル組立体を示す図である。 図19のシャトル組立体の端面図である。 吸入弁が閉じられた状態でエンジンが最小出力で作動しているときの弁アクチュエータ機構の種々のコンポーネントの位置を示す略図である。 吸入弁が開いた状態でエンジンが最小出力で作動しているときの弁アクチュエータ機構の種々のコンポーネントの位置の変化を示す略図である。 吸入弁が閉じられた状態でエンジンが全出力で作動しているときの弁アクチュエータ機構の種々のコンポーネントの位置の変化を示す略図である。 吸入弁が開いた状態でエンジンが全出力で作動しているときの弁アクチュエータ機構の種々のコンポーネントの位置の変化を示す略図である。 2つの吸入弁及び2つの排気弁が各エンジンシリンダのところに設けられている本発明の別の実施形態のヘッド部材の下面の図である。

Claims (21)

  1. 内燃機関であって、
    エンジンシリンダ内を往復動し、エンジンクランクシャフト54に結合された少なくとも1つのパワーピストンと、
    前記クランクシャフトによって回転されるカムシャフトと、
    エンジンの出力を変えるように動かされる加速制御装置とを有し、
    前記エンジンシリンダ内へ開口した出口端部を持つスリーブと、該スリーブの側壁に設けられた少なくとも1つの燃料入口ポートとを備える燃料吸入弁を有し、該燃料吸入弁は、前記スリーブ内を軸方向に延びる移動経路に沿って移動される弁ピストンを更に有し、該弁ピストンは、
    前記入口ポートから前記出口端部まで次第に大きくなる流路をもたらす開放位置を通って前記出口端部から遠ざかるように移動することができ、
    前記入口ポートから前記出口端部への燃料の流れが前記弁ピストンによって遮断される閉鎖位置に、前記出口端部に向かって近づくように移動することができ、
    弁アクチュエータを有し、該弁アクチュエータが、
    前記弁ピストンと相互連結され、前記カムシャフトの回転に応答して前記弁ピストンを開放位置と閉鎖位置との間で周期的に移動させる第1のグループのコンポーネントと、
    前記弁ピストンと相互連結され、前記加速制御装置の出力増大運動に応答して前記移動経路を前記出口端部から遠ざかるようにシフトさせ、前記加速制御装置の出力減少運動に応答して前記移動経路を前記出口端部に近づけるようにシフトさせる第2のグループのコンポーネントとを有する、
    内燃機関。
  2. 前記弁アクチュエータは、リンク装置アンカ部材と、前記リンク装置アンカ部材に枢着されたベルクランクと、前記ベルクランクから前記弁ピストンまで延びていて、前記ベルクランクから前記弁ピストンの各々に枢着されているリンクロッドとを有し、前記第1のグループをなす弁アクチュエータコンポーネントは、前記カムシャフトの回転により2つの位置相互間で往復動するカムフォロアを有し、前記カムフォロアは、前記ベルクランクを前記リンク装置アンカ部材に対して2つの角度の向き相互間で回転させるよう前記ベルクランクに相互連結され、それにより、前記リンクロッドが前記カムシャフトの回転に応答して前記吸入弁を開閉するようになっている、請求項1記載の内燃機関。
  3. 前記ベルクランクは、第1のピボットピンのところで前記リンク装置アンカ部材に締結され、前記リンクロッドは、前記ベルクランクに第2のピボットピンのところで締結され、前記リンクロッドは、第3のピボットピンのところで前記弁ピストンに締結され、前記第1、第2及び第3のピボットピンは、互いに整列すると共に吸入弁が閉じられると前記弁ピストンの前記移動経路と整列するよう位置決めされており、前記シリンダ内での燃料燃焼により生じる突然の力が、前記リンク装置アンカ部材によって受け止められ、前記カムフォロアには伝達されない、請求項2記載の内燃機関。
  4. 前記カムフォロアは、前記カムシャフトの互いに反対側の側部に位置する第1及び第2の互いに間隔を置いたカムフォロアローラを支持する並進可能なシャトルを有し、前記シャトルは、第1のシャトル位置から第2のシャトル位置へのシャトル運動に応答して前記燃料吸入弁を開き、前記第2のシャトル位置から第1のシャトル位置へのシャトル運動に応答して前記燃料吸入弁を閉じるよう前記ベルクランクに相互連結されており、前記カムシャフトは、前記第1のカムフォロアローラと接触する第1のローブ付きカム及び前記第2のカムフォロアローラと接触する第2のローブ付きカムを有し、前記第1及び第2のローブ付きカムは、前記カムシャフトの各回転中、前記シャトルを前記第1のシャトル位置から前記第2のシャトル位置に並進させ、そして前記第1のシャトル位置に戻すよう形作られている、請求項2記載の内燃機関。
  5. 前記リンク装置アンカ部材は、前記エンジンの出力を増大させるよう第1の方向に動いたり前記エンジンの出力を減少させるよう逆方向に動くことができ、前記シャトルは、前記カムシャフトの回転中、前記燃料吸入弁の開閉のタイミングを変化させるよう前記カムシャフト回りに回転可能であり、前記第1のグループをなす前記アクチュエータコンポーネントは、前記シャトルを前記リンク装置アンカ部材の出力増大運動に応答して第1の角度方向に回転させたり前記シャトルを前記リンク装置アンカ部材の出力減少運動に応答して逆の角度方向に回転させるよう前記シャトルと前記リンク装置アンカ部材を相互連結するコンポーネントを備える、請求項4記載の内燃機関。
  6. 前記弁アクチュエータは、リンク装置アンカ部材と、前記リンク装置アンカ部材に枢着されたクランク部材と、前記クランク部材のアームから前記弁ピストンまで延びると共に前記クランク部材及び前記弁ピストンの各々に枢着されたリンクロッドとを有し、前記第2のグループをなす前記アクチュエータコンポーネントは、前記エンジンの前記加速制御装置の運動に応答して動く出力制御装置コンポーネントを含み、前記出力制御装置コンポーネントは、前記リンク装置アンカ部材を前記加速制御装置の出力増大運動に応答して前記燃料吸入弁スリーブの前記出口端部から一段と遠ざけたり、前記リンク装置アンカ部材を前記加速制御装置の出力減少運動に応答して前記スリーブの前記出口端部に向かって前進させるように構成されている、請求項1記載の内燃機関。
  7. 前記リンク装置アンカ部材にはスロットが設けられ、前記出力制御装置コンポーネントは、前記リンク装置アンカ部材の前記スロットに沿って延びるランプを含み、前記スロット及び前記ランプは、前記弁ピストンの前記移動経路に対し傾斜しており、前記ランプを第1の方向に動かすと、前記リンク装置アンカ部材は、前記スリーブの前記出口端部から一段と遠ざかり、ランプを逆方向に動かすかと、前記リンク装置アンカ部材は、前記出口端部に向かって前進する、請求項6記載の内燃機関。
  8. 前記出力制御装置コンポーネントに結合されたサーボモータを更に有し、前記サーボモータは、前記エンジンの前記加速制御装置の運動に応答して前記出力制御装置コンポーネントを動かす、請求項6記載の内燃機関。
  9. 前記弁ピストンは、前記吸入弁が閉じられた状態で前記エンジンが最小出力で作動しているとき、弁ピストンの端面を前記スリーブの前記出口端部のところに位置決めするよう比率構成されている、請求項1記載の内燃機関。
  10. 前記弁ピストンの前記端面の第1の部分は、前記端面のところに設けられていて、前記エンジンの前記パワーピストンの頂面と実質的に平行な関係をなして延びる平らな領域である、請求項9記載の内燃機関。
  11. 前記弁ピストンの前記端面の第2の部分は、その前記平らな第1の部分から延び、前記弁ピストンが前記スリーブの前記出口端部のところに位置しているとき、前記パワーピストンの前記頂面から外方に延びるよう傾けられている、請求項10記載の内燃機関。
  12. 前記エンジンの前記パワーピストンは、エンジンブロック内で往復動し、エンジンブロックには、エンジンヘッド部材が固定されており、エンジンヘッド部材は、前記エンジンシリンダの燃焼室延長部を形成する凹部を有し、前記燃料吸入弁は、前記弁スリーブの前記出口端部が前記凹部、前記弁スリーブ及び弁ピストンのところに位置している状態で前記ヘッド部材内を延び、前記弁ピストンの移動経路は、前記エンジンの前記パワーピストンの移動方向に対し傾斜しており、前記弁ピストンは、前記燃料吸入弁が閉じられた状態でエンジンが最小出力で作動しているとき、前記凹部内へ突き出る端部領域を有する、請求項1記載の内燃機関。
  13. 前記弁ピストンの前記端部領域は、前記ピストンに設けられていて、燃料吸入弁が閉じられた状態でエンジンが最小出力で作動しているとき、前記ヘッド部材の底面と実質的に面一をなした関係で延びる平らな領域を有する、請求項12記載の内燃機関。
  14. 前記スリーブの前記側壁の前記燃料入口ポートは、前記スリーブの前記出口端部に最も近接して位置する第1の端部及び前記スリーブの前記出口端部から一段と遠くに位置する反対側の端部を有し、前記燃料入口ポートは、その前記端部の第1のところで最小幅のものであり、その前記第2の端部のところに向かって幅が漸増している、請求項1記載の内燃機関。
  15. 前記スリーブの前記側壁の前記燃料入口ポートは、前記スリーブの前記出口端部に最も近接して位置する第1の端部及び前記スリーブの前記出口端部から一段と遠くに位置する反対側の端部を有し、前記燃料入口ポートは、その前記第1の端部のところで最大幅のものであり、その前記第2の端部のところに向かって幅が漸減している、請求項1記載の内燃機関。
  16. 前記第1及び第2の弁アクチュエータコンポーネントグループのコンポーネントは、前記弁ピストンの前記移動経路が前記スリーブの前記出口端部から遠ざかるにつれて前記移動経路を短くし、前記移動経路が前記スリーブの前記出口端部に近づくにつれて前記移動経路を長くするよう位置決めされている、請求項1記載の内燃機関。
  17. エンジンシリンダ内を往復動する少なくとも1つのパワーピストンと、燃料を前記エンジンシリンダに導入する燃料吸入弁と、エンジンの出力を増大させるように一方の方向に動き、エンジンの出力を減少させるように逆の方向に動くことができる加速制御装置とを有する内燃機関であって、
    前記燃料吸入弁は、前記エンジンシリンダに開口した出口端部を備えた弁室を有するピストン弁であり、該ピストン弁は、前記弁室の前記出口端部から離れるように間隔を隔てられた位置で前記弁室の側壁に設けられた少なくとも1つの燃料入口ポートを有し、
    前記吸入弁は、前記弁室内に設けられ、前記弁室の前記出口端部に近づいたりこれから遠ざかることができる弁ピストンを有し、
    該弁ピストンは、移動経路に沿って動くことができ、該移動経路は、前記入口ポートを通る燃料の流れが前記ピストンによって次第に絞られる第1の弁位置範囲と、前記入口ポートを通る燃料の流れが前記ピストンによって完全に遮断され、前記ピストンが前記弁室の前記出口端部に次第に近づくようになる第2の弁位置範囲を更に有し、
    前記弁ピストンに結合された弁作動コンポーネントを有し、該弁作動コンポーネントは第1のグループをなすコンポーネントを備え、該第1のグループをなすコンポーネントは、前記パワーピストンの燃料吸入行程中は前記弁ピストンを前記第1の範囲の弁位置内に位置決めし、エンジン作動サイクルの他の段階では前記弁ピストンを前記第2の範囲の弁位置内に位置決めし、
    前記弁作動コンポーネントは、前記弁ピストンの前記移動経路を、前記エンジン加速制御装置の運動に応答して、シフトさせる第2のグループをなすコンポーネントを更に備え、
    前記移動経路は、前記一方の方向における前記加速制御装置の運動に応答して前記弁室の前記出口端部から遠ざかり、前記逆の方向における前記加速制御装置の運動に応答して前記出口端部に近づく、
    内燃機関。
  18. エンジンシリンダ内を往復動する少なくとも1つのパワーピストンと、エンジンの出力を増大させるように第1の方向に動き、エンジンの出力を減少させるように逆の方向に動くことができる加速制御装置とを有する内燃機関であって、
    前記エンジンシリンダ内へ開口した出口端部を備える弁室と、出口端部から離れるように間隔を隔てられた、前記室内の位置に設けられた燃料入口ポートとを備える燃料吸入弁を有し、該燃料吸入弁は、前記室内に設けられ、前記室の前記出口端部に向かって延びる移動経路に沿って動くことができる弁ピストンを更に有し、
    該弁ピストンは、前記入口ポートから前記出口端部まで次第に大きくなる流路をもたらす開放位置を通って前記出口端部から遠ざかることができ、
    前記弁ピストンは、前記入口ポートから前記出口端部への燃料の流れが前記弁ピストンによって遮断され、前記弁ピストンが出口端部に次第に近づくようになった閉鎖位置まで前記出口端部に近づくことができ、
    前記弁ピストンを前記入口ポートから前記エンジンシリンダへの燃料の流れを可能にする開放位置と、前記燃料の流れが遮断される閉鎖位置との間で周期的に動かす第1の弁アクチュエータ手段と、
    前記第1の方向における前記加速制御装置の運動に応答して前記ピストンの前記移動経路を前記出口端部から遠ざけ、前記逆の方向における前記加速制御装置の運動に応答して前記弁ピストンの前記移動経路を前記出口端部に近づける第2の弁アクチュエータ手段とを有する、
    内燃機関。
  19. 前記弁アクチュエータ手段は、前記弁ピストンの前記移動経路を前記弁室の前記出口端部から遠ざけるにつれ前記移動経路を短くし、前記移動経路を前記弁室の前記出口端部に近づけるにつれ前記移動経路を長くする、請求項18記載の内燃機関。
  20. 前記エンジンは、前記シリンダを収納したエンジンブロックを有すると共に前記エンジンブロックを覆っているヘッド部材を有し、前記ヘッド部材は、シリンダ燃焼室の延長部を形成する凹部を有し、前記弁アクチュエータ手段は、前記エンジンが最小出力で作動しているとき、前記弁ピストンを前記凹部内へ突き出し、前記エンジンが高出力で作動しているとき、前記弁ピストンを引っ込めて前記凹部から遠ざける、請求項18記載の内燃機関。
  21. 前記弁ピストンは、前記エンジンシリンダに向いた端面を有し、前記端面は、前記エンジンピストンの頂面と実質的に平行な関係をなして延びているスキッシュを促進する平らな領域を有する、請求項20記載の内燃機関。
JP2004509243A 2002-05-31 2003-05-07 内燃機関用弁機構 Expired - Fee Related JP3977374B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38427402P 2002-05-31 2002-05-31
US10/271,996 US6672270B2 (en) 2002-05-31 2002-10-17 Fuel efficient valve mechanism for internal combustion engines
PCT/US2003/014489 WO2003102382A1 (en) 2002-05-31 2003-05-07 Valve mechanism for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005520094A JP2005520094A (ja) 2005-07-07
JP3977374B2 true JP3977374B2 (ja) 2007-09-19

Family

ID=29586490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004509243A Expired - Fee Related JP3977374B2 (ja) 2002-05-31 2003-05-07 内燃機関用弁機構

Country Status (4)

Country Link
US (1) US6672270B2 (ja)
JP (1) JP3977374B2 (ja)
SE (1) SE528953C2 (ja)
WO (1) WO2003102382A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528511B2 (en) 2005-09-23 2013-09-10 Jp Scope, Inc. Variable travel valve apparatus for an internal combustion engine
GB0617726D0 (en) 2006-09-08 2006-10-18 Atalla Naji A Device (modifications) to improve efficiency of internal combustion engines
US8086386B2 (en) * 2007-05-29 2011-12-27 Ab Engine Incorporated High efficiency internal combustion engine
US8291873B2 (en) * 2007-08-06 2012-10-23 Engine Solution Sweden Aktiebolag Valve arrangement for a combustion engine
US20090071434A1 (en) * 2007-09-19 2009-03-19 Macmillan Shaun T Low heat rejection high efficiency internal combustion engine
US7856952B2 (en) * 2007-11-06 2010-12-28 Armer Rollin A Variable compression engine with variable inlet valve timing
KR100969385B1 (ko) * 2008-07-07 2010-07-09 현대자동차주식회사 가변 압축비 장치
JP2010096174A (ja) * 2008-10-14 2010-04-30 Rollin A Armer 可変給気弁タイミングを有する可変圧縮エンジン
JP2019529792A (ja) 2016-09-09 2019-10-17 ジェイピー スコープ インコーポレイテッド 内燃機関の可変変位弁装置
US11092090B1 (en) * 2020-09-30 2021-08-17 GM Global Technology Operations LLC Multilink cranktrains with combined eccentric shaft and camshaft drive system for internal combustion engines
US11136916B1 (en) * 2020-10-06 2021-10-05 Canadavfd Corp (Ltd) Direct torque control, piston engine
CA3189414A1 (fr) * 2021-07-26 2023-02-02 Abdelhakim LIMANE Utilisation d'un fluide comme un piston virtuel de compression secondaire pour un moteur a combustion interne

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137305A (en) * 1979-04-13 1980-10-27 Nissan Motor Co Ltd Valve lift for internal combustion engine
JPS59188056A (ja) * 1983-03-08 1984-10-25 Mazda Motor Corp 可変圧縮比エンジン
WO1991019886A1 (en) * 1990-06-15 1991-12-26 Oliver Wilmot Oakey Camshaft driven piston valve assembly
US5596955A (en) * 1995-10-02 1997-01-28 Szuba; Louis Internal combustion engine

Also Published As

Publication number Publication date
SE0402884D0 (sv) 2004-11-29
SE528953C2 (sv) 2007-03-20
SE0402884L (sv) 2004-11-29
JP2005520094A (ja) 2005-07-07
US20030221652A1 (en) 2003-12-04
US6672270B2 (en) 2004-01-06
WO2003102382A1 (en) 2003-12-11

Similar Documents

Publication Publication Date Title
US6397800B2 (en) Valve control device of internal combustion engine
US6772717B2 (en) Reciprocating piston internal combustion engine
US20060037578A1 (en) Cylinder cutoff control apparatus of internal combustion engine
US20040099244A1 (en) Valve actuating apparatus for internal combustion engine
JP3977374B2 (ja) 内燃機関用弁機構
JP5580480B2 (ja) 6サイクルエンジン
Lenz et al. Variable valve timing—A possibility to control engine load without throttle
JP4024121B2 (ja) 内燃機関の動弁装置
US8418663B2 (en) Cam actuation mechanism with application to a variable-compression internal-combustion engine
US7856952B2 (en) Variable compression engine with variable inlet valve timing
JP2007239553A (ja) 2ストロークエンジン
JPS5810573B2 (ja) 火花点火式内燃機関
US5791307A (en) Variable lift and timing system for valves
JP4604358B2 (ja) 内燃機関及びその制御システム
JPS6213708A (ja) 多気筒内燃機関
JP4968031B2 (ja) エンジン
KR100582140B1 (ko) 내연기관의 밸브메커니즘
WO2000009868A1 (en) Variable lift and timing system for valves
JP2006183482A (ja) 2ストローク内燃機関
JPS6210411A (ja) 内燃機関の吸・排気弁リフト制御装置
JP2006183480A (ja) ユニフロー2ストローク内燃機関
US20190203650A1 (en) Variable stroke internal combustion engine with variable airflow and compression ratio
WO2020229860A1 (ja) 内燃機関
JPH08260925A (ja) エンジンの吸気システム
JPH0295737A (ja) エンジンの燃焼制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees