WO2012137572A1 - リン酸鉄リチウム正極材料およびその製造方法 - Google Patents

リン酸鉄リチウム正極材料およびその製造方法 Download PDF

Info

Publication number
WO2012137572A1
WO2012137572A1 PCT/JP2012/055846 JP2012055846W WO2012137572A1 WO 2012137572 A1 WO2012137572 A1 WO 2012137572A1 JP 2012055846 W JP2012055846 W JP 2012055846W WO 2012137572 A1 WO2012137572 A1 WO 2012137572A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium iron
positive electrode
electrode material
coating layer
Prior art date
Application number
PCT/JP2012/055846
Other languages
English (en)
French (fr)
Other versions
WO2012137572A9 (ja
Inventor
坂口 善樹
濱中 義孝
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to KR1020137028930A priority Critical patent/KR20140063515A/ko
Priority to EP12767496.8A priority patent/EP2696411B1/en
Priority to CA2831877A priority patent/CA2831877A1/en
Priority to CN201280026343.4A priority patent/CN103733395B/zh
Priority to US14/009,219 priority patent/US20140212756A1/en
Publication of WO2012137572A1 publication Critical patent/WO2012137572A1/ja
Publication of WO2012137572A9 publication Critical patent/WO2012137572A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium iron phosphate positive electrode material used for a lithium ion secondary battery and a method for producing the same.
  • lithium cobaltate LiCoO 2
  • LiMnO 2 lithium manganate
  • LiNiO 2 lithium nickelate
  • phosphorus examples thereof include lithium transition metal oxides such as lithium iron oxide (LiFePO 4 ).
  • Lithium iron phosphate having an olivine type crystal structure has a large theoretical capacity (170 mAh / g) and a relatively high electromotive force (vs. Li / Li + about 3.4 to 3.5 V at the negative electrode). Furthermore, since it is thermodynamically stable and hardly releases oxygen or generates heat up to about 400 ° C., it can be said to be a preferable positive electrode material from the viewpoint of safety. Further, since it can be produced at low cost from resource-rich iron, phosphorus, etc., it is expected as a promising positive electrode material.
  • the lithium iron phosphate has low conductivity (conductivity ⁇ ⁇ 10 ⁇ 6 S / cm at 25 ° C.) and low diffusibility of lithium ions (maximum particle diameter D ⁇ 10 at 25 ° C.). ⁇ 17 m 2 / s), it is impossible to obtain good output characteristics as it is. Further, since the density is lower (3500 to 3600 kg / m 3 ) than an oxide-based active material such as lithium cobalt oxide, the volume energy density is lowered.
  • lithium iron phosphate and a carbon material are compounded by a ball milling method to give electron conductivity, or a raw material mixture of lithium iron phosphate produced by firing the raw material
  • a technique has been proposed in which a compound containing carbon such as saccharide is added as a carbon material, and the surface of the lithium iron phosphate particles is coated with carbon by utilizing the carbonization action of the saccharide during firing (for example, patents).
  • Patent Document 1 or Patent Document 2 in order to obtain a sufficient and sufficient electron conductivity as an electrode material and a necessary and sufficient rate characteristic when a secondary battery is used, the carbon material is used in an amount of 10 wt. It was necessary to add an amount of about% or more. Therefore, new problems such as a decrease in volumetric capacity density, an increase in water content, and an unstable slurry property have occurred.
  • Patent Document 3 proposes a method of obtaining lithium iron phosphate having excellent performance as an electrode material by performing carbon coating of lithium iron phosphate particles with less carbon material.
  • the present inventors conducted further research and succeeded in obtaining a lithium iron phosphate positive electrode material having excellent performance as an electrode material by more effectively coating lithium iron phosphate particles with carbon.
  • An object of the present invention is to provide a lithium iron phosphate positive electrode material that has both good electronic conductivity and lithium ion conductivity, that is, excellent performance as an electrode material, and a method for producing the same, by carbon coating using a small amount of carbon material. It is to provide.
  • a lithium iron phosphate cathode material is a lithium iron phosphate cathode material having primary particles of lithium iron phosphate provided with a conductive carbon coating layer.
  • the conductive carbon coating layer has a layer thickness part with a thickness of 2 nm or more and a layer thin part with a thickness of less than 2 nm.
  • the lithium iron phosphate positive electrode having both good electronic conductivity and lithium ion conductivity.
  • lithium ion conductivity becomes favorable. Therefore, it becomes easy for lithium ions to pass through during charge and discharge when a secondary battery is formed, and the rate characteristics are improved.
  • the lithium iron phosphate positive electrode material according to the second aspect of the present invention is characterized in that, in the first aspect, the conductive carbon coating layer is 0.5 nm to 6 nm.
  • the conductive carbon coating layer is formed to have a thickness of 0.5 nm to 6 nm, thereby forming the conductive carbon coating layer with a smaller amount of carbon. It becomes possible to obtain necessary and sufficient electron conductivity and lithium ion conductivity as a positive electrode material for a secondary battery.
  • the lithium iron phosphate positive electrode material according to the third aspect of the present invention is the first aspect or the second aspect, wherein the primary particles of the lithium iron phosphate are protrusions of 5 nm to 100 nm on the conductive carbon coating layer. It is characterized by having carbon-like carbon.
  • the contact area between the primary particles of lithium iron phosphate is increased by the protruding carbon, and as a lithium iron phosphate positive electrode material
  • the electron conductivity of the is improved. Therefore, necessary and sufficient electronic conductivity can be obtained in the presence of less carbon. Accordingly, the rate characteristics and life characteristics of the secondary battery using the positive electrode material are improved.
  • the lithium iron phosphate positive electrode material according to the fourth aspect of the present invention comprises a conductive carbon coating layer, and primary particles of lithium iron phosphate having protruding carbon of 5 nm to 100 nm on the conductive carbon coating layer. It is characterized by having.
  • the contact area between the primary particles of lithium iron phosphate increases due to the protruding carbon. Electron conductivity as a lithium iron phosphate positive electrode material is improved. Therefore, necessary and sufficient electronic conductivity can be obtained in the presence of less carbon. Accordingly, the rate characteristics and life characteristics of the secondary battery using the positive electrode material are improved.
  • the lithium iron phosphate positive electrode material according to the fifth aspect of the present invention is the third aspect or the fourth aspect, in which the primary particles of two or more lithium iron phosphates are aggregated through contact with the protruding carbons. It is characterized by having secondary particles.
  • primary particles of lithium iron phosphate coated with a conductive carbon coating layer are aggregated by forming a bridge (see FIG. 6) by agglomeration of the carbon of the conductive carbon coating layer to form a secondary particle. Is forming.
  • the primary particles have protruding carbon in the conductive carbon coating layer, and contact with adjacent primary particles by the bridge, in addition to the protruding carbon.
  • the electronic conductivity is further increased. According to this aspect, when the positive electrode material is used for a secondary battery, the lithium iron phosphate positive electrode material having sufficient electronic conductivity for charging and discharging of the secondary battery can be obtained.
  • lithium iron phosphate particles and a carbon precursor that forms a conductive carbon coating layer by thermal decomposition are mixed, and the carbon precursor
  • a method for producing a lithium iron phosphate positive electrode material comprising a firing step of firing at a temperature and atmosphere at which thermal decomposition proceeds, comprising 20 to 99 wt% of an aromatic compound having a molecular weight of 160 or more, and a viscosity at 20 ° C. of 500 to
  • a mixing step of mixing the carbon precursor of 1000 mPa ⁇ sec and the lithium iron phosphate particles is performed, and the mixture obtained in the mixing step is subjected to the firing step.
  • the lithium iron phosphate positive electrode material of the first aspect can be obtained.
  • the method for producing a lithium iron phosphate positive electrode material according to the seventh aspect of the present invention comprises mixing lithium iron phosphate particles and a carbon precursor that forms a conductive carbon coating layer by thermal decomposition,
  • a method for producing a lithium iron phosphate cathode material comprising a firing step of firing at a temperature and atmosphere at which pyrolysis proceeds, wherein a carbon precursor containing 20 to 99 wt% of an aromatic compound having a molecular weight of 160 or more is dissolved in a solvent.
  • the first mixing step in which the viscosity at 20 ° C. is lower than 500 Pa ⁇ sec and mixing with the lithium iron phosphate particles, and the solvent contained in the mixture obtained in the first mixing step is evaporated.
  • the mixture obtained in step is characterized in subjecting the said firing step.
  • the lithium iron phosphate positive electrode material of the first aspect can be obtained.
  • primary particles of lithium iron phosphate having protruding carbons of 5 nm to 100 nm can be formed on a thin and uniform conductive carbon coating layer.
  • FIG. 1 is a schematic diagram of a lithium iron phosphate positive electrode material according to Example 1-1.
  • FIG. It is a schematic diagram of a lithium iron phosphate positive electrode material according to Example 1-2.
  • 2 is a schematic diagram of a lithium iron phosphate positive electrode material according to Comparative Example 1.
  • FIG. It is a transmission electron microscope (TEM) photograph of the lithium iron phosphate positive electrode material according to Example 1-1.
  • 2 is a transmission electron microscope (TEM) photograph of a lithium iron phosphate positive electrode material according to Comparative Example 1.
  • It is a transmission electron microscope (TEM) photograph of a bridge formed between primary particles of lithium iron phosphate.
  • TEM transmission electron microscope
  • Example 1 First, an example of a method for producing a lithium iron phosphate positive electrode material of the present invention will be described.
  • the method for producing a lithium iron phosphate positive electrode material according to the present invention lithium iron phosphate particles and a carbon precursor that forms a conductive carbon coating layer by thermal decomposition are mixed, and thermal decomposition of the carbon precursor proceeds.
  • lithium iron phosphate particles lithium iron phosphate particles synthesized by a known production method (for example, a method described in JP-A-2004-63386) are used.
  • the lithium iron phosphate particles are desirably lithium iron phosphate particles having a specific surface area of 8 to 20 m 2 / g and an ultrafine particle size (50 to 300 nm).
  • a carbon material containing 20 to 99 wt% of an aromatic compound having a molecular weight of 160 or more and having a viscosity at 20 ° C. of 500 to 1000 mPa ⁇ sec is used.
  • the carbon precursor is a substance that forms a conductive carbon coating layer by volatilizing a substance having a molecular weight of 160 or less to be discharged out of the system and pyrolyzing a substance having a molecular weight of 160 or more without volatilizing. It is desirable to be.
  • the aromatic compound having a molecular weight of 160 or more is preferably a compound having a benzene ring structure of 4 or more.
  • a pyrene derivative in which an amino group, a bromo group, a methyl chloride group, an alkyl group, or a nitro group is bonded to pyrene or pyrene. 1,2,3,6,7,8-hexahydropyrene, naphthacene, chrysene, benzopyrene, dibenzofuran, fluorene, phenanthrene, anthracene, carbazole, fluoranthene and the like.
  • Such a compound is contained in reduced-pressure heavy oil, and reduced-pressure heavy oil satisfying the predetermined viscosity can be used as a carbon precursor while containing 20 to 99 wt% of an aromatic compound having a molecular weight of 160 or more.
  • the carbon precursor is added to the lithium iron phosphate particles and a mixing process is performed.
  • the addition amount of the carbon precursor is desirably 0.5 wt% to 5.0 wt% with respect to the weight of the lithium iron phosphate particles.
  • lithium iron phosphate particles and carbon precursors can be mixed using planetary ball mills, high speed mixers (Fukae Powtech Co., Ltd.), Henschel Mixer (registered trademark) (Nippon Coke Industries Co., Ltd.), Newgra Machine (Seishin Enterprise Co., Ltd.) ) Etc., using a rotary mixer.
  • the carbon precursor is arbitrarily diluted with an undiluted solution or an organic solvent such as acetone or benzene to obtain a solution, which is then added to the lithium iron phosphate material and stirred with the planetary ball mill or the rotary mixer.
  • the thickness distribution of the conductive carbon coating layer in the lithium iron phosphate positive electrode material obtained after the firing step can be controlled.
  • a portion having a thick coating layer and a portion having a thin coating layer can be formed at an arbitrary ratio. That is, the viscosity of the solution is adjusted by changing the amount of the organic solvent to be added, and the thickness distribution state of the carbon coating layer is controlled. When the concentration of the carbon precursor solution is reduced and the viscosity is lowered, the carbon precursor is easily dispersed uniformly throughout the powder, and as a result, the thickness of the carbon coating layer is made uniform. Conversely, if the concentration of the solution is high or the carbon precursor stock solution is added as it is, a difference in the thickness distribution of the carbon coating layer tends to occur.
  • a conductive carbon coating layer having a thickness of 2 nm or more is referred to as a layer thickness portion
  • a conductive carbon coating layer having a thickness of less than 2 nm is referred to as a layer thin portion.
  • a stock solution of a carbon precursor having a viscosity at 20 ° C. of 500 to 1000 mPa ⁇ sec (B-type viscometer, 6 rpm) is added in an amount of 4.0 wt% with respect to the weight of the lithium iron phosphate powder.
  • the carbon precursor adheres to the surface of the lithium iron phosphate particles in a relatively uneven and uneven state.
  • a thick portion and a thin portion of the conductive carbon coating layer in the lithium iron phosphate positive electrode material obtained after the firing step are formed.
  • acetone or benzene having the same weight as the carbon precursor stock solution is added to prepare a solution having a concentration of 50%, and 4.0 wt% in terms of carbon precursor is added to the weight of the lithium iron phosphate powder.
  • the carbon precursor adheres to the surface of the lithium iron phosphate particles in a uniform state. This makes the thickness of the conductive carbon coating layer in the lithium iron phosphate positive electrode material obtained after the firing step uniform.
  • the conductive carbon coating layer of the lithium iron phosphate positive electrode material obtained after the firing step By controlling the thickness, it is possible to form the thickness distribution (layer thickness portion and layer thin portion) at an arbitrary ratio.
  • the adjustment conditions of the solution are preferably adjusted so that the thickness distribution of the conductive carbon coating layer is 0.5 nm to 6 nm.
  • the present inventors have discovered that carbon nanotube-like protruding carbon having a thickness of 5 to 100 nm is easily formed in a thick portion of the conductive carbon coating layer. Accordingly, projecting carbon can be formed on the conductive carbon coating layer by adjusting the concentration and viscosity of the carbon precursor solution so that the thickness of the layer thickness portion is relatively thick. If the concentration of the carbon precursor solution is increased or added as a stock solution, a relatively thick layer thickness portion is formed, so that it is considered that protruding carbon is easily formed. In addition, by appropriately reducing the concentration of the carbon precursor solution, it is possible to reduce the thickness of the layer thickness portion (closer to 2 nm) and suppress the formation of protruding carbon.
  • the lithium conductive carbon coating layer in the primary particles of lithium iron phosphate has a layer thickness part of 2 nm or more and a layer thin part of less than 2 nm, the following effects are obtained. That is, the necessary and sufficient electron conductivity can be obtained as the positive electrode material of the secondary battery by the thickness portion of the conductive carbon coating layer having a thickness of 2 nm or more. And in the layer thin part whose thickness of the said conductive carbon coating layer is less than 2 nm, lithium ion passes easily because of the thinness of the coating layer, and lithium ion conductivity becomes favorable. Therefore, it becomes easy for lithium ions to pass through during charge and discharge when a secondary battery is formed, and the rate characteristics are improved.
  • the lithium iron phosphate cathode material can be obtained by subjecting the mixture of lithium iron phosphate particles and carbon precursor obtained in the mixing step to a firing step.
  • the firing step is performed by raising the furnace temperature from 550 ° C. to 750 ° C. in a firing furnace in an inert gas atmosphere such as nitrogen gas.
  • Example 1-1 Lithium hydroxide (LiOH), iron oxalate (FeC 2 O 4 ), and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) were mixed in isopropyl alcohol, and the bead-milled slurry was dried and dried at 550 ° C. Viscosity at 20 ° C. as a carbon precursor is 600 mPa ⁇ sec (B type) with respect to 500 g of lithium iron phosphate particles (specific surface area of 8 to 20 m 2 / g, ultrafine particle size of 50 to 300 nm) synthesized by firing for 3 hours.
  • Lithium hydroxide (LiOH), iron oxalate (FeC 2 O 4 ), and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) were mixed in isopropyl alcohol, and the bead-milled slurry was dried and dried at 550 ° C. Viscosity at 20 ° C. as a carbon precursor
  • Example 1-2 Using a carbon precursor solution having a concentration of 90% obtained by diluting the carbon precursor with 10 wt% acetone with respect to the weight of the lithium iron phosphate particles and the carbon precursor (depressurized heavy oil stock solution) as in Example 1-1
  • 2.5 wt% in terms of carbon precursor was added to the weight of the lithium iron phosphate particles, and after mixing for 8 minutes at a rotational speed of 500 rpm using Newgra Machine (manufactured by Seishin Enterprise).
  • the granulated material is crushed at the same time as the fine mixing by a jet mill (manufactured by Seishin Enterprise). This mixture is subjected to a firing step under the same conditions as in Example 1-1.
  • Comparative Example 1 Using the same lithium iron phosphate particles as in Example 1, using coal pitch as the carbon precursor, adding 6 wt% of the coal pitch to the weight of the lithium iron phosphate, and using a Newgra machine, the rotation speed Mix for 8 minutes at 500 rpm. This mixture is calcined at 780 ° C. for 6 hours.
  • FIG. 1 is a schematic view of a lithium iron phosphate positive electrode material obtained by the production method of Example 1-1
  • FIG. 2 is a schematic view of a lithium iron phosphate positive electrode material obtained by the production method of Example 1-2
  • FIG. FIG. 3 is a schematic view of a lithium iron phosphate positive electrode material obtained by the production method of Comparative Example 1.
  • the lithium iron phosphate cathode material 10 of Example 1-1 is a bridge formed by bridging the primary particles 11 of lithium iron phosphate having the conductive carbon coating layer 13 with the carbon of the conductive carbon coating layer 13. 15 (see FIG. 6).
  • the conductive carbon coating layer 13 of the primary particles 11 of the lithium iron phosphate has a thickness of 0.5 to 6 nm, a layer thickness portion 13a having a thickness of 2 to 6 nm, and a layer thickness of 0.5 to 2 nm. It is formed by the part 13b.
  • FIG. 4 is a transmission electron microscope (TEM) photograph of the lithium iron phosphate positive electrode material according to Example 1-1.
  • the layer thickness portion 13a causes a secondary Necessary and sufficient electronic conductivity can be obtained as a positive electrode material of the battery, and further, lithium ion conductivity is improved in the layer thin portion 13b.
  • protruding carbons 14 (see FIG. 7) having a thickness of 5 nm to 100 nm are formed on the surface of the conductive carbon coating layer 13, and the primary particles 11 of the lithium iron phosphate 12 have the protruding carbons 14 bonded to each other. It is also in contact through.
  • the primary particles 11 of the lithium iron phosphate 12 are in contact with each other in both the bridge 15 and the protruding carbon 14, the electron conductivity of the lithium iron phosphate positive electrode material 10 as a whole is increased, and the positive electrode When the material is used for a secondary battery, it can be a lithium iron phosphate positive electrode material having sufficient electronic conductivity for charging and discharging of the secondary battery.
  • the amount of carbon in the lithium iron phosphate positive electrode material produced in Example 1-1 is 0.8% to 1.5 wt%, and lithium iron phosphate exhibiting good properties with a very small amount of carbon. It became clear that it was a positive electrode material.
  • the lithium iron phosphate positive electrode material 20 of Example 1-2 will be described with reference to FIG.
  • the primary particles 21 of the lithium iron phosphate 22 having the conductive carbon coating layer 23 are composed of the conductive carbon coating layer 23 as in Example 1-1. Are formed by secondary particles formed by agglomeration by bridges 25 formed by crosslinking carbon.
  • the conductive carbon coating layer 23 of the primary particles 21 of the lithium iron phosphate 22 has a thickness of 0.5 to 6 nm, a layer thickness portion 23a having a thickness of 2 nm to 6 nm, and a thickness of 0.5 nm to less than 2 nm.
  • the thin layer portion 23b is formed.
  • Example 1-2 since the proportion of the thin layer portion 23b in the entire conductive carbon coating is higher than that in Example 1-1, the lithium iron phosphate cathode material 20 having higher lithium ion conductivity can be obtained. it can. From the viewpoint of lithium ion conductivity, the higher the proportion of the layer thin portion 23b, the better. However, if one or more layer thin portions exist in one particle, the lithium ion conductivity is dramatically improved. To do.
  • the area of the thin layer portion may be 2 nm ⁇ 2 nm or more.
  • Example 1-2 5 nm to 100 nm of projecting carbon 24 is formed on the surface of the conductive carbon coating layer 23, and the primary particles 21 of the lithium iron phosphate 22 correspond to the projecting carbon 24. It is also in contact by going through. Thereby, it can be set as the lithium iron phosphate positive electrode material which has sufficient electronic conductivity with respect to charging / discharging of a secondary battery.
  • the lithium iron phosphate positive electrode material 30 of the comparative example 1 is demonstrated using FIG.
  • the primary particles 31 of the lithium iron phosphate having the conductive carbon coating layer 33 having a substantially uniform thickness come into contact with each other to form secondary particles.
  • the conductive carbon coating layer 33 of Comparative Example 1 had a thickness of about 3 nm and a uniform thickness.
  • the carbon content in the lithium iron phosphate cathode material produced in Comparative Example 1 was 4.0% to 6.0 wt%, and contained carbon several times that of Example 1-1.
  • Table 1 is a table showing rate characteristics of lithium ion secondary batteries prepared using the lithium iron phosphate positive electrode materials of Example 1-1 and Comparative Example 1.
  • Example 1-1 When comparing Example 1-1 and Comparative Example 1, almost the same rate characteristics are shown at a low C rate. On the other hand, the high rate characteristics of 15C and 20C have a low voltage and a small battery capacity in Comparative Example 1, whereas the lithium iron phosphate positive electrode material of Example 1-1 maintains a high voltage and a large battery capacity. ing.
  • the carbon content in the lithium iron phosphate positive electrode material is 0.8% to 1.5 wt% in Example 1-1, while 4.0% to 1.5% in Comparative Example 1. It is 6.0 wt%, and it can be said that the lithium iron phosphate positive electrode material of Example 1-1 has a higher volume capacity density than that of Comparative Example 1. Therefore, an improvement in the volume energy density of the secondary battery is expected.
  • the manufacturing method of the lithium iron phosphate positive electrode material of the present example is the first mixing step and the second mixing step when mixing the lithium iron phosphate particles and the carbon precursor that forms the conductive carbon coating layer by thermal decomposition. This is characterized in that a two-stage mixing process is performed.
  • lithium iron phosphate particles similarly to Example 1, lithium iron phosphate particles synthesized by a known production method can be used.
  • the carbon precursor a carbon material containing 20 to 99 wt% of an aromatic compound having a molecular weight of 160 or more and having a viscosity of 500 to 1000 mPa ⁇ sec at 20 ° C. is used.
  • the carbon precursor is dissolved in a solvent such as acetone or benzene, and the viscosity at 20 ° C. is made lower than 500 Pa ⁇ sec and mixed with the lithium iron phosphate particles. .
  • the mixing in the first mixing step is desirably performed so that the carbon precursor dissolved in the solvent is uniform on the surface of the lithium iron phosphate particles. Since the carbon precursor dissolved in the solvent has a low viscosity, it can be made uniform by stirring at a relatively low speed or for a short time.
  • Example 2 in order to give both necessary and sufficient electronic conductivity and lithium ion conductivity to the lithium iron phosphate particles, the carbon precursor is added in two portions. For example, when adding 3.5 wt% carbon precursor as a whole in the first mixing step and the second mixing step based on the weight of the lithium iron phosphate particles, 1.0 wt% in the first mixing step, The remaining 2.5 wt% is added in the second mixing step.
  • the total amount of carbon precursor added in the first mixing step and the second mixing step is preferably 1.5 to 5.0 wt% with respect to the weight of lithium iron phosphate.
  • the step of evaporating the solvent contained in the mixture of the lithium iron phosphate particles obtained in the first mixing step and the carbon precursor dissolved in the solvent is performed.
  • the solvent to be added is less than 30 wt% of the carbon precursor weight, the solvent evaporates by simply leaving it after mixing. In the case of 30 wt% or more, it is easily removed by vacuum degassing.
  • the carbon precursor adheres almost uniformly to the lithium iron phosphate particles after the step of evaporating the solvent.
  • the 2nd mixing process which adds a carbon precursor further and mixes with respect to the said mixture in which the carbon precursor adhered substantially uniformly in this way is performed.
  • the carbon precursor stock solution having a viscosity at 20 ° C. of 500 to 1000 mPa ⁇ sec (B-type viscometer, 6 rpm) is added as it is and mixed.
  • the mixing in the second mixing step is the same as the mixing step in Example 1; a planetary ball mill, or a high speed mixer (Fukae Pautech Co., Ltd.), Henschel Mixer (registered trademark) (Nippon Coke Industries Co., Ltd.), Newgra Machine (stock) This is done using a rotary mixer such as Seisin Corporation) or a jet mill.
  • a portion where the conductive carbon coating layer is thick can be intentionally formed by adjusting the floating stirring speed and stirring time in the future.
  • the mixture is fired at 550 to 750 ° C. for 3 to 6 hours.
  • a temperature range of 600 to 730 ° C. is preferable.
  • the baking treatment was performed at 700 ° C. for 3 hours.
  • the carbon precursor uniformly dispersed in the first mixing step is dissolved and spreads evenly on the surface of the lithium iron phosphate particles, and a thin and uniform conductive carbon coating layer of 2 nm or less as shown in FIG. 43 is formed.
  • the protruding carbon 44 having a thickness of 5 nm to 100 nm is obtained by the baking treatment.
  • Primary particles 41 of lithium iron phosphate 42 having the above are formed.
  • Example 2 most of the conductive carbon coating layer is composed of a coating layer having a thickness of 2 nm or less. Therefore, the lithium iron phosphate positive electrode material 40 having high lithium ion conductivity can be obtained.
  • the electron conductivity is imparted by the projecting carbon 44 having a thickness of 5 to 100 nm formed on the surface of the conductive carbon coating layer 43.
  • Reference numeral 45 is a bridge.
  • the protruding carbon increases the contact area between the primary particles of lithium iron phosphate, improving the electronic conductivity as the lithium iron phosphate cathode material, and passing lithium ions through the thin and uniform conductive carbon coating layer. It is easy and the lithium ion conductivity is good. Therefore, it becomes easy for lithium ions to pass through during charge and discharge when a secondary battery is formed, and the rate characteristics are improved. Therefore, a positive electrode material having excellent battery characteristics can be obtained with less carbon.

Abstract

本発明は、少ない炭素材料を用いた炭素被覆により、電子伝導性およびリチウムイオン伝導性が共に良好な、すなわち、電極材料として優れた性能を有するリン酸鉄リチウム正極材料およびその製造方法を提供する。そのために、導電性炭素被覆層(13)を備えたリン酸鉄リチウムの一次粒子(11)を有するリン酸鉄リチウム正極材料(10)であって、前記導電性炭素被覆層は、その厚みが2nm以上の層厚部(13a)と、更に2nm未満の層薄部(13b)とを有することを特徴とする。

Description

リン酸鉄リチウム正極材料およびその製造方法
 本発明は、リチウムイオン二次電池に用いるリン酸鉄リチウム正極材料およびその製造方法に関するものである。
 金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等に代表される二次電池の正極材料としては、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMnO)、ニッケル酸リチウム(LiNiO)、リン酸鉄リチウム(LiFePO)等のリチウム遷移金属酸化物が挙げられる。
 そして、オリビン型結晶構造を持つリン酸鉄リチウムは、理論容量が大きく(170mAh/g)、比較的高い起電力(対Li/Li負極にて約3.4~3.5V)を有し、更に熱力学的に安定であり、400℃程度まで酸素放出や発熱がほとんどないため、安全性の観点からも好ましい正極材料であると言える。 
 更に、資源的に豊富な鉄・リン等から安価に製造できるため、有力な正極材料として期待されている。
 一方で、前記リン酸鉄リチウムは、結晶構造に由来する低い導電性(25℃において導電率σ≦10-6S/cm)及びリチウムイオンの低拡散性(25℃において最大粒子径D≦10-17 m/s)のため、このままでは良好な出力特性が得られない。また、コバルト酸リチウム等の酸化物系活物質に比べて密度が低い(3500~3600 kg/m)ため、体積エネルギー密度が低くなる。
 ここで、前記低い導電性を改善するため、リン酸鉄リチウムと炭素材料をボールミリング法により複合化して電子伝導性を付与することや、原料を焼成して生成するリン酸鉄リチウムの原料混合時に、糖類のような炭素を含む化合物を炭素材料として添加し、焼成時の糖類の炭化作用を利用してリン酸鉄リチウム粒子表面に炭素被覆する、という技術が提案されている(例えば、特許文献1、特許文献2)。
 しかし、前記特許文献1または特許文献2に記載の方法では、電極材料として必要十分な電子伝導性と、二次電池にしたときの必要十分なレート特性を得るためには、前記炭素材料を10wt%前後、あるいはそれ以上の量を添加する必要があった。そのため、体積容量密度の低下、水分増大、スラリー性状の不安定化等の新たな課題が生じていた。
 これに対し、本発明者らは、より少ない炭素材料によってリン酸鉄リチウム粒子の炭素コーティングを行い、電極材料として優れた性能を有するリン酸鉄リチウムを得る方法を提案している(特許文献3)。
特開2005-183032号公報 特開2009-081002号公報 特開2009-245762号公報
 そして、本発明者らは更に鋭意研究を行い、より効果的にリン酸鉄リチウム粒子の炭素被覆を行い、電極材料として優れた性能を有するリン酸鉄リチウム正極材料を得ることに成功した。
 本発明の目的は、少ない炭素材料を用いた炭素被覆により、電子伝導性およびリチウムイオン伝導性が共に良好な、すなわち、電極材料として優れた性能を有するリン酸鉄リチウム正極材料およびその製造方法を提供することにある。
 上記目的を達成するため、本発明の第1の態様に係るリン酸鉄リチウム正極材料は、導電性炭素被覆層を備えたリン酸鉄リチウムの一次粒子を有するリン酸鉄リチウム正極材料であって、前記導電性炭素被覆層は、その厚みが2nm以上の層厚部と、2nm未満の層薄部とを有することを特徴とするものである。
 本態様によれば、前記導電性炭素被覆層が2nm以上の層厚部と、2nm未満の層薄部とを有することにより、電子伝導性とリチウムイオン伝導性が共に良好なリン酸鉄リチウム正極材料とすることができる。 
 すなわち、前記導電性炭素被覆層の厚みが2nm以上の層厚部によって、二次電池の正極材料として必要十分な電子伝導性を得ることができる。そして、前記導電性炭素被覆層の厚みが2nm未満の層薄部において、リチウムイオン伝導性が良好となる。以って、二次電池としたときの充放電の際にリチウムイオンの通過がし易くなり、レート特性が向上する。
 本発明の第2の態様に係るリン酸鉄リチウム正極材料は、第1の態様において、前記導電性炭素被覆層は0.5nm~6nmであることを特徴とするものである。
 本態様によれば、第1の態様と同様の作用効果に加え、前記導電性炭素被覆層は0.5nm~6nmとすることによって、より少ない炭素量により導電性炭素被覆層を形成し、二次電池の正極材料として必要十分な電子伝導性およびリチウムイオン伝導性を得ることが可能となる。
 本発明の第3の態様に係るリン酸鉄リチウム正極材料は、第1の態様または第2の態様において、前記リン酸鉄リチウムの一次粒子は、前記導電性炭素被覆層に5nm~100nmの突起状炭素を有することを特徴とするものである。
 本態様によれば、第1の態様または第2の態様と同様の作用効果に加え、前記突起状炭素によってリン酸鉄リチウムの一次粒子同士の接触面積が増大し、リン酸鉄リチウム正極材料としての電子伝導性が向上する。したがって、より少ない炭素の存在で必要十分な電子伝導性を得ることができる。以って、当該正極材料を用いた二次電池のレート特性および寿命特性が向上する。
 本発明の第4の態様に係るリン酸鉄リチウム正極材料は、導電性炭素被覆層を備えるとともに、該導電性炭素被覆層に5nm~100nmの突起状炭素を有するリン酸鉄リチウムの一次粒子を有することを特徴とするものである。
 本態様によれば、導電性炭素被覆層を備えたリン酸鉄リチウムの一次粒子を有するリン酸鉄リチウム正極材料において、前記突起状炭素によってリン酸鉄リチウムの一次粒子同士の接触面積が増大し、リン酸鉄リチウム正極材料としての電子伝導性が向上する。したがって、より少ない炭素の存在で必要十分な電子伝導性を得ることができる。以って、当該正極材料を用いた二次電池のレート特性および寿命特性が向上する。
 本発明の第5の態様に係るリン酸鉄リチウム正極材料は、第3の態様または第4の態様において、2以上のリン酸鉄リチウムの一次粒子が前記突起状炭素を介して接触して凝集した二次粒子を有することを特徴とするものである。
 通常、導電性炭素被覆層により被覆されたリン酸鉄リチウムの一次粒子同士は、前記導電性炭素被覆層の炭素が架橋してブリッジ(図6を参照)を形成して凝集し、二次粒子を形成している。本態様に係るリン酸鉄リチウム正極材料は、前記一次粒子が前記導電性炭素被覆層に突起状炭素を有し、前記ブリッジにより隣の一次粒子と接触することに加え、当該突起状炭素を介して接触することが可能であるため、より電子伝導性が高まる。 
 本態様によれば、当該正極材料を二次電池に用いたときに、当該二次電池の充放電に対して十分な電子伝導性を有するリン酸鉄リチウム正極材料とすることができる。
 本発明の第6の態様に係るリン酸鉄リチウム正極材料の製造方法は、リン酸鉄リチウム粒子と、熱分解により導電性炭素被覆層を形成する炭素前駆体を混合し、前記炭素前駆体の熱分解が進行する温度および雰囲気で焼成する焼成工程を含むリン酸鉄リチウム正極材料の製造方法であって、分子量が160以上の芳香族化合物を20~99wt%含み、20℃における粘度が500~1000mPa・secである前記炭素前駆体と、前記リン酸鉄リチウム粒子と、を混合する混合工程を行い、前記混合工程で得た混合物を前記焼成工程に供することを特徴とするものである。
 本態様によれば、第一の態様のリン酸鉄リチウム正極材料を得ることができる。
 本発明の第7の態様に係るリン酸鉄リチウム正極材料の製造方法は、リン酸鉄リチウム粒子と、熱分解により導電性炭素被覆層を形成する炭素前駆体を混合し、前記炭素前駆体の熱分解が進行する温度および雰囲気で焼成する焼成工程を含むリン酸鉄リチウム正極材料の製造方法であって、分子量が160以上の芳香族化合物を20~99wt%含む炭素前駆体を溶媒に溶解し、20℃における粘度が500Pa・secよりも低い状態にして、前記リン酸鉄リチウム粒子と混合する第1の混合工程と、前記第1の混合工程で得た混合物に含まれる前記溶媒を蒸発させる工程と、溶媒を蒸発させた前記混合物と、20℃における粘度が500~1000mPa・secである前記炭素前駆体と、を混合する第2の混合工程と、を行い、前記第2の混合工程で得た混合物を前記焼成工程に供することを特徴とするものである。
 本態様によれば、第一の態様のリン酸鉄リチウム正極材料を得ることができる。特に、後述の実施例2において説明するように、薄く均一な導電性炭素被覆層に5nm~100nmの突起状炭素を有するリン酸鉄リチウムの一次粒子を形成することが可能となる。
実施例1-1に係るリン酸鉄リチウム正極材料の模式図である。 実施例1-2に係るリン酸鉄リチウム正極材料の模式図である。 比較例1に係るリン酸鉄リチウム正極材料の模式図である。 実施例1-1に係るリン酸鉄リチウム正極材料の透過電子顕微鏡(TEM)写真である。 比較例1に係るリン酸鉄リチウム正極材料の透過電子顕微鏡(TEM)写真である。 リン酸鉄リチウムの一次粒子同士の間に形成されたブリッジの透過電子顕微鏡(TEM)写真である。 実施例1-1に係るリン酸鉄リチウムの一次粒子に形成された突起状炭素の透過電子顕微鏡(TEM)写真である。 実施例2に係るリン酸鉄リチウム正極材料の模式図である。
 以下において、本発明について実施例に基づき詳細に説明する。尚、本発明はこれらによって制約されるものではない。
[実施例1]
 まず、本発明のリン酸鉄リチウム正極材料の製造方法の一実施例について説明する。 
 本発明に係るリン酸鉄リチウム正極材料の製造方法は、リン酸鉄リチウム粒子と、熱分解により導電性炭素被覆層を形成する炭素前駆体を混合し、前記炭素前駆体の熱分解が進行する温度および雰囲気で焼成する焼成工程を行うことによって製造される。
 前記リン酸鉄リチウム粒子としては、公知の製造方法(例えば、特開2004-63386号公報に記載された方法)で合成したリン酸鉄リチウム粒子が用いられる。リン酸鉄リチウム粒子は、比表面積が8~20m/g、超微粒子粒径(50~300nm)のリン酸鉄リチウム粒子であることが望ましい。
 前記炭素前駆体としては、分子量が160以上の芳香族化合物を20~99wt%含み、20℃における粘度が500~1000mPa・secである炭素材料が用いられる。該炭素前駆体は、前記焼成工程において、分子量160以下の物質が揮発して系外に排出され、分子量160以上の物質が揮発せずに熱分解されて導電性炭素被覆層を形成する物質であることが望ましい。
 分子量が160以上の芳香族化合物は、ベンゼン環構造を4以上有する化合物であることが望ましく、例えば、ピレン、ピレンにアミノ基、ブロモ基、塩化メチル基、アルキル基、ニトロ基が結合したピレン誘導体、1,2,3,6,7,8-ヘキサヒドロピレン、ナフタセン、クリセン、ベンゾピレン、ジベンゾフラン、フルオレン、フェナンスレン、アントラセン、カルバゾール、フルオランセン等が挙げられる。このような化合物は減圧重油に含まれており、分子量が160以上の芳香族化合物を20~99wt%含むとともに、前記所定の粘度を満たす減圧重油を炭素前駆体として用いることができる。
 前記リン酸鉄リチウム粒子に前記炭素前駆体を加えて混合工程を行う。前記炭素前駆体の添加量は、リン酸鉄リチウム粒子の重量に対し、0.5wt%~5.0wt%であることが望ましい。
 また、リン酸鉄リチウム粒子および炭素前駆体の混合は、遊星ボールミル、またはハイスピードミキサー(深江パウテック株式会社)、ヘンシェルミキサ(登録商標)(日本コークス工業株式会社)、ニューグラマシン(株式会社セイシン企業)等の回転式の混合機を用いて行う。 
 ここで、前記炭素前駆体を原液、またはアセトン、ベンゼン等の有機溶剤に任意に希釈して溶液とした後にリン酸鉄リチウム材料に添加し、前記遊星ボールミルまたは前記回転式混合機で撹拌することで、焼成工程後に得られるリン酸鉄リチウム正極材料における導電性炭素被覆層の厚さの分布をコントロールすることができる。つまり、被覆層が厚い部分と被覆層が薄い部分を任意の割合で形成することができる。即ち、添加する有機溶媒の量を変更することにより溶液の粘度を調節し、炭素被覆層の厚さの分布状態をコントロールする。炭素前駆体の溶液の濃度が薄まって粘度が下がると、前記炭素前駆体が粉末全体に均一に分散しやすくなり、結果として炭素被覆層の厚さが均一化する。逆に、前記溶液の濃度が濃かったり、炭素前駆体原液のまま添加すると、炭素被覆層の厚みの分布に差が生じやすくなる。尚、以下において、厚みが2nm以上の導電性炭素被覆層を層厚部、2nm未満の導電性炭素被覆層を層薄部と称する。
 例えば、20℃における粘度が500~1000mPa・sec(B型粘度計、6rpm)の炭素前駆体の原液をリン酸鉄リチウム粉末重量に対して4.0wt%添加し、ニューグラマシン(株式会社セイシン企業)にて500rpm、8分間撹拌する。この工程により、炭素前駆体は比較的斑のある均一でない状態でリン酸鉄リチウム粒子表面に付着する。このことによって、焼成工程後に得られるリン酸鉄リチウム正極材料における導電性炭素被覆層の厚みが厚い部分と薄い部分ができる。
 また、前記炭素前駆体の原液と同重量のアセトンまたはベンゼンを加えて濃度50%の溶液を作製し、リン酸鉄リチウム粉末の重量に対して炭素前駆体換算で4.0wt%添加し、ニューグラマシン(株式会社セイシン企業)にて500rpm、8分間撹拌する。この工程により、炭素前駆体は均一な状態でリン酸鉄リチウム粒子表面に付着する。このことによって、焼成工程後に得られるリン酸鉄リチウム正極材料における導電性炭素被覆層の厚みが均一になる。 
 このように、炭素前駆体とアセトン、ベンゼンのような有機溶剤とからなる溶液の濃度と粘度を任意に調節することによって、焼成工程後に得られるリン酸鉄リチウム正極材料における導電性炭素被覆層の厚さをコントロールし、前記厚さの分布(層厚部と層薄部)を任意の割合で形成することが可能となる。尚、前記溶液の調整条件は、導電性炭素被覆層の厚さの分布が0.5nm~6nmとなるように調整することが望ましい。
 また、本発明者らは、導電性炭素被覆層の厚い部分には、5nm~100nmのカーボンナノチューブ様の突起状炭素が形成され易いことを発見した。従って、前記層厚部の厚みが比較的厚くなるように炭素前駆体溶液の濃度と粘度を調整することによって、前記導電性炭素被覆層に突起状炭素の形成をすることができる。 
 炭素前駆体溶液の濃度を濃くするか、原液のまま添加すると、比較的厚い層厚部が形成されるので、突起状炭素が形成されやすくなると考えられる。また、炭素前駆体溶液の濃度を適度に薄くすることで、前記層厚部の厚みを薄くなる(より2nmに近くなる)ようにして、突起状炭素の形成を抑えることも可能である。
 このようにして、リン酸鉄リチウムの一次粒子におけるリチウム導電性炭素被覆層が2nm以上の層厚部と2nm未満の層薄部とを有すると、以下のような効果が得られる。 
 すなわち、前記導電性炭素被覆層の厚みが2nm以上の層厚部によって、二次電池の正極材料として必要十分な電子伝導性を得ることができる。そして、前記導電性炭素被覆層の厚みが2nm未満の層薄部においては、その被覆層の薄さのためにリチウムイオンが通りやすく、リチウムイオン伝導性が良好となる。以って、二次電池としたときの充放電の際にリチウムイオンの通過がし易くなり、レート特性が向上する。
 前記混合工程によって得たリン酸鉄リチウム粒子と炭素前駆体の混合物を焼成工程に供することによってリン酸鉄リチウム正極材料を得ることができる。焼成工程は、窒素ガス等の不活性ガス雰囲気の焼成炉において、550℃~750℃まで炉内温度を上げることによって行われる。
 (実施例1-1)
 水酸化リチウム(LiOH)、シュウ酸鉄(FeC)、およびリン酸二水素アンモニウム(NHPO)をイソプロピルアルコール中で混合し、ビーズミル粉砕したスラリーを乾燥し、550℃で3時間焼成して合成したリン酸鉄リチウム粒子(比表面積が8~20m/g、超微粒子粒径50~300nm)500gに対し、炭素前駆体として20℃における粘度が600mPa・sec(B型粘度計で、回転速度6rpm時)の減圧重油原液を、前記リン酸鉄リチウム粒子の重量に対して4.0wt%添加し、ニューグラマシン(セイシン企業製)を用いて回転速度500rpmで8分間混合した後、ジェットミル(セイシン企業製)によってさらに精密混合すると同時に造粒物を解砕する。この混合物を700℃において3時間焼成する。
 (実施例1-2)
 実施例1-1と同様のリン酸鉄リチウム粒子および炭素前駆体(減圧重油原液)重量に対して、10wt%のアセトンで炭素前駆体を希釈した濃度90%の炭素前駆体溶液を用い、実施例1-1と同様に、前記リン酸鉄リチウム粒子重量に対して炭素前駆体換算で2.5wt%添加し、ニューグラマシン(セイシン企業製)を用いて回転速度500rpmで8分間混合した後、ジェットミル(セイシン企業製)によってさらに精密混合すると同時に造粒物を解砕する。この混合物に対し、実施例1-1と同条件における焼成工程を行う。
(比較例1)
 実施例1と同様のリン酸鉄リチウム粒子を用い、炭素前駆体として石炭ピッチを用い、当該石炭ピッチを前記リン酸鉄リチウムの重量に対して6wt%添加し、ニューグラマシンを用いて、回転速度500rpmで8分間混合する。この混合物に対し、780℃において6時間焼成する。
 図1は、実施例1-1の製造方法によって得られるリン酸鉄リチウム正極材料の模式図であり、図2は、実施例1-2の製造方法によって得られるリン酸鉄リチウム正極材料の模式図である。また、図3は、比較例1の製造方法によって得られるリン酸鉄リチウム正極材料の模式図である。
 実施例1-1のリン酸鉄リチウム正極材料10は、導電性炭素被覆層13を有するリン酸鉄リチウムの一次粒子11同士が、導電性炭素被覆層13の炭素が架橋して形成されたブリッジ15(図6を参照)により凝集して形成された二次粒子によって構成されている。 
 前記リン酸鉄リチウムの一次粒子11の導電性炭素被覆層13の厚みは0.5nm~6nmであり、その厚みが2nm以上6nm以下の層厚部13aと、0.5nm以上2nm未満の層薄部13bにより形成されている。図4は、実施例1-1に係るリン酸鉄リチウム正極材料の透過電子顕微鏡(TEM)写真である。
 このように、リン酸鉄リチウムの一次粒子11におけるリチウム導電性炭素被覆層13が2nm以上の層厚部13aと2nm未満の層薄部13bとを有すると、前記層厚部13aによって、二次電池の正極材料として必要十分な電子伝導性を得ることができ、更に、前記層薄部13bにおいてリチウムイオン伝導性が良好となる。
 更に、導電性炭素被覆層13の表面には5nm~100nmの突起状炭素14(図7を参照)が形成されており、リン酸鉄リチウム12の一次粒子11同士は、前記突起状炭素14を介することによっても接触している。本実施例では、前記ブリッジ15と前記突起状炭素14の両方でリン酸鉄リチウム12の一次粒子11同士が接触するため、リン酸鉄リチウム正極材料10全体としての電子伝導性が増し、当該正極材料を二次電池に用いたときに、当該二次電池の充放電に対して十分な電子伝導性を有するリン酸鉄リチウム正極材料とすることができる。
 また、実施例1-1において製造されたリン酸鉄リチウム正極材料中の炭素量は、0.8%~1.5wt%であり、非常に少ない炭素量によって良好な性状を示すリン酸鉄リチウム正極材料であることが明らかとなった。
 次に、実施例1-2のリン酸鉄リチウム正極材料20について図2を用いて説明する。 
 実施例1-2のリン酸鉄リチウム正極材料20は、実施例1-1と同様に、導電性炭素被覆層23を有するリン酸鉄リチウム22の一次粒子21同士が、導電性炭素被覆層23の炭素が架橋して形成されたブリッジ25により凝集して形成された二次粒子によって構成されている。また、前記リン酸鉄リチウム22の一次粒子21の導電性炭素被覆層23の厚みは0.5nm~6nmであり、その厚みが2nm以上6nm以下の層厚部23aと、0.5nm以上2nm未満の層薄部23bにより形成されている。
 実施例1-2では、実施例1-1よりも導電性炭素被覆全体における層薄部23bが占める割合が高くなるため、よりリチウムイオン導電性が高いリン酸鉄リチウム正極材料20を得ることができる。 
 尚、リチウムイオン導電性の観点からは、前記層薄部23bが占める割合が高いほど良いが、粒子一つに1箇所以上の層薄部が存在すれば、劇的にリチウムイオン導電性は向上する。該層薄部の面積は、2nmX2nm以上有ればよい。
 また、実施例1-2においても導電性炭素被覆層23の表面には5nm~100nmの突起状炭素24が形成されており、リン酸鉄リチウム22の一次粒子21同士は、前記突起状炭素24を介することによっても接触している。これにより、二次電池の充放電に対して十分な電子伝導性を有するリン酸鉄リチウム正極材料とすることができる。
 次に、比較例1のリン酸鉄リチウム正極材料30について図3を用いて説明する。 
 比較例1のリン酸鉄リチウム正極材料30は、ほぼ均一な厚みの導電性炭素被覆層33を有するリン酸鉄リチウムの一次粒子31同士が接触することによって二次粒子を構成されている。 
 図5に示されるように、比較例1の導電性炭素被覆層33は約3nmの厚みを有し、かつ均一の厚さであった。 
 また、比較例1において製造されたリン酸鉄リチウム正極材料中の炭素含有量は、4.0%~6.0wt%であり、実施例1-1の数倍の炭素を含んでいた。
 <実施例1-1および比較例1の比較>
 表1は、実施例1-1および比較例1のリン酸鉄リチウム正極材料を用いて作成したリチウムイオン二次電池のレート特性を示す表である。
Figure JPOXMLDOC01-appb-T000001
 実施例1-1および比較例1を比較すると低いCレートにおいては、ほぼ同様のレート特性を示す。一方、15C、20Cのハイレート特性は、比較例1では電圧が低く、電池容量も小さくなるのに対し、実施例1-1のリン酸鉄リチウム正極材料は、高い電圧および大きな電池容量を維持している。
 また、前述のように、リン酸鉄リチウム正極材料中の炭素含有量は、実施例1-1では0.8%~1.5wt%であるのに対し、比較例1では4.0%~6.0wt%であり、実施例1-1のリン酸鉄リチウム正極材料は、比較例1に比して体積容量密度が高いと言える。したがって、二次電池の体積エネルギー密度の向上が期待される。
[実施例2]
 次に、本発明のリン酸鉄リチウム正極材料の製造方法の他の実施例について説明する。 
 本実施例のリン酸鉄リチウム正極材料の製造方法は、リン酸鉄リチウム粒子と、熱分解により導電性炭素被覆層を形成する炭素前駆体を混合する際に、第1の混合工程および第2の混合工程の2段階の混合工程を行う点に特徴を有している。
 前記リン酸鉄リチウム粒子としては、実施例1と同様、公知の製造方法で合成したリン酸鉄リチウム粒子を用いることができる。 
 また、前記炭素前駆体も、実施例1と同様、分子量が160以上の芳香族化合物を20~99wt%含み、20℃における粘度が500~1000mPa・secである炭素材料が用いられる。
 実施例2における第1の混合工程では、当該炭素前駆体をアセトン、ベンゼン等の溶媒に溶解し、20℃における粘度を500Pa・secよりも低い状態にして、前記リン酸鉄リチウム粒子と混合する。 
 第1の混合工程における混合は、溶媒に溶解した炭素前駆体がリン酸鉄リチウム粒子表面に均一になるように混合することが望ましい。溶媒に溶解した炭素前駆体は粘度が低いので、比較的低速または短時間の撹拌混合によって均一にすることができる。
 ここで、実施例2では、リン酸鉄リチウム粒子に必要十分な電子伝導性とリチウムイオン導電性双方を付与するために、炭素前駆体を2回に分けて添加する。 
 例えば、リン酸鉄リチウム粒子の重量に対し、第1の混合工程および第2の混合工程の全体として3.5wt%の炭素前駆体を添加する場合、第1の混合工程で1.0wt%、第2の混合工程において残りの2.5wt%を添加する。 
 第1の混合工程および第2の混合工程における全体の炭素前駆体の添加量が、リン酸鉄リチウムの重量に対し、1.5~5.0wt%であることが望ましい。
 次に、前記第1の混合工程で得た前記リン酸鉄リチウム粒子と溶媒に溶解した炭素前駆体との混合物に含まれる前記溶媒を蒸発させる工程を行う。添加する溶媒が炭素前駆体重量の30wt%未満の場合には、混合後、放置するだけで溶媒は蒸発する。30wt%以上の場合には、真空脱気することで容易に除去される。この溶媒を蒸発させる工程を行った後のリン酸鉄リチウム粒子には、炭素前駆体がほぼ均一に付着している。そして、このように炭素前駆体がほぼ均一に付着した前記混合物に対し、更に炭素前駆体を加えて混合する第2の混合工程を行う。
 第2の混合工程は、20℃における粘度が500~1000mPa・sec(B型粘度計、6rpm)である前記炭素前駆体原液をそのまま添加して混合する。第2の混合工程における混合は、実施例1における混合工程と同様、遊星ボールミル、あるいはハイスピードミキサー(深江パウテック株式会社)、ヘンシェルミキサ(登録商標)(日本コークス工業株式会社)、ニューグラマシン(株式会社セイシン企業)等の回転式の混合機、もしくはジェットミルを用いて行う。 
 上記工程において、今後浮きの攪拌速度や攪拌時間を調節することによって、導電性炭素被覆層が厚い部位を意図的に形成することができる。
 次に上記混合物に対して、550~750℃において3~6時間焼成する。とりわけ、600~730℃の温度領域が好ましい。実施例2では、700℃、3時間の焼成処理を施した。この焼成処理によって、第1の混合工程で均一に分散された炭素前駆体は溶解し、リン酸鉄リチウム粒子表面に満遍なく広がり、図8に示すように2nm以下の薄く均一な導電性炭素被覆層43が形成される。第2の混合工程で分散された炭素前駆体は、第1の混合工程の炭素前駆体よりも局在化された状態で分散されているため、焼成処理によって、5nm~100nmの突起状炭素44を有するリン酸鉄リチウム42の一次粒子41が形成される。
 実施例2においては、導電性炭素被覆層のほとんどが2nm以下の厚みの被覆層によって構成されている。したがって、リチウムイオン導電性が高いリン酸鉄リチウム正極材料40を得ることができる。また、電子伝導性は、前記導電性炭素被覆層43の表面に形成された5nm~100nmの突起状炭素44によって付与されている。符号45はブリッジである。
 前記突起状炭素によってリン酸鉄リチウムの一次粒子同士の接触面積が増大し、リン酸鉄リチウム正極材料としての電子伝導性が向上するとともに、前記薄く均一な導電性炭素被覆層ではリチウムイオンが通りやすく、リチウムイオン伝導性が良好となる。以って、二次電池としたときの充放電の際にリチウムイオンの通過がし易くなり、レート特性が向上する。したがって、より少ない炭素の存在で、優れた電池特性を有する正極材料とすることができる。

Claims (7)

  1.  導電性炭素被覆層を備えたリン酸鉄リチウムの一次粒子を有するリン酸鉄リチウム正極材料であって、
     前記導電性炭素被覆層は、その厚みが2nm以上の層厚部と、2nm未満の層薄部とを有することを特徴とする、リン酸鉄リチウム正極材料。
  2.  請求項1に記載のリン酸鉄リチウム正極材料において、前記導電性炭素被覆層は0.5nm~6nmであることを特徴とする、リン酸鉄リチウム正極材料。
  3.  請求項1または2に記載のリン酸鉄リチウム正極材料において、前記リン酸鉄リチウムの一次粒子は、前記導電性炭素被覆層に5nm~100nmの突起状炭素を有することを特徴とする、リン酸鉄リチウム正極材料。
  4.  導電性炭素被覆層を備えるとともに、該導電性炭素被覆層に5nm~100nmの突起状炭素を有するリン酸鉄リチウムの一次粒子を有することを特徴とする、リン酸鉄リチウム正極材料。
  5.  請求項3または4に記載のリン酸鉄リチウム正極材料において、2以上のリン酸鉄リチウムの一次粒子が前記突起状炭素を介して接触して凝集した二次粒子を有することを特徴とする、リン酸鉄リチウム正極材料。
  6.  リン酸鉄リチウム粒子と、熱分解により導電性炭素被覆層を形成する炭素前駆体を混合し、前記炭素前駆体の熱分解が進行する温度および雰囲気で焼成する焼成工程を含むリン酸鉄リチウム正極材料の製造方法であって、
     分子量が160以上の芳香族化合物を20~99wt%含み、20℃における粘度が500~1000mPa・secである前記炭素前駆体と、前記リン酸鉄リチウム粒子と、を混合する混合工程を行い、前記混合工程で得た混合物を前記焼成工程に供することを特徴とする、リン酸鉄リチウム正極材料の製造方法。
  7.  リン酸鉄リチウム粒子と、熱分解により導電性炭素被覆層を形成する炭素前駆体を混合し、前記炭素前駆体の熱分解が進行する温度および雰囲気で焼成する焼成工程を含むリン酸鉄リチウム正極材料の製造方法であって、
     分子量が160以上の芳香族化合物を20~99wt%含む炭素前駆体を溶媒に溶解し、20℃における粘度が500Pa・secよりも低い状態にして、前記リン酸鉄リチウム粒子と混合する第1の混合工程と、
     前記第1の混合工程で得た混合物に含まれる前記溶媒を蒸発させる工程と、
     溶媒を蒸発させた前記混合物と、20℃における粘度が500~1000mPa・secである前記炭素前駆体と、を混合する第2の混合工程と、を行い、
     前記第2の混合工程で得た混合物を前記焼成工程に供することを特徴とする、リン酸鉄リチウム正極材料の製造方法。
PCT/JP2012/055846 2011-04-01 2012-03-07 リン酸鉄リチウム正極材料およびその製造方法 WO2012137572A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137028930A KR20140063515A (ko) 2011-04-01 2012-03-07 인산 철 리튬 양극 재료 및 그 제조방법
EP12767496.8A EP2696411B1 (en) 2011-04-01 2012-03-07 Lithium iron phosphate positive electrode material, and method for producing same
CA2831877A CA2831877A1 (en) 2011-04-01 2012-03-07 Lithium iron phosphate cathode material and method for producing same
CN201280026343.4A CN103733395B (zh) 2011-04-01 2012-03-07 磷酸锂铁正极材料及其生产方法
US14/009,219 US20140212756A1 (en) 2011-04-01 2012-03-07 Lithium iron phosphate cathode material and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-082063 2011-04-01
JP2011082063A JP5851707B2 (ja) 2011-04-01 2011-04-01 リン酸鉄リチウム正極材料およびその製造方法

Publications (2)

Publication Number Publication Date
WO2012137572A1 true WO2012137572A1 (ja) 2012-10-11
WO2012137572A9 WO2012137572A9 (ja) 2012-12-27

Family

ID=46968976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055846 WO2012137572A1 (ja) 2011-04-01 2012-03-07 リン酸鉄リチウム正極材料およびその製造方法

Country Status (8)

Country Link
US (1) US20140212756A1 (ja)
EP (1) EP2696411B1 (ja)
JP (1) JP5851707B2 (ja)
KR (1) KR20140063515A (ja)
CN (1) CN103733395B (ja)
CA (1) CA2831877A1 (ja)
TW (1) TW201304260A (ja)
WO (1) WO2012137572A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096268A (ja) * 2012-11-09 2014-05-22 Sei Kk リチウム二次電池用電極およびリチウム二次電池
WO2014144034A1 (en) * 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. Cathode for a battery
US20140322613A1 (en) * 2013-04-26 2014-10-30 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode, and lithium ion battery
US9099735B2 (en) 2011-09-13 2015-08-04 Wildcat Discovery Technologies, Inc. Cathode for a battery
US9397339B2 (en) 2011-09-13 2016-07-19 Wildcat Discovery Technologies, Inc. Cathode for a battery

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115670A1 (ja) 2013-01-23 2014-07-31 東レ株式会社 正極活物質-グラフェン複合体粒子およびリチウムイオン電池用正極材料
JP5932688B2 (ja) * 2013-03-14 2016-06-08 三井造船株式会社 電極材料の製造方法
JP5708895B1 (ja) * 2013-05-16 2015-04-30 住友大阪セメント株式会社 炭素被覆活物質複合体及びリチウムイオン電池
KR101580030B1 (ko) 2013-07-09 2015-12-23 주식회사 엘지화학 탄소 코팅 리튬 인산철 나노분말의 제조방법
KR101658510B1 (ko) 2013-09-02 2016-09-21 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지
JP6741390B2 (ja) * 2014-04-25 2020-08-19 住友大阪セメント株式会社 正極材料、ペースト及びナトリウムイオン電池
CN104134782A (zh) * 2014-07-24 2014-11-05 安泰科技股份有限公司 一种纳米化磷酸铁锂锂离子电池正极材料及其制备方法
WO2016139957A1 (ja) 2015-03-04 2016-09-09 株式会社豊田自動織機 リチウムイオン二次電池用正極及びその製造方法並びにリチウムイオン二次電池
JP6128181B2 (ja) * 2015-09-30 2017-05-17 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料、リチウムイオン二次電池用電極材料の製造方法、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP6015835B1 (ja) * 2015-09-30 2016-10-26 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2019175633A (ja) * 2018-03-28 2019-10-10 Tdk株式会社 リチウムイオン二次電池
JP6547891B1 (ja) * 2018-09-27 2019-07-24 住友大阪セメント株式会社 電極材料、該電極材料の製造方法、電極、及びリチウムイオン電池
KR20220132534A (ko) 2020-01-27 2022-09-30 도레이 카부시키가이샤 이차 전지 전극용 활물질 및 그것을 사용한 이차 전지
CN115528296B (zh) * 2022-09-29 2023-12-29 欣旺达动力科技股份有限公司 一种二次电池

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328813A (ja) * 2000-05-16 2001-11-27 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムマンガン複合酸化物およびその製造方法
JP2004063386A (ja) 2002-07-31 2004-02-26 Mitsui Eng & Shipbuild Co Ltd 2次電池正極材料の製造方法、および2次電池
JP2004234977A (ja) * 2003-01-29 2004-08-19 Matsushita Electric Ind Co Ltd リチウム二次電池用正極材料およびその製造方法ならびにそれを用いたリチウム二次電池
JP2005183032A (ja) 2003-12-16 2005-07-07 Sumitomo Osaka Cement Co Ltd リチウム電池用電極の製造方法とリチウム電池用電極及びリチウム電池
JP2006164859A (ja) * 2004-12-10 2006-06-22 Shin Kobe Electric Mach Co Ltd リチウム二次電池用正極材料とその製造法及びリチウム二次電池
JP2006302671A (ja) * 2005-04-20 2006-11-02 Mitsui Mining Co Ltd リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
JP2008277119A (ja) * 2007-04-27 2008-11-13 Tdk Corp 電極用複合粒子及びその製造方法、並びに、電気化学デバイス
JP2009081002A (ja) 2007-09-26 2009-04-16 Furukawa Battery Co Ltd:The リチウム二次電池用正極活物質の製造法、正極活物質及びリチウム二次電池
JP2009245762A (ja) 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd 電極材料に用いる粒子の炭素コーティング方法および二次電池
JP2010218884A (ja) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd リチウムリン系複合酸化物炭素複合体、その製造方法、リチウム二次電池用正極活物質及びリチウム二次電池
JP2011076931A (ja) * 2009-09-30 2011-04-14 Nagoya Univ リチウムイオン二次電池の正極材、およびその製造方法
JP2011210649A (ja) * 2010-03-30 2011-10-20 Mitsui Eng & Shipbuild Co Ltd 二次電池用の炭素被覆電極材料の製造方法及び炭素被覆電極材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206639A1 (en) * 2007-02-23 2008-08-28 Tdk Corporation Active material particle for electrode, electrode, electrochemical device, and production method of electrode
JP5228501B2 (ja) * 2007-02-23 2013-07-03 Tdk株式会社 電極用活物質粒子、電極、電気化学デバイス及び電極の製造方法
JP5196555B2 (ja) * 2008-08-06 2013-05-15 独立行政法人産業技術総合研究所 電極材料前駆体の製造方法及び得られた電極材料前駆体を用いる電極材料の製造方法
JP5541560B2 (ja) * 2008-10-03 2014-07-09 株式会社Gsユアサ 正極材料、正極材料の製造方法、及び該製造方法で製造された正極材料が備えられている非水電解質二次電池
JP5476246B2 (ja) * 2010-07-26 2014-04-23 日立ビークルエナジー株式会社 非水電解質二次電池及び正極合剤の製造方法
US8691441B2 (en) * 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328813A (ja) * 2000-05-16 2001-11-27 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウムマンガン複合酸化物およびその製造方法
JP2004063386A (ja) 2002-07-31 2004-02-26 Mitsui Eng & Shipbuild Co Ltd 2次電池正極材料の製造方法、および2次電池
JP2004234977A (ja) * 2003-01-29 2004-08-19 Matsushita Electric Ind Co Ltd リチウム二次電池用正極材料およびその製造方法ならびにそれを用いたリチウム二次電池
JP2005183032A (ja) 2003-12-16 2005-07-07 Sumitomo Osaka Cement Co Ltd リチウム電池用電極の製造方法とリチウム電池用電極及びリチウム電池
JP2006164859A (ja) * 2004-12-10 2006-06-22 Shin Kobe Electric Mach Co Ltd リチウム二次電池用正極材料とその製造法及びリチウム二次電池
JP2006302671A (ja) * 2005-04-20 2006-11-02 Mitsui Mining Co Ltd リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池
JP2008277119A (ja) * 2007-04-27 2008-11-13 Tdk Corp 電極用複合粒子及びその製造方法、並びに、電気化学デバイス
JP2009081002A (ja) 2007-09-26 2009-04-16 Furukawa Battery Co Ltd:The リチウム二次電池用正極活物質の製造法、正極活物質及びリチウム二次電池
JP2009245762A (ja) 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd 電極材料に用いる粒子の炭素コーティング方法および二次電池
JP2010218884A (ja) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd リチウムリン系複合酸化物炭素複合体、その製造方法、リチウム二次電池用正極活物質及びリチウム二次電池
JP2011076931A (ja) * 2009-09-30 2011-04-14 Nagoya Univ リチウムイオン二次電池の正極材、およびその製造方法
JP2011210649A (ja) * 2010-03-30 2011-10-20 Mitsui Eng & Shipbuild Co Ltd 二次電池用の炭素被覆電極材料の製造方法及び炭素被覆電極材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696411A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099735B2 (en) 2011-09-13 2015-08-04 Wildcat Discovery Technologies, Inc. Cathode for a battery
US9337472B2 (en) 2011-09-13 2016-05-10 Wildcat Discovery Technologies, Inc Cathode for a battery
US9397339B2 (en) 2011-09-13 2016-07-19 Wildcat Discovery Technologies, Inc. Cathode for a battery
US9490475B2 (en) 2011-09-13 2016-11-08 Wildcat Discovery Technologies, Inc. High energy cathode for a battery
JP2014096268A (ja) * 2012-11-09 2014-05-22 Sei Kk リチウム二次電池用電極およびリチウム二次電池
US9660269B2 (en) 2012-11-09 2017-05-23 Sei Corporation Electrode for lithium secondary battery and lithium secondary battery
WO2014144034A1 (en) * 2013-03-15 2014-09-18 Wildcat Discovery Technologies, Inc. Cathode for a battery
US20140322613A1 (en) * 2013-04-26 2014-10-30 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode, and lithium ion battery
US9941510B2 (en) * 2013-04-26 2018-04-10 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode, and lithium ion battery

Also Published As

Publication number Publication date
KR20140063515A (ko) 2014-05-27
JP2012216473A (ja) 2012-11-08
WO2012137572A9 (ja) 2012-12-27
TW201304260A (zh) 2013-01-16
US20140212756A1 (en) 2014-07-31
CN103733395B (zh) 2016-06-08
EP2696411A1 (en) 2014-02-12
JP5851707B2 (ja) 2016-02-03
CA2831877A1 (en) 2012-10-11
CN103733395A (zh) 2014-04-16
EP2696411B1 (en) 2017-05-03
EP2696411A4 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5851707B2 (ja) リン酸鉄リチウム正極材料およびその製造方法
JP5291179B2 (ja) リチウム二次電池用のリン酸鉄リチウム正極材料を調製する方法
US20090017194A1 (en) Process of Making Carbon-Coated Lithium Metal Polyanionic Powders
WO2015080203A1 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
WO2010109869A1 (ja) リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
JP5478693B2 (ja) 二次電池用正極活物質及びその製造方法
JP6325476B2 (ja) 炭素−シリコン複合体、これを用いたリチウム二次電池用負極およびリチウム二次電池
KR101937020B1 (ko) 금속 화합물을 이용한 리튬 이차전지 음극재용 나노 실리콘을 포함하는 실리콘 복합물의 합성 방법, 음극 및 음극을 포함하는 리튬 이차 전지
JP2009245762A (ja) 電極材料に用いる粒子の炭素コーティング方法および二次電池
KR20190116818A (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR101772402B1 (ko) 리튬 이차 전지용 음극활물질의 제조방법 및 이로부터 제조된 리튬 이차 전지용 음극활물질
JP5927449B2 (ja) 二次電池用正極及びそれを用いた二次電池
JP2010238603A (ja) フッ化リン酸鉄リチウム固溶体正極活物質粉末、及び製造方法、並びにリチウムイオン二次電池
JP5736865B2 (ja) リチウム二次電池用正極活物質材料の製造方法、及びそれを用いたリチウム二次電池
JP2003176115A (ja) 黒鉛粉末の製造方法、黒鉛粉末およびリチウムイオン二次電池
KR20100047134A (ko) 리튬이차전지용 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
KR102424526B1 (ko) 이차전지용 음극활물질의 제조방법과 이로부터 제조된 이차전지용 음극활물질, 및 이차전지용 음극활물질을 포함하는 리튬이차전지
JP2015069762A (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
KR20220157988A (ko) 리튬 이차 전지용 복합 활물질, 리튬 이차 전지용 전극 조성물, 리튬 이차 전지용 전극 그리고 리튬 이차 전지용 복합 활물질의 제조 방법
CN113839104A (zh) 一种锂电池负极及锂电池
JP2021180124A (ja) シリコンまたはシリコン合金およびそれを含むリチウム二次電池用複合活物質並びにその製造方法
JP2016146302A (ja) リチウム二次電池用正極材料の製造方法
EP4324790A1 (en) Novel granulated spherical graphite, secondary battery comprising same as anode active material, and method for preparing granulated spherical graphite
CN115498162A (zh) 一种碳与磷酸锗铝锂双重包覆的磷酸锰铁锂正极材料的制备方法
JP2023044615A (ja) 全固体リチウム二次電池用活物質、全固体リチウム二次電池用電極組成物、および全固体リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2831877

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137028930

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012767496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012767496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14009219

Country of ref document: US