WO2012172778A1 - 空気入りラジアルタイヤ - Google Patents

空気入りラジアルタイヤ Download PDF

Info

Publication number
WO2012172778A1
WO2012172778A1 PCT/JP2012/003813 JP2012003813W WO2012172778A1 WO 2012172778 A1 WO2012172778 A1 WO 2012172778A1 JP 2012003813 W JP2012003813 W JP 2012003813W WO 2012172778 A1 WO2012172778 A1 WO 2012172778A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
wire
pneumatic radial
single wire
wire steel
Prior art date
Application number
PCT/JP2012/003813
Other languages
English (en)
French (fr)
Inventor
上田 佳生
兼平 尚樹
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011135381A external-priority patent/JP5099248B1/ja
Priority claimed from JP2011135383A external-priority patent/JP5099249B1/ja
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to US14/126,795 priority Critical patent/US8820377B2/en
Priority to DE112012000556.2T priority patent/DE112012000556B4/de
Priority to CN201280004984.XA priority patent/CN103338944B/zh
Publication of WO2012172778A1 publication Critical patent/WO2012172778A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0064Reinforcements comprising monofilaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2048Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by special physical properties of the belt plies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2077Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2083Density in width direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/10801Structure made up of two or more sets of plies wherein the reinforcing cords in one set lie in a different angular position relative to those in other sets

Definitions

  • the present invention relates to a pneumatic radial tire.
  • a steel cord formed by twisting a plurality of filaments is used as a reinforcing cord used for a belt layer of a pneumatic radial tire (hereinafter also referred to as a tire).
  • steel cords made by twisting a plurality of filaments have a large cord diameter due to the internal gaps formed between the filaments, which requires a large amount of coat rubber. As a result, the rolling resistance of the pneumatic radial tire tends to increase.
  • An object of the present invention is a pneumatic radial tire using a belt layer in which a plurality of single-wire steel wires are aligned and embedded in rubber, and the pneumatic radial tire capable of improving tire durability performance To provide tires.
  • the pneumatic radial tire is A pair of bead cores; A carcass layer folded around each of the pair of bead cores; A plurality of belt layers provided on the outer side in the tire radial direction of the carcass layer, and each belt layer is formed by aligning a plurality of single wire steel wires having the same strand diameter so as to extend linearly in the same direction.
  • each of the plurality of single-wire steel wires is twisted around the axis, a plurality of belt layers, A tread portion that is provided on the outer side in the tire radial direction of the plurality of belt layers and includes a circumferential groove extending in the tire circumferential direction on the tire surface.
  • the strand diameter of the single wire steel wire is 0.28 mm to 0.38 mm.
  • the average distance between the single wire steel wires is 0.10 mm or more.
  • the out-of-plane bending rigidity per inch in the circumferential length of the tread portion when the position of the circumferential groove is a force point is 6000 N ⁇ mm 2 or more.
  • each of the plurality of single wire steel wires is given a twist in a straight shape after the wire drawing step.
  • the single wire steel wire driving density E (lines / 50 mm) preferably satisfies E ⁇ 1869 ⁇ d 2 -1838 ⁇ d + 493 with respect to the wire diameter d.
  • the wire surface twist angle with respect to the axial direction of the single wire steel wire is, for example, 1 to 15 degrees.
  • a belt cover layer is wound around the outer side in the tire radial direction of the belt layer at least in a region corresponding to a circumferential groove located on the outer side in the tire width direction.
  • the ratio of the minimum value to the maximum value of the thickness of the tread portion is preferably 38% or more.
  • one embodiment of the present invention is a pneumatic radial tire.
  • the pneumatic radial tire is A pair of bead cores; A carcass layer folded around each of the pair of bead cores; A plurality of belt layers provided on the outer side in the tire radial direction of the carcass layer, wherein each belt layer is formed by aligning a plurality of single wire steel wires having the same diameter so as to extend linearly in the same direction.
  • a plurality of belt layers, each of the plurality of single wire steel wires is twisted around an axis, and A tread portion that is provided on the outer side in the tire radial direction of the plurality of belt layers and includes a circumferential groove extending in the tire circumferential direction on the tire surface.
  • the strand diameter of the single wire steel wire is 0.28 mm to 0.38 mm.
  • the average distance between the single wire steel wires is 0.10 mm or more.
  • the single wire steel wire driving density E (lines / 50 mm) satisfies E ⁇ 1869 ⁇ d 2 ⁇ 1838 ⁇ d + 493 with respect to the wire diameter d.
  • the single wire steel wire is twisted in a straight shape after the wire drawing step.
  • the wire surface twist angle with respect to the axial direction of the single wire steel wire is, for example, 1 to 15 degrees.
  • a belt cover layer is wound around the outer side in the tire radial direction of the belt layer at least in a region corresponding to a circumferential groove located on the outer side in the tire width direction.
  • the tire durability performance can be improved.
  • FIG. 2 is an enlarged sectional view showing a part of a belt layer in the pneumatic radial tire shown in FIG. 1. It is a side view which shows the single wire steel wire which this embodiment uses for a belt layer. It is a side view which expands and shows a part of single wire steel wire shown in FIG. It is explanatory drawing which shows the measuring method of the out-of-plane bending rigidity of a tread part. It is a graph which shows the relationship between the strand diameter d and the driving density E of a single wire steel wire.
  • the pneumatic radial tire of the present invention will be described in detail.
  • the pneumatic radial tire of the embodiment described below is applied to, for example, a passenger car tire defined in Chapter A of JATMA YEAR BOOK 2011 (Japan Automobile Tire Association Standard). It can also be applied to tires for buses and trucks specified in the chapter.
  • the pneumatic radial tire of this embodiment described below is a tire for passenger cars.
  • the tire width direction is a direction parallel to the rotation axis of the pneumatic tire.
  • the outer side in the tire width direction is the side away from the tire center line CL (see FIG. 1) of the two directions in the tire width direction.
  • the tire circumferential direction is a direction in which the tire tread portion rotates with the rotation axis of the pneumatic tire as the center of rotation.
  • the tire radial direction is a direction orthogonal to the rotation axis of the pneumatic tire.
  • the outer side in the tire radial direction refers to the side away from the rotation axis.
  • the inner side in the tire radial direction refers to the side approaching the rotation axis.
  • the out-of-plane bending rigidity of a tread portion provided with a circumferential groove extending in the tire circumferential direction on the tire surface is measured as follows in accordance with JIS Z2248.
  • a cut sample having a circumferential length of 1 inch (25.4 mm) is cut out from the pneumatic radial tire.
  • the tire outer surface of the tread part of a cut sample is supported so that the distance between fulcrums may be 20 mm centering on the center position of the circumferential direction of the circumferential groove.
  • a load is applied (extruded) from the tire inner surface side to the tread portion with the position corresponding to the position of the circumferential groove on the inner surface side (side facing the tire cavity region) as a power point.
  • the load load speed is 10 mm / min
  • the strain amount Y (mm) in the load load direction (extrusion direction) of the tread portion when the load W (N) reaches 100 N is measured.
  • Such distortion amount Y is measured at three locations on the tire circumference, and an average value thereof is obtained.
  • the out-of-plane bending rigidity R (N ⁇ mm 2 ) of the tread portion is calculated from the following equation (1).
  • R (L 3 ⁇ W) / (48 ⁇ Y) (1)
  • the wire surface twist angle ⁇ is measured as follows. First, the single wire steel wire is taken out from the pneumatic radial tire, and the single wire steel wire is immersed in an organic solvent to swell the rubber adhering to the surface, and then the rubber is removed. Then, the single wire steel wire is observed with an optical microscope, the strand diameter d (mm) of the single wire steel wire is measured, and the twist pitch P (mm) is determined from the drawn trace formed on the surface of the single wire steel wire. A value of 1 ⁇ 2 is measured and doubled to determine the twist pitch P. The twist pitch P is an average value of the measured values at at least 10 locations.
  • the present inventor made the present invention based on these findings.
  • FIG. 1 shows a pneumatic radial tire for a passenger car according to a first embodiment of the present invention.
  • FIG. 2 shows a belt layer of the pneumatic radial tire shown in FIG. 3 and 4 show a single wire steel wire used for the belt layer of the pneumatic radial tire of this embodiment.
  • the pneumatic radial tire of the present embodiment can improve tire durability performance by using a belt layer in which a plurality of single wire steel wires are aligned and embedded in rubber.
  • reference numeral 1 denotes a tread portion
  • reference numeral 2 denotes a sidewall portion
  • reference numeral 3 denotes a bead portion.
  • a carcass layer 4 is mounted between the pair of left and right annular bead portions 3 and 3.
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction.
  • the carcass layer 4 is folded from the inner side in the tire width direction toward the outer side in the tire width direction around the bead core 5 disposed in each bead portion 3.
  • As the reinforcing cord of the carcass layer 4 an organic fiber cord is generally used, but a steel cord may be used.
  • a bead filler 6 is disposed on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by a main body portion (a portion before the carcass layer 4 is folded) and a folded portion of the carcass layer 4.
  • a plurality of (two or more) belt layers 8 are provided on the outer side in the tire radial direction of the carcass layer 4 in the tread portion 1.
  • the belt layer 8 includes a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and is disposed so that the reinforcing cords cross each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of, for example, 10 degrees to 40 degrees.
  • the belt cover layer 9 On the outer side of the belt layer 8 in the tire radial direction, at least one belt cover layer 9 in which reinforcing cords are arranged at an angle of 5 degrees or less with respect to the tire circumferential direction is disposed for the purpose of improving high-speed durability.
  • the belt cover layer 9 preferably has a jointless structure in which a strip material in which at least one reinforcing cord is aligned and covered with rubber is continuously spirally wound in the tire circumferential direction. Further, the belt cover layer 9 may be arranged so as to cover the entire region in the tire width direction of the belt layer 8 as shown in the figure, or so as to cover a region including the edge portion of the belt layer 8 on the outer side in the tire width direction. You may arrange.
  • a reinforcing cord for the belt cover layer 9 a cord using organic fibers such as nylon, PET, and aramid alone or in combination may be used.
  • the tread portion 1 is formed with a plurality of circumferential grooves 1A (four in total in the tread portion in FIG. 1) extending in a straight shape along the tire circumferential direction.
  • a plurality of rows of land portions 1B are partitioned by a plurality of circumferential grooves 1A. Therefore, the thickness of the tread portion 1 has a minimum value at the groove bottom portion of the circumferential groove 1A, and has a maximum value at a portion where the land portion 1B exists.
  • the tread portion 1 can be provided with various grooves and sipes including lateral grooves extending in the tire width direction as necessary.
  • a single wire steel wire 10 (see FIGS. 3 and 4) in which a twist is applied around the shaft is used as a reinforcing cord constituting the belt layer 8.
  • Each of the plurality of single wire steel wires 10 used for the belt layer 8 has a circular cross section, has the same strand diameter d, and extends linearly.
  • 3 and 4 show a single wire steel wire 10.
  • a wire trace 11 resulting from the wire drawing is formed on the surface of the single wire steel wire 10.
  • the wire surface twist angle ⁇ with respect to the axial direction of the single wire steel wire 10 determined based on the wire trace 11 is formed. Is in the range of 1 degree or more, more preferably in the range of 1 degree to 15 degrees.
  • Each of the single-wire steel wires 10 is preferably given a twist in a linear shape after the wire drawing step, for example.
  • each single wire steel wire 10 is twisted about its axis,
  • the excessive orientation of the metal structure caused by the wire drawing in the single wire steel wire 10 can be relaxed.
  • the fatigue resistance of the single wire steel wire 10 can be improved and the tire durability performance can be improved.
  • the coating rubber of the belt layer 8 can be reduced based on the use of the single wire steel wire 10, the rolling resistance of the pneumatic radial tire can be reduced.
  • two adjacent layers are crossing layers, that is, a layer in which the extending direction of the single wire steel wire 10 is inclined between the two layers in the direction opposite to the tire circumferential direction.
  • the surface twist angle ⁇ of the single wire steel wire 10 is less than 1 degree, the effect of improving the fatigue resistance of the single wire steel wire 10 becomes insufficient. In addition, when the surface twist angle ⁇ exceeds 15 degrees, the productivity of the single-wire steel wire 10 is lowered and the manufacture becomes difficult.
  • the wire diameter d of the single wire steel wire 10 is 0.28 mm to 0.38 mm.
  • the strand diameter d is less than 0.28 mm, it is necessary to narrow the distance between the single wire steel wires 10 in order to ensure the total strength of the belt layer 8. For this reason, if a crack enters between the layers of the belt layer 8, the crack easily progresses, so that the tire durability performance decreases.
  • the wire diameter d exceeds 0.38 mm, the fatigue resistance of the single wire steel wire 10 is lowered, and the single wire steel wire 10 is easily broken, and as a result, the tire durability performance is lowered.
  • the average interval G of the single wire steel wires 10 is 0.10 mm or more.
  • the average interval G is 0.10 mm to 0.30 mm. If the average distance G is less than 0.10 mm, a separation failure of the belt layer 8 is likely to occur. On the other hand, when the average interval G exceeds 0.30 mm, it becomes difficult to secure the total strength of the belt layer 8 and the steel wire is easily broken.
  • the single wire steel wires 10 in the form shown in FIG. 2 are arranged one by one at equal intervals, but may be arranged in a bundle of 2 to 4 wires.
  • the out-of-plane bending rigidity per inch of the circumferential length of the tread portion 1 when the position of the circumferential groove 1A is a power point is 6000 N ⁇ mm 2 or more, preferably 6000 N ⁇ mm. 2 to 10000 N ⁇ mm 2 .
  • a cut sample having a tire circumferential length of 1 inch is cut out from the pneumatic radial tire so that the distance L between the fulcrums is 20 mm with the circumferential center position of the circumferential groove 1A as the center.
  • the tread surface of the cut sample is supported by a pair of supports S, and the tread portion is on the tire inner surface side (side facing the tire cavity region) with the position corresponding to the position of the circumferential groove 1A on the back side as the force point. ) Is loaded (extruded). At that time, the strain amount Y of the tread portion 1 when the load W reaches 100 N is measured.
  • the out-of-plane bending rigidity R of the tread portion 1 calculated from the above formula (1) based on the distance L between the fulcrums, the load W and the strain amount Y is 6000 N ⁇ mm 2 or more, preferably 6000 N ⁇ mm 2 to 10000 N ⁇ mm. Set to 2 .
  • the out-of-plane bending rigidity of the tread portion 1 is, for example, the wire diameter d and the average interval G of the single wire steel wire 10 used for the belt layer 8, the structure and arrangement of the belt cover layer 9, the thickness of the tread portion 1, and , And can be appropriately controlled based on the depth of the circumferential groove 1A.
  • the driving density E (lines / 50 mm) of the single wire steel wire 10 is set to have a relation of E ⁇ 1869 ⁇ d 2 ⁇ 1838 ⁇ d + 493 with respect to the strand diameter d. It is preferable.
  • the single wire steel wire 10 is driven per 50 mm as described later.
  • the results shown in FIG. 6 were obtained.
  • the horizontal axis is the wire diameter d
  • the vertical axis is the driving density E
  • “ ⁇ ” is an example in which good tire durability performance is confirmed
  • “ ⁇ ” is insufficient tire durability performance. This is an example.
  • the in-plane bending rigidity of the tread portion 1 can be increased by satisfying the relationship of the above formula with respect to the wire diameter d for the driving density E of the single wire steel wire 10.
  • the buckling of the tread part 1 bent around the circumferential groove 1A can be suppressed, and the breakage of the single wire steel wire 10 can be prevented.
  • the belt layer 8 is formed by arranging a plurality of single-wire steel wires 10 and embedding them in rubber, the tire durability performance can be improved.
  • the belt cover layer 9 when the belt cover layer 9 is provided on the outer side in the tire radial direction of the belt layer 8 in the region corresponding to at least the circumferential groove 1A located on the outer side in the tire width direction as shown in FIG. Good.
  • the region is a portion including edges on both sides of the belt layer 8 in the tire width direction.
  • the number of belt cover layers 9 in the region corresponding to the circumferential groove 1A located on the outer side in the tire width direction is set to the number of belt cover layers 9 in the center side region. It is preferable to increase the number of layers.
  • the thickness of the tread portion 1 at the position of the circumferential groove 1A on the outer side in the tire width direction is made larger than usual to increase the out-of-plane bending rigidity of the tread portion 1, and the circumferential groove 1A on the outer side in the tire width direction is increased.
  • the buckling of the tread portion 1 bent around the position can be effectively suppressed.
  • the ratio of the minimum value to the maximum value of the thickness of the tread portion 1 is preferably 38% or more.
  • the out-of-plane bending rigidity of the portion of the circumferential groove 1A where the thickness of the tread portion 1 becomes the minimum value and the out-of-plane bending rigidity of the portion of the land portion 1B where the thickness of the tread portion 1 becomes the maximum value are reduced.
  • the buckling of the tread portion 1 can be effectively suppressed by reducing the size.
  • the effect which suppresses the buckling of the tread part 1 falls that the said ratio is less than 38%.
  • the pneumatic radial tire of this embodiment is summarized as follows.
  • a single wire steel wire as a reinforcing cord for the belt layer
  • twisting the single wire steel wire 10 excessive orientation of the metal structure caused by wire drawing in the single wire steel wire 10 is alleviated.
  • the fatigue resistance of the steel wire 10 can be improved.
  • Breakage of the single wire steel wire 10 can be prevented by making the wire diameter d of the single wire steel wire 10 relatively small, and separation failure of the belt layer can be secured by sufficiently securing the average gap G of the single wire steel wire 10. Can be prevented.
  • the in-plane bending rigidity of the tread portion is set by setting the driving density E of the single wire steel wire 10 to E ⁇ 1869 ⁇ d 2 -1838 ⁇ d + 493 with respect to the strand diameter d.
  • the wire surface twist angle with respect to the axial direction of the single wire steel wire 10 is preferably set to 1 degree to 15 degrees.
  • the belt cover layer 9 is wound around the outer side in the tire radial direction of the belt layer 8 at least in a region corresponding to the circumferential groove located on the outer side in the tire width direction.
  • the thickness of the tread portion at the position of the circumferential groove on the outer side in the tire width direction is made larger than usual to increase the out-of-plane bending rigidity of the tread portion, and the circumferential groove on the outer side in the tire width direction is used as a bending point. Buckling of the tread portion can be effectively suppressed.
  • the ratio of the minimum value to the maximum value of the thickness of the tread portion is preferably 38% or more.
  • the pneumatic radial tire for passenger cars which is 2nd Embodiment also has the structure shown in FIG. 1 similarly to the pneumatic radial tire for passenger cars which is 1st Embodiment.
  • the difference between the pneumatic radial tire of the second embodiment and the configuration of the pneumatic radial tire of the first embodiment is that in the first embodiment, the circumferential length of the tread portion when the position of the circumferential groove 1A is the power point. While the out-of-plane bending rigidity per inch is 6000 N ⁇ mm 2 or more, in the second embodiment, the driving density E (50/50 mm) of the single-wire steel wire 10 is E with respect to the strand diameter d.
  • the configuration of the pneumatic radial tire of the second embodiment is the same as the configuration of the pneumatic radial tire of the first embodiment. That is, in the pneumatic radial tire of the second embodiment, the strand diameter d of the single wire steel wire 10 to which the twist is applied around the shaft is 0.28 mm to 0.38 mm, and the average interval G between the single wire steel wires 10 is 0.10 mm or more, preferably, 0.10 mm to 0.30 mm, and the driving density E (lines / 50 mm) of the single wire steel wire 10 is E ⁇ 1869 ⁇ d 2 ⁇ 1838 ⁇ d + 493 with respect to the wire diameter d Satisfied.
  • the wire diameter d of the single wire steel wire 10 is less than 0.28 mm, the distance between the single wire steel wires 10 becomes narrow in order to secure the total strength of the belt layer 8, and the tire durability performance is inferior.
  • the strand diameter d exceeds 0.38 mm, the fatigue resistance of the single wire steel wire 10 is inferior, and the tire durability performance is degraded.
  • the average distance G between the single wire steel wires 10 is less than 0.10 mm, a separation failure of the belt layer 8 is likely to occur. On the other hand, if the average distance G exceeds 0.30 mm, it is difficult to ensure the total strength of the belt layer 8.
  • the wire diameter d of the single wire steel wire 10 is 0.28 mm to 0.38 mm and the average interval G between the single wire steel wires 10 is 0.10 mm or more, as will be described later.
  • the tire durability performance is examined by varying the driving density E per 50 mm of the single wire steel wire 10 and the wire diameter d, the result shown in FIG. 6 is obtained.
  • the horizontal axis is the wire diameter d
  • the vertical axis is the driving density E
  • “ ⁇ ” is an example in which good tire durability performance is confirmed
  • “ ⁇ ” is inferior tire durability performance.
  • the pneumatic radial tire according to the second embodiment is summarized as follows. That is, as in the first embodiment, the single wire steel wire 10 is twisted around the axis, so that excessive orientation of the metal structure caused by wire drawing in the single wire steel wire 10 is alleviated. Therefore, the fatigue resistance of the single wire steel wire 10 can be improved and the tire durability performance can be improved. And the rolling resistance of a pneumatic radial tire can be reduced by reducing the coating rubber of the belt layer 8 based on the use of the single wire steel wire 10.
  • the wire diameter d of the single wire steel wire 10 is 0.28 mm to 0.38 mm, and the average distance G between the single wire steel wires 10 is 0.10 mm or more, preferably 0.
  • the driving density E (lines / 50 mm) of the single-wire steel wire 10 satisfies E ⁇ 1869 ⁇ d 2 ⁇ 1838 ⁇ d + 493 with respect to the strand diameter d. For this reason, the in-plane bending rigidity of the tread portion 1 can be increased. Thereby, the buckling of the tread part 1 bent around the circumferential groove 1A can be suppressed, and the breakage of the single wire steel wire 10 can be prevented. As a result, even when the belt layer 8 is formed by arranging a plurality of single-wire steel wires 10 and embedding them in rubber, the tire durability performance can be improved.
  • the single wire steel wire 10 is given a twist with a linear shape after the wire drawing step, for example.
  • At least two adjacent layers of the belt layer 8 form a crossing layer in which the direction of the single wire steel wire 10 is inclined in the direction opposite to the tire circumferential direction between the two layers.
  • the wire surface twist angle with respect to the axial direction of the single wire steel wire 10 is preferably 1 to 15 degrees.
  • the surface twist angle ⁇ of the single wire steel wire 10 is less than 1 degree, the effect of improving the fatigue resistance of the single wire steel wire 10 becomes insufficient.
  • the surface twist angle ⁇ exceeds 15 degrees, the productivity of the single-wire steel wire 10 is lowered and the manufacture becomes difficult.
  • the belt cover layer 9 is wound around the outer side in the tire radial direction of the belt layer 8 at least in a region corresponding to the circumferential groove positioned on the outer side in the tire width direction.
  • the thickness of the tread portion at the position of the circumferential groove on the outer side in the tire width direction is made larger than usual to increase the out-of-plane bending rigidity of the tread portion, and the circumferential groove on the outer side in the tire width direction is used as a bending point. Buckling of the tread portion can be effectively suppressed. Thereby, the damage of the single wire steel wire 10 by buckling can be suppressed.
  • a pneumatic radial tire having a tire size of 195 / 65R15 was produced.
  • the produced pneumatic radial tire includes two belt layers 8 in which a plurality of single-wire steel wires 10 are aligned and embedded in rubber on the outer side in the tire radial direction of the carcass layer in the tread portion.
  • a belt cover layer 9 is provided on the outer side in the tire radial direction.
  • Tires 1 to 15 were prepared in which the out-of-plane bending stiffness per inch and the maximum value, minimum value, and ratio of the minimum value to the maximum value (%) of the tread portion were set as shown in Tables 1 to 4. .
  • Table 5 shows the element diameter d, the wire surface twist angle ⁇ , the driving density E and the average interval G, and the required value (1869 ⁇ d 2 -1838 ⁇ d + 493) of the driving density E of the single-layer steel wire of the belt layer.
  • Tires 3, 5, 7, 12 to 14, 16, 17 set as described above were produced.
  • the tires with the same numbers in Tables 1 to 4 and Table 5 have the same specifications.
  • the width of the belt layer on the inner side in the tire radial direction is 155 mm
  • the cord angle is 21 degrees
  • the width of the belt layer on the outer side in the tire radial direction is 145 mm
  • the cord angle is 21 degrees.
  • the belt cover layer is formed by continuously winding a strip of 0.80 mm in thickness in which the nylon fiber cords (940 dtex / 2) are aligned at a driving density of 70/50 mm and covered with rubber, spirally in the tire circumferential direction.
  • the thickness of the tread portion was adjusted by adjusting the winding amount according to the position in the tire width direction.
  • Table 1 shows the specifications and evaluation results of the tires 1 to 5 and the tire 6 in which the strand diameter d of the single wire steel wire is variously changed.
  • the average interval G was changed so that the out-of-plane bending stiffness was approximately constant 7000 (N ⁇ mm 2 ).
  • the tire 6 is a single wire steel wire (wire surface twist angle 0 degree) that does not twist the shaft, and the other configuration is the same as that of the tire 3.
  • Tires 3, 7 and 8 shown in Table 2 and tire 2 shown in Table 1 have an average distance of wire diameter d of 0.28 mm to 0.38 mm and an out-of-plane bending stiffness of 6000 N ⁇ mm 2 or more. It can be seen that by setting G to 0.10 mm or more, the steel wire is not damaged and the separation can be suppressed.
  • Table 3 shows the specifications and evaluation results of tires 9 to 11 in which the average gap G is fixed to 0.12 mm and the out-of-plane bending stiffness is changed.
  • the average gap G is 0.10 mm or more, and the out-of-plane bending rigidity per inch in the circumferential length of the tread portion when the position of the circumferential groove 1A is the power point is 6000 N ⁇ mm 2 or more. It can be seen that wire breakage can be eliminated and separation can be suppressed.
  • Table 4 shows the specifications and evaluation results of tires 12-15.
  • each of the single wire steel wires is twisted around the axis, and the strand diameter d of the single wire steel wire 10 is 0.28 mm to 0.38 mm, and the average distance G between the single wire steel wires 10 is Is 0.10 mm or more, and the out-of-plane bending rigidity per inch in the circumferential length of the tread portion when the position of the circumferential groove 1A is the power point is 6000 N ⁇ mm 2 or more.
  • the steel wire is not damaged and the separation is suppressed.
  • the wire diameter d of the tire 15 does not satisfy 0.28 mm to 0.38 mm, the steel wire is broken and the separation is expanded.
  • Table 5 shows not only the tires 16 and 17 but also the tires 3, 5, 7, 12 to 14 shown in Tables 1 to 5 and the necessary values for the driving density E, and whether or not the steel wire is broken. The separation size is shown.
  • the tires 5, 7, 16, and 17 had inferior tire durability performance and were insufficient.
  • the driving density E of the single wire steel wire is too small, the single wire steel wire constituting the belt layer is broken due to insufficient in-plane bending rigidity, and separation of the belt layer is caused by an increase in movement of the tread portion. It was expanding.
  • the average distance G between the single wire steel wires is too small, so that the separation of the belt layer is increased.
  • the driving density E of the single wire steel wire is smaller than the required value, so that the single wire steel wire constituting the belt layer is broken due to insufficient in-plane bending rigidity.
  • the separation of the belt layer was expanded due to an increase in the movement of the tread portion.
  • the strand diameter d of the single wire steel wire is too thick, the single wire steel wire constituting the belt layer was broken.
  • the pneumatic radial tire of the present invention has been described in detail.
  • the pneumatic radial tire of the present invention is not limited to the above embodiment, and various improvements and modifications can be made without departing from the gist of the present invention. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 空気入りラジアルタイヤの複数層のベルト層のそれぞれは、同じ直径の複数の単線スチールワイヤを同じ方向に直線状に延びるように引き揃えてゴム中に埋設して構成され、前記複数の単線スチールワイヤのそれぞれは軸廻りに捩りが与えられている。トレッド部のタイヤ外表面には、タイヤ周方向に延びる周方向溝が設けられている。単線スチールワイヤの素線直径は0.28mm~0.38mmであり、単線スチールワイヤの平均間隔は0.10mm以上である。周方向溝の位置を力点としたときのトレッド部の周方向長さ1インチ当たりの面外曲げ剛性は6000N・mm2 以上である。あるいは、単線スチールワイヤの打ち込み密度E(本/50mm)は、素線直径dに対してE≧1869×d2 -1838×d+493を満足する。

Description

空気入りラジアルタイヤ
 本発明は、空気入りラジアルタイヤに関する。
 従来、空気入りラジアルタイヤ(以降、タイヤともいう)のベルト層に用いる補強コードとして、複数本のフィラメントを撚り合わせてなるスチールコードが使用されている。しかしながら、複数本のフィラメントを撚り合わせてなるスチールコードは、フィラメント間に形成される内部空隙によりコードの直径が大きくなり、それに伴って多量のコートゴムが必要になるため、このコートゴムのエネルギー損失に起因して空気入りラジアルタイヤの転がり抵抗が大きくなり易い。
 そこで、ベルト層に用いるコートゴムを減らして空気入りラジアルタイヤの転がり抵抗を低減するために、ベルト層の補強コードとして単線スチールワイヤを使用することが提案されている(例えば、特許文献1、2参照)。ここで、単線スチールワイヤによる補強効果を十分に確保するには、伸線加工により単線スチールワイヤの強力を十分に高くする必要がある。ところが、伸線加工された単線スチールワイヤにおいては伸線ダイス表面に近いワイヤ表面の側ほど単線スチールワイヤの金属組織に過度の配向が生じる。このため、伸線加工後の単線スチールワイヤをベルト層の補強コードとしてそのまま使用すると、単線スチールワイヤの耐疲労性が劣り、タイヤ耐久性能が低下するという問題がある。
特開2006-218988号公報 特開2010-89727号公報
 本発明の目的は、複数本の単線スチールワイヤを引き揃えてゴム中に埋設してなるベルト層を用いた空気入りラジアルタイヤであって、タイヤ耐久性能を改善することを可能にした空気入りラジアルタイヤを提供することにある。
 本発明の一態様は、空気入りラジアルタイヤである。
 当該空気入りラジアルタイヤは、
 一対のビードコアと、
 前記一対のビードコアのそれぞれの廻りに折り返されたカーカス層と、
 前記カーカス層のタイヤ径方向外側に設けられた複数層のベルト層であって、それぞれのベルト層は、同じ素線直径の複数の単線スチールワイヤを同じ方向に直線状に延びるように引き揃えてゴム中に埋設して構成され、前記複数の単線スチールワイヤのそれぞれは軸廻りに捩りが与えられている、複数層のベルト層と、
 前記複数層のベルト層のタイヤ径方向外側に設けられ、タイヤ周方向に延びる周方向溝をタイヤ表面に備えたトレッド部と、を備える。
 前記単線スチールワイヤの素線直径は0.28mm~0.38mmである。前記単線スチールワイヤの平均間隔は0.10mm以上である。前記周方向溝の位置を力点としたときの前記トレッド部の周方向長さ1インチ当たりの面外曲げ剛性は6000N・mm以上である。
 前記複数の単線スチールワイヤのそれぞれは、伸線工程後、直線状の形状のまま捩りが与えられていることが好ましい。
 前記単線スチールワイヤの打ち込み密度E(本/50mm)は、前記素線直径dに対してE≧1869×d-1838×d+493を満足することが好ましい。
 前記単線スチールワイヤの軸方向に対するワイヤ表面捩り角は、例えば1度~15度である。
 当該空気入りラジアルタイヤでは、少なくともタイヤ幅方向外側に位置する周方向溝に対応する領域において前記ベルト層のタイヤ径方向外側にベルトカバー層が巻き付けられていることが好ましい。
 また、前記トレッド部の厚さの最大値に対する最小値の比率は38%以上であることが好ましい。
 さらに、本発明の一態様は、空気入りラジアルタイヤである。
 当該空気入りラジアルタイヤは、
 一対のビードコアと、
 前記一対のビードコアのそれぞれの廻りに折り返されたカーカス層と、
 前記カーカス層のタイヤ径方向外側に設けられた複数層のベルト層であって、それぞれのベルト層は、同じ直径の複数の単線スチールワイヤを同じ方向に直線状に延びるように引き揃えてゴム中に埋設して構成され、前記複数の単線スチールワイヤのそれぞれは軸廻りに捩りが与えられている、複数層のベルト層と、
 前記複数層のベルト層のタイヤ径方向外側に設けられ、タイヤ周方向に延びる周方向溝をタイヤ表面に備えたトレッド部と、を備える。
 前記単線スチールワイヤの素線直径は0.28mm~0.38mmである。前記単線スチールワイヤの平均間隔は0.10mm以上である。前記単線スチールワイヤの打ち込み密度E(本/50mm)は、前記素線直径dに対してE≧1869×d-1838×d+493を満足する。
 その際、前記単線スチールワイヤは、伸線工程後、直線状の形状のまま捩りが与えられていることが好ましい。
 前記単線スチールワイヤの軸方向に対するワイヤ表面捩り角は例えば1度~15度である。
 当該空気入りラジアルタイヤでは、少なくともタイヤ幅方向外側に位置する周方向溝に対応する領域において前記ベルト層のタイヤ径方向外側にベルトカバー層が巻き付けられていることが好ましい。
 本発明の空気入りタイヤによれば、タイヤ耐久性能を改善することができる。
本発明の一実施形態である空気入りラジアルタイヤの断面のうちタイヤセンターラインから右半分の断面図である。 図1に示す空気入りラジアルタイヤにおけるベルト層の一部を拡大して示す断面図である。 本実施形態がベルト層に使用する単線スチールワイヤを示す側面図である。 図3に示す単線スチールワイヤの一部を拡大して示す側面図である。 トレッド部の面外曲げ剛性の測定方法を示す説明図である。 単線スチールワイヤの素線直径dと打ち込み密度Eとの関係を示すグラフである。
 以下、本発明の空気入りラジアルタイヤについて詳細に説明する。以下説明する実施形態の空気入りラジアルタイヤは、例えば、JATMA YEAR BOOK 2011(日本自動車タイヤ協会規格)のA章に定められる乗用車用タイヤに適用するが、B章に定められる小型トラック用タイヤあるいはC章に定められるバス・トラック用タイヤに適用することもできる。以下説明する本実施形態の空気入りラジアルタイヤは乗用車用タイヤである。
(定義)
 タイヤ幅方向は、空気入りタイヤの回転軸と平行な方向である。タイヤ幅方向外側は、タイヤ幅方向の2方向のうちタイヤセンターラインCL(図1参照)から離れる側である。タイヤ周方向は、空気入りタイヤの回転軸を回転の中心としてタイヤトレッド部が回転する方向である。タイヤ径方向は、空気入りタイヤの回転軸に直交する方向である。タイヤ径方向外側は、前記回転軸から離れる側をいう。また、タイヤ径方向内側は、前記回転軸に近づく側をいう。
 本明細書において、タイヤ周方向に延びる周方向溝をタイヤ表面に備えたトレッド部の面外曲げ剛性は、JIS Z2248に準拠して、以下のようにして測定される。先ず、空気入りラジアルタイヤから周方向長さが1インチ(25.4mm)となるカットサンプルが切り出される。そして、周方向溝の幅方向中央位置を中心として支点間距離が20mmとなるようにカットサンプルのトレッド部のタイヤ外表面が支持される。トレッド部が内表面側(タイヤ空洞領域に面する側)の、周方向溝の位置に対応する位置を力点としてトレッド部にタイヤ内表面側から荷重が負荷される(押し出される)。その際、荷重負荷速度(押し出し速度)を10mm/分とし、荷重W(N)が100Nに到達したときのトレッド部の荷重負荷方向(押し出し方向)の歪み量Y(mm)が測定される。このような歪み量Yがタイヤ周上の3箇所で測定され、その平均値が求められる。これら支点間距離(L=20mm)、荷重(W=100N)及び歪み量Yに基づいて下記(1)式からトレッド部の面外曲げ剛性R(N・mm)が算出される。
 R=(L×W)/(48×Y)・・・(1)
 また、本明細書において、ワイヤ表面捩り角θは以下のようにして測定される。先ず、空気入りラジアルタイヤから単線スチールワイヤが取り出され、その単線スチールワイヤが有機溶剤に浸漬されて表面に付着するゴムを膨潤させた後、そのゴムが除去される。そして、光学顕微鏡にて単線スチールワイヤが観察され、単線スチールワイヤの素線直径d(mm)が測定されると共に、単線スチールワイヤの表面に形成された伸線痕から捩りピッチP(mm)の1/2の値が測定され、それを2倍して捩りピッチPが求められる。捩りピッチPは少なくとも10箇所での測定値の平均値とする。単線スチールワイヤの素線直径d及び捩りピッチPに基づいて下記(2)式からワイヤ表面捩り角θが算出される。
 θ=ATAN(π×d/P)×180/π・・・(2)
(第1実施形態:空気入りラジアルタイヤ)
 本発明者は、複数本の単線スチールワイヤを引き揃えてゴム中に埋設してなるベルト層を備えた空気入りラジアルタイヤについて鋭意研究した結果、捩じりを与えた単線スチールワイヤの素線直径及び平均間隔を適正化することに加えて、ベルト層を内包するトレッド部の面外曲げ剛性を十分に確保してトレッド部のバックリングを抑制することにより、タイヤ耐久性能が顕著に改善されることを知見した。さらに、単線スチールワイヤの打ち込み密度E(本/50mm)を所定値以上にして、ベルト層を内包するトレッド部の面内曲げ剛性を十分に確保してトレッド部のバックリングを抑制することにより、タイヤ耐久性能が顕著に改善されることを知見した。本発明者は、これらの知見により本発明をした。
 図1は本発明の第1実施形態である乗用車用空気入りラジアルタイヤを示す。図2は図1に示す空気入りラジアルタイヤのベルト層を示す。図3及び図4は本実施形態の空気入りラジアルタイヤがベルト層に使用する単線スチールワイヤを示す。本実施形態の空気入りラジアルタイヤは、複数本の単線スチールワイヤを引き揃えてゴム中に埋設してなるベルト層を用い、タイヤ耐久性能を改善することができる。
 図1において、符号1はトレッド部、符号2はサイドウォール部、符号3はビード部である。左右一対の環状のビード部3,3間にはカーカス層4が装架されている。カーカス層4は、タイヤ径方向に延びる複数本の補強コードを含む。カーカス層4は、各ビード部3に配置されたビードコア5の廻りにタイヤ幅方向内側からタイヤ幅方向外側に向けて折り返されている。カーカス層4の補強コードとしては、一般には有機繊維コードが使用されるが、スチールコードを使用してもよい。ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部分(カーカス層4の折り返し前の部分)と折り返し部分とにより包み込まれている。
 一方、トレッド部1におけるカーカス層4のタイヤ径方向外側には複数層(2層以上)のベルト層8が設けられている。ベルト層8はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層8において、補強コードのタイヤ周方向に対する傾斜角度は例えば10度~40度の範囲に設定されている。
 ベルト層8のタイヤ径方向外側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して5度以下の角度で配列してなる少なくとも1層のベルトカバー層9が配置されている。このベルトカバー層9は少なくとも1本の補強コードを引き揃えてゴムで被覆したストリップ材をタイヤ周方向に連続的にらせん状に巻回したジョイントレス構造とすることが望ましい。また、ベルトカバー層9は図示のようにベルト層8のタイヤ幅方向の全域を覆うように配置してもよく、あるいは、ベルト層8のタイヤ幅方向外側のエッジ部を含む領域を覆うように配置してもよい。ベルトカバー層9の補強コードとしては、ナイロン、PET、アラミド等の有機繊維を単独で又は複合して用いたコードを使用するとよい。
 トレッド部1にはタイヤ周方向に沿ってストレート状に延在する複数本(図1では、トレッド部に合計で4本)の周方向溝1Aが形成されている。複数本の周方向溝1Aにより複数列の陸部1Bが区画されている。そのため、トレッド部1の厚さは周方向溝1Aの溝底の部分において最小値となり、陸部1Bが存在する部分にて最大値となる。なお、トレッド部1には周方向溝1Aの他にタイヤ幅方向に延長する横溝を含む各種の溝やサイプを必要に応じて設けることができる。
 上記空気入りラジアルタイヤにおいて、ベルト層8を構成する補強コードとして、軸廻りに捩りを与えた単線スチールワイヤ10(図3及び図4参照)が使用されている。ベルト層8に用いる複数の単線スチールワイヤ10は、いずれも、円形状の断面を成し、同じ素線直径dを有し、直線状に延びている。
 図3及び図4には、1本の単線スチールワイヤ10が示されている。この単線スチールワイヤ10の表面には伸線加工に起因する伸線痕11が形成されているが、その伸線痕11に基づいて判定される単線スチールワイヤ10の軸方向に対するワイヤ表面捩り角θは1度以上の範囲、より好ましくは、1度~15度の範囲になっている。単線スチールワイヤ10のそれぞれは、例えば、伸線工程後、直線状の形状のまま捩りが与えられることが好ましい。
 上述のように複数本の単線スチールワイヤ10を引き揃えてゴム中に埋設してなるベルト層8を備えた空気入りラジアルタイヤにおいて、各単線スチールワイヤ10にその軸廻りに捩りを与えて、該単線スチールワイヤ10の軸方向に対するワイヤ表面捩り角θを生じさせることにより、単線スチールワイヤ10において伸線加工に起因して生じる金属組織の過度の配向を緩和することができる。その結果、単線スチールワイヤ10の耐疲労性を改善してタイヤ耐久性能を向上することができる。さらに、この単線スチールワイヤ10の使用に基づいてベルト層8のコートゴムを減らすことができるので、空気入りラジアルタイヤの転がり抵抗を低減することができる。また、ベルト層8のうち、隣接する2層が交錯層、すなわち、単線スチールワイヤ10の延びる向きが、2層の間でタイヤ周方向に対して反対側の向きに傾斜した層である。
 ここで、単線スチールワイヤ10の表面捩り角θが1度未満であると単線スチールワイヤ10の耐疲労性の改善効果が不十分になる。また、表面捩り角θが15度を超えると単線スチールワイヤ10の生産性が落ち製造が困難になる。
 本実施形態の空気入りラジアルタイヤにおいて、単線スチールワイヤ10の素線直径dは0.28mm~0.38mmである。素線直径dが0.28mm未満であるとベルト層8の総強力を確保するために単線スチールワイヤ10の相互間隔を狭くする必要がある。このため、ベルト層8の層間に亀裂が入ると亀裂が進展し易くなるので、タイヤ耐久性能が低下する。一方、素線直径dが0.38mmを超えると単線スチールワイヤ10の耐疲労性が低下し、単線スチールワイヤ10が折れ易くなり、その結果、タイヤ耐久性能が低下する。
 図2に示すように、ベルト層8において、単線スチールワイヤ10の平均間隔Gは0.10mm以上である。好ましくは、平均間隔Gは0.10mm~0.30mmである。平均間隔Gが0.10mm未満であるとベルト層8のセパレーション故障が生じ易くなる。一方、平均間隔Gが0.30mmを超えるとベルト層8の総強力を確保することが困難になり、スチールワイヤを破損し易くなる。図2に示す形態での単線スチールワイヤ10は、1本ずつ等間隔で配置されるが、2~4本の束にして配置されてもよい。
 上記空気入りラジアルタイヤにおいて、周方向溝1Aの位置を力点としたときのトレッド部1の周方向長さ1インチ当たりの面外曲げ剛性は6000N・mm以上であり、好ましくは、6000N・mm~10000N・mmである。
 図5に示すように、空気入りラジアルタイヤからタイヤ周方向の長さが1インチとなるカットサンプルが切り出され、周方向溝1Aの幅方向中央位置を中心として支点間距離Lが20mmとなるようにカットサンプルのトレッド面を一対の支持体Sで支持し、トレッド部が裏側の、周方向溝1Aの位置に対応する位置を力点としてトレッド部にタイヤ内表面側(タイヤ空洞領域に面する側)から荷重が負荷される(押し出される)。その時、荷重Wが100Nに到達したときのトレッド部1の歪み量Yが測定される。支点間距離L、荷重W及び歪み量Yに基づいて上記(1)式から算出されるトレッド部1の面外曲げ剛性Rが6000N・mm以上、好ましくは、6000N・mm~10000N・mmに設定されている。トレッド部1の面外曲げ剛性は、例えば、ベルト層8に使用される単線スチールワイヤ10の素線直径d及び平均間隔G、ベルトカバー層9の構造及び配置、トレッド部1の厚さ、並びに、周方向溝1Aの深さに基づいて適宜制御することができる。
 このようにトレッド部1の面外曲げ剛性を比較的大きい値に設定することにより、周方向溝1Aを中心にタイヤ径方向に屈曲するトレッド部1のバックリングを抑制し、単線スチールワイヤ10の折損を防止することができる。その結果、複数本の単線スチールワイヤ10を引き揃えてゴム中に埋設してなるベルト層8を設けた場合であっても、タイヤ耐久性能を改善することができる。
 本実施形態の空気入りラジアルタイヤにおいて、さらに、単線スチールワイヤ10の打ち込み密度E(本/50mm)は素線直径dに対してE≧1869×d-1838×d+493の関係に設定されていることが好ましい。
 単線スチールワイヤ10の素線直径dを0.28mm~0.38mmとし、単線スチールワイヤ10の平均間隔Gを0.10mm以上としたとき、後述するように、単線スチールワイヤ10の50mm当たりの打ち込み密度Eと素線直径dとを種々異ならせてタイヤ耐久性能を調べたところ、図6に示すような結果が得られる。図6において、横軸は素線直径dであり、縦軸は打ち込み密度Eであり、「○」は良好なタイヤ耐久性能が確認された例であり、「×」はタイヤ耐久性能が不十分であった例である。図6に示すように、素線直径dと打ち込み密度Eとの間で、E≧1869×d-1838×d+493であることが、タイヤ耐久性能を良好とする点で好ましい。
 このように単線スチールワイヤ10の打ち込み密度Eを素線直径dに対して上記式の関係を満足させることにより、トレッド部1の面内曲げ剛性を大きくすることができる。これにより、周方向溝1Aを中心として屈曲するトレッド部1のバックリングを抑制し、単線スチールワイヤ10の折損を防止することができる。その結果、複数本の単線スチールワイヤ10を引き揃えてゴム中に埋設してなるベルト層8を設けた場合であっても、タイヤ耐久性能を改善することができる。
 本実施形態の空気入りラジアルタイヤでは、図1に示すようにタイヤ幅方向外側に位置する少なくとも周方向溝1Aに対応する領域において、ベルト層8のタイヤ径方向外側にベルトカバー層9を設けるとよい。上記領域は、ベルト層8のタイヤ幅方向の両側のエッジを含む部分である。より好ましくは、複数の周方向溝1Aのうち、タイヤ幅方向外側に位置する周方向溝1Aに対応する領域におけるベルトカバー層9の層数をそれよりもセンター側の領域におけるベルトカバー層9の層数よりも多くすることが好ましい。これにより、タイヤ幅方向外側の周方向溝1Aの位置におけるトレッド部1の厚さを通常よりも大きくしてトレッド部1の面外曲げ剛性を増大させ、タイヤ幅方向外側の周方向溝1Aの位置を中心として屈曲するトレッド部1のバックリングを効果的に抑制することができる。
 また、トレッド部1の厚さの最大値に対する最小値の比率は38%以上であるとよい。
これにより、トレッド部1の厚さが最小値となる周方向溝1Aの部分の面外曲げ剛性とトレッド部1の厚さが最大値となる陸部1Bの部分の面外曲げ剛性とのを小さくし、トレッド部1のバックリングを効果的に抑制することができる。上記比率が38%未満であるとトレッド部1のバックリングを抑制する効果が低下する。
 以上、本実施形態の空気入りラジアルタイヤは以下のように纏められる。
 ベルト層の補強コードとして単線スチールワイヤを採用するにあたって、単線スチールワイヤ10に捩りを与えることにより、単線スチールワイヤ10において伸線加工に起因して生じる金属組織の過度の配向を緩和するので、単線スチールワイヤ10の耐疲労性を改善することができる。
 単線スチールワイヤ10の素線直径dを比較的小さくすることで単線スチールワイヤ10の折損を防止することができ、単線スチールワイヤ10の平均間隔Gを十分に確保することでベルト層のセパレーション故障を防止することができる。
 トレッド部の面外曲げ剛性を比較的大きい値に設定することにより、周方向溝を屈曲点とするトレッド部のバックリングを抑制し、単線スチールワイヤの折損を防止することができる。その結果、複数本の単線スチールワイヤ10を引き揃えてゴム中に埋設してなるベルト層8を設けた場合であっても、タイヤ耐久性能を改善することができる。
 また、本実施形態の空気入りラジアルタイヤでは、単線スチールワイヤ10の打ち込み密度Eを素線直径dに対してE≧1869×d-1838×d+493に設定してトレッド部の面内曲げ剛性を大きくすることにより、周方向溝1Aを屈曲点とするトレッド部のバックリングを抑制し、単線スチールワイヤ10の折損を防止することができる。その結果、複数本の単線スチールワイヤ10を引き揃えてゴム中に埋設してなるベルト層8を設けた場合であっても、タイヤ耐久性能を改善することができる。
 単線スチールワイヤ10の耐疲労性を改善するには上記ワイヤ表面捩り角を大きくすることが望ましいが、それが過大であると単線スチールワイヤ10の生産性が落ち製造が困難になる。そのため、単線スチールワイヤ10の軸方向に対するワイヤ表面捩り角は1度~15度にすることが好ましい。
 少なくともタイヤ幅方向外側に位置する周方向溝に対応する領域においてベルト層8のタイヤ径方向外側にベルトカバー層9を巻き付けることが好ましい。これにより、タイヤ幅方向外側の周方向溝の位置におけるトレッド部の厚さを通常よりも大きくしてトレッド部の面外曲げ剛性を増大させ、タイヤ幅方向外側の周方向溝を屈曲点とするトレッド部のバックリングを効果的に抑制することができる。特に、トレッド部のバックリングを効果的に抑制するために、トレッド部の厚さの最大値に対する最小値の比率は38%以上とすることが好ましい。
(第2実施形態:空気入りラジアルタイヤ)
 第2実施形態である乗用車用空気入りラジアルタイヤも、第1実施形態である乗用車用空気入りラジアルタイヤと同様に、図1に示す構成を有する。
 第2実施形態の空気入りラジアルタイヤが第1実施形態の空気入りラジアルタイヤの構成と異なる点は、第1実施形態では、周方向溝1Aの位置を力点としたときのトレッド部の周方向長さ1インチ当たりの面外曲げ剛性が6000N・mm以上であるのに対し、第2実施形態では、単線スチールワイヤ10の打ち込み密度E(本/50mm)が、素線直径dに対してE≧1869×d-1838×d+493を満足する点である。これ以外は、第2実施形態の空気入りラジアルタイヤの構成は、第1実施形態の空気入りラジアルタイヤの構成と同じである。すなわち、第2実施形態の空気入りラジアルタイヤでは、軸廻りに捩りが与えられた単線スチールワイヤ10の素線直径dが0.28mm~0.38mmであり、単線スチールワイヤ10の平均間隔Gが0.10mm以上、好ましくは、0.10mm~0.30mmであり、単線スチールワイヤ10の打ち込み密度E(本/50mm)が、素線直径dに対してE≧1869×d-1838×d+493を満足する。
 単線スチールワイヤ10の素線直径dが0.28mm未満であるとベルト層8の総強力を確保するために単線スチールワイヤ10の相互間隔が狭くなり、タイヤ耐久性能が劣る。一方、素線直径dが0.38mmを超えると単線スチールワイヤ10の耐疲労性が劣り、タイヤ耐久性能が低下する。
 また、単線スチールワイヤ10の平均間隔Gが0.10mm未満であるとベルト層8のセパレーション故障が生じ易くなる。一方、平均間隔Gが0.30mmを超えるとベルト層8の総強力を確保することが困難になる。
 第1実施形態においても述べたように、単線スチールワイヤ10の素線直径dを0.28mm~0.38mmとし、単線スチールワイヤ10の平均間隔Gを0.10mm以上としたとき、後述するように、単線スチールワイヤ10の50mm当たりの打ち込み密度Eと素線直径dとを種々異ならせてタイヤ耐久性能を調べたとき、図6に示すような結果が得られる。図6において、横軸は素線直径dであり、縦軸は打ち込み密度Eであり、「○」は良好なタイヤ耐久性能が確認された例であり、「×」はタイヤ耐久性能が劣り不十分であった例である。図6に示すように、素線直径dと打ち込み密度Eとの間で、E≧1869×d-1838×d+493を満足させることにより、トレッド部1の面内曲げ剛性を大きくしてタイヤ耐久性能を良好にすることができる。
 第2実施形態の空気入りラジアルタイヤは、以下のように纏められる。
 すなわち、第1実施形態と同様に、単線スチールワイヤ10は、軸廻りに捩りが与えられているので、単線スチールワイヤ10において伸線加工に起因して生じる金属組織の過度の配向を緩和する。したがって、単線スチールワイヤ10の耐疲労性を改善してタイヤ耐久性能を向上することができる。そして、単線スチールワイヤ10の使用に基づいてベルト層8のコートゴムを減らすことにより、空気入りラジアルタイヤの転がり抵抗を低減することができる。
 第2実施形態の空気入りラジアルタイヤでは、単線スチールワイヤ10の素線直径dが0.28mm~0.38mmであり、単線スチールワイヤ10の平均間隔Gが0.10mm以上、好ましくは、0.10mm~0.30mmであり、単線スチールワイヤ10の打ち込み密度E(本/50mm)が、素線直径dに対してE≧1869×d-1838×d+493を満足する。このため、トレッド部1の面内曲げ剛性を大きくすることができる。これにより、周方向溝1Aを中心として屈曲するトレッド部1のバックリングを抑制し、単線スチールワイヤ10の折損を防止することができる。その結果、複数本の単線スチールワイヤ10を引き揃えてゴム中に埋設してなるベルト層8を設けた場合であっても、タイヤ耐久性能を改善することができる。
 第2実施形態の空気入りラジアルタイヤにおいても、単線スチールワイヤ10は、例えば、伸線工程後、直線状の形状のまま捩りが与えられていることが好ましい。
 さらに、ベルト層8の少なくとも隣接して積層された2層は、単線スチールワイヤ10の向きが、2層の間でタイヤ周方向に対して反対側の向きに傾斜した交錯層を成している。
 第2実施形態の空気入りラジアルタイヤにおいても、単線スチールワイヤ10の軸方向に対するワイヤ表面捩り角は1度~15度であることが好ましい。単線スチールワイヤ10の表面捩り角θが1度未満であると単線スチールワイヤ10の耐疲労性の改善効果が不十分になる。また、表面捩り角θが15度を超えると単線スチールワイヤ10の生産性が落ち製造が困難になる。
 第2実施形態の空気入りラジアルタイヤにおいても、少なくともタイヤ幅方向外側に位置する周方向溝に対応する領域においてベルト層8のタイヤ径方向外側にベルトカバー層9を巻き付けることが好ましい。これにより、タイヤ幅方向外側の周方向溝の位置におけるトレッド部の厚さを通常よりも大きくしてトレッド部の面外曲げ剛性を増大させ、タイヤ幅方向外側の周方向溝を屈曲点とするトレッド部のバックリングを効果的に抑制することができる。これにより、バックリングによる単線スチールワイヤ10の破損を抑制することができる。
実験例
 タイヤサイズ195/65R15の空気入りラジアルタイヤを作製した。作製した空気入りラジアルタイヤは、トレッド部におけるカーカス層のタイヤ径方向外側に複数本の単線スチールワイヤ10を引き揃えてゴム中に埋設してなる2層のベルト層8を備え、これらベルト層8のタイヤ径方向外側にベルトカバー層9が設けられている。その際、ベルト層8の単線スチールワイヤ19の素線直径d、ワイヤ表面捩り角θ、打ち込み密度E及び平均間隔G、周方向溝の位置を力点としたときのトレッド部の周方向長さ1インチ当たりの面外曲げ剛性、並びに、トレッド部の厚さの最大値、最小値及び最大値に対する最小値の比率(%)を表1~4のように設定したタイヤ1~タイヤ15を作製した。
 また、ベルト層の単線スチールワイヤの素線直径d、ワイヤ表面捩り角θ、打ち込み密度E及び平均間隔G、並びに、打ち込み密度Eの必要値(1869×d-1838×d+493)を表5のように設定したタイヤ3,5,7,12~14,16,17を作製した。表1~4と表5のタイヤの番号は同じものは、同じ仕様である。
 タイヤ1~17において、タイヤ径方向内側のベルト層の幅は155mmであり、コード角度が21度であり、タイヤ径方向外側のベルト層の幅は145mmであり、コード角度が21度である。ベルトカバー層はナイロン繊維コード(940dtex/2)を70本/50mmの打ち込み密度で引き揃えてゴム被覆した厚さ0.80mmのストリップ材をタイヤ周方向に連続的に螺旋状に巻回することで形成されたものであり、その巻き付け量をタイヤ幅方向の位置に応じて調整することによりトレッド部の厚さを調整した。
 これらタイヤ1~17について、下記の評価方法により、タイヤ耐久性能を評価し、その結果を表1~5に併せて示す。
(タイヤ耐久性能)
 各タイヤをサイズ15x6Jのリムにリム組みして空気圧を170kPaに設定し、直径1707mmのドラム上で、荷重とスリップ角を矩形波変動させながら、速度25km/hで300kmの走行試験を実施した。なお、荷重は3.2±2.1kNとし、スリップ角は0±5度とし、矩形波変動の変動周波数は0.067Hzとした。そして、300km走行後にタイヤを解体し、ベルト層を構成する単線スチールワイヤの折損の有無を調べ、ベルト層に発生したセパレーションの長さ(最大値)を測定した。セパレーションの長さが5mm以下であれば良好である。
 表1では、単線スチールワイヤの素線直径dを種々変化させたタイヤ1~5と、タイヤ6の仕様と評価結果を示している。タイヤ1~5では、面外曲げ剛性が略一定の7000(N・mm2)となるように、平均間隔Gを変更した。また、タイヤ6は、軸廻りに捩りを与えない単線スチールワイヤ(ワイヤ表面捩り角0度)を用いて、それ以外の構成はタイヤ3と同じ構成とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すタイヤ1~5より、平均間隔が0.10mm以上であり、面外曲げ剛性は6000N・mm以上である場合、素線直径dを0.28~0.38mmとすることにより、スチールワイヤの破損を無くし、セパレーションを抑えることができることがわかる。また、表1に示すタイヤ3とタイヤ6の比較より、単線スチールワイヤのそれぞれが軸廻りに捩りが与えられていることにより、スチールワイヤの破損を無くし、セパレーションを抑えることができることがわかる。
 表2では、面外曲げ剛性を略一定の7000(N・mm2)に維持した状態で、単線スチールワイヤの平均間隔Gを変化させたタイヤ7,8と、タイヤ3(表1のタイヤ3と同じ)の仕様と評価結果を示している。
Figure JPOXMLDOC01-appb-T000002
 表2に示すタイヤ3,7,8さらに表1に示すタイヤ2より、素線直径dが0.28mm~0.38mmであり、面外曲げ剛性が6000N・mm以上である場合、平均間隔Gを0.10mm以上とすることにより、スチールワイヤの破損を無くし、セパレーションを抑えることができることがわかる。
 表3では、平均間隔Gを0.12mmに固定して、面外曲げ剛性を変化させたタイヤ9~11の仕様と評価結果を示している。
Figure JPOXMLDOC01-appb-T000003
 
 表3に示すタイヤ9,10,11より、平均間隔Gを0.10mm以上であり、素線直径dが0.28mm~0.38mmである場合、面外曲げ剛性が6000N・mm以上とすることにより、スチールワイヤの破損を無くし、セパレーションを抑えることができることがわかる。
 これより、空気入りラジアルタイヤにおいて、単線スチールワイヤのそれぞれは軸廻りに捩りが与えられており、単線スチールワイヤ10の素線直径dは0.28mm~0.38mmであり、単線スチールワイヤ10の平均間隔Gは0.10mm以上であり、周方向溝1Aの位置を力点としたときのトレッド部の周方向長さ1インチ当たりの面外曲げ剛性は6000N・mm以上であることにより、スチールワイヤの破損を無くし、セパレーションを抑えることができることがわかる。
 表4には、タイヤ12~15の仕様と評価結果を示している。
Figure JPOXMLDOC01-appb-T000004
 
 タイヤ12~14では、単線スチールワイヤのそれぞれが軸廻りに捩りが与えられており、単線スチールワイヤ10の素線直径dは0.28mm~0.38mmであり、単線スチールワイヤ10の平均間隔Gは0.10mm以上であり、周方向溝1Aの位置を力点としたときのトレッド部の周方向長さ1インチ当たりの面外曲げ剛性は6000N・mm以上である。タイヤ12~14は、評価結果において、スチールワイヤの破損が無く、セパレーションが抑制されていることがわかる。一方、タイヤ15は、素線直径dが0.28mm~0.38mmを満足しないため、スチールワイヤの破損が生じ、セパレーションが拡大した。
 表5は、タイヤ16,17とともに、表1~表5に示したタイヤ3,5,7,12~14を含めて、打ち込み密度Eに必要な値を示すとともに、スチールワイヤの破損の有無とセパレーションの大きさを示している。
Figure JPOXMLDOC01-appb-T000005
 
 タイヤ3,12~14は、過酷な条件での耐久性能試験を行った後において、ベルト層を構成する単線スチールワイヤに折損が生じておらず、また、ベルト層のセパレーションも僅かであった。
 これに対して、タイヤ5,7,16,17は、タイヤ耐久性能が劣り不十分であった。特に、タイヤ16では、単線スチールワイヤの打ち込み密度Eが少な過ぎるため、面内曲げ剛性の不足によりベルト層を構成する単線スチールワイヤに折損が生じ、トレッド部の動きの増加によりベルト層のセパレーションが拡大していた。タイヤ7では、単線スチールワイヤの平均間隔Gが小さ過ぎるため、ベルト層のセパレーションが拡大していた。タイヤ17では、単線スチールワイヤの素線直径dが小さ過ぎることによって単線スチールワイヤの打ち込み密度Eが必要値よりも小さくなるため、面内曲げ剛性の不足によりベルト層を構成する単線スチールワイヤに折損が生じ、トレッド部の動きの増加によりベルト層のセパレーションが拡大していた。タイヤ5では、単線スチールワイヤの素線直径dが太過ぎるため、ベルト層を構成する単線スチールワイヤに折損が生じていた。
 以上より、本実施形態の空気入りラジアルタイヤの効果は明らかである。
 以上、本発明の空気入りラジアルタイヤについて詳細に説明したが、本発明の空気入りラジアルタイヤは上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよい。
 1 トレッド部
 1A 周方向溝
 1B 陸部
 2 サイドウォール部
 3 ビード部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 8 ベルト層
 9 ベルトカバー層
 10 単線スチールワイヤ
 11 伸線痕
 

Claims (10)

  1.  空気入りラジアルタイヤであって、
     一対のビードコアと、
     前記一対のビードコアのそれぞれの廻りに折り返されたカーカス層と、
     前記カーカス層のタイヤ径方向外側に設けられた複数層のベルト層であって、それぞれのベルト層は、同じ素線直径の複数の単線スチールワイヤを同じ方向に直線状に延びるように引き揃えてゴム中に埋設して構成され、前記複数の単線スチールワイヤのそれぞれは軸廻りに捩りが与えられている、複数層のベルト層と、
     前記複数層のベルト層のタイヤ径方向外側に設けられ、タイヤ周方向に延びる周方向溝をタイヤ表面に備えたトレッド部と、を備え、
     前記単線スチールワイヤの素線直径は0.28mm~0.38mmであり、
     前記単線スチールワイヤの平均間隔は0.10mm以上であり、
     前記周方向溝の位置を力点としたときの前記トレッド部の周方向長さ1インチ当たりの面外曲げ剛性は6000N・mm以上である、ことを特徴とする空気入りラジアルタイヤ。
  2.  前記複数の単線スチールワイヤのそれぞれは、伸線工程後、直線状の形状のまま捩りが与えられている、請求項1に記載の空気入りラジアルタイヤ。
  3.  前記単線スチールワイヤの打ち込み密度E(本/50mm)は、前記素線直径dに対してE≧1869×d-1838×d+493を満足する、請求項1または2に記載の空気入りラジアルタイヤ。
  4.  前記単線スチールワイヤの軸方向に対するワイヤ表面捩り角は1度~15度である、請求項1~3のいずれか1項に記載の空気入りラジアルタイヤ。
  5.  少なくともタイヤ幅方向外側に位置する周方向溝に対応する領域において前記ベルト層のタイヤ径方向外側にベルトカバー層を巻き付けた、請求項1~4のいずれか1項に記載の空気入りラジアルタイヤ。
  6.  前記トレッド部の厚さの最大値に対する最小値の比率は38%以上である、請求項1~5のいずれか1項に記載の空気入りラジアルタイヤ。
  7.  空気入りラジアルタイヤであって、
     一対のビードコアと、
     前記一対のビードコアのそれぞれの廻りに折り返されたカーカス層と、
     前記カーカス層のタイヤ径方向外側に設けられた複数層のベルト層であって、それぞれのベルト層は、同じ直径の複数の単線スチールワイヤを同じ方向に直線状に延びるように引き揃えてゴム中に埋設して構成され、前記複数の単線スチールワイヤのそれぞれは軸廻りに捩りが与えられている、複数層のベルト層と、
     前記複数層のベルト層のタイヤ径方向外側に設けられ、タイヤ周方向に延びる周方向溝をタイヤ表面に備えたトレッド部と、を備え、
     前記単線スチールワイヤの素線直径は0.28mm~0.38mmであり、
    前記単線スチールワイヤの平均間隔は0.10mm以上であり、
     前記単線スチールワイヤの打ち込み密度E(本/50mm)は、前記素線直径dに対してE≧1869×d-1838×d+493を満足する、ことを特徴とする空気入りラジアルタイヤ。
  8.  前記単線スチールワイヤは、伸線工程後、直線状の形状のまま捩りが与えられている、請求項7に記載の空気入りラジアルタイヤ。
  9.  前記単線スチールワイヤの軸方向に対するワイヤ表面捩り角は1度~15度である、請求項7または8に記載の空気入りラジアルタイヤ。
  10.  少なくともタイヤ幅方向外側に位置する周方向溝に対応する領域において前記ベルト層のタイヤ径方向外側にベルトカバー層を巻き付けた、請求項7~9のいずれか1項に記載の空気入りラジアルタイヤ。
     
     
PCT/JP2012/003813 2011-06-17 2012-06-12 空気入りラジアルタイヤ WO2012172778A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/126,795 US8820377B2 (en) 2011-06-17 2012-06-12 Pneumatic radial tire
DE112012000556.2T DE112012000556B4 (de) 2011-06-17 2012-06-12 Luftradialreifen
CN201280004984.XA CN103338944B (zh) 2011-06-17 2012-06-12 充气子午线轮胎

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-135383 2011-06-17
JP2011135381A JP5099248B1 (ja) 2011-06-17 2011-06-17 空気入りラジアルタイヤ
JP2011135383A JP5099249B1 (ja) 2011-06-17 2011-06-17 空気入りラジアルタイヤ
JP2011-135381 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012172778A1 true WO2012172778A1 (ja) 2012-12-20

Family

ID=47356785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003813 WO2012172778A1 (ja) 2011-06-17 2012-06-12 空気入りラジアルタイヤ

Country Status (4)

Country Link
US (1) US8820377B2 (ja)
CN (1) CN103338944B (ja)
DE (1) DE112012000556B4 (ja)
WO (1) WO2012172778A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114028667A (zh) 2015-03-31 2022-02-11 费雪派克医疗保健有限公司 用于将气体供应至气道的用户接口和***
JP6501113B2 (ja) * 2015-05-13 2019-04-17 株式会社ブリヂストン 空気入りタイヤ
EP3390075A4 (en) * 2015-12-17 2019-06-19 Bridgestone Americas Tire Operations, LLC TIRE PLATED METAL FABRIC HAVING SPECIFIC FRAME WIRES, RUBBER-COATED TIRE FOLD THEREOF, AND ASSOCIATED METHODS
FR3051707B1 (fr) * 2016-05-27 2018-05-18 Compagnie Generale Des Etablissements Michelin Nappe droite et nappe a angle comprenant des monofilaments metalliques
CN109803707B (zh) 2016-08-11 2022-03-22 费雪派克医疗保健有限公司 可塌缩导管、患者接口和头戴具连接器
JP6718334B2 (ja) * 2016-08-17 2020-07-08 株式会社ブリヂストン 空気入りタイヤ
CN106840068B (zh) * 2017-01-19 2023-10-03 深圳新智远科技有限公司 一种钢帘线的检测***
WO2019102149A1 (fr) * 2017-11-24 2019-05-31 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule de tourisme

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255313A (ja) * 1993-03-09 1994-09-13 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH071915A (ja) * 1992-12-28 1995-01-06 Tokyo Seiko Co Ltd 車両用タイヤのベルト補強層
JPH0939510A (ja) * 1995-08-04 1997-02-10 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH09142104A (ja) * 1995-11-22 1997-06-03 Yokohama Rubber Co Ltd:The 乗用車用空気入りタイヤ
JPH1181167A (ja) * 1997-09-10 1999-03-26 Bridgestone Metalpha Kk スチールコード及びその製造方法並びに空気入りラジアルタイヤ
JP2006218988A (ja) * 2005-02-10 2006-08-24 Bridgestone Corp 空気入りラジアルタイヤ
JP2007015638A (ja) * 2005-07-11 2007-01-25 Bridgestone Corp 空気入りタイヤ
JP2007297765A (ja) * 2006-04-05 2007-11-15 Sumitomo Denko Steel Wire Kk ビードコード及び車両用タイヤ
JP2010089727A (ja) * 2008-10-10 2010-04-22 Bridgestone Corp 空気入りタイヤおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE654919A (ja) * 1964-10-28 1965-02-15
GB1276853A (en) * 1968-07-16 1972-06-07 Dunlop Holdings Ltd Improvements in or relating to pneumatic tyres
KR940006811A (ko) * 1992-09-18 1994-04-25 카알 에이취. 크루코우 카아커스플라이에 강으로된 모노필라멘트를 갖는 래디얼 타이어
CN1247389C (zh) * 2002-06-12 2006-03-29 北京化工大学 一种轿车子午线轮胎
JP2004204391A (ja) * 2002-12-25 2004-07-22 Fuji Seiko Kk 空気入りラジアルタイヤ及びそれに用いるタイヤ用素線
JP4535460B2 (ja) * 2004-06-07 2010-09-01 株式会社ブリヂストン 自動二輪車用空気入りラジアルタイヤ
CN102958711B (zh) * 2010-06-29 2016-11-09 横滨橡胶株式会社 充气轮胎

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071915A (ja) * 1992-12-28 1995-01-06 Tokyo Seiko Co Ltd 車両用タイヤのベルト補強層
JPH06255313A (ja) * 1993-03-09 1994-09-13 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH0939510A (ja) * 1995-08-04 1997-02-10 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH09142104A (ja) * 1995-11-22 1997-06-03 Yokohama Rubber Co Ltd:The 乗用車用空気入りタイヤ
JPH1181167A (ja) * 1997-09-10 1999-03-26 Bridgestone Metalpha Kk スチールコード及びその製造方法並びに空気入りラジアルタイヤ
JP2006218988A (ja) * 2005-02-10 2006-08-24 Bridgestone Corp 空気入りラジアルタイヤ
JP2007015638A (ja) * 2005-07-11 2007-01-25 Bridgestone Corp 空気入りタイヤ
JP2007297765A (ja) * 2006-04-05 2007-11-15 Sumitomo Denko Steel Wire Kk ビードコード及び車両用タイヤ
JP2010089727A (ja) * 2008-10-10 2010-04-22 Bridgestone Corp 空気入りタイヤおよびその製造方法

Also Published As

Publication number Publication date
US8820377B2 (en) 2014-09-02
DE112012000556B4 (de) 2018-11-15
CN103338944B (zh) 2015-03-25
CN103338944A (zh) 2013-10-02
US20140116587A1 (en) 2014-05-01
DE112012000556T5 (de) 2013-10-31

Similar Documents

Publication Publication Date Title
WO2012172778A1 (ja) 空気入りラジアルタイヤ
US20190077195A1 (en) Pneumatic tire
US20120312441A1 (en) Pneumatic radial tire for use on passenger car
WO2013099248A1 (ja) 空気入りラジアルタイヤ
WO2013176082A1 (ja) 乗用車用空気入りラジアルタイヤ
JP2018058515A (ja) 空気入りタイヤ
JP4888145B2 (ja) 空気入りラジアルタイヤ
JP5257436B2 (ja) 空気入りラジアルタイヤ
JP4553074B1 (ja) 乗用車用空気入りタイヤおよび乗用車用空気入りタイヤの製造方法
JP2009248751A (ja) 空気入りラジアルタイヤ
JP2012196983A (ja) 空気入りタイヤ
JP6129718B2 (ja) 空気入りタイヤ
JP5609512B2 (ja) 空気入りタイヤ
JP2000255210A (ja) 空気入りラジアルタイヤ
WO2016024390A1 (ja) 空気入りタイヤ
JP5257411B2 (ja) 空気入りタイヤ
JP4597798B2 (ja) 空気入りラジアルタイヤ
JP5099249B1 (ja) 空気入りラジアルタイヤ
JP5099248B1 (ja) 空気入りラジアルタイヤ
JP2013067191A (ja) 空気入りラジアルタイヤ
WO2023037720A1 (ja) 空気入りタイヤ
JP7069728B2 (ja) 空気入りタイヤ
JP5678558B2 (ja) 空気入りタイヤ
JP2013001320A (ja) 空気入りラジアルタイヤ
JP5093323B2 (ja) 空気入りラジアルタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012000556

Country of ref document: DE

Ref document number: 1120120005562

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14126795

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12800597

Country of ref document: EP

Kind code of ref document: A1