WO2012137744A1 - Glass plate with low reflective film - Google Patents

Glass plate with low reflective film Download PDF

Info

Publication number
WO2012137744A1
WO2012137744A1 PCT/JP2012/059002 JP2012059002W WO2012137744A1 WO 2012137744 A1 WO2012137744 A1 WO 2012137744A1 JP 2012059002 W JP2012059002 W JP 2012059002W WO 2012137744 A1 WO2012137744 A1 WO 2012137744A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection film
glass plate
low reflection
low
fine particles
Prior art date
Application number
PCT/JP2012/059002
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 啓介
雄一 ▲桑▼原
洋平 河合
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020137025382A priority Critical patent/KR101884961B1/en
Priority to DE112012001546.0T priority patent/DE112012001546B4/en
Priority to JP2013508865A priority patent/JP6020444B2/en
Priority to CN201280016572.8A priority patent/CN103476726B/en
Publication of WO2012137744A1 publication Critical patent/WO2012137744A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • C03C2217/452Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Definitions

  • the present invention relates to a glass plate with a low reflection film, a method for producing a glass plate with a low reflection film, a display device, and a glass plate with a low reflection film for a display device.
  • a glass plate with a low reflection film having a low reflection film on the surface of the glass plate is used as a cover glass for solar cells, various displays and their front plates, various window glasses, or a cover glass for touch panels.
  • a cover glass (protective glass) is provided on the front surface of a display member in a small display such as a mobile phone or a portable information terminal, a large display such as various televisions, or various display devices such as a touch panel in order to enhance the protection and aesthetics of the display. It is increasingly used. And in order to improve the visibility of the image displayed on a display apparatus, the glass plate with a low reflection film which has a visible light antireflection film is used as a cover glass.
  • the glass plate with a low reflection film used for various displays, window glass for automobiles, touch panels, etc., or the glass plate with a low reflection film used in the display device is often touched by human hands.
  • removability of oil stains such as fingerprints is required.
  • Patent Document 1 As a method for imparting oil stain removal property to a glass plate with a low reflection film, a method for sticking an oil stain prevention film to its surface, or a method for applying a stain prevention layer on an antireflection layer (Patent Document 1). ) Is well known.
  • the present invention produces a glass plate with a low-reflection film having a single-layer low-reflection film on the surface of the glass plate having a sufficiently low reflectivity and good removal of oil and fat stains, and the glass plate with the low-reflection film.
  • the manufacturing method which can be performed, and the display apparatus which has the said glass plate with a low reflection film are provided.
  • the glass plate with a low reflection film of the present invention is a glass plate with a low reflection film having a single-layer low reflection film containing a matrix and hollow fine particles on the surface of the glass plate, and has a wavelength in the range of 300 to 1,200 nm.
  • the minimum reflectance of the low reflective film is 1.7% or less
  • the water contact angle on the surface of the low reflective film is 97 ° or more
  • the oleic acid contact angle on the surface of the low reflective film is The oleic acid falling angle on the surface of the low reflection film is 25 ° or less.
  • the single-layer low-reflection film means a film that has a uniform, substantially homogeneous, or heterogeneous single layer structure that imparts a low-reflection function.
  • the glass plate with a low reflection film of the present invention means a glass plate in which the low reflection film is formed on the outermost layer of at least one surface of the glass plate.
  • a color tone adjusting film, an adhesion improving film, a durability improving film, an antistatic film, and various other desired functional films may be formed as a single layer or a multilayer.
  • the proportion of fluorine element on the surface of the low reflection film measured by X-ray photoelectron spectroscopy is preferably 3 to 20 atomic%.
  • the arithmetic average roughness (Ra) of the surface of the low reflection film measured by a scanning probe microscope device is preferably 3.0 to 5.0 nm.
  • the refractive index of the low reflection film is preferably 1.30 to 1.46.
  • the matrix is derived from a fluorine-containing ether compound having silica as a main component, having a poly (oxyperfluoroalkylene) chain in the main chain, and having a hydrolyzable silyl group at at least one end of the main chain. It preferably has a structure.
  • the fluorine-containing ether compound is preferably a compound (A) represented by the following formula (A).
  • R F1 O CF 2 CF 2 O) a CF 2- (Q) b (— (CH 2 ) d —SiL p R 3-p ) c (A).
  • R F1 is a monovalent perfluoro saturated hydrocarbon group having 1 to 20 carbon atoms or a monovalent perfluoro saturated hydrocarbon having 2 to 20 carbon atoms in which an etheric oxygen atom is inserted between carbon atoms.
  • a hydrogen group and a group not including the —OCF 2 O— structure a is an integer from 1 to 200; b is 0 or 1, Q is absent when b is 0, and is a divalent or trivalent linking group when b is 1, c is 1 when Q is not present or Q is a divalent linking group, and is 2 when Q is a trivalent linking group; d is an integer of 2 to 6, L is a hydrolyzable group, R is a hydrogen atom or a monovalent hydrocarbon group, p is an integer of 1 to 3.
  • the hollow fine particles are preferably hollow silica fine particles.
  • the method for producing a glass plate with a low-reflection film of the present invention is a method for producing a glass plate with a low-reflection film having a single-layer low-reflection film containing a matrix and hollow fine particles on the surface of the glass plate.
  • a coating solution containing a solid body, hollow fine particles and a solvent is applied to the surface of the glass plate and baked.
  • the matrix precursor has a silica precursor and a poly (oxyperfluoroalkylene) chain in the main chain.
  • a fluorine-containing ether compound having a hydrolyzable silyl group at at least one end of the main chain and / or a hydrolyzed condensate thereof, and hollow fine particles and a silica precursor (in terms of SiO 2 ) in the coating solution ) mass ratio of the (hollow fine particles / SiO 2) is 6/4 to a 4/6, the ratio of the fluorine-containing ether compound in the coating solution, hollow fine particles and a silica precursor (S O 2 equivalent) to the sum of the relative (100 mass%), characterized in that 0.8 to 3.0 mass%.
  • fluorinated ether compound and / or hydrolysis condensate thereof means at least one selected from the group consisting of a fluorinated ether compound and a hydrolyzed condensate of a fluorinated ether compound in the present specification. means.
  • the fluorine-containing ether compound is preferably a compound (A) represented by the following formula (A).
  • R F1 O (CF 2 CF 2 O) a CF 2- (Q) b (— (CH 2 ) d —SiL p R 3-p ) c (A).
  • R F1 , a, b, Q, c, d, L, R and p have the same meaning as described above.
  • the silica precursor is preferably an alkoxysilane hydrolysis condensate.
  • compound (A) is added, and then a dispersion of hollow fine particles is added to form a coating liquid. It is preferable.
  • the hollow fine particles are preferably hollow silica fine particles.
  • the present invention is also a display device including a housing, a display member, and a glass plate with a low reflection film disposed on a display surface of the display member, the glass plate with a low reflection film comprising a matrix, hollow fine particles, Is a glass plate with a low-reflection film having a single-layer low-reflection film on the surface of the glass plate, and the minimum reflectance of the low-reflection film within a wavelength range of 300 to 1,200 nm is 1.7% or less
  • the water contact angle on the surface of the low reflection film is 97 ° or more
  • the oleic acid contact angle on the surface of the low reflection film is 50 ° or more
  • oleic acid falls on the surface of the low reflection film
  • a display device characterized by being a glass plate with a low reflection film having an angle of 25 ° or less.
  • the present invention also provides a glass plate with a low reflection film having a single layer low reflection film containing a matrix and hollow fine particles on the surface of the glass plate, the low reflection film having a wavelength in the range of 300 to 1,200 nm.
  • the minimum reflectance is 1.7% or less
  • the water contact angle on the surface of the low reflection film is 97 ° or more
  • the oleic acid contact angle on the surface of the low reflection film is 50 ° or more.
  • a glass plate with a low reflection film for a display device wherein the oleic acid falling angle on the surface of the low reflection film is 25 ° or less.
  • the display device of the present invention includes a housing, a display member, and the glass plate with a low reflection film disposed on the display surface of the display member. Moreover, this invention provides the said glass plate with a low reflection film for display apparatuses.
  • the low reflection film is formed on the outer side of the display device, that is, on the outermost surface on the viewer side or the operator side. Is done.
  • the glass plate with a low-reflection film of the present invention has a single-layer low-reflection film on the surface of the glass plate that has a sufficiently low reflectance and good oil and fat stain removability.
  • the low reflection film having a single-layer low reflection film on the surface of the glass plate that has a sufficiently low reflectance and good oil and fat stain removability.
  • a glass plate can be manufactured.
  • the display device of the present invention is a display device having, as a cover glass, a glass plate having a single-layer low-reflection film that has a sufficiently low reflectivity and good oil and fat stain removability.
  • FIG. 1 is a cross-sectional view showing an example of a glass plate with a low reflection film of the present invention and a glass plate with a low reflection film for a display device of the present invention (hereinafter also simply referred to as a glass plate with a low reflection film).
  • the glass plate 10 with a low reflection film includes a glass plate 12 and a low reflection film 14 formed on the surface of the glass plate 12.
  • FIG. 3 is a cross-sectional view showing an example of the display device 100 of the present invention.
  • the display device 100 includes a glass plate 10 with a low reflection film for display devices (hereinafter also simply referred to as a glass plate 10 with a low reflection film), a display member 20, and a housing 30.
  • the glass plate 10 with a low reflection film includes a glass plate 12 and a low reflection film 14 formed on the surface of the glass plate.
  • the low reflection film 14 is formed in the surface on the opposite side to the surface facing the display member of a glass plate. 1 and 3, the upper surface side of the low reflection film 14 of the glass plate 10 with the low reflection film is the outside of the display device, that is, the viewer side or the operator side.
  • the display device of the present invention includes various display devices such as a small display such as a mobile phone or a portable information terminal, a large display such as various televisions, or a touch panel.
  • a small display such as a mobile phone or a portable information terminal
  • a large display such as various televisions
  • a touch panel a display device having a glass plate with a low reflection film that has excellent fingerprint removability. Preferred specific examples are mentioned.
  • Examples of the display member include a liquid crystal display member, a plasma display member, and an organic EL display member.
  • the housing is a box-shaped member that houses the display member 20 and the glass plate 10 with the low reflection film, and the material may be resin, metal, or the like.
  • Glass plate 12 examples include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass.
  • molded by the float glass process etc. may be sufficient, and the template glass which has an unevenness
  • the refractive index of the glass plate 12 is preferably 1.45 to 1.60 from the relationship between the low reflection film and the refractive index.
  • Layers other than the low reflection film 14 such as an alkali barrier layer and a primer layer may be formed in advance on the surface of the glass plate 12.
  • the low reflection film 14 is, for example, a single-layer film including a matrix and hollow fine particles formed by applying a coating liquid for forming a low reflection film described later once.
  • the low-reflection film 14 may be formed by applying the coating liquid for forming the low-reflection film a plurality of times, and the single-layer configuration in which the film functions as the low-reflection film or substantially. Any material that can be regarded as a single-layer structure may be used.
  • the matrix has a relatively low refractive index, low reflectivity, excellent chemical stability, and excellent adhesion to the glass plate 12, so that it contains silica as the main component and a small amount of a fluorine-containing ether compound. What has the component which has a structure derived from is preferable. Except for the component which has a structure derived from the fluorine-containing ether compound in a matrix, what consists of silica substantially is more preferable. “Silica as a main component” means that the proportion of silica is 90% by mass or more of the matrix (100% by mass), and substantially consisting of silica means a structure derived from the compound (A) described later and It means that it is composed only of silica excluding inevitable impurities.
  • the matrix has a poly (oxyperfluoroalkylene) chain, which will be described later, in the main chain, and has a hydrolyzable silyl group at least at one end of the main chain, from the point that it is excellent in oil and fat stain removability. It preferably has a structure derived from a fluorine-containing ether compound.
  • Examples of the matrix include a calcined product of at least one matrix precursor selected from the group of matrix precursors (a), (b) and (c) described below, and the like, from the point of excellent oil and oil stain removal properties.
  • a fired product of the matrix precursor (a) is more preferable.
  • a matrix precursor containing a silica precursor described later and a fluorine ether compound described later (B) A matrix precursor containing a silica precursor described later, a fluorine ether compound described later, and a hydrolysis condensate between the fluorine ether compounds. (C) A matrix precursor containing a silica precursor described later, a hydrolysis condensate of fluorine ether compounds described later, and a hydrolysis condensate of a silica precursor (alkoxysilane) and a fluorine ether compound.
  • the material of the shell of the hollow fine particles Al 2 O 3 , SiO 2 , SnO 2 , TiO 2 , ZrO 2 , ZnO, CeO 2 , Sb-containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), RuO 2 etc. are mentioned. Among these, one type may be used alone, or two or more types may be used in combination.
  • the shape of the hollow fine particles include a spherical shape, an elliptical shape, a needle shape, a plate shape, a rod shape, a cone shape, a columnar shape, a cube shape, a rectangular shape, a diamond shape, a star shape, and an indefinite shape.
  • the hollow fine particles may exist in a state where each fine particle is independent, each fine particle may be linked in a chain shape, or each fine particle may be aggregated.
  • hollow silica fine particles are preferable because the low reflective film 14 has a low refractive index, a low reflectivity is obtained, chemical stability is excellent, and adhesion to the glass plate 12 is excellent.
  • the average primary particle diameter of the hollow silica fine particles is preferably 5 to 150 nm, more preferably 50 to 100 nm.
  • the average primary particle diameter of the hollow silica fine particles is 5 nm or more, the reflectance of the low reflective film 14 is sufficiently low. If the average primary particle diameter of the hollow silica fine particles is 150 nm or less, the haze of the low reflective film 14 can be suppressed low.
  • the average primary particle size is obtained by randomly selecting 100 fine particles from an electron micrograph, measuring the particle size of each fine particle, and averaging the particle size of 100 fine particles.
  • the minimum reflectance of the low reflective film 14 within the wavelength range of 300 to 1,200 nm is 1.7% or less, preferably 0.2 to 1.7%, more preferably 0.8 to 1.1%. 0.9 to 1.0% is more preferable. If the minimum reflectance of the low-reflection film 14 is 1.7% or less, the glass plate 10 with the low-reflection film sufficiently satisfies the low reflectance required for various displays, automotive window glasses, touch panels, and the like. . If the minimum reflectance of the low reflection film 14 is greater than 1.7%, the low reflection characteristics may be insufficient.
  • the water contact angle on the surface of the low reflection film 14 is 97 ° or more, preferably 95 ° to 121 °, more preferably 97 ° to 109 °, and still more preferably 97 ° to 99 °.
  • the contact angle of oleic acid on the surface of the low reflection film 14 is 50 ° or more, preferably 50 ° to 90 °, more preferably 52 ° to 87 °, and particularly preferably 55 ° to 85 °.
  • the oleic acid tumbling angle on the surface of the low reflective film 14 is 25 ° or less, preferably 5 ° to 25 °, more preferably 5 ° to 20 °, and more preferably 6 ° to 10 °.
  • the oil and fat stains on the surface of the low reflective film 14 can be easily removed.
  • the ratio of the elemental fluorine on the surface of the low reflective film 14 measured by X-ray photoelectron spectroscopy is preferably 3 to 20 atomic%, more preferably 5 to 18 atomic%, and further preferably 5 to 16 atomic%.
  • the ratio of the elemental fluorine on the surface of the low reflection film 14 indicates how much a structure derived from a fluorine-containing compound such as the compound (A) described later exists on the surface of the low reflection film 14 and in the vicinity thereof. If the ratio of the fluorine element on the surface of the low reflective film 14 is 3 atomic% or more, the oil and fat stain removability is further improved.
  • X-ray photoelectron spectroscopy is a method of observing photoelectrons escaped from the sample surface by X-ray irradiation, and therefore the analysis result is the observable photoelectron escape depth, more specifically, low reflection. This is analysis information of the outermost surface layer having a depth of several nm to several tens of nm from the outermost surface on the air side of the film.
  • the arithmetic average roughness (Ra) of the surface of the low reflection film 14 measured by a scanning probe microscope device is preferably 3.0 to 5.0 nm, more preferably 3.0 to 4.5 nm, and 3.0 to 4 More preferably, 0.0 nm. If the arithmetic average roughness (Ra) of the surface of the low reflective film 14 is 3.0 nm or more, it indicates that very fine irregularities are formed, and the water and oil repellency is easily improved. If the arithmetic mean roughness (Ra) of the surface of the low reflective film 14 is 5.0 nm or less, the oil and fat stain removability is further improved.
  • the refractive index of the low reflection film 14 is preferably 1.20 to 1.46, more preferably 1.20 to 1.40, and further preferably 1.20 to 1.35. If the refractive index of the low reflective film 14 is 1.20 or more, the porosity of the low reflective film 14 does not become too high, and the durability is improved. When the refractive index of the low reflective film 14 is 1.46 or less, the reflectance of the low reflective film 14 is sufficiently low.
  • the refractive index n of the low-reflection film 14 is in the range of 300 to 1,200 nm when a single-layer low-reflection film 14 is formed on the surface of the glass plate 12 and the single-layer low-reflection film 14 is measured with a spectrophotometer.
  • the minimum reflectance (so-called bottom reflectance) Rmin and the refractive index ns of the glass plate 12 are calculated by the following equation (1).
  • Rmin (n ⁇ ns) 2 / (n + ns) 2 (1).
  • the thickness of the low reflection film 14 is preferably 80 to 100 nm, and more preferably 85 to 95 nm. When the thickness of the low reflection film 14 is 80 nm or more, the durability of the low reflection film 14 is expressed. If the thickness of the low reflection film 14 is 100 nm or less, it depends on the refractive index of the film to be used, but it is preferable because low reflectivity is exhibited as a single layer film.
  • the thickness of the low reflection film 14 is measured from an image obtained by observing the cross section of the low reflection film 14 with a scanning electron microscope.
  • the glass plate 10 with a low reflection film of the present invention can be manufactured, for example, by applying a coating solution for forming the low reflection film 14 to the surface of the glass plate 12, preheating as desired, and finally baking.
  • the coating solution contains a matrix precursor, hollow fine particles, and a solvent.
  • the coating solution may contain a surfactant for improving the leveling property, a metal compound for improving the durability of the low reflection film 14, or the like.
  • the matrix precursor includes a silica precursor, a fluorine-containing ether compound having a poly (oxyperfluoroalkylene) chain in the main chain and a hydrolyzable silyl group at least at one end of the main chain, and / or its And hydrolyzed condensate.
  • the hydrolyzed condensate of the fluorinated ether compound may be a hydrolyzed condensate between the fluorinated ether compounds, or may be a hydrolyzed condensate of an alkoxysilane that is a silica precursor and a fluorinated ether compound. Good.
  • the matrix precursor include at least one matrix precursor selected from the group of the following matrix precursors (a), (b), and (c). From the viewpoint of excellent removability, the matrix precursor (a) is more preferable.
  • a matrix precursor containing a silica precursor and a fluorine-containing ether compound A matrix precursor containing a silica precursor, a fluorine-containing ether compound, and a hydrolysis condensate of compound (A).
  • B A matrix precursor containing a silica precursor, a hydrolysis condensate between fluorine-containing ether compounds, and a hydrolysis condensate of a silica precursor (alkoxysilane) and a fluorine-containing ether compound.
  • silica precursor examples include alkoxysilane, alkoxysilane hydrolysis condensate (sol-gel silica), silazane, and the like. From the viewpoint of each characteristic of the low reflective film 14, an alkoxysilane hydrolysis condensate is preferable.
  • alkoxysilane examples include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, or tetrabutoxysilane), alkoxysilane having a perfluoropolyether group (perfluoropolyether triethoxysilane, etc.), and a perfluoroalkyl group.
  • Alkoxysilane (perfluoroethyltriethoxysilane, etc.) having a vinyl group alkoxysilane having a vinyl group (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4-epoxycyclohexyl) ethyl Trimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, or 3-glycidoxypropyltrie Kishishiran etc.), or acryloyl alkoxysilane having an oxy group (3-acryloyloxy propyl trimethoxysilane and the like) and the like.
  • hydrolysis of alkoxysilane is carried out using water at least 4 times the mole of alkoxysilane and an acid or alkali as a catalyst.
  • the acid include inorganic acids (for example, nitric acid, sulfuric acid, or hydrochloric acid), or organic acids (for example, formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, or trichloroacetic acid).
  • the alkali include ammonia, sodium hydroxide, and potassium hydroxide.
  • the catalyst is preferably an acid from the viewpoint of long-term storage stability of the alkoxysilane hydrolysis condensate.
  • a catalyst used for hydrolysis of alkoxysilane a catalyst that does not hinder the dispersion of hollow fine particles is preferable.
  • the fluorine-containing ether compound may have a hydrolyzable silyl group at one end of the main chain, or may have a hydrolyzable silyl group at both ends of the main chain. From the viewpoint of sufficiently imparting friction resistance to the low reflection layer, it is preferable to have a hydrolyzable silyl group only at one end of the main chain.
  • the low reflection layer is a layer formed on the outermost surface of the film, and is the outermost surface portion of the film where fingerprints and dirt are in direct contact.
  • the fluorine-containing ether compound may be a single compound, or may be a mixture of two or more different poly (oxyperfluoroalkylene) chains, terminal groups, or linking groups.
  • the number average molecular weight of the fluorinated ether compound is preferably from 500 to 10,000, more preferably from 800 to 8,000. When the number average molecular weight is within the above range, the friction resistance is excellent. From the viewpoint of compatibility with the other components constituting the matrix precursor, the number average molecular weight of the compound is particularly preferably 800 to 2,000. In general, in a fluorine-containing ether compound, it is considered that the smaller the number average molecular weight, the stronger the chemical bond with the substrate. The reason for this is considered that the number of hydrolyzable silyl groups present per unit molecular weight increases. However, the present inventors have confirmed that if the number average molecular weight is less than the lower limit of the above range, the friction resistance tends to decrease.
  • the fluorine-containing ether compound Since the fluorine-containing ether compound has a poly (oxyperfluoroalkylene) chain, the fluorine atom content is large. Therefore, the fluorine-containing ether compound has a high initial water and oil repellency and can form a low reflection layer excellent in friction resistance or fingerprint stain removability.
  • a hydrolyzable silyl group (—SiL m R 3-m ) in the fluorine-containing ether compound undergoes a hydrolysis reaction to form a silanol group (Si—OH), and the silanol group reacts between molecules to form Si—
  • An O—Si bond is formed, or the silanol group is subjected to a dehydration condensation reaction with a hydroxyl group (substrate —OH) on the surface of the substrate to form a chemical bond (substrate —O—Si). That is, the low reflective layer in the present invention contains the present compound in a state in which a part or all of the hydrolyzable silyl group of the present compound is hydrolyzed.
  • the compound (A) is a compound represented by the following formula (A).
  • R F1 represents a monovalent perfluoro saturated hydrocarbon group having 1 to 20 carbon atoms or a monovalent perfluoro saturated hydrocarbon group having 2 to 20 carbon atoms in which an etheric oxygen atom is inserted between the carbon atom and the carbon atom. And a group not containing the —OCF 2 O— structure.
  • a is an integer of 1 to 200, preferably an integer of 2 to 100, more preferably an integer of 3 to 50, and still more preferably an integer of 5 to 25.
  • b is 0 or 1, and 1 is preferable.
  • Q is absent when b is 0 and is a divalent or trivalent linking group when b is 1.
  • c is 1 when Q is not present or Q is a divalent linking group, and is 2 when Q is a trivalent linking group.
  • d is an integer of 2 to 6.
  • R is a hydrogen atom or a monovalent hydrocarbon group.
  • L is a hydrolyzable group.
  • the hydrolyzable group is a group that can form a Si—OH group by hydrolysis of a Si—L group.
  • L examples include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, or a halogen atom, and the stability of the compound (A) and the ease of hydrolysis. From the viewpoint of balance, an alkoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferable. As the alkoxy group, an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable. When two or more L are present in the fluorine-containing compound, L may be the same group or different groups, and the same group is preferable from the viewpoint of availability.
  • P is an integer from 1 to 3.
  • p is 1 or more, the structure derived from the compound (A) can be firmly bonded to the matrix by the condensation of Si—OH groups.
  • p is preferably 2 or 3, particularly preferably 3.
  • the following compound (A-1) or compound (A-2) is preferred from the viewpoint of oil and fat stain removability and ease of synthesis of the compound (A).
  • a1 and a2 are integers of 5 to 25.
  • the compound (A) has no —OCF 2 O— structure, the low reflection film 14 having excellent deterioration resistance can be formed even in the presence of an acid catalyst and under high temperature conditions.
  • the (CF 2 CF 2 O) a structure of the compound (A) is an alkyleneoxy structure in which no CF 3 group that reduces molecular mobility exists. Therefore, the mobility of the molecule of the compound (A) itself is increased, and the low reflection film 14 formed from the matrix precursor containing the compound (A) is a film excellent in oil and fat stain removability.
  • the mass ratio (hollow fine particles / SiO 2 ) between the hollow fine particles and the silica precursor (SiO 2 equivalent) in the coating solution is preferably 6/4 to 4/6. If the ratio of the hollow fine particles is less than 6/4, the arithmetic average roughness (Ra) of the surface of the low reflection film 14 is reduced, and the oil and dirt removal property of the low reflection film 14 is improved. If the ratio of the hollow fine particles is more than 4/6, the refractive index of the low reflective film 14 is low, and the reflectivity of the low reflective film 14 is sufficiently low.
  • the ratio of the fluorine-containing ether compound in the coating solution is preferably 0.8 to 3.0% by mass with respect to the total (100% by mass) of the hollow fine particles and the silica precursor (in terms of SiO 2 ), 1.0 More preferably, it is -1.8 mass%. If the ratio of a fluorine-containing ether compound is 0.8 mass% or more, the removal property of fats and oils will improve further. When the ratio of the fluorinated ether compound is 2.0% by mass or less, the haze increase due to the local uneven distribution of the film surface of the fluorinated ether compound is not preferable.
  • the solvent examples include a solvent for the matrix precursor solution and a dispersion medium for the dispersion of hollow fine particles.
  • a mixed solvent of water and alcohols for example, methanol, ethanol, isopropanol, butanol, diacetone alcohol, etc. is preferable.
  • the organic solvent may be a fluorinated organic solvent, a non-fluorinated organic solvent, or may include both solvents.
  • Examples of the solvent include methanol or ethanol.
  • dispersion medium for the hollow fine particle dispersion examples include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
  • Examples of the method for preparing the coating liquid include the following methods ( ⁇ ) to ( ⁇ ).
  • the fluorinated ether compound floats on the surface of the coating film and is fired.
  • the method ( ⁇ ) is preferable since the structure derived from the fluorine-containing ether compound is later unevenly distributed on the surface of the low reflective film 14 and excellent removability of fat and oil stains is exhibited.
  • the dispersion of hollow fine particles is preferably added after diluting the solution of the matrix precursor from the viewpoint of suppressing aggregation of the hollow fine particles.
  • a known wet coating method for example, spin coating method, spray coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure coating method, bar coating method. , Flexo coat method, slit coat method, roll coat method, etc.).
  • the coating temperature is preferably room temperature to 200 ° C, more preferably room temperature to 150 ° C.
  • the firing temperature is preferably 30 ° C. or higher, more preferably 100 to 180 ° C., and may be appropriately determined according to the material of the glass plate, fine particles or matrix.
  • the firing time is preferably 3 minutes or more, more preferably from 10 minutes to 60 minutes, and may be appropriately determined according to the material of the glass plate, fine particles or matrix.
  • the glass plate with a low-reflection film of the present invention is a glass plate with a low-reflection film having a single-layer low-reflection film containing a matrix and hollow fine particles on the surface of the glass plate, wherein the matrix is the fluorine-containing ether compound.
  • the hollow fine particles are preferably the hollow silica fine particles, and the fluorine-containing ether compound is more preferably a compound (A) represented by the following formula (A).
  • the glass plate with a low reflection film of the present invention is produced by applying a coating solution containing a matrix precursor, hollow fine particles, and a solvent to the surface of the glass plate.
  • the glass plate with a low reflection film of the present invention has a low reflection film on the surface, and the low reflection film contains a matrix precursor and hollow fine particles.
  • the low reflection film is preferably formed of a coating liquid containing a silica precursor, a matrix precursor containing a fluorine-containing ether compound and / or a hydrolysis condensate thereof, hollow silica fine particles, and a solvent.
  • a coating solution more preferably contains a matrix precursor containing a hydrolysis condensate of alkoxysilane and a compound (A) represented by the following formula (A), hollow silica fine particles, and a solvent. More preferably, it contains a matrix precursor containing a hydrolysis condensate of ethoxysilane and the compound (A) represented by the following formula (A), hollow silica fine particles, and a solvent.
  • R F1 O (CF 2 CF 2 O) a CF 2- (Q) b (— (CH 2 ) d —SiL p R 3-p ) c (A).
  • R F1 , a, b, Q, c, d, L, R and p have the same meaning as described above.
  • the glass plate with a low reflection film of the present invention described above is a glass plate with a low reflection film having a single-layer low reflection film containing a matrix and hollow fine particles on the surface of the glass plate, and has a wavelength of 300 to 1,
  • the minimum reflectance of the low reflection film within a range of 200 nm is 1.7% or less
  • the water contact angle on the surface of the low reflection film is 97 ° or more
  • oleic acid on the surface of the low reflection film Since the contact angle is 50 ° or more and the oleic acid tumbling angle on the surface of the low reflection film is 25 ° or less, the reflectivity in the low reflection film is sufficiently low, and the oil and fat stain removability is good. is there.
  • the method for producing a glass plate with a low reflection film according to the present invention described above includes a step of applying a coating liquid containing a matrix precursor, hollow fine particles, and a solvent to the surface of the glass plate, followed by baking, and the matrix precursor.
  • a coating liquid containing a matrix precursor, hollow fine particles, and a solvent has a silica precursor, a poly (oxyperfluoroalkylene) chain in the main chain, and a hydrolyzable silyl group at least at one end of the main chain and / or its hydrolytic condensation
  • the mass ratio (hollow fine particles / SiO 2 ) between the hollow fine particles and the silica precursor (SiO 2 equivalent) in the coating solution is 6/4 to 4/6, and the fluorine-containing ether compound in the coating solution Is 0.8 to 3.0% by mass with respect to the total (100% by mass) of the hollow fine particles and the silica precursor (in terms of SiO 2 ). It is possible to produce a glass plate with a low reflection film having
  • the display device of the present invention described above includes a glass plate with a low reflection film having a single-layer low reflection film containing a matrix and hollow fine particles on the surface of the glass plate. And in the glass plate with a low reflection film, the minimum reflectance of the low reflection film within a wavelength range of 300 to 1,200 nm is 1.7% or less, and the water contact angle on the surface of the low reflection film is Since it is 97 ° or more, the oleic acid contact angle on the surface of the low reflection film is 50 ° or more, and the oleic acid falling angle on the surface of the low reflection film is 25 ° or less, the reflection on the low reflection film The rate is sufficiently low, and the oil / fouling stain removability is good.
  • Examples 15-18, 21-23, 26-28, 31-34, 37-42, 45-50, 53-58, and 61-66 are examples, examples 1-14, 19, 20, 24, Reference numerals 25, 29, 30, 35, 36, 43, 44, 51, 52, 59, and 60 are comparative examples.
  • the reflectance of the low reflection film was measured using a spectrophotometer (manufactured by Hitachi, Ltd., model: U-4100).
  • the luminous reflectance is a reflectance averaged by multiplying the reflectance at a wavelength of 380 to 780 nm by a weight function.
  • the reflectance of the low reflection film at wavelengths of 300 to 1,200 nm was measured using a spectrophotometer (manufactured by Hitachi, Ltd., model: U-4100), and the minimum reflectance (minimum reflectance) was obtained.
  • the arithmetic average roughness (Ra) of the surface of the low-reflection film was measured using a scanning probe microscope apparatus (SII Nano Technology, SPA400DFM).
  • the refractive index n of the low-reflection film is calculated from the following formula (1) from the minimum reflectance Rmin in the wavelength range of 300 to 1,200 nm measured with a spectrophotometer for the single-layer low-reflection film and the refractive index ns of the glass plate. ).
  • Rmin (n ⁇ ns) 2 / (n + ns) 2 (1).
  • a straight line was drawn on the surface of the low reflection film using an oily marker (manufactured by Zebra, Mackey (registered trademark)), and evaluation was performed according to the following criteria.
  • soda lime glass manufactured by Asahi Glass Co., Ltd., size: 100 mm ⁇ 100 mm, thickness: 3.2 mm, refractive index: 1.52, visible light transmittance: 90.4%
  • soda lime glass manufactured by Asahi Glass Co., Ltd., size: 100 mm ⁇ 100 mm, thickness: 3.2 mm, refractive index: 1.52, visible light transmittance: 90.4%
  • Compound (A) was prepared as compound (A).
  • Compound (A-1) was produced using the method described in Examples 1 and 2 of WO2009 / 008380.
  • TEOS tetraethoxysilane
  • (Hollow particles) As the hollow fine particles the following were prepared. Dispersion of hollow silica fine particles (C-1): Asahi Glass Co., Ltd., hollow particle sol, SiO 2 equivalent solid content concentration: 20% by mass, average primary particle size: 10 nm, water: 40% by mass, alcohol: 40% by mass. Dispersion of hollow silica fine particles (C-2): manufactured by JGC Catalysts & Chemicals, Inc., hollow particle sol, solid content concentration in terms of SiO 2 : 20% by mass, average primary particle size: 20 nm, alcohol: 80% by mass.
  • Example 1 To 10 g of the TEOS solution, 0.02 g of an 8 mol / L nitric acid aqueous solution was added and stirred for 2 hours to obtain a TEOS hydrolysis condensate solution.
  • the coating liquid was applied to the surface of the glass plate by spin coating (180 rpm, 60 seconds) and then baked at 150 ° C. for 30 minutes to obtain a glass plate with a low reflection film.
  • Table 2 shows the evaluation results of the glass plate with a low reflection film.
  • Example 2 A glass plate with a low reflection film was obtained in the same manner as in Example 1 except that the rotation speed of the spin coat was changed from 180 rpm to 250 rpm. Table 1 shows the composition of the coating solution. The evaluation results of the glass plate with a low reflection film are shown in Table 1.
  • Examples 3 to 12 A glass plate with a low reflection film was obtained in the same manner as in Example 1 or Example 2 except that the composition of the coating solution was changed to the composition shown in Table 1. The glass plate with a low reflection film was evaluated. The results are shown in Table 2.
  • Example 13 to 23 A glass plate with a low reflection film was obtained in the same manner as in Examples 1 to 12 except that the ratio of the compound (A-1) was changed to the ratio shown in Table 3. The glass plate with a low reflection film was evaluated. The results are shown in Table 4.
  • Example 24 to 34 A glass plate with a low reflection film was obtained in the same manner as in Examples 1 to 12, except that the ratio of the compound (A-1) was changed to the ratio shown in Table 5. The glass plate with a low reflection film was evaluated. The results are shown in Table 6.
  • Examples 35 to 42 The glass plate with a low reflection film was changed in the same manner as in Examples 1 to 12 except that the composition of the coating solution was changed to the composition shown in Table 7 and the timing of addition of compound (A-1) was changed before the hydrolysis of TEOS. Got. The glass plate with a low reflection film was evaluated. The results are shown in Table 8.
  • Example 43 to 50 A glass plate with a low reflection film was obtained in the same manner as in Examples 35 to 42 except that the timing of addition of compound (A-1) was changed after 1 hour of hydrolysis of TEOS. The glass plate with a low reflection film was evaluated. The results are shown in Table 8.
  • Example 51 to 58 A glass plate with a low reflection film was obtained in the same manner as in Examples 35 to 42 except that the addition timing of the compound (A-1) was changed 2 hours after the hydrolysis of TEOS. The glass plate with a low reflection film was evaluated. The results are shown in Table 10.
  • Example 59-66 A glass plate with a low reflection film was obtained in the same manner as in Examples 35 to 42 except that the addition timing of the compound (A-1) was changed 2 hours after the hydrolysis of TEOS and after the solvent was diluted. The glass plate with a low reflection film was evaluated. The results are shown in Table 10.
  • FIG. 2 shows an SEM image at a magnification of 100,000 times in the film cross-sectional direction after cutting the glass with a low reflection film with a focused ion beam.
  • the low reflection film has a film thickness of about 100 nm and is composed of hollow particles and a matrix component (silica and fluorine compound). The part where the void is confirmed in the membrane is a place where the hollow particle is cut and the void inside the hollow particle is visible.
  • the glass plate with a low reflection film of the present invention and the glass plate with a low reflection film obtained by the production method of the present invention are useful as a glass plate used for various displays, automobile window glass, touch panels, and the like.
  • the display device of the present invention is useful for various televisions, touch panels, mobile phones, portable information terminals, and the like.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2011-081833 filed herewith are incorporated herein by reference as the disclosure of the present invention.

Abstract

The present invention relates to a glass plate (10) with a low reflective film having a low reflective film (14) of a monolayer containing a matrix and hollow fine particles on the surface of a glass plate (12), wherein the lowest reflectance of the low reflective film (14) within the range of a wavelength of 300 to 1,200 nm is 1.7% or lower, the water contact angle in the surface of the low reflective film (14) is 97° or more, the oleic acid contact angle in the surface of the low reflective film (14) is 50° or more, and the oleic acid sliding angle in the surface of the low reflective film (14) is 25° or less. The present invention provides a glass plate with a low reflective film of a monolayer having a sufficiently low reflectance and good removal performance of oil stain, a method for producing the glass plate with a low reflective film, and a display device having the glass plate with a low reflective film.

Description

低反射膜付きガラス板Glass plate with low reflection film
 本発明は、低反射膜付きガラス板、低反射膜付きガラス板の製造方法、表示装置および表示装置用低反射膜付きガラス板に関する。 The present invention relates to a glass plate with a low reflection film, a method for producing a glass plate with a low reflection film, a display device, and a glass plate with a low reflection film for a display device.
 低反射膜をガラス板の表面に有する低反射膜付きガラス板は、太陽電池のカバーガラス、各種ディスプレイおよびそれらの前面板、各種窓ガラス、またはタッチパネルのカバーガラス等として用いられている。 A glass plate with a low reflection film having a low reflection film on the surface of the glass plate is used as a cover glass for solar cells, various displays and their front plates, various window glasses, or a cover glass for touch panels.
 携帯電話、または携帯情報端末等の小型ディスプレイ、各種テレビ等の大型ディスプレイ、またはタッチパネル等の各種表示装置において、ディスプレイの保護ならびに美観を高めるために、表示部材の前面にカバーガラス(保護ガラス)が用いられることが多くなっている。そして、表示装置に表示される画像の視認性を向上させるために、カバーガラスとして、可視光反射防止膜を有する低反射膜付きガラス板が用いられている。 A cover glass (protective glass) is provided on the front surface of a display member in a small display such as a mobile phone or a portable information terminal, a large display such as various televisions, or various display devices such as a touch panel in order to enhance the protection and aesthetics of the display. It is increasingly used. And in order to improve the visibility of the image displayed on a display apparatus, the glass plate with a low reflection film which has a visible light antireflection film is used as a cover glass.
 これらのうち、各種ディスプレイ、自動車用窓ガラス、タッチパネル等に用いられる低反射膜付きガラス板、または前記表示装置に用いられている前記低反射膜付きガラス板は、人の手が触れることが多く、指紋等の油脂汚れの除去性が求められる。 Of these, the glass plate with a low reflection film used for various displays, window glass for automobiles, touch panels, etc., or the glass plate with a low reflection film used in the display device is often touched by human hands. In addition, removability of oil stains such as fingerprints is required.
 低反射膜付きガラス板に油脂汚れの除去性を付与する方法としては、その表面に油脂汚れ防止フィルムを貼着する方法、または反射防止層の上に汚れ防止層を塗布する方法(特許文献1)がよく知られている。 As a method for imparting oil stain removal property to a glass plate with a low reflection film, a method for sticking an oil stain prevention film to its surface, or a method for applying a stain prevention layer on an antireflection layer (Patent Document 1). ) Is well known.
 しかし、低反射膜付きガラス板の表面に油脂汚れ防止フィルムを貼着した場合、フィルムの製造工程、フィルムの貼着工程等の工程が増えることによる生産性の低下、貼着ムラによる外観品質の低下、またはフィルム貼付に付随するコストアップ等の問題が生じる。また、反射防止層の上に汚れ防止層を塗布した場合も、生産性の低下等の問題が生じる。 However, when an antifouling film is attached to the surface of a glass plate with a low reflection film, the productivity decreases due to an increase in the film production process, the film attachment process, etc., and the appearance quality due to uneven adhesion Problems such as a reduction or an increase in cost associated with film sticking occur. In addition, when the antifouling layer is applied on the antireflection layer, problems such as a decrease in productivity occur.
日本特表2002-506887号公報Japanese Special Table 2002-50687 gazette
 本発明は、反射率が充分に低く、かつ油脂汚れの除去性が良好である単層の低反射膜をガラス板の表面に有する低反射膜付きガラス板、前記低反射膜付きガラス板を製造できる製造方法、および前記低反射膜付きガラス板を有する表示装置を提供する。 The present invention produces a glass plate with a low-reflection film having a single-layer low-reflection film on the surface of the glass plate having a sufficiently low reflectivity and good removal of oil and fat stains, and the glass plate with the low-reflection film. The manufacturing method which can be performed, and the display apparatus which has the said glass plate with a low reflection film are provided.
 本発明の低反射膜付きガラス板は、マトリックスと中空微粒子とを含む単層の低反射膜を、ガラス板の表面に有する低反射膜付きガラス板であって、波長300~1,200nmの範囲内における前記低反射膜の最低反射率が、1.7%以下であり、前記低反射膜の表面における水接触角が、97°以上であり、前記低反射膜の表面におけるオレイン酸接触角が、50°以上であり、前記低反射膜の表面におけるオレイン酸転落角が、25°以下であることを特徴とする。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
 本発明の低反射膜付きガラス板において、単層の低反射膜とは、低反射機能を付与する均質な、あるいは実質的に均質な、あるいは不均質な1層構成をなす膜を意味する。また、本発明の低反射膜付きガラス板とは、ガラス板の少なくとも一方の表面の最外層に前記低反射膜が形成されたガラス板を意味する。従って、前記低反射膜付きガラス板の低反射膜が形成されていない反対側のガラス面に、あるいは最外層に形成された低反射膜の下層に、導電膜、近赤外線カット膜、電磁波防止膜、色調調整膜、接着性改善膜、耐久性向上膜、帯電防止膜、その他各種の所望の機能膜を1層ないし複層層形成してもよい。
The glass plate with a low reflection film of the present invention is a glass plate with a low reflection film having a single-layer low reflection film containing a matrix and hollow fine particles on the surface of the glass plate, and has a wavelength in the range of 300 to 1,200 nm. The minimum reflectance of the low reflective film is 1.7% or less, the water contact angle on the surface of the low reflective film is 97 ° or more, and the oleic acid contact angle on the surface of the low reflective film is The oleic acid falling angle on the surface of the low reflection film is 25 ° or less.
The term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value, and unless otherwise specified, “to” is the same in the following specification. Used with meaning.
In the glass plate with a low-reflection film of the present invention, the single-layer low-reflection film means a film that has a uniform, substantially homogeneous, or heterogeneous single layer structure that imparts a low-reflection function. Moreover, the glass plate with a low reflection film of the present invention means a glass plate in which the low reflection film is formed on the outermost layer of at least one surface of the glass plate. Therefore, a conductive film, a near-infrared cut film, an anti-electromagnetic wave film on the opposite glass surface where the low reflection film of the glass plate with the low reflection film is not formed, or on the lower layer of the low reflection film formed in the outermost layer. A color tone adjusting film, an adhesion improving film, a durability improving film, an antistatic film, and various other desired functional films may be formed as a single layer or a multilayer.
 X線光電子分光法によって測定した前記低反射膜の表面におけるフッ素元素の割合は、3~20原子%であることが好ましい。
 走査型プローブ顕微鏡装置によって測定した前記低反射膜の表面の算術平均粗さ(Ra)は、3.0~5.0nmであることが好ましい。
 前記低反射膜の屈折率は、1.30~1.46であることが好ましい。
The proportion of fluorine element on the surface of the low reflection film measured by X-ray photoelectron spectroscopy is preferably 3 to 20 atomic%.
The arithmetic average roughness (Ra) of the surface of the low reflection film measured by a scanning probe microscope device is preferably 3.0 to 5.0 nm.
The refractive index of the low reflection film is preferably 1.30 to 1.46.
 前記マトリックスが、シリカを主成分とし、かつポリ(オキシペルフルオロアルキレン)鎖を主鎖に有し、かつ前記主鎖の少なくとも一方の末端に加水分解性シリル基を有する、含フッ素エーテル化合物に由来する構造を有することが好ましい。 The matrix is derived from a fluorine-containing ether compound having silica as a main component, having a poly (oxyperfluoroalkylene) chain in the main chain, and having a hydrolyzable silyl group at at least one end of the main chain. It preferably has a structure.
 前記含フッ素エーテル化合物が、下式(A)で表される化合物(A)であることが好ましい。
 RF1O(CFCFO)CF-(Q)(-(CH-SiL3-p ・・・(A)。
 ただし、RF1は、炭素数1~20の1価のペルフルオロ飽和炭化水素基、または、炭素原子-炭素原子間にエーテル性酸素原子が挿入された炭素数2~20の1価のペルフルオロ飽和炭化水素基であり、かつ-OCFO-構造を含まない基であり、
 aは、1~200の整数であり、
 bは、0または1であり、
 Qは、bが0である場合には存在せず、bが1である場合には2または3価の連結基であり、
 cは、Qが存在しない、またはQが2価の連結基である場合には1であり、Qが3価の連結基である場合には2であり、
 dは、2~6の整数であり、
 Lは、加水分解性基であり、
 Rは、水素原子または1価の炭化水素基であり、
 pは、1~3の整数である。
 前記中空微粒子は、中空シリカ微粒子であることが好ましい。
The fluorine-containing ether compound is preferably a compound (A) represented by the following formula (A).
R F1 O (CF 2 CF 2 O) a CF 2- (Q) b (— (CH 2 ) d —SiL p R 3-p ) c (A).
R F1 is a monovalent perfluoro saturated hydrocarbon group having 1 to 20 carbon atoms or a monovalent perfluoro saturated hydrocarbon having 2 to 20 carbon atoms in which an etheric oxygen atom is inserted between carbon atoms. A hydrogen group and a group not including the —OCF 2 O— structure;
a is an integer from 1 to 200;
b is 0 or 1,
Q is absent when b is 0, and is a divalent or trivalent linking group when b is 1,
c is 1 when Q is not present or Q is a divalent linking group, and is 2 when Q is a trivalent linking group;
d is an integer of 2 to 6,
L is a hydrolyzable group,
R is a hydrogen atom or a monovalent hydrocarbon group,
p is an integer of 1 to 3.
The hollow fine particles are preferably hollow silica fine particles.
 本発明の低反射膜付きガラス板の製造方法は、マトリックスと中空微粒子とを含む単層の低反射膜をガラス板の表面に有する低反射膜付きガラス板を製造する方法であって、マトリックス前駆体と中空微粒子と溶媒とを含む塗布液を、ガラス板の表面に塗布し、焼成する工程を有し、マトリックス前駆体が、シリカ前駆体と、ポリ(オキシペルフルオロアルキレン)鎖を主鎖に有し、かつ前記主鎖の少なくとも一方の末端に加水分解性シリル基を有する、含フッ素エーテル化合物および/またはその加水分解縮合物とを含み、塗布液中における中空微粒子とシリカ前駆体(SiO換算)との質量比(中空微粒子/SiO)が、6/4~4/6であり、塗布液中における含フッ素エーテル化合物の割合が、中空微粒子とシリカ前駆体(SiO換算)との合計(100質量%)に対して、0.8~3.0質量%であることを特徴とする。
 なお、上記した「含フッ素エーテル化合物および/またはその加水分解縮合物」とは、本明細書において、含フッ素エーテル化合物および含フッ素エーテル化合物の加水分解縮合物からなる群から選ばれる少なくとも1種を意味する。
The method for producing a glass plate with a low-reflection film of the present invention is a method for producing a glass plate with a low-reflection film having a single-layer low-reflection film containing a matrix and hollow fine particles on the surface of the glass plate. A coating solution containing a solid body, hollow fine particles and a solvent is applied to the surface of the glass plate and baked. The matrix precursor has a silica precursor and a poly (oxyperfluoroalkylene) chain in the main chain. And a fluorine-containing ether compound having a hydrolyzable silyl group at at least one end of the main chain and / or a hydrolyzed condensate thereof, and hollow fine particles and a silica precursor (in terms of SiO 2 ) in the coating solution ) mass ratio of the (hollow fine particles / SiO 2) is 6/4 to a 4/6, the ratio of the fluorine-containing ether compound in the coating solution, hollow fine particles and a silica precursor (S O 2 equivalent) to the sum of the relative (100 mass%), characterized in that 0.8 to 3.0 mass%.
The above-mentioned “fluorinated ether compound and / or hydrolysis condensate thereof” means at least one selected from the group consisting of a fluorinated ether compound and a hydrolyzed condensate of a fluorinated ether compound in the present specification. means.
 前記含フッ素エーテル化合物が、下式(A)で表される化合物(A)であることが好ましい。 The fluorine-containing ether compound is preferably a compound (A) represented by the following formula (A).
 RF1O(CFCFO)CF-(Q)(-(CH-SiL3-p ・・・(A)。
 RF1、a、b、Q、c、d、L、Rおよびpは前記と同じ意味を有する。
R F1 O (CF 2 CF 2 O) a CF 2- (Q) b (— (CH 2 ) d —SiL p R 3-p ) c (A).
R F1 , a, b, Q, c, d, L, R and p have the same meaning as described above.
 前記シリカ前駆体は、アルコキシシランの加水分解縮合物であることが好ましい。
 本発明の低反射膜付きガラス板の製造方法における塗布液の調整の工程においては、アルコキシシランを加水分解した後、化合物(A)を加え、ついで中空微粒子の分散液を加えて塗布液とすることが好ましい。
 前記中空微粒子は、中空シリカ微粒子であることが好ましい。
The silica precursor is preferably an alkoxysilane hydrolysis condensate.
In the step of adjusting the coating liquid in the method for producing a glass plate with a low reflection film of the present invention, after alkoxysilane is hydrolyzed, compound (A) is added, and then a dispersion of hollow fine particles is added to form a coating liquid. It is preferable.
The hollow fine particles are preferably hollow silica fine particles.
 また本発明は、筐体、表示部材、および前記表示部材の表示面に配置された低反射膜付きガラス板を含む表示装置であって、前記低反射膜付きガラス板は、マトリックスと中空微粒子とを含む単層の低反射膜を、ガラス板の表面に有する低反射膜付きガラス板であり、波長300~1,200nmの範囲内における前記低反射膜の最低反射率が、1.7%以下であり、前記低反射膜の表面における水接触角が、97°以上であり、前記低反射膜の表面におけるオレイン酸接触角が、50°以上であり、前記低反射膜の表面におけるオレイン酸転落角が、25°以下である、低反射膜付きガラス板であることを特徴とする表示装置を提供する。 The present invention is also a display device including a housing, a display member, and a glass plate with a low reflection film disposed on a display surface of the display member, the glass plate with a low reflection film comprising a matrix, hollow fine particles, Is a glass plate with a low-reflection film having a single-layer low-reflection film on the surface of the glass plate, and the minimum reflectance of the low-reflection film within a wavelength range of 300 to 1,200 nm is 1.7% or less The water contact angle on the surface of the low reflection film is 97 ° or more, the oleic acid contact angle on the surface of the low reflection film is 50 ° or more, and oleic acid falls on the surface of the low reflection film Provided is a display device characterized by being a glass plate with a low reflection film having an angle of 25 ° or less.
 また本発明は、マトリックスと中空微粒子とを含む単層の低反射膜を、ガラス板の表面に有する低反射膜付きガラス板であって、波長300~1,200nmの範囲内における前記低反射膜の最低反射率が、1.7%以下であり、前記低反射膜の表面における水接触角が、97°以上であり、前記低反射膜の表面におけるオレイン酸接触角が、50°以上であり、前記低反射膜の表面におけるオレイン酸転落角が、25°以下である、表示装置用低反射膜付きガラス板を提供する。 The present invention also provides a glass plate with a low reflection film having a single layer low reflection film containing a matrix and hollow fine particles on the surface of the glass plate, the low reflection film having a wavelength in the range of 300 to 1,200 nm. The minimum reflectance is 1.7% or less, the water contact angle on the surface of the low reflection film is 97 ° or more, and the oleic acid contact angle on the surface of the low reflection film is 50 ° or more. Provided is a glass plate with a low reflection film for a display device, wherein the oleic acid falling angle on the surface of the low reflection film is 25 ° or less.
 すなわち本発明の表示装置は、筐体、表示部材、および前記表示部材の表示面に配置された前記低反射膜付きガラス板を含むことを特徴とする。
 また本発明は表示装置用である前記低反射膜付きガラス板を提供する。
 前記した表示装置の低反射膜付きガラス板、および表示用の低反射膜付きガラス板において、前記低反射膜は、表示装置の外側、すなわち、視認者側、あるいは操作者側の最外面に形成される。
That is, the display device of the present invention includes a housing, a display member, and the glass plate with a low reflection film disposed on the display surface of the display member.
Moreover, this invention provides the said glass plate with a low reflection film for display apparatuses.
In the glass plate with a low reflection film of the display device described above and the glass plate with a low reflection film for display, the low reflection film is formed on the outer side of the display device, that is, on the outermost surface on the viewer side or the operator side. Is done.
 本発明の低反射膜付きガラス板は、反射率が充分に低く、かつ油脂汚れの除去性が良好である単層の低反射膜をガラス板の表面に有する。 The glass plate with a low-reflection film of the present invention has a single-layer low-reflection film on the surface of the glass plate that has a sufficiently low reflectance and good oil and fat stain removability.
 本発明の低反射膜付きガラス板の製造方法によれば、反射率が充分に低く、かつ油脂汚れの除去性が良好である単層の低反射膜をガラス板の表面に有する低反射膜付きガラス板を製造できる。 According to the method for producing a glass plate with a low reflection film of the present invention, the low reflection film having a single-layer low reflection film on the surface of the glass plate that has a sufficiently low reflectance and good oil and fat stain removability. A glass plate can be manufactured.
 本発明の表示装置は、反射率が充分に低く、かつ油脂汚れの除去性が良好である単層の低反射膜を有するガラス板を、カバーガラスとして有する表示装置である。 The display device of the present invention is a display device having, as a cover glass, a glass plate having a single-layer low-reflection film that has a sufficiently low reflectivity and good oil and fat stain removability.
本発明の低反射膜付きガラス板、および表示装置用低反射膜付きガラス板の一例を示す断面図である。It is sectional drawing which shows an example of the glass plate with a low reflection film of this invention, and the glass plate with a low reflection film for display apparatuses. 例37(実施例)の低反射膜付きガラス板の断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the glass plate with a low reflection film of Example 37 (Example). 本発明の表示装置の一例を示す断面図である。It is sectional drawing which shows an example of the display apparatus of this invention.
 図1は、本発明の低反射膜付きガラス板、および本発明の表示装置用低反射膜付きガラス板(以下、単に低反射膜付きガラス板ともいう。)の一例を示す断面図である。低反射膜付きガラス板10は、ガラス板12と、ガラス板12の表面に形成された低反射膜14とを有する。 FIG. 1 is a cross-sectional view showing an example of a glass plate with a low reflection film of the present invention and a glass plate with a low reflection film for a display device of the present invention (hereinafter also simply referred to as a glass plate with a low reflection film). The glass plate 10 with a low reflection film includes a glass plate 12 and a low reflection film 14 formed on the surface of the glass plate 12.
 図3は、本発明の表示装置100の一例を示す断面図である。表示装置100は、表示装置用低反射膜付きガラス板10(以下、単に低反射膜付きガラス板10ともいう。)と、表示部材20と、筐体30とを含む。低反射膜付きガラス板10は、ガラス板12と、ガラス板の表面に形成された低反射膜14とを有する。そして、低反射膜14は、ガラス板の表示部材と対向する面と反対側の面に形成されている。
 図1、3において、低反射膜付きガラス板10の低反射膜14の上面側が、表示装置の外側、すなわち、視認者側、あるいは操作者側となる。
FIG. 3 is a cross-sectional view showing an example of the display device 100 of the present invention. The display device 100 includes a glass plate 10 with a low reflection film for display devices (hereinafter also simply referred to as a glass plate 10 with a low reflection film), a display member 20, and a housing 30. The glass plate 10 with a low reflection film includes a glass plate 12 and a low reflection film 14 formed on the surface of the glass plate. And the low reflection film 14 is formed in the surface on the opposite side to the surface facing the display member of a glass plate.
1 and 3, the upper surface side of the low reflection film 14 of the glass plate 10 with the low reflection film is the outside of the display device, that is, the viewer side or the operator side.
 本発明の表示装置には、携帯電話、または携帯情報端末等の小型ディスプレイ、各種テレビ等の大型ディスプレイ、またはタッチパネル等、種々の表示装置が含まれる。特に、携帯電話、携帯情報端末、またはタッチパネル等は、表示装置の表示面に直接人の手が触れる機会が多いため、指紋除去性に優れる低反射膜付きガラス板を有する本発明の表示装置の好ましい具体例として挙げられる。 The display device of the present invention includes various display devices such as a small display such as a mobile phone or a portable information terminal, a large display such as various televisions, or a touch panel. In particular, since a mobile phone, a portable information terminal, a touch panel, or the like has many opportunities for human hands to directly touch the display surface of the display device, the display device of the present invention having a glass plate with a low reflection film that has excellent fingerprint removability. Preferred specific examples are mentioned.
 表示部材としては、液晶表示部材、プラズマ表示部材、または有機EL表示部材等が挙げられる。 Examples of the display member include a liquid crystal display member, a plasma display member, and an organic EL display member.
 筐体は、表示部材20および低反射膜付きガラス板10を収納する箱状の部材であり、材質は樹脂、または金属等が挙げられる。 The housing is a box-shaped member that houses the display member 20 and the glass plate 10 with the low reflection film, and the material may be resin, metal, or the like.
(ガラス板)
 ガラス板12としては、たとえば、ソーダライムガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、または無アルカリガラス等が挙げられる。また、フロート法等により成形された平滑なガラス板であってもよく、表面に凹凸を有する型板ガラスであってもよい。また、ガラス板12の屈折率は、低反射膜と屈折率との関係から、1.45~1.60であるのが好ましい。
(Glass plate)
Examples of the glass plate 12 include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass. Moreover, the smooth glass plate shape | molded by the float glass process etc. may be sufficient, and the template glass which has an unevenness | corrugation on the surface may be sufficient. Further, the refractive index of the glass plate 12 is preferably 1.45 to 1.60 from the relationship between the low reflection film and the refractive index.
 ガラス板12の表面には、アルカリバリア層、プライマー層等の低反射膜14以外の層があらかじめ形成されていてもよい。 Layers other than the low reflection film 14 such as an alkali barrier layer and a primer layer may be formed in advance on the surface of the glass plate 12.
(低反射膜)
 低反射膜14は、たとえば、後述する低反射膜形成用の塗布液を1回塗布することによって形成される、マトリックスと中空微粒子とを含む単層の膜である。しかし、低反射膜14は、低反射膜形成用の塗布液を複数回重ねて塗布することによって膜が形成されても構わず、当該膜が低反射膜として機能する単層構成あるいは実質的に単層構成とみなすことができるものであれば良い。
(Low reflective film)
The low reflection film 14 is, for example, a single-layer film including a matrix and hollow fine particles formed by applying a coating liquid for forming a low reflection film described later once. However, the low-reflection film 14 may be formed by applying the coating liquid for forming the low-reflection film a plurality of times, and the single-layer configuration in which the film functions as the low-reflection film or substantially. Any material that can be regarded as a single-layer structure may be used.
 マトリックスとしては、比較的屈折率が低く、低反射率が得られ、化学的安定性に優れ、ガラス板12との密着性に優れる点から、シリカを主成分とし、更に少量の含フッ素エーテル化合物に由来する構造を有する成分を有するものが好ましい。マトリックス中の含フッ素エーテル化合物に由来する構造を有する成分以外は、実質的にシリカからなるものがより好ましい。シリカを主成分とするとは、シリカの割合がマトリックス(100質量%)のうち90質量%以上であることを意味し、実質的にシリカからなるとは、後述する化合物(A)に由来する構造および不可避不純物を除いてシリカのみから構成されていることを意味する。 The matrix has a relatively low refractive index, low reflectivity, excellent chemical stability, and excellent adhesion to the glass plate 12, so that it contains silica as the main component and a small amount of a fluorine-containing ether compound. What has the component which has a structure derived from is preferable. Except for the component which has a structure derived from the fluorine-containing ether compound in a matrix, what consists of silica substantially is more preferable. “Silica as a main component” means that the proportion of silica is 90% by mass or more of the matrix (100% by mass), and substantially consisting of silica means a structure derived from the compound (A) described later and It means that it is composed only of silica excluding inevitable impurities.
 また、マトリックスは、油脂汚れの除去性に優れる点から、後述する、ポリ(オキシペルフルオロアルキレン)鎖を主鎖に有し、かつ前記主鎖の少なくとも一方の末端に加水分解性シリル基を有する、含フッ素エーテル化合物に由来する構造を有することが好ましい。 In addition, the matrix has a poly (oxyperfluoroalkylene) chain, which will be described later, in the main chain, and has a hydrolyzable silyl group at least at one end of the main chain, from the point that it is excellent in oil and fat stain removability. It preferably has a structure derived from a fluorine-containing ether compound.
 マトリックスとしては、下記するマトリックス前駆体(a)、(b)および(c)の群から選ばれる少なくとも1種のマトリックス前駆体の焼成物等が挙げられ、油脂汚れの除去性に優れる点から、マトリックス前駆体(a)の焼成物がより好ましい。 Examples of the matrix include a calcined product of at least one matrix precursor selected from the group of matrix precursors (a), (b) and (c) described below, and the like, from the point of excellent oil and oil stain removal properties. A fired product of the matrix precursor (a) is more preferable.
 (a)後述するシリカ前駆体と、後述するフッ素エーテル化合物とを含むマトリックス前駆体。
 (b)後述するシリカ前駆体と、後述するフッ素エーテル化合物と、フッ素エーテル化合物同士の加水分解縮合物とを含むマトリックス前駆体。
 (c)後述するシリカ前駆体と、後述するフッ素エーテル化合物同士の加水分解縮合物と、シリカ前駆体(アルコキシシラン)とフッ素エーテル化合物との加水分解縮合物とを含むマトリックス前駆体。
(A) A matrix precursor containing a silica precursor described later and a fluorine ether compound described later.
(B) A matrix precursor containing a silica precursor described later, a fluorine ether compound described later, and a hydrolysis condensate between the fluorine ether compounds.
(C) A matrix precursor containing a silica precursor described later, a hydrolysis condensate of fluorine ether compounds described later, and a hydrolysis condensate of a silica precursor (alkoxysilane) and a fluorine ether compound.
 中空微粒子のシェルの材料としては、Al、SiO、SnO、TiO、ZrO、ZnO、CeO、Sb含有SnO(ATO)、Sn含有In(ITO)、RuO等が挙げられる。これらのうち1種を単独で用いてもよく、2種以上を併用してもよい。
 なお、中空微粒子の形状としては、球状、楕円状、針状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、不定形状等が挙げられる。
As the material of the shell of the hollow fine particles, Al 2 O 3 , SiO 2 , SnO 2 , TiO 2 , ZrO 2 , ZnO, CeO 2 , Sb-containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), RuO 2 etc. are mentioned. Among these, one type may be used alone, or two or more types may be used in combination.
Examples of the shape of the hollow fine particles include a spherical shape, an elliptical shape, a needle shape, a plate shape, a rod shape, a cone shape, a columnar shape, a cube shape, a rectangular shape, a diamond shape, a star shape, and an indefinite shape.
 また、中空微粒子は、各微粒子が独立した状態で存在していてもよく、各微粒子が鎖状に連結していてもよく、各微粒子が凝集していてもよい。
 中空微粒子としては、低反射膜14の屈折率が低く、低反射率が得られ、化学的安定性に優れ、ガラス板12との密着性に優れる点から、中空シリカ微粒子が好ましい。
Further, the hollow fine particles may exist in a state where each fine particle is independent, each fine particle may be linked in a chain shape, or each fine particle may be aggregated.
As the hollow fine particles, hollow silica fine particles are preferable because the low reflective film 14 has a low refractive index, a low reflectivity is obtained, chemical stability is excellent, and adhesion to the glass plate 12 is excellent.
 中空シリカ微粒子の平均一次粒子径は、5~150nmが好ましく、50~100nmがより好ましい。中空シリカ微粒子の平均一次粒子径が5nm以上であれば、低反射膜14の反射率が充分に低くなる。中空シリカ微粒子の平均一次粒子径が150nm以下であれば、低反射膜14のヘイズが低く抑えられる。 The average primary particle diameter of the hollow silica fine particles is preferably 5 to 150 nm, more preferably 50 to 100 nm. When the average primary particle diameter of the hollow silica fine particles is 5 nm or more, the reflectance of the low reflective film 14 is sufficiently low. If the average primary particle diameter of the hollow silica fine particles is 150 nm or less, the haze of the low reflective film 14 can be suppressed low.
 平均一次粒子径は、電子顕微鏡写真から100個の微粒子を無作為に選び出し、各微粒子の粒子径を測定し、100個の微粒子の粒子径を平均して求める。 The average primary particle size is obtained by randomly selecting 100 fine particles from an electron micrograph, measuring the particle size of each fine particle, and averaging the particle size of 100 fine particles.
 波長300~1,200nmの範囲内における低反射膜14の最低反射率は、1.7%以下であり、0.2~1.7%が好ましく、0.8~1.1%がより好ましく、0.9~1.0%がさらに好ましい。低反射膜14の最低反射率が1.7%以下であれば、低反射膜付きガラス板10が、各種ディスプレイ、自動車用窓ガラス、またはタッチパネル等に要求される低い反射率を充分に満足する。低反射膜14の最低反射率が1.7%より大きいと、低反射特性として不十分な場合がある。 The minimum reflectance of the low reflective film 14 within the wavelength range of 300 to 1,200 nm is 1.7% or less, preferably 0.2 to 1.7%, more preferably 0.8 to 1.1%. 0.9 to 1.0% is more preferable. If the minimum reflectance of the low-reflection film 14 is 1.7% or less, the glass plate 10 with the low-reflection film sufficiently satisfies the low reflectance required for various displays, automotive window glasses, touch panels, and the like. . If the minimum reflectance of the low reflection film 14 is greater than 1.7%, the low reflection characteristics may be insufficient.
 低反射膜14の表面における水接触角は、97°以上であり、95°~121°が好ましく、97°~109°がより好ましく、97°~99°がさらに好ましい。 The water contact angle on the surface of the low reflection film 14 is 97 ° or more, preferably 95 ° to 121 °, more preferably 97 ° to 109 °, and still more preferably 97 ° to 99 °.
 低反射膜14の表面におけるオレイン酸接触角は、50°以上であり、50°~90°が好ましく、52°~87°がより好ましく、55°~85°が特に好ましい。 The contact angle of oleic acid on the surface of the low reflection film 14 is 50 ° or more, preferably 50 ° to 90 °, more preferably 52 ° to 87 °, and particularly preferably 55 ° to 85 °.
 低反射膜14の表面におけるオレイン酸転落角は、25°以下であり、5°~25°が好ましく、5°~20°がより好ましく、6°~10°がより好ましい。 The oleic acid tumbling angle on the surface of the low reflective film 14 is 25 ° or less, preferably 5 ° to 25 °, more preferably 5 ° to 20 °, and more preferably 6 ° to 10 °.
 低反射膜14の表面における水接触角、オレイン酸接触角およびオレイン酸転落角が、同時に前記範囲を満足すれば、低反射膜14の表面における油脂汚れの除去性が良好となる。 If the water contact angle, the oleic acid contact angle, and the oleic acid tumbling angle on the surface of the low reflective film 14 satisfy the above ranges at the same time, the oil and fat stains on the surface of the low reflective film 14 can be easily removed.
 X線光電子分光法によって測定した低反射膜14の表面におけるフッ素元素の割合は、3~20原子%が好ましく、5~18原子%がより好ましく、5~16原子%がさらに好ましい。低反射膜14の表面におけるフッ素元素の割合は、後述する化合物(A)等の含フッ素化合物に由来する構造が、低反射膜14の表面およびその近傍にどの程度存在するかを示す。低反射膜14の表面におけるフッ素元素の割合が3原子%以上であれば、油脂汚れの除去性がさらに向上する。低反射膜14の表面におけるフッ素元素の割合が20原子%以下であれば、膜の光学設計に影響がなく、低反射性が維持され好ましい。なお、X線光電子分光法においては、X線の照射により試料表面から脱出される光電子を観察する手法であるため、分析結果は、観察可能な光電子の脱出深さ、より具体的には低反射膜の空気側の最表面から概ね数nm~数10nmの深さの最表面層の分析情報である。 The ratio of the elemental fluorine on the surface of the low reflective film 14 measured by X-ray photoelectron spectroscopy is preferably 3 to 20 atomic%, more preferably 5 to 18 atomic%, and further preferably 5 to 16 atomic%. The ratio of the elemental fluorine on the surface of the low reflection film 14 indicates how much a structure derived from a fluorine-containing compound such as the compound (A) described later exists on the surface of the low reflection film 14 and in the vicinity thereof. If the ratio of the fluorine element on the surface of the low reflective film 14 is 3 atomic% or more, the oil and fat stain removability is further improved. If the ratio of the fluorine element on the surface of the low reflective film 14 is 20 atomic% or less, the optical design of the film is not affected, and low reflectivity is maintained, which is preferable. X-ray photoelectron spectroscopy is a method of observing photoelectrons escaped from the sample surface by X-ray irradiation, and therefore the analysis result is the observable photoelectron escape depth, more specifically, low reflection. This is analysis information of the outermost surface layer having a depth of several nm to several tens of nm from the outermost surface on the air side of the film.
 走査型プローブ顕微鏡装置によって測定した低反射膜14の表面の算術平均粗さ(Ra)は、3.0~5.0nmが好ましく、3.0~4.5nmがより好ましく、3.0~4.0nmがさらに好ましい。低反射膜14の表面の算術平均粗さ(Ra)が3.0nm以上であれば、非常に微細な凹凸が形成されていることを示しており、撥水撥油性が向上しやすい。低反射膜14の表面の算術平均粗さ(Ra)が5.0nm以下であれば、油脂汚れの除去性がさらに向上する。 The arithmetic average roughness (Ra) of the surface of the low reflection film 14 measured by a scanning probe microscope device is preferably 3.0 to 5.0 nm, more preferably 3.0 to 4.5 nm, and 3.0 to 4 More preferably, 0.0 nm. If the arithmetic average roughness (Ra) of the surface of the low reflective film 14 is 3.0 nm or more, it indicates that very fine irregularities are formed, and the water and oil repellency is easily improved. If the arithmetic mean roughness (Ra) of the surface of the low reflective film 14 is 5.0 nm or less, the oil and fat stain removability is further improved.
 低反射膜14の屈折率は、1.20~1.46が好ましく、1.20~1.40がより好ましく、1.20~1.35がさらに好ましい。低反射膜14の屈折率が1.20以上であれば、低反射膜14の空隙率が高くなりすぎず、耐久性が向上する。低反射膜14の屈折率が1.46以下であれば、低反射膜14の反射率が充分に低くなる。 The refractive index of the low reflection film 14 is preferably 1.20 to 1.46, more preferably 1.20 to 1.40, and further preferably 1.20 to 1.35. If the refractive index of the low reflective film 14 is 1.20 or more, the porosity of the low reflective film 14 does not become too high, and the durability is improved. When the refractive index of the low reflective film 14 is 1.46 or less, the reflectance of the low reflective film 14 is sufficiently low.
 低反射膜14の屈折率nは、単層の低反射膜14をガラス板12の表面に形成し、前記単層の低反射膜14について分光光度計で測定した波長300~1,200nmの範囲内における最低反射率(いわゆるボトム反射率)Rminと、ガラス板12の屈折率nsとから下式(1)によって算出する。 The refractive index n of the low-reflection film 14 is in the range of 300 to 1,200 nm when a single-layer low-reflection film 14 is formed on the surface of the glass plate 12 and the single-layer low-reflection film 14 is measured with a spectrophotometer. The minimum reflectance (so-called bottom reflectance) Rmin and the refractive index ns of the glass plate 12 are calculated by the following equation (1).
 Rmin=(n-ns)/(n+ns) ・・・(1)。 Rmin = (n−ns) 2 / (n + ns) 2 (1).
 低反射膜14の厚さは、80~100nmが好ましく、85~95nmがより好ましい。低反射膜14の厚さが80nm以上であれば、低反射膜14の耐久性が発現する。低反射膜14の厚さが100nm以下であれば、用いる膜の屈折率によるが、単層膜として低反射性が発現するため好ましい。 The thickness of the low reflection film 14 is preferably 80 to 100 nm, and more preferably 85 to 95 nm. When the thickness of the low reflection film 14 is 80 nm or more, the durability of the low reflection film 14 is expressed. If the thickness of the low reflection film 14 is 100 nm or less, it depends on the refractive index of the film to be used, but it is preferable because low reflectivity is exhibited as a single layer film.
 低反射膜14の厚さは、低反射膜14の断面を走査型電子顕微鏡にて観察して得られる像から測定される。 The thickness of the low reflection film 14 is measured from an image obtained by observing the cross section of the low reflection film 14 with a scanning electron microscope.
(低反射膜付きガラス板の製造方法)
 本発明の低反射膜付きガラス板10は、たとえば、低反射膜14を形成するための塗布液を、ガラス板12の表面に塗布し、所望により予熱し、最後に焼成することによって製造できる。
(Manufacturing method of glass plate with low reflection film)
The glass plate 10 with a low reflection film of the present invention can be manufactured, for example, by applying a coating solution for forming the low reflection film 14 to the surface of the glass plate 12, preheating as desired, and finally baking.
 塗布液は、マトリックス前駆体と、中空微粒子と、溶媒とを含むものである。
 塗布液は、レベリング性向上のための界面活性剤、または低反射膜14の耐久性向上のための金属化合物等を含んでいてもよい。
The coating solution contains a matrix precursor, hollow fine particles, and a solvent.
The coating solution may contain a surfactant for improving the leveling property, a metal compound for improving the durability of the low reflection film 14, or the like.
 マトリックス前駆体は、シリカ前駆体と、ポリ(オキシペルフルオロアルキレン)鎖を主鎖に有し、かつ前記主鎖の少なくとも一方の末端に加水分解性シリル基を有する、含フッ素エーテル化合物および/またはその加水分解縮合物とを含む。 The matrix precursor includes a silica precursor, a fluorine-containing ether compound having a poly (oxyperfluoroalkylene) chain in the main chain and a hydrolyzable silyl group at least at one end of the main chain, and / or its And hydrolyzed condensate.
 前記含フッ素エーテル化合物の加水分解縮合物は、含フッ素エーテル化合物同士の加水分解縮合物であってもよく、シリカ前駆体であるアルコキシシランと含フッ素エーテル化合物との加水分解縮合物であってもよい。 The hydrolyzed condensate of the fluorinated ether compound may be a hydrolyzed condensate between the fluorinated ether compounds, or may be a hydrolyzed condensate of an alkoxysilane that is a silica precursor and a fluorinated ether compound. Good.
 マトリックス前駆体としては、具体的には下記のマトリックス前駆体(a)、(b)および(c)の群から選ばれる少なくとも1種のマトリックス前駆体が挙げられ、低反射膜14の油脂汚れの除去性に優れる点から、マトリックス前駆体(a)がより好ましい。 Specific examples of the matrix precursor include at least one matrix precursor selected from the group of the following matrix precursors (a), (b), and (c). From the viewpoint of excellent removability, the matrix precursor (a) is more preferable.
 (a)シリカ前駆体と、含フッ素エーテル化合物とを含むマトリックス前駆体。
 (b)シリカ前駆体と、含フッ素エーテル化合物と、化合物(A)の加水分解縮合物とを含むマトリックス前駆体。
 (c)シリカ前駆体と、含フッ素エーテル化合物同士の加水分解縮合物と、シリカ前駆体(アルコキシシラン)と含フッ素エーテル化合物との加水分解縮合物とを含むマトリックス前駆体。
(A) A matrix precursor containing a silica precursor and a fluorine-containing ether compound.
(B) A matrix precursor containing a silica precursor, a fluorine-containing ether compound, and a hydrolysis condensate of compound (A).
(C) A matrix precursor containing a silica precursor, a hydrolysis condensate between fluorine-containing ether compounds, and a hydrolysis condensate of a silica precursor (alkoxysilane) and a fluorine-containing ether compound.
 シリカ前駆体としては、アルコキシシラン、アルコキシシランの加水分解縮合物(ゾルゲルシリカ)、またはシラザン等が挙げられ、低反射膜14の各特性の点から、アルコキシシランの加水分解縮合物が好ましい。 Examples of the silica precursor include alkoxysilane, alkoxysilane hydrolysis condensate (sol-gel silica), silazane, and the like. From the viewpoint of each characteristic of the low reflective film 14, an alkoxysilane hydrolysis condensate is preferable.
 アルコキシシランとしては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、またはテトラブトキシシラン等)、ペルフルオロポリエーテル基を有するアルコキシシラン(ペルフルオロポリエーテルトリエトキシシラン等)、ペルフルオロアルキル基を有するアルコキシシラン(ペルフルオロエチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、またはビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、または3-グリシドキシプロピルトリエトキシシラン等)、またはアクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。 Examples of alkoxysilane include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, or tetrabutoxysilane), alkoxysilane having a perfluoropolyether group (perfluoropolyether triethoxysilane, etc.), and a perfluoroalkyl group. Alkoxysilane (perfluoroethyltriethoxysilane, etc.) having a vinyl group, alkoxysilane having a vinyl group (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4-epoxycyclohexyl) ethyl Trimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, or 3-glycidoxypropyltrie Kishishiran etc.), or acryloyl alkoxysilane having an oxy group (3-acryloyloxy propyl trimethoxysilane and the like) and the like.
 アルコキシシランの加水分解は、テトラアルコキシシランの場合、アルコキシシランの4倍モル以上の水、および触媒として酸またはアルカリを用いて行う。酸としては、無機酸(たとえば、硝酸、硫酸、または塩酸等)、または有機酸(たとえば、ギ酸、シュウ酸、モノクロル酢酸、ジクロル酢酸、またはトリクロル酢酸等)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、または水酸化カリウム等が挙げられる。触媒としては、アルコキシシランの加水分解縮合物の長期保存性の点から、酸が好ましい。アルコキシシランの加水分解に用いる触媒としては、中空微粒子の分散を妨げないものが好ましい。 In the case of tetraalkoxysilane, hydrolysis of alkoxysilane is carried out using water at least 4 times the mole of alkoxysilane and an acid or alkali as a catalyst. Examples of the acid include inorganic acids (for example, nitric acid, sulfuric acid, or hydrochloric acid), or organic acids (for example, formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, or trichloroacetic acid). Examples of the alkali include ammonia, sodium hydroxide, and potassium hydroxide. The catalyst is preferably an acid from the viewpoint of long-term storage stability of the alkoxysilane hydrolysis condensate. As a catalyst used for hydrolysis of alkoxysilane, a catalyst that does not hinder the dispersion of hollow fine particles is preferable.
 含フッ素エーテル化合物は、主鎖の一方の末端に加水分解性シリル基を有していてもよく、主鎖の両方の末端に加水分解性シリル基を有していてもよい。低反射層に耐摩擦性を充分に付与する点からは、主鎖の一方の末端のみに加水分解性シリル基を有することが好ましい。
 前記低反射層とは、膜の最表面に形成されている層であり、指紋や汚れが直接接触する膜の最表面部分である。
 含フッ素エーテル化合物は、単一化合物であってもよく、ポリ(オキシペルフルオロアルキレン)鎖、末端基、または連結基等が異なる2種類以上の混合物であってもよい。
The fluorine-containing ether compound may have a hydrolyzable silyl group at one end of the main chain, or may have a hydrolyzable silyl group at both ends of the main chain. From the viewpoint of sufficiently imparting friction resistance to the low reflection layer, it is preferable to have a hydrolyzable silyl group only at one end of the main chain.
The low reflection layer is a layer formed on the outermost surface of the film, and is the outermost surface portion of the film where fingerprints and dirt are in direct contact.
The fluorine-containing ether compound may be a single compound, or may be a mixture of two or more different poly (oxyperfluoroalkylene) chains, terminal groups, or linking groups.
 含フッ素エーテル化合物の数平均分子量は、500~10,000が好ましく、800~8,000がより好ましい。数平均分子量が前記範囲内であれば、耐摩擦性に優れる。マトリックス前駆体を構成する他の成分との相溶性の点からは、前記化合物の数平均分子量は、800~2,000が特に好ましい。
 通常、含フッ素エーテル化合物においては、数平均分子量が小さいほど、基材との化学結合が強固となると考えられる。この理由は、単位分子量当たりに存在する加水分解性シリル基の数が多くなるためと考えられる。しかしながら、数平均分子量が前記範囲の下限値未満であると、耐摩擦性が低下しやすいことを、本発明者等は確認した。また、数平均分子量が前記範囲の上限値を超えると、耐摩擦性が低下する。この理由は、単位分子量当たりに存在する加水分解性シリル基の数の減少による影響が大きくなるためであると考えられる。
The number average molecular weight of the fluorinated ether compound is preferably from 500 to 10,000, more preferably from 800 to 8,000. When the number average molecular weight is within the above range, the friction resistance is excellent. From the viewpoint of compatibility with the other components constituting the matrix precursor, the number average molecular weight of the compound is particularly preferably 800 to 2,000.
In general, in a fluorine-containing ether compound, it is considered that the smaller the number average molecular weight, the stronger the chemical bond with the substrate. The reason for this is considered that the number of hydrolyzable silyl groups present per unit molecular weight increases. However, the present inventors have confirmed that if the number average molecular weight is less than the lower limit of the above range, the friction resistance tends to decrease. Moreover, when a number average molecular weight exceeds the upper limit of the said range, friction resistance will fall. The reason for this is considered to be because the influence of a decrease in the number of hydrolyzable silyl groups present per unit molecular weight is increased.
 含フッ素エーテル化合物は、ポリ(オキシペルフルオロアルキレン)鎖を有するため、フッ素原子の含有量が多い。そのため、含フッ素エーテル化合物は、初期の撥水撥油性が高く、耐摩擦性、または指紋汚れ除去性に優れる低反射層を形成できる。 Since the fluorine-containing ether compound has a poly (oxyperfluoroalkylene) chain, the fluorine atom content is large. Therefore, the fluorine-containing ether compound has a high initial water and oil repellency and can form a low reflection layer excellent in friction resistance or fingerprint stain removability.
 含フッ素エーテル化合物中の加水分解性シリル基(-SiL3-m)が加水分解反応することによってシラノール基(Si-OH)が形成され、前記シラノール基は分子間で反応してSi-O-Si結合が形成され、または前記シラノール基が基材の表面の水酸基(基材-OH)と脱水縮合反応して化学結合(基材-O-Si)が形成される。すなわち、本発明における低反射層は、本化合物を、本化合物の加水分解性シリル基の一部または全部が加水分解反応した状態で含む。 A hydrolyzable silyl group (—SiL m R 3-m ) in the fluorine-containing ether compound undergoes a hydrolysis reaction to form a silanol group (Si—OH), and the silanol group reacts between molecules to form Si— An O—Si bond is formed, or the silanol group is subjected to a dehydration condensation reaction with a hydroxyl group (substrate —OH) on the surface of the substrate to form a chemical bond (substrate —O—Si). That is, the low reflective layer in the present invention contains the present compound in a state in which a part or all of the hydrolyzable silyl group of the present compound is hydrolyzed.
 含フッ素エーテル化合物としては、たとえば、化合物(A)が挙げられる。
 化合物(A)は、下式(A)で表される化合物である。
As a fluorine-containing ether compound, a compound (A) is mentioned, for example.
The compound (A) is a compound represented by the following formula (A).
 RF1O(CFCFO)CF-(Q)(-(CH-SiL3-p ・・・(A)。 R F1 O (CF 2 CF 2 O) a CF 2 - (Q) b (- (CH 2) d -SiL p R 3-p) c ··· (A).
 RF1は、炭素数1~20の1価のペルフルオロ飽和炭化水素基、または、炭素原子-炭素原子間にエーテル性酸素原子が挿入された炭素数2~20の1価のペルフルオロ飽和炭化水素基であり、かつ-OCFO-構造を含まない基である。 R F1 represents a monovalent perfluoro saturated hydrocarbon group having 1 to 20 carbon atoms or a monovalent perfluoro saturated hydrocarbon group having 2 to 20 carbon atoms in which an etheric oxygen atom is inserted between the carbon atom and the carbon atom. And a group not containing the —OCF 2 O— structure.
 aは1~200の整数であり、2~100の整数が好ましく、3~50の整数がより好ましく、5~25の整数がさらに好ましい。
 bは、0または1であり、1が好ましい。
 Qは、bが0である場合には存在せず、bが1である場合には2または3価の連結基である。
 cは、Qが存在しない、またはQが2価の連結基である場合には1であり、Qが3価の連結基である場合には2である。
 dは、2~6の整数である。
 Rは、水素原子または1価の炭化水素基である。
a is an integer of 1 to 200, preferably an integer of 2 to 100, more preferably an integer of 3 to 50, and still more preferably an integer of 5 to 25.
b is 0 or 1, and 1 is preferable.
Q is absent when b is 0 and is a divalent or trivalent linking group when b is 1.
c is 1 when Q is not present or Q is a divalent linking group, and is 2 when Q is a trivalent linking group.
d is an integer of 2 to 6.
R is a hydrogen atom or a monovalent hydrocarbon group.
 Lは、加水分解性基である。加水分解性基とは、Si-L基の加水分解によって、Si-OH基を形成し得るような基である。 L is a hydrolyzable group. The hydrolyzable group is a group that can form a Si—OH group by hydrolysis of a Si—L group.
 Lとしては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、またはハロゲン原子等が挙げられ、化合物(A)の安定性と加水分解のしやすさとのバランスの点から、アルコキシ基、イソシアネート基およびハロゲン原子(特に塩素原子)が好ましい。アルコキシ基としては、炭素数1~3のアルコキシ基が好ましく、メトキシ基またはエトキシ基がより好ましい。含フッ素化合物中にLが2以上存在する場合には、Lが同じ基でも異なる基でもよく、同じ基であることが入手しやすさの点で好ましい。 Examples of L include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, or a halogen atom, and the stability of the compound (A) and the ease of hydrolysis. From the viewpoint of balance, an alkoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferable. As the alkoxy group, an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable. When two or more L are present in the fluorine-containing compound, L may be the same group or different groups, and the same group is preferable from the viewpoint of availability.
 pは、1~3の整数である。pが1以上であれば、Si-OH基同士の縮合によって化合物(A)に由来する構造がマトリックスに強固に結合できる。pは、2または3が好ましく、3が特に好ましい。 P is an integer from 1 to 3. When p is 1 or more, the structure derived from the compound (A) can be firmly bonded to the matrix by the condensation of Si—OH groups. p is preferably 2 or 3, particularly preferably 3.
 化合物(A)としては、油脂汚れの除去性や化合物(A)の合成のしやすさの点から、下記の化合物(A-1)または化合物(A-2)が好ましい。 As the compound (A), the following compound (A-1) or compound (A-2) is preferred from the viewpoint of oil and fat stain removability and ease of synthesis of the compound (A).
 CFO(CFCFO)a1CFC(O)NH-(CH-Si(OCH ・・・(A-1)。 CF 3 O (CF 2 CF 2 O) a1 CF 2 C (O) NH— (CH 2 ) 3 —Si (OCH 3 ) 3 ... (A-1).
 CFO(CFCFO)a2CFCHO(CHSi(OCH ・・・(A-2)。 CF 3 O (CF 2 CF 2 O) a 2 CF 2 CH 2 O (CH 2 ) 3 Si (OCH 3 ) 3 (A-2).
 ただし、a1、およびa2は、5~25の整数である。 However, a1 and a2 are integers of 5 to 25.
 化合物(A)は、-OCFO-構造が存在しないことから、酸触媒の存在下、かつ高温条件下におかれたとしても、劣化耐性に優れた低反射膜14を形成できる。 Since the compound (A) has no —OCF 2 O— structure, the low reflection film 14 having excellent deterioration resistance can be formed even in the presence of an acid catalyst and under high temperature conditions.
 また、化合物(A)の(CFCFO)構造は、分子の運動性を低下させるCF基が存在しないアルキレンオキシ構造である。よって、化合物(A)自体の分子の運動性が高くなり、化合物(A)を含むマトリックス前駆体から形成された低反射膜14は、油脂汚れの除去性に優れた膜となる。 In addition, the (CF 2 CF 2 O) a structure of the compound (A) is an alkyleneoxy structure in which no CF 3 group that reduces molecular mobility exists. Therefore, the mobility of the molecule of the compound (A) itself is increased, and the low reflection film 14 formed from the matrix precursor containing the compound (A) is a film excellent in oil and fat stain removability.
 塗布液中における中空微粒子とシリカ前駆体(SiO換算)との質量比(中空微粒子/SiO)は、6/4~4/6が好ましい。中空微粒子の割合が6/4より少なければ、低反射膜14の表面の算術平均粗さ(Ra)が小さくなり、低反射膜14の油脂汚れの除去性が向上する。中空微粒子の割合が4/6より多ければ、低反射膜14の屈折率が低くなり、低反射膜14の反射率が充分に低くなる。 The mass ratio (hollow fine particles / SiO 2 ) between the hollow fine particles and the silica precursor (SiO 2 equivalent) in the coating solution is preferably 6/4 to 4/6. If the ratio of the hollow fine particles is less than 6/4, the arithmetic average roughness (Ra) of the surface of the low reflection film 14 is reduced, and the oil and dirt removal property of the low reflection film 14 is improved. If the ratio of the hollow fine particles is more than 4/6, the refractive index of the low reflective film 14 is low, and the reflectivity of the low reflective film 14 is sufficiently low.
 塗布液中における含フッ素エーテル化合物の割合は、中空微粒子とシリカ前駆体(SiO換算)との合計(100質量%)に対して、0.8~3.0質量%が好ましく、1.0~1.8質量%がより好ましい。含フッ素エーテル化合物の割合が0.8質量%以上であれば、油脂汚れの除去性がさらに向上する。含フッ素エーテル化合物の割合が2.0質量%以下であれば、含フッ素エーテル化合物の膜表面の局部的偏在に起因するヘイズの上昇等が生じず好ましい。 The ratio of the fluorine-containing ether compound in the coating solution is preferably 0.8 to 3.0% by mass with respect to the total (100% by mass) of the hollow fine particles and the silica precursor (in terms of SiO 2 ), 1.0 More preferably, it is -1.8 mass%. If the ratio of a fluorine-containing ether compound is 0.8 mass% or more, the removal property of fats and oils will improve further. When the ratio of the fluorinated ether compound is 2.0% by mass or less, the haze increase due to the local uneven distribution of the film surface of the fluorinated ether compound is not preferable.
 溶媒としては、マトリックス前駆体の溶液の溶媒、中空微粒子の分散液の分散媒が挙げられる。 Examples of the solvent include a solvent for the matrix precursor solution and a dispersion medium for the dispersion of hollow fine particles.
 アルコキシシランの加水分解縮合物の溶液の溶媒としては、水とアルコール類(たとえば、メタノール、エタノール、イソプロパノール、ブタノール、またはジアセトンアルコール等)との混合溶媒が好ましい。 As the solvent of the alkoxysilane hydrolysis condensate solution, a mixed solvent of water and alcohols (for example, methanol, ethanol, isopropanol, butanol, diacetone alcohol, etc.) is preferable.
 含フッ素エーテル化合物の溶液の溶媒としては、有機溶媒が好ましい。有機溶媒は、フッ素系有機溶媒であってもよく、非フッ素系有機溶媒であってもよく、両溶媒を含んでもよい。前記溶媒としては、たとえば、メタノール、またはエタノール等が挙げられる。 As the solvent of the fluorine-containing ether compound solution, an organic solvent is preferable. The organic solvent may be a fluorinated organic solvent, a non-fluorinated organic solvent, or may include both solvents. Examples of the solvent include methanol or ethanol.
 中空微粒子の分散液の分散媒としては、水、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、または含硫黄化合物等が挙げられる。 Examples of the dispersion medium for the hollow fine particle dispersion include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
 塗布液の調製方法としては、下記する方法(α)から(γ)の方法が挙げられ、ガラス板12の表面に塗布液を塗布した際に含フッ素エーテル化合物が塗膜の表面に浮き上がり、焼成後に含フッ素エーテル化合物に由来する構造が低反射膜14の表面に偏在し、優れた油脂汚れの除去性が発揮される点から、方法(β)が好ましい。また、中空微粒子の分散液は、中空微粒子の凝集を抑制する点から、マトリックス前駆体の溶液を希釈した後に加えることが好ましい。 Examples of the method for preparing the coating liquid include the following methods (α) to (γ). When the coating liquid is applied to the surface of the glass plate 12, the fluorinated ether compound floats on the surface of the coating film and is fired. The method (β) is preferable since the structure derived from the fluorine-containing ether compound is later unevenly distributed on the surface of the low reflective film 14 and excellent removability of fat and oil stains is exhibited. The dispersion of hollow fine particles is preferably added after diluting the solution of the matrix precursor from the viewpoint of suppressing aggregation of the hollow fine particles.
 (α)溶液中のアルコキシシランおよび含フッ素エーテル化合物を加水分解した後、所望により溶媒で希釈し、ついで中空微粒子の分散液を加える方法。 (Α) A method of hydrolyzing the alkoxysilane and fluorine-containing ether compound in the solution, then diluting with a solvent if desired, and then adding a dispersion of hollow fine particles.
 (β)溶液中のアルコキシシランを加水分解した後(好ましくは加水分解から2時間以上経過した後)、含フッ素エーテル化合物の溶液を加え、所望により溶媒で希釈し、ついで中空微粒子の分散液を加える方法。 (Β) After hydrolyzing the alkoxysilane in the solution (preferably after 2 hours or more after hydrolysis), add a solution of the fluorinated ether compound, and if necessary, dilute with a solvent, and then add a dispersion of hollow fine particles. How to add.
 (γ)溶液中のアルコキシシランを加水分解した後、溶媒で希釈し、ついで含フッ素エーテル化合物の溶液を加え、ついで中空微粒子の分散液を加える方法。 (Γ) A method in which the alkoxysilane in the solution is hydrolyzed, diluted with a solvent, a solution of a fluorinated ether compound is added, and then a dispersion of hollow fine particles is added.
 塗布方法としては、公知のウェットコート法(たとえば、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、またはロールコート法等)等が挙げられる。 As a coating method, a known wet coating method (for example, spin coating method, spray coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure coating method, bar coating method). , Flexo coat method, slit coat method, roll coat method, etc.).
 塗布温度は、室温~200℃が好ましく、室温~150℃がより好ましい。
 焼成温度は、30℃以上が好ましく、100~180℃がより好ましく、ガラス板、微粒子またはマトリックスの材料に応じて適宜決定すればよい。
 焼成時間は、3分以上が好ましく、10分~60分がより好ましく、ガラス板、微粒子またはマトリックスの材料に応じて適宜決定すればよい。
The coating temperature is preferably room temperature to 200 ° C, more preferably room temperature to 150 ° C.
The firing temperature is preferably 30 ° C. or higher, more preferably 100 to 180 ° C., and may be appropriately determined according to the material of the glass plate, fine particles or matrix.
The firing time is preferably 3 minutes or more, more preferably from 10 minutes to 60 minutes, and may be appropriately determined according to the material of the glass plate, fine particles or matrix.
 本発明の低反射膜付きガラス板は、マトリックスと中空微粒子とを含む単層の低反射膜を、ガラス板の表面に有する低反射膜付きガラス板であって、前記マトリックスが前記含フッ素エーテル化合物に由来する構造を有し、かつ前記中空微粒子が前記中空シリカ微粒子であることが好ましく、前記含フッ素エーテル化合物が下式(A)で表される化合物(A)であることがより好ましい。
 本発明の低反射膜付きガラス板は、マトリックス前駆体と、中空微粒子と、溶媒とを含む塗布液を、ガラス板の表面に塗布することによって製造される。
 すなわち、本発明の低反射膜付きガラス板は、表面に低反射膜を有し、前記低反射膜は、マトリックス前駆体と、中空微粒子とを含む。前記低反射膜は、シリカ前駆体と、含フッ素エーテル化合物および/またはその加水分解縮合物と、を含むマトリックス前駆体と、中空シリカ微粒子と、溶媒とを含む塗布液により形成することが好ましく、かかる塗布液は、アルコキシシランと下式(A)で表される化合物(A)との加水分解縮合物とを含むマトリックス前駆体と、中空シリカ微粒子と、溶媒とを含むことがより好ましく、テトラエトキシシランと下式(A)で表される化合物(A)との加水分解縮合物とを含むマトリックス前駆体と、中空シリカ微粒子と、溶媒とを含むことがさらに好ましい。
The glass plate with a low-reflection film of the present invention is a glass plate with a low-reflection film having a single-layer low-reflection film containing a matrix and hollow fine particles on the surface of the glass plate, wherein the matrix is the fluorine-containing ether compound. The hollow fine particles are preferably the hollow silica fine particles, and the fluorine-containing ether compound is more preferably a compound (A) represented by the following formula (A).
The glass plate with a low reflection film of the present invention is produced by applying a coating solution containing a matrix precursor, hollow fine particles, and a solvent to the surface of the glass plate.
That is, the glass plate with a low reflection film of the present invention has a low reflection film on the surface, and the low reflection film contains a matrix precursor and hollow fine particles. The low reflection film is preferably formed of a coating liquid containing a silica precursor, a matrix precursor containing a fluorine-containing ether compound and / or a hydrolysis condensate thereof, hollow silica fine particles, and a solvent. Such a coating solution more preferably contains a matrix precursor containing a hydrolysis condensate of alkoxysilane and a compound (A) represented by the following formula (A), hollow silica fine particles, and a solvent. More preferably, it contains a matrix precursor containing a hydrolysis condensate of ethoxysilane and the compound (A) represented by the following formula (A), hollow silica fine particles, and a solvent.
 RF1O(CFCFO)CF-(Q)(-(CH-SiL3-p ・・・(A)。
 RF1、a、b、Q、c、d、L、Rおよびpは前記と同じ意味を有する。
R F1 O (CF 2 CF 2 O) a CF 2- (Q) b (— (CH 2 ) d —SiL p R 3-p ) c (A).
R F1 , a, b, Q, c, d, L, R and p have the same meaning as described above.
(作用効果)
 以上説明した本発明の低反射膜付きガラス板は、マトリックスと中空微粒子とを含む単層の低反射膜を、ガラス板の表面に有する低反射膜付きガラス板であって、波長300~1,200nmの範囲内における前記低反射膜の最低反射率が、1.7%以下であり、前記低反射膜の表面における水接触角が、97°以上であり、前記低反射膜の表面におけるオレイン酸接触角が、50°以上であり、前記低反射膜の表面におけるオレイン酸転落角が、25°以下であるため、低反射膜における反射率が充分に低く、かつ油脂汚れの除去性が良好である。
(Function and effect)
The glass plate with a low reflection film of the present invention described above is a glass plate with a low reflection film having a single-layer low reflection film containing a matrix and hollow fine particles on the surface of the glass plate, and has a wavelength of 300 to 1, The minimum reflectance of the low reflection film within a range of 200 nm is 1.7% or less, the water contact angle on the surface of the low reflection film is 97 ° or more, and oleic acid on the surface of the low reflection film Since the contact angle is 50 ° or more and the oleic acid tumbling angle on the surface of the low reflection film is 25 ° or less, the reflectivity in the low reflection film is sufficiently low, and the oil and fat stain removability is good. is there.
 以上説明した本発明の低反射膜付きガラス板の製造方法は、マトリックス前駆体と中空微粒子と溶媒とを含む塗布液を、ガラス板の表面に塗布し、焼成する工程を有し、マトリックス前駆体が、シリカ前駆体と、ポリ(オキシペルフルオロアルキレン)鎖を主鎖に有し、かつ前記主鎖の少なくとも一方の末端に加水分解性シリル基を有する、含フッ素エーテル化合物および/またはその加水分解縮合物を含み、塗布液中における中空微粒子とシリカ前駆体(SiO換算)との質量比(中空微粒子/SiO)が、6/4~4/6であり、塗布液中における含フッ素エーテル化合物の割合が、中空微粒子とシリカ前駆体(SiO換算)との合計(100質量%)に対して、0.8~3.0質量%であるため、低反射膜における反射率が充分に低く、かつ油脂汚れの除去性が良好である単層の低反射膜をガラス板の表面に有する低反射膜付きガラス板を製造できる。 The method for producing a glass plate with a low reflection film according to the present invention described above includes a step of applying a coating liquid containing a matrix precursor, hollow fine particles, and a solvent to the surface of the glass plate, followed by baking, and the matrix precursor. Has a silica precursor, a poly (oxyperfluoroalkylene) chain in the main chain, and a hydrolyzable silyl group at least at one end of the main chain and / or its hydrolytic condensation The mass ratio (hollow fine particles / SiO 2 ) between the hollow fine particles and the silica precursor (SiO 2 equivalent) in the coating solution is 6/4 to 4/6, and the fluorine-containing ether compound in the coating solution Is 0.8 to 3.0% by mass with respect to the total (100% by mass) of the hollow fine particles and the silica precursor (in terms of SiO 2 ). It is possible to produce a glass plate with a low reflection film having a single layer low reflection film on the surface of the glass plate that is low in minute and excellent in oil and fat stain removability.
 以上説明した本発明の表示装置は、マトリックスと中空微粒子とを含む単層の低反射膜を、ガラス板の表面に有する低反射膜付きガラス板を含む。そして前記低反射膜付きガラス板において、波長300~1,200nmの範囲内における前記低反射膜の最低反射率が、1.7%以下であり、前記低反射膜の表面における水接触角が、97°以上であり、前記低反射膜の表面におけるオレイン酸接触角が、50°以上であり、前記低反射膜の表面におけるオレイン酸転落角が、25°以下であるため、低反射膜における反射率が充分に低く、かつ油脂汚れの除去性が良好である。 The display device of the present invention described above includes a glass plate with a low reflection film having a single-layer low reflection film containing a matrix and hollow fine particles on the surface of the glass plate. And in the glass plate with a low reflection film, the minimum reflectance of the low reflection film within a wavelength range of 300 to 1,200 nm is 1.7% or less, and the water contact angle on the surface of the low reflection film is Since it is 97 ° or more, the oleic acid contact angle on the surface of the low reflection film is 50 ° or more, and the oleic acid falling angle on the surface of the low reflection film is 25 ° or less, the reflection on the low reflection film The rate is sufficiently low, and the oil / fouling stain removability is good.
 以下、実施例により本発明をさらに詳しく説明する。
 例15~18、21~23、26~28、31~34、37~42、45~50、53~58、および61~66は実施例であり、例1~14、19、20、24、25、29、30、35、36、43、44、51、52、59、および60は比較例である。
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 15-18, 21-23, 26-28, 31-34, 37-42, 45-50, 53-58, and 61-66 are examples, examples 1-14, 19, 20, 24, Reference numerals 25, 29, 30, 35, 36, 43, 44, 51, 52, 59, and 60 are comparative examples.
(視感反射率)
 低反射膜の反射率は、分光光度計(日立製作所社製、型式:U-4100)を用いて測定した。視感反射率は、波長380~780nmの反射率に重み関数を乗じて平均化した反射率である。
(Luminous reflectance)
The reflectance of the low reflection film was measured using a spectrophotometer (manufactured by Hitachi, Ltd., model: U-4100). The luminous reflectance is a reflectance averaged by multiplying the reflectance at a wavelength of 380 to 780 nm by a weight function.
(最低反射率)
 波長300~1,200nmにおける低反射膜の反射率を、分光光度計(日立製作所社製、型式:U-4100)を用いて測定し、反射率の最小値(最低反射率)を求めた。
(Minimum reflectance)
The reflectance of the low reflection film at wavelengths of 300 to 1,200 nm was measured using a spectrophotometer (manufactured by Hitachi, Ltd., model: U-4100), and the minimum reflectance (minimum reflectance) was obtained.
(ヘイズ)
 低反射膜付きガラス板のヘイズは、ヘイズ測定装置(BYK-Gardner社製、ヘイズガードプラス)を用いて測定した。
(Haze)
The haze of the glass plate with a low reflection film was measured using a haze measuring device (manufactured by BYK-Gardner, Hazeguard Plus).
(水接触角)
 低反射膜の表面に、約48μLの蒸留水を3箇所に置き、それぞれの水接触角を、接触角計(協和界面科学社製、FAMAS)を用いて測定し、3つの値の平均値を求めた。
(Water contact angle)
About 48 μL of distilled water is placed in three places on the surface of the low reflection film, and each water contact angle is measured using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., FAMAS), and the average of the three values is calculated. Asked.
(オレイン酸接触角)
 低反射膜の表面に、約48μLのオレイン酸を3箇所に置き、それぞれのオレイン酸接触角を、接触角計(協和界面科学社製、FACE SLIDING ANGLE METER)を用いて測定し、3つの値の平均値を求めた。
(Oleic acid contact angle)
About 48 μL of oleic acid is placed in three places on the surface of the low-reflection film, and each oleic acid contact angle is measured using a contact angle meter (FACE SLIDING ANGLE METER, manufactured by Kyowa Interface Science Co., Ltd.). The average value of was obtained.
(オレイン酸転落角)
 低反射膜付きガラス板を水平に保持し、低反射膜の表面に48μLのオレイン酸を滴下した後、低反射膜付きガラス板を徐々に傾け、オレイン酸が転落し始めたときの低反射膜付きガラス板と水平面との角度(転落角)を測定した。測定結果として、「測定不能」とは、オレイン酸が基板上に広がり、低反射膜付きガラス板を傾けてもオレイン酸の移動等が観測されない状態を示す。
(Oleic acid falling angle)
A low reflection film when a glass plate with a low reflection film is held horizontally and 48 μL of oleic acid is dropped on the surface of the low reflection film, and then the glass plate with a low reflection film is gradually tilted to start dropping oleic acid. The angle (fall angle) between the attached glass plate and the horizontal plane was measured. As a measurement result, “impossible to measure” means a state in which oleic acid spreads on the substrate and no movement of oleic acid is observed even when the glass plate with a low reflection film is tilted.
(フッ素元素の割合)
 例11、23、および35の3つの低反射膜付きガラス板について、X線光電子分光装置(アルバック・ファイ社製、Quantera SXM)を用いて、低反射膜の表面におけるフッ素元素の割合を求めた。3点の測定結果から、塗布液中の化合物(A)の割合に対する低反射膜の表面におけるフッ素元素の割合の検量線を作成した。例11、23、および35を除く、その他の例の低反射膜付きガラス板については、検量線を用いて塗布液中の化合物(A)の割合から、低反射膜の表面におけるフッ素元素の割合を求めた。
(Ratio of elemental fluorine)
Using the X-ray photoelectron spectrometer (Quanta SXM, manufactured by ULVAC-PHI), the ratio of the fluorine element on the surface of the low reflection film was determined for the three glass plates with low reflection film of Examples 11, 23, and 35. . From the three measurement results, a calibration curve for the ratio of the fluorine element on the surface of the low reflective film to the ratio of the compound (A) in the coating solution was prepared. About the glass plate with a low reflection film of other examples except Examples 11, 23, and 35, the ratio of the elemental fluorine on the surface of the low reflection film from the ratio of the compound (A) in the coating solution using a calibration curve Asked.
(算術平均粗さ)
 低反射膜の表面の算術平均粗さ(Ra)は、走査型プローブ顕微鏡装置(SIIナノテクノロジー社製、SPA400DFM)を用いて測定した。
(Arithmetic mean roughness)
The arithmetic average roughness (Ra) of the surface of the low-reflection film was measured using a scanning probe microscope apparatus (SII Nano Technology, SPA400DFM).
(屈折率)
 低反射膜の屈折率nは、単層の低反射膜について分光光度計で測定した波長300~1,200nmの範囲内における最低反射率Rminと、ガラス板の屈折率nsとから下式(1)によって算出した。
(Refractive index)
The refractive index n of the low-reflection film is calculated from the following formula (1) from the minimum reflectance Rmin in the wavelength range of 300 to 1,200 nm measured with a spectrophotometer for the single-layer low-reflection film and the refractive index ns of the glass plate. ).
 Rmin=(n-ns)/(n+ns) ・・・(1)。 Rmin = (n−ns) 2 / (n + ns) 2 (1).
(油脂汚れの付着性)
 油性マーカー(ゼブラ社製、マッキー(登録商標))を用いて低反射膜の表面に直線を描き、下記の基準にて評価した。
 A:線が全て水滴状となり、全く明確に書けない状態。
 B:線が一部水滴状となるが、線としては認識される状態。
 C:線を書くことができ、明確に線が認識される。
(Adhesion of oil stains)
A straight line was drawn on the surface of the low reflection film using an oily marker (manufactured by Zebra, Mackey (registered trademark)), and evaluation was performed according to the following criteria.
A: All lines are in the form of water droplets and cannot be written clearly.
B: The line is partially water droplets, but is recognized as a line.
C: A line can be written and the line is clearly recognized.
(油脂汚れの除去性)
 油脂汚れの付着性の評価をした後、低反射膜の表面の油性インクをキムワイプ(kimwipe)紙で拭き取り、下記の基準にて評価した。
 A:3回擦るのみで完全に油性インクがとれる。
 B:10回擦るとほぼとれるが微かに油性インク跡が残る。
 C:30回擦ると若干油性インクの色が薄くなるが、ほとんど取れない。
 D:100回擦ると若干油性インクの色が薄くなるが、ほとんど取れない。
 E:100回擦っても、油性インクの色の変化が全くない。
(Removability of oil stains)
After evaluating the adhesion of oil and fat stains, the oil-based ink on the surface of the low reflective film was wiped off with kimwipe paper and evaluated according to the following criteria.
A: Oil-based ink can be completely removed by rubbing three times.
B: Almost completely removed after rubbing 10 times.
C: When rubbed 30 times, the color of the oil-based ink is slightly lightened, but is hardly removed.
D: When rubbed 100 times, the color of the oil-based ink is slightly faded, but hardly removed.
E: No change in color of oil-based ink even after rubbing 100 times.
(ガラス板)
 ガラス板として、ソーダライムガラス(旭硝子社製、サイズ:100mm×100mm、厚さ:3.2mm、屈折率:1.52、可視光線透過率:90.4%)を用意した。
(Glass plate)
As the glass plate, soda lime glass (manufactured by Asahi Glass Co., Ltd., size: 100 mm × 100 mm, thickness: 3.2 mm, refractive index: 1.52, visible light transmittance: 90.4%) was prepared.
(化合物(A))
 化合物(A)として、化合物(A-1)を用意した。
 化合物(A-1)は、国際公開第2009/008380号の実施例1、および2に記載の方法を用いて製造したものである。
(Compound (A))
Compound (A-1) was prepared as compound (A).
Compound (A-1) was produced using the method described in Examples 1 and 2 of WO2009 / 008380.
(アルコキシシラン)
 アルコキシシランとしては、テトラエトキシシラン(以下、TEOSと記す。)の溶液(純正化学社製、SiO換算固形分濃度:5質量%、イソプロピルアルコール:30質量%,2-ブタノール:25質量%、エタノール:8質量%、ジアセトンアルコール:15質量%、メタノール:17質量%)を用意した。
(Alkoxysilane)
As the alkoxysilane, a solution of tetraethoxysilane (hereinafter referred to as TEOS) (manufactured by Junsei Co., Ltd., SiO 2 equivalent solid content concentration: 5 mass%, isopropyl alcohol: 30 mass%, 2-butanol: 25 mass%, Ethanol: 8% by mass, diacetone alcohol: 15% by mass, methanol: 17% by mass).
(中空微粒子)
 中空微粒子としては、下記のものを用意した。
 中空シリカ微粒子(C-1)の分散液:旭硝子社製、中空粒子ゾル、SiO換算固形分濃度:20質量%、平均一次粒子径:10nm、水:40質量%、アルコール:40質量%。
 中空シリカ微粒子(C-2)の分散液:日揮触媒化成社製、中空粒子ゾル、SiO換算固形分濃度:20質量%、平均一次粒子径:20nm、アルコール:80質量%。
(Hollow particles)
As the hollow fine particles, the following were prepared.
Dispersion of hollow silica fine particles (C-1): Asahi Glass Co., Ltd., hollow particle sol, SiO 2 equivalent solid content concentration: 20% by mass, average primary particle size: 10 nm, water: 40% by mass, alcohol: 40% by mass.
Dispersion of hollow silica fine particles (C-2): manufactured by JGC Catalysts & Chemicals, Inc., hollow particle sol, solid content concentration in terms of SiO 2 : 20% by mass, average primary particle size: 20 nm, alcohol: 80% by mass.
〔例1〕
 TEOSの溶液の10gに、8mol/Lの硝酸水溶液の0.02gを加え、2時間撹拌し、TEOSの加水分解縮合物の溶液を得た。
[Example 1]
To 10 g of the TEOS solution, 0.02 g of an 8 mol / L nitric acid aqueous solution was added and stirred for 2 hours to obtain a TEOS hydrolysis condensate solution.
 TEOSの加水分解縮合物の溶液に、化合物(A-1)の溶液の0.005gを加え、15分間撹拌した後、混合溶媒(イソプロピルアルコール:30質量%、2-ブタノール:25質量%、エタノール:8質量%、ジアセトンアルコール:15質量%、メタノール:17質量%)の12gを加え、120分間撹拌し、マトリックス前駆体の溶液を得た。 After adding 0.005 g of the solution of the compound (A-1) to the TEOS hydrolysis condensate solution and stirring for 15 minutes, a mixed solvent (isopropyl alcohol: 30% by mass, 2-butanol: 25% by mass, ethanol : 8 mass%, diacetone alcohol: 15 mass%, methanol: 17 mass%) was added and stirred for 120 minutes to obtain a matrix precursor solution.
 マトリックス前駆体の溶液に、中空シリカ微粒子(C-1)の分散液の6gを加え、15分間撹拌し、塗布液を得た。塗布液の組成を表1に示す。 6 g of the dispersion of hollow silica fine particles (C-1) was added to the matrix precursor solution and stirred for 15 minutes to obtain a coating solution. Table 1 shows the composition of the coating solution.
 ガラス板の表面に、塗布液をスピンコート(180rpm、60秒間)にて塗布した後、150℃で30分間焼成し、低反射膜付きガラス板を得た。低反射膜付きガラス板の評価結果を表2に示す。 The coating liquid was applied to the surface of the glass plate by spin coating (180 rpm, 60 seconds) and then baked at 150 ° C. for 30 minutes to obtain a glass plate with a low reflection film. Table 2 shows the evaluation results of the glass plate with a low reflection film.
〔例2〕
 スピンコートの回転数を180rpmから250rpmに変更した以外は、例1と同様にして低反射膜付きガラス板を得た。塗布液の組成を表1に示す。低反射膜付きガラス板の評価結果を表1に示す。
[Example 2]
A glass plate with a low reflection film was obtained in the same manner as in Example 1 except that the rotation speed of the spin coat was changed from 180 rpm to 250 rpm. Table 1 shows the composition of the coating solution. The evaluation results of the glass plate with a low reflection film are shown in Table 1.
〔例3~12〕
 塗布液の組成を表1に示す組成に変更した以外は、例1または例2と同様にして低反射膜付きガラス板を得た。前記低反射膜付きガラス板を評価した。結果を表2に示す。
[Examples 3 to 12]
A glass plate with a low reflection film was obtained in the same manner as in Example 1 or Example 2 except that the composition of the coating solution was changed to the composition shown in Table 1. The glass plate with a low reflection film was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔例13~23〕
 化合物(A-1)の割合を表3に示す割合に変更した以外は、例1~12と同様にして低反射膜付きガラス板を得た。前記低反射膜付きガラス板を評価した。結果を表4に示す。
[Examples 13 to 23]
A glass plate with a low reflection film was obtained in the same manner as in Examples 1 to 12 except that the ratio of the compound (A-1) was changed to the ratio shown in Table 3. The glass plate with a low reflection film was evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
〔例24~34〕
 化合物(A-1)の割合を表5に示す割合に変更した以外は、例1~12と同様にして低反射膜付きガラス板を得た。前記低反射膜付きガラス板を評価した。結果を表6に示す。
[Examples 24 to 34]
A glass plate with a low reflection film was obtained in the same manner as in Examples 1 to 12, except that the ratio of the compound (A-1) was changed to the ratio shown in Table 5. The glass plate with a low reflection film was evaluated. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔例35~42〕
 塗布液の組成を表7に示す組成に変更し、化合物(A-1)の添加のタイミングをTEOSの加水分解前に変更した以外は、例1~12と同様にして低反射膜付きガラス板を得た。前記低反射膜付きガラス板を評価した。結果を表8に示す。
[Examples 35 to 42]
The glass plate with a low reflection film was changed in the same manner as in Examples 1 to 12 except that the composition of the coating solution was changed to the composition shown in Table 7 and the timing of addition of compound (A-1) was changed before the hydrolysis of TEOS. Got. The glass plate with a low reflection film was evaluated. The results are shown in Table 8.
〔例43~50〕
 化合物(A-1)の添加のタイミングをTEOSの加水分解の1時間後に変更した以外は、例35~42と同様にして低反射膜付きガラス板を得た。前記低反射膜付きガラス板を評価した。結果を表8に示す。
[Examples 43 to 50]
A glass plate with a low reflection film was obtained in the same manner as in Examples 35 to 42 except that the timing of addition of compound (A-1) was changed after 1 hour of hydrolysis of TEOS. The glass plate with a low reflection film was evaluated. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
〔例51~58〕
 化合物(A-1)の添加のタイミングをTEOSの加水分解の2時間後に変更した以外は、例35~42と同様にして低反射膜付きガラス板を得た。前記低反射膜付きガラス板を評価した。結果を表10に示す。
[Examples 51 to 58]
A glass plate with a low reflection film was obtained in the same manner as in Examples 35 to 42 except that the addition timing of the compound (A-1) was changed 2 hours after the hydrolysis of TEOS. The glass plate with a low reflection film was evaluated. The results are shown in Table 10.
〔例59~66〕
 化合物(A-1)の添加のタイミングをTEOSの加水分解の2時間後かつ溶媒希釈後に変更した以外は、例35~42と同様にして低反射膜付きガラス板を得た。前記低反射膜付きガラス板を評価した。結果を表10に示す。
[Examples 59-66]
A glass plate with a low reflection film was obtained in the same manner as in Examples 35 to 42 except that the addition timing of the compound (A-1) was changed 2 hours after the hydrolysis of TEOS and after the solvent was diluted. The glass plate with a low reflection film was evaluated. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 例37の低反射膜付きガラス板の断面の走査型電子顕微鏡写真を図2に示す。図2は、低反射膜付きガラスを集束イオンビームで切断したのちの膜断面方向の100,000倍の倍率のSEM像を示す。低反射膜は、膜厚が凡そ100nmであり、中空粒子とマトリックス成分(シリカとフッ素化合物)よりなる。膜中で空孔が確認される部分は中空粒子が切断され、中空粒子の内部の空孔が見えている箇所である。 A scanning electron micrograph of the cross section of the glass plate with a low reflection film of Example 37 is shown in FIG. FIG. 2 shows an SEM image at a magnification of 100,000 times in the film cross-sectional direction after cutting the glass with a low reflection film with a focused ion beam. The low reflection film has a film thickness of about 100 nm and is composed of hollow particles and a matrix component (silica and fluorine compound). The part where the void is confirmed in the membrane is a place where the hollow particle is cut and the void inside the hollow particle is visible.
 本発明の低反射膜付きガラス板、および本発明の製造方法で得られた低反射膜付きガラス板は、各種ディスプレイ、自動車用窓ガラス、またはタッチパネル等に用いられるガラス板として有用である。 The glass plate with a low reflection film of the present invention and the glass plate with a low reflection film obtained by the production method of the present invention are useful as a glass plate used for various displays, automobile window glass, touch panels, and the like.
 本発明の表示装置は、各種テレビ、タッチパネル、携帯電話、または携帯情報端末等に有用である。
 なお、2011年4月1日に日本に出願された特願2011-081719号、2011年4月1日に日本に出願された特願2011-081720号、および2011年4月1日に日本に出願された特願2011-081833号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The display device of the present invention is useful for various televisions, touch panels, mobile phones, portable information terminals, and the like.
Japanese Patent Application No. 2011-081719 filed in Japan on April 1, 2011, Japanese Patent Application No. 2011-081720 filed in Japan on April 1, 2011, and Japan on April 1, 2011. The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2011-081833 filed herewith are incorporated herein by reference as the disclosure of the present invention.
 10 低反射膜付きガラス板
 12 ガラス板
 14 低反射膜
 100 表示装置
 20  表示部材
 30  筐体
DESCRIPTION OF SYMBOLS 10 Glass plate with a low reflection film 12 Glass plate 14 Low reflection film 100 Display apparatus 20 Display member 30 Case

Claims (15)

  1.  マトリックスと中空微粒子とを含む単層の低反射膜を、ガラス板の表面に有する低反射膜付きガラス板であって、
     波長300~1,200nmの範囲内における前記低反射膜の最低反射率が、1.7%以下であり、
     前記低反射膜の表面における水接触角が、97°以上であり、
     前記低反射膜の表面におけるオレイン酸接触角が、50°以上であり、
     前記低反射膜の表面におけるオレイン酸転落角が、25°以下である、前記低反射膜付きガラス板。
    A glass plate with a low-reflection film having a single-layer low-reflection film containing a matrix and hollow fine particles on the surface of the glass plate,
    The minimum reflectance of the low reflection film within a wavelength range of 300 to 1,200 nm is 1.7% or less,
    The water contact angle on the surface of the low reflection film is 97 ° or more,
    The oleic acid contact angle on the surface of the low reflection film is 50 ° or more,
    The glass plate with a low reflection film, wherein the oleic acid falling angle on the surface of the low reflection film is 25 ° or less.
  2.  前記ガラス板の少なくとも一方の面に、前記マトリックスと中空微粒子とを含む単層の低反射膜が、その最外層に形成されている、請求項1に記載の低反射膜付きガラス板。 The glass plate with a low reflection film according to claim 1, wherein a single layer low reflection film containing the matrix and hollow fine particles is formed on the outermost layer on at least one surface of the glass plate.
  3.  X線光電子分光法によって測定した前記低反射膜の表面におけるフッ素元素の割合が、3~20原子%である、請求項1または2に記載の低反射膜付きガラス板。 The glass plate with a low reflection film according to claim 1 or 2, wherein the ratio of fluorine element on the surface of the low reflection film measured by X-ray photoelectron spectroscopy is 3 to 20 atomic%.
  4.  走査型プローブ顕微鏡装置によって測定した前記低反射膜の表面の算術平均粗さ(Ra)が、3.0~5.0nmである、請求項1~3のいずれか一項に記載の低反射膜付きガラス板。 The low reflection film according to any one of claims 1 to 3, wherein the arithmetic average roughness (Ra) of the surface of the low reflection film measured by a scanning probe microscope apparatus is 3.0 to 5.0 nm. Glass plate with.
  5.  前記低反射膜の屈折率が、1.20~1.46である、請求項1~4のいずれか一項に記載の低反射膜付きガラス板。 The glass plate with a low reflection film according to any one of claims 1 to 4, wherein a refractive index of the low reflection film is 1.20 to 1.46.
  6.  前記マトリックスが、シリカを主成分とし、かつポリ(オキシペルフルオロアルキレン)鎖を主鎖に有し、かつ前記主鎖の少なくとも一方の末端に加水分解性シリル基を有する、含フッ素エーテル化合物に由来する構造を有する、請求項1~5のいずれか一項に記載の低反射膜付きガラス板。 The matrix is derived from a fluorine-containing ether compound having silica as a main component, having a poly (oxyperfluoroalkylene) chain in the main chain, and having a hydrolyzable silyl group at at least one end of the main chain. The glass plate with a low reflection film according to any one of claims 1 to 5, which has a structure.
  7.  前記含フッ素エーテル化合物が、下式(A)で表される化合物(A)である、請求項1~6のいずれか一項に記載の低反射膜付きガラス板。
     RF1O(CFCFO)CF-(Q)(-(CH-SiL3-p ・・・(A)。
     ただし、RF1は、炭素数1~20の1価のペルフルオロ飽和炭化水素基、または、炭素原子-炭素原子間にエーテル性酸素原子が挿入された炭素数2~20の1価のペルフルオロ飽和炭化水素基であり、かつ-OCFO-構造を含まない基であり、
     aは、1~200の整数であり、
     bは、0または1であり、
     Qは、bが0である場合には存在せず、bが1である場合には2または3価の連結基であり、
     cは、Qが存在しない、またはQが2価の連結基である場合には1であり、Qが3価の連結基である場合には2であり、
     dは、2~6の整数であり、
     Lは、加水分解性基であり、
     Rは、水素原子または1価の炭化水素基であり、
     pは、1~3の整数である。
    The glass plate with a low reflection film according to any one of claims 1 to 6, wherein the fluorine-containing ether compound is a compound (A) represented by the following formula (A).
    R F1 O (CF 2 CF 2 O) a CF 2- (Q) b (— (CH 2 ) d —SiL p R 3-p ) c (A).
    R F1 is a monovalent perfluoro saturated hydrocarbon group having 1 to 20 carbon atoms or a monovalent perfluoro saturated hydrocarbon having 2 to 20 carbon atoms in which an etheric oxygen atom is inserted between carbon atoms. A hydrogen group and a group not including the —OCF 2 O— structure;
    a is an integer from 1 to 200;
    b is 0 or 1,
    Q is absent when b is 0, and is a divalent or trivalent linking group when b is 1,
    c is 1 when Q is not present or Q is a divalent linking group, and is 2 when Q is a trivalent linking group;
    d is an integer of 2 to 6,
    L is a hydrolyzable group,
    R is a hydrogen atom or a monovalent hydrocarbon group,
    p is an integer of 1 to 3.
  8.  前記中空微粒子が、中空シリカ微粒子である、請求項1~7のいずれか一項に記載の低反射膜付きガラス板。 The glass plate with a low reflection film according to any one of claims 1 to 7, wherein the hollow fine particles are hollow silica fine particles.
  9.  マトリックスと中空微粒子とを含む単層の低反射膜をガラス板の表面に有する低反射膜付きガラス板の製造方法であって、
     マトリックス前駆体と中空微粒子と溶媒とを含む塗布液を、ガラス板の表面に塗布し、焼成する工程を有し、
     前記マトリックス前駆体が、シリカ前駆体と、ポリ(オキシペルフルオロアルキレン)鎖を主鎖に有し、かつ前記主鎖の少なくとも一方の末端に加水分解性シリル基を有する、含フッ素エーテル化合物および/またはその加水分解縮合物とを含み、
     前記塗布液中における中空微粒子とシリカ前駆体(SiO換算)との質量比(中空微粒子/SiO)が、6/4~4/6であり、
     塗布液中における含フッ素エーテル化合物の割合が、中空微粒子とシリカ前駆体(SiO換算)との合計(100質量%)に対して、0.8~3.0質量%である、前記低反射膜付きガラス板の製造方法。
    A method for producing a glass plate with a low-reflection film having a single-layer low-reflection film containing a matrix and hollow fine particles on the surface of the glass plate,
    A step of applying a coating liquid containing a matrix precursor, hollow fine particles, and a solvent to the surface of the glass plate and baking it;
    The matrix precursor has a silica precursor, a fluorine-containing ether compound having a poly (oxyperfluoroalkylene) chain in the main chain and a hydrolyzable silyl group at least at one end of the main chain, and / or Including its hydrolysis condensate,
    The mass ratio (hollow fine particles / SiO 2 ) between the hollow fine particles and the silica precursor (in terms of SiO 2 ) in the coating solution is 6/4 to 4/6,
    The ratio of the fluorine-containing ether compound in the coating solution is 0.8 to 3.0% by mass with respect to the total (100% by mass) of the hollow fine particles and the silica precursor (in terms of SiO 2 ). The manufacturing method of a glass plate with a film | membrane.
  10.  前記含フッ素エーテル化合物が、下式(A)で表される化合物(A)である、請求項9に記載の低反射膜付きガラス板の製造方法。
     RF1O(CFCFO)CF-(Q)(-(CH-SiL3-p ・・・(A)。
     ただし、RF1は、炭素数1~20の1価のペルフルオロ飽和炭化水素基、または、炭素原子-炭素原子間にエーテル性酸素原子が挿入された炭素数2~20の1価のペルフルオロ飽和炭化水素基であり、かつ-OCFO-構造を含まない基であり、
     aは、1~200の整数であり、
     bは、0または1であり、
     Qは、bが0である場合には存在せず、bが1である場合には2または3価の連結基であり、
     cは、Qが存在しない、またはQが2価の連結基である場合には1であり、Qが3価の連結基である場合には2であり、
     dは、2~6の整数であり、
     Lは、加水分解性基であり、
     Rは、水素原子または1価の炭化水素基であり、
     pは、1~3の整数である。
    The manufacturing method of the glass plate with a low reflection film of Claim 9 whose said fluorine-containing ether compound is a compound (A) represented by the following Formula (A).
    R F1 O (CF 2 CF 2 O) a CF 2- (Q) b (— (CH 2 ) d —SiL p R 3-p ) c (A).
    R F1 is a monovalent perfluoro saturated hydrocarbon group having 1 to 20 carbon atoms or a monovalent perfluoro saturated hydrocarbon having 2 to 20 carbon atoms in which an etheric oxygen atom is inserted between carbon atoms. A hydrogen group and a group not including the —OCF 2 O— structure;
    a is an integer from 1 to 200;
    b is 0 or 1,
    Q is absent when b is 0, and is a divalent or trivalent linking group when b is 1,
    c is 1 when Q is not present or Q is a divalent linking group, and is 2 when Q is a trivalent linking group;
    d is an integer of 2 to 6,
    L is a hydrolyzable group,
    R is a hydrogen atom or a monovalent hydrocarbon group,
    p is an integer of 1 to 3.
  11.  前記シリカ前駆体が、アルコキシシランの加水分解縮合物である、請求項9または10に記載の低反射膜付きガラス板の製造方法。 The method for producing a glass plate with a low reflection film according to claim 9 or 10, wherein the silica precursor is a hydrolysis condensate of alkoxysilane.
  12.  アルコキシシランを加水分解した後、前記化合物(A)を加え、ついで中空微粒子の分散液を加えて塗布液を調製する工程をさらに有する、請求項11に記載の低反射膜付きガラス板の製造方法。 The method for producing a glass plate with a low reflection film according to claim 11, further comprising the step of adding the compound (A) after hydrolyzing the alkoxysilane, and then adding a dispersion of hollow fine particles to prepare a coating solution. .
  13.  前記中空微粒子が、中空シリカ微粒子である、請求項9~12のいずれか一項に記載の低反射膜付きガラス板の製造方法。 The method for producing a glass plate with a low reflection film according to any one of claims 9 to 12, wherein the hollow fine particles are hollow silica fine particles.
  14.  筐体、表示部材、および前記表示部材の表示面に配置された請求項1~8のいずれか一項に記載の低反射膜付きガラス板を含む表示装置。 A display device comprising a housing, a display member, and a glass plate with a low reflection film according to any one of claims 1 to 8, which is disposed on a display surface of the display member.
  15.  表示装置用である、請求項1~8のいずれか一項に記載の低反射膜付きガラス板。 The glass plate with a low reflection film according to any one of claims 1 to 8, which is used for a display device.
PCT/JP2012/059002 2011-04-01 2012-04-02 Glass plate with low reflective film WO2012137744A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137025382A KR101884961B1 (en) 2011-04-01 2012-04-02 Glass plate with low reflective film
DE112012001546.0T DE112012001546B4 (en) 2011-04-01 2012-04-02 GLASS PLATE WITH A LOW REFLECTION FILM
JP2013508865A JP6020444B2 (en) 2011-04-01 2012-04-02 Glass plate with low reflection film
CN201280016572.8A CN103476726B (en) 2011-04-01 2012-04-02 With the sheet glass of low-reflection film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011081720 2011-04-01
JP2011081719 2011-04-01
JP2011081833 2011-04-01
JP2011-081720 2011-04-01
JP2011-081833 2011-04-01
JP2011-081719 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012137744A1 true WO2012137744A1 (en) 2012-10-11

Family

ID=46969142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059002 WO2012137744A1 (en) 2011-04-01 2012-04-02 Glass plate with low reflective film

Country Status (6)

Country Link
JP (1) JP6020444B2 (en)
KR (1) KR101884961B1 (en)
CN (1) CN103476726B (en)
DE (1) DE112012001546B4 (en)
TW (1) TWI572481B (en)
WO (1) WO2012137744A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817376B2 (en) 2011-11-30 2014-08-26 Corning Incorporated Optical coating method, apparatus and product
WO2015170647A1 (en) * 2014-05-08 2015-11-12 旭硝子株式会社 Glass article
US9957609B2 (en) 2011-11-30 2018-05-01 Corning Incorporated Process for making of glass articles with optical and easy-to-clean coatings
JP2018075783A (en) * 2016-11-10 2018-05-17 東レ株式会社 Laminate
US10077207B2 (en) 2011-11-30 2018-09-18 Corning Incorporated Optical coating method, apparatus and product
WO2023234067A1 (en) * 2022-06-01 2023-12-07 日本板硝子株式会社 Low-reflection member, and coating liquid for low-reflection film

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174378B2 (en) * 2013-05-30 2017-08-02 リンテック株式会社 Anti-glare hard coat film
US9206322B2 (en) 2013-09-27 2015-12-08 National Taiwan University Of Science And Technology Non-fluorinated coating materials with anti-fingerprint property, and evaluation method thereof
CN111718131B (en) * 2014-07-16 2023-04-25 Agc株式会社 Cover glass
CN105647363B (en) * 2016-01-18 2018-03-16 杭州启俄科技有限公司 A kind of low-surface-energy composition and its application
JP2018197183A (en) * 2017-05-23 2018-12-13 Agc株式会社 Glass article, and display unit
JP7067900B2 (en) * 2017-11-06 2022-05-16 リンテック株式会社 Coat film
KR102075687B1 (en) * 2019-06-05 2020-02-10 주식회사 이건창호 Architectural glass panel with uniform color
CA3174751A1 (en) * 2020-03-11 2021-09-16 Nippon Sheet Glass Company, Limited Greenhouse and glass sheet with coating film
WO2021229338A1 (en) * 2020-05-14 2021-11-18 3M Innovative Properties Company Fluorinated coupling agents and fluorinated (co)polymer layers made using the same
KR20220147377A (en) 2021-04-27 2022-11-03 주식회사 에스폴리텍 Functional sheet with excellent uv protection and anti-reflection properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292571A (en) * 1999-01-11 1999-10-26 Central Glass Co Ltd Water-repellent low-reflection glass
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2006335881A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION AND SUBSTRATE HAVING REFLECTION-PREVENTING COATING
WO2009008380A1 (en) * 2007-07-06 2009-01-15 Asahi Glass Company, Limited Surface treating agent, article, and novel fluorine-containing ether compound
WO2010050263A1 (en) * 2008-10-31 2010-05-06 旭硝子株式会社 Hollow particle, method for producing the same, coating composition and article

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269337A (en) * 1988-09-05 1990-03-08 Matsushita Electric Ind Co Ltd Surface-treated glass
US5742118A (en) * 1988-09-09 1998-04-21 Hitachi, Ltd. Ultrafine particle film, process for producing the same, transparent plate and image display plate
US6277485B1 (en) 1998-01-27 2001-08-21 3M Innovative Properties Company Antisoiling coatings for antireflective surfaces and methods of preparation
WO2001098222A1 (en) 2000-06-20 2001-12-27 Kabushiki Kaisha Toshiba Transparent film-coated substrate, coating liquid for transparent film formation, and display device
JP4031624B2 (en) * 2000-06-23 2008-01-09 株式会社東芝 Substrate with transparent coating, coating liquid for forming transparent coating, and display device
KR20070011650A (en) * 2001-10-25 2007-01-24 마츠시다 덴코 가부시키가이샤 Coating material composition and article having coating film formed therewith
TWI388876B (en) * 2003-12-26 2013-03-11 Fujifilm Corp Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
JP4792732B2 (en) 2004-11-18 2011-10-12 株式会社日立製作所 Antireflection film, optical component using antireflection film, and image display device using antireflection film
JP4969893B2 (en) * 2006-04-04 2012-07-04 新日本製鐵株式会社 Coated substrate and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292571A (en) * 1999-01-11 1999-10-26 Central Glass Co Ltd Water-repellent low-reflection glass
JP2001233611A (en) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd Silica-based microparticle, method for producing dispersion with the same, and base material with coating film
JP2006335881A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION AND SUBSTRATE HAVING REFLECTION-PREVENTING COATING
WO2009008380A1 (en) * 2007-07-06 2009-01-15 Asahi Glass Company, Limited Surface treating agent, article, and novel fluorine-containing ether compound
WO2010050263A1 (en) * 2008-10-31 2010-05-06 旭硝子株式会社 Hollow particle, method for producing the same, coating composition and article

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817376B2 (en) 2011-11-30 2014-08-26 Corning Incorporated Optical coating method, apparatus and product
US9013795B2 (en) 2011-11-30 2015-04-21 Corning Incorporated Optical coating method, apparatus and product
US9957609B2 (en) 2011-11-30 2018-05-01 Corning Incorporated Process for making of glass articles with optical and easy-to-clean coatings
US10077207B2 (en) 2011-11-30 2018-09-18 Corning Incorporated Optical coating method, apparatus and product
US11180410B2 (en) 2011-11-30 2021-11-23 Corning Incorporated Optical coating method, apparatus and product
US11208717B2 (en) 2011-11-30 2021-12-28 Corning Incorporated Process for making of glass articles with optical and easy-to-clean coatings
WO2015170647A1 (en) * 2014-05-08 2015-11-12 旭硝子株式会社 Glass article
CN106458724A (en) * 2014-05-08 2017-02-22 旭硝子株式会社 Glass article
JPWO2015170647A1 (en) * 2014-05-08 2017-04-20 旭硝子株式会社 Glass article
JP2018075783A (en) * 2016-11-10 2018-05-17 東レ株式会社 Laminate
WO2023234067A1 (en) * 2022-06-01 2023-12-07 日本板硝子株式会社 Low-reflection member, and coating liquid for low-reflection film

Also Published As

Publication number Publication date
CN103476726A (en) 2013-12-25
KR101884961B1 (en) 2018-08-02
JP6020444B2 (en) 2016-11-02
TWI572481B (en) 2017-03-01
CN103476726B (en) 2016-06-01
KR20140011348A (en) 2014-01-28
DE112012001546B4 (en) 2023-02-16
DE112012001546T5 (en) 2014-01-16
TW201244924A (en) 2012-11-16
JPWO2012137744A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6020444B2 (en) Glass plate with low reflection film
EP3179280B1 (en) Translucent structure
CN107918167B (en) Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film
JP6939573B2 (en) Translucent structure
JP7010324B2 (en) Hypokeimenon with anti-glare film
US10450481B2 (en) Invisible fingerprint coatings and process for forming same
WO2015186753A1 (en) Chemically toughened glass plate with function film, method for producing same, and article
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
JP2002317152A (en) Coating agent having low refractive index and reflection preventive film
JP6599666B2 (en) Transparent screen having light scattering coating and coating liquid for forming light scattering coating
JP2016041481A (en) Transparent base material with antiglare antireflection film, and article
JP2017186205A (en) Article having low reflective film
US20200055771A1 (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
JP5156393B2 (en) VEHICLE GLASS PLATE HAVING COATING AND METHOD FOR MANUFACTURING SAME
JP7480780B2 (en) Transparent substrate with anti-fouling layer
JP5369644B2 (en) Low refractive index coating agent and antireflection film
WO2022014650A1 (en) Glass substrate with silica film
WO2018154915A1 (en) Non-transparent film attached member
WO2020044821A1 (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508865

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137025382

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120015460

Country of ref document: DE

Ref document number: 112012001546

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767347

Country of ref document: EP

Kind code of ref document: A1