WO2010109869A1 - リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池 - Google Patents

リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池 Download PDF

Info

Publication number
WO2010109869A1
WO2010109869A1 PCT/JP2010/002111 JP2010002111W WO2010109869A1 WO 2010109869 A1 WO2010109869 A1 WO 2010109869A1 JP 2010002111 W JP2010002111 W JP 2010002111W WO 2010109869 A1 WO2010109869 A1 WO 2010109869A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
source
ion battery
positive electrode
active material
Prior art date
Application number
PCT/JP2010/002111
Other languages
English (en)
French (fr)
Inventor
中野雅継
山崎晃範
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CA2755802A priority Critical patent/CA2755802A1/en
Priority to CN201080012262XA priority patent/CN102356488A/zh
Priority to EP10755671A priority patent/EP2413402A1/en
Priority to US13/256,644 priority patent/US9216907B2/en
Publication of WO2010109869A1 publication Critical patent/WO2010109869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium ion battery, a positive electrode active material for a lithium ion battery, an electrode for a lithium ion battery, and a lithium ion battery.
  • Non-aqueous lithium-ion batteries have higher energy density and can be easily miniaturized compared to conventional aqueous batteries such as Ni—Cd batteries and Ni—H batteries. Widely used in portable devices such as personal computers.
  • a positive electrode material for this non-aqueous lithium ion battery LiCoO 2 is currently in practical use and is generally used. By the way, when LiCoO 2 is applied as it is to the positive electrode material of a non-aqueous lithium ion battery in the fields of hybrid vehicles, electric vehicles, and large batteries to be installed in uninterruptible devices, there are various types as follows. There was a problem.
  • LiCoO 2 uses rare metal cobalt (Co), so that it is difficult to obtain a large amount of cobalt (Co) stably in terms of resources and cost. It is.
  • LiCoO 2 releases oxygen at a high temperature, it is necessary to sufficiently consider safety even in the event of abnormal heat generation or when the battery is short-circuited. Therefore, LiCoO 2 can be used without sufficient consideration. There is also a point that a risk is large when applied to a large battery.
  • LiFePO 4 having an olivine structure has attracted attention as a positive electrode material that has no problems in terms of safety and resources as well as safety, and has been researched and developed worldwide (for example, patent documents). 1, non-patent literature 1 etc.).
  • This olivine-based positive electrode material typified by LiFePO 4 utilizes iron (Fe). In terms of resources, iron is abundant in nature and inexpensive compared to cobalt and manganese.
  • the olivine structure is a material excellent in safety because it does not release oxygen at a high temperature like a cobalt system such as LiCoO 2 due to the covalent bond between phosphorus and oxygen.
  • LiFePO 4 having such advantages also has problems in terms of characteristics.
  • One problem is that the conductivity is low.
  • the conductivity is improved by recent improvements, in particular, by combining LiFePO 4 and carbon, or coating the surface of LiFePO 4 with carbon.
  • Another problem is that the diffusibility of lithium ions during charging and discharging is low.
  • the diffusion direction of lithium during charge / discharge is bi-directional or tri-directional, whereas an olivine structure such as LiFePO 4 is used.
  • the diffusion direction of lithium is limited to one direction.
  • the electrode reaction during charging / discharging is a two-phase reaction in which conversion is repeated between LiFePO 4 and FePO 4 , LiFePO 4 is considered disadvantageous for high-speed charging / discharging.
  • the most effective method for solving these problems is to reduce the LiFePO 4 particle size. That is, even if the diffusion direction is one direction, if the diffusion distance is shortened by reducing the particle size, it can be considered that the charge / discharge speed can be increased.
  • a solid phase method has been used as a method for synthesizing LiFePO 4 .
  • LiFePO 4 raw materials are mixed in a stoichiometric ratio and fired in an inert atmosphere, so that the desired composition of LiFePO 4 cannot be obtained unless the firing conditions are properly selected.
  • a liquid phase synthesis method utilizing a hydrothermal reaction has been studied as a method for reducing the particle size of the LiFePO 4 particles.
  • LiFePO 4 fine particles by a hydrothermal reaction a method of synthesizing organic acids and ions such as CH 3 COO ⁇ , SO 4 2 ⁇ , and Cl 2 ⁇ simultaneously with a solvent
  • a method of obtaining single-phase LiFePO 4 fine particles by adding excess Li during the reaction has been proposed (see, for example, Patent Document 2 and Non-Patent Document 2).
  • a method of obtaining LiFePO 4 fine particles having a small particle diameter by mechanically pulverizing a reaction intermediate has also been proposed (Patent Document 3).
  • this LiFePO 4 is considered to be an unsuitable electrode material for applications requiring low output voltage and high output, such as electric tools and hybrid vehicles. Therefore, as a positive electrode material having an olivine structure other than LiFePO 4 , LiMnPO 4 and LiCoPO 4 , which are high-voltage positive electrode materials taking advantage of the safety of the olivine structure, are listed as candidates.
  • LiFePO 4 fine particles are certainly obtained and the intended load characteristics are improved, but the initial discharge capacity is reduced, and further, high-speed charging is achieved. There was a problem that the discharge characteristics deteriorated. This phenomenon is considered to be caused by the generated LiFePO 4 fine particles having a wide particle size distribution. By having a wide particle size distribution, the existence probability of amorphous ultrafine particles that do not contribute to charge / discharge is increased, and as a result, the initial discharge capacity is decreased, and further, the high-speed charge / discharge characteristics are also decreased. .
  • LiMPO 4 (where M is one or more selected from the group consisting of Fe, Mn, Co and Ni) has an average primary particle diameter of fine particles.
  • LiMPO 4 fine particles having a narrow particle size distribution can be obtained, the initial discharge capacity can be improved, and further the high-speed charge / discharge characteristics can be improved. It aims at providing the positive electrode active material for ion batteries, the electrode for lithium ion batteries, and a lithium ion battery.
  • LiMPO 4 (where M is one or more selected from the group consisting of Fe, Mn, Co and Ni) fine particles.
  • M is one or more selected from the group consisting of Fe, Mn, Co and Ni
  • the inventors have found an unexpectedly excellent result that the battery characteristics can be controlled, and have completed the present invention.
  • the method for producing a positive electrode active material for a lithium ion battery according to the present invention is one or two selected from the group consisting of Li 3 PO 4 , Li source and phosphate source, Fe source, Mn source, Co source and Ni source. And containing at least 0.5 mol / L and not more than 1.5 mol / L in terms of LiMPO 4 (wherein M is one or more selected from the group consisting of Fe, Mn, Co and Ni).
  • the method for producing a positive electrode active material for a lithium ion battery according to the present invention includes (A) Li 3 PO 4 , or a Li source and a phosphate source, (B) an Fe source, a Mn source, a Co source, and Containing at least one selected from the group of Ni sources, water, and a water-soluble organic solvent having a boiling point of 150 ° C.
  • LiMPO 4 (wherein M is at least one selected from the group consisting of Fe, Mn, Co and Ni) has a concentration of 0.5 mol / L or more and 1.5 mol / L or less.
  • the water-soluble organic solvent is preferably at least one selected from the group consisting of polyhydric alcohols, amides, esters and ethers.
  • the content of the water-soluble organic solvent is preferably 3% by mass or more and 30% by mass or less of the total mass of the mixture.
  • the positive electrode active material for lithium ion batteries of the present invention is obtained by the method for producing a positive electrode active material for lithium ion batteries of the present invention.
  • the lithium ion battery electrode of the present invention is characterized in that the positive electrode active material for a lithium ion battery of the present invention is coated with carbon.
  • the lithium ion battery of the present invention is characterized by comprising the lithium ion battery electrode of the present invention as a positive electrode.
  • a positive electrode active material for a lithium ion battery of the present invention one selected from the group consisting of Li 3 PO 4 , or a Li source and a phosphoric acid source, and an Fe source, a Mn source, a Co source, and a Ni source.
  • two or more types are contained in an amount of 0.5 mol / L or more and 1.5 mol / L or less in terms of LiMPO 4 (where M is one or more selected from the group consisting of Fe, Mn, Co and Ni).
  • LiMPO 4 having an average primary particle size of 30 nm to 80 nm (where M is Fe, Mn , One or more selected from the group of Co and Ni), LiMPO 4 fine particles having a small average primary particle size and a narrow particle size distribution can be efficiently produced. Furthermore, the average primary particle diameter of the LiMPO 4 fine particles can be controlled by changing the type and content of the water-soluble organic solvent.
  • LiMPO 4 (where M is one or more selected from the group consisting of Fe, Mn, Co, and Ni) fine particles have an average primary particle size of 30 nm.
  • M is one or more selected from the group consisting of Fe, Mn, Co, and Ni
  • the particle size distribution is narrow within the range of 80 nm or less, the initial discharge capacity can be improved, and further, the high-speed charge / discharge characteristics can be improved.
  • the conductivity of the positive electrode active material can be improved.
  • the lithium ion battery electrode of the present invention since the lithium ion battery electrode of the present invention is provided as the positive electrode, the conductivity of the positive electrode can be improved, and therefore the initial discharge capacity can be improved. Can improve high-speed charge / discharge characteristics.
  • FE-SEM field effect type
  • the present invention relates to a method for producing a positive electrode active material for a lithium ion battery, a positive electrode active material for a lithium ion battery, an electrode for a lithium ion battery, and a lithium ion battery. More specifically, a method for producing a positive electrode active material for a lithium ion battery capable of improving the discharge capacity by controlling the average primary particle diameter of LiFePO 4 fine particles, and a positive electrode active material for a lithium ion battery obtained thereby And an electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery, and a lithium ion battery.
  • the manufacturing method of the positive electrode active material for lithium ion batteries of this invention, the positive electrode active material for lithium ion batteries, the electrode for lithium ion batteries, and the form for implementing a lithium ion battery are demonstrated.
  • This embodiment is specifically described for better understanding of the gist of the invention and does not limit the present invention unless otherwise specified.
  • conditions such as material, quantity, type, number, size, and temperature may be changed, added, and omitted as necessary.
  • the method for producing a positive electrode active material for a lithium ion battery is Li 3 PO 4 , or one selected from the group consisting of a Li source and a phosphate source, and a Fe source, a Mn source, a Co source, and a Ni source. 2 or more are contained in an amount of 0.5 mol / L or more and 1.5 mol / L or less in terms of LiMPO 4 (where M is one or more selected from the group consisting of Fe, Mn, Co and Ni).
  • LiMPO 4 having an average primary particle diameter of 30 nm or more and 80 nm or less (where M is Fe, Mn, (1 type or 2 types or more selected from the group of Co and Ni).
  • LiMPO 4 (wherein M is one or more selected from the group of Fe, Mn, Co, and Ni) fine particles are simply referred to as LiMPO 4 fine particles.
  • a Li source such as a Li salt, a phosphoric acid source such as a PO 4 salt, an M source such as an M salt (where M is Fe, Mn, Co, and A method using one or more selected from the group of Ni)
  • a method using Li 3 PO 4 obtained by reacting a Li source and a phosphate source, and further using an M source, and an M source and a phosphate source
  • a method using a phosphate of M and a Li source There is a method using a phosphate of M and a Li source.
  • Fe 3 (PO 4 ) 2 among M phosphates is easily oxidized and difficult to handle.
  • Li 3 PO 4 and Fe (II) salt it is preferable to use Li 3 PO 4 and Fe (II) salt as raw materials.
  • the method using the Li source, the M source, and the phosphoric acid source is equivalent to the method using Li 3 PO 4 because Li 3 PO 4 is generated at the initial stage of the reaction. Therefore, Li 3 PO 4 is first synthesized, and then Li 3 PO 4 and the M source are hydrothermally reacted to form LiMPO 4 (where M is selected from the group consisting of Fe, Mn, Co, and Ni). A method of synthesizing fine particles (seeds or two or more species) is preferred.
  • LiMPO 4 fine particles Preparation of Lithium Phosphate (Li 3 PO 4 ) Slurry First, a Li source and a phosphoric acid source are introduced into water, and these Li source and phosphoric acid source are reacted to produce lithium phosphate (Li 3 PO 4 ). And a lithium phosphate (Li 3 PO 4 ) slurry.
  • the Li source and the phosphate source are selected as necessary, but the amount and ratio are preferably adjusted so that unreacted Li source and phosphate source do not remain.
  • the Li source refers to a substance that contains at least lithium element and can supply lithium ions in order to produce a target compound.
  • the Li source is preferably a Li hydroxide or a Li salt.
  • the Li hydroxide may be lithium hydroxide (LiOH).
  • the Li salts lithium carbonate (Li 2 CO 3), and lithium inorganic salts such as lithium chloride (LiCl), lithium organic such as lithium acetate (LiCH 3 COO), and lithium oxalate ((COOLi) 2) Examples thereof include acid salts and hydrates thereof, and one or more selected from these groups are preferably used.
  • the phosphoric acid source refers to a substance that contains at least phosphoric acid and can supply phosphate ions to produce a target compound.
  • the phosphoric acid source include phosphoric acid such as orthophosphoric acid (H 3 PO 4 ) and metaphosphoric acid (HPO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), ammonium phosphate ((NH 4 ) 3 PO 4 ), and one or more selected from the group of these hydrates are preferably used.
  • orthophosphoric acid, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate are preferable because of their relatively high purity and easy composition control.
  • a slurry may be produced by adding Li 3 PO 4 directly to water.
  • the reaction concentration that is, the concentration of Li 3 PO 4 and M source in this mixture when converted to LiMPO 4 is preferably 0.5 mol / L or more and 1.5 mol / L or less, more preferably 0.7 mol / L or more and 1.2 mol / L or less.
  • concentration may become favorable by adding water to a mixture newly before the reaction under high temperature high pressure. The reason is that when the reaction concentration is less than 0.5 mol / L, LiMPO 4 having a large particle size is likely to be generated, and the load characteristics are likely to deteriorate due to the reasons already described.
  • the concentration when converted into LiMPO 4 meaning when the material is used for the preparation of LiMPO 4.
  • the raw material is selected so that the concentration of LiMPO 4 finally produced is in the range of 0.5 mol / L to 1.5 mol / L. Note that any of the plurality of raw materials may be outside the range of 0.5 mol / L or more and 1.5 mol / L or less.
  • the Li 3 PO 4 and M sources in the mixture subjected to the reaction under high temperature and high pressure are each preferably 0.5 mol / L or more and 1.5 mol / L or less, more preferably 0.7 mol / L or more and It is 1.2 mol / L or less.
  • the concentration of lithium chloride used may be outside the above range, for example, 3 mol / L. However, it is preferable to select the mixing ratio of the materials so that no unreacted material remains.
  • a mixed solvent of water and a water-soluble organic solvent having a boiling point of 150 ° C. or higher is used as a solvent used for this mixture.
  • the maximum value of the boiling point of the water-soluble organic solvent that can be used in the present invention is not particularly limited, it is generally preferably 300 ° C. or lower as one guideline.
  • water-soluble organic solvent examples include polyhydric alcohols such as ethylene glycol, propylene glycol, hexylene glycol and glycerin, amides such as formamide, N-methylformamide, 2-pyrrolidone and N-methyl-2-pyrrolidinone, ⁇ -Only one selected from the group of esters such as butyrolactone and ethers such as diethylene glycol and ethylene glycol monobutyl ether (butyl cellosolve), or a mixture of two or more may be used.
  • polyhydric alcohols are preferable, and ethylene glycol is particularly preferable.
  • This mixed solvent can be obtained by substituting a part of water with a water-soluble organic solvent before the reaction under high temperature and high pressure.
  • the content of the water-soluble organic solvent is 3% by mass or more and 30% by mass or less, more preferably 5% by mass or more with respect to the total mass charged into the hydrothermal reaction, that is, the total mass of the mixture. And it substitutes so that it may become 15 mass% or less, More preferably, it is 7 mass% or more and 10 mass% or less.
  • the substitution amount of the water-soluble organic solvent that is, the content of the water-soluble organic solvent is less than 3% by mass, the produced LiMPO 4 fine particles and the battery characteristics are almost the same as the case where the solvent is only water, and the effect of substitution is obtained.
  • the amount of the water-soluble organic solvent is defined with respect to the total mass charged in the hydrothermal reaction, that is, the total mass of the mixture.
  • 5% by mass means that water in the reaction system corresponding to 5% by mass of the total charged mass of the hydrothermal reaction is replaced with a water-soluble organic solvent.
  • the above mixture is reacted (hydrothermal synthesis) under high temperature and high pressure conditions to obtain a reaction product containing LiMPO 4 fine particles.
  • the high temperature and high pressure conditions are not particularly limited as long as the temperature, pressure, and time are within the range for producing LiMPO 4 fine particles.
  • the reaction temperature can be arbitrarily selected, and examples thereof include higher than 100 ° C. and 300 ° C. or lower, preferably 120 ° C. or higher and 250 ° C. or lower, more preferably 150 ° C. or higher and 220 ° C. or lower. However, this reaction temperature preferably does not exceed the boiling point of the water-soluble organic solvent to be substituted. The reason is that if the water-soluble organic solvent is exposed to high temperature conditions that greatly exceed the boiling point in the pressure vessel, it decomposes and the internal pressure in the reaction vessel is rapidly increased, which may cause a safety problem. Because there is sex.
  • the pressure during the reaction can be arbitrarily selected.
  • the pressure is higher than 0.1 MPa and 10 MPa or lower, preferably 0.2 MPa or higher and 4.0 MPa or lower, and 0.4 MPa or higher and 2.5 MPa or lower. More preferred.
  • the reaction time can be arbitrarily selected, but depending on the reaction temperature, it is preferably 1 hour or longer and 24 hours or shorter, and more preferably 3 hours or longer and 12 hours or shorter.
  • the separated LiMPO 4 fine particles are dried by an arbitrary method, for example, dried at 40 ° C. or more for 3 hours or more using a drier or the like, and LiMPO 4 fine particles having an average primary particle size of 30 nm or more and 80 nm or less are efficiently obtained. be able to.
  • the average primary particle diameter can be obtained by SEM photograph evaluation of fine particles.
  • LiMPO 4 fine particles obtained under the above conditions is 30 nm or more and 80 nm or less.
  • LiMPO 4 fine particles having a small average primary particle size as a positive electrode active material for a lithium ion battery, the diffusion distance of Li is shortened, and an electrode for a lithium ion battery provided with this positive electrode active material for a lithium ion battery And in a lithium ion battery, the improvement of a high-speed charge / discharge characteristic can be aimed at.
  • the average primary particle size is 30 nm or more, the particles will not be destroyed due to structural changes accompanying Li insertion / extraction, and the specific surface area will not be remarkably increased. It will not be expensive. Therefore, a large amount of bonding agent that binds the fine particles is not required, and as a result, problems such as a significant decrease in the packing density of the positive electrode and a significant decrease in electrical conductivity do not occur.
  • the average primary particle size is 80 nm or less, the internal resistance of the positive electrode active material is not increased, the movement of Li ions is not delayed, and therefore, problems such as a decrease in discharge capacity do not occur.
  • Electrode for lithium ion battery and lithium ion battery In order to use the positive electrode active material for a lithium ion battery as a positive electrode active material of a lithium ion battery, particularly a positive electrode of a lithium ion secondary battery, it is preferable to cover the surface of the LiMPO 4 fine particles with carbon. When the surface is coated with carbon, the conductivity, which is the problem of LiFePO 4 already described, is improved, and good results are obtained as battery characteristics.
  • the method of carbon coating can be arbitrarily selected.
  • LiMPO 4 fine particles are mixed with a water-soluble monosaccharide, polysaccharide, or water-soluble polymer compound that is a carbon source, and evaporating to dryness, vacuum drying, spray drying, freeze drying, etc.
  • a drying method a film is uniformly formed on the surface of the LiFePO 4 fine particles, and then baked at a temperature at which the carbon source is decomposed to generate carbon in an inert atmosphere, and the surface of the LiMPO 4 fine particles is electrically conductive.
  • the method of forming a carbon film is mentioned.
  • the firing temperature can be arbitrarily selected. Although it depends on the type of carbon source, it is preferably 500 ° C. to 1000 ° C., more preferably 700 ° C. to 800 ° C. If the temperature is lower than 500 ° C., the carbon source is not sufficiently decomposed and a conductive carbon film is not sufficiently formed, which causes a resistance factor in the battery and may adversely affect battery characteristics. On the other hand, at a high temperature exceeding 1000 ° C., the growth of LiMPO 4 fine particles progresses and becomes coarse, and the high-speed charge / discharge characteristics due to the Li diffusion rate, which is a problem of LiFePO 4 particles, may be significantly deteriorated. is there. Thus, by covering the above-described LiMPO 4 fine particles, which are positive electrode active materials for lithium ion batteries, with carbon, it becomes suitable as a positive electrode active material for positive electrodes of lithium ion batteries, particularly lithium ion secondary batteries.
  • a lithium ion battery can be obtained by using an electrode formed using the carbon-coated LiMPO 4 fine particles as a positive electrode, and further including a negative electrode, an electrolyte, and a separator.
  • the positive electrode is formed using carbon-coated LiMPO 4 fine particles in which the surface of LiMPO 4 fine particles having an average primary particle diameter of 30 nm or more and 80 nm or less is coated with a conductive carbon film. . Therefore, the initial discharge capacity is improved and the high-speed charge / discharge characteristics are also excellent.
  • Example 1 To 1 L of pure water, 3 mol of lithium chloride (LiCl) and 1 mol of phosphoric acid (H 3 PO 4 ) were added and stirred to obtain a lithium phosphate (Li 3 PO 4 ) slurry. Next, 1 mol of iron (II) chloride (FeCl 2 ) is added to the slurry, and a part of the water in the slurry is replaced with ethylene glycol so that the mass becomes 10% by mass relative to the total charged mass of the hydrothermal reaction. Further, water was added to obtain a raw material liquid having a total amount of 2 L (total hydrothermal reaction charge mass). The reaction concentration of this raw material liquid was converted to LiFePO 4 and was 0.5 mol / L.
  • this raw material liquid was put into an autoclave in order to carry out a hydrothermal reaction, and after introducing an inert gas, it was reacted by heating at 180 ° C. and 1.2 MPa for 6 hours, followed by filtration and solid-liquid separation. Subsequently, the same amount of water as the mass of the separated solid was added and suspended, and the operation of solid-liquid separation by filtration was performed three times for washing.
  • 150 g of the cake-like LiFePO 4 obtained (in terms of solid content) was added with 5 g of polyethylene glycol and 150 g of pure water, and pulverized and dispersed for 12 hours in a ball mill using 5 mm diameter zirconia beads as media. Slurry was prepared.
  • this slurry was sprayed into an air atmosphere at 180 ° C. and dried to obtain a granulated body having an average particle size of about 6 ⁇ m.
  • This granulated body was fired at 750 ° C. for 1 hour under an inert atmosphere to prepare a positive electrode active material for a lithium ion battery of Example 1.
  • Example 2 Except that the reaction concentration of the raw material liquid was changed to 1.0 mol / L in terms of LiFePO 4 , that is, the amount of raw materials (lithium chloride, phosphoric acid, and iron (II) chloride) was doubled, and the total amount of the raw material liquid was 2 L
  • a positive electrode active material for a lithium ion battery of Example 2 was produced according to Example 1 except that the amount was adjusted so as to be.
  • Example 3 Example 1 except that the reaction concentration of the raw material liquid was changed to 1.5 mol / L in terms of LiFePO 4 , that is, the amount of the raw material was increased 1.5 times and the total amount of the raw material liquid was adjusted to 2 L.
  • a positive electrode active material for a lithium ion battery of Example 3 was produced.
  • Example 4 Example 4 according to Example 2 except that the reaction concentration of the raw material liquid was 1.0 mol / L in terms of LiFePO 4 and the amount of ethylene glycol substitution was 3% by mass with respect to the total hydrothermal reaction charge mass.
  • the positive electrode active material for lithium ion batteries was prepared.
  • Example 5 was performed in the same manner as in Example 2 except that the reaction concentration of the raw material liquid was 1.0 mol / L in terms of LiFePO 4 and the amount of ethylene glycol substitution was 30% by mass with respect to the total hydrothermal reaction charge mass.
  • the positive electrode active material for lithium ion batteries was prepared.
  • Example 6 Implementation was performed except that the reaction concentration of the raw material liquid was 1.0 mol / L in terms of LiFePO 4 , glycerin was used instead of ethylene glycol, and the amount of substitution of this glycerin was 10% by mass with respect to the total charged mass of the hydrothermal reaction.
  • a positive electrode active material for a lithium ion battery of Example 6 was produced according to Example 2.
  • Example 7 Except that the reaction concentration of the raw material liquid was 1.0 mol / L in terms of LiFePO 4 , diethylene glycol was used instead of ethylene glycol, and the substitution amount of diethylene glycol was 10% by mass with respect to the total mass of hydrothermal reaction.
  • a positive electrode active material for a lithium ion battery of Example 7 was produced according to Example 2.
  • Example 8 The reaction concentration of the raw material liquid is 1.0 mol / L in terms of LiFePO 4 , N-methyl-2-pyrrolidinone is used instead of ethylene glycol, and the substitution amount of this N-methyl-2-pyrrolidinone is the total charged mass of the hydrothermal reaction.
  • the positive electrode active material for a lithium ion battery of Example 8 was produced in the same manner as in Example 2 except that the content was 10% by mass.
  • Example 9 The reaction concentration of the raw material liquid was 1.0 mol / L in terms of LiFePO 4 , ⁇ -butyrolactone was used instead of ethylene glycol, and the amount of substitution of ⁇ -butyrolactone was 10% by mass relative to the total charged mass of the hydrothermal reaction. Except for the above, a positive electrode active material for a lithium ion battery of Example 9 was produced according to Example 2.
  • Example 10 According to Example 2 except that iron chloride (II) (FeCl 2 ) is replaced with manganese chloride (II) (MnCl 2 ) and the reaction concentration of the raw material liquid is converted to LiMnPO 4 to 1.0 mol / L. Then, a positive electrode active material for a lithium ion battery of Example 10 was produced.
  • Example 11 According to Example 2 except that iron chloride (II) (FeCl 2 ) is replaced by cobalt chloride (II) (CoCl 2 ) and the reaction concentration of the raw material liquid is 1.0 mol / L in terms of LiCoPO 4. A positive electrode active material for a lithium ion battery of Example 11 was produced.
  • Example 12 According to Example 2 except that iron chloride (II) (FeCl 2 ) is replaced by nickel chloride (II) (NiCl 2 ) and the reaction concentration of the raw material liquid is 1.0 mol / L in terms of LiNiPO 4. Then, a positive electrode active material for a lithium ion battery of Example 12 was produced.
  • Comparative Example 1 A positive electrode active material for a lithium ion battery of Comparative Example 1 was produced in the same manner as in Example 2 except that the reaction concentration of the raw material liquid was 1.0 mol / L in terms of LiFePO 4 and that the substitution with ethylene glycol was not performed.
  • Comparative Example 2 Except that the reaction concentration of the raw material liquid was set to 0.3 mol / L in terms of LiFePO 4 , that is, except that the amount of the raw material was reduced, the positive electrode active material for the lithium ion battery of Comparative Example 2 was prepared according to Example 2. Produced.
  • Comparative Example 3 Except that the reaction concentration of the raw material liquid was 2.0 mol / L in terms of LiFePO 4 , that is, except that the amount of the raw material was increased, the positive electrode active material for a lithium ion battery of Comparative Example 3 was prepared according to Example 2. Produced.
  • Comparative Example 4 According to Example 2, except that the reaction concentration of the raw material liquid was 1.0 mol / L in terms of LiFePO 4 and the amount of ethylene glycol substitution was 1.5% by mass with respect to the total hydrothermal reaction charge mass.
  • the positive electrode active material for lithium ion batteries of Example 4 was produced.
  • Comparative Example 5 Comparative Example 5 according to Example 2 except that the reaction concentration of the raw material liquid was 1.0 mol / L in terms of LiFePO 4 and the amount of ethylene glycol substitution was 50% by mass with respect to the total hydrothermal reaction charge mass.
  • the positive electrode active material for lithium ion batteries was prepared.
  • Comparative Example 6 Except for replacing iron chloride (II) (FeCl 2 ) with manganese chloride (II) (MnCl 2 ), converting the reaction concentration of the raw material liquid to 1.0 mol / L in terms of LiMnPO 4 , and not replacing with ethylene glycol Produced the positive electrode active material for lithium ion batteries of Comparative Example 6 according to Example 2.
  • Comparative Example 7 Except that iron chloride (II) (FeCl 2 ) was replaced with cobalt chloride (II) (CoCl 2 ), the reaction concentration of the raw material liquid was converted to LiCoPO 4 to 1.0 mol / L, and no substitution with ethylene glycol was performed. Produced the positive electrode active material for lithium ion batteries of Comparative Example 7 according to Example 2.
  • Comparative Example 8 Except for replacing iron chloride (II) (FeCl 2 ) with nickel chloride (II) (NiCl 2 ), converting the reaction concentration of the raw material liquid to 1.0 mol / L in terms of LiNiPO 4 , and not replacing with ethylene glycol Produced the positive electrode active material for lithium ion batteries of Comparative Example 8 according to Example 2.
  • the positive electrode active materials of Examples 1 to 12 and Comparative Examples 1 to 8 were each subjected to the following treatments to produce lithium ion secondary batteries of Examples 1 to 12 and Comparative Examples 1 to 8.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidinone
  • this positive electrode active material paste was applied onto an aluminum current collector foil having a thickness of 30 ⁇ m, and then dried under reduced pressure at 100 ° C. to produce a positive electrode having a thickness of 30 ⁇ m.
  • this positive electrode was punched into a 2 cm 2 disk shape and dried under reduced pressure.
  • a lithium ion secondary battery was produced using the positive electrode, the negative electrode, and a stainless steel 2016 coin cell.
  • metallic lithium was used as a negative electrode
  • a porous polypropylene film was used as a separator
  • 1 mol of LiPF 6 was mixed as an electrolyte with ethylene carbonate (EC) and diethyl carbonate (DEC) at 3: 7. A mixture mixed with the solution was used.
  • Battery charge / discharge test A battery charge / discharge test was conducted using the lithium ion secondary batteries of Examples 1 to 12 and Comparative Examples 1 to 8.
  • the initial discharge capacity was measured by charging at 0.1 C and discharging at 0.1 C.
  • Table 3 shows the discharge capacities and discharge sustaining rates (5C / 0.2C sustaining rate) of Examples 1 to 9 and Comparative Examples 1 to 5, and the initial discharge capacities of Examples 10 to 12 and Comparative Examples 6 to 8 ( 0.1C / 0.1C) is shown in Table 4, respectively.
  • the average primary particle diameter of the positive electrode active material can be controlled in the range of 30 nm to 80 nm by substituting part of the water in the slurry with a water-soluble organic solvent. confirmed.
  • the specific surface area of the positive electrode active materials of Examples 1 to 12 was larger than that of the positive electrode active material of Comparative Example 1, the lithium ion secondary batteries of Examples 1 to 9 were comparative examples.
  • the initial discharge capacity and discharge retention rate (5C / 0.2C retention rate) are improved compared to the lithium ion secondary battery of No. 1, and it has been confirmed that the improvement of discharge / charge characteristics and the securing of the initial discharge capacity have been achieved. We were able to.
  • the initial discharge capacity (0.1 C / 0.1 C) was improved as compared with the lithium ion secondary batteries of Comparative Examples 6 to 8, and the initial discharge We were able to confirm the capacity.
  • Comparative Example 2 in which the reaction concentration of the raw material liquid is smaller than the range of the present invention, when compared with Example 2, Comparative Example 2 had a considerably large average primary particle size, and the discharge maintenance rate was deteriorated.
  • Comparative Example 3 in which the reaction concentration of the raw material liquid was larger than the range of the present invention, a subcrystalline phase as an impurity was generated, and a positive electrode could not be produced.
  • Comparative Example 4 in which the water-soluble organic solvent in the total mass of the mixture is smaller than the preferred range of the present invention, Comparative Example 4 has a considerably larger average primary particle diameter and a lower discharge maintenance ratio than Example 2.
  • Comparative Example 5 in which the water-soluble organic solvent in the total mass of the mixture was larger than the preferred range of the present invention, the discharge maintenance factor was deteriorated although the average primary particle size was small.
  • the initial discharge capacity or high-speed charge can be achieved.
  • a method for producing a positive electrode active material for a lithium ion battery, a positive electrode active material for a lithium ion battery, an electrode for a lithium ion battery, and a lithium ion battery capable of improving discharge characteristics are provided.
  • the method for producing a positive electrode active material for a lithium ion battery according to the present invention is one or two selected from the group consisting of Li 3 PO 4 , Li source and phosphate source, Fe source, Mn source, Co source and Ni source.
  • LiMPO 4 containing at least 0.5 mol / L and not more than 1.5 mol / L in terms of LiMPO 4 (wherein M is one or more selected from the group consisting of Fe, Mn, Co and Ni).
  • a mixture containing water and a water-soluble organic solvent having a boiling point of 150 ° C. or higher is reacted under high temperature and high pressure, and LiMPO 4 having an average primary particle size of 30 nm or more and 80 nm or less (where M is Fe, Mn, Co And one or more selected from the group of Ni), the resulting positive electrode active material for lithium ion batteries is used as a positive electrode for lithium ion batteries, particularly lithium ion secondary batteries.
  • the electrode since those can be ensured improved and initial discharge capacity of discharge-charge characteristics, significance of industrial is extremely large.

Abstract

 (A)LiPO、またはLi源及びリン酸源と、(B)Fe源、Mn源、Co源及びNi源の群から選択される少なくとも1種と、水と、沸点が150℃以上の水溶性有機溶媒とを含有し、(A)と(B)によりLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される少なくとも1種)が、0.5mol/L以上かつ1.5mol/L以下の濃度で混合物中に製造されるように(A)と(B)が調整された、混合物を用意する工程と、上記(A)と(B)を高温高圧下にて反応させ、平均一次粒子径が30nm以上かつ80nm以下のLiMPO微粒子を生成する工程と、を含むことを特徴とするリチウムイオン電池用正極活物質の製造方法。

Description

リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
 本発明は、リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池に関する。
 本願は、2009年3月27日に、日本に出願された特願2009-080082号、及び2010年2月24日に、日本に出願された特願2010-038810号に基づき優先権を主張し、その内容をここに援用する。
 非水系リチウムイオン電池は、従来のNi-Cd電池やNi-H電池等の水溶液系電池と比較してエネルギー密度が高くかつ小型化が容易であることから、携帯電話機、携帯用情報端末、及びパーソナルコンピュータ等の携帯機器に広く用いられている。この非水系リチウムイオン電池の正極材料としては、LiCoOが現在実用化されており、一般的に用いられている。
 ところで、今後期待されるハイブリット自動車、電気自動車、及び無停電装置に搭載される大型電池等の分野では、LiCoOをそのまま非水系リチウムイオン電池の正極材料に適用する場合、次のような様々な問題点があった。
 このような問題点の1つは、LiCoOはレアメタルであるコバルト(Co)を用いているので、コバルト(Co)を大量かつ安定的に入手するには、資源的及びコスト的に難しいという点である。
 また、LiCoOは高温で酸素を放出するので、異常発熱時や電池が短絡した場合も想定して安全性を十分に考慮する必要があり、したがって、十分に考慮される事無しにLiCoOを大型電池に適用するにはリスクが大きいという点もある。
 そこで、近年、LiCoOを用いた正極材料に代わり、安価で危険性の低いリン酸骨格を有する正極材料が提案されている。その中でも、オリビン構造を有するLiFePOが、安全性は元より、資源的及びコスト的にも問題がない正極材料として注目されており、世界的に研究・開発がなされている(例えば、特許文献1、非特許文献1等参照)。
 このLiFePOで代表されるオリビン系正極材料は、鉄(Fe)を利用するものである。鉄は、資源的にはコバルト及びマンガンと比較しても豊富に自然界に存在し安価である。そして、オリビン構造は、リンと酸素の共有結合性から、LiCoO等のコバルト系のように高温時に酸素を放出することもなく、安全性にも優れた材料である。
 しかしながら、このような利点を有するLiFePOにおいても、特性面では問題点があることが指摘されている。
 1つの問題点は、導電性が低い点であるが、この点については、近年における改良、特にLiFePOとカーボンとの複合化、もしくはLiFePOの表面のカーボン被覆等により、導電性を改良する試みが数々なされている。
 もう一つの問題点は、充放電時におけるリチウムイオンの拡散性が低い点である。例えば、LiCoOのような層状構造、あるいはLiMnOのようなスピネル構造の化合物では、充放電時のリチウムの拡散方向が2方向または3方向であるのに対し、LiFePOのようなオリビン構造の化合物では、リチウムの拡散方向が1方向に限られてしまう。加えて、充放電時の電極反応は、LiFePOとFePOとの間で変換を繰り返す2相反応であることから、LiFePOは高速の充放電には不利だとされている。
 これらの問題点を解決する方法として最も有効だとされるのは、LiFePO粒子の小粒径化である。つまり、拡散方向が1方向であっても、小粒径化により拡散距離が短縮されれば、充放電の高速化にも対応できると考えられるからである。
 従来、LiFePOの合成法としては固相法が用いられてきた。この固相法では、LiFePOの原料を化学量論比で混合し、不活性雰囲気中にて焼成することから、焼成条件を上手く選ばないと目的通りの組成のLiFePOが得られず、また、粒子径の制御が難しく、小粒径化することが難しいという問題点がある。そこで、このLiFePO粒子を小粒径化する方法として、水熱反応を利用した液相合成法が研究されている。
 水熱反応の利点は、固相反応と比べてはるかに低温で純度が高い生成物が得られることである。しかしながら、この水熱反応においても、粒径の制御は反応温度や時間等の反応条件に係わる因子に因るところが大きい。また、これらの因子で制御した場合には、製造装置自体の性能に左右される部分が多く、再現性には難がある。
 そこで、水熱反応によりLiFePO微粒子を生成する方法として、CHCOO、SO 2-、及びCl等の有機酸やイオンを、溶媒に同時に含有させて合成する方法や、この水熱反応の際に過剰のLiを添加することにより、単相のLiFePO微粒子を得る方法が提案されている(例えば、特許文献2、非特許文献2等参照)。また、反応中間体を機械的に粉砕することにより、小粒径のLiFePO微粒子を得る方法も提案されている(特許文献3)。
 ところで、このLiFePOは、放電電圧が低く、高い出力が要求される用途、例えば電動工具及びハイブリッド自動車等に対しては、不向きな電極材料であると考えられている。そこで、LiFePO以外のオリビン構造を有する正極材料として、オリビン構造の安全性を活かし、かつ高電圧系の正極材料であるLiMnPO、及びLiCoPO等が候補に挙げられている。
日本特許第3484003号公報 特開2008-66019号公報 特表2007-511458号公報
A.K.パデイ他、「フォスフォ-オリビン アズ ポジティブ-エレクトロード マテリアル フォー リチャージャブル リシウム バッテリーズ」、ジャーナル オブ ザ エレクトロケミカル ソサエテイ、1997年発行、第144巻、第4号、第1188頁(A.K.Padhi et al.,"Phosph0-olivine as Positive-Electrode Material for Rechargeable Lithium Batteries",J.Electrochem.Soc.,144,4,1188(1997)) ケイスケ シライシ、ユン ホ ロ、キヨシ カナムラ、「シンチェシス オブ LiFePO4 カソード アクティブ マテリアル フォー リチャージャブル リシウムバッテリーズ バイ ヒドロサーマル リアクション」、ジャーナル オブ ザ セラミック ソサエテイ オブ ジャパン、2004年発行、第112巻、第1305号、第S58-S62頁(Keisuke Shiraishi, Young Ho Rho and Kiyoshi Kanamura, "Synthesis of LiFePO4 cathode active material for Rechargeable Lithium Batteries by Hydrothermal Reaction",J. Ceram. Soc. Jpn., Suppl. 112, S58-S62 (2004)
 前述したような従来の水熱反応によりLiFePO微粒子を生成する方法では、確かにLiFePO微粒子が得られ、目的とする負荷特性も向上するが、初期の放電容量が低下し、さらには高速充放電特性が低下するという問題点があった。
 この現象は、生成したLiFePO微粒子が広い粒度分布を有することに起因すると考えられる。広い粒度分布を有することで、充放電に寄与しない非晶質の極微小粒子の存在確率が高くなり、その結果、初期の放電容量が低下し、さらには高速充放電特性も低下することとなる。
 また、LiMnPOやLiCoPO等を用いた正極材料では、確かに、放電電圧が高く、かつ高い出力が得られるものの、LiFePOと比較してさらに導電性が低いという問題点があり、そこで、さらなる低抵抗化及び微粒子化が求められているが、この要求に十分に答えるまでには至っていない。
 本発明は、上記事情に鑑みてなされたものであって、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子の平均一次粒子径を制御することにより、粒度分布の狭いLiMPO微粒子を得ることができ、初期の放電容量を向上させ、さらには高速充放電特性も向上させることのできるリチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池を提供することを目的とする。
 本発明者等は、上記の課題を解決するために鋭意研究を行った結果、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子を水熱反応を利用して生成する際に、近年ナノ粒子の合成方法として注目されているソルボサーマル法に着目し、この方法をLiMPOの水熱合成反応へ取り入れた。そして、水熱反応時に溶媒である水の一部を水溶性有機溶媒に置換することにより、この水溶性有機溶媒の種類や置換量により得られるLiMPO微粒子の粒径及び結晶性が制御され、さらには電池特性の制御が可能であるという予想外の優れた結果を見出し、本発明を完成するに至った。
 本発明のリチウムイオン電池用正極活物質の製造方法は、LiPO、またはLi源及びリン酸源と、Fe源、Mn源、Co源及びNi源の群から選択される1種または2種以上とを、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)換算で0.5mol/L以上かつ1.5mol/L以下含有するとともに、水及び沸点が150℃以上の水溶性有機溶媒を含有する混合物を、高温高圧下にて反応させ、平均一次粒子径が30nm以上かつ80nm以下のLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子を生成することを特徴とする。
更に詳しく述べると、本発明のリチウムイオン電池用正極活物質の製造方法は、(A)LiPO、または、Li源及びリン酸源と、(B)Fe源、Mn源、Co源及びNi源の群から選択される少なくとも1種と、水と、沸点が150℃以上の水溶性有機溶媒とを含有し、
(A)と(B)によりLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される少なくとも1種)が、0.5mol/L以上かつ1.5mol/L以下の濃度で混合物中に製造されるように(A)と(B)の量が調整された、混合物を用意する工程と、
上記(A)と(B)を高温高圧下にて反応させ、平均一次粒子径が30nm以上かつ80nm以下のLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される少なくとも1種)微粒子を生成する工程とを含むことを特徴とする。
 前記水溶性有機溶媒は、多価アルコール類、アミド類、エステル類及びエーテル類の群から選択される少なくとも1種であることが好ましい。
 前記水溶性有機溶媒の含有量は、前記混合物全質量の3質量%以上かつ30質量%以下であることが好ましい。
 本発明のリチウムイオン電池用正極活物質は、本発明のリチウムイオン電池用正極活物質の製造方法により得られたことを特徴とする。
 本発明のリチウムイオン電池用電極は、本発明のリチウムイオン電池用正極活物質を炭素により被覆してなることを特徴とする。
 本発明のリチウムイオン電池は、本発明のリチウムイオン電池用電極を正極として備えてなることを特徴とする。
 本発明のリチウムイオン電池用正極活物質の製造方法によれば、LiPO、またはLi源及びリン酸源と、Fe源、Mn源、Co源及びNi源の群から選択される1種または2種以上とを、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)換算で0.5mol/L以上かつ1.5mol/L以下含有するとともに、水及び沸点が150℃以上の水溶性有機溶媒を含有する混合物を、高温高圧下にて反応させ、平均一次粒子径が30nm以上かつ80nm以下のLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子を生成するので、平均一次粒子径が小さくかつ粒度分布の狭いLiMPO微粒子を効率良く生成することができる。さらに、水溶性有機溶媒の種類及び含有率を変えることにより、このLiMPO微粒子の平均一次粒子径を制御することができる。
 本発明のリチウムイオン電池用正極活物質によれば、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子が、平均一次粒子径が30nm以上かつ80nm以下の範囲で、かつ粒度分布が狭いので、初期の放電容量を向上させることができ、さらには高速充放電特性を向上させることができる。
 本発明のリチウムイオン電池用電極によれば、本発明のリチウムイオン電池用正極活物質を炭素により被覆したので、正極活物質の導電性を向上させることができる。
 本発明のリチウムイオン電池によれば、本発明のリチウムイオン電池用電極を正極として備えたので、正極の導電性を向上させることができ、したがって、初期の放電容量を向上させることができ、さらには高速充放電特性を向上させることができる。
本発明の実施例2の正極活物質を示す電界効果型走査型電子顕微鏡(FE-SEM)像である。 比較例1の正極活物質を示す電界効果型走査型電子顕微鏡(FE-SEM)像である。
 本発明は、リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池に関する。さらに詳しくは、LiFePO微粒子の平均一次粒子径を制御することにより、放電容量を向上することが可能なリチウムイオン電池用正極活物質の製造方法とそれにより得られたリチウムイオン電池用正極活物質、及びこのリチウムイオン電池用正極活物質を用いたリチウムイオン電池用電極並びにリチウムイオン電池に関する発明である。
 本発明のリチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池を実施するための形態について説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。例えば、特に制限の無い限り、材料、量、種類、数、サイズ、温度などの条件などを、必要に応じて変更、追加、及び省略してもよい。
「リチウムイオン電池用正極活物質の製造方法」
 本実施形態のリチウムイオン電池用正極活物質の製造方法は、LiPO、またはLi源及びリン酸源と、Fe源、Mn源、Co源及びNi源の群から選択される1種または2種以上とを、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)換算で0.5mol/L以上かつ1.5mol/L以下含有するとともに、水及び沸点が150℃以上の水溶性有機溶媒を含有する混合物を、高温高圧下にて反応させ、平均一次粒子径が30nm以上かつ80nm以下のLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子を生成する方法である。
 以下、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子を、単にLiMPO微粒子と称する。
 このLiMPO微粒子を水熱反応で合成する場合、合成原料として、Li塩等のLi源、PO塩等のリン酸源、M塩等のM源(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)を用いる方法、Li源とリン酸源とを反応させたLiPOを用い、更にM源を用いる方法、M源とリン酸源とを反応させたMのリン酸塩を用い、更にLi源を用いる方法がある。
 ただし、Mのリン酸塩のうちFe(POは酸化され易く、取り扱いが難しい。本発明ではLiPOとFe(II)塩を原料とすることが好ましい。
 なお、Li源、M源及びリン酸源を用いる方法では、反応初期でLiPOを生成するので、LiPOを用いる方法と同等となる。したがって、初めにLiPOを合成し、その後、このLiPOとM源とを水熱反応させてLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子を合成する方法が好ましい。
 次に、このLiMPO微粒子の好ましい製造方法について詳細に説明する。
1.リン酸リチウム(LiPO)スラリーの作製
 まず、水に、Li源及びリン酸源を投入し、これらLi源及びリン酸源を反応させてリン酸リチウム(LiPO)を生成させ、リン酸リチウム(LiPO)スラリーとする。なおLi源及びリン酸源は必要に応じて選択されるが、未反応のLi源及びリン酸源が残らないように量や比が調整される事が好ましい。
 Li源とは、少なくともリチウム元素を含有し、目的の化合物を製造する為に、リチウムイオンを供給することのできる物質をいう。Li源としては、Liの水酸化物あるいはLi塩が好ましく、例えば、Liの水酸化物としては水酸化リチウム(LiOH)が挙げられる。また、Li塩としては、炭酸リチウム(LiCO)、及び塩化リチウム(LiCl)等のリチウム無機酸塩、酢酸リチウム(LiCHCOO)、及び蓚酸リチウム((COOLi))等のリチウム有機酸塩及びこれらの水和物が挙げられ、これらの群から選択された1種または2種以上が好適に用いられる。
 リン酸源とは、少なくともリン酸を含有し、目的の化合物を製造する為に、リン酸イオンを供給することのできる物質をいう。リン酸源としては、オルトリン酸(HPO)、及びメタリン酸(HPO)等のリン酸、リン酸二水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)、及びリン酸アンモニウム((NHPO)、及びこれらの水和物の群から選択された1種または2種以上が好適に用いられる。中でも、比較的純度が高く、組成制御が行い易いことから、オルトリン酸、リン酸二水素アンモニウム、及びリン酸水素二アンモニウムが好適である。
 なお水に直接LiPOを加えてスラリーを製造しても良い。
2.リン酸リチウム(LiPO)とM源との混合物の作製
 上記のように得られたリン酸リチウム(LiPO)スラリーに、M源及び還元剤を添加し、混合物とする。なおM源は必要に応じて選択されるが、未反応のM源が残らないように量や比が調整される事が好ましい。
 なおM源とは、少なくともMを含有し、目的の化合物を製造する為に、Mイオンを供給することのできる物質をいう。なおMはFe、Mn、Co及び/またはNiを表す。M源としては、M塩が好ましく、例えば、塩化鉄(II)(FeCl)、硫酸鉄(II)(FeSO)、酢酸鉄(II)(Fe(CHCOO))、塩化マンガン(II)(MnCl)、硫酸マンガン(II)(MnSO)、酢酸マンガン(II)(Mn(CHCOO))、硝酸マンガン(II)(Mn(NO)、塩化コバルト(II)(CoCl)、硫酸コバルト(II)(CoSO)、酢酸コバルト(II)(Co(CHCOO))、塩化ニッケル(II)(NiCl)、硫酸ニッケル(II)(NiSO)、及び酢酸ニッケル(II)(Ni(CHCOO))、及びこれらの水和物、の群から選択された1種または2種以上が好適に用いられる。
 反応濃度、すなわち、この混合物中のLiPOとM源とをLiMPOに換算したときの濃度は、0.5mol/L以上かつ1.5mol/L以下が好ましく、より好ましくは0.7mol/L以上かつ1.2mol/L以下である。高温高圧下での反応前までに水を新たに混合物に加えるなどして、濃度が好ましくなるようにコントロールしてもよい。
 その理由は、反応濃度が0.5mol/L未満では、大粒径のLiMPOが生成し易く、既に述べた理由により負荷特性を悪化させる可能性が高いからである。一方、反応濃度が1.5mol/Lを超えると、撹拌を十分に行うことができず、したがって、反応が十分に進行せず、未反応物が残ってしまい、単相のLiMPOが得られ難くなり、電池材料として使用できない可能性があるからである。
なお本発明において、LiMPOに換算したときの濃度とは、材料がLiMPOの製造に使用された場合を意味する。最終的に製造されたLiMPOの濃度が0.5mol/L以上かつ1.5mol/L以下の範囲になるように原料が選択される。なお複数の原料のうちのいずれかがが0.5mol/L以上かつ1.5mol/L以下の範囲外であっても良い。例えば、高温高圧下の反応に供される混合物中のLiPOやM源は、それぞれ0.5mol/L以上かつ1.5mol/L以下が好ましく、より好ましくは0.7mol/L以上かつ1.2mol/L以下である。一方で、Li源として塩化リチウムを用いリン酸源としてリン酸を用いLiPOを用意する場合、用いられる塩化リチウムの濃度は前記範囲外、例えば3mol/L等、であってもよい。ただし未反応の材料が残らないように材料の配合比を選択する事が好ましい。
 この混合物に使用される溶媒としては、水と沸点150℃以上の水溶性有機溶媒との混合溶媒を用いる。本発明に使用できる水溶性有機溶媒の沸点の最大値は特に限定されないが、一つの目安として一般的に300℃以下であることが好ましい。
 この水溶性有機溶媒としては、エチレングリコール、プロピレングリコール、ヘキシレングリコール、グリセリン等の多価アルコール類、ホルムアミド、N-メチルホルムアミド、2-ピロリドン、N-メチル-2-ピロリジノン等のアミド類、γ-ブチロラクトン等のエステル類、及び、ジエチレングリコール、エチレングリコールモノブチルエーテル(ブチルセロソルブ)等のエーテル類、の群から選択される1種のみを、または2種以上を混合して用いることができる。
 中でも、多価アルコールが好適であり、特にエチレングリコールが好適である。
 この混合溶媒は、高温高圧下での反応前までに、水の一部を水溶性有機溶媒で置換することによって得られる。好ましくは、この水溶性有機溶媒の含有量が、水熱反応に仕込まれる全質量、すなわち混合物全質量に対し、3質量%以上かつ30質量%以下になるように、より好ましくは5質量%以上かつ15質量%以下、さらに好ましくは7質量%以上かつ10質量%以下となるように置換する。
 水溶性有機溶媒の置換量、すなわち水溶性有機溶媒の含有量が3質量%未満では、生成するLiMPO微粒子及び電池特性が、溶媒が水のみの場合とほぼ同等の性能となり、置換する効果が得られない。一方、置換量が30質量%を超えると、副生成物の塩が析出してしまい、この塩が不純物となって電池特性を悪化させる要因となる。
 このように、水溶性有機溶媒の量は、水熱反応に仕込まれる全質量、すなわち混合物全質量に対して定義される。例えば、5質量%とは、水熱反応の全仕込み質量の5質量%にあたる反応系中の水を、水溶性有機溶媒と置換するという意味である。
3.混合物の水熱合成
 上記の混合物を、高温高圧の条件下にて反応(水熱合成)させ、LiMPO微粒子を含む反応物を得る。
 この高温高圧の条件は、LiMPO微粒子を生成する温度、圧力及び時間の範囲であれば特に限定されるものではない。反応温度は任意に選択可能であるが、例えば、100℃より高くかつ300℃以下が挙げられ、120℃以上かつ250℃以下が好ましく、より好ましくは150℃以上かつ220℃以下である。
 ただし、この反応温度は置換する水溶性有機溶媒の沸点を超えないことが好ましい。その理由は、水溶性有機溶媒が圧力容器内で沸点を大きく超えた高温条件下に曝されると、分解して反応容器内の内圧を急激に上昇させてしまい、安全上の問題が生じる可能性があるからである。
 また、反応時の圧力は任意に選択可能であるが、例えば0.1MPaより高くかつ10MPa以下が挙げられ、0.2MPa以上かつ4.0MPa以下が好ましく、0.4MPa以上かつ2.5MPa以下がより好ましい。反応時間は任意に選択可能であるが、反応温度にもよるが、例えば、1時間以上かつ24時間以下が好ましく、3時間以上かつ12時間以下がより好ましい。
4.LiMPO微粒子の分離
 上記のLiMPO微粒子を含む反応物を、デカンテーション、遠心分離、及びフィルター濾過等の適当な方法により、LiMPO微粒子とLi含有廃液(未反応のLiを含む溶液)とに分離する。
 分離されたLiMPO微粒子は任意の方法で乾燥し、例えば乾燥器等を用いて40℃以上にて3時間以上乾燥し、平均一次粒子径が30nm以上かつ80nm以下のLiMPO微粒子を効率良く得ることができる。なお平均一次粒子径は微粒子のSEM写真評価によって得る事ができる。
「リチウムイオン電池用正極活物質」
 上記の条件で得られたLiMPO微粒子の平均一次粒子径は、30nm以上かつ80nm以下である。このように、平均一次粒子径が小さいLiMPO微粒子をリチウムイオン電池用正極活物質として用いることで、Liの拡散距離が短くなり、このリチウムイオン電池用正極活物質を備えたリチウムイオン電池用電極及びリチウムイオン電池においては、高速充放電特性の向上を図ることができる。
 ここで、平均一次粒子径が30nm以上であると、Liの挿入・脱離に伴う構造変化により粒子が破壊することがなく、また、比表面積が著しく大きくなることがなく、よって表面活性が非常に高くなることもない。したがって、微粒子同士を結合する接合剤を多く必要とはせず、その結果、正極の充填密度が著しく低下したり、導電率が大きく低下したりする等の問題が生じる事がない。一方、平均一次粒子径が80nm以下であると、正極活物質の内部抵抗が高くならず、Liイオンの移動も遅延せず、したがって、放電容量が低下する等の問題が生じない。
「リチウムイオン電池用電極及びリチウムイオン電池」
 上記のリチウムイオン電池用正極活物質を、リチウムイオン電池、特にリチウムイオン2次電池の正電極の正極活物質として用いるためには、LiMPO微粒子の表面を炭素により被覆する事が好ましい。
 表面に炭素被覆を施すと、既に述べたLiFePOの問題点である導電性が改善され、電池特性として良好な結果が得られる。
 炭素被覆の方法は任意に選択できる。例えば、LiMPO微粒子を、カーボン源である水溶性の単糖類、多糖類、もしくは水溶性の高分子化合物と混合し、蒸発乾固法、真空乾燥法、スプレードライ法、及びフリーズドライ法等の乾燥方法を用いて、LiFePO微粒子の表面に均質に膜を形成し、次いで、不活性雰囲気中、カーボン源が分解して炭素を生成する温度で焼成し、LiMPO微粒子の表面に導電性のカーボン膜を形成する方法が挙げられる。
 上記焼成温度は任意で選択できる。カーボン源の種類にもよるが、500℃~1000℃が好ましく、より好ましくは700℃~800℃の範囲である。
 500℃未満の低い温度では、カーボン源の分解が不十分かつ導電性のカーボン膜の生成が不十分となり、電池内での抵抗要因となり、電池特性に悪影響を及ぼす可能性がある。一方、1000℃を超える高い温度では、LiMPO微粒子の粒成長が進行して粗大化してしまい、LiFePO粒子の問題点であるLi拡散速度に起因する高速充放電特性が著しく悪化する可能性がある。
 このように、上記のリチウムイオン電池用正極活物質であるLiMPO微粒子を炭素により被覆することで、リチウムイオン電池、特にリチウムイオン2次電池の正電極の正極活物質として好適となる。
 この炭素被覆LiMPO微粒子を用いて形成された電極を正極とし、さらに、負電極、電解質、及びセパレータを備えることで、リチウムイオン電池を得ることができる。
 このリチウムイオン電池は、その正電極が、平均一次粒子径が30nm以上かつ80nm以下のLiMPO微粒子の表面を導電性のカーボン膜で被覆した炭素被覆LiMPO微粒子を用いて形成されたものである。よって、初期の放電容量が向上しており、高速充放電特性も優れている。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
「実施例1」
 純水1Lに3molの塩化リチウム(LiCl)と、1molのリン酸(HPO)を加えて攪拌し、リン酸リチウム(LiPO)スラリーを得た。
 次いで、このスラリーに1molの塩化鉄(II)(FeCl)を添加し、このスラリー中の水の一部をエチレングリコールで、水熱反応全仕込み質量に対して10質量%となるように置換し、さらに水を加えて総量2L(水熱反応全仕込み質量)の原料液とした。なお、この原料液の反応濃度をLiFePOに換算すると0.5mol/Lとなった。
 次いで、この原料液を水熱反応を実施する為にオートクレーブに投入し、不活性ガスを導入後、180℃及び1.2MPaにて6時間加熱反応させ、その後、濾過し、固液分離した。
 次いで、分離した固形物の質量と同量の水を添加して懸濁させ、濾過により固液分離をする操作を3回行い、洗浄した。
 得られたケーキ状のLiFePOの150g(固形分換算)に対し、ポリエチレングリコール5g、純水150gを加えて5mm径のジルコニアビーズをメディアとしたボールミルにて12時間粉砕・分散処理を行い、均一なスラリーを調製した。
 次いで、このスラリーを180℃の大気雰囲気中に噴霧して乾燥させ、平均粒径が約6μmの造粒体を得た。この造粒体を不活性雰囲気下、750℃にて1時間焼成し、実施例1のリチウムイオン電池用正極活物質を作製した。
「実施例2」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとした以外は、すなわち原料(塩化リチウム、リン酸、及び塩化鉄(II))の量をそれぞれ倍に増やし、原料液の総量は2Lになるように調整した以外は、実施例1に準じて実施例2のリチウムイオン電池用正極活物質を作製した。
「実施例3」
 原料液の反応濃度をLiFePO換算で1.5mol/Lとした以外は、すなわち原料の量をそれぞれ1.5倍に増やし原料液の総量は2Lになるように調整した以外は、実施例1に準じて、実施例3のリチウムイオン電池用正極活物質を作製した。
「実施例4」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールの置換量を水熱反応全仕込み質量に対して3質量%とした以外は、実施例2に準じて、実施例4のリチウムイオン電池用正極活物質を作製した。
「実施例5」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールの置換量を水熱反応全仕込み質量に対して30質量%とした以外は、実施例2に準じて、実施例5のリチウムイオン電池用正極活物質を作製した。
「実施例6」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールに替えてグリセリンを用い、このグリセリンの置換量を水熱反応全仕込み質量に対して10質量%とした以外は、実施例2に準じて、実施例6のリチウムイオン電池用正極活物質を作製した。
「実施例7」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールに替えてジエチレングリコールを用い、このジエチレングリコールの置換量を水熱反応全仕込み質量に対して10質量%とした以外は、実施例2に準じて、実施例7のリチウムイオン電池用正極活物質を作製した。
「実施例8」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールに替えてN-メチル-2-ピロリジノンを用い、このN-メチル-2-ピロリジノンの置換量を水熱反応全仕込み質量に対して10質量%とした以外は、実施例2に準じて、実施例8のリチウムイオン電池用正極活物質を作製した。
「実施例9」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールに替えてγ-ブチロラクトンを用い、このγ-ブチロラクトンの置換量を水熱反応全仕込み質量に対して10質量%とした以外は、実施例2に準じて、実施例9のリチウムイオン電池用正極活物質を作製した。
「実施例10」
 塩化鉄(II)(FeCl)を塩化マンガン(II)(MnCl)に替え、原料液の反応濃度をLiMnPOに換算して1.0mol/Lとした以外は、実施例2に準じて、実施例10のリチウムイオン電池用正極活物質を作製した。
「実施例11」
 塩化鉄(II)(FeCl)を塩化コバルト(II)(CoCl)に替え、原料液の反応濃度をLiCoPOに換算して1.0mol/Lとした以外は、実施例2に準じて実施例11のリチウムイオン電池用正極活物質を作製した。
「実施例12」
 塩化鉄(II)(FeCl)を塩化ニッケル(II)(NiCl)に替え、原料液の反応濃度をLiNiPOに換算して1.0mol/Lとした以外は、実施例2に準じて、実施例12のリチウムイオン電池用正極活物質を作製した。
「比較例1」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールによる置換を行わなかった以外は、実施例2に準じて、比較例1のリチウムイオン電池用正極活物質を作製した。
「比較例2」
 原料液の反応濃度をLiFePO換算で0.3mol/Lとした以外は、すなわち原料の量をそれぞれ減らした以外は、実施例2に準じて、比較例2のリチウムイオン電池用正極活物質を作製した。
「比較例3」
 原料液の反応濃度をLiFePO換算で2.0mol/Lとした以外は、すなわち原料の量をそれぞれ増やした以外は、実施例2に準じて、比較例3のリチウムイオン電池用正極活物質を作製した。
「比較例4」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールの置換量を水熱反応全仕込み質量に対して1.5質量%とした以外は、実施例2に準じて、比較例4のリチウムイオン電池用正極活物質を作製した。
「比較例5」
 原料液の反応濃度をLiFePO換算で1.0mol/Lとし、エチレングリコールの置換量を水熱反応全仕込み質量に対して50質量%とした以外は、実施例2に準じて、比較例5のリチウムイオン電池用正極活物質を作製した。
「比較例6」
 塩化鉄(II)(FeCl)を塩化マンガン(II)(MnCl)に替え、原料液の反応濃度をLiMnPOに換算して1.0mol/Lとし、エチレングリコールによる置換を行わなかった以外は、実施例2に準じて、比較例6のリチウムイオン電池用正極活物質を作製した。
「比較例7」
 塩化鉄(II)(FeCl)を塩化コバルト(II)(CoCl)に替え、原料液の反応濃度をLiCoPOに換算して1.0mol/Lとし、エチレングリコールによる置換を行わなかった以外は、実施例2に準じて比較例7のリチウムイオン電池用正極活物質を作製した。
「比較例8」
 塩化鉄(II)(FeCl)を塩化ニッケル(II)(NiCl)に替え、原料液の反応濃度をLiNiPOに換算して1.0mol/Lとし、エチレングリコールによる置換を行わなかった以外は、実施例2に準じて比較例8のリチウムイオン電池用正極活物質を作製した。
「リチウムイオン電池用正極活物質の評価」
 実施例1~12及び比較例1~8各々の正極活物質について、平均一次粒子径及び比表面積を下記の方法にて測定した。
(1)平均一次粒子径
 電界効果型走査型電子顕微鏡(FE-SEM)により5万倍の電界効果型走査型電子顕微鏡(FE-SEM)像を撮影し、このFE-SEM像の一視野から無作為に微粒子を20点選び、これらの微粒子の粒子径の測定値の平均値を平均一次粒子径とした。
(2)比表面積
 比表面積計 BelsorpII(日本ベル社製)を用いて正極活物質の比表面積(m/g)を測定した。
 実施例1~9及び比較例1~5各々の正極活物質の特性を表1に、実施例10~12及び比較例6~8各々の正極活物質の特性を表2に、それぞれ示す。
 また、実施例2の正極活物質の電界効果型走査型電子顕微鏡(FE-SEM)像を図1に、比較例1の正極活物質の電界効果型走査型電子顕微鏡(FE-SEM)像を図2に、それぞれ示す。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
「リチウムイオン2次電池の作製」
 実施例1~12及び比較例1~8各々の正極活物質について、以下の処理を行い、実施例1~12及び比較例1~8各々のリチウムイオン2次電池を作製した。
 まず、正極活物質を90質量部、導電助剤としてアセチレンブラックを5質量部、バインダーとしてポリフッ化ビニリデン(PVDF)を5質量部、及び溶媒としてN-メチル-2-ピロリジノン(NMP)を混合した。
 次いで、3本ロールミルを用いてこれらを混練し、正極活物質ペーストを作製した。
 次いで、この正極活物質ペーストを、厚み30μmのアルミニウム集電体箔上に塗布し、その後、100℃にて減圧乾燥を行い、厚みが30μmの正極を作製した。
 次いで、この正極を2cmの円板状に打ち抜き、減圧乾燥した。その後、乾燥アルゴン雰囲気下にて、この正極と、負極及びステンレススチール製の2016型コイン型セルを用いて、リチウムイオン2次電池を作製した。
 上記電池において、負極としては金属リチウムを、セパレーターとしては多孔質ポリプロピレン膜を、電解液としては1モルのLiPFを炭酸エチレン(EC)と炭酸ジエチル(DEC)とを3:7にて混合した溶液に混合した混合物を、用いた。
「電池充放電試験」
 実施例1~12及び比較例1~8各々のリチウムイオン2次電池を用いて、電池充放電試験を行った。
 ここでは、カットオフ電圧を、実施例1~9及び比較例1~5(M=Fe)では2.0V~4.0V、実施例10及び比較例6(M=Mn)では2.0V~4.5V、実施例11及び比較例7(M=Co)では2.0V~5.0V、実施例12及び比較例8(M=Ni)では2.0V~5.5Vとした。初期放電容量の測定は、0.1Cで充電を行い、0.1Cで放電した。
 さらに、実施例1~9及び比較例1~5(M=Fe)については、その他の放電容量の測定として、0.2Cで充電し、0.1C、0.2C、5C、8C、及び12C各々における放電容量を測定する実験を行った。また、5Cにおける放電容量と0.2Cにおける放電容量との比(%)を放電維持率(5C/0.2C維持率)とした。100%に近いほど好ましいと判断される。
 実施例1~9及び比較例1~5各々の放電容量及び放電維持率(5C/0.2C維持率)を表3に、実施例10~12及び比較例6~8各々の初期放電容量(0.1C/0.1C)を表4に、それぞれ示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4及び図1、2によれば、次のことが分かった。
(1)実施例1~12で示されるように、スラリー中の水の一部を水溶性有機溶媒で置換することにより、正極活物質の平均一次粒子径を30nm~80nmの範囲で制御できることが確認された。
(2)実施例1~12の正極活物質においては、比較例1の正極活物質と比べて比表面積が増加していたものの、実施例1~9のリチウムイオン2次電池においては、比較例1のリチウムイオン2次電池と比べて初期放電容量及び放電維持率(5C/0.2C維持率)が向上しており、放充電特性の向上及び初期放電容量の確保が達成されたことを確認することができた。
 また、実施例10~12のリチウムイオン2次電池においては、比較例6~8のリチウムイオン2次電池と比べて初期放電容量(0.1C/0.1C)が向上しており、初期放電容量の確保を確認することができた。
(3)原料液の反応濃度が本発明の範囲より小さい比較例2は、実施例2と比較すると、比較例2は平均一次粒子径がかなり大きく、放電維持率が悪化していた。原料液の反応濃度が本発明の範囲より大きい比較例3は、不純物としての副結晶相が発生しており、正極が製造できなかった。
(4)混合物全質量中の水溶性有機溶媒が本発明の好ましい範囲より小さい比較例4は、実施例2と比較すると、比較例4は平均一次粒子径がかなり大きく、かつ放電維持率が悪化していた。混合物全質量中の水溶性有機溶媒が本発明の好ましい範囲より大きい比較例5は、平均一次粒子径は小さいものの、放電維持率が悪化していた。
 なお上記実施例では温度と圧力の条件を一定にして実験を行った例のみ示したが、他の高温高圧条件においても本願の効果が安定して得られることが確認された。
 本発明は、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子の平均一次粒子径を制御することにより、初期の放電容量あるいは高速充放電特性を向上させることのできるリチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池を提供する。
本発明のリチウムイオン電池用正極活物質の製造方法は、LiPO、またはLi源及びリン酸源と、Fe源、Mn源、Co源及びNi源の群から選択される1種または2種以上とを、LiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)換算で0.5mol/L以上かつ1.5mol/L以下含有するとともに、水及び沸点が150℃以上の水溶性有機溶媒を含有する混合物を、高温高圧下にて反応させ、平均一次粒子径が30nm以上かつ80nm以下のLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される1種または2種以上)微粒子を生成する方法であるから、得られたリチウムイオン電池用正極活物質をリチウムイオン電池、特にリチウムイオン2次電池の正電極に適用することで、放充電特性の向上及び初期放電容量の確保を図ることができるものであるから、産業上の意義は極めて大きいものである。

Claims (8)

  1.  (A)LiPO、またはLi源及びリン酸源と、(B)Fe源、Mn源、Co源及びNi源の群から選択される少なくとも1種と、水と、沸点が150℃以上の水溶性有機溶媒とを含有し、
    (A)と(B)によりLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される少なくとも1種)が、0.5mol/L以上かつ1.5mol/L以下の濃度で混合物中に製造されるように(A)と(B)が調整された、混合物を用意する工程と、
    上記(A)と(B)を高温高圧下にて反応させ、平均一次粒子径が30nm以上かつ80nm以下のLiMPO(但し、MはFe、Mn、Co及びNiの群から選択される少なくとも1種)微粒子を生成する工程と、を含むことを特徴とするリチウムイオン電池用正極活物質の製造方法。
  2.  前記水溶性有機溶媒は、多価アルコール類、アミド類、エステル類及びエーテル類の群から選択される少なくとも1種であることを特徴とする請求項1記載のリチウムイオン電池用正極活物質の製造方法。
  3.  前記水溶性有機溶媒の含有量は、前記混合物全質量の3質量%以上かつ30質量%以下であることを特徴とする請求項1記載のリチウムイオン電池用正極活物質の製造方法。
  4.  請求項1項記載のリチウムイオン電池用正極活物質の製造方法により得られたことを特徴とするリチウムイオン電池用正極活物質。
  5.  請求項4記載のリチウムイオン電池用正極活物質を炭素により被覆したことを特徴とするリチウムイオン電池用電極。
  6.  請求項5記載のリチウムイオン電池用電極を正極として備えることを特徴とするリチウムイオン電池。
  7. 前記高温高圧下が、120℃以上かつ250℃以下であって、0.2MPa以上かつ4.0MPa以下である、請求項1記載のリチウムイオン電池用正極活物質の製造方法。
  8.  Li源が、水酸化リチウム、炭酸リチウム、塩化リチウム、酢酸リチウム、蓚酸リチウム、及びこれらの水和物からなる群から選択される少なくとも一つであり;リン酸源が、オルトリン酸、メタリン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸アンモニウム、及びこれらの水和物からなる群から選択される少なくとも一つであり;Fe源が、塩化鉄(II)、硫酸鉄(II)、酢酸鉄(II)、及びこれらの水和物からなる群の少なくとも一つであり;Mn源が、塩化マンガン(II)、硫酸マンガン(II)、酢酸マンガン(II)、硝酸マンガン(II) 、及びこれらの水和物からなる群から選択される少なくとも一つであり;Co源が、塩化コバルト(II)、硫酸コバルト(II)、酢酸コバルト(II)、及びこれらの水和物からなる群から選択される少なくとも一つであり;Ni源が、塩化ニッケル(II)、硫酸ニッケル(II)、酢酸ニッケル(II)及びこれらの水和物からなる群から選択される少なくとも一つである、ことを特徴とする請求項1記載のリチウムイオン電池用正極活物質の製造方法。
     
PCT/JP2010/002111 2009-03-27 2010-03-25 リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池 WO2010109869A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2755802A CA2755802A1 (en) 2009-03-27 2010-03-25 Method of manufacturing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
CN201080012262XA CN102356488A (zh) 2009-03-27 2010-03-25 锂离子电池用正极活性物质的制造方法和锂离子电池用正极活性物质及锂离子电池用电极以及锂离子电池
EP10755671A EP2413402A1 (en) 2009-03-27 2010-03-25 Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
US13/256,644 US9216907B2 (en) 2009-03-27 2010-03-25 Method of manufacturing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009080082 2009-03-27
JP2009-080082 2009-03-27
JP2010-038810 2010-02-24
JP2010038810A JP5509918B2 (ja) 2009-03-27 2010-02-24 リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池

Publications (1)

Publication Number Publication Date
WO2010109869A1 true WO2010109869A1 (ja) 2010-09-30

Family

ID=42780565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002111 WO2010109869A1 (ja) 2009-03-27 2010-03-25 リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池

Country Status (7)

Country Link
US (1) US9216907B2 (ja)
EP (1) EP2413402A1 (ja)
JP (1) JP5509918B2 (ja)
KR (1) KR20110132566A (ja)
CN (1) CN102356488A (ja)
CA (1) CA2755802A1 (ja)
WO (1) WO2010109869A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122951A1 (zh) * 2011-03-16 2012-09-20 台湾立凯电能科技股份有限公司 具有双层碳包覆的正极材料及其制造方法
WO2013004632A1 (de) * 2011-07-01 2013-01-10 Süd-Chemie AG Verfahren zur herstellung von nanopartikulären lithiumübergangsmetallphosphaten
CN103503206A (zh) * 2011-04-22 2014-01-08 昭和电工株式会社 锂二次电池用正极活性物质的制造方法
US20150004486A1 (en) * 2012-02-02 2015-01-01 Toyo Ink Sc Holdings Co., Ltd. Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
TWI480227B (zh) * 2011-09-13 2015-04-11 Showa Denko Kk 鋰蓄電池用正極活性物質之製造方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993163B2 (en) * 2009-07-31 2015-03-31 Toyota Jidosha Kabushiki Kaisha Positive electrode active material and method for producing same
JP5544934B2 (ja) * 2010-03-03 2014-07-09 住友大阪セメント株式会社 リチウムイオン電池用正極活物質の製造方法
WO2011114918A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
KR101077869B1 (ko) * 2010-04-30 2011-10-28 주식회사 엘지화학 이차전지용 양극
JP6077205B2 (ja) * 2011-09-22 2017-02-08 住友大阪セメント株式会社 電極材料及びその製造方法
JP2012133888A (ja) * 2010-12-17 2012-07-12 Sumitomo Osaka Cement Co Ltd 電極材料及びその製造方法
CA2821882A1 (en) 2010-12-17 2012-06-21 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing the same
JP6180070B2 (ja) * 2011-03-01 2017-08-16 太平洋セメント株式会社 リン酸鉄リチウムの製造法
US8945498B2 (en) 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
JP5963398B2 (ja) * 2011-04-08 2016-08-03 株式会社半導体エネルギー研究所 二次電池用正極活物質の作製方法
WO2012147767A1 (ja) * 2011-04-28 2012-11-01 昭和電工株式会社 リチウム二次電池用正極活物質の製造方法
KR102212898B1 (ko) * 2011-08-29 2021-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 전지용 양극 활물질의 제작 방법
US20130157133A1 (en) * 2011-11-17 2013-06-20 Brookhaven Science Associates, Llc Process for Producing Defect-Free Lithium Metal Phosphate Electrode Materials
US9515315B2 (en) * 2012-02-23 2016-12-06 Toda Kogyo Corp. Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
FI126813B (en) 2012-06-25 2017-05-31 Upm Kymmene Corp The process of converting biomass into liquid fuels
JP2015522512A (ja) * 2012-06-27 2015-08-06 ダウ グローバル テクノロジーズ エルエルシー 高エネルギー密度を有するリチウム遷移金属オリビンの低コスト製造方法
JP2014060142A (ja) * 2012-08-24 2014-04-03 Sumitomo Osaka Cement Co Ltd 電極材料とリチウムイオン電池用電極ペースト及びリチウムイオン電池用電極並びにリチウムイオン電池
JP6207923B2 (ja) 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
JP5988095B2 (ja) * 2012-09-28 2016-09-07 住友金属鉱山株式会社 リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same
KR101561377B1 (ko) * 2013-01-10 2015-10-20 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
KR101586556B1 (ko) * 2013-01-10 2016-01-20 주식회사 엘지화학 탄소 코팅 리튬 인산철 나노분말 제조방법
KR101542317B1 (ko) * 2013-01-10 2015-08-05 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
JP2014179291A (ja) 2013-03-15 2014-09-25 Sumitomo Osaka Cement Co Ltd 電極材料及び電極並びにリチウムイオン電池
EP2778126A1 (en) * 2013-03-15 2014-09-17 Clariant International Ltd. Lithium transition metal phosphate secondary agglomerates and process for its manufacture
EP2778127A1 (en) * 2013-03-15 2014-09-17 Clariant International Ltd. Lithium transition metal phosphate secondary agglomerates and process for its manufacture
CN104183843B (zh) * 2013-05-24 2016-12-28 江苏长园华盛新能源材料有限公司 碳酸酯辅助制备磷酸铁锂的方法
KR101580030B1 (ko) 2013-07-09 2015-12-23 주식회사 엘지화학 탄소 코팅 리튬 인산철 나노분말의 제조방법
JP5688126B2 (ja) * 2013-07-31 2015-03-25 太平洋セメント株式会社 リン酸マンガンリチウム正極活物質の製造方法
CN104518216B (zh) * 2013-09-26 2017-09-01 清华大学 磷酸铁锂的制备方法
CN104051731B (zh) * 2014-04-10 2016-09-28 南阳逢源锂电池材料研究所 一种无污染零排放制备磷酸铁锂的方法
EP3140254B1 (en) * 2014-05-07 2018-07-04 Johnson Matthey Public Limited Company Process for the preparation of carbon-coated lithium transition metal phosphate and its use
JP6193505B2 (ja) * 2014-09-26 2017-09-06 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法
JP5929990B2 (ja) * 2014-09-29 2016-06-08 住友大阪セメント株式会社 正極材料、正極材料の製造方法、正極およびリチウムイオン電池
JP6083425B2 (ja) 2014-10-17 2017-02-22 トヨタ自動車株式会社 正極合材ペースト、正極、非水電解液二次電池、及び非水電解液二次電池の製造方法
JP6623804B2 (ja) * 2015-02-24 2019-12-25 東レ株式会社 炭素被覆ポリアニオン系正極活物質粒子の製造方法
EP3270447B1 (en) 2015-03-09 2021-08-18 Taiheiyo Cement Corporation Positive electrode active substance for secondary cell and method for producing same
JP6064309B2 (ja) * 2016-02-18 2017-01-25 住友金属鉱山株式会社 リチウム二次電池用正極活物質の前駆体とその製造方法、および該前駆体を用いたリチウム二次電池用正極活物質とその製造方法、並びに該正極活物質を用いたリチウム二次電池
US10680242B2 (en) 2016-05-18 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and lithium ion battery
KR20210046765A (ko) * 2018-09-27 2021-04-28 가부시키가이샤 무라타 세이사쿠쇼 이차 전지
CN113800493B (zh) * 2021-09-10 2023-03-31 湖北亿纬动力有限公司 一种磷酸铁锂正极材料及其制备方法和应用
CN116281917B (zh) * 2023-03-01 2024-02-09 湖北宇浩高科新材料有限公司 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484003B2 (ja) 1995-11-07 2004-01-06 日本電信電話株式会社 非水電解質二次電池
JP2005123107A (ja) * 2003-10-20 2005-05-12 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法および前記活物質を用いた電気化学素子
JP2005276476A (ja) * 2004-03-23 2005-10-06 Sumitomo Osaka Cement Co Ltd リチウム電池用正極活物質の製造方法とリチウム電池用正極活物質及びリチウム電池用正極材料並びにリチウム電池
JP2007511458A (ja) 2003-11-14 2007-05-10 ジュート−ヒェミー アクチェンゲゼルシャフト リン酸鉄リチウム、その製造方法及び電極剤としてのそれの使用
JP2008066019A (ja) 2006-09-05 2008-03-21 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
JP2008130526A (ja) * 2006-11-27 2008-06-05 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法、および電気化学素子
JP2008159495A (ja) * 2006-12-26 2008-07-10 Hitachi Maxell Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2009080082A (ja) 2007-09-27 2009-04-16 Toppan Printing Co Ltd 電気泳動用支持体保持具および電気泳動用チップ
JP2010038810A (ja) 2008-08-07 2010-02-18 Panasonic Corp ガス遮断装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192137A1 (en) 2001-04-30 2002-12-19 Benjamin Chaloner-Gill Phosphate powder compositions and methods for forming particles with complex anions
JP4522683B2 (ja) * 2003-10-09 2010-08-11 住友大阪セメント株式会社 電極材料粉体の製造方法と電極材料粉体及び電極並びにリチウム電池
JP4819342B2 (ja) * 2004-11-08 2011-11-24 エレクセル株式会社 リチウム電池用正極及びこれを用いたリチウム電池
US7700236B2 (en) * 2005-09-09 2010-04-20 Aquire Energy Co., Ltd. Cathode material for manufacturing a rechargeable battery
EP1936721B1 (en) * 2005-09-21 2015-11-11 Kanto Denka Kogyo Co., Ltd. Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
JP4617350B2 (ja) * 2007-12-27 2011-01-26 キヤノン株式会社 放送受信装置、その制御方法
US8435676B2 (en) * 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484003B2 (ja) 1995-11-07 2004-01-06 日本電信電話株式会社 非水電解質二次電池
JP2005123107A (ja) * 2003-10-20 2005-05-12 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法および前記活物質を用いた電気化学素子
JP2007511458A (ja) 2003-11-14 2007-05-10 ジュート−ヒェミー アクチェンゲゼルシャフト リン酸鉄リチウム、その製造方法及び電極剤としてのそれの使用
JP2005276476A (ja) * 2004-03-23 2005-10-06 Sumitomo Osaka Cement Co Ltd リチウム電池用正極活物質の製造方法とリチウム電池用正極活物質及びリチウム電池用正極材料並びにリチウム電池
JP2008066019A (ja) 2006-09-05 2008-03-21 Sumitomo Osaka Cement Co Ltd 電極材料の製造方法、リチウムの回収方法、正極材料及び電極並びに電池
JP2008130526A (ja) * 2006-11-27 2008-06-05 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法、および電気化学素子
JP2008159495A (ja) * 2006-12-26 2008-07-10 Hitachi Maxell Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2009080082A (ja) 2007-09-27 2009-04-16 Toppan Printing Co Ltd 電気泳動用支持体保持具および電気泳動用チップ
JP2010038810A (ja) 2008-08-07 2010-02-18 Panasonic Corp ガス遮断装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. K. PADHI ET AL.: "Phospho-olivine as Positive-Electrode Material for Rechargeable Lithium Batteries", J. ELECTROCHEM. SOC., vol. 144, no. 4, 1997, pages 1188
KEISUKE SHIRAISHI, YOUNG HO RHO, KIYOSHI KANAMURA: "Synthesis of LiFeP04 cathode active material for Rechargeable Lithium Batteries by Hydrothermal Reaction", J. CERAM. SOC. JPN, vol. 1305, no. 112, 2004, pages S58 - S62

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122951A1 (zh) * 2011-03-16 2012-09-20 台湾立凯电能科技股份有限公司 具有双层碳包覆的正极材料及其制造方法
CN103347813A (zh) * 2011-03-16 2013-10-09 台湾立凯电能科技股份有限公司 具有双层碳包覆的正极材料及其制造方法
CN103503206A (zh) * 2011-04-22 2014-01-08 昭和电工株式会社 锂二次电池用正极活性物质的制造方法
WO2013004632A1 (de) * 2011-07-01 2013-01-10 Süd-Chemie AG Verfahren zur herstellung von nanopartikulären lithiumübergangsmetallphosphaten
TWI480227B (zh) * 2011-09-13 2015-04-11 Showa Denko Kk 鋰蓄電池用正極活性物質之製造方法
US20150004486A1 (en) * 2012-02-02 2015-01-01 Toyo Ink Sc Holdings Co., Ltd. Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell

Also Published As

Publication number Publication date
US9216907B2 (en) 2015-12-22
US20120003540A1 (en) 2012-01-05
JP2010251302A (ja) 2010-11-04
CN102356488A (zh) 2012-02-15
JP5509918B2 (ja) 2014-06-04
CA2755802A1 (en) 2010-09-30
KR20110132566A (ko) 2011-12-08
EP2413402A1 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5509918B2 (ja) リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
JP5544934B2 (ja) リチウムイオン電池用正極活物質の製造方法
JP5472099B2 (ja) リチウムイオン電池用正極活物質の製造方法、該製造方法で得られたリチウムイオン電池用正極活物質、リチウムイオン電池用電極、及びリチウムイオン電池
Drezen et al. Effect of particle size on LiMnPO4 cathodes
JP4926607B2 (ja) 電極材料の製造方法及び正極材料並びに電池
JP5531532B2 (ja) リチウムイオン電池正極活物質の製造方法
JP5165515B2 (ja) リチウムイオン二次電池
KR101473171B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP5245084B2 (ja) オリビン型化合物超微粒子およびその製造方法
JP2011071019A (ja) リチウムイオン電池正極活物質の製造方法及びリチウムイオン電池用正極活物質
US20160130145A1 (en) Method for making cathode material of lithium ion battery
WO2013038516A1 (ja) リン酸アンモニウムマンガン鉄とその製造方法、および該リン酸アンモニウムマンガン鉄を用いたリチウム二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
JP2010086777A (ja) 活物質及び活物質の製造方法
JP2010086772A (ja) 活物質及び活物質の製造方法
JP2012059594A (ja) 二次電池用電極活物質の製造方法、二次電池用電極活物質、二次電池、および、二次電池用電極活物質の前駆体
WO2013038517A1 (ja) リン酸アンモニウムマンガン鉄マグネシウムとその製造方法、および該リン酸アンモニウムマンガン鉄マグネシウムを用いたリチウム二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
JP2010232091A (ja) リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
JP5765644B2 (ja) リチウムイオン電池用の高電圧ナノ複合体カソード(4.9v)の調製のための方法
WO2013099409A1 (ja) リン酸鉄の製造方法、リン酸鉄リチウム、電極活物質、及び二次電池
WO2012128144A1 (ja) リチウムイオン電池用正極活物質とその製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池
Kotobuki et al. Electrochemical properies of hydrothermally synthesized LiCopO4 as a high voltage cathode material for lithium secondary battery
JP2016186877A (ja) オリビン型正極活物質とその製造方法
KR101764474B1 (ko) 리튬 망간인산화물 합성 방법 및 이로부터 제조된 다공성 리튬 망간인산화물
JP6197610B2 (ja) 正極活物質、正極及びリチウムイオン二次電池
CN115498162A (zh) 一种碳与磷酸锗铝锂双重包覆的磷酸锰铁锂正极材料的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012262.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117021530

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2755802

Country of ref document: CA

Ref document number: 13256644

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010755671

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE