WO2012150802A2 - Device for preparing nano particle attached to support - Google Patents

Device for preparing nano particle attached to support Download PDF

Info

Publication number
WO2012150802A2
WO2012150802A2 PCT/KR2012/003420 KR2012003420W WO2012150802A2 WO 2012150802 A2 WO2012150802 A2 WO 2012150802A2 KR 2012003420 W KR2012003420 W KR 2012003420W WO 2012150802 A2 WO2012150802 A2 WO 2012150802A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
carrier
stirring
nanoparticles
metal compound
Prior art date
Application number
PCT/KR2012/003420
Other languages
French (fr)
Korean (ko)
Other versions
WO2012150802A3 (en
Inventor
고석근
Original Assignee
주식회사 나노케미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노케미 filed Critical 주식회사 나노케미
Publication of WO2012150802A2 publication Critical patent/WO2012150802A2/en
Publication of WO2012150802A3 publication Critical patent/WO2012150802A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to an apparatus for producing nanoparticles using a carrier.
  • Nanoparticles are formed by the chemical process in the initial process of converting metal ions into metal solid particles by adding a reducing agent and a dispersant to the metal ions present in an aqueous solution.
  • Such chemical method is not easy to control the nanoparticle size and separation of the nanoparticles, and the characteristics of the nanoparticles vary depending on the type of redox agent, dispersant, PH, temperature, etc., the flammability side in the production of nanoparticles Has many problems.
  • the above chemical method because the first to dissolve the metal in acid or base to oxidize to the next form, and then to reduce the metal back to the metal element using a reducing agent to use a number of redox reagents for the treatment of the reagent waste used It costs a lot.
  • the nanoparticles when manufacturing the nanoparticles by the chemical method as described above, in order to use in the industry, it is necessary to treat other chemicals such as a mixture, stabilizer, organic solvent, compatibilizer, resulting in unexpected with other chemicals As a result of the reaction, discoloration of the final product occurs, and the commerciality is lowered.
  • the dispersant is dissociated because the initial dispersant loses the linkage between the chemicals of the final product, and the nanoparticles aggregate with each other to increase in size. Because of the problem that cannot be obtained, the application of nanoparticles to the industry is limited.
  • a metal atom vapor which is a metal or a metal compound.
  • the method uses a high temperature of a metal or metal compound to produce steam, or uses electron or energy using DC sputtering, DC-RF sputtering, ECR, and laser beam sputtering.
  • the atomic vapor generated by irradiating a solid having a particle with a solid is injected into a gas of a low temperature or passed through a region of a low temperature so that the atomic vapor is rapidly condensed to form nano-sized particles.
  • Another physical method is a mechanical grinding method in which a mechanical force is applied to the material to grind the material into fine particles. In order to process the material into nano particles having a size of 10 nm, a long grinding process is required.
  • the physical methods are 80 to 90% of the particles in the powder is formed in a micrometer size significantly larger than the -nano particles, when the nano-particles by the physical method using the vacuum equipment, the particle size is non-uniform and productivity is low and economical There is a falling problem.
  • the method is a method of vaporizing a metal or metal compound by a physical method in a vacuum state, and depositing a metal or metal compound vapor on a stirred carrier to form nanoparticles.
  • a carrier mainly containing oxides and precious metals as a raw material was stirred to form nanoparticles on the stirred carrier.
  • the nano horses manufactured using the carrier as described above were easy to handle and could simplify the manufacturing process of the applied product when the constituent material of the final product was used as the carrier.
  • the nanopowder manufacturing apparatus of the 1980s and 1990s had problems such as low deposition efficiency, wide distribution of nanoparticle size, load applied to a stirred carrier of heterogeneous carrier, and low equipment durability.
  • Korean Patent No. 10-0644219 discloses a method for forming nanoparticles by horizontal stirring, in which the stirring vessel is vertically formed so that the carrier is scattered in vacuum and easily escapes from the stirring tank.
  • a vertical stirring method such as a nanoparticle manufacturing method using the vertical transfer method of Figure 2 has been developed (China Patent Application No. 200810004352.9).
  • the vertical stirring method improves the problems of the horizontal stirring method, in particular, the blowing phenomenon of the powder, and the problem of scattering to the deposition source even in the case of a relatively light carrier.
  • the present invention provides a nanoparticle manufacturing apparatus characterized in that by evaporating a metal or a metal compound by using physical vapor deposition (vapor), and depositing nanoparticles on a carrier. It aims to do it.
  • an object of the present invention is to provide a nanoparticle manufacturing apparatus that can effectively control the size and content of the nanoparticles by controlling the growth of the nanoparticles.
  • an object of the present invention is to provide an apparatus for producing nanoparticles with superior deposition efficiency and durability superior to existing carrier stirring methods.
  • the present invention is a vacuum deposition tank; A stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And an evaporation source provided above the stirring vessel in the vacuum evaporation tank and evaporating the metal or metal compound, the metal or metal compound nanoparticle manufacturing apparatus attached to the carrier.
  • the upper end of the side of the stirring vessel is bent 1 to 90 degrees in the center direction on the basis of the vertical surface,
  • the screw stirs only the lower portion of the carrier having a total depth of 1/5 to 3/4 of the carrier charged into the stirring vessel, and causes the carrier of the upper portion of the stirring vessel to flow by stirring the lower portion to continuously move the carrier to the lower portion.
  • an apparatus for producing metal or metal compound nanoparticles attached to a carrier characterized in that the scattering by stirring can prevent the scattering of the carrier in the upper layer due to the weight of the upper layer.
  • Nanoparticle manufacturing apparatus by transporting the carrier at a constant speed and uniformly stirring the carrier to increase the deposition efficiency of the nanoparticles to produce nanoparticles of uniform size, mechanical load and The durability of the equipment can be improved by minimizing the load on the equipment.
  • 1 and 2 is a schematic diagram of a conventional horizontal stirring type nanoparticle manufacturing apparatus and vertical stirring type nanoparticle manufacturing apparatus.
  • Figure 3 is a schematic diagram showing that the upper end of the side of the stirring tank of the nanoparticle manufacturing apparatus according to the present invention has a feature that is bent 1 to 90 degrees in the center direction with respect to the vertical plane.
  • Figure 4 is a schematic diagram showing that the movement of the metal or metal compound vapor supplied from the deposition source of the nanoparticle manufacturing apparatus according to the present invention uses an average free path.
  • Figure 5 is a schematic diagram showing that the nanoparticle manufacturing apparatus according to the present invention has a feature that the screw is loaded into the carrier.
  • FIG. 6 is a schematic view of a nanoparticle manufacturing apparatus according to an embodiment of the present invention.
  • 7 is a schematic diagram showing the growth control process of the nanoparticles according to the present invention.
  • Figure 8a shows the position of the metals deposited on the specimen to make the aluminum vaporized by thermal evaporation after a certain time to determine the direction of movement of aluminum vapor
  • Figure 8b is a photograph of the slide glass with aluminum deposited on each specimen It is a photograph.
  • FIG. 9A shows the direction of vapor flow through the specimen observation at each position after a certain time by making Si02 by steam
  • FIG. 9B is a photograph of Si02 vapor deposited on each specimen.
  • FIG. 10A is an example of manufacturing nanoparticles using the nanoparticle manufacturing apparatus of the present invention.
  • FIG. 10A is a photograph of an initial glucose carrier powder when glucose is used as a carrier and copper is used as a deposition source.
  • FIG. 10B illustrates an example in which nanoparticles are manufactured using the nanoparticle manufacturing apparatus of the present invention.
  • glucose is used as a carrier and copper is used as a deposition source, glucose with copper nanoparticles adhered to a concentration of about 10,000 ppm. For micrographs.
  • FIG. 10C shows the results of EDS analysis of the points 1, 2 ′ 3 and 4 displayed on the glucose having the copper nanoparticles of FIG. 10B attached thereto.
  • 10D is a photograph of the copper nanoparticles attached to the copper nanoparticles after dissolving in water, flowing in a slide glass and dried, and then observed the copper nanoparticles under a microscope.
  • the present invention is a vacuum deposition tank; A stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And a deposition source provided above the stirring vessel in the vacuum deposition tank and evaporating the metal or metal compound, wherein the upper end of the side surface of the stirring vessel is a vertical plane. Bends 1 to 90 degrees in the center direction relative to the
  • the screw provides a device for producing metal or metal compound nanoparticles attached to the carrier, characterized in that the horizontal or vertical direction, provided to stir 1/5 to 3/4 of the total depth of the carrier charged into the stirring vessel. .
  • the nanoparticle manufacturing apparatus is characterized in that the side of the stirring vessel is bent 1 to 90 degrees in the center direction with respect to the vertical plane.
  • FIG 3 is a schematic diagram of this, in the case of inclining the side of the stirring vessel in this way when the carrier having a viscosity can be prevented from being separated to the outside by riding the stirring vessel wall.
  • the screw is a horizontal or vertical screw, which stirs the carrier in the horizontal or vertical direction.
  • the nanoparticle manufacturing apparatus is characterized in that the screw is provided to stir 1/5 to 3/4 of the total depth of the carrier charged into the stirring vessel.
  • Nanoparticles according to the present invention is a result, the weight of the support, even when high-speed stirring by having fully charged the s horizontal or vertical screw carrier increases prevent carriers are scattered over the carrier to be stagnant in the central wall or portion Carriers were easily moved up and down inside the carrier stir bath (FIG. 5).
  • the deposition source of the metal or metal compound is thermal vapor deposition, DC sputtering, DC-RF sputtering, electron beam deposition (E ⁇ Beam) Evaproation) or laser sputtering may be used, but is not necessarily limited thereto.
  • the metal may be cobalt, copper, silver, nickel, manganese, palladium, indium iron, tungsten, titanium, alloys thereof, and the like, but is not limited thereto.
  • the metal compound may be metal oxide, metal nitride, metal carbide, metal carbon nitride, but is not necessarily limited thereto.
  • the metal compound may include alumina (A1 0) as a metal oxide, tungsten carbide (WC) as a metal carbide, nitrogen aluminum (A1N) as a metal nitride, and titanium carbonitride (TiCN) as a metal carbonitride. It is not limited to this.
  • the carrier may be activated carbon, a hydrocarbon compound, alumina (A1 0), tungsten carbide (WC), glass, sand, a material soluble in water or a solvent, such as glucose, sugar, salt, PMMA, etc. It is not limited.
  • the vacuum degree of the vacuum deposition tank is preferably 10 to 4 to 1 torr.
  • the vacuum degree of the vacuum deposition tank is adjusted to include an inert gas, the inert gas may be argon, neon, N Ar, 0, CH and the like, but is not necessarily limited thereto.
  • the apparatus for producing nanoparticles according to the present invention is a nanoparticle of the metal or metal compound from the deposition source using the principle of the average free path under an atmosphere in which the vacuum degree of the vacuum deposition tank is adjusted to 1 ( ⁇ 4 to 1 torr using an inert gas). It is characterized by scattering the particles in the downward direction.
  • the direction in which the metal vapor was scattered was in the carrier direction.
  • the scattering direction of the atomized vapor is the carrier direction, it is mainly deposited around the deposition source, causing loss of vapor to be deposited, and when producing steam at high speed to increase the production rate, many vapors are formed inside the nozzle. It was difficult to produce small size nanoparticles by clustering at.
  • the metal vapor since the vaporization direction of the atomized vapor is opposite to the carrier, the metal vapor is scattered upwards, but the vacuum degree is 1 to 4 to 1 torr, so that a layer stone is formed between the metal vapor and the inert gas due to the inert gas filled therein. The path is shortened so that the metal vapor moves downward by gravity to form nanoparticles on the stirred carrier.
  • the aluminum metal mass was loaded on a tungsten boat and heat was applied using a DC power source as a deposition heat source to cause the aluminum metal to evaporate upward.
  • a DC power source as a deposition heat source to cause the aluminum metal to evaporate upward.
  • the circular slide glass was placed at various positions and aluminum was deposited, the circular slide glass was observed, and the moving direction of steam was schematically illustrated in FIG. 8A.
  • the argon gas to form a low vacuum atmosphere at least 10- 3 torr.
  • FIG. 8B is photographs of the slide glass on which aluminum is deposited in FIG. 8A.
  • the slide glass close to the steam generator can see that a large amount of aluminum is deposited, while the far slide glass can see that very little aluminum is deposited.
  • slide glass 1 and 2 a large amount of aluminum is deposited to reflect the metallic gloss, and the same color appears in the picture, but this is a phenomenon caused by reflection.
  • Slide 4 shows a small amount of actual deposition, making it opaque black.
  • slide glasses 5 to 8 aluminum is hardly deposited, so that the transparent slide glass can be confirmed.
  • FIG. 9A is a photograph confirming that SiO vapor is deposited on the slide glass in FIG. 9A.
  • Slide glass 1 and 2 is a slide glass located directly below the electron beam, it can be seen that the oxide vapor is not reached directly below the steam source because the oxide vapor is not deposited on the slide glass.
  • the deposition amount of Si02 vapor decreases as it moves away from the steam source from slide glasses 3 to 8.
  • the speed of the screw is preferably adjusted to 1 to 200 rpm.
  • stirring speed is less than 1 rpm, agitation is not sufficiently performed, so that the metal nanoparticles are not uniformly attached to the surface of the carrier. If the stirring speed exceeds 200 rpm, each of the carriers is heavy. Powders charged in the stirring tank may be scattered by the high speed rotation, and when the weight of each carrier is light, the stirring may be performed only in the inside of the carrier barrel, thereby making it difficult to move the carrier in the vertical direction by the weight.
  • Nanoparticles manufacturing apparatus as shown in FIG. By controlling the deposition rate, stirring speed, etc., the growth of the nanoparticles can be controlled to effectively control the size and content of the nanoparticles.
  • a metal or metal compound vapor is deposited on a carrier to form a nucleus for forming a metal or metal compound nanoparticle, and the nucleus is then nanoparticles by further deposition of metal vapor.
  • the carrier was stirred and rotated to form a mixture of metal or metal vapor.
  • the nanoparticle production apparatus is controlled by the deposition rate of the metal or metal compound vapor on the carrier at a thickness of 1 A (low speed steam discharge rate) to 10 (high speed steam discharge rate) per unit area per minute, high speed in low speed deposition It does not cause problems until deposition, and even if a large amount of steam is generated from the steam source, all of them can be made into nanoparticles on the stirred carrier.
  • the nanoparticle manufacturing apparatus according to the present invention has enhanced deposition efficiency and superior durability compared to the conventional carrier stirring method.
  • the nanoparticle manufacturing apparatus uses a vertical or horizontal screw to stir the carrier, and the horizontal or vertical screw is loaded into the carrier to prevent excessive scattering in the vacuum chamber. , Can transport the carrier at a constant speed by minimizing the mechanical load, improve the deposition efficiency by making the stirring of the carrier uniform, and manufacture nanoparticles of uniform size, and minimize the mechanical load and equipment load Durability can be improved.
  • the direction in which the copper vapor is scattered was set so as to be in the opposite direction, that is, upward direction, of the stirring vessel in which glucose, which is a carrier, is contained.
  • the glucose is agitated by a rotary screw provided in the stirring vessel, wherein the stirring speed of the glucose by the screw is maintained below lOOrpm.
  • the copper vapor was deposited on a glucose carrier to prepare glucose with copper nanoparticles at a concentration of about laOO ppm.
  • Example 1 the appearance change of the glucose carrier was observed by visual and electron microscopy.
  • Example 1 The copper-glucose nanoparticles prepared in Example 1 were subjected to quantitative and qualitative analysis of the components using an energy dispersive spectrometry (EDS).
  • EDS energy dispersive spectrometry
  • Example 1 After dissolving the copper ⁇ glucose nanoparticles prepared in Example 1 in water and observed the recrystallized form of the copper nanoparticles using an electron microscope. As shown in FIG. 10C, the points 1, 2, 3, and 4 shown in the photomicrograph of the copper / glucose carriers, which were observed by 400 times magnification of the glucose carrier with the copper nanoparticles, were analyzed by EDS. The amounts of C, 0 and Cu were the same. C ⁇ 0 detected by elemental analysis is a component constituting the glucose carrier, and Cu is a component generated from nanoparticles formed on the glucose carrier. On the other hand, copper was not detected at the position 4, and C and 0 were detected.

Abstract

The present invention relates to a device for preparing a metal or a metallic compound nano particle attached to a support, the device comprising: a vacuum evaporation vessel; an agitating vessel provided in the vacuum evaporation vessel; a screw provided inside the agitating vessel, for agitating the support; and an evaporation source provided on the upper portion of the agitating vessel inside the vacuum evaporation vessel, for evaporating the metal or the metallic compound, wherein the upper end of the side surface of the agitating vessel is bent at 1-90 degrees towards the center with the perpendicular plane as the basis, and the screw is provided in a horizontal or a vertical direction, so as to agitate 1/5-3/4 of the entire depth of the support charged in the agitating vessel.

Description

【명세서】  【Specification】
담체에 부착된 나노 입자 제조 장치  Nanoparticle production apparatus attached to the carrier
【기술분야】 [Technical Field]
본 발명은 담체를 이용하여 나노 입자를 제조하는 장치에 관한 것이다. 본 출원은 2011 년 5 월 2 일에 한국 특허청에 제출된 한국 특허 출원 제 10- 2011-0041583 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.  The present invention relates to an apparatus for producing nanoparticles using a carrier. This application claims the benefit of the application date of Korean Patent Application No. 10-2011-0041583 filed with the Korea Patent Office on May 2, 2011, the entire contents of which are incorporated herein.
【배경기술】  Background Art
나노 입자는 화학적 방법으로는, 수용액 상태에서 존재하는 금속 이온들에 환원제와 분산제를 첨가함으로써 금속이온들이 금속 고체입자로 전환되는 초기 과정에서 형성된다.  Nanoparticles are formed by the chemical process in the initial process of converting metal ions into metal solid particles by adding a reducing agent and a dispersant to the metal ions present in an aqueous solution.
상기와 같은 화학적 방법은, 나노 입자 크기의 제어 및 나노 입자의 분리가 용이하지 않고, 산화 환원제의 종류, 분산제, PH, 온도 등에 따라 나노 입자의 특성이 달라지므로, 나노 입자의 제조에 있어서 재연성 측면에서 많은 문제점을 가지고 있다.  Such chemical method is not easy to control the nanoparticle size and separation of the nanoparticles, and the characteristics of the nanoparticles vary depending on the type of redox agent, dispersant, PH, temperature, etc., the flammability side in the production of nanoparticles Has many problems.
또한, 상기와 같은 화학적 방법은, 금속을 산이나 염기에 먼저 녹여 이은 형태로 산화시키고 이를 다시 환원제를 사용하여 금속원소로 환원시키는 과정에서 많은 산화환원시약을 사용해야 하므로 사용한 시약 폐기물의 처리를 위한 추가적 비용이 많이 발생한다.  In addition, the above chemical method, because the first to dissolve the metal in acid or base to oxidize to the next form, and then to reduce the metal back to the metal element using a reducing agent to use a number of redox reagents for the treatment of the reagent waste used It costs a lot.
또한, 상기와 같은 화학적 방법으로 나노 입자를 제조할 경우, 산업에 이용하기 위해서는 흔합제, 안정화제, 유기용매, 상용화제 등 다른 화학약품의 처리가 필요한 데, 그 결과 다른 화학약품들과의 예기치 않은 반웅이 진행되어, 최종 제품의 변색이 일어나 상품성이 떨어지고, 초기의 분산제가 최종 제품의 화학물질들간의 연계성이 떨어져서 분산제가 해리되며, 나노 입자들 간에도 서로 뭉쳐져 크기가 커지게 되어 나노 입자의 효과를 얻을 수 없는 문제점이 발생하기 때문에, 나노 입자의 산업에의 응용이 제한되고 있다.  In addition, when manufacturing the nanoparticles by the chemical method as described above, in order to use in the industry, it is necessary to treat other chemicals such as a mixture, stabilizer, organic solvent, compatibilizer, resulting in unexpected with other chemicals As a result of the reaction, discoloration of the final product occurs, and the commerciality is lowered. The dispersant is dissociated because the initial dispersant loses the linkage between the chemicals of the final product, and the nanoparticles aggregate with each other to increase in size. Because of the problem that cannot be obtained, the application of nanoparticles to the industry is limited.
상기 화학적 방법과는 달리, 물리적으로 금속원자 증기 (vapor)의 웅축을 이용하여 나노 입자를 만드는 방법이 있는데, 이는 금속이나 금속화합물을 고온에서 기체로 만들고 이를 낮은 온도로 팽창시키면서 금속원자 증기를 급속하게 응축시켜 나노 입자를 형성하는 것이다. Unlike the chemical method, there is a method of physically making nanoparticles by using a metal atom vapor, which is a metal or a metal compound. By forming a gas at high temperatures and expanding it to low temperatures, it rapidly condenses metal atom vapors to form nanoparticles.
상기 방법은 금속이나 금속화합물에 고온을 가하여 증기를 만들거나, 디시 스퍼터링 (DC sputtering), 디시—알에프 스퍼터링 (DC— RF sputtering), ECR, 레이저 범 스퍼터링 (laser beam sputtering)을 이용하여 전자나 에너지를 가진 입자를 고체에 조사함으로써 발생하는 원자증기를 낮은 온도의 기체에 분사하거나 낮은 온도의 영역을 통과하게 하여 상기 원자증기들이 급속히 웅축되어 나노 크기의 입자를 형성하게 하는 것이다.  The method uses a high temperature of a metal or metal compound to produce steam, or uses electron or energy using DC sputtering, DC-RF sputtering, ECR, and laser beam sputtering. The atomic vapor generated by irradiating a solid having a particle with a solid is injected into a gas of a low temperature or passed through a region of a low temperature so that the atomic vapor is rapidly condensed to form nano-sized particles.
상기 물리적인 방법들은 금속 그 자체를 증기로 만들어 이를 다시 금속 나노 입자로 만들기 때문에 화학적 방법과는 달리 막대한 양의 시약 사용 문제 및 이로 인한 폐수처리문제가 발생하지 않아 공정이 단순한 장점이 있다.  Since the physical methods make the metal itself into a vapor and make it into metal nanoparticles, unlike the chemical method, a problem of using a large amount of reagents and a waste water treatment caused by this does not occur, so the process is simple.
또 다른 물리적 방법으로는 기계적인 힘을 재료에 가하여 재료를 미세한 입자로 분쇄하는 기계적 분쇄 방식이 있는데, 재료를 10 nm 사이즈의 나노 입자로 가공하기 위해선 장시간의 분쇄공정이 필요하다.  Another physical method is a mechanical grinding method in which a mechanical force is applied to the material to grind the material into fine particles. In order to process the material into nano particles having a size of 10 nm, a long grinding process is required.
상기 물리적 방법들은 분말 중 80 ~ 90%의 입자가 -나노 입자보다 상당히 큰 마이크로미터 크기로 형성되며, 이러한 진공 설비를 이용한 물리적 방법으로 나노 입자를 만들 경우, 입자의 크기가 불균일하고 생산성이 낮아 경제성이 떨어지는 문제점이 있다.  The physical methods are 80 to 90% of the particles in the powder is formed in a micrometer size significantly larger than the -nano particles, when the nano-particles by the physical method using the vacuum equipment, the particle size is non-uniform and productivity is low and economical There is a falling problem.
이와 같은 종래의 나노 입자 제조 방법의 문제점들을 해결하기 위해 담체를 이용하는 방법이 시도되었다. 상기 방법은 진공상태에서 물리적인 방법으로 금속 또는 금속화합물을 증기화하고, 교반되는 담체 위에 금속 또는 금속화합물 증기를 증착시켜 나노 입자를 형성하는 방법이다.  In order to solve the problems of the conventional method for producing nanoparticles, a method using a carrier has been attempted. The method is a method of vaporizing a metal or metal compound by a physical method in a vacuum state, and depositing a metal or metal compound vapor on a stirred carrier to form nanoparticles.
1980 년대 내지 1990 년대엔 주로 산화물, 귀금속 류의 금속들을 원재료로 하는 담체를 교반하여, 교반되는 담체 위에 나노 입자를 형성하였다. 이와 같이 담체를 이용하여 제조된 나노 말은 취급이 용이하며 최종 웅용제품의 구성재료를 담체로 사용할 경우 응용제품의 제조공정을 단순화할 수 있었다. 그러나, 1980 년대 내지 1990년대의 나노 분말 제조장치들은 낮은 증착 효율, 넓은 분포의 나노 입자 크기, 불균일한 담체의 교반 담체에 가해지는 부하, 낮은 장비의 내구성 등의 문제점들을 내포하고 있었다. 예를 들어, 대한민국 특허 제 10-0644219 호에는 수평형 교반에 의한 나노 입자 형성 방법이 개시되어 있는데, 상기 방법은 교반조가 수직으로 이루어져 담체가 진공 중에 비산되어 교반조 밖으로 쉽게 이탈되는 문제점, 담체가 나노 입자를 만드는 원자의 증기를 생성하는 증착원에 비산하여 부착되어 분해되면서 증착원의 작동이 방해되는 문제점이 있다. 예컨대 유기물로 이루어진 담체의 경우 증착원에서 분해되어 탄화되며 전기적 절연이 될 부분이 통전이 되는 경우가 발생한다. 또한, 비중이 높은 담체의 경우 교반 스크류에 많은 하중을 부가하여 구동부를 마모시켜 생산성을 저하시킬 수 있다. In the 1980s and 1990s, a carrier mainly containing oxides and precious metals as a raw material was stirred to form nanoparticles on the stirred carrier. The nano horses manufactured using the carrier as described above were easy to handle and could simplify the manufacturing process of the applied product when the constituent material of the final product was used as the carrier. However, the nanopowder manufacturing apparatus of the 1980s and 1990s had problems such as low deposition efficiency, wide distribution of nanoparticle size, load applied to a stirred carrier of heterogeneous carrier, and low equipment durability. For example, Korean Patent No. 10-0644219 discloses a method for forming nanoparticles by horizontal stirring, in which the stirring vessel is vertically formed so that the carrier is scattered in vacuum and easily escapes from the stirring tank. There is a problem in that the operation of the deposition source is disturbed while being attached and decomposed by being scattered to the deposition source that generates the vapor of the atom that makes the nanoparticles. For example, in the case of a carrier made of an organic material, a portion that is decomposed and carbonized at an evaporation source and becomes electrically insulated occurs. In addition, in the case of a carrier having a high specific gravity, productivity may be reduced by adding a large load to the stirring screw to wear the driving unit.
이러한 문제점을 개선하기 위해, 도 2 의 수직형 이송방식을 이용한 나노 입자 제조방법과 같은 수직 교반 방식이 개발되었다 (중국 특허 출원번호 200810004352.9). 상기 수직 교반 방식은 수평 교반 방식의 문제점, 특히 분체의 날림 현상을 많이 개선하여, 비교적 가벼운 담체의 경우에도 증착원에 비산되는 문제점을 개선하였다.  In order to improve this problem, a vertical stirring method such as a nanoparticle manufacturing method using the vertical transfer method of Figure 2 has been developed (China Patent Application No. 200810004352.9). The vertical stirring method improves the problems of the horizontal stirring method, in particular, the blowing phenomenon of the powder, and the problem of scattering to the deposition source even in the case of a relatively light carrier.
하지만 수직 교반 방식은 점도성 담체를 사용하는 경우 담체가 교반조를 타고 외부로 넘쳐 나오는 문제가 발생하였다. 또한 수직 교반 방식은 교반조의 중심부에 담체들이 정체되면서 담체들의 상하 이동이 원활하지 못하고 담체에 전달된 열이 이동을 하지 못해 열에 약한 담체의 경우 중앙 부분에 담체가 녹는 현상이 발생하여 중앙 부분에 정체된 담체에는 나노 입자가 형성되지 않았다. 또한, 교반조 상부 벽에 발생하는 정전기에 의해 담체들이 정지되며 누적됨으로써 하부에 있는 담체 상에는 나노 입자 형성이 이루어지지 않았다. 【발명의 상세한 설명】  However, in the vertical stirring method, when the viscous carrier is used, the carrier overflows to the outside in the stirring tank. In addition, in the vertical stirring method, the carriers are stagnated in the center of the agitator tank, so that the up and down movement of the carriers is not smooth, and the heat transferred to the carrier does not move, so that the carriers are weak in heat, causing the carrier to melt in the center part. Nanoparticles were not formed in the carrier. In addition, since the carriers are stopped and accumulated by the static electricity generated in the upper wall of the stirring vessel, nanoparticles are not formed on the carrier underneath. [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
상기 종래 기술의 문제점을 해결하기 위하여, 본 발명은 물리적 기상증착법 (physical vapor deposition)을 이용하여 금속 또는 금속화합물을 증발시키고, 담체 상에 나노 입자를 증착하는 것을 특징으로 하는 나노 입자 제조 장치를 제공하는 것을 목적으로 한다.  In order to solve the problems of the prior art, the present invention provides a nanoparticle manufacturing apparatus characterized in that by evaporating a metal or a metal compound by using physical vapor deposition (vapor), and depositing nanoparticles on a carrier. It aims to do it.
또한, 본 발명은 나노 입자의 성장을 제어하여 나노 입자의 크기와 함량을 효과적으로 제어할 수 있는 나노 입자 제조 장치를 제공하는 것을 목적으로 한다. 또한, 본 발명은 기존의 담체 교반 방식보다 증진된 증착 효율과 내구성 이 월등히 우수한 나노 입자 제조 장치를 제공하는 것을 목적으로 한다. 【기술적 해결방법】 In addition, an object of the present invention is to provide a nanoparticle manufacturing apparatus that can effectively control the size and content of the nanoparticles by controlling the growth of the nanoparticles. In addition, an object of the present invention is to provide an apparatus for producing nanoparticles with superior deposition efficiency and durability superior to existing carrier stirring methods. Technical Solution
상기 목적을 달성하기 위하여, 본 발명은 진공 증착조; 상기 진공 증착조 내에 구비 된 교반조; 상기 교반조 내에 구비되고 담체를 교반하는 스크류; 및 상기 진공 증착조 내의 교반조 상부에 구비 되고 금속 또는 금속화합물을 증발시 키는 증착원으로 구성 되는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치에 있어서,  In order to achieve the above object, the present invention is a vacuum deposition tank; A stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And an evaporation source provided above the stirring vessel in the vacuum evaporation tank and evaporating the metal or metal compound, the metal or metal compound nanoparticle manufacturing apparatus attached to the carrier.
상기 교반조의 측면의 상부 말단은, 수직면올 기준으로 중심 방향으로 1 내지 90 도 굽어져 있고,  The upper end of the side of the stirring vessel is bent 1 to 90 degrees in the center direction on the basis of the vertical surface,
상기 스크류는 수평 또는 수직 방향으로, 교반조에 장입되는 담체의 전체 깊이 1/5 내지 3/4 의 하층부만 교반하고 하층부의 교반에 의 해 교반조의 상층부의 담체를 유동하게 하여 계속 담체를 하층부로 이동시 키 고, 가벼운 담체의 경우 교반에 의 한 비산이 상층부의 담체 무게 때문에 상층부에 있는 담체의 비산을 방지할 수 있도록 한 것을 특징으로 하는 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치를 제공한다.  In the horizontal or vertical direction, the screw stirs only the lower portion of the carrier having a total depth of 1/5 to 3/4 of the carrier charged into the stirring vessel, and causes the carrier of the upper portion of the stirring vessel to flow by stirring the lower portion to continuously move the carrier to the lower portion. In the case of a tall and light carrier, there is provided an apparatus for producing metal or metal compound nanoparticles attached to a carrier, characterized in that the scattering by stirring can prevent the scattering of the carrier in the upper layer due to the weight of the upper layer.
【유리 한 효과】  [Favorable effect]
본 발명에 따른 나노 입자 제조장치는, 담체를 일정 한 속도로 이송시 키고 담체의 교반을 균일하게 하여 나노 입자의 증착 효율을 높여 균일한 크기의 나노 입자를 제조할 수 있고, 기 계적 인 부하와 장비의 부하를 최소화하여 장비의 내구성을 증진시 킬 수 있다.  Nanoparticle manufacturing apparatus according to the present invention, by transporting the carrier at a constant speed and uniformly stirring the carrier to increase the deposition efficiency of the nanoparticles to produce nanoparticles of uniform size, mechanical load and The durability of the equipment can be improved by minimizing the load on the equipment.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 및 도 2 는 종래의 수평 교반 방식 나노 입자 제조 장치 및 수직 교반 방식 나노 입자 제조 장치에 대한 모식도이다.  1 and 2 is a schematic diagram of a conventional horizontal stirring type nanoparticle manufacturing apparatus and vertical stirring type nanoparticle manufacturing apparatus.
도 3 은 본 발명에 따른 나노 입자 제조 장치의 교반조의 측면의 상부 말단은, 수직면을 기준으로 중심 방향으로 1 내지 90 도 굽어져 있는 특징을 갖는 것을 나타낸 모식도이다. 도 4 는 본 발명에 따른 나노 입자 제조 장치의 증착원에서 공급되는 금속 또는 금속화합물 증기의 이동은 평균자유경로를 이용함을 나타낸 모식도이다. Figure 3 is a schematic diagram showing that the upper end of the side of the stirring tank of the nanoparticle manufacturing apparatus according to the present invention has a feature that is bent 1 to 90 degrees in the center direction with respect to the vertical plane. Figure 4 is a schematic diagram showing that the movement of the metal or metal compound vapor supplied from the deposition source of the nanoparticle manufacturing apparatus according to the present invention uses an average free path.
도 5 는 본 발명에 따른 나노 입자 제조 장치는, 스크류가 담체 중에 층분히 장입되는 특징을 갖는 것을 나타낸 모식도이다.  Figure 5 is a schematic diagram showing that the nanoparticle manufacturing apparatus according to the present invention has a feature that the screw is loaded into the carrier.
도 6 은 본 발명의 일 실시예에 따른 나노 입자 제조 장치의 모식도이다. 도 7 은 본 발명에 따른 나노 입자의 성장 조절과정을 나타낸 모식도이다.  6 is a schematic view of a nanoparticle manufacturing apparatus according to an embodiment of the present invention. 7 is a schematic diagram showing the growth control process of the nanoparticles according to the present invention.
도 8a 는 열증착에 의해 알루미늄을 증기로 만들고 일정시간 후에 알루미늄 증기의 이동 방향을 확인하기 위한 시편 위에 증착된 금속들의 위치를 나타낸 것이고, 도 8b 는 각 시편에 알루미늄이 증착된 슬라이드 그라스를 촬영한 사진이다.  Figure 8a shows the position of the metals deposited on the specimen to make the aluminum vaporized by thermal evaporation after a certain time to determine the direction of movement of aluminum vapor, Figure 8b is a photograph of the slide glass with aluminum deposited on each specimen It is a photograph.
도 9a 는 전자범에 의해 Si02 를 증기로 만들고 일정시간 후에 각 위치의 시편관찰을 통한 증기의 이동방향을 나타낸 것이고, 도 9b 는 각 시편에 Si02증기가 증착된 것을 촬영한 사진이다.  FIG. 9A shows the direction of vapor flow through the specimen observation at each position after a certain time by making Si02 by steam, and FIG. 9B is a photograph of Si02 vapor deposited on each specimen.
도 10a 는 본 발명의 나노 입자 제조 장치를 사용하여 나노 입자를 제조한 실시예로서, 담체로 포도당을 사용하고, 증착원으로 구리를 사용했을 때의 초기 포도당 담체 분말의 사진이다.  10A is an example of manufacturing nanoparticles using the nanoparticle manufacturing apparatus of the present invention. FIG. 10A is a photograph of an initial glucose carrier powder when glucose is used as a carrier and copper is used as a deposition source.
도 10b 는 본 발명의 나노 입자 제조 장치를 사용하여 나노 입자를 제조한 실시예로서, 담체로 포도당을 사용하고, 증착원으로 구리를 사용했을 때, 약 10,000ppm의 농도로 구리 나노 입자가 붙은 포도당에 대한 현미경 사진이다.  10B illustrates an example in which nanoparticles are manufactured using the nanoparticle manufacturing apparatus of the present invention. When glucose is used as a carrier and copper is used as a deposition source, glucose with copper nanoparticles adhered to a concentration of about 10,000 ppm. For micrographs.
도 10c 는 도 10b 의 구리 나노 입자가 붙은 포도당에 표시된 1, 2ᅳ 3, 4의 지점을 EDS로 분석한 결과이다.  FIG. 10C shows the results of EDS analysis of the points 1, 2 ′ 3 and 4 displayed on the glucose having the copper nanoparticles of FIG. 10B attached thereto.
도 10d 는 상기 구리 나노 입자가 붙은 포도당을 물에 녹인 후, 슬라이드 유리에 흐르게 하고 건조한 후, 구리 나노 입자를 현미경으로 관찰한 사진이다.  10D is a photograph of the copper nanoparticles attached to the copper nanoparticles after dissolving in water, flowing in a slide glass and dried, and then observed the copper nanoparticles under a microscope.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하에서, 첨부된 도면을 참조하여 본 발명을 더욱 상세히 설명하도록 한다. 본 발명은 진공 증착조; 상기 진공 증착조 내에 구비된 교반조; 상기 교반조 내에 구비되고 담체를 교반하는 스크류; 및 상기 진공 증착조 내의 교반조 상부에 구비되고 금속 또는 금속화합물을 증발시키는 증착원으로 구성되는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치에 있어서, 상기 교반조의 측면의 상부 말단은, 수직면을 기준으로 중심 방향으로 1 내지 90도 굽어져 있고, Hereinafter, with reference to the accompanying drawings to describe the present invention in more detail. The present invention is a vacuum deposition tank; A stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And a deposition source provided above the stirring vessel in the vacuum deposition tank and evaporating the metal or metal compound, wherein the upper end of the side surface of the stirring vessel is a vertical plane. Bends 1 to 90 degrees in the center direction relative to the
상기 스크류는 수평 또는 수직 방향으로, 교반조에 장입되는 담체의 전체 깊이의 1/5 내지 3/4 를 교반하도록 구비되는 것을 특징으로 하는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치를 제공한다.  The screw provides a device for producing metal or metal compound nanoparticles attached to the carrier, characterized in that the horizontal or vertical direction, provided to stir 1/5 to 3/4 of the total depth of the carrier charged into the stirring vessel. .
본 발명에 따른 나노 입자 제조 장치는 상기 교반조의 측면이, 수직면을 기준으로 하여 중심 방향으로 1 내지 90 도 굽어져 있는 것을 특징으로 한다.  The nanoparticle manufacturing apparatus according to the present invention is characterized in that the side of the stirring vessel is bent 1 to 90 degrees in the center direction with respect to the vertical plane.
본 발명의 일 실시예에 따르면, 상기 교반조 측면의 상부 말단의 1 cm 정도가 "π" 형태로 중심방향으로 돌출된다.  According to one embodiment of the present invention, about 1 cm of the upper end of the side of the stirring vessel protrudes toward the center in the form of "π".
도 3 은 이에 대한 모식도로 이와 같이 교반조의 측면을 내부로 경사지게 할 경우 점도가 있는 담체를 교반할 경우 담체가 교반조 벽을 타고 외부로 이탈되는 것을 방지할 수 있다.  3 is a schematic diagram of this, in the case of inclining the side of the stirring vessel in this way when the carrier having a viscosity can be prevented from being separated to the outside by riding the stirring vessel wall.
상기 스크류는 수평형 또는 수직형 스크류로서, 수평 방향 또는 수직 방향으로 담체를 교반한다.  The screw is a horizontal or vertical screw, which stirs the carrier in the horizontal or vertical direction.
본 발명에 따른 나노 입자 제조 장치는 스크류가, 교반조에 장입되는 담체의 전체 깊이의 1/5 내지 3/4 를 교반하도록 구비되는 것을 특징으로 한다.  The nanoparticle manufacturing apparatus according to the present invention is characterized in that the screw is provided to stir 1/5 to 3/4 of the total depth of the carrier charged into the stirring vessel.
본 발명에 따른 나노 입자 제조 장치는수평형 또는 수직형 스크류가 담체 증에 충분히 장입되게 함으로써, 고속 교반 시에도 담체의 무게 때문에 담체들이 위로 비산되는 것을 방지하고 담체들이 중앙 또는 벽면부위에 정체되지 않고 담체들이 담체 교반 조의 내부에서 상하로 쉽게 이동되게 하였다 (도 5). 또한, 본 발명에 따른 나노 입자 제조 장치에 있어서, 상기 금속 또는 금속화합물의 증착원은 열 증착, 디시 스퍼터링 (DC Sputtering), 디시-알에프 스퍼터링 (DC-RF Sputtering), 전자 범 증착 (Eᅳ Beam Evaproation), 또는 레이저 스퍼터링을 이용할 수 있으나, 반드시 이에 제한되는 것은 아니다. 본 발명 의 일 실시 예에 따르면, 상기 금속으로는 코발트, 구리, 은, 니 켈, 망간, 팔라듐, 인듐 철, 텅스텐, 티타늄, 이들의 합금 등을 사용할 수 있으나, 반드시 이에 제한되지는 않는다. Nanoparticles according to the present invention is a result, the weight of the support, even when high-speed stirring by having fully charged the s horizontal or vertical screw carrier increases prevent carriers are scattered over the carrier to be stagnant in the central wall or portion Carriers were easily moved up and down inside the carrier stir bath (FIG. 5). In addition, in the nanoparticle manufacturing apparatus according to the present invention, the deposition source of the metal or metal compound is thermal vapor deposition, DC sputtering, DC-RF sputtering, electron beam deposition (E 범 Beam) Evaproation) or laser sputtering may be used, but is not necessarily limited thereto. According to an embodiment of the present invention, the metal may be cobalt, copper, silver, nickel, manganese, palladium, indium iron, tungsten, titanium, alloys thereof, and the like, but is not limited thereto.
또한, 본 발명의 바람직 한 실시 예에 따르면, 상기 금속화합물은 금속 산화물, 금속 질화물, 금속 탄화물, 금속 탄 질화물일 수 있으나, 반드시 이 에 제한되지는 않는다.  In addition, according to a preferred embodiment of the present invention, the metal compound may be metal oxide, metal nitride, metal carbide, metal carbon nitride, but is not necessarily limited thereto.
상기 금속화합물의 예로, 금속 산화물인 알루미나 (A1 0 ), 금속 탄화물인 텅스텐 카바이드 (WC), 금속 질화물인 질소 알루미늄 (A1N), 금속 탄 질화물인 탄질화 티타늄 (TiCN) 등을 들 수 있으나, 반드시 이에 제한되지는 않는다.  Examples of the metal compound may include alumina (A1 0) as a metal oxide, tungsten carbide (WC) as a metal carbide, nitrogen aluminum (A1N) as a metal nitride, and titanium carbonitride (TiCN) as a metal carbonitride. It is not limited to this.
상기 담체로는 활성 탄, 탄화수소 화합물, 알루미나 (A1 0 ), 텅스텐 카바이드 (WC), 유리, 모래, 물이나 용매에 녹는 물질, 예컨대 포도당, 설탕, 소금, PMMA 등을 사용할 수 있으나, 반드시 이 에 제한되지는 않는다.  The carrier may be activated carbon, a hydrocarbon compound, alumina (A1 0), tungsten carbide (WC), glass, sand, a material soluble in water or a solvent, such as glucose, sugar, salt, PMMA, etc. It is not limited.
본 발명에 따른 나노 입자 제조 장치 에 있어서, 진공 증착조의 진공도는 10—4 내지 1 torr 인 것 이 바람직하다. In the nanoparticle production apparatus according to the present invention, the vacuum degree of the vacuum deposition tank is preferably 10 to 4 to 1 torr.
상기 진공 증착조의 진공도는 불활성 가스를 포함시 켜 조절하며, 상기 불활성 가스는 아르곤, 네온, N Ar, 0 , CH 등일 수 있으나, 반드시 이에 제한되지는 않는다.  The vacuum degree of the vacuum deposition tank is adjusted to include an inert gas, the inert gas may be argon, neon, N Ar, 0, CH and the like, but is not necessarily limited thereto.
본 발명에 따른 나노 입자 제조 장치는 불활성 가스를 이용하여 진공 증착조의 진공도가 1(Γ4 내지 1 torr 로 조절되는 분위 기 하에서 평균자유경로의 원리를 이용하여 증착원으로부터 상기 금속 또는 금속화합물의 나노 입자를 하향방향으로 비산하는 것을 특징으로 한다. The apparatus for producing nanoparticles according to the present invention is a nanoparticle of the metal or metal compound from the deposition source using the principle of the average free path under an atmosphere in which the vacuum degree of the vacuum deposition tank is adjusted to 1 (Γ 4 to 1 torr using an inert gas). It is characterized by scattering the particles in the downward direction.
도 4 에서 보는 바와 같이, 종래의 나노 입자 제조 장치에서는 금속 증기가 비산되는 방향은 모두 담체 방향이 었다.  As shown in FIG. 4, in the conventional nanoparticle manufacturing apparatus, the direction in which the metal vapor was scattered was in the carrier direction.
하지만 이 와 같이 원자화된 증기의 비산 방향이 담체 방향인 경우 증착원 주변에 주로 증착하므로, 증착하고자 하는 증기 의 손실이 야기 되고, 생산 속도를 높이기 위하여 높은 속도로 증기를 만들 경우 많은 증기들이 노즐내부에서 클러스터 (cluster)화하여 작은 크기 의 나노 입자를 제조하는 데 어 려움이 많았다. 본 발명에서는 원자화된 증기의 비산 방향이 담체 반대 방향이 어서 금속 증기는 상방으로 비산하지만 진공도가 1요 4 내지 1 torr 이기 때문에 내부에 채워진 불활성 가스로 인한 금속 증기 와 불활성 가스간의 층돌이 일어나 평균자유경로가 짧아져서 금속 증기가 중력에 의해 하향방향으로 이동하여 교반되는 담체 상에 나노 입자를 형성 한다. However, when the scattering direction of the atomized vapor is the carrier direction, it is mainly deposited around the deposition source, causing loss of vapor to be deposited, and when producing steam at high speed to increase the production rate, many vapors are formed inside the nozzle. It was difficult to produce small size nanoparticles by clustering at. In the present invention, since the vaporization direction of the atomized vapor is opposite to the carrier, the metal vapor is scattered upwards, but the vacuum degree is 1 to 4 to 1 torr, so that a layer stone is formed between the metal vapor and the inert gas due to the inert gas filled therein. The path is shortened so that the metal vapor moves downward by gravity to form nanoparticles on the stirred carrier.
상기와 같은 저진공 분위 기 에서의 금속증기의 이동경로를 확인하기 위하여, 알루미늄 금속 덩 어 리를 텅스텐 보트에 적 재하고 증착 열원으로서 직류 전원을 이용하여 열을 가하여 알루미늄 금속을 상방으로 증발하게 한 후 다양한 위치에 원형 슬라이드 그라스를 놓아두고 알루미늄을 증착시 킨 후 원형 슬라이드 그라스를 관찰하여 증기의 이동 방향을 모식 적으로 도 8a 에 나타냈다. 이 때 아르곤 가스를 이용하여 10— 3 torr 이상의 저진공 분위기를 형성하였다. In order to confirm the movement path of the metal vapor in the low vacuum atmosphere as described above, the aluminum metal mass was loaded on a tungsten boat and heat was applied using a DC power source as a deposition heat source to cause the aluminum metal to evaporate upward. After the circular slide glass was placed at various positions and aluminum was deposited, the circular slide glass was observed, and the moving direction of steam was schematically illustrated in FIG. 8A. At this time, by using the argon gas to form a low vacuum atmosphere at least 10- 3 torr.
도 8b 는 도 8a 에서 알루미늄이 증착된 슬라이드 그라스의 사진들이다. 사진에서 보듯이 증기 발생원에서 가까운 곳에 있는 슬라이드 그라스는 많은 양의 알루미늄이 증착된 것을 볼 수 있고 멀리 있는 슬라이드 그라스는 알루미늄이 거의 증착되지 않은 것을 불 수 있다 . 1 번과 2 번 슬라이드 그라스의 경우 알루미늄이 많이 증착될수톡 금속광택으로 반사되어 사진상으로는 동일한 색으로 보이나 이는 반사 때문에 생기는 현상이다. 4 번 슬라이드의 경우는 실제 증착된 양이 적어 검 정 색으로 불투명하게 보인다. 반면 5 번 내지 8 번 슬라이드 그라스의 경우 알루미늄이 거 의 증착되지 않아 투명 한 슬라이드 그라스를 확인할 수 있다.  FIG. 8B is photographs of the slide glass on which aluminum is deposited in FIG. 8A. As you can see in the picture, the slide glass close to the steam generator can see that a large amount of aluminum is deposited, while the far slide glass can see that very little aluminum is deposited. In the case of slide glass 1 and 2, a large amount of aluminum is deposited to reflect the metallic gloss, and the same color appears in the picture, but this is a phenomenon caused by reflection. Slide 4 shows a small amount of actual deposition, making it opaque black. On the other hand, in the case of slide glasses 5 to 8, aluminum is hardly deposited, so that the transparent slide glass can be confirmed.
즉 도 8a 와 같이 진공조의 진공도를 조절할 경우, 증착원의 증기 의 초기 비산 방향은 담체의 반대방향, 즉 상방이고 금속 원자들의 평균자유경로가 짧아짐에 따라 중력에 따라 다시 담체 방향, 즉 하향방향으로 이동할 수 있어 , 증착원에서 먼 부분은 증착이 이루어지지 않음을 확인할 수 있다.  That is, when adjusting the vacuum degree of the vacuum chamber as shown in FIG. It can be moved, it can be confirmed that the portion away from the deposition source is not deposited.
또한, 전자빔을 사용하여 재료인 SiO 를 증발시키 고 저진공의 압력에서 산화물 분자들이 이동하는 경로를 확인하기 위 하여 다양한 위치에서 원형 의 슬라이드 그라스를 놓아두고 증착 작업 이 완료된 후 각 시편의 증착된 두께를 육안으로 확인하여 증기의 이동방향을 확인하여 도 9a 에 나타냈다. 도 9b 는 도 9a 에서 슬라이드 그라스에 SiO 증기가 증착된 것을 확인한 사진이다. 1 번과 2 번 슬라이드 그라스는 전자빔의 바로 하부에 위치한 슬라이드 그라스로서 슬라이드 그라스 상에 산화물증기가 증착되지 않아 증기발생원의 바로 하부에는 산화물증기가 도달하지 않음을 확인할 수 있다. 하지만 3 번에서 8 번 슬라이드 그라스로 증기 발생원에서 멀어짐에 따라 Si02 증기의 증착량이 줄어드는 것을 육안으로 확인할 수 있다. 또한 가까운 위치의 9 번에서 15 번 슬라이드 그라스로 고도가 높아지면서 증착되는 양이 줄어들어 증착된 검정색이 감소하는 것을 볼 수 있는데, 이는 증기들이 하향방향으로 이동함을 의미한다. 이처럼 전자범을 증착원으로 사용하고 SiO 을 증발시켜 원형의 슬라이드 그라스를 위치 별로 놓고 확인한 결과, SiO 증기가 초기에 상방으로 비산하게 하지만, 아르곤 가스를 이용하여 진공도를 10_3 torr로 조절한 상태에서 슬라이드 그라스 상의 SiO 증착을 확인한 결과 산화물 증기들이 하향방향으로 이동하는 것을 확인할 수가 있다. In addition, the electron beam was used to evaporate SiO, the material, and to deposit the circular slide glass at various locations to determine the path of the oxide molecules at low vacuum pressure. Was visually confirmed to confirm the moving direction of the steam and is shown in FIG. 9A. FIG. 9B is a photograph confirming that SiO vapor is deposited on the slide glass in FIG. 9A. Slide glass 1 and 2 is a slide glass located directly below the electron beam, it can be seen that the oxide vapor is not reached directly below the steam source because the oxide vapor is not deposited on the slide glass. However, it can be seen visually that the deposition amount of Si02 vapor decreases as it moves away from the steam source from slide glasses 3 to 8. It can also be seen that as the altitude increases from the closest position to 9 to 15 slide glass, the amount of deposition decreases and the deposited black decreases, which means that the steam moves downward. Thus, by using the electronic pan as evaporation source, and evaporation of the SiO checking, place the slide glass circular each position result, SiO vapor, but the scattering upward Initially, by using argon gas in a state of adjusting the degree of vacuum to 10 _3 torr As a result of confirming the SiO deposition on the slide glass, it can be seen that the oxide vapors move downward.
또한, 본 발명에 따른 나노 입자 제조 장치에 있어서, 상기 스크류의 속도는 1 내지 200 rpm 으로 조절되는 것이 바람직하다.  In addition, in the nanoparticle manufacturing apparatus according to the present invention, the speed of the screw is preferably adjusted to 1 to 200 rpm.
상기 교반속도가 1 rpm 미만일 경우에는 교반이 층분히 이루어지지 않아 금속 나노 입자가 담체 표면에 균일하게 부착되지 못하는 문제점이 있으며, 교반 속도가 200 rpm 을 초과할 경우에는 담체 각각의 무게가 무거울 경우엔 고속 회전에 의해 교반조에 장입한 분체들이 비산될 수 있고, 담체 각각의 무게가 가벼울 경우 담체통의 내부에서만 교반이 이루어지어 무게에 의한 담체의 수직 방향으로의 이동이 잘 이루어지지 않는 문제점이 있다.  If the stirring speed is less than 1 rpm, agitation is not sufficiently performed, so that the metal nanoparticles are not uniformly attached to the surface of the carrier. If the stirring speed exceeds 200 rpm, each of the carriers is heavy. Powders charged in the stirring tank may be scattered by the high speed rotation, and when the weight of each carrier is light, the stirring may be performed only in the inside of the carrier barrel, thereby making it difficult to move the carrier in the vertical direction by the weight.
본 발명에 따른 나노 입자 제조 장치는 도 7 에서 보는 바와 같이. 증착속도, 교반속도 등을 조절함으로써 나노 입자의 성장을 제어하여 나노 입자의 크기와 함량을 효과적으로 제어할 수 있다.  Nanoparticles manufacturing apparatus according to the present invention as shown in FIG. By controlling the deposition rate, stirring speed, etc., the growth of the nanoparticles can be controlled to effectively control the size and content of the nanoparticles.
본 발명에 따른 나노 입자 제조 장치는, 금속, 또는 금속화합물 증기가 담체 상에 증착되어 금속 또는 금속화합물 나노 입자를 형성하기 위한 핵을 형성하며, 이후 상기 핵이 금속 증기의 추가적인 증착에 의해 나노 입자를 형성한 후에 담체가 교반, 회전되어 흔합되몌 금속 또는 금속화합물 증기가 증착되지 않은 새로운 담체 상 또는 금속이 증착되지 않은 담체 부위에 금속 증기가 증착됨으로써, 균일한 크기의 나노 입자를 제조할 수 있다. In the nanoparticle manufacturing apparatus according to the present invention, a metal or metal compound vapor is deposited on a carrier to form a nucleus for forming a metal or metal compound nanoparticle, and the nucleus is then nanoparticles by further deposition of metal vapor. After forming the carrier, the carrier was stirred and rotated to form a mixture of metal or metal vapor. By depositing metal vapor on a new undeposited carrier or on a site on which no metal is deposited, nanoparticles of uniform size can be produced.
본 발명에 따른 나노 입자 제조 장치는 상기 금속 또는 금속화합물 증기를 담체 상에 분당 단위면적당 1 A (저속 증기배출 속도) 에서 10 (고속 증기 배출속도) 두께의 증착속도로 조절되어, 저속 증착에서 고속 증착까지 문제를 야기하지 않으며 증기 발생원으로부터 많은 양의 증기가 발생하더라도 이를 모두 교반되는 담체 상에 나노 입자로 만들 수가 있다.  The nanoparticle production apparatus according to the present invention is controlled by the deposition rate of the metal or metal compound vapor on the carrier at a thickness of 1 A (low speed steam discharge rate) to 10 (high speed steam discharge rate) per unit area per minute, high speed in low speed deposition It does not cause problems until deposition, and even if a large amount of steam is generated from the steam source, all of them can be made into nanoparticles on the stirred carrier.
본 발명에 따른 나노 입자 제조 장치는 기존의 담체 교반 방식보다 증착 효율이 증진되고 내구성이 월등히 우수하다.  The nanoparticle manufacturing apparatus according to the present invention has enhanced deposition efficiency and superior durability compared to the conventional carrier stirring method.
본 발명에 의한 나노 입자 제조장치는 담체를 교반하기 위해 수직형 또는 수평형의 스크류를 사용하고, 상기 수평형 또는 수직형 스크류가 담체 중에 층분히 장입되게 함으로써, 진공조에서 과도한 비산이 일어나지 않게 하고, 기계적인 부하를 최소화하여 담체를 일정한 속도로 이송시키고, 담체의 교반을 균일하게 하여 증착 효율을 높이며 균일한 크기의 나노 입자를 제조할 수 있고, 기계적인 부하와 장비의 부하를 최소화하여 장비의 내구성을 증진시킬 수 있다.  The nanoparticle manufacturing apparatus according to the present invention uses a vertical or horizontal screw to stir the carrier, and the horizontal or vertical screw is loaded into the carrier to prevent excessive scattering in the vacuum chamber. , Can transport the carrier at a constant speed by minimizing the mechanical load, improve the deposition efficiency by making the stirring of the carrier uniform, and manufacture nanoparticles of uniform size, and minimize the mechanical load and equipment load Durability can be improved.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 통해 본 발명을 보다 상세히 설명하도록 한다. 그러나, 이들 실시예는 단지 예시적인 것일 뿐, 본 발명의 기술적 범위를 한정하는 것은 아니다. 실시예  Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. However, these embodiments are merely exemplary and do not limit the technical scope of the present invention. Example
〈실시예 1〉 구리 나노 입자의 포도당 증착  Example 1 Glucose Deposition of Copper Nanoparticles
진공조에 아르곤 (Ar)을 주입하여 진공도를 10—3torr 로 조절한 후, 구리를 증착원으로 하여 직류 스퍼터 (DC Sputter)로 구리 증기를 발생시켰다. 이 때, 상기 구리 증기가 비산되는 방향은 담체인 포도당이 담겨있는 교반조의 반대 방향, 즉 상향 방향이 되도록 장치하였다. After the injection of the argon (Ar) to adjust the degree of vacuum in the vacuum tank 10- 3 torr, and copper in the vapor source was a copper vapor generated by a direct current sputtering (DC Sputter). At this time, the direction in which the copper vapor is scattered was set so as to be in the opposite direction, that is, upward direction, of the stirring vessel in which glucose, which is a carrier, is contained.
상기 포도당은 교반조에 구비된 회전 스크류에 의하여 교반되며, 이 때 스크류에 의한 포도당의 교반속도는 lOOrpm이하가 유지되도록 하였다.  The glucose is agitated by a rotary screw provided in the stirring vessel, wherein the stirring speed of the glucose by the screw is maintained below lOOrpm.
상기 구리 증기를 포도당 담체에 증착시켜 약 laOOOppm 의 농도로 구리 나노 입자가 붙은 포도당을 제조하였다. <실험예 > The copper vapor was deposited on a glucose carrier to prepare glucose with copper nanoparticles at a concentration of about laOO ppm. Experimental Example
표면관찰  Surface observation
상기 실시예 1 에서 포도당 담체의 외관 변화를 육안 및 전자현미경으로 관찰하였다.  In Example 1, the appearance change of the glucose carrier was observed by visual and electron microscopy.
EDS 성분 분석  EDS component analysis
상기 실시예 1 에서 제조된 구리-포도당 나노 입자를 에너지 분광 검출기 (EDS, Energy Dispersive Spectrometry)를 이용하여 성분의 정량적, 정성적 분석을 하였다.  The copper-glucose nanoparticles prepared in Example 1 were subjected to quantitative and qualitative analysis of the components using an energy dispersive spectrometry (EDS).
용매처리 후 재결정화  Recrystallization after Solvent Treatment
상기 실시예 1 에서 제조된 구리ᅳ포도당 나노 입자를 물에 녹인 후 상기 구리 나노 입자가 재결정화된 형태를 전자현미경을 이용하여 관찰하였다. 도 10c 에서 보듯이 구리 나노 입자가 붙은 포도당 담체를 400 배 확대관찰한 구리 / 포도당 담체의 현미경 사진에서 표시된 1, 2, 3, 4 의 지점을 EDS로 분석한 결과 1, 2, 3의 위치에서 C, 0, Cu의 양이 동일하였다. 원소 분석 결과 검출된 Cᅳ 0 는 포도당 담체를 구성하고 있는 성분이며, Cu는 포도당 담체 위에 형성된 나노 입자로부터 발생한 성분이다. 반면 4 의 위치에는 구리가 검출되지 않고 C, 0가 검출되었다.  After dissolving the copper ᅳ glucose nanoparticles prepared in Example 1 in water and observed the recrystallized form of the copper nanoparticles using an electron microscope. As shown in FIG. 10C, the points 1, 2, 3, and 4 shown in the photomicrograph of the copper / glucose carriers, which were observed by 400 times magnification of the glucose carrier with the copper nanoparticles, were analyzed by EDS. The amounts of C, 0 and Cu were the same. C ᅳ 0 detected by elemental analysis is a component constituting the glucose carrier, and Cu is a component generated from nanoparticles formed on the glucose carrier. On the other hand, copper was not detected at the position 4, and C and 0 were detected.
또한, 도 10d 에서 보듯이 상기 구리 나노 입자가 붙은 포도당을 물에 녹인 후 이를 재결정하여 결정을 현미경으로 관찰한 결과, 상기 구리 나노입자들은 다양한 크기의 분산 또는 웅집된 형태로 존재함을 확인할 수 있다.  In addition, as shown in FIG. 10D, after dissolving the glucose with the copper nanoparticles in water and recrystallizing the same, the crystals were observed under a microscope, and the copper nanoparticles were found to be present in dispersed or condensed forms of various sizes. .

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
진공 증착조; 상기 진공 증착조 내에 구비된 교반조; 상기 교반조 내에 구비되고 담체를 교반하는 스크류; 및 상기 진공 증착조 내의 교반조 상부에 구비되고 금속 또는 금속화합물을 증발시키는 증착원으로 구성되는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치에 있어서  Vacuum deposition tanks; A stirring tank provided in the vacuum deposition tank; A screw provided in the stirring tank and stirring the carrier; And an evaporation source provided above the stirring vessel in the vacuum evaporation tank and evaporating the metal or metal compound.
상기 교반조의 측면의 상부 말단은, 수직면을 기준으로 중심 방향으로 1 내지 90도 굽어져 있고,  The upper end of the side of the stirring vessel is bent 1 to 90 degrees in the center direction with respect to the vertical plane,
상기 스크류는 수평 또는 수직 방향으로, 교반조에 장입되는 담체의 전체 깊이의 1/5 내지 3/4 를 교반하도톡 구비되는 것을 특징으로 하는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치.  Wherein the screw in the horizontal or vertical direction, characterized in that provided with stirring 1/5 to 3/4 of the total depth of the carrier charged in the stirring vessel, metal or metal compound nanoparticles manufacturing apparatus attached to the carrier.
【청구항 2】  [Claim 2]
청구항 1 에 있어서, 상기 진공 증착조의 진공도는 10— 4 내지 1 torr 인 것을 특징으로 하는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치. The apparatus of claim 1, wherein the vacuum deposition tank has a degree of vacuum of 10 − 4 to 1 torr.
【청구항 3】 [Claim 3]
청구항 1 에 있어서, 상기 스크류의 속도는 1 내지 200 rpm 으로 조절되는 것을 특징으로 하는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치 .  The apparatus of claim 1, wherein the speed of the screw is controlled at 1 to 200 rpm.
【청구항 4】  [Claim 4]
청구항 1 에 있어서, 상기 금속 또는 금속화합물을 증발시키는 증착원은 열 증착, 디시 스퍼터링 (DC Sputtering), 디시-알에프 스퍼터링 (DC-RF Sputtering), 전자 빔 증착 (E-Beam Evaproation), 또는 레이저 스퍼터링 (Laser Sputtering)을 이용하는 것을 특징으로 하는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치.  The deposition source of claim 1, wherein the deposition source for evaporating the metal or metal compound is thermal vapor deposition, DC sputtering, DC-RF sputtering, E-Beam Evaproation, or laser sputtering. (Laser Sputtering), characterized in that the metal or metal compound nanoparticle production apparatus attached to the carrier.
【청구항 5】  [Claim 5]
청구항 1 에 있어서, 상기 금속화합물은 금속 산화물, 금속 질화물, 금속 탄화물 또는 금속 탄 질화물인 것을 특징으로 하는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치.  The apparatus of claim 1, wherein the metal compound is a metal oxide, a metal nitride, a metal carbide, or a metal carbonitride.
【청구항 6】 청구항 1 에 있어서 , 상기 금속화합물은 알루미나 (A1203), 텅스텐 카바이드 (WC), 질소 알루미늄 (A1N) 또는 탄 질화 티타늄 (TiCN)인 것을 특징으로 하는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치 . [Claim 6] The apparatus of claim 1, wherein the metal compound is alumina (A1203), tungsten carbide (WC), nitrogen aluminum (A1N), or titanium carbonitride (TiCN). .
【청구항 7】  [Claim 7]
청구항 1 에 있어서, 상기 금속 또는 금속화합물 증기를 담체 상에 분당 단위면적당 1 A 내지 10 zm 두께로 증착하는 것을 특징으로 하는, 담체에 부착된 금속 또는 금속화합물 나노 입자 제조 장치 .  The apparatus of claim 1, wherein the metal or metal compound vapor is deposited on the carrier at a thickness of 1 A to 10 zm per unit area per minute.
PCT/KR2012/003420 2011-05-02 2012-05-02 Device for preparing nano particle attached to support WO2012150802A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0041583 2011-05-02
KR20110041583A KR101484572B1 (en) 2011-05-02 2011-05-02 Manufacturing device for nano particle attached to support

Publications (2)

Publication Number Publication Date
WO2012150802A2 true WO2012150802A2 (en) 2012-11-08
WO2012150802A3 WO2012150802A3 (en) 2013-01-17

Family

ID=47108126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003420 WO2012150802A2 (en) 2011-05-02 2012-05-02 Device for preparing nano particle attached to support

Country Status (2)

Country Link
KR (1) KR101484572B1 (en)
WO (1) WO2012150802A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070044879A (en) * 2005-10-26 2007-05-02 주식회사 피앤아이 Manufacture method of powder and the device that metal, alloy and ceramic nano particle is vacuum-metallized evenly
KR100835207B1 (en) * 2007-05-31 2008-06-09 대한민국(관리부서:농촌진흥청장) Process for preparation of natural silk including ag nano-particle
JP2009079251A (en) * 2007-09-26 2009-04-16 Ulvac Japan Ltd Metal-vapor-deposition apparatus and method for stirring powdery carrier in the same apparatus
KR20100086907A (en) * 2009-01-23 2010-08-02 세종대학교산학협력단 Powder agitator in vacuum for dry deposition process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070044879A (en) * 2005-10-26 2007-05-02 주식회사 피앤아이 Manufacture method of powder and the device that metal, alloy and ceramic nano particle is vacuum-metallized evenly
KR100835207B1 (en) * 2007-05-31 2008-06-09 대한민국(관리부서:농촌진흥청장) Process for preparation of natural silk including ag nano-particle
JP2009079251A (en) * 2007-09-26 2009-04-16 Ulvac Japan Ltd Metal-vapor-deposition apparatus and method for stirring powdery carrier in the same apparatus
KR20100086907A (en) * 2009-01-23 2010-08-02 세종대학교산학협력단 Powder agitator in vacuum for dry deposition process

Also Published As

Publication number Publication date
WO2012150802A3 (en) 2013-01-17
KR101484572B1 (en) 2015-01-20
KR20120123939A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
Chalker et al. Liquid injection atomic layer deposition of silver nanoparticles
Kim et al. Growth pathways of silver nanoplates in kinetically controlled synthesis: bimodal versus unimodal growth
Gurmen et al. Nanocrystalline spherical iron–nickel (Fe–Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR)
Tang et al. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres
Uysal et al. Nanostructured core–shell Ni deposition on SiC particles by alkaline electroless coating
Ding et al. Large scale preparation of silver nanowires with different diameters by a one-pot method and their application in transparent conducting films
Sergievskaya et al. Sputtering onto liquids: a critical review
Zhang et al. Convenient synthesis of Ag nanowires with tunable length and morphology
Sahoo et al. Synthesis of surface modified SiC superhydrophobic coating on stainless steel surface by thermal plasma evaporation method
Fan et al. Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation
Mohri et al. Thermal stability of the Ti-Zr-Cu-Pd nano-glassy thin films
KR101699274B1 (en) Manufacturing method for nano-powder using supporter
Nie et al. Morphology modulation and application of Au (I)–thiolate nanostructures
KR20130129345A (en) Manufacturing device for nano particle attached to support
Salaün et al. The incorporation of preformed metal nanoparticles in zinc oxide thin films using aerosol assisted chemical vapour deposition
Klabunde et al. Nanochemistry
Sha et al. Scanning electron microscopy study of microstructural evolution of electroless nickel–phosphorus deposits with heat treatment
WO2018142943A1 (en) Method for manufacturing highly crystalline silver particles
He et al. Shape-controlled synthesis for silver: Triangular/hexagonal nanoplates, chain-like nanoplate assemblies, and nanobelts
Song et al. Room-temperature controllable fabrication of silver nanoplates reduced by aniline
Yang et al. A study of CVD growth kinetics and morphological evolution of rhenium from ReCl5
WO2012150802A2 (en) Device for preparing nano particle attached to support
Bouchat et al. On some applications of nanoparticles synthesized in the gas phase by magnetron discharges
Pingali et al. Direct synthesis of Ru–Ni core-and-shell nanoparticles by spray-pyrolysis: Effects of temperature and precursor constituent ratio
Sadafi et al. On the complex role of ammonia in the electroless deposition of curved silver patches on silica nanospheres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12779795

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/02/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12779795

Country of ref document: EP

Kind code of ref document: A2