WO2012176570A1 - Active-energy-ray-curable resin composition, method for producing active-energy-ray-curable resin composition, coating agent, coating film, and film - Google Patents

Active-energy-ray-curable resin composition, method for producing active-energy-ray-curable resin composition, coating agent, coating film, and film Download PDF

Info

Publication number
WO2012176570A1
WO2012176570A1 PCT/JP2012/063018 JP2012063018W WO2012176570A1 WO 2012176570 A1 WO2012176570 A1 WO 2012176570A1 JP 2012063018 W JP2012063018 W JP 2012063018W WO 2012176570 A1 WO2012176570 A1 WO 2012176570A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin composition
fine particles
compound
acrylic polymer
Prior art date
Application number
PCT/JP2012/063018
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 正広
渡邉 英樹
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2012176570A1 publication Critical patent/WO2012176570A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/104Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose

Definitions

  • the present invention provides an active energy ray-curable resin composition that is excellent in storage stability and exhibits a very high surface hardness and transparency of a cured coating film, a paint containing the resin composition, and a coating comprising the paint.
  • the present invention relates to a film and a film having the coating layer.
  • the inorganic fine particle dispersed active energy ray-curable resin composition obtained by dispersing inorganic fine particles in the resin component has a hardened coating film with a higher hardness and refractive index than a resin composition consisting of only organic materials.
  • a resin composition consisting of only organic materials.
  • it has attracted attention as a new material that can be improved in performance and impart new functions, such as adjustment of conductivity and imparting conductivity.
  • There are various uses for such a resin composition for example, when the hard coating film is used as a hard coat agent for protecting the surface of a molded product or a display from scratches, taking advantage of the feature that the cured coating film has high hardness.
  • the hard-coat agent which expresses much superior scratch resistance can be obtained.
  • the resin composition containing inorganic fine particles has the above-described excellent characteristics, the inorganic fine particles are likely to precipitate with time, and have a disadvantage of poor storage stability.
  • silica fine particles having an average particle size of 30 nm and modified with ⁇ -methacryloxypropyltrimethoxysilane are ethoxylated.
  • a resin composition containing a dispersion in rate pentaerythritol tetraacrylate, hexanediol diacrylate, and trioctylmethylammonium bis (trifluoromethanesulfonyl) imide is known (see Patent Document 1).
  • Such a resin composition is excellent in storage stability, since it uses relatively small inorganic fine particles having an average particle diameter of 80 nm or less, it has sufficient performance for the required level of coating film hardness that is increasing more and more recently. It was not obtained.
  • As a method for improving the coating film hardness for example, a method using larger inorganic fine particles having a particle diameter exceeding 80 nm is conceivable. However, when such inorganic fine particles are used, precipitation of the inorganic fine particles over time is possible. In addition to the occurrence of sufficient storage stability, the transparency of the cured coating film was also lowered.
  • the problem to be solved by the present invention is an active energy ray-curable resin composition having excellent surface stability and a very high surface hardness and transparency of a cured coating film, a paint containing the resin composition, It is providing the coating film which consists of this coating material, and the film which has this coating film layer.
  • X acrylic polymer
  • a coating film made of the resin composition is excellent in storage stability and exhibits very high surface hardness and transparency, thereby completing the present invention.
  • the inorganic fine particles (A) having an average particle diameter in the range of 90 to 300 nm, the ionic liquid (B), and the weight average molecular weight (Mw) in the range of 5,000 to 80,000 relates to an active energy ray-curable resin composition comprising an acrylic polymer (X) having a (meth) acryloyl group in a molecular structure as an essential component.
  • the present invention further relates to a method for producing an active energy ray-curable resin composition.
  • the present invention further relates to a paint containing the resin composition.
  • the present invention further relates to a coating film comprising the paint.
  • the present invention further relates to a film having the coating layer.
  • an active energy ray-curable resin composition that is excellent in storage stability and has a cured coating film exhibiting a very high surface hardness and transparency, a paint including the resin composition, and the paint And a film having the coating layer can be provided.
  • the active energy ray-curable resin composition of the present invention has inorganic fine particles (A) having an average particle size in the range of 90 to 300 nm, ionic liquid (B), and weight average molecular weight (Mw) of 5,000 to 80. And an acrylic polymer (X) having a (meth) acryloyl group in the molecular structure as an essential component.
  • the active energy ray-curable resin composition of the present invention contains the inorganic fine particles (A), so that a cured coating film with higher surface hardness can be obtained.
  • the average particle size of the inorganic fine particles (A) is in the range of 90 to 300 nm. When the average particle size is less than 90 nm, the surface hardness of the resulting coating film is reduced, and when the average particle size exceeds 300 nm, the average particle size is obtained.
  • the transparency of the coating film decreases.
  • the average particle diameter is more preferably in the range of 100 to 160 nm in that the hardness and transparency of the obtained coating film can be combined at a higher level.
  • the average particle size of the inorganic fine particles (A) is determined by measuring the particle size in the active energy ray-curable resin composition using a particle size measuring device (“ELSZ-2” manufactured by Otsuka Electronics Co., Ltd.). The value to be measured.
  • ELSZ-2 particle size measuring device manufactured by Otsuka Electronics Co., Ltd.
  • the inorganic fine particles (A) contained in the active energy ray-curable resin composition of the present invention are the resin components contained in the active energy ray-curable resin composition of the present invention, the inorganic fine particles (a) as a raw material, It is obtained by dispersing the acrylic polymer (X) in a resin component having an essential component.
  • the inorganic fine particles (a) include fine particles such as silica, alumina, zirconia, titania, barium titanate, and antimony trioxide. These may be used alone or in combination of two or more.
  • silica fine particles are preferable because they are easily available and easy to handle.
  • examples of the silica fine particles include wet silica fine particles and dry silica fine particles.
  • examples of the wet silica fine particles include silica fine particles obtained by neutralizing sodium silicate with a mineral acid.
  • the average particle size is 90 in that it is easy to adjust the average particle size of the inorganic fine particles (A) in the obtained resin composition to the preferred value. It is preferable to use wet silica fine particles in the range of ⁇ 300 nm.
  • dry silica fine particles examples include silica fine particles obtained by burning silicon tetrachloride in an oxygen or hydrogen flame.
  • the average primary particle size is easy in that the average particle size of the inorganic fine particles (A) in the obtained resin composition can be easily adjusted to the preferred value.
  • secondary particles in which dry silica fine particles in the range of 3 to 100 nm, preferably 5 to 50 nm are aggregated.
  • silica fine particles dry silica fine particles are preferable in that a cured coating film having higher surface hardness can be obtained.
  • functional groups may be introduced on the surface of the inorganic fine particles (a) using various silane coupling agents.
  • a functional group on the surface of the inorganic fine particles (a) By introducing a functional group on the surface of the inorganic fine particles (a), the miscibility with an organic component such as an acrylic polymer (X) having a (meth) acryloyl group in the molecular structure is increased, and the storage stability is improved. To do.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- Glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyl Diethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (amino Til) -3-aminopropyl
  • Styrene-type silane coupling agents such as p-styryltrimethoxysilane
  • Ureido-based silane coupling agents such as 3-ureidopropyltriethoxysilane
  • Chloropropyl silane coupling agents such as 3-chloropropyltrimethoxysilane
  • Sulfide-based silane coupling agents such as bis (triethoxysilylpropyl) tetrasulfide
  • silane coupling agents such as 3-isocyanatopropyltriethoxysilane. These silane coupling agents may be used alone or in combination of two or more. Among these, it is excellent in miscibility with an organic component such as an acrylic polymer (X) having a (meth) acryloyl group in the molecular structure, and a cured coating film having high surface hardness and excellent transparency can be obtained.
  • a (meth) acryloxy-based silane coupling agent is preferable, and 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane are more preferable.
  • the active energy ray-curable resin composition of the present invention contains the ionic liquid (B), whereby aggregation of the inorganic fine particles (A) is suppressed and the storage stability is excellent.
  • the ionic liquid (B) refers to a liquid which is liquid at room temperature among ionic compounds composed of an anion portion and a cation portion.
  • Examples of the anion of the ionic liquid (B) include bis (trifluoromethanesulfonyl) imide, bis (fluoromethanesulfonyl) imide, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, and the like.
  • bis (trifluoromethanesulfonyl) imide or tetrafluoroborate is preferable in that a resin composition having better storage stability can be obtained.
  • Examples of the cation of the ionic liquid (B) include an ammonium cation, an imidazolium cation, a pyridinium cation, a pyrrolidinium cation, a piperidinium cation, and a phosphonium cation.
  • ammonium cation examples include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, tetranonylammonium, tetradecylammonium, tetradodecylammonium, Ethyltrimethylammonium, diethyldimethylammonium, triethylmethylammonium, trimethylpropylammonium, trimethylisopropylammonium, ethyldimethylpropylammonium, ethyldimethylisopropylammonium, diethylmethylpropylammonium, diethylmethylisopropylammonium, dimethyldipropylammonium,
  • imidazolium cation examples include 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1,3-diethylimidazolium, 1,2,3-trimethylimidazolium, 1,3,4-trimethyl.
  • Imidazolium 1-ethyl-2,3-dimethylimidazolium, 1-ethyl-3,4-dimethylimidazolium, 1-ethyl-3,5-dimethylimidazolium, 2-ethyl-1,3-dimethylimidazolium 4-ethyl-1,3-dimethylimidazolium, 1,2-diethyl-3-methylimidazolium, 1,4-diethyl-3-methylimidazolium, 1,5-diethyl-3-methylimidazolium, , 3-Diethyl-2-methylimidazolium, 1,3-diethyl-4-methylimidazolium, 1,2,3- Liethylimidazolium, 1,3,4-triethylimidazolium, 1,2,3,4-tetramethylimidazolium, 1-ethyl-2,3,4-trimethylimidazolium, 1-ethyl-2,3,3 5-trimethylimidazolium, 1-
  • Examples of the pyridinium cation include 1-methylpyridinium, 1-ethylpyridinium, 1-propylpyridinium, 1-butylpyridinium, 1-pentylpyridinium, 1-hexylpyridinium, 1-heptylpyridinium, 1-octylpyridinium, 1-nonylpyridinium 1-decylpyridinium, 1,2-dimethylpyridinium, 1,3-dimethylpyridinium, 1,4-dimethylpyridinium, 1-ethyl-2-methylpyridinium, 2-ethyl-1-methylpyridinium, 1-ethyl-3 -Methylpyridinium, 3-ethyl-1-methylpyridinium, 1-ethyl-4-methylpyridinium, 4-ethyl-1-methylpyridinium, 1,2-diethylpyridinium, 1,3-diethylpyridinium, 1,4-diethyl Lidinium
  • Examples of the pyrrolidinium cation include 1,1-dimethylpyrrolidinium, 1-ethyl-1-methylpyrrolidinium, 1,1-diethylpyrrolidinium, 1,1,2-trimethylpyrrolidinium, 1, 1,3-trimethylpyrrolidinium, 1-ethyl-1,2-dimethylpyrrolidinium, 1-ethyl-1,3-dimethylpyrrolidinium, 2-ethyl-1,1-dimethylpyrrolidinium, 3- Ethyl-1,1-dimethylpyrrolidinium, 1,1-diethyl-2-methylpyrrolidinium, 1,1-diethyl-3-methylpyrrolidinium, 1,2-diethyl-1-methylpyrrolidinium, 1,3-diethyl-1-methylpyrrolidinium, 1,1,2-triethylpyrrolidinium, 1,1,3-triethylpyrrolidinium, 1,1,2,2-tetramethyl Rupyrrolidinium, 1,
  • Piperidinium cations include, for example, 1,1-dimethylpiperidinium, 1-ethyl-1-methylpiperidinium, 1,1-diethylpiperidinium, 1,1,2-trimethylpiperidinium, 1, 1,3-trimethylpiperidinium, 1,1,4-trimethylpiperidinium, 1,1,2,2-tetramethylpiperidinium, 1,1,2,3-tetramethylpiperidinium, 1, 1,2,4-tetramethylpiperidinium, 1,1,2,5-tetramethylpiperidinium, 1,1,2,6-tetramethylpiperidinium, 1,1,3,3-tetramethyl Piperidinium, 1,1,3,4-tetramethylpiperidinium, 1,1,3,5-tetramethylpiperidinium, 1-ethyl-1,2-dimethylpiperidinium, 1-ethyl-1 , 3 Dimethylpiperidinium, 1-ethyl-1,4-dimethylpiperidinium, 1-ethyl-1,2,3-trimethylpiperid
  • Phosphonium cations include, for example, tetramethylphosphonium, tetraethylphosphonium, tetrapropylphosphonium, tetrabutylphosphonium, tetrapentylphosphonium, tetrahexylphosphonium, tetraheptylphosphonium, tetraoctylphosphonium, tetranonylphosphonium, tetradecylphosphonium, tetraphenylphosphonium, tributyl Octylphosphonium, tributylnonylphosphonium, tributyldecylphosphonium, tributylundecylphosphonium, tributyldodecylphosphonium, tributyltridecylphosphonium, tributyltetradecylphosphonium, tributylpentadecylphosphonium, tributylhe
  • the ammonium cation and the phosphonium cation are preferable and the ammonium cation is more preferable in that the active energy ray-curable resin composition is more excellent in storage stability.
  • ionic liquids may be used alone or in combination of two or more.
  • ionic liquids having an ammonium cation include, for example, “IL-A1”, “IL-A2”, “IL-A3”, “IL-A4”, “IL-A5”, “IL-A5”, “IL-A12 "and the like.
  • Examples of commercially available ionic liquids having the phosphonium cation include “IL-AP1” and “IL-AP3”.
  • the active energy ray-curable resin composition of the present invention has, as a resin component, an acrylic polymer having a weight average molecular weight (Mw) in the range of 5,000 to 100,000 and having a (meth) acryloyl group in the molecular structure. (X) is contained.
  • the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure has a weight average molecular weight (Mw) in the range of 5,000 to 80,000, thereby stabilizing the inorganic fine particles (A).
  • Storage stability of the resin composition is improved.
  • the weight average molecular weight (Mw) is less than 5,000, the dispersibility of the inorganic fine particles (A) is lowered, so that the storage stability of the resin composition and the transparency of the cured coating film are lowered.
  • a weight average molecular weight (Mw) exceeds 80,000 a viscosity will become high and will become difficult to handle as a paint use.
  • the weight average molecular weight (Mw) is 8,000 to 50,000 in that the inorganic fine particles (A) are excellent in dispersibility and the active energy ray-curable resin composition has a viscosity suitable for coating. Is preferable, and a range of 10,000 to 40,000 is more preferable.
  • the weight average molecular weight (Mw) is a value measured under the following conditions using a gel permeation chromatograph (GPC).
  • Measuring device HLC-8220 manufactured by Tosoh Corporation Column: Tosoh Corporation guard column H XL -H + Tosoh Corporation TSKgel G5000H XL + Tosoh Corporation TSKgel G4000H XL + Tosoh Corporation TSKgel G3000H XL + Tosoh Corporation TSKgel G2000H XL Detector: RI (differential refractometer) Data processing: Tosoh Corporation SC-8010 Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solids filtered through microfilter (100 ⁇ l)
  • the (meth) acryloyl group equivalent of the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure has a high surface hardness, and further has a cured coating film excellent in curling resistance during curing. Is preferably in the range of 100 g / eq to 1000 g / eq, more preferably in the range of 150 g / eq to 800 g / eq, and in the range of 200 g / eq to 600 g / eq. Particularly preferred.
  • the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure is, for example, an acrylic polymer obtained by polymerizing a compound (y) having a reactive functional group and a (meth) acryloyl group as an essential component.
  • examples thereof include a polymer obtained by reacting a polymer (Y) with a compound (z) having a (meth) acryloyl group and a functional group capable of reacting with the reactive functional group of the compound (y).
  • an acrylic polymer (Y1) obtained by polymerizing a compound (y1) having an epoxy group and a (meth) acryloyl group as essential components, and has a carboxyl group and a (meth) acryloyl group.
  • the acrylic polymer (X1) as a raw material of the acrylic polymer (X1) may be a homopolymer of the compound (y1) having the epoxy group and (meth) acryloyl group, or other polymerizable compound ( It may be a copolymer with v1).
  • Examples of the compound (y1) having an epoxy group and a (meth) acryloyl group as raw material components of the acrylic polymer (Y1) include glycidyl (meth) acrylate, glycidyl ⁇ -ethyl (meth) acrylate, ⁇ - glycidyl n-propyl (meth) acrylate, glycidyl ⁇ -n-butyl (meth) acrylate, (meth) acrylic acid-3,4-epoxybutyl, (meth) acrylic acid-4,5-epoxypentyl, (meth ) Acrylic acid-6,7-epoxypentyl, ⁇ -ethyl (meth) acrylic acid-6,7-epoxypentyl, ⁇ -methylglycidyl (meth) acrylate, (meth) acrylic acid-3,4-epoxycyclohexyl, lactone Examples thereof include modified (meth) acrylic acid-3,4-epoxycyclohe
  • glycidyl (meth) acrylate and ⁇ -ethyl (meth) acrylic acid are easy in that the (meth) acryloyl group equivalent of the resulting acrylic polymer (X1) can be easily adjusted to the above-mentioned preferable range.
  • Glycidyl and glycidyl ⁇ -n-propyl (meth) acrylate are preferred, and glycidyl (meth) acrylate is more preferred.
  • the other polymerizable compound (v1) that can be polymerized with the compound (y1) having the epoxy group and the (meth) acryloyl group is, for example, (meth) Methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (n-butyl) (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic acid Hepsyl, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate , Having an alkyl group having 1 to 22 carbon atoms such as o
  • (Meth) acrylic acid esters having an alicyclic alkyl group such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate ;
  • Unsaturated dicarboxylic acid esters such as dimethyl fumarate, diethyl fumarate, dibutyl fumarate, dimethyl itaconate, dibutyl itaconate, methyl ethyl fumarate, methyl butyl fumarate, methyl ethyl itaconate;
  • Styrene derivatives such as styrene, ⁇ -methylstyrene, chlorostyrene;
  • Diene compounds such as butadiene, isoprene, piperylene, dimethylbutadiene;
  • Vinyl halides such as vinyl chloride and vinyl bromide and vinylidene halides
  • Unsaturated ketones such as methyl vinyl ketone and butyl vinyl ketone;
  • Vinyl esters such as vinyl acetate and vinyl butyrate
  • Vinyl ethers such as methyl vinyl ether and butyl vinyl ether
  • Vinyl cyanides such as acrylonitrile, methacrylonitrile, vinylidene cyanide
  • N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide;
  • Fluorine-containing ⁇ -olefins such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, pentafluoropropylene or hexafluoropropylene;
  • (Per) fluoroalkyl / perfluorovinyl ether having 1 to 18 carbon atoms in the (per) fluoroalkyl group such as trifluoromethyl trifluorovinyl ether, pentafluoroethyl trifluorovinyl ether or heptafluoropropyl trifluorovinyl ether;
  • Silyl group-containing (meth) acrylates such as ⁇ -methacryloxypropyltrimethoxysilane
  • These may be used alone or in combination of two or more.
  • (Meth) acrylic acid ester having an alkyl group having 1 to 22 carbon atoms and (meth) acrylic acid ester having an alicyclic alkyl group are preferable, and having an alkyl group having 1 to 22 carbon atoms.
  • (Meth) acrylic acid esters are more preferred. Particularly preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
  • the acrylic polymer (Y1) may be a homopolymer of the compound (y1) having the epoxy group and (meth) acryloyl, or the compound (y1) having the epoxy group and (meth) acryloyl. ) And the other polymerizable compound (v1).
  • the mass ratio of the two when the copolymerization [epoxy group and (meth) is preferred in that it is easy to adjust the (meth) acryloyl group equivalent of the resulting acrylic polymer (X1) to a suitable range.
  • a compound (y1) having an acryloyl group] a polymer obtained by copolymerizing [other polymerizable compound (v)] in a ratio of 15/85 to 100/0, preferably 40/60 to 100 More preferably, it is in the range of 0 parts by mass.
  • the acrylic polymer (Y1) has an epoxy group derived from the compound (y1).
  • the epoxy equivalent of the acrylic polymer (Y1) is 100 to 1000 g / acryloyl equivalent of the resulting acrylic polymer (X1).
  • it is preferably in the range of 140 to 800 g / eq, more preferably in the range of 140 to 480 g / eq, and in the range of 140 to 400 g / eq. It is particularly preferred.
  • the acrylic polymer (Y1) can be obtained by, for example, combining the compound (y1) alone or the compound (y1) and the compound (v1) in the temperature range of 80 ° C. to 150 ° C. in the presence of a polymerization initiator. It can be produced by addition polymerization in combination, and examples thereof include random copolymers, block copolymers, and graft copolymers. Examples of the polymerization method include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • the production of the acrylic polymer (Y1) and the subsequent reaction of the acrylic polymer (Y1) with the compound (z1) having the carboxyl group and the (meth) acryloyl group are continuously performed.
  • the solution polymerization method is preferable because it can be carried out easily.
  • the solvent used when the acrylic polymer (Y1) is produced by the solution polymerization method has a boiling point of 80 ° C. or higher in consideration of the reaction temperature.
  • methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone Methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-amyl ketone, methyl-n-hexyl ketone, diethyl ketone, ethyl n-butyl ketone, di-n-propyl ketone, diisobutyl ketone, cyclohexanone, holon, etc. ;
  • ether solvents such as n-butyl ether, diisoamyl ether, dioxane;
  • Alcohol solvents such as isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, diacetone alcohol, 3-methoxy-1-propanol, 3-methoxy-1-butanol, 3-methyl-3-methoxybutanol;
  • hydrocarbon solvents such as toluene, xylene, Solvesso 100, Solvesso 150, Swazol 1800, Swazol 310, Isopar E, Isopar G, Exxon Naphtha No. 5, Exxon Naphtha No. 6 and the like. These may be used alone or in combination of two or more.
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferable from the viewpoint of excellent solubility of the resulting acrylic polymer (Y1).
  • Examples of the catalyst used in the production of the acrylic polymer (Y1) include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), and 2,2′-.
  • Azo compounds such as azobis- (4-methoxy-2,4-dimethylvaleronitrile); benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, t-butylperoxyethylhexanoate, 1,1'-bis-
  • Examples thereof include organic peroxides such as (t-butylperoxy) cyclohexane, t-amylperoxy-2-ethylhexanoate, and t-hexylperoxy-2-ethylhexanoate, and hydrogen peroxide.
  • the peroxide When a peroxide is used as the catalyst, the peroxide may be used together with a reducing agent to form a redox type initiator.
  • the compound (z1) having a carboxyl group and a (meth) acryloyl group used as a raw material for the acrylic polymer (X1) is, for example, (meth) acrylic acid, (acryloyloxy) acetic acid, 2-carboxyethyl acrylate, acrylic 3-carboxypropyl acid, 1- [2- (acryloyloxy) ethyl] succinate, 1- (2-acryloyloxyethyl) phthalate, 2- (acryloyloxy) ethyl hexahydrophthalate, and lactone-modified products thereof Unsaturated monocarboxylic acid such as maleic acid; Unsaturated dicarboxylic acid such as maleic acid; Acid anhydride such as succinic anhydride and maleic anhydride and a hydroxyl group-containing polyfunctional (meth) acrylate monomer such as pentaerythritol triacrylate Carboxyl group-containing polyfunctional (meth) acrylate And the like
  • (meth) acrylic acid, (acryloyloxy) acetic acid, 2-acrylic acid 2-acrylic acid (X1) are easy to adjust the (meth) acryloyl group equivalent to the above-mentioned preferable range.
  • Carboxyethyl and 3-carboxypropyl acrylate are preferred, and (meth) acrylic acid is particularly preferred.
  • the acrylic polymer (X1) is obtained by reacting the pre-acrylic polymer (Y1) with a compound (z1) having a carboxyl group and a (meth) acryloyl group.
  • the reaction method includes, for example, polymerizing an acrylic polymer (Y1) by a solution polymerization method, adding a compound (z1) having a carboxyl group and a (meth) acryloyl group to the reaction system, and a temperature of 80 to 150 ° C. In the range, a method such as appropriately using a catalyst such as triphenylphosphine can be used.
  • the (meth) acryloyl group equivalent of the acrylic polymer (X1) is preferably in the range of 100 to 1000 g / eq.
  • the acrylic polymer (Y1), the carboxyl group and the (meth) acryloyl group It can adjust by the reaction ratio with the compound (z1) which has these. Usually, it is obtained by reacting 1 mol of the epoxy group of the acrylic polymer (Y1) so that the carboxyl group of the compound (z1) is in the range of 0.4 to 1.1 mol. It becomes easy to adjust the (meth) acryloyl equivalent of acrylic polymer (X1) to the said preferable range.
  • the acrylic polymer (X1) thus obtained has a hydroxyl group produced by a reaction between an epoxy group and a carboxyl group in its molecular structure.
  • the compound (w) having an isocyanate group and a (meth) acryloyl group may be added to the hydroxyl group as necessary.
  • the acrylic polymer (X1 ′) thus obtained can also be used as the acrylic polymer (X) of the present invention, like the acrylic polymer (X1).
  • Examples of the compound (w) having the isocyanate group and the (meth) acryloyl group include a compound represented by the following general formula 1, and a monomer having one isocyanate group and one (meth) acryloyl group, Monomer having one isocyanate group and two (meth) acryloyl groups, monomer having one isocyanate group and three (meth) acryloyl groups, one isocyanate group and four (meth) acryloyl groups Monomers, monomers having one isocyanate group and five (meth) acryloyl groups, and the like can be mentioned.
  • R 1 is a hydrogen atom or a methyl group.
  • R 2 is an alkylene group having 2 to 4 carbon atoms.
  • n represents an integer of 1 to 5.
  • the compound (w) having an isocyanate group and a (meth) acryloyl group include 2-acryloyloxyethyl isocyanate (trade name: “Karenz AOI” manufactured by Showa Denko KK), 2- Examples include methacryloyloxyethyl isocyanate (trade name: “Karenz MOI” manufactured by Showa Denko KK) and 1,1-bis (acryloyloxymethyl) ethyl isocyanate (trade name: “Karenz BEI” manufactured by Showa Denko KK). .
  • the compound (w) include compounds obtained by adding a hydroxyl group-containing (meth) acrylate compound to one isocyanate group of a diisocyanate compound.
  • Diisocyanate compounds used in the reaction are butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, m-tetramethyl.
  • Aliphatic diisocyanates such as xylylene diisocyanate;
  • Cycloaliphatic diisocyanates such as cyclohexane-1,4-diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate;
  • 1,5-naphthylene diisocyanate 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate
  • aromatic diisocyanates such as 1,4-phenylene diisocyanate and tolylene diisocyanate.
  • the hydroxyl group-containing (meth) acrylate compound used in the reaction is 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, glycerin diacrylate, trimethylolpropane diacrylate, pentaerythritol triacrylate, dipenta Aliphatic (meth) acrylate compounds such as erythritol pentaacrylate;
  • the reaction between the acrylic polymer (X1) and the compound (w) having an isocyanate group and a (meth) acryloyl group is, for example, in the system after the acrylic polymer (X1) is produced by the method described above.
  • the compound (w) having the isocyanate group and the (meth) acryloyl group may be added dropwise and heated to 50 to 120 ° C.
  • the acrylic polymers (X1) and (X1 ′) contain more hydroxyl groups in the molecule, and the dispersibility for the inorganic fine particles (A) is enhanced by the interaction between the hydroxyl groups and the inorganic fine particles (A).
  • the acrylic polymer (X1) is preferable.
  • the acrylic polymer (X2) as a raw material of the acrylic polymer (X2) may be a homopolymer of the compound (y2) having the carboxyl group and (meth) acryloyl group, or other polymerizable compound ( Copolymers with v2) may also be used.
  • the compound (y2) having a carboxyl group and a (meth) acryloyl group as a raw material component of the acrylic polymer (Y2) is, for example, (meth) acrylic acid, (acryloyloxy) acetic acid, 2-carboxyethyl acrylate, 3-carboxypropyl acrylate, 1- [2- (acryloyloxy) ethyl] succinate, 1- (2-acryloyloxyethyl) phthalate, 2- (acryloyloxy) ethyl hexahydrophthalate and their lactone modifications
  • Unsaturated monocarboxylic acids such as products; unsaturated dicarboxylic acids such as maleic acid; acid anhydrides such as succinic anhydride and maleic anhydride, and hydroxyl-containing polyfunctional (meth) acrylate monomers such as pentaerythritol triacrylate
  • Carboxyl group-containing polyfunctional (meth) acrylates obtained by It is below.
  • (meth) acrylic acid, (acryloyloxy) acetic acid, 2-acrylic acid 2-acrylic acid are preferred in that the (meth) acryloyl group equivalent of the acrylic polymer (X2) can be easily adjusted to the above preferred range.
  • Carboxyethyl and 3-carboxypropyl acrylate are preferred, and (meth) acrylic acid is particularly preferred.
  • the other polymerizable compound (v2) that can be polymerized together with the compound (y2) having the carboxyl group and the (meth) acryloyl group is, for example, the compound ( The various compounds illustrated as v1) are mentioned. These may be used alone or in combination of two or more. Among them, it becomes easy to adjust the (meth) acryloyl group equivalent of the obtained acrylic polymer (X2) to the above-described preferable range, and the obtained cured coating film is rich in toughness while having high hardness.
  • (meth) acrylic acid ester having an alkyl group having 1 to 22 carbon atoms and (meth) acrylic acid ester having an alicyclic alkyl group are preferable, and having an alkyl group having 1 to 22 carbon atoms (meta ) Acrylic acid esters are more preferred. Particularly preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
  • the acrylic polymer (Y2) may be a homopolymer of the compound (y2) having the carboxyl group and (meth) acryloyl, or the compound (y2) having the carboxyl group and (meth) acryloyl. ) And the other polymerizable compound (v2).
  • the mass ratio of the two at the time of copolymerization [carboxyl group and (meta ) A compound having an acryloyl group (y2)]: a polymer obtained by copolymerizing [other polymerizable compound (v2)] in a ratio of 15/85 to 100/0, preferably 40/60 to 100 More preferably, it is in the range of 0 parts by mass.
  • the acrylic polymer (Y2) is, for example, the compound (y2) alone or the compound (y2) and the compound (v2) in the temperature range of 80 ° C. to 150 ° C. in the presence of a polymerization initiator. It can be produced by addition polymerization in combination, and examples thereof include random copolymers, block copolymers, and graft copolymers.
  • a polymerization method a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like can be used.
  • the production of the acrylic polymer (Y2) and the subsequent reaction of the acrylic polymer (Y2) with the compound (z1) having the epoxy group and the (meth) acryloyl group are continuously performed.
  • the solution polymerization method is preferable because it can be carried out easily.
  • Examples of the solvent used when the acrylic polymer (Y2) is produced by the solution polymerization method include various solvents exemplified as the solvent used when the acrylic polymer (Y1) is produced by the solution polymerization method. These may be used alone or in combination of two or more. Among these, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferable from the viewpoint of excellent solubility of the resulting acrylic polymer (Y2).
  • Examples of the catalyst used in the production of the acrylic polymer (Y2) include various catalysts exemplified as the catalyst used in the production of the acrylic polymer (Y1).
  • the compound (z2) having an epoxy group and a (meth) acryloyl group used as a raw material for the acrylic polymer (X2) is, for example, glycidyl (meth) acrylate, glycidyl ⁇ -ethyl (meth) acrylate, ⁇ -n.
  • glycidyl (meth) acrylate and ⁇ -ethyl (meth) acrylic acid are easy in that the (meth) acryloyl group equivalent of the resulting acrylic polymer (X2) can be easily adjusted to the above-mentioned preferred range.
  • Glycidyl and glycidyl ⁇ -n-propyl (meth) acrylate are particularly preferred.
  • the acrylic polymer (X2) is obtained by reacting the pre-acrylic polymer (Y2) with a compound (z2) having an epoxy group and a (meth) acryloyl group.
  • the reaction method includes, for example, polymerizing an acrylic polymer (Y2) by a solution polymerization method, adding a compound (z2) having an epoxy group and a (meth) acryloyl group to the reaction system, and a temperature of 80 to 150 ° C. In the range, a method such as appropriately using a catalyst such as triphenylphosphine can be used.
  • the (meth) acryloyl group equivalent of the acrylic polymer (X2) is preferably in the range of 100 to 1000 g / eq.
  • the acrylic polymer (Y2), the epoxy group, and the (meth) acryloyl group It can adjust with the reaction ratio with the compound (z2) which has these. Usually, it is obtained by reacting 1 mol of the carboxyl group of the acrylic polymer (Y2) so that the epoxy group of the compound (z2) is in the range of 0.4 to 1.1 mol. It becomes easy to adjust the (meth) acryloyl equivalent of acrylic polymer (X2) to the said preferable range.
  • the thus obtained acrylic polymer (X2) has in its molecular structure a hydroxyl group generated by a reaction between a carboxyl group and an epoxy group.
  • the compound (w) having the isocyanate group and the (meth) acryloyl group may be subjected to addition reaction with the hydroxyl group. good.
  • the acrylic polymer (X2 ′) thus obtained can be used as the acrylic polymer (X) of the present invention, like the acrylic polymer (X2).
  • the reaction between the acrylic polymer (X2) and the compound (w) having an isocyanate group and a (meth) acryloyl group is, for example, in the system after the acrylic polymer (X2) is produced by the method described above.
  • the compound (w) having the isocyanate group and the (meth) acryloyl group may be added dropwise and heated to 50 to 120 ° C.
  • the acrylic polymers (X2) and (X2 ′) contain more hydroxyl groups in the molecule, and the dispersibility for the inorganic fine particles (A) is enhanced by the interaction between the hydroxyl groups and the inorganic fine particles (A).
  • the acrylic polymer (X2) is preferable.
  • the acrylic polymer (X3) as a raw material of the acrylic polymer (X3) may be a homopolymer of the compound (y3) having the hydroxyl group and the (meth) acryloyl group, or other polymerizable compound (v3 And a copolymer thereof.
  • the compound (y3) having a hydroxyl group and a (meth) acryloyl group as a raw material component of the acrylic polymer (Y3) is, for example, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2, Examples include 3-dihydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, and 2,3-dihydroxypropyl methacrylate. These may be used alone or in combination of two or more.
  • the acrylic polymer (X3) it is easy to adjust the (meth) acryloyl group equivalent of the acrylic polymer (X3) to the above-described preferable range, and the acrylic polymer has a high hydroxyl value and excellent dispersibility of the inorganic fine particles (A).
  • 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate are preferable.
  • the other polymerizable compound (v3) that can be polymerized together with the compound (y3) having the hydroxyl group and the (meth) acryloyl group is, for example, the compound (v1).
  • the compound (v1) ) are exemplified as various compounds. These may be used alone or in combination of two or more. Among them, it becomes easy to adjust the (meth) acryloyl group equivalent of the obtained acrylic polymer (X3) to the above-described preferable range, and the obtained cured coating film is rich in toughness while having high hardness.
  • (meth) acrylic acid ester having an alkyl group having 1 to 22 carbon atoms and (meth) acrylic acid ester having an alicyclic alkyl group are preferable, and having an alkyl group having 1 to 22 carbon atoms (meta ) Acrylic acid esters are more preferred. Particularly preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
  • the acrylic polymer (Y3) may be a homopolymer of the compound (y3) having a hydroxyl group and (meth) acryloyl, or may be a copolymer with another polymerizable compound (v3).
  • the mass ratio of the two at the time of copolymerization [having a hydroxyl group and a (meth) acryloyl group) Compound (y3)]: A polymer obtained by copolymerizing [other polymerizable compound (v3)] in a ratio of 15/85 to 100/0, preferably in the range of 40/60 to 100/0 parts by mass. It is more preferable that
  • the acrylic polymer (Y3) is, for example, the compound (y3) alone or the compound (y3) and the compound (v3) in the temperature range of 80 ° C. to 150 ° C. in the presence of a polymerization initiator. It can be produced by addition polymerization in combination, and examples thereof include random copolymers, block copolymers, and graft copolymers.
  • a bulk polymerization method a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and the like can be used.
  • the production of the acrylic polymer (Y3) and the subsequent reaction of the acrylic polymer (Y3) with the isocyanate group and the compound (z3) having a (meth) acryloyl group are continuously performed.
  • the solution polymerization method is preferable because it can be carried out easily.
  • Examples of the solvent used when the acrylic polymer (Y3) is produced by the solution polymerization method include various solvents exemplified as the solvent used when the acrylic polymer (Y1) is produced by the solution polymerization method. These may be used alone or in combination of two or more. Of these, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of excellent solubility of the resulting acrylic polymer (Y3).
  • Examples of the catalyst used in the production of the acrylic polymer (Y3) include various catalysts exemplified as the catalyst used in the production of the acrylic polymer (Y1).
  • Examples of the compound (z3) having an isocyanate group and a (meth) acryloyl group used as a raw material for the acrylic polymer (X3) include various compounds exemplified as the compound (w) having the isocyanate group and the (meth) acryloyl group. The compound of this is mentioned. These may be used alone or in combination of two or more. Among these, what has two or more (meth) acryloyl groups in 1 molecule is preferable at the point from which the obtained acrylic polymer (X3) becomes a more polyfunctional compound and a coating film with higher hardness is obtained. Specifically, 1,1-bis (acryloyloxymethyl) ethyl isocyanate is preferred.
  • the acrylic polymer (X3) is obtained by reacting the pre-acrylic polymer (Y3) with a compound (z3) having an isocyanate group and a (meth) acryloyl group.
  • the reaction is performed, for example, by polymerizing an acrylic polymer (Y3) by a solution polymerization method, adding a compound (z3) having an isocyanate group and a (meth) acryloyl group to the reaction system, and a temperature range of 50 to 120 ° C. And a method such as using a catalyst such as tin (II) octoate as appropriate.
  • the (meth) acryloyl group equivalent of the acrylic polymer (X3) is preferably in the range of 100 to 1000 g / eq.
  • the acrylic polymer (Y3), the isocyanate group, and the (meth) acryloyl group It can adjust with the reaction ratio with the compound (z3) which has these.
  • the acrylic polymers (X1) and (X2) are preferable because they are well-familiar with the inorganic fine particles (A) and are excellent in storage stability of the resulting dispersion.
  • the hydroxyl value of the acrylic polymers (X1) and (X2) is preferably in the range of 70 to 280 g / eq, and more preferably in the range of 100 to 250 g / eq, in view of the excellent dispersibility of the inorganic fine particles (A).
  • the range of eq is more preferable.
  • the acrylic polymer (X1) is preferable from the viewpoint of simpler synthesis, and acryl is obtained by using glycidyl (meth) acrylate as the compound (y1) and using (meth) acrylic acid as the compound (z1). A polymer is more preferred.
  • the active energy ray-curable resin composition of the present invention contains the inorganic fine particles (A), the ionic liquid (B), and the acrylic polymer (X) as essential components. 20 to 70 parts by mass of inorganic fine particles (A) are added to 100 parts by mass in total in that the resin composition has excellent storage stability and a cured coating film having both high surface hardness and transparency can be obtained.
  • the content is preferably in the range of 25 parts by weight, and more preferably in the range of 25 to 65 parts by weight.
  • the ion is contained in a total of 100 parts by mass of the inorganic fine particles (A), the ionic liquid (B), and the acrylic polymer (X).
  • the liquid (B) is preferably contained in the range of 0.01 to 5 parts by mass. Furthermore, it is more preferable to contain in the range of 0.05 to 1.5 parts by mass in that a cured coating film having a high surface hardness can be obtained.
  • the active energy ray-curable resin composition of the present invention has a (meth) in the molecular structure other than the acrylic polymer (X).
  • this compound (c) it is preferable to use this compound (c) at the point used as the active energy ray-curable resin composition which has a lower viscosity and is easy to use as a paint application.
  • the mass ratio [(X) / (c) of the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure and the compound (c) having a (meth) acryloyl group in the molecular structure. )] is preferably in the range of 5/95 to 90/10, and more preferably in the range of 15/85 to 80/20.
  • the compound (c) having a (meth) acryloyl group in the molecular structure includes, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, n-butyl (Meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, isobornyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate,
  • Examples thereof include (meth) acrylates in which a part of the various polyfunctional (meth) acrylates described above is substituted with an alkyl group or ⁇ -caprolactone. These may be used alone or in combination of two or more.
  • a trifunctional or higher functional (meth) acrylate is preferable because a coating film with higher hardness can be obtained.
  • Pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (Meth) acrylate and dipentaerythritol hexa (meth) acrylate are more preferable.
  • the active energy ray-curable resin composition of the present invention In addition to the inorganic fine particles (A), the ionic liquid (B), and the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure, the active energy ray-curable resin composition of the present invention, When the compound (c) is contained, the inorganic fine particles (A) and the ionic liquid are obtained in that a cured coating film in which the resin composition is excellent in storage stability and has both high surface hardness and transparency is obtained. (B) In the total 00 parts by mass of the acrylic polymer (X) and the compound (c), the inorganic fine particles (A) are preferably contained in the range of 20 to 70 parts by mass, It is more preferable to contain in the range.
  • the active energy ray-curable resin composition is more excellent in stability.
  • the ionic liquid (B) is contained in the range of 0.01 to 5 parts by mass in parts by mass. Furthermore, it is more preferable to contain in the range of 0.05 to 1.5 parts by mass in that a cured coating film having a high surface hardness can be obtained.
  • the resin composition of the present invention may contain a dispersion aid as necessary.
  • the dispersion aid include phosphate ester compounds such as isopropyl acid phosphate, triisodecyl phosphite, ethylene oxide-modified phosphate dimethacrylate, and the like. These may be used alone or in combination of two or more. Among these, ethylene oxide-modified phosphoric dimethacrylate is preferable because it is excellent in dispersion assist performance.
  • Examples of commercially available dispersion aids include “Kayamar PM-21” and “Kayamar PM-2” manufactured by Nippon Kayaku Co., Ltd., “Light Ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd., and the like.
  • the dispersion aid When used, it is contained in the range of 0.5 to 5.0 parts by mass in 100 parts by mass of the resin composition of the present invention in that the resin composition has higher storage stability. Is preferred.
  • the resin composition of the present invention may contain an organic solvent.
  • the organic solvent may contain the solvent used at that time as it is, or further add another solvent. May be. Or the organic solvent used at the time of manufacture of the said acrylic polymer (X) may be removed once, and another solvent may be used.
  • ketone solvents such as acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK); cyclic ether solvents such as tetrahydrofuran (THF) and dioxolane; esters such as methyl acetate, ethyl acetate and butyl acetate; toluene Aromatic solvents such as xylene; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, etc.
  • ketone solvents such as acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK)
  • cyclic ether solvents such as
  • glycol ether solvents are mentioned. These may be used alone or in combination of two or more. Among these, a ketone solvent is preferable and methyl isobutyl ketone is more preferable in that the resin composition has excellent storage stability and excellent paintability when used as a paint. In addition to the ketone solvent, a glycol ether solvent may be used in combination for the purpose of improving the solubility of the ionic liquid (B).
  • the resin composition of the present invention further comprises an ultraviolet absorber, an antioxidant, a silicon-based additive, organic beads, a fluorine-based additive, a rheology control agent, a defoaming agent, a release agent, an antistatic agent, and an antifogging agent.
  • additives such as a colorant, an organic solvent, and an inorganic filler may be contained.
  • Examples of the ultraviolet absorber include 2- [4- ⁇ (2-hydroxy-3-dodecyloxypropyl) oxy ⁇ -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, 3,5-triazine, 2- [4- ⁇ (2-hydroxy-3-tridecyloxypropyl) oxy ⁇ -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3 Triazine derivatives such as 1,5-triazine, 2- (2'-xanthenecarboxy-5'-methylphenyl) benzotriazole, 2- (2'-o-nitrobenzyloxy-5'-methylphenyl) benzotriazole, 2- And xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone, and the like.
  • antioxidants examples include hindered phenol-based antioxidants, hindered amine-based antioxidants, organic sulfur-based antioxidants, and phosphate ester-based antioxidants. These may be used alone or in combination of two or more.
  • silicon-based additive examples include dimethylpolysiloxane, methylphenylpolysiloxane, cyclic dimethylpolysiloxane, methylhydrogenpolysiloxane, polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, and fluorine-modified dimethyl.
  • examples include polyorganosiloxanes having alkyl groups and phenyl groups, such as polysiloxane copolymers and amino-modified dimethylpolysiloxane copolymers, polydimethylsiloxanes having polyether-modified acrylic groups, and polydimethylsiloxanes having polyester-modified acrylic groups. It is done. These may be used alone or in combination of two or more.
  • organic beads examples include polymethyl methacrylate beads, polycarbonate beads, polystyrene beads, polyacryl styrene beads, silicone beads, glass beads, acrylic beads, benzoguanamine resin beads, melamine resin beads, polyolefin resin beads, Examples thereof include polyester resin beads, polyamide resin beads, polyimide resin beads, polyfluorinated ethylene resin beads, and polyethylene resin beads.
  • a preferable value of the average particle diameter of these organic beads is in the range of 1 to 10 ⁇ m. These may be used alone or in combination of two or more.
  • fluorine-based additive examples include DIC Corporation “Mega Fuck” series. These may be used alone or in combination of two or more.
  • release agent examples include “Tegorad 2200N”, “Tegorad 2300”, “Tegorad 2100” manufactured by Evonik Degussa, “UV3500” manufactured by BYK Chemie, “Paintad 8526” manufactured by Toray Dow Corning, and “SH-29PA”. Or the like. These may be used alone or in combination of two or more.
  • antistatic agent examples include pyridinium, imidazolium, phosphonium, ammonium, or lithium salts of bis (trifluoromethanesulfonyl) imide or bis (fluorosulfonyl) imide. These may be used alone or in combination of two or more.
  • the amount of the various additives used is preferably in a range where the effect is sufficiently exhibited and ultraviolet curing is not inhibited. Specifically, in an amount of 0.01 to 40 masses per 100 mass parts of the resin composition of the present invention. It is preferable to use within the range of parts.
  • the resin composition of the present invention further contains a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 4,4′-bisdimethylaminobenzophenone, 4,4′-bisdiethylaminobenzophenone, 4,4′-dichlorobenzophenone, Various benzophenones such as Michler's ketone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone;
  • Xanthones such as xanthone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, and 2,4-diethylthioxanthone; thioxanthones; various acyloin ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether;
  • ⁇ -diketones such as benzyl and diacetyl; sulfides such as tetramethylthiuram disulfide and p-tolyl disulfide; various benzoic acids such as 4-dimethylaminobenzoic acid and ethyl 4-dimethylaminobenzoate;
  • photopolymerization initiators 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy- 2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2′-dimethoxy-1,2-diphenylethane-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2 , 4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholino
  • One or more mixed systems selected from the group of phenyl) -butan-1-one It allows more active against a broad range of wavelengths of light is preferred because highly curable coating is obtained using.
  • the amount of the photopolymerization initiator used is an amount that can sufficiently exhibit the function as a photopolymerization initiator, and is preferably within a range that does not cause precipitation of crystals and physical properties of the coating film. It is preferably used in the range of 0.05 to 20 parts by mass, particularly preferably in the range of 0.1 to 10 parts by mass, with respect to 100 parts by mass of the resin composition.
  • the resin composition of the present invention may further use various photosensitizers in combination with the photopolymerization initiator.
  • the photosensitizer include amines, ureas, sulfur-containing compounds, phosphorus-containing compounds, chlorine-containing compounds, nitriles, and other nitrogen-containing compounds.
  • the method for producing the active energy ray-curable resin composition of the present invention uses, for example, a disperser having a stirring blade such as a disper or a turbine blade, a disperser such as a paint shaker, a roll mill, a ball mill, an attritor, a sand mill, or a bead mill.
  • a method of mixing and dispersing uses, for example, a disperser having a stirring blade such as a disper or a turbine blade, a disperser such as a paint shaker, a roll mill, a ball mill, an attritor, a sand mill, or a bead mill.
  • the inorganic fine particles (a) are wet silica fine particles, a uniform and stable dispersion can be obtained when any of the above-described dispersers is used.
  • the inorganic fine particles (a) are dry silica fine particles, it is preferable to use a ball mill or a bead mill in order to obtain a uniform and stable dispersion.
  • the ball mill that can be preferably used in producing the active energy ray-curable resin composition of the present invention has, for example, a vessel filled with a medium inside, a rotating shaft, and a rotating shaft coaxial with the rotating shaft.
  • a stirring blade that is rotated by the rotational drive of the rotating shaft, a raw material supply port installed in the vessel, a dispersion outlet installed in the vessel, and a portion where the rotating shaft passes through the vessel.
  • the shaft seal device has a structure in which the shaft seal device has two mechanical seal units, and the seal portions of the two mechanical seal units are sealed with an external seal liquid.
  • a wet ball mill is mentioned.
  • the method for producing the active energy ray-curable resin composition of the present invention includes, for example, a vessel filled with a medium inside, a rotating shaft, a rotating shaft coaxially with the rotating shaft, A stirring blade that is rotated by rotation driving, a raw material supply port installed in the vessel, a dispersion outlet installed in the vessel, and a shaft seal device in which the rotary shaft is disposed in a portion that passes through the vessel.
  • a wet ball mill having a structure in which the shaft seal device has two mechanical seal units, and the seal portions of the two mechanical seal units are sealed with an external seal liquid. From the supply port, the inorganic fine particles (a), the ionic liquid (B), and the acrylic polymer (X) are essential components.
  • the fat component is supplied to the vessel, and the rotating shaft and the stirring blade are rotated in the vessel to stir and mix the medium and the raw material, whereby the inorganic fine particles (a) are pulverized and the inorganic fine particles (a ) Is dispersed in the resin component, and then discharged from the discharge port.
  • the wet ball mill shown in FIG. 1 has a vessel (p1) filled with media therein, a rotating shaft (q1), a rotating shaft coaxially with the rotating shaft (q1), and is rotated by the rotational drive of the rotating shaft.
  • the stirring blade (r1), the raw material supply port (s1) installed in the vessel (p1), the dispersion outlet (t1) installed in the vessel (p1), and the rotating shaft pass through the vessel A shaft seal device (u1) disposed on the portion to be operated.
  • the shaft seal device (u1) has two mechanical seal units, and has a structure in which the seal portions of the two mechanical seal units are sealed with an external seal liquid.
  • the shaft seal device (u1) for example, one having the structure shown in FIG.
  • the inorganic fine particles (a) and the acrylic polymer (X) are supplied to a wet ball mill and mixed and dispersed.
  • the ionic liquid (B), the compound (c), the dispersion aid, the organic solvent, and the various additives are also included.
  • the inorganic fine particles (a) and the acrylic polymer (X) may be supplied to a wet ball mill and mixed and dispersed together.
  • the liquid (B), the compound (c), the dispersion aid, the organic solvent, and the various additives may be added.
  • the inorganic fine particles (a), the acrylic polymer (X), the ionic liquid (B), the compound (c), the dispersion auxiliary agent, the organic solvent, and the various types are described in terms of simple production.
  • a method in which the additive is fed to a wet ball mill and mixed and dispersed is preferred.
  • the raw material is supplied to the vessel (p1) through the supply port (s1) in FIG.
  • the vessel (p1) is filled with a medium, and the raw material and the medium are stirred and mixed by the stirring blade (r1) that is rotated by the rotation of the rotating shaft (q1), and the inorganic fine particles (a) are pulverized.
  • the inorganic fine particles (a) are dispersed in the acrylic polymer (X) and the compound (c).
  • the inside of the rotating shaft (p1) is a cavity having an opening on the discharge port (t1) side.
  • a screen-type separator 2 is installed in the cavity as a separator, and a flow path leading to the discharge port (t1) is provided inside the separator 2.
  • the dispersion in the vessel (p1) is pushed by the supply pressure of the raw material, and is conveyed from the opening of the rotary shaft (p1) to the separator 2 inside thereof.
  • the media remains in the vessel (p1), and only the dispersion is discharged from the outlet. It is discharged from (t1).
  • the wet ball mill has a shaft seal device (u1) as shown in FIG.
  • the rotary ring 3 fixed on the shaft (q1) and the fixed ring 4 fixed on the housing 1 of the shaft seal device in FIG. 1 form a seal portion.
  • Two mechanical seal units having the arranged structure are provided, and the rotation ring 3 and the stationary ring 4 in the unit are aligned in the same direction in the two units.
  • the seal portion refers to a pair of sliding surfaces formed by the rotating ring 3 and the fixed ring 4.
  • the liquid seal space 11 is supplied with an external seal liquid (R) supplied from an external seal liquid tank 7 by a pump 8 through the external seal liquid supply port 5 and through the external seal liquid discharge port 6. By being returned to the tank 7, it is circulated and supplied. As a result, the liquid seal space 11 is filled with the external seal liquid (R) in a liquid-tight manner, and the gap 9 formed between the rotating ring 3 and the fixed ring 4 in the seal portion is formed with the external seal liquid (R). ).
  • the sealing liquid (R) lubricates and cools the sliding surfaces of the rotating ring 3 and the stationary ring 4.
  • the inflow pressure of the sealing liquid (R) and the pressure of the spring 10 are set so that the force with which the stationary ring 4 is separated from the rotating ring 3 by the inflow pressure is balanced with P3.
  • the gap 9 between the stationary ring 4 and the rotating ring 3 that is the sliding surface is filled with the outer seal liquid (R) in a liquid-tight manner, and the gap 9 is filled with the acrylic polymer (X) or the compound ( c) does not enter.
  • the acrylic polymer (X) or the compound (c) flows into the gap 9
  • the acrylic polymer (X) and the compound ( c) Mechanoradicals are generated, and the (meth) acryloyl group they contain may cause polymerization to cause gelation or thickening, but this has a shaft sealing device such as the shaft sealing device (u1).
  • a shaft sealing device such as the shaft sealing device (u1).
  • the shaft seal device such as the shaft seal device (u1) is, for example, a tandem mechanical seal.
  • examples of commercially available wet ball mill Y having the tandem mechanical seal as a shaft seal device include “LMZ” series manufactured by Ashizawa Finetech Co., Ltd.
  • the external sealing liquid (R) is a non-reactive liquid, and examples thereof include various organic solvents listed as organic solvents used when the acrylic polymer (X) is produced. Among these, the same solvent as that used in the production of the acrylic polymer (X) is preferable. Therefore, a ketone solvent is preferable, and methyl ethyl ketone (MEK) or methyl isobutyl ketone (MIBK) is particularly preferable.
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • various micro beads are used.
  • the material for the microbeads include zirconia, glass, titanium oxide, copper, and zirconia silicate. Among these, zirconia microbeads are preferred because they are the hardest and less worn.
  • the media has good separation of the media from the slurry in the screen-type separator 2 in FIG. 1, the dispersion time is relatively short because of the high pulverization ability of the inorganic fine particles (a),
  • the average particle diameter is preferably in the range of 10 to 1000 ⁇ m in terms of median diameter because the inorganic fine particles (a) are not so strong in impact and the inorganic fine particles (a) are hardly overdispersed.
  • the above-mentioned overdispersion phenomenon refers to a phenomenon in which a new active surface is generated due to destruction of inorganic fine particles and reaggregation occurs.
  • the overdispersion phenomenon occurs, the dispersion is gelled.
  • the filling rate of the media in the vessel (p1) in FIG. 1 is in the range of 75 to 90% by volume of the vessel internal volume in that the power required for dispersion is minimized and pulverization can be performed most efficiently. It is preferable.
  • the stirring blade (r1) has a large impact when the medium collides with the inorganic fine particles (a) and increases the dispersion efficiency, so that the peripheral speed of the tip is in the range of 5 to 20 m / sec. It is preferably driven to rotate, and more preferably in the range of 8 to 20 m / sec.
  • the production method may be a batch type or a continuous type. Further, in the case of a continuous type, it may be a circulation type that is supplied again after the slurry is taken out or a non-circulation type. Among these, the circulation type is preferable in that the production efficiency is high and the homogeneity of the obtained dispersion is excellent.
  • This dispersion step is preferably performed in a two-stage process using relatively small particles having a median diameter in the range of 15 to 400 ⁇ m as a medium.
  • a relatively large medium having a median diameter in the range of 400 to 1000 ⁇ m is used. Since such a medium has a large impact force when it collides with the inorganic fine particles (a), the fine particles of the inorganic fine particles (a) having a large particle size are highly pulverizable. Grind to a particle size of.
  • a relatively small medium having a median diameter in the range of 15 to 400 ⁇ m is used. Although such a medium has a small impact force when colliding with the inorganic fine particles (a), since the number of particles contained in the same volume is larger than that of a medium having a large particle size, the inorganic fine particles (a) The number of collisions with will increase.
  • the inorganic fine particles (a) pulverized to a certain degree in the pre-dispersing step are used for the purpose of pulverizing them into finer particles.
  • the pre-dispersion step is preferably performed in a range in which the slurry circulates in the vessel (p1) for 1 to 3 cycles.
  • the active energy ray-curable resin composition of the present invention can be used for paint applications.
  • the coating material can be used as a coating layer that protects the surface of the substrate by applying the coating onto various substrates and irradiating and curing the active energy rays.
  • the coating material of the present invention may be directly applied to the surface protection member, or a coating material applied on a plastic film may be used as a protective film such as a polarizing plate. Or you may use what applied the coating material of this invention on the plastic film, and formed the coating film as optical films, such as an antireflection film, a diffusion film, and a prism sheet. Since the coating film obtained by using the coating material of the present invention is characterized by high surface hardness and excellent transparency, it is particularly preferable to apply it on a plastic film and use it as a protective film application or a film-like molded product.
  • the plastic film is made of, for example, polycarbonate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, ABS resin, AS resin, norbornene resin, cyclic olefin, polyimide resin, or the like. Is mentioned.
  • the coating amount when applying the paint of the present invention to a plastic film is such that the mass after drying is in the range of 0.1 to 30 g / m 2 , preferably in the range of 1 to 20 g / m 2. preferable.
  • the film thickness of the coating film of this invention expresses hardness sufficient as a protective layer by setting it as 3% or more with respect to the film thickness of the said plastic film.
  • the thickness of the coating film is preferably in the range of 3 to 100% with respect to the thickness of the plastic film, more preferably in the range of 5 to 100%. A film in the range of 5 to 50% is particularly preferred.
  • Examples of the coating method of the present invention include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing.
  • Examples of the active energy rays irradiated when the paint of the present invention is cured to form a coating film include ultraviolet rays and electron beams.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, and a metal halide lamp is used as a light source, and the amount of light, the arrangement of the light source, and the like are adjusted as necessary.
  • a high-pressure mercury lamp it is preferable to cure at a conveyance speed of 5 to 50 m / min with respect to one lamp having a light quantity that is usually in the range of 80 to 160 W / cm.
  • an electron beam accelerator having an accelerating voltage that is usually in the range of 10 to 300 kV at a conveyance speed of 5 to 50 m / min.
  • the base material to which the paint of the present invention is applied can be suitably used not only as a plastic film but also as a surface coating agent for various plastic molded products, for example, cellular phones, electric appliances, automobile bumpers and the like.
  • examples of the method for forming the coating film include a coating method, a transfer method, and a sheet bonding method.
  • the coating method is a method in which the paint is spray-coated or coated as a top coat on a molded product using a printing device such as a curtain coater, roll coater, gravure coater, etc., and then cured by irradiation with active energy rays. is there.
  • a transfer material obtained by applying the above-described coating material of the present invention on a substrate sheet having releasability is adhered to the surface of the molded product, and then the substrate sheet is peeled off to top coat the surface of the molded product.
  • curing by irradiation with active energy rays, or by bonding the transfer material to the surface of the molded article, curing by irradiation with active energy rays, and then peeling the substrate sheet A method of transferring the top coat to the surface is mentioned.
  • a protective sheet having a coating film made of the paint of the present invention on a base sheet, or a protective sheet having a coating film made of the paint and a decorative layer on a base sheet is plastic molded.
  • a protective layer is formed on the surface of the molded product by bonding to the product.
  • the coating material of the present invention can be preferably used for the transfer method and the sheet adhesion method.
  • a transfer material is first prepared.
  • the transfer material can be produced, for example, by applying the paint alone or mixed with a polyisocyanate compound onto a base sheet and heating to semi-cure (B-stage) the coating film. .
  • the B-staging step is further performed. You may use together with a polyisocyanate compound for the purpose of performing efficiently.
  • the above-described paint of the present invention is applied onto a base sheet.
  • the method for applying the paint include a gravure coating method, a roll coating method, a spray coating method, a lip coating method, a coating method such as a comma coating method, and a printing method such as a gravure printing method and a screen printing method.
  • the coating thickness is preferably such that the thickness of the cured coating film is 0.5 to 30 ⁇ m because the wear resistance and chemical resistance are good, and it is preferably 1 to 6 ⁇ m. It is more preferable to paint so that
  • the heating is usually 55 to 160 ° C, preferably 100 to 140 ° C.
  • the heating time is usually 30 seconds to 30 minutes, preferably 1 to 10 minutes, more preferably 1 to 5 minutes.
  • the surface protective layer of the molded product using the transfer material may be formed by, for example, bonding the B-staged resin layer of the transfer material and the molded product, and then irradiating active energy rays to cure the resin layer.
  • the B-staged resin layer of the transfer material is adhered to the surface of the molded product, and then the base sheet of the transfer material is peeled to remove the B-staged resin layer of the transfer material.
  • energy rays are cured by irradiation with active energy rays to cure the resin layer by cross-linking (transfer method), or the transfer material is sandwiched in a mold and the resin is placed in the cavity.
  • a transfer material is adhered to the surface, the substrate sheet is peeled off and transferred onto the molded product, and then the energy beam is cured by irradiation with active energy rays to crosslink and cure the resin layer. And the like (molding simultaneous transfer method).
  • the sheet bonding method is specifically a resin layer formed by bonding a base sheet of a protective layer forming sheet prepared in advance and a molded product, and then thermally curing by heating to form a B-stage.
  • a method of performing cross-linking curing (post-adhesion method), and the protective layer forming sheet is sandwiched in a molding die, and a resin is injected and filled in the cavity to obtain a resin molded product, and at the same time, the surface and the protective layer are formed.
  • a method in which a resin sheet is bonded and then thermally cured by heating to crosslink and cure the resin layer (molding simultaneous bonding method).
  • the coating film of the present invention is a coating film formed by applying and curing the coating material of the present invention on the above-described plastic film, or coating and curing the coating material of the present invention as a surface protective agent for plastic molded products.
  • the film of the present invention is a film having a coating film formed on a plastic film.
  • a film obtained by applying the paint of the present invention on a plastic film and irradiating an active energy ray is used as a protective film for a polarizing plate used for a liquid crystal display, a touch panel display or the like. It is preferable to use as the coating film hardness.
  • the coating film hardness when the paint of the present invention is applied to a protective film of a polarizing plate used for a liquid crystal display, a touch panel display, etc., and the film is formed by irradiating and curing active energy rays, the cured coating film has a high hardness. It becomes a protective film that combines high transparency.
  • an adhesive layer may be formed on the traditional side of the coating layer to which the paint of the present invention is applied.
  • the weight average molecular weight (Mw) is a value measured under the following conditions using a gel permeation chromatograph (GPC).
  • Measuring device HLC-8220 manufactured by Tosoh Corporation Column: Tosoh Corporation guard column H XL -H + Tosoh Corporation TSKgel G5000H XL + Tosoh Corporation TSKgel G4000H XL + Tosoh Corporation TSKgel G3000H XL + Tosoh Corporation TSKgel G2000H XL Detector: RI (differential refractometer) Data processing: Tosoh Corporation SC-8010 Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solids filtered through microfilter (100 ⁇ l)
  • Inorganic fine particles (a) used in Examples of the present application Inorganic fine particles (a1): “Aerosil R7200” manufactured by Nippon Aerosil Co., Ltd. Silica fine particles with a primary average particle size of 12 nm
  • Silica fine particles / inorganic fine particles with a primary average particle size of 30 nm (a4): “Aerosil 200” manufactured by Nippon Aerosil Co., Ltd.
  • Silica fine particles / inorganic fine particles with a primary average particle size of 12 nm (A′1): “ELCOM V-8804” (dispersion of ⁇ -methacryloxypropyltrimethoxysilane-treated silica) manufactured by JGC Catalysts & Chemicals Co., Ltd.
  • Ionic liquid (B) used in Examples of the present application ⁇ Ionic liquid (B1): “IL-A2” manufactured by Guangei Chemical Co., Ltd. ⁇ Ionic liquid (B2): “IL-A5” manufactured by Guangei Chemical Co., Ltd. ⁇ Ionic liquid (B3): “IL-AP3” manufactured by Guangei Chemical Co., Ltd.
  • Production Example 1 Production of acrylic polymer (X-1) A reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introduction tube was charged with 493 parts by weight of methyl isobutyl ketone until the system temperature reached 110 ° C. while stirring.
  • the temperature was raised, and then 304 parts by mass of glycidyl methacrylate, 17 parts by mass of methyl methacrylate, 17 parts by mass of ethyl acrylate, and 15 parts by mass of t-butylperoxy-2-ethylhexanoate (“Perbutyl O” manufactured by Nippon Emulsifier Co., Ltd.) After the liquid mixture consisting of parts was dropped from the dropping funnel over 3 hours, it was kept at 110 ° C. for 15 hours.
  • Production Example 2 Production of acrylic polymer (X-2) A reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introducing tube was charged with 476 parts by mass of methyl isobutyl ketone until the system temperature reached 110 ° C. while stirring. Then, 119 parts by weight of glycidyl methacrylate, 267 parts by weight of methyl methacrylate, 30 parts by weight of n-butyl methacrylate and t-butylperoxy-2-ethylhexanoate (“Perbutyl O” manufactured by Nippon Emulsifier Co., Ltd.) ) A liquid mixture consisting of 48 parts by mass was dropped from the dropping funnel over 3 hours and then held at 110 ° C.
  • Nonvolatile content 50.0 mass%, Gardner viscosity (25 ° C.): U, Gardner color: 1 or less, acid value: 1.0, weight average molecular weight (Mw): 10,400, theoretical acryloyl group equivalent in terms of solid content : 572 g / eq
  • Example 1 60 parts by mass of a methyl isobutyl ketone solution of the acrylic polymer (X-1) obtained in Production Example 1 (30.0 parts by mass of acrylic polymer (X-1) in 60 parts by mass), dipentaerythritol hexaacrylate ( c1) 20 parts by mass, inorganic fine particles (a1) 50 parts by mass, ionic liquid (B1) 0.5 parts by mass, MIBK 60 parts by mass and propylene glycol monomethyl ether 10 parts by mass were mixed with a wet ball mill (manufactured by Ashizawa Corporation). “Star mill LMZ015”) was mixed and dispersed to obtain a dispersion.
  • a methyl isobutyl ketone solution of the acrylic polymer (X-1) obtained in Production Example 1 30.0 parts by mass of acrylic polymer (X-1) in 60 parts by mass), dipentaerythritol hexaacrylate ( c1) 20 parts by mass, inorganic fine particles (a1) 50 parts by mass,
  • Pencil hardness test of coating film Preparation method of cured coating film
  • the active energy ray-curable resin composition was applied onto a triacetyl cellulose (TAC) film (film thickness of 80 ⁇ m) with a bar coater so that the film thickness after curing was 10 ⁇ m.
  • a test piece having a cured coating film was obtained by drying at a temperature of 1 ° C. for 1 minute and passing it through a high-pressure mercury lamp under nitrogen at a dose of 250 mJ / cm 2 for curing. 2.
  • Pencil Hardness Test Method The cured film of the above test piece was evaluated by a pencil scratch test with a load of 500 g according to JIS K 5400. The test was conducted five times, and the hardness one degree lower than the hardness at which scratches were made twice or more was defined as the pencil hardness of the coating film.
  • Coating transparency test 1 Preparation method of cured coating film A coating film was prepared in the same manner as in the pencil hardness test. 2. Transparency Test Method The haze value of the coating film was measured using “Haze Computer HZ-2” manufactured by Suga Test Instruments Co., Ltd. The lower the haze value, the higher the transparency of the coating film.
  • Examples 2-12 An active energy ray-curable resin composition was obtained in the same manner as in Example 1 except that the composition was as shown in Tables 1 and 2. About these, the test similar to Example 1 was done. The results are shown in Tables 1 and 2.
  • Comparative Example 1 A mixture of 20 parts by mass of hexanediol diacrylate, 40 parts by mass of ethoxylate pentaerythritol tetraacrylate, 100 parts by mass of inorganic fine particles (A1 ′), 0.2 parts by mass of ionic liquid (B1) and 40 parts by mass of MIBK was mixed and dispersed to obtain a dispersion. The same test as in Example 1 was performed on the dispersion. The results are shown in Table 2.
  • Comparative Example 2 An active energy ray-curable resin composition was obtained in the same manner as in Comparative Example 1 except that the composition was as shown in Table 3. About these, the test similar to Example 1 was done. The results are shown in Table 3.
  • Comparative Examples 3 and 4 An active energy ray-curable resin composition was obtained in the same manner as in Example 1 except that the composition was as shown in Table 3. About these, the test similar to Example 1 was done. The results are shown in Table 3.

Abstract

Provided are: an active-energy-ray-curable resin composition which has excellent storage stability and enables the production of a cured coating film having extremely high surface hardness and transparency; a coating agent comprising the resin composition; a coating film comprising the coating agent; and a film having the coating film layer. The resin composition is characterized by comprising, as essential components, inorganic microparticles (A) having an average particle diameter of 90-300 nm, an ionic liquid (B), and an acrylic polymer (X) having a weight average molecular weight (Mw) of 5,000-80,000 and having a (meth)acryloyl group in the molecular structure thereof.

Description

活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型樹脂組成物の製造方法、塗料、塗膜、及びフィルムActive energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
 本発明は、保存安定性に優れ、かつ、硬化塗膜が非常に高い表面硬度と透明性とを発現する活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む塗料、該塗料からなる塗膜、及び該塗膜層を有するフィルムに関する。 The present invention provides an active energy ray-curable resin composition that is excellent in storage stability and exhibits a very high surface hardness and transparency of a cured coating film, a paint containing the resin composition, and a coating comprising the paint. The present invention relates to a film and a film having the coating layer.
 樹脂成分中に無機微粒子を分散させて得られる無機微粒子分散型活性エネルギー線硬化型樹脂組成物は、有機系材料のみからなる樹脂組成物と比較して、硬化塗膜の高硬度化、屈折率の調整、導電性の付与など、高性能化や新機能の付与が可能となる新規材料として近年注目を集めている。このような樹脂組成物の用途は様々であるが、例えば、硬化塗膜が高硬度であるという特徴を活かし、成形品やディスプレイの表面を傷付きから保護するためのハードコート剤として用いた場合には、有機系材料のみからなる樹脂組成物を用いた場合と比較して、遥かに優れた耐傷性を発現するハードコート剤を得ることができる。しかしながら、無機微粒子を含有する樹脂組成物は、前述のような優れた特徴を有する一方で、無機微粒子の経時的な沈殿が生じやすく、保存安定性に劣る欠点があった。 The inorganic fine particle dispersed active energy ray-curable resin composition obtained by dispersing inorganic fine particles in the resin component has a hardened coating film with a higher hardness and refractive index than a resin composition consisting of only organic materials. In recent years, it has attracted attention as a new material that can be improved in performance and impart new functions, such as adjustment of conductivity and imparting conductivity. There are various uses for such a resin composition, for example, when the hard coating film is used as a hard coat agent for protecting the surface of a molded product or a display from scratches, taking advantage of the feature that the cured coating film has high hardness. Compared with the case where the resin composition which consists only of organic materials is used, the hard-coat agent which expresses much superior scratch resistance can be obtained. However, while the resin composition containing inorganic fine particles has the above-described excellent characteristics, the inorganic fine particles are likely to precipitate with time, and have a disadvantage of poor storage stability.
 無機微粒子分散型活性エネルギー線硬化型樹脂組成物からなるハードコート剤の保存安定性を改善した技術として、γ-メタクリロキシプロピルトリメトキシシランで表面修飾された平均粒子径が30nmのシリカ微粒子をエトキシレートペンタエリスリトールテトラアクリレートに分散したものと、へキサンジオールジアクリレートと、トリオクチルメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミドとを含有する樹脂組成物が知られている(特許文献1参照)。このような樹脂組成物は、保存安定性には優れるものの、平均粒子径が80nm以下の比較的小さい無機微粒子を用いているため、昨今益々高まる塗膜硬度の要求レベルに対し、十分な性能が得られるものではなかった。塗膜硬度を向上させる方法として、例えば、粒子径が80nmを超えるより大きい無機微粒子を用いる方法が考えられるが、このような無機微粒子を用いた場合には、該無機微粒子の経時的な沈殿が生じてしまい十分な保存安定性が得られないことに加え、硬化塗膜の透明性も低下するものであった。 As a technology for improving the storage stability of a hard coating agent comprising an inorganic fine particle-dispersed active energy ray-curable resin composition, silica fine particles having an average particle size of 30 nm and modified with γ-methacryloxypropyltrimethoxysilane are ethoxylated. A resin composition containing a dispersion in rate pentaerythritol tetraacrylate, hexanediol diacrylate, and trioctylmethylammonium bis (trifluoromethanesulfonyl) imide is known (see Patent Document 1). Although such a resin composition is excellent in storage stability, since it uses relatively small inorganic fine particles having an average particle diameter of 80 nm or less, it has sufficient performance for the required level of coating film hardness that is increasing more and more recently. It was not obtained. As a method for improving the coating film hardness, for example, a method using larger inorganic fine particles having a particle diameter exceeding 80 nm is conceivable. However, when such inorganic fine particles are used, precipitation of the inorganic fine particles over time is possible. In addition to the occurrence of sufficient storage stability, the transparency of the cured coating film was also lowered.
特開2010-189620号公報JP 2010-189620 A
 本発明が解決しようとする課題は、保存安定性に優れ、かつ、硬化塗膜が非常に高い表面硬度と透明性とを有する活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む塗料、該塗料からなる塗膜、及び該塗膜層を有するフィルムを提供することにある。 The problem to be solved by the present invention is an active energy ray-curable resin composition having excellent surface stability and a very high surface hardness and transparency of a cured coating film, a paint containing the resin composition, It is providing the coating film which consists of this coating material, and the film which has this coating film layer.
 本発明者らは、上記の課題を解決するため鋭意検討した結果、平均粒子径が90~300nmの範囲である無機微粒子(A)と、イオン液体(B)と、重量平均分子量(Mw)が5,000~80,000の範囲であり、分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)とを必須の成分として含有することを特徴とする活性エネルギー線硬化型樹脂組成物が、保存安定性に優れ、かつ、該樹脂組成物からなる塗膜が非常に高い表面硬度と透明性とを発現することを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that inorganic fine particles (A) having an average particle diameter in the range of 90 to 300 nm, ionic liquid (B), and weight average molecular weight (Mw). An active energy ray-curable resin composition containing an acrylic polymer (X) having a (meth) acryloyl group in the molecular structure as an essential component in the range of 5,000 to 80,000 However, the present inventors have found that a coating film made of the resin composition is excellent in storage stability and exhibits very high surface hardness and transparency, thereby completing the present invention.
 即ち、本発明は、平均粒子径が90~300nmの範囲である無機微粒子(A)と、イオン液体(B)と、重量平均分子量(Mw)が5,000~80,000の範囲であり、分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)とを必須の成分として含有することを特徴とする活性エネルギー線硬化型樹脂組成物に関する。 That is, in the present invention, the inorganic fine particles (A) having an average particle diameter in the range of 90 to 300 nm, the ionic liquid (B), and the weight average molecular weight (Mw) in the range of 5,000 to 80,000, The present invention relates to an active energy ray-curable resin composition comprising an acrylic polymer (X) having a (meth) acryloyl group in a molecular structure as an essential component.
 本発明は更に、活性エネルギー線硬化型樹脂組成物の製造方法に関する。 The present invention further relates to a method for producing an active energy ray-curable resin composition.
 本発明は更に、前記樹脂組成物を含む塗料に関する。 The present invention further relates to a paint containing the resin composition.
 本発明は更に、前記塗料からなる塗膜に関する。 The present invention further relates to a coating film comprising the paint.
 本発明は更に、前記塗膜層を有するフィルムに関する。 The present invention further relates to a film having the coating layer.
 本発明によれば、保存安定性に優れ、かつ、硬化塗膜が非常に高い表面硬度と透明性とを発現する活性エネルギー線硬化型樹脂組成物、該樹脂組成物を含む塗料、該塗料からなる塗膜、及び該塗膜層を有するフィルムを提供できる。 According to the present invention, an active energy ray-curable resin composition that is excellent in storage stability and has a cured coating film exhibiting a very high surface hardness and transparency, a paint including the resin composition, and the paint And a film having the coating layer can be provided.
本発明の樹脂組成物を製造する際に用いることが出来る湿式ボールミルの縦断面図である。It is a longitudinal cross-sectional view of the wet ball mill which can be used when manufacturing the resin composition of this invention. 本発明の樹脂組成物を製造する際に用いることが出来る湿式ボールミルの軸封装置の縦断面図である。It is a longitudinal cross-sectional view of the shaft seal apparatus of the wet ball mill which can be used when manufacturing the resin composition of this invention.
本願発明の活性エネルギー線硬化型樹脂組成物は、平均粒子径が90~300nmの範囲である無機微粒子(A)と、イオン液体(B)と、重量平均分子量(Mw)が5,000~80,000の範囲であり、分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)とを必須の成分として含有する。 The active energy ray-curable resin composition of the present invention has inorganic fine particles (A) having an average particle size in the range of 90 to 300 nm, ionic liquid (B), and weight average molecular weight (Mw) of 5,000 to 80. And an acrylic polymer (X) having a (meth) acryloyl group in the molecular structure as an essential component.
 本発明の活性エネルギー線硬化型樹脂組成物は、前記無機微粒子(A)を含有ことにより、表面硬度のより高い硬化塗膜が得られる。前記無機微粒子(A)の平均粒子径は90~300nmの範囲であり、平均粒子径が90nm未満の場合には、得られる塗膜の表面硬度が低下し、300nmを超える場合には、得られる塗膜の透明性が低下する。中でも、得られる塗膜の硬度と透明性とをより高いレベルで兼備できる点で、平均粒子径が100~160nmの範囲であることがより好ましい。 The active energy ray-curable resin composition of the present invention contains the inorganic fine particles (A), so that a cured coating film with higher surface hardness can be obtained. The average particle size of the inorganic fine particles (A) is in the range of 90 to 300 nm. When the average particle size is less than 90 nm, the surface hardness of the resulting coating film is reduced, and when the average particle size exceeds 300 nm, the average particle size is obtained. The transparency of the coating film decreases. In particular, the average particle diameter is more preferably in the range of 100 to 160 nm in that the hardness and transparency of the obtained coating film can be combined at a higher level.
 尚、本願発明において前記無機微粒子(A)の平均粒子径は、活性エネルギー線硬化型樹脂組成物中の粒子径を、粒子径測定装置(大塚電子株式会社製「ELSZ-2」)を用いて測定される値である。 In the present invention, the average particle size of the inorganic fine particles (A) is determined by measuring the particle size in the active energy ray-curable resin composition using a particle size measuring device (“ELSZ-2” manufactured by Otsuka Electronics Co., Ltd.). The value to be measured.
 本願発明の活性エネルギー線硬化型樹脂組成物が含有する前記無機微粒子(A)は、原料となる無機微粒子(a)を、本発明の活性エネルギー線硬化型樹脂組成物が含有する樹脂成分、即ち、前記アクリル重合体(X)を必須の成分とする樹脂成分に分散させることにより得られる。前記無機微粒子(a)は、例えば、シリカ、アルミナ、ジルコニア、チタニア、チタン酸バリウム、三酸化アンチモン等の微粒子が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。 The inorganic fine particles (A) contained in the active energy ray-curable resin composition of the present invention are the resin components contained in the active energy ray-curable resin composition of the present invention, the inorganic fine particles (a) as a raw material, It is obtained by dispersing the acrylic polymer (X) in a resin component having an essential component. Examples of the inorganic fine particles (a) include fine particles such as silica, alumina, zirconia, titania, barium titanate, and antimony trioxide. These may be used alone or in combination of two or more.
 これら無機微粒子(a)の中でも、入手が容易で、かつ、扱いが簡便な点で、シリカ微粒子が好ましい。シリカ微粒子は、例えば、湿式シリカ微粒子や、乾式シリカ微粒子等が挙げられる。前記湿式シリカ微粒子は、例えば、珪酸ナトリウムを鉱酸で中和して得られるシリカ微粒子が挙げられる。前記無機微粒子(a)として湿式シリカ微粒子を用いる場合、得られる樹脂組成物中の無機微粒子(A)の平均粒子径を前記好ましい値に調節することが容易となる点で、平均粒子径が90~300nmの範囲である湿式シリカ微粒子を用いることが好ましい。前記乾式シリカ微粒子は、例えば、四塩化珪素を酸素または水素炎中で燃焼することにより得られるシリカ微粒子が挙げられる。前記無機微粒子(a)として乾式シリカ微粒子を用いる場合、得られる樹脂組成物中の無機微粒子(A)の平均粒子径を前記好ましい値に調節することが容易となる点で、平均一次粒子径が3~100nm、好ましくは5~50nmの範囲である乾式シリカ微粒子が凝集した二次粒子を用いることが好ましい。 Among these inorganic fine particles (a), silica fine particles are preferable because they are easily available and easy to handle. Examples of the silica fine particles include wet silica fine particles and dry silica fine particles. Examples of the wet silica fine particles include silica fine particles obtained by neutralizing sodium silicate with a mineral acid. When wet silica fine particles are used as the inorganic fine particles (a), the average particle size is 90 in that it is easy to adjust the average particle size of the inorganic fine particles (A) in the obtained resin composition to the preferred value. It is preferable to use wet silica fine particles in the range of ˜300 nm. Examples of the dry silica fine particles include silica fine particles obtained by burning silicon tetrachloride in an oxygen or hydrogen flame. When dry silica fine particles are used as the inorganic fine particles (a), the average primary particle size is easy in that the average particle size of the inorganic fine particles (A) in the obtained resin composition can be easily adjusted to the preferred value. It is preferable to use secondary particles in which dry silica fine particles in the range of 3 to 100 nm, preferably 5 to 50 nm are aggregated.
 前期シリカ微粒子の中でも、より表面硬度の高い硬化塗膜が得られる点で、乾式シリカ微粒子が好ましい。 Among the silica fine particles, dry silica fine particles are preferable in that a cured coating film having higher surface hardness can be obtained.
 本発明では、各種シランカップリング剤を用いて、前記無機微粒子(a)の表面に官能基を導入しても良い。該無機微粒子(a)の表面に官能基を導入することにより、分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)等の有機成分との混和性が高まり、保存安定性が向上する。 In the present invention, functional groups may be introduced on the surface of the inorganic fine particles (a) using various silane coupling agents. By introducing a functional group on the surface of the inorganic fine particles (a), the miscibility with an organic component such as an acrylic polymer (X) having a (meth) acryloyl group in the molecular structure is increased, and the storage stability is improved. To do.
 前記シランカップリング剤は、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル・ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、特殊アミノシラン、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、トリクロロビニルシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等、ビニル系のシランカップリング剤; Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- Glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyl Diethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (amino Til) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl- N- (1,3-dimethylbutylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, special Aminosilane, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyl Reethoxysilane, allyltrichlorosilane, allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, trichlorovinylsilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, etc. Vinyl-based silane coupling agents;
 ジエトキシ(グリシディルオキシプロピル)メチルシラン、2-(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-ブリシドキシプロピルトリエトキシシラン等、エポキシ系のシランカップリング剤; Diethoxy (glycidyloxypropyl) methylsilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-bridoxypropyl Epoxy-based silane coupling agents such as triethoxysilane;
 p-スチリルトリメトキシシラン等、スチレン系のシランカップリング剤; Styrene-type silane coupling agents such as p-styryltrimethoxysilane;
 3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等、(メタ)アクリロキシ系のシランカップリング剤; 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, etc. (meth) Acryloxy silane coupling agent;
 N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1、3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等、アミノ系のシランカップリング剤; N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltri Amino-based silane couplings such as methoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane Agent;
 3-ウレイドプロピルトリエトキシシラン等、ウレイド系のシランカップリング剤; Ureido-based silane coupling agents such as 3-ureidopropyltriethoxysilane;
 3-クロロプロピルトリメトキシシラン等、クロロプロピル系のシランカップリング剤; Chloropropyl silane coupling agents such as 3-chloropropyltrimethoxysilane;
 3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキンシラン等、メルカプロ系のシランカップリング剤; , Mercaptopropyl silane coupling agents such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethinesilane;
 ビス(トリエトキシシリルプロピル)テトラスルファイド等、スルフィド系のシランカップリング剤; Sulfide-based silane coupling agents such as bis (triethoxysilylpropyl) tetrasulfide;
 3-イソシアネートプロピルトリエトキシシラン等、イソシアネート系のシランカップリング剤が挙げられる。これらシランカップリング剤はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)などの有機成分との混和性に優れ、表面硬度が高く透明性にも優れる硬化塗膜が得られる点で、(メタ)アクリロキシ系のシランカップリング剤が好ましく、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシランがより好ましい。 Examples include isocyanate-based silane coupling agents such as 3-isocyanatopropyltriethoxysilane. These silane coupling agents may be used alone or in combination of two or more. Among these, it is excellent in miscibility with an organic component such as an acrylic polymer (X) having a (meth) acryloyl group in the molecular structure, and a cured coating film having high surface hardness and excellent transparency can be obtained. A (meth) acryloxy-based silane coupling agent is preferable, and 3-acryloxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane are more preferable.
 本発明の活性エネルギー線硬化型樹脂組成物は、イオン液体(B)を含有することにより、無機微粒子(A)の凝集が抑制され、保存安定性に優れるものとなる。ここでイオン液体(B)とは、アニオン部とカチオン部とからなるイオン性の化合物のうち、常温で液体のものを指す。 The active energy ray-curable resin composition of the present invention contains the ionic liquid (B), whereby aggregation of the inorganic fine particles (A) is suppressed and the storage stability is excellent. Here, the ionic liquid (B) refers to a liquid which is liquid at room temperature among ionic compounds composed of an anion portion and a cation portion.
 前記イオン液体(B)のアニオンは、例えば、ビス(トリフルオロメタンスルホニル)イミド、ビス(フルオロメタンスルホニル)イミド、テトラフルオロボレート、ヘキサフルオロホスフェート、トリフルオロメタンスルホネート等が挙げられる。これらの中でも、保存安定性により優れる樹脂組成物が得られる点で、ビス(トリフルオロメタンスルホニル)イミド又はテトラフルオロボレートが好ましい。 Examples of the anion of the ionic liquid (B) include bis (trifluoromethanesulfonyl) imide, bis (fluoromethanesulfonyl) imide, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, and the like. Among these, bis (trifluoromethanesulfonyl) imide or tetrafluoroborate is preferable in that a resin composition having better storage stability can be obtained.
 前記イオン液体(B)のカチオンは、例えば、アンモニウムカチオン、イミダゾリウムカチオン、ピリジニウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、ホスホニウムカチオン等が挙げられる。 Examples of the cation of the ionic liquid (B) include an ammonium cation, an imidazolium cation, a pyridinium cation, a pyrrolidinium cation, a piperidinium cation, and a phosphonium cation.
 前記アンモニウムカチオンは、例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、テトラペンチルアンモニウム、テトラヘキシルアンモニウム、テトラヘプチルアンモニウム、テトラオクチルアンモニウム、テトラノニルアンモニウム、テトラデシルアンモニウム、テトラドデシルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルイソプロピルアンモニウム、エチルジメチルプロピルアンモニウム、エチルジメチルイソプロピルアンモニウム、ジエチルメチルプロピルアンモニウム、ジエチルメチルイソプロピルアンモニウム、ジメチルジプロピルアンモニウム、ジメチルプロピルイソプロピルアンモニウム、ジメチルジイソプロピルアンモニウム、トリエチルプロピルアンモニウム、ブチルトリメチルアンモニウム、イソブチルトリメチルアンモニウム、tert-ブチルトリメチルアンモニウム、トリエチルイソプロピルアンモニウム、エチルメチルジプロピルアンモニウム、エチルメチルジイソプロピルアンモニウム、ブチルエチルジメチルアンモニウム、イソブチルエチルジメチルアンモニウム、tert-ブチルエチルジメチルアンモニウム、ジエチルジプロピルアンモニウム、ジエチルプロピルジイソプロピルアンモニウム、ジエチルジイソプロピルアンモニウム、メチルトリプロピルアンモニウム、メチルジプロピルイソプロピルアンモニウム、メチルプロピルジイソプロピルアンモニウム、ブチルトリエチルアンモニウム、イソブチルトリエチルアンモニウム、tert-ブチルトリエチルアンモニウム、ジブチルジメチルアンモニウム、ジイソブチルジメチルアンモニウム、ジtert-ブチルジメチルアンモニウム、ブチルイソブチルジメチルアンモニウム、ブチル-tert-ブチルジメチルアンモニウム、イソブチル-tert-ブチルジメチルアンモニウム、トリオクチルメチルアンモニウム等が挙げられる。 Examples of the ammonium cation include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, tetranonylammonium, tetradecylammonium, tetradodecylammonium, Ethyltrimethylammonium, diethyldimethylammonium, triethylmethylammonium, trimethylpropylammonium, trimethylisopropylammonium, ethyldimethylpropylammonium, ethyldimethylisopropylammonium, diethylmethylpropylammonium, diethylmethylisopropylammonium, dimethyldipropylammonium Monium, dimethylpropylisopropylammonium, dimethyldiisopropylammonium, triethylpropylammonium, butyltrimethylammonium, isobutyltrimethylammonium, tert-butyltrimethylammonium, triethylisopropylammonium, ethylmethyldipropylammonium, ethylmethyldiisopropylammonium, butylethyldimethylammonium, isobutyl Ethyldimethylammonium, tert-butylethyldimethylammonium, diethyldipropylammonium, diethylpropyldiisopropylammonium, diethyldiisopropylammonium, methyltripropylammonium, methyldipropylisopropylammonium, methylpropyldiisopropyl Ammonium, butyltriethylammonium, isobutyltriethylammonium, tert-butyltriethylammonium, dibutyldimethylammonium, diisobutyldimethylammonium, ditert-butyldimethylammonium, butylisobutyldimethylammonium, butyl-tert-butyldimethylammonium, isobutyl-tert-butyldimethyl Examples include ammonium and trioctylmethylammonium.
 イミダゾリウムカチオンは、例えば、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1,3-ジエチルイミダゾリウム、1,2,3-トリメチルイミダゾリウム、1,3,4-トリメチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-エチル-3,4-ジメチルイミダゾリウム、1-エチル-3,5-ジメチルイミダゾリウム、2-エチル-1,3-ジメチルイミダゾリウム、4-エチル-1,3-ジメチルイミダゾリウム、1,2-ジエチル-3-メチルイミダゾリウム、1,4-ジエチル-3-メチルイミダゾリウム、1,5-ジエチル-3-メチルイミダゾリウム、1,3-ジエチル-2-メチルイミダゾリウム、1,3-ジエチル-4-メチルイミダゾリウム、1,2,3-トリエチルイミダゾリウム、1,3,4-トリエチルイミダゾリウム、1,2,3,4-テトラメチルイミダゾリウム、1-エチル-2,3,4-トリメチルイミダゾリウム、1-エチル-2,3,5-トリメチルイミダゾリウム、1-エチル-3,4,5-トリメチルイミダゾリウム、2-エチル-1,3,4-トリメチルイミダゾリウム、4-エチル-1,2,3-トリメチルイミダゾリウム、1,2-ジエチル-3,4-ジメチルイミダゾリウム、1,3-ジエチル-2,4-ジメチルイミダゾリウム、1,4-ジエチル-2,3-ジメチルイミダゾリウム、2,4-ジエチル-1,3-ジメチルイミダゾリウム、4,5-ジエチル-1,3-ジメチルイミダゾリウム、1,2,3-トリエチル-4-メチルイミダゾリウム、1,2,4-トリエチル-3-メチルイミダゾリウム、1,2,5-トリエチル-3-メチルイミダゾリウム、1,3,4-トリエチル-2-メチルイミダゾリウム、1,3,4-トリエチル-5-メチルイミダゾリウム、1,4,5-トリエチル-3-メチルイミダゾリウム、1,2,3,4,5-ペンタメチルイミダゾリウム、1-メチル-3-プロピルイミダゾリウム等が挙げられる。 Examples of the imidazolium cation include 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1,3-diethylimidazolium, 1,2,3-trimethylimidazolium, 1,3,4-trimethyl. Imidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-ethyl-3,4-dimethylimidazolium, 1-ethyl-3,5-dimethylimidazolium, 2-ethyl-1,3-dimethylimidazolium 4-ethyl-1,3-dimethylimidazolium, 1,2-diethyl-3-methylimidazolium, 1,4-diethyl-3-methylimidazolium, 1,5-diethyl-3-methylimidazolium, , 3-Diethyl-2-methylimidazolium, 1,3-diethyl-4-methylimidazolium, 1,2,3- Liethylimidazolium, 1,3,4-triethylimidazolium, 1,2,3,4-tetramethylimidazolium, 1-ethyl-2,3,4-trimethylimidazolium, 1-ethyl-2,3,3 5-trimethylimidazolium, 1-ethyl-3,4,5-trimethylimidazolium, 2-ethyl-1,3,4-trimethylimidazolium, 4-ethyl-1,2,3-trimethylimidazolium, 1, 2-diethyl-3,4-dimethylimidazolium, 1,3-diethyl-2,4-dimethylimidazolium, 1,4-diethyl-2,3-dimethylimidazolium, 2,4-diethyl-1,3- Dimethylimidazolium, 4,5-diethyl-1,3-dimethylimidazolium, 1,2,3-triethyl-4-methylimidazolium, 1,2, -Triethyl-3-methylimidazolium, 1,2,5-triethyl-3-methylimidazolium, 1,3,4-triethyl-2-methylimidazolium, 1,3,4-triethyl-5-methylimidazolium 1,4,5-triethyl-3-methylimidazolium, 1,2,3,4,5-pentamethylimidazolium, 1-methyl-3-propylimidazolium and the like.
 ピリジニウムカチオンは、例えば、1-メチルピリジニウム、1-エチルピリジニウム、1-プロピルピリジニウム、1-ブチルピリジニウム、1-ペンチルピリジニウム、1-ヘキシルピリジニウム、1-ヘプチルピリジニウム、1-オクチルピリジニウム、1-ノニルピリジニウム、1-デシルピリジニウム、1,2-ジメチルピリジニウム、1,3-ジメチルピリジニウム、1,4-ジメチルピリジニウム、1-エチル-2-メチルピリジニウム、2-エチル-1-メチルピリジニウム、1-エチル-3-メチルピリジニウム、3-エチル-1-メチルピリジニウム、1-エチル-4-メチルピリジニウム、4-エチル-1-メチルピリジニウム、1,2-ジエチルピリジニウム、1,3-ジエチルピリジニウム、1,4-ジエチルピリジニウム、1,2,3-トリメチルピリジニウム、1,2,4-トリメチルピリジニウム、1,3,4-トリメチルピリジニウム、1,3,5-トリメチルピリジニウム、1,2,5-トリメチルピリジニウム、1,2,6-トリメチルピリジニウム、1-エチル-2,3-ジメチルピリジニウム、1-エチル-2,4-ジメチルピリジニウム、1-エチル-2,5-ジメチルピリジニウム、1-エチル-2,6-ジメチルピリジニウム、1-エチル-3,4-ジメチルピリジニウム、1-エチル-3,5-ジメチルピリジニウム、2-エチル-1,3-ジメチルピリジニウム、2-エチル-1,4-ジメチルピリジニウム、2-エチル-1,5-ジメチルピリジニウム、2-エチル-1,6-ジメチルピリジニウム、3-エチル-1,2-ジメチルピリジニウム、3-エチル-1,4-ジメチルピリジニウム、3-エチル-1,5-ジメチルピリジニウム、3-エチル-1,6-ジメチルピリジニウム、4-エチル-1,2-ジメチルピリジニウム、4-エチル-1,3-ジメチルピリジニウム、1,2-ジエチル-3-メチルピリジニウム、1,2-ジエチル-4-メチルピリジニウム、1,2-ジエチル-5-メチルピリジニウム、1,2-ジエチル-6-メチルピリジニウム、1,3-ジエチル-2-メチルピリジニウム、1,3-ジエチル-4-メチルピリジニウム、1,3-ジエチル-5-メチルピリジニウム、1,3-ジエチル-6-メチルピリジニウム、1,4-ジエチル-2-メチルピリジニウム、1,4-ジエチル-3-メチルピリジニウム、2,3-ジエチル-1-メチルピリジニウム、2,4-ジエチル-1-メチルピリジニウム、2,5-ジエチル-1-メチルピリジニウム、2,6-ジエチル-1-メチルピリジニウム、3,4-ジエチル-1-メチルピリジニウム、3,5-ジエチル-1-メチルピリジニウム、1,2,3,4,5-ペンタメチルピリジニウム、1,2,3,4,6-ペンタメチルピリジニウム、1,2,3,5,6-ペンタメチルピリジニウム、1,2,3,4,5,6-ヘキサメチルピリジニウム、1-メチル-4-メチルピリジニウム、1-エチル-4-メチルピリジニウム、1-プロピル-4-メチルピリジニウム、1-ブチル-4-メチルピリジニウム、1-ペンチル-4-メチルピリジニウム、1-ヘキシル-4-メチルピリジニウム、1-ヘプチル-4-メチルピリジニウム、1-オクチル-4-メチルピリジニウム、1-ノニル-4-メチルピリジニウム、1-デシル-4-メチルピリジニウム等が挙げられる。 Examples of the pyridinium cation include 1-methylpyridinium, 1-ethylpyridinium, 1-propylpyridinium, 1-butylpyridinium, 1-pentylpyridinium, 1-hexylpyridinium, 1-heptylpyridinium, 1-octylpyridinium, 1-nonylpyridinium 1-decylpyridinium, 1,2-dimethylpyridinium, 1,3-dimethylpyridinium, 1,4-dimethylpyridinium, 1-ethyl-2-methylpyridinium, 2-ethyl-1-methylpyridinium, 1-ethyl-3 -Methylpyridinium, 3-ethyl-1-methylpyridinium, 1-ethyl-4-methylpyridinium, 4-ethyl-1-methylpyridinium, 1,2-diethylpyridinium, 1,3-diethylpyridinium, 1,4-diethyl Lidinium, 1,2,3-trimethylpyridinium, 1,2,4-trimethylpyridinium, 1,3,4-trimethylpyridinium, 1,3,5-trimethylpyridinium, 1,2,5-trimethylpyridinium, 1,2 , 6-trimethylpyridinium, 1-ethyl-2,3-dimethylpyridinium, 1-ethyl-2,4-dimethylpyridinium, 1-ethyl-2,5-dimethylpyridinium, 1-ethyl-2,6-dimethylpyridinium, 1-ethyl-3,4-dimethylpyridinium, 1-ethyl-3,5-dimethylpyridinium, 2-ethyl-1,3-dimethylpyridinium, 2-ethyl-1,4-dimethylpyridinium, 2-ethyl-1, 5-dimethylpyridinium, 2-ethyl-1,6-dimethylpyridinium, 3-ethyl-1, -Dimethylpyridinium, 3-ethyl-1,4-dimethylpyridinium, 3-ethyl-1,5-dimethylpyridinium, 3-ethyl-1,6-dimethylpyridinium, 4-ethyl-1,2-dimethylpyridinium, 4- Ethyl-1,3-dimethylpyridinium, 1,2-diethyl-3-methylpyridinium, 1,2-diethyl-4-methylpyridinium, 1,2-diethyl-5-methylpyridinium, 1,2-diethyl-6- Methylpyridinium, 1,3-diethyl-2-methylpyridinium, 1,3-diethyl-4-methylpyridinium, 1,3-diethyl-5-methylpyridinium, 1,3-diethyl-6-methylpyridinium, 1,4 -Diethyl-2-methylpyridinium, 1,4-diethyl-3-methylpyridinium, 2,3-die Til-1-methylpyridinium, 2,4-diethyl-1-methylpyridinium, 2,5-diethyl-1-methylpyridinium, 2,6-diethyl-1-methylpyridinium, 3,4-diethyl-1-methylpyridinium 3,5-diethyl-1-methylpyridinium, 1,2,3,4,5-pentamethylpyridinium, 1,2,3,4,6-pentamethylpyridinium, 1,2,3,5,6- Pentamethylpyridinium, 1,2,3,4,5,6-hexamethylpyridinium, 1-methyl-4-methylpyridinium, 1-ethyl-4-methylpyridinium, 1-propyl-4-methylpyridinium, 1-butyl -4-methylpyridinium, 1-pentyl-4-methylpyridinium, 1-hexyl-4-methylpyridinium, 1-heptyl-4 Methylpyridinium, 1-octyl-4-methylpyridinium, 1-nonyl-4-methylpyridinium, 1-decyl-4-methyl-pyridinium, and the like.
 ピロリジニウムカチオンは、例えば、1,1-ジメチルピロリジニウム、1-エチル-1-メチルピロリジニウム、1,1-ジエチルピロリジニウム、1,1,2-トリメチルピロリジニウム、1,1,3-トリメチルピロリジニウム、1-エチル-1,2-ジメチルピロリジニウム、1-エチル-1,3-ジメチルピロリジニウム、2-エチル-1,1-ジメチルピロリジニウム、3-エチル-1,1-ジメチルピロリジニウム、1,1-ジエチル-2-メチルピロリジニウム、1,1-ジエチル-3-メチルピロリジニウム、1,2-ジエチル-1-メチルピロリジニウム、1,3-ジエチル-1-メチルピロリジニウム、1,1,2-トリエチルピロリジニウム、1,1,3-トリエチルピロリジニウム、1,1,2,2-テトラメチルピロリジニウム、1,1,2,3-テトラメチルピロリジニウム、1,1,2,4-テトラメチルピロリジニウム、1,1,2,5-テトラメチルピロリジニウム、1,1,3,4-テトラメチルピロリジニウム、1,1,3,3-テトラメチルピロリジニウム、1,1-ジメチルピロリジウム、1-エチル-1-メチルピロリジウム、1,1-ジエチルピロリジウム、1,1,2-トリメチルピロリジニウム、1,1,3-トリメチルピロリジニウム、1-エチル-1,2-ジメチルピロリジニウム、1-エチル-1,3-ジメチルピロリジニウム、2-エチル-1,1-ジメチルピロリジニウム、3-エチル-1,1-ジメチルピロリジニウム、1,1-ジエチル-2-メチルピロリジニウム、1,1-ジエチル-3-メチルピロリジニウム、1,2-ジエチル-1-メチルピロリジニウム、1,3-ジエチル-1-メチルピロリジニウム、1,1,2-トリエチルピロリジニウム、1,1,3-トリエチルピロリジニウム、1,1,2,2-テトラメチルピロリジニウム、1,1,2,3-テトラメチルピロリジニウム、1,1,2,4-テトラメチルピロリジニウム、1,1,2,5-テトラメチルピロリジニウム、1,1,3,4-テトラメチルピロリジニウム、1,1,3,3-テトラメチルピロリジニウム、2-エチル-1,1,2-トリメチルピロリジニウム、2-エチル-1,1,3-トリメチルピロリジニウム、3-エチル-1,1,2-トリメチルピロリジニウム、3-エチル-1,1,3-トリメチルピロリジニウム、2-エチル-1,1,4-トリメチルピロリジニウム、4-エチル-1,1,2-トリメチルピロリジニウム、2-エチル-1,1,5-トリメチルピロリジニウム、5-エチル-1,1,2-トリメチルピロリジニウム、3-エチル-1,1,4-トリメチルピロリジニウム、4-エチル-1,1,3-トリメチルピロリジニウム、1-エチル-1,2,2-トリメチルピロリジニウム、1-エチル-1,2,3-トリメチルピロリジニウム、1-エチル-1,3,3-トリメチルピロリジニウム、1-エチル-1,2,4-トリメチルピロリジニウム、1-エチル-1,2,5-トリメチルピロリジニウム、1-エチル-1,3,4-トリメチルピロリジニウム、2,2-ジエチル-1,1-ジメチルピロリジニウム、2,3-ジエチル-1,1-ジメチルピロリジニウム、3,3-ジエチル-1,1-ジメチルピロリジニウム、2,4-ジエチル-1,1-ジメチルピロリジニウム、2,5-ジエチル-1,1-ジメチルピロリジニウム、3,4-ジエチル-1,1-ジメチルピロリジニウム、1,2-ジエチル-1,2-ジメチルピロリジニウム、1,2-ジエチル-1,3-ジメチルピロリジニウム、1,3-ジエチル-1,2-ジメチルピロリジニウム、1,3-ジエチル-1,3-ジメチルピロリジニウム、1,2-ジエチル-1,4-ジメチルピロリジニウム、1,4-ジエチル-1,2-ジメチルピロリジニウム、1,2-ジエチル-1,5-ジメチルピロリジニウム、1,5-ジエチル-1,2-ジメチルピロリジニウム、1,3-ジエチル-1,4-ジメチルピロリジニウム、1,1,2,2,3-ペンタメチルピロリジニウム、1,1,2,2,4-ペンタメチルピロリジニウム、1,1,2,2,5-ペンタメチルピロリジニウム、1,1,2,3,4-ペンタメチルピロリジニウム、1,1,2,3,5-ペンタメチルピロリジニウム、1,1,3,3,4-ペンタメチルピロリジニウム、1,1,3,3,5-ペンタメチルピロリジニウム、1-エチル-1,2,2,3-テトラメチルピロリジニウム、1-エチル-1,2,2,4-テトラメチルピロリジニウム、1-エチル-1,2,2,5-テトラメチルピロリジニウム、1-エチル-1,2,3,4-テトラメチルピロリジニウム、1-エチル-1,2,3,5-テトラメチルピロリジニウム、1-エチル-1,2,4,5-テトラメチルピロリジニウム、1-エチル-1,3,3,4-テトラメチルピロリジニウム、1-エチル-1,3,3,5-テトラメチルピロリジニウム、1-エチル-1,3,4,5-テトラメチルピロリジニウム、2-エチル-1,1,2,3-テトラメチルピロリジニウム、2-エチル-1,1,2,4-テトラメチルピロリジニウム、2-エチル-1,1,2,5-テトラメチルピロリジニウム、2-エチル-1,1,3,3-テトラメチルピロリジニウム、2-エチル-1,1,3,4-テトラメチルピロリジニウム、2-エチル-1,1,3,5-テトラメチルピロリジニウム、2-エチル-1,1,4,4-テトラメチルピロリジニウム、2-エチル-1,1,4,5-テトラメチルピロリジニウム、2-エチル-1,1,5,5-テトラメチルピロリジニウム、3-エチル-1,1,2,2-テトラメチルピロリジニウム、3-エチル-1,1,2,3-テトラメチルピロリジニウム、3-エチル-1,1,2,4-テトラメチルピロリジニウム、3-エチル-1,1,2,5-テトラメチルピロリジニウム、3-エチル-1,1,3,4-テトラメチルピロリジニウム、3-エチル-1,1,4,4-テトラメチルピロリジニウム、3-エチル-1,1,4,5-テトラメチルピロリジニウム、1,1,2,2,3,3-ヘキサメチルピロリジニウム、1,1,2,2,3,4-ヘキサメチルピロリジニウム、1,1,2,2,3,5-ヘキサメチルピロリジニウム、1,1,2,2,4,4-ヘキサメチルピロリジニウム、1,1,2,2,4,5-ヘキサメチルピロリジニウム、1,1,2,2,5,5-ヘキサメチルピロリジニウム、1,1,2,3,3,4-ヘキサメチルピロリジニウム、1,1,2,3,3,5-ヘキサメチルピロリジニウム、1,1,2,3,4,4-ヘキサメチルピロリジニウム、1,1,2,3,5,5-ヘキサメチルピロリジニウム、1,1,2,3,4,5-ヘキサメチルピロリジニウム等が挙げられる。 Examples of the pyrrolidinium cation include 1,1-dimethylpyrrolidinium, 1-ethyl-1-methylpyrrolidinium, 1,1-diethylpyrrolidinium, 1,1,2-trimethylpyrrolidinium, 1, 1,3-trimethylpyrrolidinium, 1-ethyl-1,2-dimethylpyrrolidinium, 1-ethyl-1,3-dimethylpyrrolidinium, 2-ethyl-1,1-dimethylpyrrolidinium, 3- Ethyl-1,1-dimethylpyrrolidinium, 1,1-diethyl-2-methylpyrrolidinium, 1,1-diethyl-3-methylpyrrolidinium, 1,2-diethyl-1-methylpyrrolidinium, 1,3-diethyl-1-methylpyrrolidinium, 1,1,2-triethylpyrrolidinium, 1,1,3-triethylpyrrolidinium, 1,1,2,2-tetramethyl Rupyrrolidinium, 1,1,2,3-tetramethylpyrrolidinium, 1,1,2,4-tetramethylpyrrolidinium, 1,1,2,5-tetramethylpyrrolidinium, 1,1,3 4-tetramethylpyrrolidinium, 1,1,3,3-tetramethylpyrrolidinium, 1,1-dimethylpyrrolidinium, 1-ethyl-1-methylpyrrolidinium, 1,1-diethylpyrrolidinium, 1, 1,2-trimethylpyrrolidinium, 1,1,3-trimethylpyrrolidinium, 1-ethyl-1,2-dimethylpyrrolidinium, 1-ethyl-1,3-dimethylpyrrolidinium, 2-ethyl- 1,1-dimethylpyrrolidinium, 3-ethyl-1,1-dimethylpyrrolidinium, 1,1-diethyl-2-methylpyrrolidinium, 1,1-diethyl-3-methylpyrrole 1,2-diethyl-1-methylpyrrolidinium, 1,3-diethyl-1-methylpyrrolidinium, 1,1,2-triethylpyrrolidinium, 1,1,3-triethylpyrrolidinium, 1,1,2,2-tetramethylpyrrolidinium, 1,1,2,3-tetramethylpyrrolidinium, 1,1,2,4-tetramethylpyrrolidinium, 1,1,2,5- Tetramethylpyrrolidinium, 1,1,3,4-tetramethylpyrrolidinium, 1,1,3,3-tetramethylpyrrolidinium, 2-ethyl-1,1,2-trimethylpyrrolidinium, 2 -Ethyl-1,1,3-trimethylpyrrolidinium, 3-ethyl-1,1,2-trimethylpyrrolidinium, 3-ethyl-1,1,3-trimethylpyrrolidinium, 2-ethyl-1, 1,4-trime Tilpyrrolidinium, 4-ethyl-1,1,2-trimethylpyrrolidinium, 2-ethyl-1,1,5-trimethylpyrrolidinium, 5-ethyl-1,1,2-trimethylpyrrolidinium, 3-ethyl-1,1,4-trimethylpyrrolidinium, 4-ethyl-1,1,3-trimethylpyrrolidinium, 1-ethyl-1,2,2-trimethylpyrrolidinium, 1-ethyl-1 , 2,3-trimethylpyrrolidinium, 1-ethyl-1,3,3-trimethylpyrrolidinium, 1-ethyl-1,2,4-trimethylpyrrolidinium, 1-ethyl-1,2,5- Trimethylpyrrolidinium, 1-ethyl-1,3,4-trimethylpyrrolidinium, 2,2-diethyl-1,1-dimethylpyrrolidinium, 2,3-diethyl-1,1-dimethylpyrrolidinium 3,3-diethyl-1,1-dimethylpyrrolidinium, 2,4-diethyl-1,1-dimethylpyrrolidinium, 2,5-diethyl-1,1-dimethylpyrrolidinium, 3,4- Diethyl-1,1-dimethylpyrrolidinium, 1,2-diethyl-1,2-dimethylpyrrolidinium, 1,2-diethyl-1,3-dimethylpyrrolidinium, 1,3-diethyl-1,2 -Dimethylpyrrolidinium, 1,3-diethyl-1,3-dimethylpyrrolidinium, 1,2-diethyl-1,4-dimethylpyrrolidinium, 1,4-diethyl-1,2-dimethylpyrrolidinium 1,2-diethyl-1,5-dimethylpyrrolidinium, 1,5-diethyl-1,2-dimethylpyrrolidinium, 1,3-diethyl-1,4-dimethylpyrrolidinium, 1,1, 2, , 3-pentamethylpyrrolidinium, 1,1,2,2,4-pentamethylpyrrolidinium, 1,1,2,2,5-pentamethylpyrrolidinium, 1,1,2,3,4 -Pentamethylpyrrolidinium, 1,1,2,3,5-pentamethylpyrrolidinium, 1,1,3,3,4-pentamethylpyrrolidinium, 1,1,3,3,5-penta Methylpyrrolidinium, 1-ethyl-1,2,2,3-tetramethylpyrrolidinium, 1-ethyl-1,2,2,4-tetramethylpyrrolidinium, 1-ethyl-1,2,2 , 5-tetramethylpyrrolidinium, 1-ethyl-1,2,3,4-tetramethylpyrrolidinium, 1-ethyl-1,2,3,5-tetramethylpyrrolidinium, 1-ethyl-1 , 2,4,5-Tetramethylpyrrolidinium, 1-eth 1,3-3,4-tetramethylpyrrolidinium, 1-ethyl-1,3,3,5-tetramethylpyrrolidinium, 1-ethyl-1,3,4,5-tetramethylpyrrolidinium Ni, 2-ethyl-1,1,2,3-tetramethylpyrrolidinium, 2-ethyl-1,1,2,4-tetramethylpyrrolidinium, 2-ethyl-1,1,2,5- Tetramethylpyrrolidinium, 2-ethyl-1,1,3,3-tetramethylpyrrolidinium, 2-ethyl-1,1,3,4-tetramethylpyrrolidinium, 2-ethyl-1,1, 3,5-tetramethylpyrrolidinium, 2-ethyl-1,1,4,4-tetramethylpyrrolidinium, 2-ethyl-1,1,4,5-tetramethylpyrrolidinium, 2-ethyl- 1,1,5,5-tetramethylpyrrolidinium, 3 Ethyl-1,1,2,2-tetramethylpyrrolidinium, 3-ethyl-1,1,2,3-tetramethylpyrrolidinium, 3-ethyl-1,1,2,4-tetramethylpyrrolidinium Ni, 3-ethyl-1,1,2,5-tetramethylpyrrolidinium, 3-ethyl-1,1,3,4-tetramethylpyrrolidinium, 3-ethyl-1,1,4,4- Tetramethylpyrrolidinium, 3-ethyl-1,1,4,5-tetramethylpyrrolidinium, 1,1,2,2,3,3-hexamethylpyrrolidinium, 1,1,2,2, 3,4-hexamethylpyrrolidinium, 1,1,2,2,3,5-hexamethylpyrrolidinium, 1,1,2,2,4,4-hexamethylpyrrolidinium, 1,1, 2,2,4,5-hexamethylpyrrolidinium, 1,1,2,2, , 5-hexamethylpyrrolidinium, 1,1,2,3,3,4-hexamethylpyrrolidinium, 1,1,2,3,3,5-hexamethylpyrrolidinium, 1,1,2 , 3,4,4-hexamethylpyrrolidinium, 1,1,2,3,5,5-hexamethylpyrrolidinium, 1,1,2,3,4,5-hexamethylpyrrolidinium, etc. Can be mentioned.
 ピペリジニウムカチオンは、例えば、1,1-ジメチルピペリジニウム、1-エチル-1-メチルピペリジニウム、1,1-ジエチルピペリジニウム、1,1,2-トリメチルピペリジニウム、1,1,3-トリメチルピペリジニウム、1,1,4-トリメチルピペリジニウム、1,1,2,2-テトラメチルピペリジニウム、1,1,2,3-テトラメチルピペリジニウム、1,1,2,4-テトラメチルピペリジニウム、1,1,2,5-テトラメチルピペリジニウム、1,1,2,6-テトラメチルピペリジニウム、1,1,3,3-テトラメチルピペリジニウム、1,1,3,4-テトラメチルピペリジニウム、1,1,3,5-テトラメチルピペリジニウム、1-エチル-1,2-ジメチルピペリジニウム、1-エチル-1,3-ジメチルピペリジニウム、1-エチル-1,4-ジメチルピペリジニウム、1-エチル-1,2,3-トリメチルピペリジニウム、1-エチル-1,2,4-トリメチルピペリジニウム、1-エチル-1,2,5-トリメチルピペリジニウム、1-エチル-1,2,6-トリメチルピペリジニウム、1-エチル-1,3,4-トリメチルピペリジニウム、1-エチル-1,3,5-トリメチルピペリジニウム、1,1-ジエチル-2-メチルピペリジニウム、1,1-ジエチル-3-メチルピペリジニウム、1,1-ジエチル-4-メチルピペリジニウム、1,1-ジエチル-2,3-ジメチルピペリジニウム、1,1-ジエチル-2,4-ジメチルピペリジニウム、1,1-ジエチル-2,5-ジメチルピペリジニウム、1,1-ジエチル-2,6-ジメチピペリジニウム、1,1-ジエチル-3,4-ジメチルピペリジニウム、1,1-ジエチル-3,5-ジメチルピペリジニウム、2-エチル-1,1,3-トリメチルピペリジニウム、2-エチル-1,1,4-トリメチルピペリジニウム、2-エチル-1,1,5-トリメチルピペリジニウム、2-エチル-1,1,6-トリメチルピペリジニウム、3-エチル-1,1,2-トリメチルピペリジニウム、3-エチル-1,1,4-トリメチルピペリジニウム、3-エチル-1,1,5-トリメチルピペリジニウム、3-エチル-1,1,6-トリメチルピペリジニウム、4-エチル-1,1,2-トリメチルピペリジニウム、4-エチル-1,1,3-トリメチルピペリジニウム、1,2-ジエチル-1,3-ジメチルピペリジニウム、1-エチル-1,2,4-トリメチルピペリジニウム、1,2-ジエチル-1,5-ジメチルピペリジニウム、1,2-ジエチル-1,6-ジメチルピペリジニウム、1,3-ジエチル-1,5-ジメチルピペリジニウム、1,3-ジエチル-1,4-ジメチルピペリジニウム、1,3-ジエチル-1,5-ジメチルピペリジニウム、1,3-ジエチル-1,6-ジメチルピペリジニウム、1,4-ジエチル-1,2-ジメチルピペリジニウム、1,4-ジエチル-1,3-ジメチルピペリジニウム、1,1,2-トリエチル-3-メチルピペリジニウム、1,1,2-トリエチル-4-メチルピペリジニウム、1,1,2-トリエチル-5-メチルピペリジニウム、1,1,2-トリエチル-6-メチルピペリジニウム、1,1,3-トリエチル-2-メチルピペリジニウム、1,1,3-トリエチル-4-メチルピペリジニウム、1,1,3-ジエチル-5-メチルピペリジニウム、1,1,3-トリエチル-6-メチルピペリジニウム、1,1,4-ジエチル-2-メチルピペリジニウム、1,1,4-ジエチル-3-メチルピペリジニウム、2-エチル-1,1-ジメチルピペリジニウム、3-エチル-1,1-ジメチルピペリジニウム、4-エチル-1,1-ジメチルピペリジニウム、2,3-ジエチル-1,1-ジメチルピペリジニウム、2,4-ジエチル-1,1-ジメチルピペリジニウム、2,5-ジエチル-1,1-ジメチルピペリジニウム、2,6-ジエチル-1,1-ジメチルピペリジニウム、3,4-ジエチル-1,1-ジメチルピペリジニウム、3,5-ジエチル-1,1-ジメチルピペリジニウム、1,2-ジエチル-1-メチルピペリジニウム、1,3-ジエチル-1-メチルピペリジニウム、1,4-ジエチル-1-メチルピペリジニウム、1,2,3-トリエチル-1-メチルピペリジニウム、1,2,4-トリエチル-1-メチルピペリジニウム、1,2,5-トリエチル-1-メチルピペリジニウム、1,2,6-トリエチル-1-メチルピペリジニウム、1,3,4-トリエチル-1-メチルピペリジニウム、1,3,5-トリエチル-1-メチルピペリジニウム、1,1,2-トリエチルピペリジニウム、1,1,2-トリエチルピペリジニウム、1,1,4-トリエチルピペリジニウム、1,1,2,3-テトラエチルピペリジニウム、1,1,2,4-テトラエチルピペリジニウム、1,1,2,5-テトラエチルピペリジニウム、1,1,2,6-テトラエチルピペリジニウム、1,1,3,4-テトラエチルピペリジニウム、1,1,3,5-テトラエチルピペリジニウム等が挙げられる。 Piperidinium cations include, for example, 1,1-dimethylpiperidinium, 1-ethyl-1-methylpiperidinium, 1,1-diethylpiperidinium, 1,1,2-trimethylpiperidinium, 1, 1,3-trimethylpiperidinium, 1,1,4-trimethylpiperidinium, 1,1,2,2-tetramethylpiperidinium, 1,1,2,3-tetramethylpiperidinium, 1, 1,2,4-tetramethylpiperidinium, 1,1,2,5-tetramethylpiperidinium, 1,1,2,6-tetramethylpiperidinium, 1,1,3,3-tetramethyl Piperidinium, 1,1,3,4-tetramethylpiperidinium, 1,1,3,5-tetramethylpiperidinium, 1-ethyl-1,2-dimethylpiperidinium, 1-ethyl-1 , 3 Dimethylpiperidinium, 1-ethyl-1,4-dimethylpiperidinium, 1-ethyl-1,2,3-trimethylpiperidinium, 1-ethyl-1,2,4-trimethylpiperidinium, 1- Ethyl-1,2,5-trimethylpiperidinium, 1-ethyl-1,2,6-trimethylpiperidinium, 1-ethyl-1,3,4-trimethylpiperidinium, 1-ethyl-1,3 , 5-trimethylpiperidinium, 1,1-diethyl-2-methylpiperidinium, 1,1-diethyl-3-methylpiperidinium, 1,1-diethyl-4-methylpiperidinium, 1,1 -Diethyl-2,3-dimethylpiperidinium, 1,1-diethyl-2,4-dimethylpiperidinium, 1,1-diethyl-2,5-dimethylpiperidinium, 1,1-diethi -2,6-dimethylpiperidinium, 1,1-diethyl-3,4-dimethylpiperidinium, 1,1-diethyl-3,5-dimethylpiperidinium, 2-ethyl-1,1,3- Trimethylpiperidinium, 2-ethyl-1,1,4-trimethylpiperidinium, 2-ethyl-1,1,5-trimethylpiperidinium, 2-ethyl-1,1,6-trimethylpiperidinium, 3-ethyl-1,1,2-trimethylpiperidinium, 3-ethyl-1,1,4-trimethylpiperidinium, 3-ethyl-1,1,5-trimethylpiperidinium, 3-ethyl-1 , 1,6-Trimethylpiperidinium, 4-ethyl-1,1,2-trimethylpiperidinium, 4-ethyl-1,1,3-trimethylpiperidinium, 1,2-diethyl-1,3- Dimethyl Piperidinium, 1-ethyl-1,2,4-trimethylpiperidinium, 1,2-diethyl-1,5-dimethylpiperidinium, 1,2-diethyl-1,6-dimethylpiperidinium, 1,3 -Diethyl-1,5-dimethylpiperidinium, 1,3-diethyl-1,4-dimethylpiperidinium, 1,3-diethyl-1,5-dimethylpiperidinium, 1,3-diethyl-1, 6-dimethylpiperidinium, 1,4-diethyl-1,2-dimethylpiperidinium, 1,4-diethyl-1,3-dimethylpiperidinium, 1,1,2-triethyl-3-methylpiperidi 1,1,2-triethyl-4-methylpiperidinium, 1,1,2-triethyl-5-methylpiperidinium, 1,1,2-triethyl-6-methylpiperidinium, 1,1,3-triethyl-2-methylpiperidinium, 1,1,3-triethyl-4-methylpiperidinium, 1,1,3-diethyl-5-methylpiperidinium, 1,1,3- Triethyl-6-methylpiperidinium, 1,1,4-diethyl-2-methylpiperidinium, 1,1,4-diethyl-3-methylpiperidinium, 2-ethyl-1,1-dimethylpiperidinium Ni, 3-ethyl-1,1-dimethylpiperidinium, 4-ethyl-1,1-dimethylpiperidinium, 2,3-diethyl-1,1-dimethylpiperidinium, 2,4-diethyl-1 , 1-dimethylpiperidinium, 2,5-diethyl-1,1-dimethylpiperidinium, 2,6-diethyl-1,1-dimethylpiperidinium, 3,4-diethyl-1,1-dimethylpiperi Ni, 3,5-diethyl-1,1-dimethylpiperidinium, 1,2-diethyl-1-methylpiperidinium, 1,3-diethyl-1-methylpiperidinium, 1,4-diethyl-1 -Methylpiperidinium, 1,2,3-triethyl-1-methylpiperidinium, 1,2,4-triethyl-1-methylpiperidinium, 1,2,5-triethyl-1-methylpiperidinium 1,2,6-triethyl-1-methylpiperidinium, 1,3,4-triethyl-1-methylpiperidinium, 1,3,5-triethyl-1-methylpiperidinium, 1,1, 2-triethylpiperidinium, 1,1,2-triethylpiperidinium, 1,1,4-triethylpiperidinium, 1,1,2,3-tetraethylpiperidinium, 1,1,2,4- Te Traethylpiperidinium, 1,1,2,5-tetraethylpiperidinium, 1,1,2,6-tetraethylpiperidinium, 1,1,3,4-tetraethylpiperidinium, 1,1,3 , 5-tetraethylpiperidinium and the like.
 ホスホニウムカチオンは、例えば、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラプロピルホスホニウム、テトラブチルホスホニウム、テトラペンチルホスホニウム、テトラヘキシルホスホニウム、テトラヘプチルホスホニウム、テトラオクチルホスホニウム、テトラノニルホスホニウム、テトラデシルホスホニウム、テトラフェニルホスホニウム、トリブチルオクチルホスホニウム、トリブチルノニルホスホニウム、トリブチルデシルホスホニウム、トリブチルウンデシルホスホニウム、トリブチルドデシルホスホニウム、トリブチルトリデシルホスホニウム、トリブチルテトラデシルホスホニウム、トリブチルペンタデシルホスホニウム、トリブチルヘキサデシルホスホニウム、トリブチルヘプタデシルホスホニウム、トリブチルオクタデシルホスホニウム、トリブチルノナデシルホスホニウム、トリブチルイコシルホスホニウム、トリペンチルオクチルホスホニウム、トリペンチルノニルホスホニウム、トリペンチルデシルホスホニウム、トリペンチルウデシルホスホニウム、トリペンチルドデシルホスホニウム、トリペンチルトリデシルホスホニウム、トリペンチルテトラデシルホスホニウム、トリペンチルペンタデシルホスホニウム、トリペンチルヘキサデシルホスホニウム、トリペンチルヘプタデシルホスホニウム、トリペンチルオクタデシルホスホニウム、トリペンチルノナデシルホスホニウム、トリペンチルイコシルホスホニウム、トリヘキシルオクチルホスホニウム、トリヘキシルノニルホスホニウム、トリヘキシルデシルホスホニウム、トリヘキシルウンデシルホスホニウム、トリヘキシルドデシルホスホニウム、トリヘキシルトリデシルホスホニウム、トリヘキシルペンタデシルホスホニウム、トリヘキシルヘキサデシルホスホニウム、トリヘキシルヘプタデシルホスホニウム、トリヘキシルオクタデシルホスホニウム、トリヘキシルノナデシルホスホニウム、トリヘキシルイコシルホスホニウム、トリヘプチルオクチルホスホニウム、トリヘプチルノニルホスホニウム、トリヘプチルデシルホスホニウム、トリヘプチルウンデシルホスホニウム、トリヘプチルドデシルホスホニウム、トリヘプチルトリデシルホスホニウム、トリヘプチルテトラデシルホスホニウム、トリヘプチルペンタデシルホスホニウム、トリヘプチルヘキサデシルホスホニウム、トリヘプチルヘプタデシルホスホニウム、トリヘプチルオクタデシルホスホニウム、トリヘプチルノナデシルホスホニウム、トリヘプチルイコシルホスホニウム、テトラオクチルホスホニウム、トリオクチルノニルホスホニウム、トリオクチルデシルホスホニウム、トリオクチルウンデシルホスホニウム、トリオクチルドデシルホスホニウム、トリオクチルトリデシルホスホニウム、トリオクチルテトラデシルホスホニウム、トリオクチルペンタデシルホスホニウム、トリオクチルヘキサデシルホスホニウム、トリオクチルヘプタデシルホスホニウム、トリオクチルオクタデシルホスホニウム、トリオクチルノナデシルホスホニウム、トリオクチルイコシルホスホニウム等が挙げられる。 Phosphonium cations include, for example, tetramethylphosphonium, tetraethylphosphonium, tetrapropylphosphonium, tetrabutylphosphonium, tetrapentylphosphonium, tetrahexylphosphonium, tetraheptylphosphonium, tetraoctylphosphonium, tetranonylphosphonium, tetradecylphosphonium, tetraphenylphosphonium, tributyl Octylphosphonium, tributylnonylphosphonium, tributyldecylphosphonium, tributylundecylphosphonium, tributyldodecylphosphonium, tributyltridecylphosphonium, tributyltetradecylphosphonium, tributylpentadecylphosphonium, tributylhexadecylphosphonium, tributylheptadecylphosphonium Tributyloctadecylphosphonium, tributylnonadecylphosphonium, tributylicosylphosphonium, tripentyloctylphosphonium, tripentylnonylphosphonium, tripentyldecylphosphonium, tripentyldecylphosphonium, tripentyldecylphosphonium, tripentyltridecylphosphonium, tripentyltetradecyl Phosphonium, tripentylpentadecylphosphonium, tripentylhexadecylphosphonium, tripentylheptadecylphosphonium, tripentyloctadecylphosphonium, tripentylnonadecylphosphonium, tripentylicosylphosphonium, trihexyloctylphosphonium, trihexylnonylphosphonium, trihexyldecyl Phosphonium, To Hexylundecylphosphonium, trihexyldecylphosphonium, trihexyltridecylphosphonium, trihexylpentadecylphosphonium, trihexylhexadecylphosphonium, trihexylheptadecylphosphonium, trihexyloctadecylphosphonium, trihexylnonadecylphosphonium, trihexylicosylphosphonium , Triheptyloctylphosphonium, triheptylnonylphosphonium, triheptyldecylphosphonium, triheptylundecylphosphonium, triheptyldodecylphosphonium, triheptyltridecylphosphonium, triheptyltetradecylphosphonium, triheptylpentadecylphosphonium, triheptylhexadecylphosphonium , Triheptyl heptadecyl Phosphonium, triheptyl octadecyl phosphonium, triheptyl nonadecyl phosphonium, triheptylicosyl phosphonium, tetraoctyl phosphonium, trioctyl nonyl phosphonium, trioctyl decyl phosphonium, trioctyl undecyl phosphonium, trioctyl decyl phosphonium, trioctyl tridecyl phosphonium, Examples include trioctyltetradecylphosphonium, trioctylpentadecylphosphonium, trioctylhexadecylphosphonium, trioctylheptadecylphosphonium, trioctyloctadecylphosphonium, trioctylnonadecylphosphonium, and trioctylicosylphosphonium.
 これらカチオンの中でも、より保存安定性に優れる活性エネルギー線硬化型樹脂組成物となる点で、前記アンモニウムカチオン及びホスホニウムカチオンが好ましく、アンモニウムカチオンがより好ましい。 Among these cations, the ammonium cation and the phosphonium cation are preferable and the ammonium cation is more preferable in that the active energy ray-curable resin composition is more excellent in storage stability.
 前記アンモニウムカチオンを有するイオン液体は、例えば、トリオクチルメチルアンモニウム=ビストリフルオロメタンスルホニルイミド、トリメチルプロピルアンモニウム=ビストリフルオロメタンスルホニルイミド、ジメチルエチル[2-(2-メトキシエトキシ)エチル]アンモニウム=ビストリフルオロメタンスルホニルイミド、ジエチルメチル(2-メトキシエチル)アンモニウム=ビストリフルオロメタンスルホニルイミド、ジエチルメチル(2-メトキシエチル)アンモニウム=テトラフルオロホスフェート、ジメチルエチル[2-(2-メトキシエトキシ)エチル]アンモニウム=テトラフルオロホスフェート、ジエチルメチル(2-メトキシエチル)アンモニウム=ヘキサフルオロホスフェート等が挙げられる。 Examples of the ionic liquid having an ammonium cation include trioctylmethylammonium = bistrifluoromethanesulfonylimide, trimethylpropylammonium = bistrifluoromethanesulfonylimide, dimethylethyl [2- (2-methoxyethoxy) ethyl] ammonium = bistrifluoromethane. Sulfonylimide, diethylmethyl (2-methoxyethyl) ammonium = bistrifluoromethanesulfonylimide, diethylmethyl (2-methoxyethyl) ammonium = tetrafluorophosphate, dimethylethyl [2- (2-methoxyethoxy) ethyl] ammonium = tetrafluoro Examples thereof include phosphate, diethylmethyl (2-methoxyethyl) ammonium = hexafluorophosphate, and the like.
 前記ホスホニウムカチオンを有するイオン液体は、例えば、トリブチルメチルホスホニウム=ビストリフルオロメタンスルホニウムイミド、トリエチルオクチルホスホニウム=ビストリフルオロメタンスルホニウムイミド、トリプロピルオクチルホスホニウム=ビストリフルオロメタンスルホニウムイミド、トリブチルオクチルホスホニウム=ビストリフルオロメタンスルホニウムイミド等が挙げられる。 Examples of the ionic liquid having the phosphonium cation include tributylmethylphosphonium = bistrifluoromethanesulfonium imide, triethyloctylphosphonium = bistrifluoromethanesulfonium imide, tripropyloctylphosphonium = bistrifluoromethanesulfonium imide, tributyloctylphosphonium = bistrifluoromethanesulfonium. An imide etc. are mentioned.
 これらイオン液体はそれぞれ単独で用いても良いし、二種類以上を併用しても良い。 These ionic liquids may be used alone or in combination of two or more.
 前記アンモニウムカチオンを有するイオン液体の市販品は、例えば、公栄化学社製「IL-A1」、「IL-A2」、「IL-A3」、「IL-A4」、「IL-A5」、「IL-A12」等が挙げられる。また、前記ホスホニウムカチオンを有するイオン液体の市販品は、例えば「IL-AP1」、「IL-AP3」等が挙げられる。 Commercially available ionic liquids having an ammonium cation include, for example, “IL-A1”, “IL-A2”, “IL-A3”, “IL-A4”, “IL-A5”, “IL-A5”, “ IL-A12 "and the like. Examples of commercially available ionic liquids having the phosphonium cation include “IL-AP1” and “IL-AP3”.
 本発明の活性エネルギー線硬化型樹脂組成物は、樹脂成分として、重量平均分子量(Mw)が5,000~100,000の範囲であり、分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)を含有する。 The active energy ray-curable resin composition of the present invention has, as a resin component, an acrylic polymer having a weight average molecular weight (Mw) in the range of 5,000 to 100,000 and having a (meth) acryloyl group in the molecular structure. (X) is contained.
 前記分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)は、その重量平均分子量(Mw)が5,000~80,000の範囲であることにより、前記無機微粒子(A)を安定的に分散することができるため樹脂組成物の保存安定性が向上する。重量平均分子量(Mw)が5,000未満の場合には、前記無機微粒子(A)の分散性が低下するため、樹脂組成物の保存安定性や、硬化塗膜の透明性が低下する。また、重量平均分子量(Mw)が80,000を超える場合には、粘度が高くなり、塗料用途として扱い難いものとなる。中でも、前記無機微粒子(A)の分散性により優れ、かつ、活性エネルギー線硬化型樹脂組成物が塗工に適した粘度となる点で、重量平均分子量(Mw)が8,000~50,000の範囲であることが好ましく、10,000~40,000の範囲であることがより好ましい。 The acrylic polymer (X) having a (meth) acryloyl group in the molecular structure has a weight average molecular weight (Mw) in the range of 5,000 to 80,000, thereby stabilizing the inorganic fine particles (A). Storage stability of the resin composition is improved. When the weight average molecular weight (Mw) is less than 5,000, the dispersibility of the inorganic fine particles (A) is lowered, so that the storage stability of the resin composition and the transparency of the cured coating film are lowered. Moreover, when a weight average molecular weight (Mw) exceeds 80,000, a viscosity will become high and will become difficult to handle as a paint use. Among them, the weight average molecular weight (Mw) is 8,000 to 50,000 in that the inorganic fine particles (A) are excellent in dispersibility and the active energy ray-curable resin composition has a viscosity suitable for coating. Is preferable, and a range of 10,000 to 40,000 is more preferable.
 尚、本発明において、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により測定される値である。 In the present invention, the weight average molecular weight (Mw) is a value measured under the following conditions using a gel permeation chromatograph (GPC).
 測定装置 ; 東ソー株式会社製 HLC-8220
 カラム  ; 東ソー株式会社製ガードカラムHXL-H
       +東ソー株式会社製 TSKgel G5000HXL
       +東ソー株式会社製 TSKgel G4000HXL
       +東ソー株式会社製 TSKgel G3000HXL
       +東ソー株式会社製 TSKgel G2000HXL
 検出器  ; RI(示差屈折計)
 データ処理:東ソー株式会社製 SC-8010
 測定条件: カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    1.0ml/分
 標準   ;ポリスチレン
 試料   ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Tosoh Corporation guard column H XL -H
+ Tosoh Corporation TSKgel G5000H XL
+ Tosoh Corporation TSKgel G4000H XL
+ Tosoh Corporation TSKgel G3000H XL
+ Tosoh Corporation TSKgel G2000H XL
Detector: RI (differential refractometer)
Data processing: Tosoh Corporation SC-8010
Measurement conditions: Column temperature 40 ° C
Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solids filtered through microfilter (100 μl)
 また、前記分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)の(メタ)アクリロイル基当量は、高い表面硬度を有し、更に、硬化時の耐カール性にも優れる硬化塗膜が得られる点で、100g/eq~1000g/eqの範囲であることが好ましく、150g/eq~800g/eqの範囲であるものがより好ましく、200g/eq~600g/eqの範囲であるものが特に好ましい。 In addition, the (meth) acryloyl group equivalent of the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure has a high surface hardness, and further has a cured coating film excellent in curling resistance during curing. Is preferably in the range of 100 g / eq to 1000 g / eq, more preferably in the range of 150 g / eq to 800 g / eq, and in the range of 200 g / eq to 600 g / eq. Particularly preferred.
 前記分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)は、例えば、反応性官能基と(メタ)アクリロイル基とを有する化合物(y)を必須の成分として重合させて得られるアクリル重合体(Y)と、前記化合物(y)が有する反応性官能基と反応し得る官能基と(メタ)アクリロイル基とを有する化合物(z)とを反応させて得られる重合体が挙げられる。 The acrylic polymer (X) having a (meth) acryloyl group in the molecular structure is, for example, an acrylic polymer obtained by polymerizing a compound (y) having a reactive functional group and a (meth) acryloyl group as an essential component. Examples thereof include a polymer obtained by reacting a polymer (Y) with a compound (z) having a (meth) acryloyl group and a functional group capable of reacting with the reactive functional group of the compound (y).
 より具体的には、エポキシ基と(メタ)アクリロイル基とを有する化合物(y1)を必須の成分として重合させて得られるアクリル重合体(Y1)と、カルボキシル基と(メタ)アクリロイル基とを有する化合物(z1)とを反応させて得られるアクリル重合体(X1)や、カルボキシル基と(メタ)アクリロイル基とを有する化合物(y2)を必須の成分として重合させて得られるアクリル重合体(Y2)と、エポキシ基と(メタ)アクリロイル基とを有する化合物(z2)とを反応させて得られるアクリル重合体(X2)、水酸基と(メタ)アクリロイル基とを有する化合物(y3)を必須の成分として重合させて得られるアクリル重合体(Y3)と、イソシアネート基と(メタ)アクリロイル基とを有する化合物(z3)とを反応させて得られるアクリル重合体(X3)等が挙げられる。 More specifically, it has an acrylic polymer (Y1) obtained by polymerizing a compound (y1) having an epoxy group and a (meth) acryloyl group as essential components, and has a carboxyl group and a (meth) acryloyl group. Acrylic polymer (Y2) obtained by polymerizing acrylic polymer (X1) obtained by reacting compound (z1) and compound (y2) having a carboxyl group and a (meth) acryloyl group as essential components And an acrylic polymer (X2) obtained by reacting an epoxy group and a compound (z2) having a (meth) acryloyl group, and a compound (y3) having a hydroxyl group and a (meth) acryloyl group as essential components An acrylic polymer (Y3) obtained by polymerization is reacted with a compound (z3) having an isocyanate group and a (meth) acryloyl group. Resulting Te acrylic polymer (X3) and the like.
 まず、前記アクリル重合体(X1)について説明する。
 前記アクリル重合体(X1)の原料となる前記アクリル重合体(Y1)は、前記エポキシ基と(メタ)アクリロイル基とを有する化合物(y1)の単独重合体でも良いし、他の重合性化合物(v1)との共重合体でも良い。
First, the acrylic polymer (X1) will be described.
The acrylic polymer (Y1) as a raw material of the acrylic polymer (X1) may be a homopolymer of the compound (y1) having the epoxy group and (meth) acryloyl group, or other polymerizable compound ( It may be a copolymer with v1).
前記アクリル重合体(Y1)の原料成分となるエポキシ基と(メタ)アクリロイル基とを有する化合物(y1)は、例えば、(メタ)アクリル酸グリシジル、α-エチル(メタ)アクリル酸グリシジル、α-n-プロピル(メタ)アクリル酸グリシジル、α-n-ブチル(メタ)アクリル酸グリシジル、(メタ)アクリル酸-3,4-エポキシブチル、(メタ)アクリル酸-4,5-エポキシペンチル、(メタ)アクリル酸-6,7-エポキシペンチル、α-エチル(メタ)アクリル酸-6,7-エポキシペンチル、βーメチルグリシジル(メタ)アクリレート、(メタ)アクリル酸-3,4-エポキシシクロヘキシル、ラクトン変性(メタ)アクリル酸-3,4-エポキシシクロヘキシル、ビニルシクロヘキセンオキシド等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、得られるアクリル重合体(X1)の(メタ)アクリロイル基当量を前記した好ましい範囲に調節することが容易となる点で、(メタ)アクリル酸グリシジル、α-エチル(メタ)アクリル酸グリシジル、及びα-n-プロピル(メタ)アクリル酸グリシジルが好ましく、(メタ)アクリル酸グリシジルがより好ましい。 Examples of the compound (y1) having an epoxy group and a (meth) acryloyl group as raw material components of the acrylic polymer (Y1) include glycidyl (meth) acrylate, glycidyl α-ethyl (meth) acrylate, α- glycidyl n-propyl (meth) acrylate, glycidyl α-n-butyl (meth) acrylate, (meth) acrylic acid-3,4-epoxybutyl, (meth) acrylic acid-4,5-epoxypentyl, (meth ) Acrylic acid-6,7-epoxypentyl, α-ethyl (meth) acrylic acid-6,7-epoxypentyl, β-methylglycidyl (meth) acrylate, (meth) acrylic acid-3,4-epoxycyclohexyl, lactone Examples thereof include modified (meth) acrylic acid-3,4-epoxycyclohexyl, vinylcyclohexene oxide and the like. These may be used alone or in combination of two or more. Among these, glycidyl (meth) acrylate and α-ethyl (meth) acrylic acid are easy in that the (meth) acryloyl group equivalent of the resulting acrylic polymer (X1) can be easily adjusted to the above-mentioned preferable range. Glycidyl and glycidyl α-n-propyl (meth) acrylate are preferred, and glycidyl (meth) acrylate is more preferred.
 前記アクリル重合体(Y1)を製造する際に、前記エポキシ基と(メタ)アクリロイル基とを有する化合物(y1)と共に重合させることが出来る他の重合性化合物(v1)は、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ドコシル等の炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステル; When the acrylic polymer (Y1) is produced, the other polymerizable compound (v1) that can be polymerized with the compound (y1) having the epoxy group and the (meth) acryloyl group is, for example, (meth) Methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (n-butyl) (meth) acrylate, t-butyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic acid Hepsyl, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate , Having an alkyl group having 1 to 22 carbon atoms such as octadecyl (meth) acrylate and docosyl (meth) acrylate Meth) acrylic acid ester;
 (メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等の脂環式のアルキル基を有する(メタ)アクリル酸エステル; (Meth) acrylic acid esters having an alicyclic alkyl group such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate ;
 (メタ)アクリル酸ベンゾイルオキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニルエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシジエチレングリコール、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル等の芳香環を有する(メタ)アクリル酸エステル; Benzoyloxyethyl (meth) acrylate, benzyl (meth) acrylate, phenylethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, 2-hydroxy-3 (meth) acrylate A (meth) acrylic acid ester having an aromatic ring such as phenoxypropyl;
 (メタ)アクリル酸ヒドロキエチル;(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸グリセロール;ラクトン変性(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコールなどのポリアルキレングリコール基を有する(メタ)アクリル酸エステル等のヒドロキシアルキル基を有するアクリル酸エステル; Hydroxyethyl (meth) acrylate; hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycerol (meth) acrylate; lactone-modified hydroxyethyl (meth) acrylate, polyethylene glycol (meth) acrylate, ( Acrylic acid ester having a hydroxyalkyl group such as (meth) acrylic acid ester having a polyalkylene glycol group such as (meth) acrylic acid polypropylene glycol;
 フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、イタコン酸ジメチル、イタコン酸ジブチル、フマル酸メチルエチル、フマル酸メチルブチル、イタコン酸メチルエチルなどの不飽和ジカルボン酸エステル; Unsaturated dicarboxylic acid esters such as dimethyl fumarate, diethyl fumarate, dibutyl fumarate, dimethyl itaconate, dibutyl itaconate, methyl ethyl fumarate, methyl butyl fumarate, methyl ethyl itaconate;
 スチレン、α-メチルスチレン、クロロスチレンなどのスチレン誘導体; Styrene derivatives such as styrene, α-methylstyrene, chlorostyrene;
 ブタジエン、イソプレン、ピペリレン、ジメチルブタジエンなどのジエン系化合物; Diene compounds such as butadiene, isoprene, piperylene, dimethylbutadiene;
 塩化ビニル、臭化ビニルなどのハロゲン化ビニルやハロゲン化ビニリデン; Vinyl halides such as vinyl chloride and vinyl bromide and vinylidene halides;
 メチルビニルケトン、ブチルビニルケトンなどの不飽和ケトン; Unsaturated ketones such as methyl vinyl ketone and butyl vinyl ketone;
 酢酸ビニル、酪酸ビニルなどのビニルエステル; Vinyl esters such as vinyl acetate and vinyl butyrate;
 メチルビニルエーテル、ブチルビニルエーテルなどのビニルエーテル; Vinyl ethers such as methyl vinyl ether and butyl vinyl ether;
 アクリロニトリル、メタクリロニトリル、シアン化ビニリデンなどのシアン化ビニル; Vinyl cyanides such as acrylonitrile, methacrylonitrile, vinylidene cyanide;
 アクリルアミドやそのアルキド置換アミド; Acrylamide and its alkyd substituted amides;
 N-フェニルマレイミド、N-シクロヘキシルマレイミドなどのN-置換マレイミド; N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide;
 フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、ブロモトリフルオロエチレン、ペンタフルオロプロピレンもしくはヘキサフルオロプロピレンの如きフッ素含有α-オレフィン; Fluorine-containing α-olefins such as vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, bromotrifluoroethylene, pentafluoropropylene or hexafluoropropylene;
 トリフルオロメチルトリフルオロビニルエーテル、ペンタフルオロエチルトリフルオロビニルエーテルもしくはヘプタフルオロプロピルトリフルオロビニルエーテルの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル・パーフルオロビニルエーテル; (Per) fluoroalkyl / perfluorovinyl ether having 1 to 18 carbon atoms in the (per) fluoroalkyl group such as trifluoromethyl trifluorovinyl ether, pentafluoroethyl trifluorovinyl ether or heptafluoropropyl trifluorovinyl ether;
 2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,2H,2H-ヘプタデカフルオロデシル(メタ)アクリレートもしくはパーフルオロエチルオキシエチル(メタ)アクリレートの如き(パー)フルオロアルキル基の炭素数が1から18なる(パー)フルオロアルキル(メタ)アクリレート; 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 1H, 1H, 2H, (Per) fluoroalkyl (meth) acrylates in which the (per) fluoroalkyl group has 1 to 18 carbon atoms, such as 2H-heptadecafluorodecyl (meth) acrylate or perfluoroethyloxyethyl (meth) acrylate;
 γ-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート; Silyl group-containing (meth) acrylates such as γ-methacryloxypropyltrimethoxysilane;
 N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートもしくはN,N-ジエチルアミノプロピル(メタ)アクリレート等のN,N-ジアルキルアミノアルキル(メタ)アクリレート等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、得られるアクリル重合体(X1)の(メタ)アクリロイル基当量を前記した好ましい範囲に調節することが容易となり、かつ、得られる硬化塗膜が高硬度でありながら靭性にも富むものとなる点で、炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステル、及び脂環式のアルキル基を有する(メタ)アクリル酸エステルが好ましく、炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステルがより好ましい。とりわけ、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸-n-ブチル、及び(メタ)アクリル酸-t-ブチルが特に好ましい。 N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate or N, N-dialkylaminopropyl (meth) acrylate such as N, N-diethylaminopropyl (meth) acrylate . These may be used alone or in combination of two or more. Among these, it is easy to adjust the (meth) acryloyl group equivalent of the obtained acrylic polymer (X1) to the above-mentioned preferable range, and the obtained cured coating film has high hardness and high toughness. (Meth) acrylic acid ester having an alkyl group having 1 to 22 carbon atoms and (meth) acrylic acid ester having an alicyclic alkyl group are preferable, and having an alkyl group having 1 to 22 carbon atoms. (Meth) acrylic acid esters are more preferred. Particularly preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
 前記アクリル重合体(Y1)は、前記した通り、前記エポキシ基と(メタ)アクリロイルとを有する化合物(y1)の単独重合体でも良いし、前記エポキシ基と(メタ)アクリロイルとを有する化合物(y1)と前記他の重合性化合物(v1)との共重合体でも良い。これらの中でも、得られるアクリル系重合体(X1)の(メタ)アクリロイル基当量を好適な範囲に調整することが容易となる点で、共重合させる際の両者の質量比〔エポキシ基と(メタ)アクリロイル基とを有する化合物(y1)〕:〔他の重合性化合物(v)〕が15/85~100/0の範囲となる割合で共重合させた重合体が好ましく、40/60~100/0質量部の範囲であることがより好ましい。 As described above, the acrylic polymer (Y1) may be a homopolymer of the compound (y1) having the epoxy group and (meth) acryloyl, or the compound (y1) having the epoxy group and (meth) acryloyl. ) And the other polymerizable compound (v1). Among these, the mass ratio of the two when the copolymerization [epoxy group and (meth) is preferred in that it is easy to adjust the (meth) acryloyl group equivalent of the resulting acrylic polymer (X1) to a suitable range. ) A compound (y1) having an acryloyl group]: a polymer obtained by copolymerizing [other polymerizable compound (v)] in a ratio of 15/85 to 100/0, preferably 40/60 to 100 More preferably, it is in the range of 0 parts by mass.
 前記アクリル重合体(Y1)は、前記化合物(y1)由来のエポキシ基を有するが、該アクリル重合体(Y1)のエポキシ当量は、得られるアクリル重合体(X1)のアクリロイル当量を100~1000g/eqの範囲に調節することが容易となる点で、140~800g/eqの範囲であることが好ましく、140~480g/eqの範囲であることがより好ましく、140~400g/eqの範囲であることが特に好ましい。 The acrylic polymer (Y1) has an epoxy group derived from the compound (y1). The epoxy equivalent of the acrylic polymer (Y1) is 100 to 1000 g / acryloyl equivalent of the resulting acrylic polymer (X1). In terms of easy adjustment to the range of eq, it is preferably in the range of 140 to 800 g / eq, more preferably in the range of 140 to 480 g / eq, and in the range of 140 to 400 g / eq. It is particularly preferred.
 前記アクリル重合体(Y1)は、例えば、重合開始剤の存在下、80℃~150℃の温度領域で前記化合物(y1)を単独で、又は前記化合物(y1)と前記化合物(v1)とを併用して付加重合させることにより製造することができ、ランダム共重合体、ブロック共重合体、グラフト共重合体等が挙げられる。重合の方法は、例えば、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等が挙げられる。これらの中でも、前記アクリル重合体(Y1)の製造と、これに続く前記アクリル系重合体(Y1)と前記カルボキシル基と(メタ)アクリロイル基とを有する化合物(z1)との反応とを連続的に行うことが可能となる点で、溶液重合法が好ましい。 The acrylic polymer (Y1) can be obtained by, for example, combining the compound (y1) alone or the compound (y1) and the compound (v1) in the temperature range of 80 ° C. to 150 ° C. in the presence of a polymerization initiator. It can be produced by addition polymerization in combination, and examples thereof include random copolymers, block copolymers, and graft copolymers. Examples of the polymerization method include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among these, the production of the acrylic polymer (Y1) and the subsequent reaction of the acrylic polymer (Y1) with the compound (z1) having the carboxyl group and the (meth) acryloyl group are continuously performed. The solution polymerization method is preferable because it can be carried out easily.
 前記アクリル重合体(Y1)の製造を溶液重合法で行う際に用いる溶媒は、反応温度を勘案すると沸点が80℃以上のものであり、例えば、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-アミルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、エチル-n-ブチルケトン、ジ-n-プロピルケトン、ジイソブチルケトン、シクロヘキサノン、ホロン等のケトン溶媒; The solvent used when the acrylic polymer (Y1) is produced by the solution polymerization method has a boiling point of 80 ° C. or higher in consideration of the reaction temperature. For example, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone , Methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-amyl ketone, methyl-n-hexyl ketone, diethyl ketone, ethyl n-butyl ketone, di-n-propyl ketone, diisobutyl ketone, cyclohexanone, holon, etc. ;
n-ブチルエーテル、ジイソアミルエーテル、ジオキサン等のエーテル溶媒; ether solvents such as n-butyl ether, diisoamyl ether, dioxane;
エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールエーテル溶剤 Ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol Diethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether Le, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, glycol ethers such as dipropylene glycol dimethyl ether solvent
酢酸-n-プロピル、酢酸イソプロピル、酢酸-nーブチル、酢酸-n-アミル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチル-3-エトキシプロピオネート等のエステル溶媒; Acetic acid-n-propyl, isopropyl acetate, acetic acid-n-butyl, acetic acid-n-amyl, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, Ester solvents such as ethyl-3-ethoxypropionate;
イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、ジアセトンアルコール、3-メトキシ-1-プロパノール、3-メトキシ-1-ブタノール、3-メチル-3-メトキシブタノール等のアルコール溶媒; Alcohol solvents such as isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, diacetone alcohol, 3-methoxy-1-propanol, 3-methoxy-1-butanol, 3-methyl-3-methoxybutanol;
 トルエン、キシレン、ソルベッソ100、ソルベッソ150、スワゾール1800、スワゾール310、アイソパーE、アイソパーG、エクソンナフサ5号、エクソンナフサ6号等の炭化水素溶媒が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 And hydrocarbon solvents such as toluene, xylene, Solvesso 100, Solvesso 150, Swazol 1800, Swazol 310, Isopar E, Isopar G, Exxon Naphtha No. 5, Exxon Naphtha No. 6 and the like. These may be used alone or in combination of two or more.
 前記溶媒の中でも、得られるアクリル重合体(Y1)の溶解性に優れる点から、メチルエチルケトンやメチルイソブチルケトン等のケトン溶剤が好ましい。 Among the above solvents, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferable from the viewpoint of excellent solubility of the resulting acrylic polymer (Y1).
 前記アクリル重合体(Y1)の製造で用いる触媒は、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t-ブチルペルオキシピバレート、t-ブチルパーオキシエチルヘキサノエイト、1,1’-ビス-(t-ブチルペルオキシ)シクロヘキサン、t-アミルペルオキシ-2-エチルヘキサノエート、t-ヘキシルペルオキシ-2-エチルヘキサノエート等の有機過酸化物および過酸化水素等が挙げられる。 Examples of the catalyst used in the production of the acrylic polymer (Y1) include 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), and 2,2′-. Azo compounds such as azobis- (4-methoxy-2,4-dimethylvaleronitrile); benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, t-butylperoxyethylhexanoate, 1,1'-bis- Examples thereof include organic peroxides such as (t-butylperoxy) cyclohexane, t-amylperoxy-2-ethylhexanoate, and t-hexylperoxy-2-ethylhexanoate, and hydrogen peroxide.
 触媒として過酸化物を用いる場合には、過酸化物を還元剤とともに用いてレドックス型開始剤としてもよい。 When a peroxide is used as the catalyst, the peroxide may be used together with a reducing agent to form a redox type initiator.
 前記アクリル重合体(X1)の原料として用いるカルボキシル基と(メタ)アクリロイル基とを有する化合物(z1)は、例えば、(メタ)アクリル酸、(アクリロイルオキシ)酢酸、アクリル酸2-カルボキシエチル、アクリル酸3-カルボキシプロピル、コハク酸1-[2-(アクリロイルオキシ)エチル]、フタル酸1-(2-アクリロイルオキシエチル)、ヘキサヒドロフタル酸水素2-(アクリロイルオキシ)エチル及びこれらのラクトン変性物等の不飽和モノカルボン酸;マレイン酸等の不飽和ジカルボン酸;無水コハク酸や無水マレイン酸等の酸無水酸と、ペンタエリスリトールトリアクリレート等の水酸基含有多官能(メタ)アクリレートモノマーとを反応させて得られるカルボキシル基含有多官能(メタ)アクリレート等が挙げられる。これらは単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、前記アクリル重合体(X1)の(メタ)アクリロイル基当量を前記した好ましい範囲に調節することが容易となる点で、(メタ)アクリル酸、(アクリロイルオキシ)酢酸、アクリル酸2-カルボキシエチル、アクリル酸3-カルボキシプロピルが好ましく、(メタ)アクリル酸が特に好ましい。 The compound (z1) having a carboxyl group and a (meth) acryloyl group used as a raw material for the acrylic polymer (X1) is, for example, (meth) acrylic acid, (acryloyloxy) acetic acid, 2-carboxyethyl acrylate, acrylic 3-carboxypropyl acid, 1- [2- (acryloyloxy) ethyl] succinate, 1- (2-acryloyloxyethyl) phthalate, 2- (acryloyloxy) ethyl hexahydrophthalate, and lactone-modified products thereof Unsaturated monocarboxylic acid such as maleic acid; Unsaturated dicarboxylic acid such as maleic acid; Acid anhydride such as succinic anhydride and maleic anhydride and a hydroxyl group-containing polyfunctional (meth) acrylate monomer such as pentaerythritol triacrylate Carboxyl group-containing polyfunctional (meth) acrylate And the like. These may be used alone or in combination of two or more. Among these, (meth) acrylic acid, (acryloyloxy) acetic acid, 2-acrylic acid 2-acrylic acid (X1) are easy to adjust the (meth) acryloyl group equivalent to the above-mentioned preferable range. Carboxyethyl and 3-carboxypropyl acrylate are preferred, and (meth) acrylic acid is particularly preferred.
 前記アクリル重合体(X1)は、前アクリル重合体(Y1)と、カルボキシル基と(メタ)アクリロイル基とを有する化合物(z1)とを反応させて得られる。該反応方法は、例えば、アクリル重合体(Y1)を溶液重合法にて重合し、その反応系にカルボキシル基と(メタ)アクリロイル基とを有する化合物(z1)を加え、80~150℃の温度範囲で、トリフェニルホスフィン等の触媒を適宜用いるなどの方法が挙げられる。アクリル重合体(X1)の(メタ)アクリロイル基当量は100~1000g/eqの範囲であることが好ましいが、これは、前記アクリル系重合体(Y1)と、前記カルボキシル基と(メタ)アクリロイル基とを有する化合物(z1)との反応比率により調節することができる。通常、前記アクリル重合体(Y1)が有するエポキシ基1モルに対して、前記化合物(z1)が有するカルボキシル基が0.4~1.1モルの範囲となるように反応させることにより、得られるアクリル重合体(X1)の(メタ)アクリロイル当量を上記好ましい範囲に調整することが容易となる。 The acrylic polymer (X1) is obtained by reacting the pre-acrylic polymer (Y1) with a compound (z1) having a carboxyl group and a (meth) acryloyl group. The reaction method includes, for example, polymerizing an acrylic polymer (Y1) by a solution polymerization method, adding a compound (z1) having a carboxyl group and a (meth) acryloyl group to the reaction system, and a temperature of 80 to 150 ° C. In the range, a method such as appropriately using a catalyst such as triphenylphosphine can be used. The (meth) acryloyl group equivalent of the acrylic polymer (X1) is preferably in the range of 100 to 1000 g / eq. This is because the acrylic polymer (Y1), the carboxyl group and the (meth) acryloyl group It can adjust by the reaction ratio with the compound (z1) which has these. Usually, it is obtained by reacting 1 mol of the epoxy group of the acrylic polymer (Y1) so that the carboxyl group of the compound (z1) is in the range of 0.4 to 1.1 mol. It becomes easy to adjust the (meth) acryloyl equivalent of acrylic polymer (X1) to the said preferable range.
 このようにして得られるアクリル重合体(X1)は、その分子構造中に、エポキシ基とカルボキシル基との反応で生じた水酸基を有する。アクリル重合体(X1)のアクリロイル当量を好適な範囲に調整する目的で、必要に応じて、該水酸基に、イソシアネート基と(メタ)アクリロイル基とを有する化合物(w)を付加反応させても良い。このようにして得られるアクリル重合体(X1’)も、前記アクリル重合体(X1)同様、本願発明のアクリル重合体(X)として用いることができる。 The acrylic polymer (X1) thus obtained has a hydroxyl group produced by a reaction between an epoxy group and a carboxyl group in its molecular structure. For the purpose of adjusting the acryloyl equivalent of the acrylic polymer (X1) to a suitable range, the compound (w) having an isocyanate group and a (meth) acryloyl group may be added to the hydroxyl group as necessary. . The acrylic polymer (X1 ′) thus obtained can also be used as the acrylic polymer (X) of the present invention, like the acrylic polymer (X1).
 前記イソシアネート基と(メタ)アクリロイル基とを有する化合物(w)は、例えば、下記一般式1で示される化合物が挙げられ、1つのイソシアネート基と1つの(メタ)アクリロイル基を有する単量体、1つのイソシアネート基と2つの(メタ)アクリロイル基を有する単量体、1つのイソシアネート基と3つの(メタ)アクリロイル基を有する単量体、1つのイソシアネート基と4つの(メタ)アクリロイル基を有する単量体、1つのイソシアネート基と5つの(メタ)アクリロイル基を有する単量体等が挙げられる。 Examples of the compound (w) having the isocyanate group and the (meth) acryloyl group include a compound represented by the following general formula 1, and a monomer having one isocyanate group and one (meth) acryloyl group, Monomer having one isocyanate group and two (meth) acryloyl groups, monomer having one isocyanate group and three (meth) acryloyl groups, one isocyanate group and four (meth) acryloyl groups Monomers, monomers having one isocyanate group and five (meth) acryloyl groups, and the like can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Rは水素原子又はメチル基である。Rは炭素原子数2から4のアルキレン基である。nは1~5の整数を表す。 In general formula (1), R 1 is a hydrogen atom or a methyl group. R 2 is an alkylene group having 2 to 4 carbon atoms. n represents an integer of 1 to 5.
 これらイソシアネート基と(メタ)アクリロイル基とを有する化合物(w)の具体的な製品の例としては、2-アクリロイルオキシエチルイソシアネート(商品名:昭和電工株式会社製「カレンズAOI」など)、2-メタクリロイルオキシエチルイソシアネート(商品名:昭和電工株式会社製「カレンズMOI」など)、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート(商品名:昭和電工株式会社製「カレンズBEI」など)が挙げられる。 Specific examples of the compound (w) having an isocyanate group and a (meth) acryloyl group include 2-acryloyloxyethyl isocyanate (trade name: “Karenz AOI” manufactured by Showa Denko KK), 2- Examples include methacryloyloxyethyl isocyanate (trade name: “Karenz MOI” manufactured by Showa Denko KK) and 1,1-bis (acryloyloxymethyl) ethyl isocyanate (trade name: “Karenz BEI” manufactured by Showa Denko KK). .
 前記化合物(w)のその他の例としては、ジイソシアネート化合物の一つのイソシアネート基に水酸基含有(メタ)アクリレート化合物付加させて得られる化合物が挙げられる。該反応で用いるジイソシアネート化合物は、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート等の脂肪族ジイソシアネート; Other examples of the compound (w) include compounds obtained by adding a hydroxyl group-containing (meth) acrylate compound to one isocyanate group of a diisocyanate compound. Diisocyanate compounds used in the reaction are butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, m-tetramethyl. Aliphatic diisocyanates such as xylylene diisocyanate;
 シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4′-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート等の脂環式ジイソシアネート; Cycloaliphatic diisocyanates such as cyclohexane-1,4-diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate;
 1,5-ナフチレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、4,4′-ジフェニルジメチルメタンジイソシアネート、4,4′-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート等の芳香族ジイソシアネートなどが挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 1,5-naphthylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate And aromatic diisocyanates such as 1,4-phenylene diisocyanate and tolylene diisocyanate. These may be used alone or in combination of two or more.
 また、該反応で用いる水酸基含有(メタ)アクリレート化合物は、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、グリセリンジアクリレート、トリメチロールプロパンジアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等の脂肪族(メタ)アクリレート化合物; The hydroxyl group-containing (meth) acrylate compound used in the reaction is 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, glycerin diacrylate, trimethylolpropane diacrylate, pentaerythritol triacrylate, dipenta Aliphatic (meth) acrylate compounds such as erythritol pentaacrylate;
 アクリル酸4-ヒドロキシフェニル、アクリル酸β-ヒドロキシフェネチル、アクリル酸4-ヒドロキシフェネチル、アクリル酸1-フェニル-2-ヒドロキシエチル、アクリル酸3-ヒドロキシ-4-アセチルフェニル、2-ヒドロキシ-3-フェノキシプロピルアクリレート等の分子構造中に芳香環を有する(メタ)アクリレート化合物等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 4-hydroxyphenyl acrylate, β-hydroxyphenethyl acrylate, 4-hydroxyphenethyl acrylate, 1-phenyl-2-hydroxyethyl acrylate, 3-hydroxy-4-acetylphenyl acrylate, 2-hydroxy-3-phenoxy Examples include (meth) acrylate compounds having an aromatic ring in the molecular structure such as propyl acrylate. These may be used alone or in combination of two or more.
 前記アクリル重合体(X1)と、イソシアネート基と(メタ)アクリロイル基とを有する化合物(w)との反応は、例えば、前述した方法でアクリル重合体(X1)を製造した後の系中に、前記イソシアネート基と(メタ)アクリロイル基とを有する化合物(w)を滴下しながら加え、50~120℃に加熱するなどの方法で行うことができる。 The reaction between the acrylic polymer (X1) and the compound (w) having an isocyanate group and a (meth) acryloyl group is, for example, in the system after the acrylic polymer (X1) is produced by the method described above. The compound (w) having the isocyanate group and the (meth) acryloyl group may be added dropwise and heated to 50 to 120 ° C.
 前記アクリル重合体(X1)と(X1’)とでは、分子中により多くの水酸基を含有し、該水酸基と無機微粒子(A)との相互作用により無機微粒子(A)に対する分散能が高まることから、前記アクリル重合体(X1)が好ましい。 The acrylic polymers (X1) and (X1 ′) contain more hydroxyl groups in the molecule, and the dispersibility for the inorganic fine particles (A) is enhanced by the interaction between the hydroxyl groups and the inorganic fine particles (A). The acrylic polymer (X1) is preferable.
 次に、前記アクリル重合体(X2)について説明する。
 前記アクリル重合体(X2)の原料となる前記アクリル重合体(Y2)は、前記カルボキシル基と(メタ)アクリロイル基とを有する化合物(y2)の単独重合体でも良いし、他の重合性化合物(v2)との共重合体でも良い。
Next, the acrylic polymer (X2) will be described.
The acrylic polymer (Y2) as a raw material of the acrylic polymer (X2) may be a homopolymer of the compound (y2) having the carboxyl group and (meth) acryloyl group, or other polymerizable compound ( Copolymers with v2) may also be used.
前記アクリル重合体(Y2)の原料成分となるカルボキシル基と(メタ)アクリロイル基とを有する化合物(y2)は、例えば、(メタ)アクリル酸、(アクリロイルオキシ)酢酸、アクリル酸2-カルボキシエチル、アクリル酸3-カルボキシプロピル、コハク酸1-[2-(アクリロイルオキシ)エチル]、フタル酸1-(2-アクリロイルオキシエチル)、ヘキサヒドロフタル酸水素2-(アクリロイルオキシ)エチル及びこれらのラクトン変性物等の不飽和モノカルボン酸;マレイン酸等の不飽和ジカルボン酸;無水コハク酸や無水マレイン酸等の酸無水酸と、ペンタエリスリトールトリアクリレート等の水酸基含有多官能(メタ)アクリレートモノマーとを反応させて得られるカルボキシル基含有多官能(メタ)アクリレート等が挙げられる。これらは単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、前記アクリル重合体(X2)の(メタ)アクリロイル基当量を前記した好ましい範囲に調節することが容易となる点で、(メタ)アクリル酸、(アクリロイルオキシ)酢酸、アクリル酸2-カルボキシエチル、アクリル酸3-カルボキシプロピルが好ましく、(メタ)アクリル酸が特に好ましい。 The compound (y2) having a carboxyl group and a (meth) acryloyl group as a raw material component of the acrylic polymer (Y2) is, for example, (meth) acrylic acid, (acryloyloxy) acetic acid, 2-carboxyethyl acrylate, 3-carboxypropyl acrylate, 1- [2- (acryloyloxy) ethyl] succinate, 1- (2-acryloyloxyethyl) phthalate, 2- (acryloyloxy) ethyl hexahydrophthalate and their lactone modifications Unsaturated monocarboxylic acids such as products; unsaturated dicarboxylic acids such as maleic acid; acid anhydrides such as succinic anhydride and maleic anhydride, and hydroxyl-containing polyfunctional (meth) acrylate monomers such as pentaerythritol triacrylate Carboxyl group-containing polyfunctional (meth) acrylates obtained by It is below. These may be used alone or in combination of two or more. Among these, (meth) acrylic acid, (acryloyloxy) acetic acid, 2-acrylic acid 2-acrylic acid are preferred in that the (meth) acryloyl group equivalent of the acrylic polymer (X2) can be easily adjusted to the above preferred range. Carboxyethyl and 3-carboxypropyl acrylate are preferred, and (meth) acrylic acid is particularly preferred.
 前記アクリル重合体(Y2)を製造する際に、前記カルボキシル基と(メタ)アクリロイル基とを有する化合物(y2)と共に重合させることが出来る他の重合性化合物(v2)は、例えば、前記化合物(v1)として例示した各種の化合物が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。中でも、得られるアクリル重合体(X2)の(メタ)アクリロイル基当量を前記した好ましい範囲に調節することが容易となり、かつ、得られる硬化塗膜が高硬度でありながら靭性にも富むものとなる点で、炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステル、及び脂環式のアルキル基を有する(メタ)アクリル酸エステルが好ましく、炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステルがより好ましい。とりわけ、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸-n-ブチル、及び(メタ)アクリル酸-t-ブチルが特に好ましい。 When producing the acrylic polymer (Y2), the other polymerizable compound (v2) that can be polymerized together with the compound (y2) having the carboxyl group and the (meth) acryloyl group is, for example, the compound ( The various compounds illustrated as v1) are mentioned. These may be used alone or in combination of two or more. Among them, it becomes easy to adjust the (meth) acryloyl group equivalent of the obtained acrylic polymer (X2) to the above-described preferable range, and the obtained cured coating film is rich in toughness while having high hardness. In this respect, (meth) acrylic acid ester having an alkyl group having 1 to 22 carbon atoms and (meth) acrylic acid ester having an alicyclic alkyl group are preferable, and having an alkyl group having 1 to 22 carbon atoms (meta ) Acrylic acid esters are more preferred. Particularly preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
 前記アクリル重合体(Y2)は、前記した通り、前記カルボキシル基と(メタ)アクリロイルとを有する化合物(y2)の単独重合体でも良いし、前記カルボキシル基と(メタ)アクリロイルとを有する化合物(y2)と、前記他の重合性化合物(v2)との共重合体でも良い。これらの中でも、得られるアクリル系重合体(X2)の(メタ)アクリロイル基当量を好適な範囲に調整することが用意となる点で、共重合させる際の両者の質量比〔カルボキシル基と(メタ)アクリロイル基とを有する化合物(y2)〕:〔他の重合性化合物(v2)〕が15/85~100/0の範囲となる割合で共重合させた重合体が好ましく、40/60~100/0質量部の範囲であることがより好ましい。 As described above, the acrylic polymer (Y2) may be a homopolymer of the compound (y2) having the carboxyl group and (meth) acryloyl, or the compound (y2) having the carboxyl group and (meth) acryloyl. ) And the other polymerizable compound (v2). Among these, since it is prepared to adjust the (meth) acryloyl group equivalent of the acrylic polymer (X2) to be in a suitable range, the mass ratio of the two at the time of copolymerization [carboxyl group and (meta ) A compound having an acryloyl group (y2)]: a polymer obtained by copolymerizing [other polymerizable compound (v2)] in a ratio of 15/85 to 100/0, preferably 40/60 to 100 More preferably, it is in the range of 0 parts by mass.
 前記アクリル重合体(Y2)は、例えば、重合開始剤の存在下、80℃~150℃の温度領域で前記化合物(y2)を単独で、又は前記化合物(y2)と前記化合物(v2)とを併用して付加重合させることにより製造することができ、ランダム共重合体、ブロック共重合体、グラフト共重合体等が挙げられる。重合の方法は、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等が利用できる。これらの中でも、前記アクリル重合体(Y2)の製造と、これに続く前記アクリル系重合体(Y2)と前記エポキシ基と(メタ)アクリロイル基とを有する化合物(z1)との反応とを連続的に行うことが可能となる点で、溶液重合法が好ましい。 The acrylic polymer (Y2) is, for example, the compound (y2) alone or the compound (y2) and the compound (v2) in the temperature range of 80 ° C. to 150 ° C. in the presence of a polymerization initiator. It can be produced by addition polymerization in combination, and examples thereof include random copolymers, block copolymers, and graft copolymers. As a polymerization method, a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like can be used. Among these, the production of the acrylic polymer (Y2) and the subsequent reaction of the acrylic polymer (Y2) with the compound (z1) having the epoxy group and the (meth) acryloyl group are continuously performed. The solution polymerization method is preferable because it can be carried out easily.
 前記アクリル重合体(Y2)の製造を溶液重合法で行う際に用いる溶媒は、前記アクリル重合体(Y1)の製造を溶液重合法で行う場合に用いる溶媒として例示した各種の溶媒が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。中でも、得られるアクリル重合体(Y2)の溶解性に優れる点から、メチルエチルケトンやメチルイソブチルケトン等のケトン溶剤が好ましい。 Examples of the solvent used when the acrylic polymer (Y2) is produced by the solution polymerization method include various solvents exemplified as the solvent used when the acrylic polymer (Y1) is produced by the solution polymerization method. These may be used alone or in combination of two or more. Among these, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferable from the viewpoint of excellent solubility of the resulting acrylic polymer (Y2).
 前記アクリル重合体(Y2)の製造で用いる触媒は、前記アクリル重合体(Y1)の製造で用いる触媒として例示した各種の触媒が挙げられる。 Examples of the catalyst used in the production of the acrylic polymer (Y2) include various catalysts exemplified as the catalyst used in the production of the acrylic polymer (Y1).
 前記アクリル重合体(X2)の原料として用いるエポキシ基と(メタ)アクリロイル基とを有する化合物(z2)は、例えば、(メタ)アクリル酸グリシジル、α-エチル(メタ)アクリル酸グリシジル、α-n-プロピル(メタ)アクリル酸グリシジル、α-n-ブチル(メタ)アクリル酸グリシジル、(メタ)アクリル酸-3,4-エポキシブチル、(メタ)アクリル酸-4,5-エポキシペンチル、(メタ)アクリル酸-6,7-エポキシペンチル、α-エチル(メタ)アクリル酸-6,7-エポキシペンチル、βーメチルグリシジル(メタ)アクリレート、(メタ)アクリル酸-3,4-エポキシシクロヘキシル、ラクトン変性(メタ)アクリル酸-3,4-エポキシシクロヘキシル、ビニルシクロヘキセンオキシド等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、得られるアクリル重合体(X2)の(メタ)アクリロイル基当量を前記した好ましい範囲に調節することが容易となる点で、(メタ)アクリル酸グリシジル、α-エチル(メタ)アクリル酸グリシジル、及びα-n-プロピル(メタ)アクリル酸グリシジルが特に好ましい。 The compound (z2) having an epoxy group and a (meth) acryloyl group used as a raw material for the acrylic polymer (X2) is, for example, glycidyl (meth) acrylate, glycidyl α-ethyl (meth) acrylate, α-n. -Glycidyl propyl (meth) acrylate, glycidyl α-n-butyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, -4,5-epoxypentyl (meth) acrylate, (meth) Acrylic acid-6,7-epoxypentyl, α-ethyl (meth) acrylic acid-6,7-epoxypentyl, β-methylglycidyl (meth) acrylate, (meth) acrylic acid-3,4-epoxycyclohexyl, lactone modified (Meth) acrylic acid-3,4-epoxycyclohexyl, vinylcyclohexene oxide and the like. These may be used alone or in combination of two or more. Among these, glycidyl (meth) acrylate and α-ethyl (meth) acrylic acid are easy in that the (meth) acryloyl group equivalent of the resulting acrylic polymer (X2) can be easily adjusted to the above-mentioned preferred range. Glycidyl and glycidyl α-n-propyl (meth) acrylate are particularly preferred.
 前記アクリル重合体(X2)は、前アクリル重合体(Y2)と、エポキシ基と(メタ)アクリロイル基とを有する化合物(z2)とを反応させて得られる。該反応方法は、例えば、アクリル重合体(Y2)を溶液重合法にて重合し、その反応系にエポキシ基と(メタ)アクリロイル基とを有する化合物(z2)を加え、80~150℃の温度範囲で、トリフェニルホスフィン等の触媒を適宜用いるなどの方法が挙げられる。アクリル重合体(X2)の(メタ)アクリロイル基当量は100~1000g/eqの範囲であることが好ましいが、これは、前記アクリル系重合体(Y2)と、前記エポキシ基と(メタ)アクリロイル基とを有する化合物(z2)との反応比率により調節することができる。通常、前記アクリル重合体(Y2)が有するカルボキシル基1モルに対して、前記化合物(z2)が有するエポキシ基が0.4~1.1モルの範囲となるように反応させることにより、得られるアクリル重合体(X2)の(メタ)アクリロイル当量を上記好ましい範囲に調整することが容易となる。 The acrylic polymer (X2) is obtained by reacting the pre-acrylic polymer (Y2) with a compound (z2) having an epoxy group and a (meth) acryloyl group. The reaction method includes, for example, polymerizing an acrylic polymer (Y2) by a solution polymerization method, adding a compound (z2) having an epoxy group and a (meth) acryloyl group to the reaction system, and a temperature of 80 to 150 ° C. In the range, a method such as appropriately using a catalyst such as triphenylphosphine can be used. The (meth) acryloyl group equivalent of the acrylic polymer (X2) is preferably in the range of 100 to 1000 g / eq. This is because the acrylic polymer (Y2), the epoxy group, and the (meth) acryloyl group It can adjust with the reaction ratio with the compound (z2) which has these. Usually, it is obtained by reacting 1 mol of the carboxyl group of the acrylic polymer (Y2) so that the epoxy group of the compound (z2) is in the range of 0.4 to 1.1 mol. It becomes easy to adjust the (meth) acryloyl equivalent of acrylic polymer (X2) to the said preferable range.
 このようにして得られるアクリル重合体(X2)は、その分子構造中に、カルボキシル基とエポキシ基との反応で生じた水酸基を有する。アクリル重合体(X2)のアクリロイル当量を好適な範囲に調整する目的で、必要に応じて、該水酸基に、前記イソシアネート基と(メタ)アクリロイル基とを有する化合物(w)を付加反応させても良い。このようにして得られるアクリル重合体(X2’)も、前記アクリル重合体(X2)同様、本願発明のアクリル重合体(X)として用いることができる。 The thus obtained acrylic polymer (X2) has in its molecular structure a hydroxyl group generated by a reaction between a carboxyl group and an epoxy group. For the purpose of adjusting the acryloyl equivalent of the acrylic polymer (X2) to a suitable range, if necessary, the compound (w) having the isocyanate group and the (meth) acryloyl group may be subjected to addition reaction with the hydroxyl group. good. The acrylic polymer (X2 ′) thus obtained can be used as the acrylic polymer (X) of the present invention, like the acrylic polymer (X2).
 前記アクリル重合体(X2)と、イソシアネート基と(メタ)アクリロイル基とを有する化合物(w)との反応は、例えば、前述した方法でアクリル重合体(X2)を製造した後の系中に、前記イソシアネート基と(メタ)アクリロイル基とを有する化合物(w)を滴下しながら加え、50~120℃に加熱するなどの方法で行うことができる。 The reaction between the acrylic polymer (X2) and the compound (w) having an isocyanate group and a (meth) acryloyl group is, for example, in the system after the acrylic polymer (X2) is produced by the method described above. The compound (w) having the isocyanate group and the (meth) acryloyl group may be added dropwise and heated to 50 to 120 ° C.
 前記アクリル重合体(X2)と(X2’)とでは、分子中により多くの水酸基を含有し、該水酸基と無機微粒子(A)との相互作用により無機微粒子(A)に対する分散能が高まることから、前記アクリル重合体(X2)が好ましい。 The acrylic polymers (X2) and (X2 ′) contain more hydroxyl groups in the molecule, and the dispersibility for the inorganic fine particles (A) is enhanced by the interaction between the hydroxyl groups and the inorganic fine particles (A). The acrylic polymer (X2) is preferable.
 次に、前記アクリル重合体(X3)について説明する。
 前記アクリル重合体(X3)の原料となる前記アクリル重合体(Y3)は、前記水酸基と(メタ)アクリロイル基とを有する化合物(y3)の単独重合体でも良いし、他の重合性化合物(v3)との共重合体でも良い。
Next, the acrylic polymer (X3) will be described.
The acrylic polymer (Y3) as a raw material of the acrylic polymer (X3) may be a homopolymer of the compound (y3) having the hydroxyl group and the (meth) acryloyl group, or other polymerizable compound (v3 And a copolymer thereof.
前記アクリル重合体(Y3)の原料成分となる水酸基と(メタ)アクリロイル基とを有する化合物(y3)は、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、2,3-ジヒドロキシプロピルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、2,3-ジヒドロキシプロピルメタクリレート等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。これらの中でも、前記アクリル重合体(X3)の(メタ)アクリロイル基当量を前記した好ましい範囲に調節することが容易となり、かつ、水酸基価が高く前記無機微粒子(A)の分散性に優れる前記アクリル重合体(X3)が得られる点で、2-ヒドロキシエチルアクリレート及び2-ヒドロキシプロピルアクリレートが好ましい。 The compound (y3) having a hydroxyl group and a (meth) acryloyl group as a raw material component of the acrylic polymer (Y3) is, for example, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2, Examples include 3-dihydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, and 2,3-dihydroxypropyl methacrylate. These may be used alone or in combination of two or more. Among these, it is easy to adjust the (meth) acryloyl group equivalent of the acrylic polymer (X3) to the above-described preferable range, and the acrylic polymer has a high hydroxyl value and excellent dispersibility of the inorganic fine particles (A). From the viewpoint of obtaining the polymer (X3), 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate are preferable.
 前記アクリル重合体(Y3)を製造する際に、前記水酸基と(メタ)アクリロイル基とを有する化合物(y3)と共に重合させることが出来る他の重合性化合物(v3)は、例えば、前記化合物(v1)として例示した各種の化合物が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。中でも、得られるアクリル重合体(X3)の(メタ)アクリロイル基当量を前記した好ましい範囲に調節することが容易となり、かつ、得られる硬化塗膜が高硬度でありながら靭性にも富むものとなる点で、炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステル、及び脂環式のアルキル基を有する(メタ)アクリル酸エステルが好ましく、炭素数1~22のアルキル基を持つ(メタ)アクリル酸エステルがより好ましい。とりわけ、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸-n-ブチル、及び(メタ)アクリル酸-t-ブチルが特に好ましい。 When producing the acrylic polymer (Y3), the other polymerizable compound (v3) that can be polymerized together with the compound (y3) having the hydroxyl group and the (meth) acryloyl group is, for example, the compound (v1). ) Are exemplified as various compounds. These may be used alone or in combination of two or more. Among them, it becomes easy to adjust the (meth) acryloyl group equivalent of the obtained acrylic polymer (X3) to the above-described preferable range, and the obtained cured coating film is rich in toughness while having high hardness. In this respect, (meth) acrylic acid ester having an alkyl group having 1 to 22 carbon atoms and (meth) acrylic acid ester having an alicyclic alkyl group are preferable, and having an alkyl group having 1 to 22 carbon atoms (meta ) Acrylic acid esters are more preferred. Particularly preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
 前記アクリル重合体(Y3)は、前記した通り、水酸基と(メタ)アクリロイルとを有する化合物(y3)の単独重合体でも良いし、他の重合性化合物(v3)との共重合体でも良い。これらの中でも、得られるアクリル系重合体(X3)の(メタ)アクリロイル基当量を好適な範囲に調整するには、共重合させる際の両者の質量比〔水酸基と(メタ)アクリロイル基とを有する化合物(y3)〕:〔他の重合性化合物(v3)〕が15/85~100/0の範囲となる割合で共重合させた重合体が好ましく、40/60~100/0質量部の範囲であることがより好ましい。 As described above, the acrylic polymer (Y3) may be a homopolymer of the compound (y3) having a hydroxyl group and (meth) acryloyl, or may be a copolymer with another polymerizable compound (v3). Among these, in order to adjust the (meth) acryloyl group equivalent of the obtained acrylic polymer (X3) to a suitable range, the mass ratio of the two at the time of copolymerization [having a hydroxyl group and a (meth) acryloyl group) Compound (y3)]: A polymer obtained by copolymerizing [other polymerizable compound (v3)] in a ratio of 15/85 to 100/0, preferably in the range of 40/60 to 100/0 parts by mass. It is more preferable that
 前記アクリル重合体(Y3)は、例えば、重合開始剤の存在下、80℃~150℃の温度領域で前記化合物(y3)を単独で、又は前記化合物(y3)と前記化合物(v3)とを併用して付加重合させることにより製造することができ、ランダム共重合体、ブロック共重合体、グラフト共重合体等が挙げられる。共重合方法は、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等が利用できる。これらの中でも、前記アクリル重合体(Y3)の製造と、これに続く前記アクリル系重合体(Y3)と前記イソシアネート基と(メタ)アクリロイル基とを有する化合物(z3)との反応とを連続的に行うことが可能となる点で、溶液重合法が好ましい。 The acrylic polymer (Y3) is, for example, the compound (y3) alone or the compound (y3) and the compound (v3) in the temperature range of 80 ° C. to 150 ° C. in the presence of a polymerization initiator. It can be produced by addition polymerization in combination, and examples thereof include random copolymers, block copolymers, and graft copolymers. As the copolymerization method, a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and the like can be used. Among these, the production of the acrylic polymer (Y3) and the subsequent reaction of the acrylic polymer (Y3) with the isocyanate group and the compound (z3) having a (meth) acryloyl group are continuously performed. The solution polymerization method is preferable because it can be carried out easily.
 前記アクリル重合体(Y3)の製造を溶液重合法で行う際に用いる溶媒は、前記アクリル重合体(Y1)の製造を溶液重合法で行う場合に用いる溶媒として例示した各種の溶媒が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。中でも、得られるアクリル重合体(Y3)の溶解性に優れる点から、メチルエチルケトンやメチルイソブチルケトン等のケトン溶剤が好ましい。 Examples of the solvent used when the acrylic polymer (Y3) is produced by the solution polymerization method include various solvents exemplified as the solvent used when the acrylic polymer (Y1) is produced by the solution polymerization method. These may be used alone or in combination of two or more. Of these, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of excellent solubility of the resulting acrylic polymer (Y3).
 前記アクリル重合体(Y3)の製造で用いる触媒は、前記アクリル重合体(Y1)の製造で用いる触媒として例示した各種の触媒が挙げられる。 Examples of the catalyst used in the production of the acrylic polymer (Y3) include various catalysts exemplified as the catalyst used in the production of the acrylic polymer (Y1).
 前記アクリル重合体(X3)の原料として用いるイソシアネート基と(メタ)アクリロイル基とを有する化合物(z3)は、例えば、前記イソシアネート基と(メタ)アクリロイル基とを有する化合物(w)として例示した各種の化合物が挙げられる。これらはそれぞれ単独で用いてもよいし、二種類以上を併用しても良い。これらの中でも、得られるアクリル重合体(X3)がより多官能の化合物となり、より高硬度な塗膜が得られる点で、1分子中に2個以上の(メタ)アクリロイル基を有するものが好ましく、具体的には、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネートが好ましい。 Examples of the compound (z3) having an isocyanate group and a (meth) acryloyl group used as a raw material for the acrylic polymer (X3) include various compounds exemplified as the compound (w) having the isocyanate group and the (meth) acryloyl group. The compound of this is mentioned. These may be used alone or in combination of two or more. Among these, what has two or more (meth) acryloyl groups in 1 molecule is preferable at the point from which the obtained acrylic polymer (X3) becomes a more polyfunctional compound and a coating film with higher hardness is obtained. Specifically, 1,1-bis (acryloyloxymethyl) ethyl isocyanate is preferred.
 前記アクリル重合体(X3)は、前アクリル重合体(Y3)と、イソシアネート基と(メタ)アクリロイル基とを有する化合物(z3)とを反応させて得られる。該反応は、例えば、アクリル重合体(Y3)を溶液重合法にて重合し、その反応系にイソシアネート基と(メタ)アクリロイル基とを有する化合物(z3)を加え、50~120℃の温度範囲で、オクタン酸スズ(II)等の触媒を適宜用いるなどの方法で行うことができる。アクリル重合体(X3)の(メタ)アクリロイル基当量は100~1000g/eqの範囲であることが好ましいが、これは、前記アクリル系重合体(Y3)と、前記イソシアネート基と(メタ)アクリロイル基とを有する化合物(z3)との反応比率により調節することができる。通常、前記アクリル重合体(Y3)が有する水酸基1モルに対して、前記化合物(z3)が有するイソシアネート基が0.7~0.9モルの範囲となるように反応させることにより、得られるアクリル重合体(X3)の(メタ)アクリロイル当量を上記好ましい範囲に調整することが容易となる。 The acrylic polymer (X3) is obtained by reacting the pre-acrylic polymer (Y3) with a compound (z3) having an isocyanate group and a (meth) acryloyl group. The reaction is performed, for example, by polymerizing an acrylic polymer (Y3) by a solution polymerization method, adding a compound (z3) having an isocyanate group and a (meth) acryloyl group to the reaction system, and a temperature range of 50 to 120 ° C. And a method such as using a catalyst such as tin (II) octoate as appropriate. The (meth) acryloyl group equivalent of the acrylic polymer (X3) is preferably in the range of 100 to 1000 g / eq. This is because the acrylic polymer (Y3), the isocyanate group, and the (meth) acryloyl group It can adjust with the reaction ratio with the compound (z3) which has these. Usually, the acrylic polymer obtained by reacting 1 mol of the hydroxyl group of the acrylic polymer (Y3) with the isocyanate group of the compound (z3) in the range of 0.7 to 0.9 mol. It becomes easy to adjust the (meth) acryloyl equivalent of the polymer (X3) to the preferred range.
 前記アクリル重合体(X)の中でも、前記無機微粒子(A)との馴染みがよく、得られる分散体の貯蔵安定性に優れる点で、前記アクリル重合体(X1)及び(X2)が好ましい。ここで、前記アクリル重合体(X1)及び(X2)の水酸基価は、前記無機微粒子(A)の分散性により優れる点で、70~280g/eqの範囲であることが好ましく、100~250g/eqの範囲であることがより好ましい。更に、より合成が簡便な点で前記アクリル重合体(X1)が好ましく、前記化合物(y1)として(メタ)アクリル酸グリシジルを用い、前記化合物(z1)として(メタ)アクリル酸を用いてなるアクリル重合体がより好ましい。 Among the acrylic polymers (X), the acrylic polymers (X1) and (X2) are preferable because they are well-familiar with the inorganic fine particles (A) and are excellent in storage stability of the resulting dispersion. Here, the hydroxyl value of the acrylic polymers (X1) and (X2) is preferably in the range of 70 to 280 g / eq, and more preferably in the range of 100 to 250 g / eq, in view of the excellent dispersibility of the inorganic fine particles (A). The range of eq is more preferable. Further, the acrylic polymer (X1) is preferable from the viewpoint of simpler synthesis, and acryl is obtained by using glycidyl (meth) acrylate as the compound (y1) and using (meth) acrylic acid as the compound (z1). A polymer is more preferred.
 本発明の活性エネルギー線硬化型樹脂組成物は、前記無機微粒子(A)、前記イオン液体(B)及び前記アクリル重合体(X)を必須の成分とする。樹脂組成物が保存安定性に優れ、かつ、高い表面硬度と透明性とを兼備する硬化塗膜が得られる点で、これらの合計100質量部中に、無機微粒子(A)を20~70質量部の範囲で含有することが好ましく、25~65質量部の範囲で含有することがより好ましい。 The active energy ray-curable resin composition of the present invention contains the inorganic fine particles (A), the ionic liquid (B), and the acrylic polymer (X) as essential components. 20 to 70 parts by mass of inorganic fine particles (A) are added to 100 parts by mass in total in that the resin composition has excellent storage stability and a cured coating film having both high surface hardness and transparency can be obtained. The content is preferably in the range of 25 parts by weight, and more preferably in the range of 25 to 65 parts by weight.
また、より安定性に優れる活性エネルギー線硬化型樹脂組成物となる点で、前記無機微粒子(A)、前記イオン液体(B)及び前記アクリル重合体(X)の合計100質量部中、前記イオン液体(B)を0.01~5質量部の範囲で含有することが好ましい。更に、表面硬度の高い硬化塗膜が得られる点で、0.05~1.5質量部の範囲で含有することがより好ましい。 In addition, in terms of becoming an active energy ray-curable resin composition that is more stable, the ion is contained in a total of 100 parts by mass of the inorganic fine particles (A), the ionic liquid (B), and the acrylic polymer (X). The liquid (B) is preferably contained in the range of 0.01 to 5 parts by mass. Furthermore, it is more preferable to contain in the range of 0.05 to 1.5 parts by mass in that a cured coating film having a high surface hardness can be obtained.
 本発明の活性エネルギー線硬化型樹脂組成物は、前記分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)に加え、アクリル重合体(X)以外の、分子構造中に(メタ)アクリロイル基を有する化合物(c)を含有しても良い。本発明では、粘度がより低く、塗料用途として使用しやすい活性エネルギー線硬化型樹脂組成物となる点で、該化合物(c)を用いることが好ましい。この際、前記分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)と、前記分子構造中に(メタ)アクリロイル基を有する化合物(c)との質量比[(X)/(c)]は5/95~90/10の範囲であることが好ましく、15/85~80/20の範囲であることがより好ましい。 In addition to the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure, the active energy ray-curable resin composition of the present invention has a (meth) in the molecular structure other than the acrylic polymer (X). You may contain the compound (c) which has an acryloyl group. In this invention, it is preferable to use this compound (c) at the point used as the active energy ray-curable resin composition which has a lower viscosity and is easy to use as a paint application. At this time, the mass ratio [(X) / (c) of the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure and the compound (c) having a (meth) acryloyl group in the molecular structure. )] Is preferably in the range of 5/95 to 90/10, and more preferably in the range of 15/85 to 80/20.
 前記分子構造中に(メタ)アクリロイル基を有する化合物(c)は、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、テトラヒドロフルフリールアクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレートなどのモノ(メタ)アクリレート; The compound (c) having a (meth) acryloyl group in the molecular structure includes, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, n-butyl (Meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, isobornyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate Relate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phosphoric acid (meth) acrylate, ethylene oxide modified phosphoric acid (meth) acrylate , Phenoxy (meth) acrylate, ethylene oxide modified phenoxy (meth) acrylate, propylene oxide modified phenoxy (meth) acrylate, nonylphenol (meth) acrylate, ethylene oxide modified nonylphenol (meth) acrylate, propylene oxide modified nonylphenol (meth) acrylate, methoxy Diethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (Meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl hydrogen phthalate, 2- (meth) Acryloyloxypropyl hydrogen phthalate, 2- (meth) acryloyloxypropyl hexahydrohydrogen phthalate, 2- (meth) acryloyloxypropyl tetrahydrohydrogen phthalate, dimethylaminoethyl (meth) acrylate, trifluoroethyl (meth) acrylate, tetrafluoropropyl (Meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropropyl (meth) acrylate, octafluoropropyl (meth) T) acrylates, mono (meth) acrylates such as adamantyl mono (meth) acrylate;
 ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどのジ(メタ)アクリレート; Butanediol di (meth) acrylate, hexanediol di (meth) acrylate, ethoxylated hexanediol di (meth) acrylate, propoxylated hexanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate , Di (meth) acrylates such as polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethoxylated neopentyl glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate;
 トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2―ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等のトリ(メタ)アクリレート; Trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, tris 2-hydroxyethyl isocyanurate tri (meth) acrylate, glycerin tri (meth) acrylate Tri (meth) acrylates such as;
ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート; Pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) Tetrafunctional or higher functional (meth) acrylates such as acrylate, dipentaerythritol penta (meth) acrylate, ditrimethylolpropane penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate;
および、上記した各種多官能(メタ)アクリレートの一部をアルキル基やε-カプロラクトンで置換した(メタ)アクリレート等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。 Examples thereof include (meth) acrylates in which a part of the various polyfunctional (meth) acrylates described above is substituted with an alkyl group or ε-caprolactone. These may be used alone or in combination of two or more.
 これら化合物(c)の中でも、より高硬度の塗膜が得られることから3官能以上の(メタ)アクリレートが好ましく、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートがより好ましい。 Among these compounds (c), a trifunctional or higher functional (meth) acrylate is preferable because a coating film with higher hardness can be obtained. Pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (Meth) acrylate and dipentaerythritol hexa (meth) acrylate are more preferable.
 本発明の活性エネルギー線硬化型樹脂組成物が、前記無機微粒子(A)、前記イオン液体(B)及び前記分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)に加えて、前記化合物(c)を含有する場合、樹脂組成物が保存安定性に優れ、かつ、高い表面硬度と透明性とを兼備する硬化塗膜が得られる点で、前記無機微粒子(A)、前記イオン液体(B)、前記アクリル重合体(X)及び前記化合物(c)の合計00質量部中、無機微粒子(A)を20~70質量部の範囲で含有することが好ましく、25~65質量部の範囲で含有することがより好ましい。 In addition to the inorganic fine particles (A), the ionic liquid (B), and the acrylic polymer (X) having a (meth) acryloyl group in the molecular structure, the active energy ray-curable resin composition of the present invention, When the compound (c) is contained, the inorganic fine particles (A) and the ionic liquid are obtained in that a cured coating film in which the resin composition is excellent in storage stability and has both high surface hardness and transparency is obtained. (B) In the total 00 parts by mass of the acrylic polymer (X) and the compound (c), the inorganic fine particles (A) are preferably contained in the range of 20 to 70 parts by mass, It is more preferable to contain in the range.
また、より安定性に優れる活性エネルギー線硬化型樹脂組成物となる点で、前記無機微粒子(A)、前記イオン液体(B)、前記アクリル重合体(X)及び前記化合物(c)の合計00質量部中、前記イオン液体(B)を0.01~5質量部の範囲で含有することが好ましい。更に、表面硬度の高い硬化塗膜が得られる点で、0.05~1.5質量部の範囲で含有することがより好ましい。 In addition, it is a total of 00 of the inorganic fine particles (A), the ionic liquid (B), the acrylic polymer (X), and the compound (c) in that the active energy ray-curable resin composition is more excellent in stability. It is preferable that the ionic liquid (B) is contained in the range of 0.01 to 5 parts by mass in parts by mass. Furthermore, it is more preferable to contain in the range of 0.05 to 1.5 parts by mass in that a cured coating film having a high surface hardness can be obtained.
 本発明の樹脂組成物は、必要に応じて分散補助剤を含有していても良い。該分散補助剤は、例えば、イソプロピルアシッドホスフェート、トリイソデシルホスファイト、エチレンオキサイド変性リン酸ジメタクリレート等のリン酸エステル化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、分散補助性能に優れる点で、エチレンオキサイド変性リン酸ジメタクリレートが好ましい。 The resin composition of the present invention may contain a dispersion aid as necessary. Examples of the dispersion aid include phosphate ester compounds such as isopropyl acid phosphate, triisodecyl phosphite, ethylene oxide-modified phosphate dimethacrylate, and the like. These may be used alone or in combination of two or more. Among these, ethylene oxide-modified phosphoric dimethacrylate is preferable because it is excellent in dispersion assist performance.
 前記分散補助剤の市販品は、例えば、日本化薬株式会社製「カヤマーPM-21」、「カヤマーPM-2」、共栄社化学株式会社製「ライトエステルP-2M」等が挙げられる。 Examples of commercially available dispersion aids include “Kayamar PM-21” and “Kayamar PM-2” manufactured by Nippon Kayaku Co., Ltd., “Light Ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd., and the like.
 前記分散補助剤を用いる場合は、より保存安定性の高い樹脂組成物となる点で、本発明の樹脂組成物100質量部中に、0.5~5.0質量部の範囲で含有することが好ましい。 When the dispersion aid is used, it is contained in the range of 0.5 to 5.0 parts by mass in 100 parts by mass of the resin composition of the present invention in that the resin composition has higher storage stability. Is preferred.
 また、本発明の樹脂組成物は、有機溶剤を含有していてもよい。該有機溶剤は、例えば、前記アクリル重合体(X)を溶液重合法で製造した場合には、その際に用いた溶剤をそのまま含有していても良いし、更に別の溶剤を追加で添加してもよい。或いは、前記アクリル重合体(X)の製造時に使用した有機溶剤を一度除去して、別の溶剤を用いても良い。用いる溶剤の具体例は、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン溶剤;テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル;トルエン、キシレン等の芳香族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル等のグリコールエーテル系溶剤が挙げられる。これらはそれぞれ単独で使用しても良いし、2種類以上を併用しても良い。これらの中でも、保存安定性に優れ、かつ、塗料として用いた際の塗装性に優れる樹脂組成物となる点で、ケトン溶剤が好ましく、メチルイソブチルケトンがより好ましい。また、前記イオン液体(B)の溶解性を向上させる目的で、前記ケトン溶剤に加えて、グリコールエーテル溶剤を併用しても良い。 Moreover, the resin composition of the present invention may contain an organic solvent. For example, when the acrylic polymer (X) is produced by a solution polymerization method, the organic solvent may contain the solvent used at that time as it is, or further add another solvent. May be. Or the organic solvent used at the time of manufacture of the said acrylic polymer (X) may be removed once, and another solvent may be used. Specific examples of the solvent used include ketone solvents such as acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK); cyclic ether solvents such as tetrahydrofuran (THF) and dioxolane; esters such as methyl acetate, ethyl acetate and butyl acetate; toluene Aromatic solvents such as xylene; alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, etc. These glycol ether solvents are mentioned. These may be used alone or in combination of two or more. Among these, a ketone solvent is preferable and methyl isobutyl ketone is more preferable in that the resin composition has excellent storage stability and excellent paintability when used as a paint. In addition to the ketone solvent, a glycol ether solvent may be used in combination for the purpose of improving the solubility of the ionic liquid (B).
 本発明の樹脂組成物は、更に、紫外線吸収剤、酸化防止剤、シリコン系添加剤、有機ビーズ、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、離型剤、帯電防止剤、防曇剤、着色剤、有機溶剤、無機フィラー等の添加剤を含有していても良い。 The resin composition of the present invention further comprises an ultraviolet absorber, an antioxidant, a silicon-based additive, organic beads, a fluorine-based additive, a rheology control agent, a defoaming agent, a release agent, an antistatic agent, and an antifogging agent. Further, additives such as a colorant, an organic solvent, and an inorganic filler may be contained.
 前記紫外線吸収剤は、例えば、2-[4-{(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-{(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等のトリアジン誘導体、2-(2′-キサンテンカルボキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-o-ニトロベンジロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-キサンテンカルボキシ-4-ドデシロキシベンゾフェノン、2-o-ニトロベンジロキシ-4-ドデシロキシベンゾフェノン等が挙げられる。 Examples of the ultraviolet absorber include 2- [4-{(2-hydroxy-3-dodecyloxypropyl) oxy} -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, 3,5-triazine, 2- [4-{(2-hydroxy-3-tridecyloxypropyl) oxy} -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3 Triazine derivatives such as 1,5-triazine, 2- (2'-xanthenecarboxy-5'-methylphenyl) benzotriazole, 2- (2'-o-nitrobenzyloxy-5'-methylphenyl) benzotriazole, 2- And xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone, and the like.
 前記酸化防止剤は、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、有機硫黄系酸化防止剤、リン酸エステル系酸化防止剤等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 Examples of the antioxidant include hindered phenol-based antioxidants, hindered amine-based antioxidants, organic sulfur-based antioxidants, and phosphate ester-based antioxidants. These may be used alone or in combination of two or more.
 前記シリコン系添加剤は、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、環状ジメチルポリシロキサン、メチルハイドロゲンポリシロキサン、ポリエーテル変性ジメチルポリシロキサン共重合体、ポリエステル変性ジメチルポリシロキサン共重合体、フッ素変性ジメチルポリシロキサン共重合体、アミノ変性ジメチルポリシロキサン共重合体など如きアルキル基やフェニル基を有するポリオルガノシロキサン、ポリエーテル変性アクリル基を有するポリジメチルシロキサン、ポリエステル変性アクリル基を有するポリジメチルシロキサン等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 Examples of the silicon-based additive include dimethylpolysiloxane, methylphenylpolysiloxane, cyclic dimethylpolysiloxane, methylhydrogenpolysiloxane, polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, and fluorine-modified dimethyl. Examples include polyorganosiloxanes having alkyl groups and phenyl groups, such as polysiloxane copolymers and amino-modified dimethylpolysiloxane copolymers, polydimethylsiloxanes having polyether-modified acrylic groups, and polydimethylsiloxanes having polyester-modified acrylic groups. It is done. These may be used alone or in combination of two or more.
 前記有機ビーズは、例えば、ポリメタクリル酸メチルビーズ、ポリカーボネートビーズ、ポリスチレンビーズ、ポリアクリルスチレンビーズ、シリコーンビ-ズ、ガラスビーズ、アクリルビーズ、ベンゾグアナミン系樹脂ビーズ、メラミン系樹脂ビーズ、ポリオレフィン系樹脂ビーズ、ポリエステル系樹脂ビーズ、ポリアミド樹脂ビーズ、ポリイミド系樹脂ビーズ、ポリフッ化エチレン樹脂ビーズ、ポリエチレン樹脂ビーズ等が挙げられる。これら有機ビーズの平均粒径の好ましい値は1~10μmの範囲である。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 Examples of the organic beads include polymethyl methacrylate beads, polycarbonate beads, polystyrene beads, polyacryl styrene beads, silicone beads, glass beads, acrylic beads, benzoguanamine resin beads, melamine resin beads, polyolefin resin beads, Examples thereof include polyester resin beads, polyamide resin beads, polyimide resin beads, polyfluorinated ethylene resin beads, and polyethylene resin beads. A preferable value of the average particle diameter of these organic beads is in the range of 1 to 10 μm. These may be used alone or in combination of two or more.
 前記フッ素系添加剤は、例えば、DIC株式会社「メガファック」シリーズ等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 Examples of the fluorine-based additive include DIC Corporation “Mega Fuck” series. These may be used alone or in combination of two or more.
 前記離型剤は、例えば、エボニックデグザ社製「テゴラッド2200N」、「テゴラッド2300」、「テゴラッド2100」、ビックケミー社製「UV3500」、東レ・ダウコーニング社製「ペインタッド8526」、「SH-29PA」等が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 Examples of the release agent include “Tegorad 2200N”, “Tegorad 2300”, “Tegorad 2100” manufactured by Evonik Degussa, “UV3500” manufactured by BYK Chemie, “Paintad 8526” manufactured by Toray Dow Corning, and “SH-29PA”. Or the like. These may be used alone or in combination of two or more.
 前記帯電防止剤は、例えば、ビス(トリフルオロメタンスルホニル)イミド又はビス(フルオロスルホニル)イミドのピリジニウム、イミダゾリウム、ホスホニウム、アンモニウム、又はリチウム塩が挙げられる。これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。 Examples of the antistatic agent include pyridinium, imidazolium, phosphonium, ammonium, or lithium salts of bis (trifluoromethanesulfonyl) imide or bis (fluorosulfonyl) imide. These may be used alone or in combination of two or more.
 前記各種の添加剤の使用量は、その効果を十分発揮し、また紫外線硬化を阻害しない範囲が好ましく、具体的には、本願発明樹脂組成物100質量部中に、それぞれ0.01~40質量部の範囲で用いることが好ましい。 The amount of the various additives used is preferably in a range where the effect is sufficiently exhibited and ultraviolet curing is not inhibited. Specifically, in an amount of 0.01 to 40 masses per 100 mass parts of the resin composition of the present invention. It is preferable to use within the range of parts.
 本発明の樹脂組成物は、更に、光重合開始剤を含有する。該光重合開始剤は、例えば、ベンゾフェノン、3,3′-ジメチル-4-メトキシベンゾフェノン、4,4′-ビスジメチルアミノベンゾフェノン、4,4′-ビスジエチルアミノベンゾフェノン、4,4′-ジクロロベンゾフェノン、ミヒラーズケトン、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなど各種のベンゾフェノン; The resin composition of the present invention further contains a photopolymerization initiator. Examples of the photopolymerization initiator include benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 4,4′-bisdimethylaminobenzophenone, 4,4′-bisdiethylaminobenzophenone, 4,4′-dichlorobenzophenone, Various benzophenones such as Michler's ketone, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone;
キサントン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントンなどのキサントン、チオキサントン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなど各種のアシロインエーテル; Xanthones such as xanthone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, and 2,4-diethylthioxanthone; thioxanthones; various acyloin ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether;
ベンジル、ジアセチルなどのα-ジケトン類;テトラメチルチウラムジスルフィド、p-トリルジスルフィドなどのスルフィド類;4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸エチルなど各種の安息香酸; Α-diketones such as benzyl and diacetyl; sulfides such as tetramethylthiuram disulfide and p-tolyl disulfide; various benzoic acids such as 4-dimethylaminobenzoic acid and ethyl 4-dimethylaminobenzoate;
3,3′-カルボニル-ビス(7-ジエチルアミノ)クマリン、1-ヒドロキシシクロへキシルフェニルケトン、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-ベンゾイル-4′-メチルジメチルスルフィド、2,2′-ジエトキシアセトフェノン、ベンジルジメチルケタ-ル、ベンジル-β-メトキシエチルアセタール、o-ベンゾイル安息香酸メチル、ビス(4-ジメチルアミノフェニル)ケトン、p-ジメチルアミノアセトフェノン、α,α-ジクロロ-4-フェノキシアセトフェノン、ペンチル-4-ジメチルアミノベンゾエート、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾリルニ量体、2,4-ビス-トリクロロメチル-6-[ジ-(エトキシカルボニルメチル)アミノ]フェニル-S-トリアジン、2,4-ビス-トリクロロメチル-6-(4-エトキシ)フェニル-S-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-エトキシ)フェニル-S-トリアジンアントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。 3,3′-carbonyl-bis (7-diethylamino) coumarin, 1-hydroxycyclohexyl phenyl ketone, 2,2′-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- [4 -(Methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2-hydroxy-2-methyl-1- Phenylpropan-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 1- [4- (2-hydroxyethoxy) phenyl] -2- Hydroxy-2-methyl-1-propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2- Tylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 4-benzoyl-4'-methyldimethylsulfide, 2,2'-diethoxyacetophenone, benzyldimethyl Ketal, benzyl-β-methoxyethyl acetal, methyl o-benzoylbenzoate, bis (4-dimethylaminophenyl) ketone, p-dimethylaminoacetophenone, α, α-dichloro-4-phenoxyacetophenone, pentyl-4- Dimethylaminobenzoate, 2- (o-chlorophenyl) -4,5-diphenylimidazolyl dimer, 2,4-bis-trichloromethyl-6- [di- (ethoxycarbonylmethyl) amino] phenyl-S-triazine, 2 , 4-Bis-trichloromethyl-6- (4-ethoxy Phenyl-S-triazine, 2,4-bis-trichloromethyl-6- (3-bromo-4-ethoxy) phenyl-S-triazine anthraquinone, 2-t-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, etc. Is mentioned. These may be used alone or in combination of two or more.
 前記光重合開始剤の中でも、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オンの群から選ばれる1種または2種類以上の混合系を用いることにより、より広範囲の波長の光に対して活性を示し、硬化性の高い塗料が得られるため好ましい。 Among the photopolymerization initiators, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy- 2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2′-dimethoxy-1,2-diphenylethane-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2 , 4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholino One or more mixed systems selected from the group of phenyl) -butan-1-one It allows more active against a broad range of wavelengths of light is preferred because highly curable coating is obtained using.
 前記光重合開始剤の市販品は、例えば、チバスペシャルティケミカルズ社製「イルガキュア-184」、「イルガキュア-149」、「イルガキュア-261」、「イルガキュア-369」、「イルガキュア-500」、「イルガキュア-651」、「イルガキュア-754」、「イルガキュア-784」、「イルガキュア-819」、「イルガキュア-907」、「イルガキュア-1116」、「イルガキュア-1664」、「イルガキュア-1700」、「イルガキュア-1800」、「イルガキュア-1850」、「イルガキュア-2959」、「イルガキュア-4043」、「ダロキュア-1173」;ビーエーエスエフ社製「ルシリンTPO」;日本化薬株式会社製「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」;ストウファ・ケミカル社製「バイキュア-10」、「バイキュア-55」;アクゾ社製「トリゴナルP1」;サンドズ社製「サンドレイ1000」;アプジョン社製「ディープ」;ワードブレンキンソップ社製「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」等が挙げられる。 Commercially available products of the photopolymerization initiator include, for example, “Irgacure-184”, “Irgacure-149”, “Irgacure-261”, “Irgacure-369”, “Irgacure-500”, “Irgacure-C” manufactured by Ciba Specialty Chemicals. "651", "Irgacure-754", "Irgacure-784", "Irgacure-819", "Irgacure-907", "Irgacure-1116", "Irgacure-1664", "Irgacure-1700", "Irgacure-1800" “Irgacure-1850”, “Irgacure-2959”, “Irgacure-4043”, “Darocur-1173”; “Lucirin TPO” manufactured by BASF; “Kayacure-DETX”, “Kayacure-MBP” manufactured by Nippon Kayaku ”,“ Kaya “Sure-DMBI”, “Kayacure-EPA”, “Kayacure-OA”; “Bicure-10”, “Bicure-55” manufactured by Stowa Chemical; “Trigonal P1” manufactured by Akzo; “Deep” manufactured by Apgeon; “QuantaCure-PDO”, “QuantaCure-ITX”, “QuantaCure-EPD”, etc. manufactured by Ward Brenkinsop.
 前記光重合開始剤の使用量は、光重合開始剤としての機能を十分に発揮しうる量であり、かつ、結晶の析出や塗膜物性の劣化が生じない範囲が好ましく、具体的には、樹脂組成物100質量部に対して0.05~20質量部の範囲で用いることが好ましく、なかでも0.1~10質量部の範囲で用いることが特に好ましい。 The amount of the photopolymerization initiator used is an amount that can sufficiently exhibit the function as a photopolymerization initiator, and is preferably within a range that does not cause precipitation of crystals and physical properties of the coating film. It is preferably used in the range of 0.05 to 20 parts by mass, particularly preferably in the range of 0.1 to 10 parts by mass, with respect to 100 parts by mass of the resin composition.
 本発明の樹脂組成物は、さらに、前記光重合開始剤と併せて、種々の光増感剤を使用しても良い。光増感剤は、例えば、アミン類、尿素類、含硫黄化合物、含燐化合物、含塩素化合物またはニトリル類もしくはその他の含窒素化合物等が挙げられる。 The resin composition of the present invention may further use various photosensitizers in combination with the photopolymerization initiator. Examples of the photosensitizer include amines, ureas, sulfur-containing compounds, phosphorus-containing compounds, chlorine-containing compounds, nitriles, and other nitrogen-containing compounds.
 本発明の活性エネルギー線硬化型樹脂組成物を製造する方法は、例えば、ディスパー、タービン翼等攪拌翼を有する分散機、ペイントシェイカー、ロールミル、ボールミル、アトライター、サンドミル、ビーズミル等の分散機を用い、前記無機微粒子(a)を前記アクリル重合体(X)中に混合分散する方法、あるいは、前記無機微粒子(a)を、前記アクリル重合体(X)及び前記化合物(c)からなる樹脂成分中に混合分散する方法が挙げられる。前記無機微粒子(a)が湿式シリカ微粒子である場合には、上記したいずれの分散機を用いた場合にも均一かつ安定な分散体が得られる。一方、前記無機微粒子(a)が乾式シリカ微粒子である場合には、均一かつ安定な分散体を得るために、ボールミル又はビーズミルを用いることが好ましい。 The method for producing the active energy ray-curable resin composition of the present invention uses, for example, a disperser having a stirring blade such as a disper or a turbine blade, a disperser such as a paint shaker, a roll mill, a ball mill, an attritor, a sand mill, or a bead mill. , A method of mixing and dispersing the inorganic fine particles (a) in the acrylic polymer (X), or the inorganic fine particles (a) in a resin component comprising the acrylic polymer (X) and the compound (c). And a method of mixing and dispersing. When the inorganic fine particles (a) are wet silica fine particles, a uniform and stable dispersion can be obtained when any of the above-described dispersers is used. On the other hand, when the inorganic fine particles (a) are dry silica fine particles, it is preferable to use a ball mill or a bead mill in order to obtain a uniform and stable dispersion.
 本発明の活性エネルギー線硬化型樹脂組成物を製造する際に好ましく用いることが出来るボールミルは、例えば、内部にメディアが充填されたベッセル、回転シャフト、前記回転シャフトと同軸状に回転軸を有し、前記回転シャフトの回転駆動により回転する攪拌翼、前記ベッセルに設置された原料の供給口、前記ベッセルに設置された分散体の排出口、及び前記回転シャフトがベッセルを貫通する部分に配設された軸封装置を有し、前記軸封装置が、2つのメカニカルシールユニットを有し、かつ、該2つのメカニカルシールユニットのシール部が外部シール液によりシールされた構造を有する軸封装置である湿式ボールミルが挙げられる。 The ball mill that can be preferably used in producing the active energy ray-curable resin composition of the present invention has, for example, a vessel filled with a medium inside, a rotating shaft, and a rotating shaft coaxial with the rotating shaft. A stirring blade that is rotated by the rotational drive of the rotating shaft, a raw material supply port installed in the vessel, a dispersion outlet installed in the vessel, and a portion where the rotating shaft passes through the vessel. The shaft seal device has a structure in which the shaft seal device has two mechanical seal units, and the seal portions of the two mechanical seal units are sealed with an external seal liquid. A wet ball mill is mentioned.
 即ち、本発明の活性エネルギー線硬化型樹脂組成物を製造する方法は、例えば、内部にメディアが充填されたベッセル、回転シャフト、前記回転シャフトと同軸状に回転軸を有し、前記回転シャフトの回転駆動により回転する攪拌翼、前記ベッセルに設置された原料の供給口、前記ベッセルに設置された分散体の排出口、及び前記回転シャフトがベッセルを貫通する部分に配設された軸封装置を有する湿式ボールミルであって、前記軸封装置が2つのメカニカルシールユニットを有し、かつ、該2つのメカニカルシールユニットのシール部が外部シール液によりシールされた構造を有する軸封装置である湿式ボールミルの前記供給口から、前記無機微粒子(a)と、前記イオン液体(B)と、前記アクリル重合体(X)を必須の成分とする樹脂成分とを前記ベッセルに供給し、前記ベッセル内で回転シャフト及び攪拌翼を回転させて、メディアと原料とを攪拌混合することにより、前記無機微粒子(a)の粉砕と、該無機微粒子(a)の前記樹脂成分への分散とを行い、次いで前記排出口から排出する方法が挙げられる。 That is, the method for producing the active energy ray-curable resin composition of the present invention includes, for example, a vessel filled with a medium inside, a rotating shaft, a rotating shaft coaxially with the rotating shaft, A stirring blade that is rotated by rotation driving, a raw material supply port installed in the vessel, a dispersion outlet installed in the vessel, and a shaft seal device in which the rotary shaft is disposed in a portion that passes through the vessel. A wet ball mill having a structure in which the shaft seal device has two mechanical seal units, and the seal portions of the two mechanical seal units are sealed with an external seal liquid. From the supply port, the inorganic fine particles (a), the ionic liquid (B), and the acrylic polymer (X) are essential components. The fat component is supplied to the vessel, and the rotating shaft and the stirring blade are rotated in the vessel to stir and mix the medium and the raw material, whereby the inorganic fine particles (a) are pulverized and the inorganic fine particles (a ) Is dispersed in the resin component, and then discharged from the discharge port.
 このような製造方法について、前記湿式ボールミルの具体的な構造の一例を示した図面により、更に詳しく説明する。 Such a manufacturing method will be described in more detail with reference to the drawings showing an example of a specific structure of the wet ball mill.
 図1に示す湿式ボールミルは、内部にメディアが充填されたベッセル(p1)、回転シャフト(q1)、前記回転シャフト(q1)と同軸状に回転軸を有し、前記回転シャフトの回転駆動により回転する攪拌翼(r1)、前記ベッセル(p1)に設置された原料の供給口(s1)、前記ベッセル(p1)に設置された分散体の排出口(t1)、及び前記回転シャフトがベッセルを貫通する部分に配設された軸封装置(u1)を有する。ここで、前記軸封装置(u1)は、2つのメカニカルシールユニットを有し、かつ、該2つのメカニカルシールユニットのシール部が外部シール液によりシールされた構造を有するものであり、このような軸封装置(u1)は、例えば、図2に示される構造を有するものが挙げられる。 The wet ball mill shown in FIG. 1 has a vessel (p1) filled with media therein, a rotating shaft (q1), a rotating shaft coaxially with the rotating shaft (q1), and is rotated by the rotational drive of the rotating shaft. The stirring blade (r1), the raw material supply port (s1) installed in the vessel (p1), the dispersion outlet (t1) installed in the vessel (p1), and the rotating shaft pass through the vessel A shaft seal device (u1) disposed on the portion to be operated. Here, the shaft seal device (u1) has two mechanical seal units, and has a structure in which the seal portions of the two mechanical seal units are sealed with an external seal liquid. As the shaft seal device (u1), for example, one having the structure shown in FIG.
 前記湿式ボールミルを用いて本発明の樹脂組成物を製造する場合、前記無機微粒子(a)と前記アクリル重合体(X)とを湿式ボールミルに供給して混合分散する方法が挙げられる。この際、前記無機微粒子(a)及び前記アクリル重合体(X)に加えて、前記イオン液体(B)、前記化合物(c)、前記分散補助剤、前記有機溶剤、及び前記各種の添加剤も一緒に湿式ボールミルに供給して混合分散しても良いし、前記無機微粒子(a)と前記アクリル重合体(X)とを湿式ボールミルに供給して混合分散した後に、得られた混合物に前記イオン液体(B)、前記化合物(c)、前記分散補助剤、前記有機溶剤、及び前記各種の添加剤を加えても良い。中でも、製造が簡便となる点で、前記無機微粒子(a)、前記アクリル重合体(X)、前記イオン液体(B)、前記化合物(c)、前記分散補助剤、前記有機溶剤、及び前記各種の添加剤を湿式ボールミルに供給して混合分散する方法が好ましい。尚、光重合開始剤は、分散時にゲル化等が生じることを防ぐ目的で、分散後の分散体に後で添加することが好ましい。 When producing the resin composition of the present invention using the wet ball mill, a method may be mentioned in which the inorganic fine particles (a) and the acrylic polymer (X) are supplied to a wet ball mill and mixed and dispersed. At this time, in addition to the inorganic fine particles (a) and the acrylic polymer (X), the ionic liquid (B), the compound (c), the dispersion aid, the organic solvent, and the various additives are also included. The inorganic fine particles (a) and the acrylic polymer (X) may be supplied to a wet ball mill and mixed and dispersed together. The liquid (B), the compound (c), the dispersion aid, the organic solvent, and the various additives may be added. Among these, the inorganic fine particles (a), the acrylic polymer (X), the ionic liquid (B), the compound (c), the dispersion auxiliary agent, the organic solvent, and the various types are described in terms of simple production. A method in which the additive is fed to a wet ball mill and mixed and dispersed is preferred. In addition, it is preferable to add a photoinitiator later to the dispersion after a dispersion | distribution in order to prevent gelatinization etc. arising at the time of dispersion | distribution.
 図1に示す湿式ボールミルにおいて、原料は図1中の供給口(s1)を経てベッセル(p1)に供給される。前記ベッセル(p1)内にはメディアが充填されており、回転シャフト(q1)の回転駆動により回転する攪拌翼(r1)によって原料とメディアとが攪拌混合され、前記無機微粒子(a)の粉砕と、該無機微粒子(a)の前記アクリル重合体(X)や、化合物(c)への分散が行われる。前記回転シャフト(p1)はその内側が、排出口(t1)側に開口部を有する空洞となっている。該空洞内にはセパレータとしてスクリーンタイプのセパレータ2が設置されており、該セパレータ2の内側に排出口(t1)へと続く流路が設けられている。前記ベッセル(p1)内の分散体は、原料の供給圧によって押され、前記回転シャフト(p1)の開口部から、その内側の前記セパレータ2まで運ばれる。前記セパレータ2が粒子径の大きいメディアを通さず、粒子径の小さい無機微粒子(A)を含む分散体のみを通過させることにより、前記メディアはベッセル(p1)内に留まり、分散体のみが排出口(t1)から排出される。 In the wet ball mill shown in FIG. 1, the raw material is supplied to the vessel (p1) through the supply port (s1) in FIG. The vessel (p1) is filled with a medium, and the raw material and the medium are stirred and mixed by the stirring blade (r1) that is rotated by the rotation of the rotating shaft (q1), and the inorganic fine particles (a) are pulverized. The inorganic fine particles (a) are dispersed in the acrylic polymer (X) and the compound (c). The inside of the rotating shaft (p1) is a cavity having an opening on the discharge port (t1) side. A screen-type separator 2 is installed in the cavity as a separator, and a flow path leading to the discharge port (t1) is provided inside the separator 2. The dispersion in the vessel (p1) is pushed by the supply pressure of the raw material, and is conveyed from the opening of the rotary shaft (p1) to the separator 2 inside thereof. By passing only the dispersion containing the inorganic fine particles (A) having a small particle size without allowing the separator 2 to pass through the medium having a large particle size, the media remains in the vessel (p1), and only the dispersion is discharged from the outlet. It is discharged from (t1).
 前記湿式ボールミルは、図2に示すような軸封装置(u1)を有す。前記軸封装置(u1)は、前記シャフト(q1)上に固定される回転環3と、図1中の軸封装置のハウジング1に固定される固定環4とがシール部を形成するように配設された構造を有有するメカニカルシールユニットを2つ有し、かつ、該ユニットにおける回転環3と固定環4との並びが2つのユニットで同方向を向いている。ここでシール部とは、前記回転環3と固定環4とによって形成される一対の摺動面を言う。また、2つのメカニカルシールユニット間には液封空間11があり、これに連通する外部シール液供給口5と外部シール液排出口6とを有する。前記液封空間11には、外部シール液タンク7からポンプ8によって供給される外部シール液(R)が、前記外部シール液供給口5を経て供給され、前記外部シール液排出口6を経て前記タンク7に戻されることにより循環供給される。これにより、前記液封空間11に外部シール液(R)が液密に充填されると共に、前記シール部において回転環3と固定環4との間に形成される間隙9が外部シール液(R)で満たされる。このシール液(R)によって、前記回転環3と前記固定環4との摺動面の潤滑と冷却が行われる。 The wet ball mill has a shaft seal device (u1) as shown in FIG. In the shaft seal device (u1), the rotary ring 3 fixed on the shaft (q1) and the fixed ring 4 fixed on the housing 1 of the shaft seal device in FIG. 1 form a seal portion. Two mechanical seal units having the arranged structure are provided, and the rotation ring 3 and the stationary ring 4 in the unit are aligned in the same direction in the two units. Here, the seal portion refers to a pair of sliding surfaces formed by the rotating ring 3 and the fixed ring 4. Further, there is a liquid seal space 11 between two mechanical seal units, and an external seal liquid supply port 5 and an external seal liquid discharge port 6 communicated with the liquid seal space 11. The liquid seal space 11 is supplied with an external seal liquid (R) supplied from an external seal liquid tank 7 by a pump 8 through the external seal liquid supply port 5 and through the external seal liquid discharge port 6. By being returned to the tank 7, it is circulated and supplied. As a result, the liquid seal space 11 is filled with the external seal liquid (R) in a liquid-tight manner, and the gap 9 formed between the rotating ring 3 and the fixed ring 4 in the seal portion is formed with the external seal liquid (R). ). The sealing liquid (R) lubricates and cools the sliding surfaces of the rotating ring 3 and the stationary ring 4.
 また、外部シール液(R)の流入圧により固定環4が回転環3へ押し付けられる力P1と、スプリング10により固定環4が回転環3へ押し付けられる力P2と、外部シール液(R)の流入圧により固定環4が回転環3から引き離される力をP3とのバランスが成り立つようにシール液(R)の流入圧とスプリング10の圧が設定されている。これにより、摺動面である固定環4と回転環3との間隙9には外部シール液(R)が液密に充填され、該間隙9には前記アクリル重合体(X)や前記化合物(c)が入りこむことが無い。該間隙9に前記アクリル重合体(X)や前記化合物(c)が流入する場合には、前記回転環3と前記固定環4との摺動により該化アクリル重合体(X)及び該化合物(c)からメカノラジカルが発生し、これらが有する(メタ)アクリロイル基が重合を起こしてゲル化や増粘を生じることがあるが、前記軸封装置(u1)のような軸封装置を有する本願発明の湿式ボールミルを用いることにより、そのようなリスクが回避される。 Further, the force P1 that the stationary ring 4 is pressed against the rotating ring 3 by the inflow pressure of the external sealing liquid (R), the force P2 that the stationary ring 4 is pressed against the rotating ring 3 by the spring 10, and the external sealing liquid (R) The inflow pressure of the sealing liquid (R) and the pressure of the spring 10 are set so that the force with which the stationary ring 4 is separated from the rotating ring 3 by the inflow pressure is balanced with P3. As a result, the gap 9 between the stationary ring 4 and the rotating ring 3 that is the sliding surface is filled with the outer seal liquid (R) in a liquid-tight manner, and the gap 9 is filled with the acrylic polymer (X) or the compound ( c) does not enter. When the acrylic polymer (X) or the compound (c) flows into the gap 9, the acrylic polymer (X) and the compound ( c) Mechanoradicals are generated, and the (meth) acryloyl group they contain may cause polymerization to cause gelation or thickening, but this has a shaft sealing device such as the shaft sealing device (u1). By using the inventive wet ball mill, such risks are avoided.
 前記軸封装置(u1)のような軸封装置は、例えば、タンデム型メカニカルシール等が上げられる。また、軸封装置として前記タンデム型メカニカルシールを有する湿式ボールミルYの市販品は、例えば、アシザワ・ファインテック株式会社製「LMZ」シリーズ等が挙げられる。 The shaft seal device such as the shaft seal device (u1) is, for example, a tandem mechanical seal. In addition, examples of commercially available wet ball mill Y having the tandem mechanical seal as a shaft seal device include “LMZ” series manufactured by Ashizawa Finetech Co., Ltd.
 前記外部シール液(R)は、非反応性の液体であり、例えば、前記アクリル重合体(X)を製造する際に用いる有機溶剤として列記した各種の有機溶剤等が挙げられる。これらの中でも、前記アクリル重合体(X)の製造時に用いる溶剤と同一のものが好ましく、したがって、ケトン溶剤が好ましく、メチルエチルケトン(MEK)又はメチルイソブチルケトン(MIBK)が特に好ましい。 The external sealing liquid (R) is a non-reactive liquid, and examples thereof include various organic solvents listed as organic solvents used when the acrylic polymer (X) is produced. Among these, the same solvent as that used in the production of the acrylic polymer (X) is preferable. Therefore, a ketone solvent is preferable, and methyl ethyl ketone (MEK) or methyl isobutyl ketone (MIBK) is particularly preferable.
 図1中のベッセル(p1)内に充填されるメディアは、例えば、種々の微小ビーズが用いられる。微小ビーズの素材は、例えば、ジルコニア、ガラス、酸化チタン、銅、珪酸ジルコニア等が挙げられる。これらの中でも、最も硬く磨耗が少ないことからジルコニアの微小ビーズが好ましい。 As the medium filled in the vessel (p1) in FIG. 1, for example, various micro beads are used. Examples of the material for the microbeads include zirconia, glass, titanium oxide, copper, and zirconia silicate. Among these, zirconia microbeads are preferred because they are the hardest and less worn.
 前記メディアは、図1中のスクリーンタイプのセパレータ2でのスラリーとのメディアの分離が良好であること、前記無機微粒子(a)の粉砕能が高いため分散時間が比較的短時間となること、前記無機微粒子(a)への衝撃が強すぎず無機微粒子(a)の過分散現象が生じ難いことから、平均粒子径がメジアン径で10~1000μmの範囲であるものが好ましい。 The media has good separation of the media from the slurry in the screen-type separator 2 in FIG. 1, the dispersion time is relatively short because of the high pulverization ability of the inorganic fine particles (a), The average particle diameter is preferably in the range of 10 to 1000 μm in terms of median diameter because the inorganic fine particles (a) are not so strong in impact and the inorganic fine particles (a) are hardly overdispersed.
 前記過分散現象とは、無機微粒子の破壊により新たな活性表面が生成し、再凝集を起こす現象をいう。過分散現象が生じた場合、分散液はゲル化する。 The above-mentioned overdispersion phenomenon refers to a phenomenon in which a new active surface is generated due to destruction of inorganic fine particles and reaggregation occurs. When the overdispersion phenomenon occurs, the dispersion is gelled.
 図1中のベッセル(p1)内のメディアの充填率は、分散に要する動力が最小となり、最も効率的に粉砕を行うことができる点で、ベッセル内容積の75~90体積%の範囲であることが好ましい。 The filling rate of the media in the vessel (p1) in FIG. 1 is in the range of 75 to 90% by volume of the vessel internal volume in that the power required for dispersion is minimized and pulverization can be performed most efficiently. It is preferable.
 前記攪拌翼(r1)は、メディアと前記無機微粒子(a)とが衝突する際の衝撃が大きく、分散効率が高まることから、先端部の周速が5~20m/secの範囲となるように回転駆動されることが好ましく、8~20m/secの範囲であることがより好ましい。 The stirring blade (r1) has a large impact when the medium collides with the inorganic fine particles (a) and increases the dispersion efficiency, so that the peripheral speed of the tip is in the range of 5 to 20 m / sec. It is preferably driven to rotate, and more preferably in the range of 8 to 20 m / sec.
 このような湿式ボールミルを用いて本発明の樹脂組成物を製造する際、その製造方法は回分式であっても連続式であっても良い。また、連続式の場合には、スラリーの取り出し後再度供給する循環型であっても、非循環型であっても良い。これらの中でも、生産効率が高くなり、また、得られる分散体の均質性にも優れる点で循環型であることが好ましい。 When producing the resin composition of the present invention using such a wet ball mill, the production method may be a batch type or a continuous type. Further, in the case of a continuous type, it may be a circulation type that is supplied again after the slurry is taken out or a non-circulation type. Among these, the circulation type is preferable in that the production efficiency is high and the homogeneity of the obtained dispersion is excellent.
 また、このような湿式ボールミルを用いて本発明の樹脂組成物を製造する際には、メジアン径が400~1000μmの範囲である比較的大きい粒子をメディアとして用いてプレ分散工程を行った後、メジアン径が15~400μmの範囲である比較的小さい粒子をメディアとして用いて本分散工程を行う、二段工程で行うことが好ましい。 Further, when producing the resin composition of the present invention using such a wet ball mill, after performing a pre-dispersing step using relatively large particles having a median diameter in the range of 400 to 1000 μm as a medium, This dispersion step is preferably performed in a two-stage process using relatively small particles having a median diameter in the range of 15 to 400 μm as a medium.
 前記プレ分散工程では、メジアン径が400~1000μmの範囲である比較的大きいメディアを用いる。このようなメディアは無機微粒子(a)と衝突した際に与える衝撃力が大きいため、粒径が大きい無機微粒子(a)の粉砕性が高く、これを用いて原料の無機微粒子(A)をある程度の粒子径まで粉砕する。前記本分散工程では、メジアン径が15~400μmの範囲である比較的小さいメディアを用いる。このようなメディアは無機微粒子(a)と衝突した際に与える衝撃力は小さいが、粒径が大きいメディアと比べて同一体積中に含まれる粒子の数が多くなることから、無機微粒子(a)との衝突回数が多くなる。したがって、プレ分散工程である程度まで粉砕された無機微粒子(a)を更に微細な粒子へと粉砕する目的で用いられる。ここで、前記プレ分散工程が長すぎると、前記過分散現象が生じる恐れがあるため、該プレ分散工程はスラリーが前記ベッセル(p1)内を1~3サイクル循環する範囲で行うことが好ましい。 In the pre-dispersing step, a relatively large medium having a median diameter in the range of 400 to 1000 μm is used. Since such a medium has a large impact force when it collides with the inorganic fine particles (a), the fine particles of the inorganic fine particles (a) having a large particle size are highly pulverizable. Grind to a particle size of. In the main dispersion step, a relatively small medium having a median diameter in the range of 15 to 400 μm is used. Although such a medium has a small impact force when colliding with the inorganic fine particles (a), since the number of particles contained in the same volume is larger than that of a medium having a large particle size, the inorganic fine particles (a) The number of collisions with will increase. Therefore, the inorganic fine particles (a) pulverized to a certain degree in the pre-dispersing step are used for the purpose of pulverizing them into finer particles. Here, if the pre-dispersion step is too long, the over-dispersion phenomenon may occur. Therefore, the pre-dispersion step is preferably performed in a range in which the slurry circulates in the vessel (p1) for 1 to 3 cycles.
 本発明の活性エネルギー線硬化型樹脂組成物は、塗料用途に用いることが出来る。該塗料は、各種基材上に塗布し、活性エネルギー線を照射して硬化させることにより、基材表面を保護するコート層として用いることができる。この場合、本発明の塗料を被表面保護部材に直接塗布して用いても良いし、プラスチックフィルム上に塗布したものを、偏光板等の保護フィルムとして用いてもよい。或いは、本発明の塗料をプラスチックフィルム上に塗布し、塗膜を形成したものを反射防止フィルム、拡散フィルム、及びプリズムシート等の光学フィルムとして用いても良い。本発明の塗料を用いて得られる塗膜は表面硬度が高く透明性にも優れる特徴があるため、特にプラスチックフィルム上に塗布し、保護フィルム用途やフィルム状成形品として用いることが好ましい。 The active energy ray-curable resin composition of the present invention can be used for paint applications. The coating material can be used as a coating layer that protects the surface of the substrate by applying the coating onto various substrates and irradiating and curing the active energy rays. In this case, the coating material of the present invention may be directly applied to the surface protection member, or a coating material applied on a plastic film may be used as a protective film such as a polarizing plate. Or you may use what applied the coating material of this invention on the plastic film, and formed the coating film as optical films, such as an antireflection film, a diffusion film, and a prism sheet. Since the coating film obtained by using the coating material of the present invention is characterized by high surface hardness and excellent transparency, it is particularly preferable to apply it on a plastic film and use it as a protective film application or a film-like molded product.
 前記プラスチックフィルムは、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ABS樹脂、AS樹脂、ノルボルネン系樹脂、環状オレフィン、ポリイミド樹脂等からなるプラスチックフィルムが挙げられる。 The plastic film is made of, for example, polycarbonate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, ABS resin, AS resin, norbornene resin, cyclic olefin, polyimide resin, or the like. Is mentioned.
 プラスチックフィルムに本願発明の塗料を塗布する際の塗布量は、乾燥後の質量が0.1~30g/mの範囲、好ましくは1~20g/mの範囲になるように塗布するのが好ましい。本発明の塗膜の膜厚は、前記プラスチックフィルムの膜厚に対して3%以上とすることにより、保護層として十分な硬度を発現する。中でも、塗膜の膜厚を、プラスチックフィルムの膜厚に対して3~100%の範囲とすることが好ましく、5~100%の範囲であるフィルムが更に好ましく、フィルム状基材の膜厚に対して5~50%の範囲であるフィルムが特に好ましい。 The coating amount when applying the paint of the present invention to a plastic film is such that the mass after drying is in the range of 0.1 to 30 g / m 2 , preferably in the range of 1 to 20 g / m 2. preferable. The film thickness of the coating film of this invention expresses hardness sufficient as a protective layer by setting it as 3% or more with respect to the film thickness of the said plastic film. In particular, the thickness of the coating film is preferably in the range of 3 to 100% with respect to the thickness of the plastic film, more preferably in the range of 5 to 100%. A film in the range of 5 to 50% is particularly preferred.
 本発明の塗料の塗布方法は、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷法等が挙げられる。 Examples of the coating method of the present invention include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing.
 本発明の塗料を硬化させ塗膜とする際に照射する活性エネルギー線は、例えば、紫外線や電子線が挙げられる。紫外線により硬化させる場合には、光源としてキセノンランプ、高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用され、必要に応じて光量、光源の配置などが調整される。高圧水銀灯を使用する場合には、通常80~160W/cmの範囲である光量を有したランプ1灯に対して搬送速度5~50m/分の範囲で硬化させることが好ましい。一方、電子線により硬化させる場合には、通常10~300kVの範囲である加速電圧を有する電子線加速装置にて、搬送速度5~50m/分の範囲で硬化させることが好ましい。 Examples of the active energy rays irradiated when the paint of the present invention is cured to form a coating film include ultraviolet rays and electron beams. In the case of curing with ultraviolet rays, an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, and a metal halide lamp is used as a light source, and the amount of light, the arrangement of the light source, and the like are adjusted as necessary. When using a high-pressure mercury lamp, it is preferable to cure at a conveyance speed of 5 to 50 m / min with respect to one lamp having a light quantity that is usually in the range of 80 to 160 W / cm. On the other hand, in the case of curing with an electron beam, it is preferably cured with an electron beam accelerator having an accelerating voltage that is usually in the range of 10 to 300 kV at a conveyance speed of 5 to 50 m / min.
 また、本発明の塗料を塗布する基材は、プラスチックフィルムのみならず、各種のプラスチック成形品、例えば、携帯電話、電家製品、自動車のバンパー等の表面コーティング剤としても好適に用いることができる。この場合、その塗膜の形成方法としては、例えば、塗装法、転写法、シート接着法等が挙げられる。 Moreover, the base material to which the paint of the present invention is applied can be suitably used not only as a plastic film but also as a surface coating agent for various plastic molded products, for example, cellular phones, electric appliances, automobile bumpers and the like. . In this case, examples of the method for forming the coating film include a coating method, a transfer method, and a sheet bonding method.
 前記塗装法は、前記塗料をスプレーコートするか、もしくはカーテンコーター、ロールコーター、グラビアコーター等の印刷機器を用いて成形品にトップコートとして塗装した後、活性エネルギー線を照射して硬化させる方法である。 The coating method is a method in which the paint is spray-coated or coated as a top coat on a molded product using a printing device such as a curtain coater, roll coater, gravure coater, etc., and then cured by irradiation with active energy rays. is there.
 前記転写法は、離型性を有する基体シート上に前記した本発明の塗料を塗布して得られる転写材を成形品表面に接着させた後、基体シートを剥離して成型品表面にトップコートを転写し、次いで活性エネルギー線を照射し硬化させる方法、又は、該転写材を成形品表面に接着させた後、活性エネルギー線を照射して硬化させ、次いで基体シートを剥離する事により成型品表面にトップコートを転写する方法が挙げられる。 In the transfer method, a transfer material obtained by applying the above-described coating material of the present invention on a substrate sheet having releasability is adhered to the surface of the molded product, and then the substrate sheet is peeled off to top coat the surface of the molded product. , And then curing by irradiation with active energy rays, or by bonding the transfer material to the surface of the molded article, curing by irradiation with active energy rays, and then peeling the substrate sheet A method of transferring the top coat to the surface is mentioned.
 他方、前記シート接着法は、基体シート上に前記本発明の塗料からなる塗膜を有する保護シート、又は、基体シート上に前記塗料からなる塗膜と加飾層とを有する保護シートをプラスチック成形品に接着することにより、成形品表面に保護層を形成する方法である。 On the other hand, in the sheet bonding method, a protective sheet having a coating film made of the paint of the present invention on a base sheet, or a protective sheet having a coating film made of the paint and a decorative layer on a base sheet is plastic molded. In this method, a protective layer is formed on the surface of the molded product by bonding to the product.
 これらの中でも、本発明の塗料は転写法及びシート接着法用途に好ましく用いることができる。 Among these, the coating material of the present invention can be preferably used for the transfer method and the sheet adhesion method.
 前記転写法では先ず転写材を作成する。該転写材は、例えば、前記塗料を単独、またはポリイソシアネート化合物と混合したものを基材シート上に塗布し、加熱して塗膜を半硬化(B-ステージ化)させて製造することができる。 In the transfer method, a transfer material is first prepared. The transfer material can be produced, for example, by applying the paint alone or mixed with a polyisocyanate compound onto a base sheet and heating to semi-cure (B-stage) the coating film. .
 ここで、本発明の活性エネルギー線硬化型化合物が含有する前記アクリル重合体(X)や、前記化合物(c)が、分子構造中水酸基を有する化合物である場合、前記B-ステージ化工程をより効率的に行う目的で、ポリイソシアネート化合物と併用してもよい。 Here, when the acrylic polymer (X) contained in the active energy ray-curable compound of the present invention or the compound (c) is a compound having a hydroxyl group in the molecular structure, the B-staging step is further performed. You may use together with a polyisocyanate compound for the purpose of performing efficiently.
 転写材を製造するには、まず、基材シート上に前記した本発明の塗料を塗装する。前記塗料を塗装する方法は、例えば、グラビアコート法、ロールコート法、スプレーコート法、リップコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などの印刷法等が挙げられる。塗装する際の膜厚は、耐摩耗性および耐薬品性が良好となることから、硬化後の塗膜の厚さが0.5~30μmとなる様に塗装するのが好ましく、1~6μmとなるように塗装することがより好ましい。 In order to produce a transfer material, first, the above-described paint of the present invention is applied onto a base sheet. Examples of the method for applying the paint include a gravure coating method, a roll coating method, a spray coating method, a lip coating method, a coating method such as a comma coating method, and a printing method such as a gravure printing method and a screen printing method. The coating thickness is preferably such that the thickness of the cured coating film is 0.5 to 30 μm because the wear resistance and chemical resistance are good, and it is preferably 1 to 6 μm. It is more preferable to paint so that
 前期方法で基材シート上に前記塗料を塗装した後、加熱乾燥させて塗膜を半硬化(B-ステージ化)させる。加熱は通常55~160℃、好ましくは100~140℃である。加熱時間は通常30秒~30分間、好ましくは1~10分、より好ましくは1~5分である。 After applying the paint on the base material sheet by the previous method, it is dried by heating and semi-cured (B-stage). The heating is usually 55 to 160 ° C, preferably 100 to 140 ° C. The heating time is usually 30 seconds to 30 minutes, preferably 1 to 10 minutes, more preferably 1 to 5 minutes.
 前記転写材を用いた成形品の表面保護層の形成は、例えば、前記転写材のB-ステージ化された樹脂層と成形品とを接着した後、活性エネルギー線を照射して樹脂層を硬化させて行う。具体的には、例えば、転写材のB-ステージ化された樹脂層を成形品表面に接着させ、その後、転写材の基体シートを剥離することにより転写材のB-ステージ化された樹脂層を成形品表面上に転写させた後、活性エネルギー線照射によりエネルギー線硬化させて樹脂層の架橋硬化を行う方法(転写法)や、前記転写材を成形金型内に挟み込み、キャビテイ内に樹脂を射出充満させ、樹脂成形品を得るのと同時にその表面に転写材を接着させ、基体シートを剥離して成形品上に転写した後、活性エネルギー線照射によりエネルギー線硬化せしめて樹脂層の架橋硬化を行う方法(成形同時転写法)等が挙げられる。 For example, the surface protective layer of the molded product using the transfer material may be formed by, for example, bonding the B-staged resin layer of the transfer material and the molded product, and then irradiating active energy rays to cure the resin layer. To do. Specifically, for example, the B-staged resin layer of the transfer material is adhered to the surface of the molded product, and then the base sheet of the transfer material is peeled to remove the B-staged resin layer of the transfer material. After transferring onto the surface of the molded product, energy rays are cured by irradiation with active energy rays to cure the resin layer by cross-linking (transfer method), or the transfer material is sandwiched in a mold and the resin is placed in the cavity. At the same time as injection filling to obtain a resin molded product, a transfer material is adhered to the surface, the substrate sheet is peeled off and transferred onto the molded product, and then the energy beam is cured by irradiation with active energy rays to crosslink and cure the resin layer. And the like (molding simultaneous transfer method).
 次にシート接着法は、具体的には、予め作成しておいた保護層形成用シートの基体シートと成形品とを接着させた後、加熱により熱硬化せしめてB-ステージ化してなる樹脂層の架橋硬化を行う方法(後接着法)や、前記保護層形成用シートを成形金型内に挟み込み、キャビテイ内に樹脂を射出充満させ、樹脂成形品を得るのと同時にその表面と保護層形成用シートを接着させ後、加熱により熱硬化せしめて樹脂層の架橋硬化を行う方法(成形同時接着法)等が挙げられる。 Next, the sheet bonding method is specifically a resin layer formed by bonding a base sheet of a protective layer forming sheet prepared in advance and a molded product, and then thermally curing by heating to form a B-stage. A method of performing cross-linking curing (post-adhesion method), and the protective layer forming sheet is sandwiched in a molding die, and a resin is injected and filled in the cavity to obtain a resin molded product, and at the same time, the surface and the protective layer are formed. For example, there may be mentioned a method in which a resin sheet is bonded and then thermally cured by heating to crosslink and cure the resin layer (molding simultaneous bonding method).
 次に、本発明の塗膜は、前記したプラスチックフィルム上に本発明の塗料を塗布、硬化させて形成された塗膜、又は、プラスチック成形品の表面保護剤として本発明の塗料をコーティング、硬化して形成された塗膜であり、また、本発明のフィルムは、プラスチックフィルム上に塗膜が形成されたフィルムである。 Next, the coating film of the present invention is a coating film formed by applying and curing the coating material of the present invention on the above-described plastic film, or coating and curing the coating material of the present invention as a surface protective agent for plastic molded products. The film of the present invention is a film having a coating film formed on a plastic film.
 前記フィルムの各種用途のなかでも、前記した通り、プラスチックフィルム上に本発明の塗料を塗布、活性エネルギー線を照射して得られるフィルムを、液晶ディスプレイやタッチパネルディスプレイ等に用いられる偏光板用保護フィルムとして用いることが塗膜硬度に優れる点から好ましい。具体的には、液晶ディスプレイやタッチパネルディスプレイ等に用いられる偏光板の保護フィルム上に本発明の塗料を塗布、活性エネルギー線を照射・硬化させてなるフィルムにした場合、硬化塗膜が高硬度と高い透明性とを兼備した保護フィルムとなる。偏光板の保護フィルム用途においては、本発明の塗料を塗布したコーティング層の繁体側の面には粘着剤層が形成されていてもよい。 Among the various uses of the film, as described above, a film obtained by applying the paint of the present invention on a plastic film and irradiating an active energy ray is used as a protective film for a polarizing plate used for a liquid crystal display, a touch panel display or the like. It is preferable to use as the coating film hardness. Specifically, when the paint of the present invention is applied to a protective film of a polarizing plate used for a liquid crystal display, a touch panel display, etc., and the film is formed by irradiating and curing active energy rays, the cured coating film has a high hardness. It becomes a protective film that combines high transparency. In the use of a protective film for a polarizing plate, an adhesive layer may be formed on the traditional side of the coating layer to which the paint of the present invention is applied.
 以下に本発明を具体的な製造例、実施例を挙げてより具体的に説明するが、本発明はこれら実施例に限定されるものではない。例中の部及び%は、特に記載のない限り、すべて質量基準である。 Hereinafter, the present invention will be described more specifically with reference to specific production examples and examples, but the present invention is not limited to these examples. Unless otherwise indicated, all parts and percentages in the examples are based on mass.
 本発明の実施例では、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により測定した値である。 In the examples of the present invention, the weight average molecular weight (Mw) is a value measured under the following conditions using a gel permeation chromatograph (GPC).
 測定装置 ; 東ソー株式会社製 HLC-8220
 カラム  ; 東ソー株式会社製ガードカラムHXL-H
       +東ソー株式会社製 TSKgel G5000HXL
       +東ソー株式会社製 TSKgel G4000HXL
       +東ソー株式会社製 TSKgel G3000HXL
       +東ソー株式会社製 TSKgel G2000HXL
 検出器  ; RI(示差屈折計)
 データ処理:東ソー株式会社製 SC-8010
 測定条件: カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    1.0ml/分
 標準   ;ポリスチレン
 試料   ;樹脂固形分換算で0.4重量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Tosoh Corporation guard column H XL -H
+ Tosoh Corporation TSKgel G5000H XL
+ Tosoh Corporation TSKgel G4000H XL
+ Tosoh Corporation TSKgel G3000H XL
+ Tosoh Corporation TSKgel G2000H XL
Detector: RI (differential refractometer)
Data processing: Tosoh Corporation SC-8010
Measurement conditions: Column temperature 40 ° C
Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4% by weight tetrahydrofuran solution in terms of resin solids filtered through microfilter (100 μl)
本願実施例で用いた無機微粒子(a)
・無機微粒子(a1):日本アエロジル株式会社製「アエロジルR7200」一次平均粒子径12nmのシリカ微粒子
・無機微粒子(a2):日本アエロジル株式会社製「アエロジルR711」一次平均粒子径12nmのシリカ微粒子
・無機微粒子(a3):日本アエロジル社株式会社製「アエロジル50」一次平均粒子径30nmのシリカ微粒子
・無機微粒子(a4):日本アエロジル株式会社製「アエロジル200」一次平均粒子径12nmのシリカ微粒子
・無機微粒子(a’1):日揮触媒化成株式会社製「ELCOM V-8804」(γ-メタクリロキシプロピルトリメトキシシラン処理シリカの分散体)
Inorganic fine particles (a) used in Examples of the present application
Inorganic fine particles (a1): “Aerosil R7200” manufactured by Nippon Aerosil Co., Ltd. Silica fine particles with a primary average particle size of 12 nm Inorganic fine particles (a2): “Aerosil R711” manufactured by Nippon Aerosil Co., Ltd. Fine particles (a3): “Aerosil 50” manufactured by Nippon Aerosil Co., Ltd. Silica fine particles / inorganic fine particles with a primary average particle size of 30 nm (a4): “Aerosil 200” manufactured by Nippon Aerosil Co., Ltd. Silica fine particles / inorganic fine particles with a primary average particle size of 12 nm (A′1): “ELCOM V-8804” (dispersion of γ-methacryloxypropyltrimethoxysilane-treated silica) manufactured by JGC Catalysts & Chemicals Co., Ltd.
本願実施例で用いたイオン液体(B)
・イオン液体(B1):広栄化学株式会社製「IL-A2」
・イオン液体(B2):広栄化学株式会社製「IL-A5」
・イオン液体(B3):広栄化学株式会社製「IL-AP3」
Ionic liquid (B) used in Examples of the present application
・ Ionic liquid (B1): “IL-A2” manufactured by Guangei Chemical Co., Ltd.
・ Ionic liquid (B2): “IL-A5” manufactured by Guangei Chemical Co., Ltd.
・ Ionic liquid (B3): “IL-AP3” manufactured by Guangei Chemical Co., Ltd.
製造例1
アクリル重合体(X-1)の製造
 撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、メチルイソブチルケトン493質量部を仕込み、撹拌しながら系内温度が110℃になるまで昇温し、次いで、グリシジルメタアクリレート304質量部、メチルメタクリレート17質量部、エチルアクリレート17質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製「パーブチルO」)15質量部からなる混合液を3時間かけて滴下ロートより滴下した後、110℃で15時間保持した。次いで、90℃まで降温した後、メトキノン2質量部およびアクリル酸154質量部を仕込んだ後、トリフェニルホスフィン5質量部を添加後、さらに100℃まで昇温して8時間保持し、アクリル重合体(X-1)のメチルイソブチルケトン溶液1000質量部を得た。該アクリル重合体(X-1)の各性状値は以下のようであった。不揮発分:50.0質量%、ガードナー粘度(25℃):Z4-Z5、ガードナーカラー:1以下、酸価:1.5、重量平均分子量(Mw):24,000、固形分換算の理論アクリロイル基当量:230g/eq
Production Example 1
Production of acrylic polymer (X-1) A reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introduction tube was charged with 493 parts by weight of methyl isobutyl ketone until the system temperature reached 110 ° C. while stirring. The temperature was raised, and then 304 parts by mass of glycidyl methacrylate, 17 parts by mass of methyl methacrylate, 17 parts by mass of ethyl acrylate, and 15 parts by mass of t-butylperoxy-2-ethylhexanoate (“Perbutyl O” manufactured by Nippon Emulsifier Co., Ltd.) After the liquid mixture consisting of parts was dropped from the dropping funnel over 3 hours, it was kept at 110 ° C. for 15 hours. Next, after the temperature was lowered to 90 ° C., 2 parts by weight of methoquinone and 154 parts by weight of acrylic acid were added, 5 parts by weight of triphenylphosphine was added, and the temperature was further raised to 100 ° C. and held for 8 hours. 1000 parts by mass of a methyl isobutyl ketone solution of (X-1) was obtained. The property values of the acrylic polymer (X-1) were as follows. Nonvolatile content: 50.0 mass%, Gardner viscosity (25 ° C.): Z4-Z5, Gardner color: 1 or less, acid value: 1.5, weight average molecular weight (Mw): 24,000, theoretical acryloyl in terms of solid content Group equivalent: 230 g / eq
製造例2
アクリル重合体(X-2)の製造
 撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、メチルイソブチルケトン476質量部を仕込み、撹拌しながら系内温度が110℃になるまで昇温し、次いで、グリシジルメタアクリレート119質量部、メチルメタアクリレート267質量部、n-ブチルメタクリレート30質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製「パーブチルO」)48質量部からなる混合液を3時間かけて滴下ロートより滴下した後、110℃で15時間保持した。次いで、90℃まで降温した後、メトキノン5質量部およびアクリル酸60質量部を仕込んだ後、トリフェニルホスフィン5質量部を添加後、さらに100℃まで昇温して8時間保持し、アクリル重合体(X-2)のメチルイソブチルケトン溶液1000質量部を得た。該アクリル重合体(X-2)の各性状値は以下のようであった。不揮発分:50.0質量%、ガードナー粘度(25℃):U、ガードナーカラー:1以下、酸価:1.0、重量平均分子量(Mw):10,400、固形分換算の理論アクリロイル基当量:572g/eq
Production Example 2
Production of acrylic polymer (X-2) A reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introducing tube was charged with 476 parts by mass of methyl isobutyl ketone until the system temperature reached 110 ° C. while stirring. Then, 119 parts by weight of glycidyl methacrylate, 267 parts by weight of methyl methacrylate, 30 parts by weight of n-butyl methacrylate and t-butylperoxy-2-ethylhexanoate (“Perbutyl O” manufactured by Nippon Emulsifier Co., Ltd.) ) A liquid mixture consisting of 48 parts by mass was dropped from the dropping funnel over 3 hours and then held at 110 ° C. for 15 hours. Next, after the temperature was lowered to 90 ° C., 5 parts by weight of methoquinone and 60 parts by weight of acrylic acid were added, 5 parts by weight of triphenylphosphine was added, and the temperature was further raised to 100 ° C. and held for 8 hours. 1000 parts by mass of a methyl isobutyl ketone solution of (X-2) was obtained. The property values of the acrylic polymer (X-2) were as follows. Nonvolatile content: 50.0 mass%, Gardner viscosity (25 ° C.): U, Gardner color: 1 or less, acid value: 1.0, weight average molecular weight (Mw): 10,400, theoretical acryloyl group equivalent in terms of solid content : 572 g / eq
本願実施例で用いた分子構造中に(メタ)アクリロイル基を有する化合物(c)
・ジペンタエリスリトールヘキサアクリレート(c1)
・ペンタエリスリトールテトラアクリレート(c2)
Compound (c) having a (meth) acryloyl group in the molecular structure used in Examples of the present application
Dipentaerythritol hexaacrylate (c1)
・ Pentaerythritol tetraacrylate (c2)
実施例1
 前記製造例1で得たアクリル重合体(X-1)のメチルイソブチルケトン溶液60質量部(60質量部中アクリル重合体(X-1)は30.0質量部)、ジペンタエリスリトールヘキサアクリレート(c1)20質量部、無機微粒子(a1)50質量部、イオン液体(B1)0.5質量部、MIBK60質量部及びプロピレングリコールモノメチルエーテル10質量部を配合したものを、湿式ボールミル(アシザワ株式会社製「スターミルLMZ015」)を用いて混合分散し、分散体を得た。
Example 1
60 parts by mass of a methyl isobutyl ketone solution of the acrylic polymer (X-1) obtained in Production Example 1 (30.0 parts by mass of acrylic polymer (X-1) in 60 parts by mass), dipentaerythritol hexaacrylate ( c1) 20 parts by mass, inorganic fine particles (a1) 50 parts by mass, ionic liquid (B1) 0.5 parts by mass, MIBK 60 parts by mass and propylene glycol monomethyl ether 10 parts by mass were mixed with a wet ball mill (manufactured by Ashizawa Corporation). “Star mill LMZ015”) was mixed and dispersed to obtain a dispersion.
 前記湿式ボールミルによる分散の各条件は以下の通りである。
メディア:メジアン径100μmのジルコニアビーズ
ミルの内容積に対する樹脂組成物の充填率:70堆積%
攪拌翼の先端部の周速:11m/sec
樹脂組成物の流速:200ml/min
分散時間:60分
Each condition of dispersion by the wet ball mill is as follows.
Media: Filling ratio of resin composition with respect to inner volume of zirconia bead mill with median diameter of 100 μm: 70% by deposition
Peripheral speed at the tip of the stirring blade: 11 m / sec
Flow rate of resin composition: 200 ml / min
Dispersion time: 60 minutes
 得られた分散体100gと、光開始剤(チバスペシャルティケミカルズ社製「イルガキュア#184」)2gとを混合し、活性エネルギー線硬化型樹脂組成物を得た。該活性エネルギー線硬化型樹脂組成物について、下記各種試験によりその性能を評価し、結果を表1に示した。 100 g of the obtained dispersion and 2 g of a photoinitiator (“Irgacure # 184” manufactured by Ciba Specialty Chemicals) were mixed to obtain an active energy ray-curable resin composition. The performance of the active energy ray-curable resin composition was evaluated by the following various tests, and the results are shown in Table 1.
無機微粒子(A)の平均粒子径の測定
 活性エネルギー線硬化型樹脂組成物中の無機微粒子(A)の平均粒子径は、粒子径測定装置(大塚電子株式会社製「ELSZ-2」)を用いて測定した。
Measurement of average particle size of inorganic fine particles (A) The average particle size of the inorganic fine particles (A) in the active energy ray-curable resin composition was measured using a particle size measuring device ("ELSZ-2" manufactured by Otsuka Electronics Co., Ltd.). Measured.
塗膜の鉛筆硬度試験
1.硬化塗膜の作成方法
 前記活性エネルギー線硬化型樹脂組成物を、トリアセチルセルロース(TAC)フィルム(膜厚80um)上に、硬化後の膜厚が10μmとなるようにバーコーターで塗布し、70℃で1分乾燥させ、窒素下で高圧水銀灯を用いて250mJ/cmの照射量で通過させて硬化させることにより、硬化塗膜を有する試験片を得た。
2.鉛筆硬度試験方法
 上記試験片の硬化被膜をJIS K 5400に従い荷重500gの鉛筆引っかき試験によって評価した。5回試験を行い、2回以上傷がついた硬度の一つ下の硬度を、その塗膜の鉛筆硬度とした。
Pencil hardness test of coating film Preparation method of cured coating film The active energy ray-curable resin composition was applied onto a triacetyl cellulose (TAC) film (film thickness of 80 μm) with a bar coater so that the film thickness after curing was 10 μm. A test piece having a cured coating film was obtained by drying at a temperature of 1 ° C. for 1 minute and passing it through a high-pressure mercury lamp under nitrogen at a dose of 250 mJ / cm 2 for curing.
2. Pencil Hardness Test Method The cured film of the above test piece was evaluated by a pencil scratch test with a load of 500 g according to JIS K 5400. The test was conducted five times, and the hardness one degree lower than the hardness at which scratches were made twice or more was defined as the pencil hardness of the coating film.
塗膜の透明性試験
1.硬化塗膜の作成方法
 上記鉛筆硬度試験の場合と同様の方法で塗膜を作成した。
2.透明性試験方法
 スガ試験機株式会社製「ヘーズコンピュータHZ-2」を用いて塗膜のヘーズ値を測定した。ヘーズ値が低いほど塗膜の透明性は高い。
Coating transparency test 1. Preparation method of cured coating film A coating film was prepared in the same manner as in the pencil hardness test.
2. Transparency Test Method The haze value of the coating film was measured using “Haze Computer HZ-2” manufactured by Suga Test Instruments Co., Ltd. The lower the haze value, the higher the transparency of the coating film.
塗料の貯蔵安定性試験
 前記活性エネルギー線硬化型樹脂組成物を、40℃の温度条件下で2週間~3ヶ月間静置し、各経過時における沈降物の有無を評価した。
○:沈降物が見られない
×:沈降物が見られる
Storage Stability Test of Paint The active energy ray-curable resin composition was allowed to stand for 2 weeks to 3 months at a temperature of 40 ° C., and the presence or absence of precipitates at each time was evaluated.
○: No sediment is seen ×: A sediment is seen
実施例2~12
 組成を表1及び2に示す配合とした以外は実施例1と同様にして活性エネルギー線硬化型樹脂組成物を得た。これらについて実施例1と同様の試験を行った。結果を表1及び2に示す。
Examples 2-12
An active energy ray-curable resin composition was obtained in the same manner as in Example 1 except that the composition was as shown in Tables 1 and 2. About these, the test similar to Example 1 was done. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
比較例1
 ヘキサンジオールジアクリレート20質量部、エトキシレートペンタエリスリトールテトラアクリレート40質量部、無機微粒子(A1’)100質量部、イオン液体(B1)0.2質量部及びMIBK40質量部を配合したものを、ホモディスパーを用いて混合分散し、分散体を得た。該分散体ついて実施例1と同様の試験を行った。結果を表2に示す
Comparative Example 1
A mixture of 20 parts by mass of hexanediol diacrylate, 40 parts by mass of ethoxylate pentaerythritol tetraacrylate, 100 parts by mass of inorganic fine particles (A1 ′), 0.2 parts by mass of ionic liquid (B1) and 40 parts by mass of MIBK Was mixed and dispersed to obtain a dispersion. The same test as in Example 1 was performed on the dispersion. The results are shown in Table 2.
 前記ホモディスパーによる分散の各条件は以下の通りである。
回転速度:2400r/min
分散時間:15分
Each condition of the dispersion by the homodisper is as follows.
Rotational speed: 2400r / min
Dispersion time: 15 minutes
比較例2
 組成を表3に示す配合とした以外は比較例1と同様にして活性エネルギー線硬化型樹脂組成物を得た。これらについて実施例1と同様の試験を行った。結果を表3に示す。
Comparative Example 2
An active energy ray-curable resin composition was obtained in the same manner as in Comparative Example 1 except that the composition was as shown in Table 3. About these, the test similar to Example 1 was done. The results are shown in Table 3.
 比較例3及び4
 組成を表3に示す配合とした以外は実施例1と同様にして活性エネルギー線硬化型樹脂組成物を得た。これらについて実施例1と同様の試験を行った。結果を表3に示す。
Comparative Examples 3 and 4
An active energy ray-curable resin composition was obtained in the same manner as in Example 1 except that the composition was as shown in Table 3. About these, the test similar to Example 1 was done. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (18)

  1. 平均粒子径が90~300nmの範囲である無機微粒子(A)と、イオン液体(B)と、重量平均分子量(Mw)が5,000~80,000の範囲であり、分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)とを必須の成分として含有することを特徴とする活性エネルギー線硬化型樹脂組成物。 The inorganic fine particles (A) having an average particle diameter in the range of 90 to 300 nm, the ionic liquid (B), and the weight average molecular weight (Mw) in the range of 5,000 to 80,000, And) an acrylic polymer (X) having an acryloyl group as an essential component.
  2. 前記無機微粒子(A)がシリカ、アルミナ、ジルコニア、チタニア、チタン酸バリウム、三酸化アンチモンからなる群から選ばれる1種類以上の無機微粒子である請求項1記載の活性エネルギー線硬化型樹脂組成物。 The active energy ray-curable resin composition according to claim 1, wherein the inorganic fine particles (A) are one or more inorganic fine particles selected from the group consisting of silica, alumina, zirconia, titania, barium titanate, and antimony trioxide.
  3. 前記無機微粒子(A)が乾式シリカである請求項2記載の活性エネルギー線硬化型樹脂組成物。 The active energy ray-curable resin composition according to claim 2, wherein the inorganic fine particles (A) are dry silica.
  4. 前記イオン液体(B)が、脂肪族アミン系イオン性化合物又は脂肪族リン系イオン性化合物である請求項1記載の活性エネルギー線硬化型樹脂組成物。 The active energy ray-curable resin composition according to claim 1, wherein the ionic liquid (B) is an aliphatic amine-based ionic compound or an aliphatic phosphorus-based ionic compound.
  5. 前記イオン液体(B)が、脂肪族アミン系イオン性化合物である請求項4記載の活性エネルギー線硬化型樹脂組成物。 The active energy ray-curable resin composition according to claim 4, wherein the ionic liquid (B) is an aliphatic amine-based ionic compound.
  6. 前記アクリル重合体(X)が、反応性官能基と(メタ)アクリロイル基とを有する化合物(y)を必須の成分として重合させて得られるアクリル重合体(Y)と、前記化合物(y)が有する反応性官能基と反応し得る官能基と(メタ)アクリロイル基とを有する化合物(z)とを反応させて得られる重合体である請求項1記載の活性エネルギー線硬化型樹脂組成物。 The acrylic polymer (X) obtained by polymerizing the compound (y) having a reactive functional group and a (meth) acryloyl group as essential components, and the compound (y) 2. The active energy ray-curable resin composition according to claim 1, which is a polymer obtained by reacting a compound (z) having a (meth) acryloyl group with a functional group capable of reacting with the reactive functional group.
  7. 前記化合物(y)が、エポキシ基と(メタ)アクリロイル基とを有する化合物(y1)であり、かつ、前記化合物(z)が、カルボキシル基と(メタ)アクリロイル基とを有する化合物(z1)である請求項6記載の活性エネルギー線硬化型樹脂組成物。 The compound (y) is a compound (y1) having an epoxy group and a (meth) acryloyl group, and the compound (z) is a compound (z1) having a carboxyl group and a (meth) acryloyl group. The active energy ray-curable resin composition according to claim 6.
  8. 前記無機微粒子(A)、前記アクリル重合体(X)及びイオン液体(B)に加え、前記アクリル重合体(X)以外の、分子構造中に(メタ)アクリロイル基を有する化合物(c)を含有する請求項1記載の活性エネルギー線硬化型樹脂組成物。 In addition to the inorganic fine particles (A), the acrylic polymer (X) and the ionic liquid (B), a compound (c) having a (meth) acryloyl group in the molecular structure other than the acrylic polymer (X) is contained. The active energy ray-curable resin composition according to claim 1.
  9. 前記アクリル重合体(X)と前記(メタ)アクリロイル基を有する化合物(c)との質量比[(X)/(c)]が5/95~90/10の範囲である請求項8記載の活性エネルギー線硬化型樹脂組成物。 The mass ratio [(X) / (c)] of the acrylic polymer (X) and the compound (c) having the (meth) acryloyl group is in the range of 5/95 to 90/10. An active energy ray-curable resin composition.
  10. 前記無機微粒子(A)、前記イオン液体(B)、前記アクリル重合体(X)及び前記分子構造中に(メタ)アクリロイル基を有する化合物(c)の合計100質量部中に、前記無機微粒子(A)を20~60質量部の範囲で含有する請求項8記載の活性エネルギー線硬化型樹脂組成物。 In a total of 100 parts by mass of the inorganic fine particles (A), the ionic liquid (B), the acrylic polymer (X), and the compound (c) having a (meth) acryloyl group in the molecular structure, the inorganic fine particles ( The active energy ray-curable resin composition according to claim 8, which contains A) in a range of 20 to 60 parts by mass.
  11. 前記無機微粒子(A)、前記イオン液体(B)、前記アクリル重合体(X)及び前記分子構造中に(メタ)アクリロイル基を有する化合物(c)の合計100質量部中に、前記イオン液体(B)を0.01~5質量部の範囲で含有する請求項8記載の活性エネルギー線硬化型樹脂組成物。 In a total of 100 parts by mass of the inorganic fine particles (A), the ionic liquid (B), the acrylic polymer (X), and the compound (c) having a (meth) acryloyl group in the molecular structure, the ionic liquid ( The active energy ray-curable resin composition according to claim 8, which contains B) in an amount of 0.01 to 5 parts by mass.
  12. 内部にメディアが充填されたベッセル、回転シャフト、前記回転シャフトと同軸状に回転軸を有し、前記回転シャフトの回転駆動により回転する攪拌翼、前記ベッセルに設置された供給口、前記ベッセルに設置された排出口、及び前記回転シャフトがベッセルを貫通する部分に配設された軸封装置を有する湿式ボールミルであって、前記軸封装置が、2つのメカニカルシールユニットを有し、かつ、該2つのメカニカルシールユニットのシール部が外部シール液によりシールされた構造を有する軸封装置である湿式ボールミルの前記供給口から、無機微粒子と(a)と、前記イオン液体(B)と、前記アクリル重合体(X)を必須の成分とする樹脂成分とを前記ベッセルに供給し、前記ベッセル内で前記回転シャフト及び前記攪拌翼を回転させて、メディアと原料とを攪拌混合することにより、前記無機微粒子(a)の粉砕と、該無機微粒子(a)の前記樹脂成分への分散とを行い、次いで前記排出口から排出する方法により製造されたものである請求項1記載の活性エネルギー線硬化型樹脂組成物。 A vessel filled with media inside, a rotating shaft, a rotating shaft coaxially with the rotating shaft, and a stirring blade that rotates by the rotational drive of the rotating shaft, a supply port installed in the vessel, and installed in the vessel A wet ball mill having a shaft seal device disposed at a portion where the rotary shaft passes through the vessel, the shaft seal device having two mechanical seal units, and the 2 From the supply port of the wet ball mill which is a shaft seal device having a structure in which the seal portions of two mechanical seal units are sealed with an external seal liquid, inorganic fine particles (a), the ionic liquid (B), and the acrylic heavy A resin component containing coalescence (X) as an essential component is supplied to the vessel, and the rotating shaft and the stirring blade are rotated in the vessel. Then, by stirring and mixing the media and the raw material, the inorganic fine particles (a) are pulverized and the inorganic fine particles (a) are dispersed in the resin component, and then discharged from the discharge port. The active energy ray-curable resin composition according to claim 1, wherein
  13. 内部にメディアが充填されたベッセル、回転シャフト、前記回転シャフトと同軸状に回転軸を有し、前記回転シャフトの回転駆動により回転する攪拌翼、前記ベッセルに設置された原料の供給口、前記ベッセルに設置された分散体の排出口、及び前記回転シャフトがベッセルを貫通する部分に配設された軸封装置を有する湿式ボールミルであって、前記軸封装置が2つのメカニカルシールユニットを有し、かつ、該2つのメカニカルシールユニットのシール部が外部シール液によりシールされた構造を有する軸封装置である湿式ボールミルの前記供給口から、無機微粒子(a)と、イオン液体(B)と、重量平均分子量(Mw)が5,000~80,000の範囲であり、分子構造中に(メタ)アクリロイル基を有するアクリル重合体(X)を必須の成分とする樹脂成分とを前記ベッセルに供給し、前記ベッセル内で回転シャフト及び攪拌翼を回転させて、メディアと原料とを攪拌混合することにより、前記無機微粒子(a)の粉砕と、該無機微粒子(a)の前記樹脂成分への分散とを行い、次いで前記排出口から排出することを特徴とする活性エネルギー線硬化型樹脂組成物の製造方法。 A vessel filled with media inside, a rotating shaft, an agitating blade having a rotating shaft coaxially with the rotating shaft, and rotating by rotational driving of the rotating shaft, a raw material supply port installed in the vessel, and the vessel A wet ball mill having a discharge port of the dispersion body installed in the shaft and a shaft sealing device disposed in a portion where the rotary shaft passes through the vessel, the shaft sealing device having two mechanical seal units, In addition, inorganic fine particles (a), ionic liquid (B), and weight from the supply port of the wet ball mill which is a shaft seal device having a structure in which the seal portions of the two mechanical seal units are sealed with an external seal liquid Acrylic polymer (X) having an average molecular weight (Mw) in the range of 5,000 to 80,000 and having a (meth) acryloyl group in the molecular structure Supplying the resin component as an essential component to the vessel, rotating the rotating shaft and the stirring blade in the vessel, and stirring and mixing the media and the raw material, the pulverization of the inorganic fine particles (a), A method for producing an active energy ray-curable resin composition, wherein the inorganic fine particles (a) are dispersed in the resin component and then discharged from the discharge port.
  14. 請求項1~12の何れか一つ記載の活性エネルギー線硬化型樹脂組成物を含有する塗料。 A paint containing the active energy ray-curable resin composition according to any one of claims 1 to 12.
  15. 請求項13記載の製造方法により製造される活性エネルギー線硬化型樹脂組成物を含有する塗料。 The coating material containing the active energy ray hardening-type resin composition manufactured by the manufacturing method of Claim 13.
  16. 請求項14又は15記載の塗料を硬化させてなる塗膜。 A coating film obtained by curing the paint according to claim 14 or 15.
  17. 請求項16記載の塗膜を、プラスチックフィルムの片面又は両面に有する積層フィルム。 A laminated film having the coating film according to claim 16 on one side or both sides of a plastic film.
  18. 前記プラスチックフィルムがトリアセチルセルロースフィルムである請求項17記載の積層フィルム。 The laminated film according to claim 17, wherein the plastic film is a triacetyl cellulose film.
PCT/JP2012/063018 2011-06-24 2012-05-22 Active-energy-ray-curable resin composition, method for producing active-energy-ray-curable resin composition, coating agent, coating film, and film WO2012176570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011140476 2011-06-24
JP2011-140476 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176570A1 true WO2012176570A1 (en) 2012-12-27

Family

ID=47422414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063018 WO2012176570A1 (en) 2011-06-24 2012-05-22 Active-energy-ray-curable resin composition, method for producing active-energy-ray-curable resin composition, coating agent, coating film, and film

Country Status (3)

Country Link
JP (1) JPWO2012176570A1 (en)
TW (1) TW201307398A (en)
WO (1) WO2012176570A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103127A1 (en) * 2012-12-28 2014-07-03 第一工業製薬株式会社 Film-forming coating agent and cured product thereof
JP2014133802A (en) * 2013-01-09 2014-07-24 Dic Corp Protective and tacky-adhesive film, screen panel, and touch panel
JP5605525B2 (en) * 2012-06-21 2014-10-15 Dic株式会社 Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
JP2014211600A (en) * 2013-04-22 2014-11-13 日立化成株式会社 Photocurable resin composition for forming fine structure, and cured product
JP6032383B1 (en) * 2014-12-24 2016-11-30 Dic株式会社 Active energy ray-curable resin composition, paint, coating film, and film
JP2016216635A (en) * 2015-05-22 2016-12-22 大日精化工業株式会社 Composition for forming hard coat film, cured film and antistatic article
JP7364098B2 (en) 2021-06-29 2023-10-18 Dic株式会社 Acrylic (meth)acrylate resin, active energy ray-curable resin composition, cured product and article

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289943A (en) * 2006-03-30 2007-11-08 Arakawa Chem Ind Co Ltd Reactive dispersing agent for metal oxide fine particle, reactive dispersion, method for preparing the dispersion, active energy ray-curable coating agent composition and cured coating film
JP2009084328A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Curable resin composition and hard coat film
JP2009242647A (en) * 2008-03-31 2009-10-22 Arakawa Chem Ind Co Ltd Active energy ray-curable resin composition, coating agent composition, coating agent for deposition anchor layer and cured coating
JP2010189620A (en) * 2009-01-20 2010-09-02 Shin-Etsu Chemical Co Ltd Photocurable resin composition and article having cured coating
JP2011026561A (en) * 2009-06-23 2011-02-10 Dic Corp Method for producing silica dispersing element, energy-ray curable resin composition, and film
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion
JP2011201938A (en) * 2010-03-24 2011-10-13 Dic Corp Inorganic particle dispersion, energy ray-curable resin composition, and film
JP2011207947A (en) * 2010-03-29 2011-10-20 Dic Corp Active energy ray curable resin composition and film substrate
JP2012062385A (en) * 2010-09-15 2012-03-29 Dic Corp Active energy ray-curable resin composition for film protective layer, and film using the same
WO2012086373A1 (en) * 2010-12-22 2012-06-28 Dic株式会社 Process for production of dispersion, dispersion, coating material, coating film, and film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289943A (en) * 2006-03-30 2007-11-08 Arakawa Chem Ind Co Ltd Reactive dispersing agent for metal oxide fine particle, reactive dispersion, method for preparing the dispersion, active energy ray-curable coating agent composition and cured coating film
JP2009084328A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Curable resin composition and hard coat film
JP2009242647A (en) * 2008-03-31 2009-10-22 Arakawa Chem Ind Co Ltd Active energy ray-curable resin composition, coating agent composition, coating agent for deposition anchor layer and cured coating
JP2010189620A (en) * 2009-01-20 2010-09-02 Shin-Etsu Chemical Co Ltd Photocurable resin composition and article having cured coating
JP2011026561A (en) * 2009-06-23 2011-02-10 Dic Corp Method for producing silica dispersing element, energy-ray curable resin composition, and film
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion
JP2011201938A (en) * 2010-03-24 2011-10-13 Dic Corp Inorganic particle dispersion, energy ray-curable resin composition, and film
JP2011207947A (en) * 2010-03-29 2011-10-20 Dic Corp Active energy ray curable resin composition and film substrate
JP2012062385A (en) * 2010-09-15 2012-03-29 Dic Corp Active energy ray-curable resin composition for film protective layer, and film using the same
WO2012086373A1 (en) * 2010-12-22 2012-06-28 Dic株式会社 Process for production of dispersion, dispersion, coating material, coating film, and film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013191243A1 (en) * 2012-06-21 2016-05-26 Dic株式会社 Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
JP5605525B2 (en) * 2012-06-21 2014-10-15 Dic株式会社 Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
WO2014103127A1 (en) * 2012-12-28 2014-07-03 第一工業製薬株式会社 Film-forming coating agent and cured product thereof
JP2014142575A (en) * 2012-12-28 2014-08-07 Dai Ichi Kogyo Seiyaku Co Ltd Coating agent for film formation and cured object thereof
TWI572705B (en) * 2012-12-28 2017-03-01 Dai-Ichi Kogyo Seiyaku Co Ltd A coating agent for film formation and a hardened product thereof
CN104884555A (en) * 2012-12-28 2015-09-02 第一工业制药株式会社 Film-forming coating agent and cured product thereof
JP2014133802A (en) * 2013-01-09 2014-07-24 Dic Corp Protective and tacky-adhesive film, screen panel, and touch panel
JP2014211600A (en) * 2013-04-22 2014-11-13 日立化成株式会社 Photocurable resin composition for forming fine structure, and cured product
KR20170101189A (en) * 2014-12-24 2017-09-05 디아이씨 가부시끼가이샤 Active energy ray-curable resin composition, coating material, coating film, and film
JP6032383B1 (en) * 2014-12-24 2016-11-30 Dic株式会社 Active energy ray-curable resin composition, paint, coating film, and film
US20170368806A1 (en) * 2014-12-24 2017-12-28 Dic Corporation Active energy ray-curable resin composition, coating material, coating film, and film
KR102406434B1 (en) 2014-12-24 2022-06-08 디아이씨 가부시끼가이샤 Active energy ray-curable resin composition, coating material, coating film, and film
JP2016216635A (en) * 2015-05-22 2016-12-22 大日精化工業株式会社 Composition for forming hard coat film, cured film and antistatic article
JP7364098B2 (en) 2021-06-29 2023-10-18 Dic株式会社 Acrylic (meth)acrylate resin, active energy ray-curable resin composition, cured product and article

Also Published As

Publication number Publication date
JPWO2012176570A1 (en) 2015-02-23
TW201307398A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
JP5858278B2 (en) Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
JP5035652B2 (en) Method for producing dispersion, dispersion, paint, coating film, and film
JP5472544B2 (en) Active energy ray-curable resin composition, method for producing the same, paint, coating film, and film
WO2012176570A1 (en) Active-energy-ray-curable resin composition, method for producing active-energy-ray-curable resin composition, coating agent, coating film, and film
JP5605525B2 (en) Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, paint, coating film, and film
KR102406434B1 (en) Active energy ray-curable resin composition, coating material, coating film, and film
JP6032382B2 (en) Active energy ray-curable resin composition, method for producing the same, paint, coating film, and laminated film
JP6958553B2 (en) Active energy ray-curable resin composition and laminated film
JP6187845B1 (en) Active energy ray-curable resin composition, paint, coating film, and film
JP6168341B2 (en) Active energy ray-curable resin composition, method for producing the same, paint, coating film, and film
JP6187726B1 (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801928

Country of ref document: EP

Kind code of ref document: A1