WO2012133910A1 - 耐応力腐食割れ性に優れた耐磨耗鋼板およびその製造方法 - Google Patents

耐応力腐食割れ性に優れた耐磨耗鋼板およびその製造方法 Download PDF

Info

Publication number
WO2012133910A1
WO2012133910A1 PCT/JP2012/059126 JP2012059126W WO2012133910A1 WO 2012133910 A1 WO2012133910 A1 WO 2012133910A1 JP 2012059126 W JP2012059126 W JP 2012059126W WO 2012133910 A1 WO2012133910 A1 WO 2012133910A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
wear
steel
resistant steel
Prior art date
Application number
PCT/JP2012/059126
Other languages
English (en)
French (fr)
Inventor
植田 圭治
室田 康宏
石川 信行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP12765557.9A priority Critical patent/EP2692890B1/en
Priority to AU2012233197A priority patent/AU2012233197B8/en
Priority to BR112013025002-0A priority patent/BR112013025002B1/pt
Priority to KR1020137026383A priority patent/KR20130133036A/ko
Priority to MX2013011154A priority patent/MX348365B/es
Priority to CN201280015444.1A priority patent/CN103459635B/zh
Priority to US14/008,104 priority patent/US9879334B2/en
Publication of WO2012133910A1 publication Critical patent/WO2012133910A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling

Definitions

  • the present invention has a thickness of 4 mm or more suitable for construction machines, industrial machines, ship building, steel pipes, civil engineering, construction, etc.
  • the present invention relates to a steel plate (abrasion resist steel plate or steel sheet), and in particular, a material having excellent resistance of stress corrosion cracking.
  • Abrasion is a phenomenon in which the surface layer portion of steel material is scraped off due to continuous contact between steel materials, or different materials such as earth and sand, rocks, etc., in a working part such as a machine or apparatus.
  • Patent Documents 1 to 5 and the like are based on toughness of the base metal, delayed fracture resistance (Patent Documents 1, 3, and 4), weldability, wear resistance of the welded portion,
  • the purpose is to provide corrosion resistance in a condensed corrosion environment (to be referred to as Patent Document 5 above).
  • Patent Document 5 To achieve both stress corrosion crack resistance and wear resistance which are excellent in the standard test method for stress corrosion cracking described in Non-Patent Document 1. Has not reached.
  • a wear-resistant steel sheet that is excellent in economic efficiency and excellent in stress corrosion cracking resistance and its production without causing a decrease in productivity and an increase in production cost. It aims to provide a method.
  • Nb, Ti carbides, nitrides, and complex carbonitrides in the tempered martensite structure are controlled by properly controlling the dispersion state of the diffusible hydrogen generated by the corrosion reaction of the steel. It acts as a trap site and has the effect of suppressing hydrogen embrittlement cracking.
  • Rolling, heat treatment and cooling conditions influence the dispersion state of Nb and Ti carbides, nitrides and composite carbonitrides in the tempered martensite structure, and it is important to manage these production conditions. Thereby, the grain boundary fracture in a corrosive environment can be suppressed, and stress corrosion cracking can be effectively prevented.
  • Mn is an element that has the effect of improving hardenability and contributes to the improvement of wear resistance, while being easily co-segregated with P in the solidification process of the steel slab. Yes, it reduces the grain boundary strength in the micro-segregation part.
  • the present invention has been made by further studying the obtained knowledge, that is, 1. % By mass C: 0.20 to 0.27%, Si: 0.05 to 1.0%, Mn: 0.30-0.90% P: 0.010% or less, S: 0.005% or less, Nb: 0.005 to 0.025%, Ti: 0.008 to 0.020%, Al: 0.1% or less, N: 0.0010 to 0.0060%, further, Cr: 0.05 to 1.5%, Mo: 0.05 to 1.0%, W: 0.05 to 1.0% B: 0.0003 to 0.0030%,
  • the hardenability index DI * represented by the formula (1) is 45 or more, the balance is Fe and inevitable impurities, and the microstructure is tempered martensite.
  • DI * 33.85 ⁇ (0.1 ⁇ C) 0.5 ⁇ (0.7 ⁇ Si + 1) ⁇ (3.33 ⁇ Mn + 1) ⁇ (0.35 ⁇ Cu + 1) ⁇ (0.36 ⁇ Ni + 1) ⁇ (2.16 ⁇ Cr + 1) ⁇ (3 ⁇ Mo + 1) ⁇ (1.75 ⁇ V + 1) ⁇ (1.5 ⁇ W + 1) (1)
  • each alloy element shows content (mass%), and is set to 0 when not containing. 2.
  • Cu 1.5% or less
  • Ni 2.0% or less
  • V 0.1% or less
  • the steel slab having the steel composition described in any one of 6.1 to 3 is heated to 1000 ° C.
  • a method for producing a wear-resistant steel plate having excellent stress corrosion cracking resistance After heating the steel slab having the steel composition according to any one of 7.1 to 3 to 1000 ° C. to 1200 ° C., hot rolling is performed in a temperature range of 850 ° C. or more, and immediately after the hot rolling is finished, Ar 3 A wear-resistant steel sheet with excellent stress corrosion cracking resistance that is quenched from a temperature of ⁇ 950 ° C.
  • the average crystal grain size of the tempered martensite was determined as the equivalent circle diameter of the prior austenite grain size, assuming that the tempered martensite is the prior austenite grain.
  • a wear-resistant steel plate having excellent stress corrosion cracking resistance can be obtained without causing a decrease in productivity and an increase in manufacturing cost, and greatly contributes to improvement of safety and life of steel structures.
  • the base phase of the microstructure of the steel sheet is tempered martensite, and further, carbide, nitride or carbonitride (hereinafter referred to as Nb, Ti-based) containing one or two of Nb and Ti in the microstructure. Presence state of precipitates) is defined.
  • the particle diameter of the Nb and Ti-based precipitates is 0.01 to 0.5 ⁇ m in terms of equivalent circle diameter. If it is less than 0.01 ⁇ m, not only the effect of suppressing hydrogen embrittlement cracking as a diffusible hydrogen trap site is saturated, but in order to manage to less than 0.01 ⁇ m in actual production, the production load increases extremely, Cost increases. On the other hand, if the thickness exceeds 0.5 ⁇ m, the effect of suppressing coarsening of crystal grains during hot rolling and heat treatment and the effect of suppressing hydrogen embrittlement cracks as diffusible hydrogen trap sites cannot be obtained.
  • the Nb and Ti-based precipitates having the above particle sizes are less than 2 ⁇ 10 2 pieces / mm 2 in the microstructure, the effect of suppressing the coarsening of crystal grains during hot rolling and heat treatment, and diffusible hydrogen Since the effect of suppressing hydrogen embrittlement cracking cannot be obtained as a trap site, it is set to 2 ⁇ 10 2 pieces / mm 2 or more.
  • the base phase of the microstructure of the steel sheet (base phase or main phase) is tempered martensite having an average crystal grain size of an equivalent circle diameter of 15 ⁇ m or less.
  • base phase or main phase is tempered martensite having an average crystal grain size of an equivalent circle diameter of 15 ⁇ m or less.
  • the average crystal grain size of tempered martensite is preferably 15 ⁇ m or less.
  • the area ratio is smaller, and when it is mixed, the area ratio is preferably 5% or less.
  • the stress corrosion cracking resistance is lowered, so that it is better to be less, and when the area fraction is 10% or less, the influence can be ignored, so it may be contained.
  • the surface hardness is less than 400 HBW 10/3000 in Brinell hardness, the life as a wear-resistant steel is shortened, while when it exceeds 520 HBW 10/3000, the stress corrosion cracking resistance is significantly deteriorated. Therefore, the surface hardness is preferably in the range of 400 to 520 HBW 10/3000 in terms of Brinell hardness.
  • C 0.20 to 0.27% C is an important element for increasing the hardness of martensite and ensuring excellent wear resistance, so that its effect is required. On the other hand, if the content exceeds 0.27%, the hardness of martensite increases excessively, and the stress corrosion cracking resistance decreases. For this reason, it is limited to a range of 0.20 to 0.27%. Preferably, it is 0.21 to 0.26%.
  • Si acts as a deoxidizing agent and is not only necessary for steelmaking, but also has an effect of increasing the hardness of the steel sheet by solid solution strengthening by solid solution strengthening in the steel. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 1.0%, weldability deteriorates, so the content is limited to 0.05 to 1.0%. Preferably, it is 0.07 to 0.5%.
  • Mn 0.30-0.90% Mn has the effect of increasing the hardenability of the steel, and 0.30% or more is necessary to ensure the hardness of the base material. On the other hand, if the content exceeds 0.90%, not only the toughness, ductility and weldability of the base metal deteriorate, but also promotes intergranular segregation of P and stress corrosion resistance. Helps cracking.
  • FIG. 1 shows the relationship between the stress corrosion cracking resistance (KISCC) and the amount of Mn in wear-resistant steel having a P content of 0.007 to 0.009% (Brinell hardness of 450 to 500 HBW 10/3000). is there.
  • the experimental method is the same as in the examples described later, but as the amount of Mn increases, the KISCC value decreases, that is, the stress corrosion cracking resistance decreases. For this reason, the Mn content is limited to the range of 0.30 to 0.90%. Preferably, it is 0.35 to 0.85%.
  • FIG. 1 shows the relationship between stress corrosion cracking resistance (KISCC) and P content in wear-resistant steel (Mn content of 0.5-0.7%, Brinell hardness 450-500HBW10 / 3000). is there. It is clear that the KISCC value decreases as the amount of P increases. For this reason, it is desirable that the P content be 0.010% as an upper limit and be reduced as much as possible. Desirably, it is made into 0.085% or less.
  • S 0.005% or less Since S deteriorates the low temperature toughness and ductility of the base material, it is desirable to reduce the upper limit to 0.005%. Preferably it is 0.003% or less, more preferably 0.002% or less.
  • Nb 0.005 to 0.025%
  • Nb precipitates as carbonitride, refines the microstructure of the base material and the weld heat-affected zone, and fixes toughness by fixing solute N (solute N).
  • the produced carbonitride is effective for trapping diffusible hydrogen and is an important element that has the effect of suppressing stress corrosion cracking. In order to acquire such an effect, 0.005% or more needs to be contained.
  • the content exceeds 0.025%, coarse carbonitrides may be precipitated, which may be the origin of fracture (origin of the fracture). For this reason, it limits to 0.005 to 0.025% of range.
  • Ti forms carbonitride with nitride or Nb and has an effect of suppressing coarsening of crystal grains, and also has an effect of suppressing deterioration of toughness due to reduction of solid solution N. Furthermore, the produced carbonitride is effective for trapping diffusible hydrogen and is an important element that has the effect of suppressing stress corrosion cracking. In order to acquire such an effect, 0.008% or more needs to be contained. On the other hand, if the content exceeds 0.020%, the precipitate becomes coarse and the toughness of the base material deteriorates. For this reason, it limits to 0.005 to 0.020% of range.
  • Al acts as a deoxidizing agent and is most widely used in a deoxidizing process of molten steel of a steel sheet. Further, fixing solid solution N in steel to form AlN has an effect of suppressing coarsening of crystal grains and an effect of suppressing deterioration of toughness due to reduction of solid solution N. On the other hand, if the content exceeds 0.1%, it is mixed in the weld metal during welding and deteriorates the toughness of the weld metal, so the content is limited to 0.1% or less. Preferably it is 0.08% or less.
  • N 0.0010 to 0.0060%
  • N binds to Ti and Nb and precipitates as nitride or carbonitride, suppresses coarsening of crystal grains during hot rolling and heat treatment, and hydrogen embrittlement cracks as trapping sites for diffusible hydrogen Has the effect of suppressing
  • the content exceeds 0.0060%, the amount of dissolved N increases and the toughness is remarkably lowered. For this reason, N is limited to 0.0010 to 0.0060%.
  • Cr 0.05 to 1.5% Cr is an element that increases the hardenability of steel and is effective in increasing the hardness of the base material. In order to have such an effect, addition of 0.05% or more is necessary. On the other hand, if it exceeds 1.5%, the base material toughness and the weld crack resistance are reduced. For this reason, it limits to 0.05 to 1.5% of range.
  • Mo 0.05 to 1.0% Mo is an element that significantly increases the hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.05% or more. However, if it exceeds 1.0%, the base material toughness, ductility and weld crack resistance are adversely affected. The following.
  • W 0.05 to 1.0% W is an element that significantly increases the hardenability and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.05% or more. However, if it exceeds 1.0%, the base material toughness, ductility and weld crack resistance are adversely affected. The following.
  • B 0.0003 to 0.0030% B is an element that significantly increases the hardenability by adding a small amount and is effective in increasing the hardness of the base material. In order to obtain such an effect, the content is preferably 0.0003% or more. However, if it exceeds 0.0030%, the base material toughness, ductility and weld crack resistance are adversely affected. The following.
  • DI * 33.85 ⁇ (0.1 ⁇ C) 0.5 ⁇ (0.7 ⁇ Si + 1) ⁇ (3.33 ⁇ Mn + 1) ⁇ (0.35 ⁇ Cu + 1) ⁇ (0.36 ⁇ Ni + 1) ⁇ (2.16 ⁇ Cr + 1) ⁇ (3 ⁇ Mo + 1) ⁇ (1.75 ⁇ V + 1) ⁇ (1.5 ⁇ W + 1)
  • each alloy element shows content (mass%), and is set to 0 when not containing.
  • DI * defined by the above formula satisfies 45 or more. When DI * is less than 45, the quenching depth from the surface layer of the plate thickness is less than 10 mm, and the life as wear-resistant steel is shortened.
  • the above is the basic component composition of the present invention, and the balance is Fe and unavoidable impurities.
  • one or more of Cu, Ni, and V are contained. Can do.
  • Cu, Ni, and V are all elements that contribute to improving the strength of steel and are appropriately contained depending on the desired strength.
  • Ni When Ni is contained, if 2.0% is exceeded, the effect is saturated and disadvantageous economically, so it is 2.0% or less.
  • V When V is contained, if it exceeds 0.1%, the base metal toughness and ductility are deteriorated, so the content is made 0.1% or less.
  • one or more of REM, Ca and Mg when improving toughness, one or more of REM, Ca and Mg can be contained.
  • REM, Ca, and Mg all contribute to the improvement of toughness, and are selected and contained according to desired characteristics.
  • the “° C.” display relating to the temperature means a temperature at a half position of the plate thickness.
  • the wear-resistant steel sheet according to the present invention is obtained by melting the molten steel having the above-described composition by a known steelmaking process, and continuously casting or ingot casting- It is preferable to use a steel material such as a slab having a predetermined size by a blooming method.
  • the obtained steel material is reheated to 1000 to 1200 ° C. and hot-rolled to obtain a steel plate having a desired thickness.
  • the reheating temperature is less than 1000 ° C., deformation resistance in hot rolling becomes high, and a rolling reduction amount per pass cannot be increased so that the number of rolling passes increases, and rolling is performed. In some cases, the rolling efficiency is lowered, and a casting defect in the steel material (slab) cannot be crimped.
  • the reheating temperature of the steel material is in the range of 1000 to 1200 ° C.
  • hot rolling starts at a steel material of 1000 to 1200 ° C.
  • the rolling conditions in the hot rolling are not particularly specified.
  • the temperature in the steel sheet is made uniform after hot rolling, and the reheating treatment is performed after hot rolling and air cooling in order to suppress the characteristic variation.
  • the steel sheet Before the reheating treatment, the steel sheet needs to be completely transformed into ferrite, bainite, or martensite, and the steel sheet temperature is 300 ° C. or lower, preferably 200 ° C. or lower, more preferably 100, before the reheating heat treatment. Cool to below °C.
  • reheating treatment is performed after cooling, when the reheating temperature is Ac3 or lower, ferrite is mixed in the structure and the hardness is lowered.
  • the temperature is set to Ac 3 to 950 ° C.
  • Ac3 (° C.) can be obtained by the following equation, for example.
  • Ac3 854-180C + 44Si-14Mn-17.8Ni-1.7Cr (However, C, Si, Mn, Ni, Cr: Content of each alloy element (mass%))
  • the reheating holding time may be a short time as long as the temperature in the steel plate becomes uniform. On the other hand, when the time is long, the crystal grains become coarse and the toughness and the stress corrosion cracking resistance are lowered.
  • the end temperature of hot rolling is not particularly defined.
  • quenching is performed.
  • the steel plate may be reheated to 100 to 300 ° C. and tempered.
  • the tempering temperature exceeds 300 ° C., the decrease in hardness increases and the wear resistance decreases, and the produced cementite becomes coarse and the effect as a trap site for diffusible hydrogen cannot be obtained.
  • the holding time may be a short time as long as the temperature in the steel plate becomes uniform.
  • the holding time is long, the cementite to be produced becomes coarse and the effect as a trapping site for diffusible hydrogen is reduced.
  • the rolling end temperature may be Ar3 to 950 ° C., and quenching (DQ) may be performed immediately after the end of rolling.
  • quenching start temperature substantially the same as the rolling end temperature
  • Ar3 quenching start temperature
  • ferrite is mixed in the structure and the hardness is lowered.
  • Ar3 point can be obtained by the following equation, for example.
  • Ar3 868-396C + 25Si-68Mn-21Cu-36Ni-25Cr-30Mo (however, C, Si, Mn, Cu, Ni, Cr, Mo: contents (mass%) of each alloy element) are tempered and then tempered. The case is the same as in the case of reheating after hot rolling.
  • the obtained steel sheet was subjected to microstructure investigation, surface hardness measurement, base metal toughness, stress corrosion cracking test in the following manner.
  • a sample for microstructural observation was taken on a cross section parallel to the rolling direction at a thickness of 1/4 t of each steel plate obtained, and after optical corrosion treatment, the optical magnification was 500 times.
  • the tissue was photographed and evaluated with a microscope (optical microscope).
  • the average crystal grain size of tempered martensite was evaluated by 500 times with an optical microscope after picric acid corrosion (picric acid corrosion treatment) on a section parallel to the rolling direction at a thickness of 1/4 t of each steel plate. Then, after 5 fields of view were photographed, an image analysis apparatus was used. The average crystal grain size of the tempered martensite was determined as the equivalent circle diameter of the prior austenite grain size, assuming that the tempered martensite crystal grain size is the same as the prior austenite grain size.
  • the number density of Nb and Ti-based precipitates in the tempered martensite structure was examined with a transmission electron microscope for a cross section parallel to the rolling direction at a thickness of 1/4 t of each steel plate. Ten fields of view were taken at 50000 magnifications, and the number of Nb and Ti-based precipitates was examined.
  • the surface hardness was measured according to JIS Z2243 (1998), and the surface hardness under the surface layer (the surface hardness measured after removing the surface layer scale) was measured.
  • the measurement used a 10 mm tungsten hard ball (tungsten hard ball), and the load was 3000 kgf.
  • Charpy V-notch specimens were collected from the direction perpendicular to the rolling direction at a thickness of 1/4 of each steel sheet in accordance with the provisions of JIS Z 2202 (1998), and JIS Z 2242 ( 1998), three Charpy impact tests were performed on each steel plate, the absorbed energy at ⁇ 20 ° C. was determined, and the base material toughness was evaluated. An average value of three absorbed energies (vE- 20 ) of 30 J or more was determined to be excellent in the base material toughness (within the scope of the present invention).
  • the stress corrosion cracking test was carried out in accordance with the stress corrosion cracking standard test method of the Japan Society for the Promotion of Science, University 129 Committee (Japan Society for Materials Strength, 1985).
  • the test piece shape is shown in FIG. 3, and the tester shape is shown in FIG.
  • the test conditions were: test solution: 3.5% NaCl, pH: 6.7 to 7.0, test temperature: 30 ° C., maximum test time: 500 hours, stress corrosion cracking lower limit stress intensity factor (threshold stress) intensity factor) K ISCC .
  • the target performance of the present invention was a surface hardness of 400 to 520 HBW 10/3000, a base material toughness of 30 J or more, and a KISCC of 100 kgf / mm ⁇ 3/2 or more.
  • Tables 2-1 to 2-4 show the manufacturing conditions of the test steel sheets and the test results.
  • the inventive examples Nos. 1, 4 to 12
  • the comparative examples Nos. 1, 2 and 13 to 28

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

建設機械、産業機械等に供して好適な耐応力腐食割れ性に優れる耐磨耗鋼板およびその製造方法を提供する。具体的には、質量%で、C:0.20~0.27%、Si:0.05~1.0%、Mn:0.30~0.90%、P、S、Nb:0.005~0.025%、Ti:0.008~0.020%、Al:0.1%以下、N:0.0010~0.0060%、さらに、Cr、Mo、W、Bの1種または2種以上を含有し、必要に応じてCu、Ni、V、REM、Ca、Mgの1種または2種以上を含有し、DI*が45以上で、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織が焼戻しマルテンサイトを基地相とし、粒径が円相当直径で0.01~0.5μm以下のNb、Ti系析出物が2×10個/mm以上存在する鋼板。また、上記記載の鋼組成を有する鋼片を加熱後、熱間圧延を行い、再加熱焼入れまたは直接焼入れを行う。

Description

耐応力腐食割れ性に優れた耐磨耗鋼板およびその製造方法
 本発明は、建設機械(construction machine)、産業機械(industrial machine)、造船(shipbuiding)、鋼管(steel pipe)、土木(civil engineering)、建築等に供して好適な板厚4mm以上の耐磨耗鋼板(abrasion resistant steel plate or steel sheet)に係り、特に、耐応力腐食割れ性(resistance of stress corrosion crack)が優れたものに関する。
 建設機械、産業機械、造船、鋼管、土木、建築等の鉄鋼構造物や機械、装置等に熱間圧延鋼板が用いられる際には、鋼板の磨耗特性(abrasion resistant property)が要求されることがある。磨耗は、機械、装置等、稼動する部位において、鋼材同士、あるいは土砂、岩石など異種材料との継続的な接触により発生し、鋼材の表層部が削り取られる現象である。
 鋼材の耐磨耗特性が劣ると、機械、装置の故障の原因となるだけでなく、構造物としての強度を維持できなくなる危険性があるため、高頻度での磨耗部位の補修、交換が不可避である。このため、磨耗する部位に適用される鋼材に対する耐磨耗特性の向上に対する要求は強い。
 従来、鋼材として優れた耐磨耗性を保有するためには、硬度を高めることが一般的であり、マルテンサイト単相組織(martensite single phase microstructure)とすることにより飛躍的に高めることが可能である。また、マルテンサイト組織自体の硬さを上昇させるために、固溶C量(amount of solid solution carbon)を増加することが有効であり、種々の耐摩耗鋼板が開発されてきた(例えば、特許文献1~5)。
一方、鋼板に対して磨耗特性が要求される部位は、地鉄表面が露出する場合が多く、鋼材表面が腐食性の物質を含む水蒸気(moisture vapor)や、水分(moisture)や油分(oil)などと接触し、鋼材の腐食が発生する。
 例えば、鉱石運搬用のコンベヤ(ore conveyer)など鉱山機械(mining machinery)に耐磨耗鋼が使用される場合には、土壌中の水分(moisture in soil)とともに、硫化水素(hydrogen sulfide)などの腐食性物質(corrosive material)が存在し、また、建設機械などに耐磨耗鋼が使用される場合には、ディーゼルエンジン(diesel engine)中に含まれる水分および酸化硫黄(sulfuric oxide)などが存在し、何れも非常に厳しい腐食環境(corrosion environment)となる場合がある。この際、鋼材表面での腐食反応(corrosion reaction)においては、鉄がアノード反応(anode reaction)により酸化物(さび)を生成する一方で、水分のカソード反応(cathode reaction)により水素が発生する。
 耐磨耗鋼のような高硬度なマルテンサイト組織の鋼材中に、腐食反応で生成した水素が侵入した場合には、鋼材が極端に脆化し、曲げ加工(bending work)や溶接などでの残留応力(welding residual stress)や、使用環境(environment of usage)での負荷応力(applied stress)の存在化において、割れ(crack)が発生する。これが応力腐食割れ(stress corrosion crack)であり、機械、装置等に使用される鋼材には、稼動する安全性の観点から、耐磨耗性は勿論のこと、耐応力腐食割れ性に優れることが重要である。
特開平5−51691号公報 特開平8−295990号公報 特開2002−115024号公報 特開2002−80930号公報 特開2004−162120号公報
日本学術振興会大129委員会(日本材料強度学会、1985)基準の応力腐食割れ標準試験法
 しかしながら、特許文献1~5等で提案されている耐磨耗鋼は、母材靭性、耐遅れ破壊特性(以上、特許文献1、3、4)、溶接性、溶接部の耐磨耗性、結露腐食環境における耐食性(以上、特許文献5)を備えることを目的とするもので、非特許文献1記載の応力腐食割れ標準試験法で優れる耐応力腐食割れ性と耐磨耗性を両立するには至っていない。
 そこで、本発明では、生産性(productivity)の低下および製造コスト(production cost)の増大を引き起こすことなく、経済性(economic efficiency)に優れ、耐応力腐食割れ性に優れる耐磨耗鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を達成するため、耐磨耗鋼板を対象に、優れた耐応力腐食割れ性能を確保するため、鋼板の化学成分、製造方法およびミクロ組織(microstructure)を決定する各種要因に関して鋭意研究を行い、以下の知見を得た。
 1.優れた耐磨耗特性を確保するためには、高硬度(high hardness)を確保することが必須であるが、過度の高硬度化は耐応力腐食割れ性を著しく低下させるため、硬度範囲を厳格に管理することが重要である。さらに、耐応力腐食割れ性を向上するためには、鋼板中に拡散性水素(diffusible hydrogen)のトラップサイト(trap site)としてセメンタイト(cementite)を分散することが有効である。このためには、Cをはじめとする鋼板の化学組成を厳格に管理して、鋼板の基地組織を焼戻しマルテンサイトとすることが重要である。
 焼戻しマルテンサイト組織中のNb、Tiの炭化物、窒化物および複合炭窒化物(complex carbonitride)はその分散状態(dispersion state)を適正に管理することにより、鋼材の腐食反応により生成した拡散性水素のトラップサイトとして作用し、水素脆化割れ(hydrogen embrittlement cracking)を抑制する効果を有する。
 焼戻しマルテンサイト組織中のNb、Tiの炭化物、窒化物および複合炭窒化物の分散状態には、圧延、熱処理および冷却条件などが影響を及ぼし、これら製造条件を管理することが重要である。これにより、腐食環境下における結晶粒界破壊を抑制し、応力腐食割れを効果的に防止できる。
 2.さらに、焼戻しマルテンサイト組織(tempered martensite microstructure)の結晶粒界破壊(grain boundary fracture)を効果的に抑制するには、結晶粒界強度(grain boundary strength)を高める対策が有効であり、Pなど不純物元素の低減とともに、Mnの成分範囲を管理する必要がある。Mnは、焼入れ性(harde nability)を向上する効果を有し耐磨耗性向上に寄与する一方、鋼片の凝固過程(solidification process)において、Pとともに共偏析(co‐segregation)しやすい元素であり、ミクロ偏析部における結晶粒界強度を低下させる。
 また、結晶粒界破壊を効果的に抑制するには、結晶粒を微細化することが有効であり、結晶粒の成長を抑えるピンニング効果(pinning effect)を有する微細な介在物(inclusion)の分散が効果的である。このためには、NbおよびTiを添加し、鋼中に炭窒化物を分散させることが有効である。
 本発明は、得られた知見に、さらに検討を加えてなされたもので、すなわち、
1.質量%で、
C:0.20~0.27%、
Si:0.05~1.0%、
Mn:0.30~0.90%
P:0.010%以下、
S:0.005%以下、
Nb:0.005~0.025%、
Ti:0.008~0.020%、
Al:0.1%以下、
N:0.0010~0.0060%、
さらに、
Cr:0.05~1.5%、
Mo:0.05~1.0%、
W:0.05~1.0%、
B:0.0003~0.0030%、
の1種または2種以上を含有し、(1)式で示される焼入れ性指数(hardenability index)DI*が45以上で、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織が焼戻しマルテンサイトを基地相とし、粒径が円相当直径で0.01~0.5μmのNbおよびTiの1種または2種を含有する炭化物、窒化物あるいは炭窒化物が2×10個/mm以上存在することを特徴とする耐応力腐食割れ性に優れた耐磨耗鋼板。
DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(1)
但し、各合金元素は含有量(質量%)を示し、含有しない場合は0とする。
2.鋼組成に、質量%でさらに、
Cu:1.5%以下、
Ni:2.0%以下、
V:0.1%以下、
の1種または2種以上を含有することを特徴とする1記載の耐応力腐食割れ性に優れた耐磨耗鋼板。
3.鋼組成に、質量%でさらに、
REM:0.008%以下、
Ca:0.005%以下、
Mg:0.005%以下、
の1種または2種以上を含有することを特徴とする1または2に記載の耐応力腐食割れ性に優れた耐磨耗鋼板。
4.更に、焼戻しマルテンサイトの平均結晶粒径が円相当直径で15μm以下であることを特徴とする1乃至3のいずれか一つに記載の耐応力腐食割れ性に優れた耐磨耗鋼板。
5.更に、表面硬度がブリネル硬さで400~520HBW10/3000であることを特徴とする1乃至4のいずれか一つに記載の耐応力腐食割れ性に優れた耐磨耗鋼板。
6.1乃至3のいずれか一つに記載の鋼組成を有する鋼片を1000℃~1200℃に加熱後、熱間圧延を行い、冷却後、Ac3~950℃に再加熱して焼入れを行うことを特徴とする耐応力腐食割れ性に優れた耐磨耗鋼板の製造方法。
7.1乃至3のいずれか一つに記載の鋼組成を有する鋼片を1000℃~1200℃に加熱後、850℃以上の温度域で熱間圧延を行い、熱間圧延終了後、直ちにAr3~950℃の温度から焼入れを行う耐応力腐食割れ性に優れた耐磨耗鋼板。
 なお、本発明では、焼戻しマルテンサイトの平均結晶粒径は、焼戻しマルテンサイトが旧オーステナイト粒であるとして、旧オーステナイト粒径の円相当径にて平均結晶粒径を求めた。
 本発明によれば、生産性の低下および製造コストの増大を引き起こすことなく、優れた耐応力腐食割れ性を有する耐磨耗鋼板が得られ、鋼構造物の安全性や寿命の向上に大きく寄与し、産業上格段の効果を奏する。
P含有量が0.007~0.009%である耐摩耗鋼(ブリネル硬さで450~500HBW10/3000のもの)での耐応力腐食割れ特性(KISCC)とMn量との関係を示す図である。 Mn含有量が0.5~0.7%である耐摩耗鋼(ブリネル硬さで450~500HBW10/3000のもの)での耐応力腐食割れ特性(KISCC)とP量との関係を示す図である。 応力腐食割れ標準試験に用いる試験片形状を示す図。 図3に示す試験片を用いる試験機の構成を示す図。
[ミクロ組織]
 本発明では、鋼板のミクロ組織の基地相を焼戻しマルテンサイトとし、さらに、ミクロ組織中のNbおよびTiの1種または2種を含有する炭化物、窒化物あるいは炭窒化物(以下、Nb、Ti系析出物)の存在状態を規定する。
 Nb、Ti系析出物の粒径は円相当径で0.01~0.5μmとする。0.01μm未満では、拡散性水素のトラップサイトとして水素脆化割れを抑制する効果が飽和するだけでなく、実製造で0.01μm未満に管理するには、製造負荷が極度に増大し、製造コストが上昇する。一方、0.5μmを越えると熱間圧延および熱処理時の結晶粒の粗大化を抑制する効果、および拡散性水素のトラップサイトとして水素脆化割れを抑制する効果が得られない。
 上記粒径のNb、Ti系析出物がミクロ組織中で2×10個/mm未満であると、熱間圧延および熱処理時の結晶粒の粗大化を抑制する効果、および拡散性水素のトラップサイトとして水素脆化割れを抑制する効果が得られないため、2×10個/mm以上とする。
 本発明では、更に耐応力腐食割れ性を向上させる場合、上記に加えて、鋼板のミクロ組織の基地相(base phase or main phase)を平均結晶粒径が円相当直径で15μm以下の焼戻しマルテンサイトにする。鋼板の耐磨耗特性を有するためには、焼戻しマルテンサイト組織とすることが必要である。ただし、焼戻しマルテンサイトの平均結晶粒径が円相当直径で15μmを超えると耐応力腐食割れ性が劣化する。このため、焼戻しマルテンサイトの平均結晶粒径は15μm以下とすることが好ましい。
 なお、母相中に焼戻しマルテンサイトの他に、ベイナイト(bainite)、パーライト(pearlite)およびフェライト(ferrite)等の組織が混在すると、硬度が低下し、耐摩耗性が低下するため、これらの組織の面積分率(area ratio)は少ない方が良く、混在する場合は面積分率で5%以下とすることが望ましい。
 一方、マルテンサイトが混在すると、耐応力腐食割れ性が低下するため少ないほうが良く、面積分率で10%以下の場合には影響が無視できるため含有してもよい。
また、表面硬度がブリネル硬さ(Brinell hardness)で400HBW10/3000未満の場合には、耐磨耗鋼としての寿命が短くなり、一方、520HBW10/3000を超えると耐応力腐食割れ性が顕著に劣化するようになるため、表面硬度をブリネル硬さで400~520HBW10/3000の範囲とすることが好ましい。
 [成分組成]
 本発明では、優れた耐応力腐食割れ性を確保するため、鋼板の成分組成を規定する。なお、説明において%は質量%とする。
C:0.20~0.27%
 Cは、マルテンサイトの硬度を高め、優れた耐磨耗性を確保するために重要な元素でその効果を得るため、0.20%以上の含有を必要とする。一方、0.27%を越えて含有すると、マルテンサイトの硬さが過度に上昇し、耐応力腐食割れ性が低下する。このため、0.20~0.27%の範囲に限定する。好ましくは、0.21~0.26%である。
Si:0.05~1.0%
 Siは、脱酸材(deoxidizing agent)として作用し、製鋼上、必要であるだけでなく、鋼に固溶して固溶強化(solid solution strengthening)により鋼板を高硬度化する効果を有する。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.0%を超えて含有すると、溶接性(weldability)が劣化するため、0.05~1.0%の範囲に限定する。好ましくは、0.07~0.5%である。
Mn:0.30~0.90%
 Mnは、鋼の焼入れ性(hardenability)を増加させる効果を有し、母材の硬度を確保するために0.30%以上は必要である。一方、0.90%を超えて含有すると、母材の靭性(toughness)、延性(ductility)および溶接性が劣化するだけでなく、Pの粒界偏析(intergranular segregation)を助長し、耐応力腐食割れの発生を助長する。図1はP含有量が0.007~0.009%である耐摩耗鋼(ブリネル硬さで450~500HBW10/3000のもの)での耐応力腐食割れ特性(KISCC)とMn量との関係である。実験方法は後述する実施例と同じであるが、Mn量が増えるほどKISCC値が低下、すなわち耐応力腐食割れ特性が低下している。このため、Mn含有量は0.30~0.90%の範囲に限定する。好ましくは、0.35~0.85%である。
P:0.010%以下
 Pが0.010%を超えて含有すると、粒界に偏析し、耐応力腐食割れの発生起点となる。図2はMn含有量が0.5~0.7%である耐摩耗鋼(ブリネル硬さで450~500HBW10/3000のもの)での耐応力腐食割れ特性(KISCC)とP量との関係である。P量が増えるほどKISCC値が低下することが明白である。このため、P含有量は0.010%を上限とし、可能なかぎり低減することが望ましい。望ましくは0.085%以下とする。
 S:0.005%以下
 Sは母材の低温靭性や延性を劣化させるため、0.005%を上限として低減することが望ましい。好ましくは0.003%以下、より好ましくは0.002%以下とする。
 Nb:0.005~0.025%
 Nbは、炭窒化物として析出し、母材および溶接熱影響部(weld heat−affected zone)のミクロ組織を微細化するとともに、固溶N(solute N)を固定して靱性を改善するだけでなく、生成した炭窒化物が拡散性水素のトラップサイトに有効であり、応力腐食割れ抑制の効果を兼備する重要な元素である。このような効果を得るためには、0.005%以上の含有が必要である。一方、0.025%を越えて含有すると、粗大な炭窒化物が析出し、破壊の起点(origin of the fracture)となることがある。このため、0.005~0.025%の範囲に限定する。
 Ti:0.008~0.020%
 Tiは、窒化物もしくはNbとともに炭窒化物を形成し、結晶粒の粗大化を抑制する効果を有するとともに、固溶Nの低減による靱性の劣化を抑制する効果を有する。さらに、生成した炭窒化物が拡散性水素のトラップサイトに有効であり、応力腐食割れ抑制の効果を兼備する重要な元素である。このような効果を得るためには、0.008%以上の含有が必要である。一方、0.020%を越えて含有すると、析出物が粗大化し母材の靱性を劣化する。このため、0.005~0.020%の範囲に限定する。
 Al:0.1%以下
 Alは、脱酸剤として作用し、鋼板の溶鋼の脱酸プロセス(deoxidizing process)に於いて、もっとも汎用的に使われる。また、鋼中の固溶Nを固定してAlNを形成することにより、結晶粒の粗大化を抑制する効果を有するとともに、固溶Nの低減による靱性の劣化を抑制する効果を有する。一方、0.1%を超えて含有すると、溶接時に溶接金属部(weld metal)に混入して、溶接金属の靭性を劣化させるため、0.1%以下に限定する。好ましくは0.08%以下とする。
 N:0.0010~0.0060%
 NはTiおよびNbと結合して窒化物、あるいは炭窒化物として析出して、熱間圧延および熱処理時の結晶粒の粗大化を抑制する効果、および拡散性水素のトラップサイトとして水素脆化割れを抑制する効果を有する。このような効果を有するために、0.0010%以上のNを含有する必要がある.一方、0.0060%を超えて含有すると、固溶N量が増加し、靭性が著しく低下する.このため、Nは0.0010~0.0060%に限定する。
 Cr、Mo、WおよびBの1種または2種以上
 Cr:0.05~1.5%
 Crは、鋼の焼入れ性を増加させ、母材の高硬度化に有効な元素である。このような効果を有するためには、0.05%以上の添加が必要である。一方、1.5%を越えて含有すると、母材靭性および耐溶接割れ性(weld crack resistance)が低下する。このため、0.05~1.5%の範囲に限定する。
 Mo:0.05~1.0%
Moは、焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.05%以上とすることが好ましいが、1.0%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.0%以下とする。
 W:0.05~1.0%
Wは、焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.05%以上とすることが好ましいが、1.0%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.0%以下とする。
 B:0.0003~0.0030%
Bは、微量の添加で焼入れ性を顕著に増加させ、母材の高硬度化に有効な元素である。このような効果を得るためには、0.0003%以上とすることが好ましいが、0.0030%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、0.0030%以下とする。
 DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)
 但し、各合金元素は含有量(質量%)を示し、含有しない場合は0とする。
母材の基地組織を焼戻しマルテンサイトとして、耐磨耗性を向上させるためには、上式で規定されるDI*が45以上を満足させることが重要である。DI*が45未満の場合、板厚表層からの焼入れ深さが10mmを下回り、耐磨耗鋼としての寿命が短くなるため、45以上とする。
 以上が本発明の基本成分組成で残部は、Feおよび不可避的不純物とするが、本発明では、さらに、強度特性を向上させる場合、Cu、Ni、Vの1種または2種以上を含有することができる。Cu、Ni、Vは、いずれも鋼の強度向上に寄与する元素であり、所望する強度に応じて適宜含有する。
 Cuを含有する場合は、1.5%を超えると熱間脆性(hot brittleness)を生じて鋼板の表面性状(surface property)を劣化させるため、1.5%以下とする。
 Niを含有する場合は、2.0%を超えると効果が飽和し、経済的に不利になるため、2.0%以下とする。Vを含有する場合は、0.1%を超えると、母材靭性および延性を劣化させるため、0.1%以下とする。
 本発明では、さらに、靭性を向上させる場合、REM、Ca、Mgの1種または2種以上を含有することができる。REM、CaおよびMgは、いずれも靭性向上に寄与し、所望する特性に応じて選択して含有させる。
 REMを含有する場合は、0.002%以上とすることが好ましいが、0.008%を超えても効果が飽和するため、0.008%を上限とする。Caを含有する場合は、0.0005%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。Mgを含有する場合は、0.001%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。
[製造条件]
 説明において、温度に関する「℃」表示は、板厚の1/2位置における温度を意味するものとする。
 本発明に係る耐磨耗鋼板は、上記した組成の溶鋼(molten steel)を、公知の溶製方法(steelmaiking process)で溶製し、連続鋳造法(continuous casting)あるいは造塊(ingot casting)−分塊圧延法(blooming method)により、所定寸法のスラブ(slab)等の鋼素材とすることが好ましい。
 次いで、得られた鋼素材を1000~1200℃に再加熱後、熱間圧延し、所望の板厚の鋼板とする。再加熱温度が1000℃未満では、熱間圧延での変形抵抗(deformation resistance)が高くなり、1パス当たりの圧下率量(rolling reduction)が大きく取れなくなることから、圧延パス数が増加し、圧延能率(rolling efficiency)の低下を招くとともに、鋼素材(スラブ)中の鋳造欠陥(cast defect)を圧着することができない場合がある。
 一方、再加熱温度が1200℃を超えると、加熱時のスケール(scale)によって表面疵(surface scratch)が生じやすく、圧延後の手入れ(repair)の負荷が増大する。このため、鋼素材の再加熱温度は1000~1200℃の範囲とする。直送圧延する場合は、鋼素材が1000~1200℃で熱間圧延を開始する。熱間圧延における圧延条件は特に規定しない。
 熱間圧延後に鋼板内の温度の均一化を図り、特性のばらつき(characteristic variation)を抑えるため再加熱処理を熱間圧延後、空冷した後に行う。再加熱処理の前に鋼板はフェライト、ベイナイト、またはマルテンサイトへの変態を完了している必要があり、再加熱熱処理前に、鋼板温度が300℃以下、好ましくは200℃以下、より好ましくは100℃以下まで冷却する。冷却後に再加熱処理を行うが、再加熱温度がAc3以下では組織中にフェライトが混在し、硬度が低下する。一方、950℃を超えると、結晶粒が粗大化し、靱性および耐応力腐食割れ性が低下するため、Ac3~950℃とする。Ac3(℃)は、例えば、次式で求めることが可能である。
Ac3=854−180C+44Si−14Mn−17.8Ni−1.7Cr
(ただし、C、Si、Mn、 Ni、Cr:各合金元素の含有量(mass%))
 再加熱の保持時間(holding time)は鋼板内の温度が均一になれば短時間でもよい。一方、長時間になると、結晶粒が粗大化し、靭性および耐応力腐食割れ性が低下するので、1hr以内が望ましい。なお、熱間圧延後に再加熱する場合は熱間圧延の終了温度は特に規定しない。
 再加熱後、焼入れ(RQ)を行う。焼入れ後、鋼板内の特性をより均一化するとともに、耐応力腐食割れ性を向上させる場合、100~300℃に再加熱して焼戻(tempering)をしてもよい。焼戻し温度(tempering temperature)が300℃を超えると、硬度の低下が大きくなり耐磨耗性が低下するとともに、生成するセメンタイトが粗大化し、拡散性水素のトラップサイトとしての効果が得られなくなる。
 一方、焼戻し温度が100℃未満では、上記した効果が得られない。保持時間は鋼板内の温度が均一になれば短時間でもよい。一方、保持時間が長時間になると、生成するセメンタイトが粗大化し、拡散性水素のトラップサイトとしての効果が低下するので、1hr以内が望ましい。
 熱間圧延後、再加熱処理を施さない場合は、圧延終了温度をAr3~950℃とし、圧延終了後、直ちに焼入れ(DQ)を行ってもよい。焼入れの開始温度(圧延終了温度と略同じ)は、Ar3未満では、組織中にフェライトが混入し、硬度が低下し、一方、950℃以上になると、結晶粒が粗大化し、靱性および耐応力腐食割れ性が低下するため、Ar3~950℃とする。尚、Ar3点は例えば、次式で求めることが可能である。
 Ar3=868−396C+25Si−68Mn−21Cu−36Ni−25Cr−30Mo(ただし、C、Si、Mn、Cu、Ni、Cr、Mo:各合金元素の含有量(質量%))焼入れ後、焼戻し処理を行う場合は、熱間圧延後、再加熱する場合と同様とする。
 転炉(steel converter)−取鍋精錬(ladle refining)−連続鋳造法で、表1−1および表1−2に示す種々の成分組成に調製した鋼スラブ(steel slab)を、950~1250℃に加熱した後、熱間圧延を施し、一部の鋼板には圧延直後に焼入れ(DQ)をし、その他の鋼板については、圧延後空冷し、再加熱後焼入れ(RQ)を行った。
 得られた鋼板について、ミクロ組織調査、表面硬度測定、母材靭性、応力腐食割れ性試験を下記の要領で実施した。
 ミクロ組織の調査は、得られた各鋼板の板厚1/4t部における圧延方向に平行な断面について、ミクロ組織観察用サンプルを採取し、ナイタール腐食(nital corrosion treatment)の後、500倍の光学顕微鏡(optical microscope)で組織を撮影して評価した。
 また、焼戻しマルテンサイトの平均結晶粒径の評価は、各鋼板の板厚1/4t部における圧延方向に平行な断面について、ピクリン酸腐食(picric acid corrosion treatment)の後、光学顕微鏡にて500倍で5視野撮影した後、画像解析装置(image analyzation equipment)を用いた。なお、焼戻しマルテンサイトの平均結晶粒径は、焼戻しマルテンサイト結晶粒径が旧オーステナイト粒径と同じであるとして、旧オーステナイト粒径の円相当径にて平均結晶粒径を求めた。
 さらに、焼戻しマルテンサイト組織中のNb、Ti系析出物の個数密度の調査は、各鋼板の板厚1/4t部における圧延方向に平行な断面について、透過型電子顕微鏡(transmission electron microscope)にて50000倍の撮影を10視野行い、Nb、Ti系析出物の個数を調べた。
 表面硬度の測定はJIS Z2243(1998)に準拠し、表層下の表面硬度(表層のスケールを除去した後に測定した表面の硬度)を測定した。測定は10mmのタングステン硬球(tungsten hard ball)を使用し、荷重は3000kgfとした。
 各鋼板の板厚1/4位置の圧延方向と垂直な方向から、JIS Z 2202(1998年)の規定に準拠してシャルピーVノッチ試験片(V notch test specimen)を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について3本のシャルピー衝撃試験(Charpy impact test)を実施し、−20℃での吸収エネルギーを求め、母材靭性を評価した。3本の吸収エネルギー(vE−20)の平均値が30J以上を母材靭性に優れるもの(本発明範囲内)とした。
 応力腐食割れ性試験は、日本学術振興会大129委員会(日本材料強度学会、1985)基準の応力腐食割れ標準試験法に準拠して実施した。試験片形状を図3、試験機形状を図4に示す。試験条件は、試験溶液:3.5%NaCl、pH:6.7~7.0、試験温度:30℃、最大試験時間:500時間とし、応力腐食割れ性の下限界応力拡大係数(threshold stress intensity factor)KISCCを求めた。表面硬度が400~520HBW10/3000、母材靭性が30J以上、かつ、KISCCが100kgf/mm−3/2以上を本発明の目標性能とした。
 表2−1~表2−4に供試鋼板の製造条件および上記試験結果を示す。本発明例(No.1,4~12)は、上記目標性能を満足することが確認されたが、比較例(No1、2、13~28)は、表面硬度、母材靭性、および耐応力腐食割れ性のいずれか、あるいはそれらのうちの複数が目標性能を満足できない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (7)

  1.  質量%で、
    C:0.20~0.27%、
    Si:0.05~1.0%、
    Mn:0.30~0.90%、
    P:0.010%以下、
    S:0.005%以下、
    Nb:0.005~0.025%、
    Ti:0.008~0.020%、
    Al:0.1%以下、
    N:0.0010~0.0060%、
    さらに、
    Cr:0.05~1.5%、
    Mo:0.05~1.0%、
    W:0.05~1.0%、
    B:0.0003~0.0030%、
    の1種または2種以上を含有し、(1)式で示されるDI*が45以上で、残部Feおよび不可避的不純物からなる組成を有し、ミクロ組織が焼戻しマルテンサイトを基地相とし、粒径が円相当直径で0.01~0.5μmのNbおよびTiの1種または2種を含有する炭化物、窒化物あるいは炭窒化物が2×10個/mm以上存在する耐磨耗鋼板。
    DI*=33.85×(0.1×C)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1)・・・・・(1)
    但し、各合金元素は含有量(質量%)を示し、含有しない場合は0とする。
  2.  鋼組成に、質量%でさらに、
    Cu:1.5%以下、
    Ni:2.0%以下、
    V:0.1%以下、
    の1種または2種以上を含有する請求項1記載の耐磨耗鋼板。
  3.  鋼組成に、質量%でさらに、
    REM:0.008%以下、
    Ca:0.005%以下、
    Mg:0.005%以下、
    の1種または2種以上を含有する請求項1または2に記載の耐磨耗鋼板。
  4.  更に、焼戻しマルテンサイトの平均結晶粒径が円相当直径で15μm以下である請求項1乃至3のいずれか一つに記載の耐磨耗鋼板。
  5.  更に、表面硬度がブリネル硬さで400~520HBW10/3000である請求項1乃至4のいずれか一つに記載の耐磨耗鋼板。
  6.  請求鋼1乃至3のいずれか一つに記載の鋼組成を有する鋼片を1000℃~1200℃に加熱後、熱間圧延を行い、冷却後、Ac3~950℃に再加熱して焼入れを行う耐磨耗鋼板の製造方法。
  7.  請求鋼1乃至3のいずれか一つに記載の鋼組成を有する鋼片を1000℃~1200℃に加熱後、850℃以上の温度域で熱間圧延を行い、熱間圧延終了後、直ちにAr3~950℃の温度から焼入れを行う耐磨耗鋼板の製造方法。
PCT/JP2012/059126 2011-03-29 2012-03-28 耐応力腐食割れ性に優れた耐磨耗鋼板およびその製造方法 WO2012133910A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12765557.9A EP2692890B1 (en) 2011-03-29 2012-03-28 Abrasion-resistant steel plate or steel sheet and method for producing the same
AU2012233197A AU2012233197B8 (en) 2011-03-29 2012-03-28 Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same
BR112013025002-0A BR112013025002B1 (pt) 2011-03-29 2012-03-28 Chapa grossa de aço resistente à abrasão e método para produção da mesma
KR1020137026383A KR20130133036A (ko) 2011-03-29 2012-03-28 내응력 부식 균열성이 우수한 내마모 강판 및 그 제조 방법
MX2013011154A MX348365B (es) 2011-03-29 2012-03-28 Placa de acero o lamina de acero resistente a la abrasion excelente en resistencia al agrietamiento por corrosion y esfuerzo y metodo para la fabricacion de la misma.
CN201280015444.1A CN103459635B (zh) 2011-03-29 2012-03-28 耐应力腐蚀开裂性优异的耐磨损钢板及其制造方法
US14/008,104 US9879334B2 (en) 2011-03-29 2012-03-28 Abrasion resistant steel plate or steel sheet excellent in resistance to stress corrosion cracking and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011071264 2011-03-29
JP2011-071264 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012133910A1 true WO2012133910A1 (ja) 2012-10-04

Family

ID=46931594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059126 WO2012133910A1 (ja) 2011-03-29 2012-03-28 耐応力腐食割れ性に優れた耐磨耗鋼板およびその製造方法

Country Status (11)

Country Link
US (1) US9879334B2 (ja)
EP (1) EP2692890B1 (ja)
JP (1) JP6102072B2 (ja)
KR (1) KR20130133036A (ja)
CN (1) CN103459635B (ja)
AU (1) AU2012233197B8 (ja)
BR (1) BR112013025002B1 (ja)
CL (1) CL2013002757A1 (ja)
MX (1) MX348365B (ja)
PE (2) PE20180642A1 (ja)
WO (1) WO2012133910A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243277A (zh) * 2013-05-10 2013-08-14 武汉钢铁(集团)公司 一种hb400级抗裂纹高强度马氏体耐磨钢及生产方法
CN104213041A (zh) * 2014-08-28 2014-12-17 南京赛达机械制造有限公司 汽轮机叶片用耐磨损钢及其生产工艺
CN104508166A (zh) * 2012-07-30 2015-04-08 杰富意钢铁株式会社 耐磨钢板及其制造方法
CN104962834A (zh) * 2015-06-14 2015-10-07 秦皇岛首秦金属材料有限公司 一种高韧性、布氏硬度稳定特厚耐磨钢及其制备方法
CN105102657A (zh) * 2013-03-29 2015-11-25 杰富意钢铁株式会社 钢材及氢用容器、以及它们的制造方法
CN105189803A (zh) * 2013-03-28 2015-12-23 杰富意钢铁株式会社 具有低温韧性及耐氢脆性的耐磨厚钢板及其制造方法
US20160032432A1 (en) * 2013-03-28 2016-02-04 Baoshan Iron & Steel Co., Ltd. High-performance low-alloy wear-resistant steel and method of manufacturing the same
EP3098331A4 (en) * 2014-01-28 2017-01-25 Jfe Steel Corporation Wear-resistant steel plate and process for producing same
CN110358972A (zh) * 2019-07-08 2019-10-22 邯郸钢铁集团有限责任公司 一种含v微合金化厚规格耐磨钢及其生产方法
CN110616371A (zh) * 2019-09-25 2019-12-27 邯郸钢铁集团有限责任公司 辊压圈圆成型压路机振轮用耐磨钢及其生产方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866820B2 (ja) * 2010-06-30 2016-02-24 Jfeスチール株式会社 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
JP2012031511A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 多層盛溶接部靭性と耐遅れ破壊特性に優れた耐磨耗鋼板
TWI468530B (zh) * 2012-02-13 2015-01-11 新日鐵住金股份有限公司 冷軋鋼板、鍍敷鋼板、及其等之製造方法
CN102876969B (zh) * 2012-07-31 2015-03-04 宝山钢铁股份有限公司 一种超高强度高韧性耐磨钢板及其制造方法
CN102747280B (zh) * 2012-07-31 2014-10-01 宝山钢铁股份有限公司 一种高强度高韧性耐磨钢板及其制造方法
WO2014045552A1 (ja) * 2012-09-19 2014-03-27 Jfeスチール株式会社 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
JP6105264B2 (ja) * 2012-12-05 2017-03-29 Jfeスチール株式会社 耐アルコール腐食性に優れた鋼材
JP6007847B2 (ja) * 2013-03-28 2016-10-12 Jfeスチール株式会社 低温靭性を有する耐磨耗厚鋼板およびその製造方法
EP2789699B1 (en) 2013-08-30 2016-12-28 Rautaruukki Oy A high-hardness hot-rolled steel product, and a method of manufacturing the same
KR101446133B1 (ko) * 2013-12-18 2014-10-01 주식회사 세아베스틸 강도 및 인성이 우수한 질화강 및 그 제조방법
CN103938092B (zh) * 2014-03-24 2016-05-11 济钢集团有限公司 一种高疲劳强度热成型重型卡车桥壳钢板
CN104060177A (zh) * 2014-07-01 2014-09-24 南通志邦新材料科技有限公司 一种高韧性弹簧钢
CN104152802A (zh) * 2014-07-16 2014-11-19 安徽省三方耐磨股份有限公司 一种新型球磨机耐磨衬板
CN104498831B (zh) * 2014-10-26 2017-02-15 驻马店市三山耐磨材料有限公司 湿磨机专用低碳中铬合金钢耐磨衬板
CN104611638A (zh) * 2015-02-10 2015-05-13 苏州科胜仓储物流设备有限公司 一种抗震耐火型牛腿梁用型材及其处理工艺
CN104831191B (zh) * 2015-04-22 2017-09-26 山东钢铁股份有限公司 一种易焊接的具有耐蚀性能的nm360级耐磨钢板
CN105002439B (zh) * 2015-07-30 2017-11-17 武汉钢铁有限公司 一种布氏硬度400级耐磨钢及其制造方法
KR101696094B1 (ko) * 2015-08-21 2017-01-13 주식회사 포스코 고 경도 강판 및 그 제조방법
BR102016001063B1 (pt) 2016-01-18 2021-06-08 Amsted Maxion Fundição E Equipamentos Ferroviários S/A liga de aço para componentes ferroviários, e processo de obtenção de uma liga de aço para componentes ferroviários
JP6477570B2 (ja) * 2016-03-31 2019-03-06 Jfeスチール株式会社 熱延鋼板およびその製造方法
AU2016403146B2 (en) * 2016-04-19 2019-09-19 Jfe Steel Corporation Abrasion-Resistant Steel Plate and Method of Producing Abrasion-Resistant Steel Plate
BR112018069402B1 (pt) 2016-04-19 2022-09-06 Jfe Steel Corporation Placa de aço resistente à abrasão e métodos para produzir placa de aço resistente à abrasão
EP3447156B1 (en) 2016-04-19 2019-11-06 JFE Steel Corporation Abrasion-resistant steel sheet and method for producing abrasion-resistant steel sheet
US11118240B2 (en) * 2016-04-19 2021-09-14 Jfe Steel Corporaton Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate
US11186889B2 (en) * 2016-08-10 2021-11-30 Jfe Steel Corporation High-strength steel sheet and manufacturing method therefor
BR112018017090A2 (pt) * 2016-09-15 2019-01-02 Nippon Steel & Sumitomo Metal Corp aço resistente à abrasão
CN106759629A (zh) * 2016-11-17 2017-05-31 哈尔滨光霞金属材料有限公司 一种挖掘机斗齿
CN106498295A (zh) * 2016-11-17 2017-03-15 哈尔滨光霞金属材料有限公司 高强度耐磨钢及其制造方法
JP6607209B2 (ja) * 2017-02-03 2019-11-20 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP6610575B2 (ja) * 2017-02-03 2019-11-27 Jfeスチール株式会社 耐摩耗鋼板および耐摩耗鋼板の製造方法
US20200199702A1 (en) * 2017-08-25 2020-06-25 Nippon Steel Nisshin Co., Ltd. Wear-resistant steel sheet having excellent toughness and production method
CN108048758A (zh) * 2017-12-15 2018-05-18 苏州赛斯德工程设备有限公司 一种户外用高强度防腐钢板及其加工工艺
KR102031443B1 (ko) * 2017-12-22 2019-11-08 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
KR102045646B1 (ko) * 2017-12-26 2019-11-15 주식회사 포스코 재질 균일성이 우수한 내마모 강판 및 그 제조방법
CN108517465B (zh) * 2018-05-15 2019-06-28 马钢(集团)控股有限公司 一种铌钛铬硼合金化耐磨钢及其制备方法
CN108676975B (zh) * 2018-06-01 2020-02-07 马鞍山钢铁股份有限公司 一种去除金属焊缝中偏析缺陷的热处理方法
CN110763612B (zh) * 2018-07-25 2022-10-11 中国石油化工股份有限公司 一种研究马氏体对奥氏体钢应力腐蚀开裂性能影响的方法
CN110284064B (zh) * 2019-07-18 2021-08-31 西华大学 一种高强度含硼钢及其制备方法
CN110846586B (zh) * 2019-12-16 2021-01-29 北京机科国创轻量化科学研究院有限公司 一种高强韧高耐磨钢球用钢及其制备方法
CN114829649B (zh) * 2019-12-23 2023-09-29 日本制铁株式会社 热轧钢板
CN114774772B (zh) * 2022-03-07 2023-10-31 江阴兴澄特种钢铁有限公司 一种耐腐蚀500hb马氏体耐磨钢板及其生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172550A (ja) * 1987-12-25 1989-07-07 Nippon Steel Corp 耐熱亀裂性に優れた高硬度高靭性耐摩耗鋼
JPH0551691A (ja) 1991-03-11 1993-03-02 Sumitomo Metal Ind Ltd 耐遅れ破壊性に優れた耐摩耗性鋼板とその製造方法
JPH08295990A (ja) 1995-04-27 1996-11-12 Creusot Loire Ind 耐磨耗性が高い鋼と鋼製品の製造方法
JPH09118950A (ja) * 1995-10-24 1997-05-06 Nippon Steel Corp 厚手高硬度高靱性耐摩耗鋼およびその製造方法
JP2002080930A (ja) 2000-09-11 2002-03-22 Nkk Corp 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法
JP2002115024A (ja) 2000-10-06 2002-04-19 Nkk Corp 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法
JP2004162120A (ja) 2002-11-13 2004-06-10 Nippon Steel Corp 溶接性・溶接部の耐磨耗性および耐食性に優れた耐摩耗鋼およびその製造方法
JP2007070713A (ja) * 2005-09-09 2007-03-22 Nippon Steel Corp 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法
JP2009030092A (ja) * 2007-07-26 2009-02-12 Jfe Steel Kk 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP2009030093A (ja) * 2007-07-26 2009-02-12 Jfe Steel Kk 耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP2010121191A (ja) * 2008-11-21 2010-06-03 Nippon Steel Corp 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543619B2 (ja) * 1997-06-26 2004-07-14 住友金属工業株式会社 高靱性耐摩耗鋼およびその製造方法
JP4058840B2 (ja) * 1999-04-09 2008-03-12 住友金属工業株式会社 靭性と耐硫化物応力腐食割れ性に優れる油井用鋼およびその製造方法
JP4977876B2 (ja) * 2007-03-30 2012-07-18 Jfeスチール株式会社 母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法
US7862667B2 (en) * 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
JP5145805B2 (ja) 2007-07-26 2013-02-20 Jfeスチール株式会社 ガス切断面性状および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
US8679265B2 (en) * 2007-11-22 2014-03-25 Kobe Steel, Ltd. High-strength cold-rolled steel sheet
JP5251208B2 (ja) * 2008-03-28 2013-07-31 Jfeスチール株式会社 高強度鋼板とその製造方法
JP5866820B2 (ja) * 2010-06-30 2016-02-24 Jfeスチール株式会社 溶接部靭性および耐遅れ破壊特性に優れた耐磨耗鋼板
JP2012031511A (ja) 2010-06-30 2012-02-16 Jfe Steel Corp 多層盛溶接部靭性と耐遅れ破壊特性に優れた耐磨耗鋼板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172550A (ja) * 1987-12-25 1989-07-07 Nippon Steel Corp 耐熱亀裂性に優れた高硬度高靭性耐摩耗鋼
JPH0551691A (ja) 1991-03-11 1993-03-02 Sumitomo Metal Ind Ltd 耐遅れ破壊性に優れた耐摩耗性鋼板とその製造方法
JPH08295990A (ja) 1995-04-27 1996-11-12 Creusot Loire Ind 耐磨耗性が高い鋼と鋼製品の製造方法
JPH09118950A (ja) * 1995-10-24 1997-05-06 Nippon Steel Corp 厚手高硬度高靱性耐摩耗鋼およびその製造方法
JP2002080930A (ja) 2000-09-11 2002-03-22 Nkk Corp 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法
JP2002115024A (ja) 2000-10-06 2002-04-19 Nkk Corp 靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法
JP2004162120A (ja) 2002-11-13 2004-06-10 Nippon Steel Corp 溶接性・溶接部の耐磨耗性および耐食性に優れた耐摩耗鋼およびその製造方法
JP2007070713A (ja) * 2005-09-09 2007-03-22 Nippon Steel Corp 使用中の硬さ変化が少ない高靭性耐摩耗鋼およびその製造方法
JP2009030092A (ja) * 2007-07-26 2009-02-12 Jfe Steel Kk 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP2009030093A (ja) * 2007-07-26 2009-02-12 Jfe Steel Kk 耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板
JP2010121191A (ja) * 2008-11-21 2010-06-03 Nippon Steel Corp 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Japanese Society for Strength and Fracture of Materials", 1985, JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE
See also references of EP2692890A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013297928B2 (en) * 2012-07-30 2016-06-02 Jfe Steel Corporation Wear resistant steel plate and manufacturing process therefor
US9738957B2 (en) 2012-07-30 2017-08-22 Jfe Steel Corporation Wear resistant steel plate and manufacturing process therefor
CN104508166A (zh) * 2012-07-30 2015-04-08 杰富意钢铁株式会社 耐磨钢板及其制造方法
EP2942415A4 (en) * 2013-03-28 2016-03-02 Jfe Steel Corp ABRASIVE STEEL PLATE WITH TEMPERATURE TEMPERATURE AND RESISTANCE TO HYDROGEN SPREADING, AND MANUFACTURING METHOD THEREFOR
US10253385B2 (en) 2013-03-28 2019-04-09 Jfe Steel Corporation Abrasion resistant steel plate having excellent low-temperature toughness and hydrogen embrittlement resistance and method for manufacturing the same
US10745785B2 (en) * 2013-03-28 2020-08-18 Baoshan Iron & Steel Co., Ltd. High-performance low-alloy wear-resistant steel plate and method of manufacturing the same
CN105189803A (zh) * 2013-03-28 2015-12-23 杰富意钢铁株式会社 具有低温韧性及耐氢脆性的耐磨厚钢板及其制造方法
US20160032432A1 (en) * 2013-03-28 2016-02-04 Baoshan Iron & Steel Co., Ltd. High-performance low-alloy wear-resistant steel and method of manufacturing the same
US10106875B2 (en) 2013-03-29 2018-10-23 Jfe Steel Corporation Steel material, hydrogen container, method for producing the steel material, and method for producing the hydrogen container
EP2980246A4 (en) * 2013-03-29 2016-03-09 Jfe Steel Corp STEEL MATERIAL AND HYDROGEN CONTAINER AND METHODS OF MANUFACTURING THE SAME
CN105102657A (zh) * 2013-03-29 2015-11-25 杰富意钢铁株式会社 钢材及氢用容器、以及它们的制造方法
CN103243277B (zh) * 2013-05-10 2015-08-19 武汉钢铁(集团)公司 一种hb400级抗裂纹高强度马氏体耐磨钢及生产方法
CN103243277A (zh) * 2013-05-10 2013-08-14 武汉钢铁(集团)公司 一种hb400级抗裂纹高强度马氏体耐磨钢及生产方法
EP3098331A4 (en) * 2014-01-28 2017-01-25 Jfe Steel Corporation Wear-resistant steel plate and process for producing same
US10662493B2 (en) 2014-01-28 2020-05-26 Jfe Steel Corporation Abrasion-resistant steel plate and method for manufacturing the same
CN104213041A (zh) * 2014-08-28 2014-12-17 南京赛达机械制造有限公司 汽轮机叶片用耐磨损钢及其生产工艺
CN104962834A (zh) * 2015-06-14 2015-10-07 秦皇岛首秦金属材料有限公司 一种高韧性、布氏硬度稳定特厚耐磨钢及其制备方法
CN110358972A (zh) * 2019-07-08 2019-10-22 邯郸钢铁集团有限责任公司 一种含v微合金化厚规格耐磨钢及其生产方法
CN110616371A (zh) * 2019-09-25 2019-12-27 邯郸钢铁集团有限责任公司 辊压圈圆成型压路机振轮用耐磨钢及其生产方法

Also Published As

Publication number Publication date
MX2013011154A (es) 2013-11-01
CN103459635B (zh) 2016-08-24
EP2692890A4 (en) 2014-12-03
PE20180642A1 (es) 2018-04-16
CL2013002757A1 (es) 2014-04-25
AU2012233197A1 (en) 2013-10-03
JP2012214891A (ja) 2012-11-08
CN103459635A (zh) 2013-12-18
KR20130133036A (ko) 2013-12-05
EP2692890A1 (en) 2014-02-05
AU2012233197B8 (en) 2015-07-30
US9879334B2 (en) 2018-01-30
JP6102072B2 (ja) 2017-03-29
MX348365B (es) 2017-06-08
AU2012233197B2 (en) 2015-07-23
EP2692890B1 (en) 2018-07-25
US20140090755A1 (en) 2014-04-03
BR112013025002B1 (pt) 2023-09-26
PE20141712A1 (es) 2014-11-28
BR112013025002A2 (pt) 2017-01-17

Similar Documents

Publication Publication Date Title
WO2012133910A1 (ja) 耐応力腐食割れ性に優れた耐磨耗鋼板およびその製造方法
KR101699582B1 (ko) 내응력 부식 균열성이 우수한 내마모 강판 및 그 제조 방법
JP5648769B2 (ja) 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
JP4735191B2 (ja) 低温靭性に優れた耐摩耗鋼板およびその製造方法
JP5655356B2 (ja) 低温焼戻脆化割れ性に優れた耐摩耗鋼板
WO2014020891A1 (ja) 耐摩耗鋼板およびその製造方法
AU2011272249C1 (en) Abrasion resistant steel plate which exhibits excellent weld toughness and excellent delayed fracture resistance
WO2012002567A1 (ja) 溶接部の靭性と耐遅れ破壊特性に優れた耐磨耗鋼板
JP6540764B2 (ja) 耐摩耗鋼板およびその製造方法
JP2007092155A (ja) 低温靭性に優れた耐摩耗鋼板およびその製造方法
JP2011179122A (ja) 低温靭性に優れた耐摩耗鋼板
JP6245220B2 (ja) 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板
JP7226598B2 (ja) 耐摩耗鋼板およびその製造方法
JP2007197810A (ja) 耐摩耗鋼板
JP2015193873A (ja) 腐食環境における耐摩耗性に優れた厚鋼板
JP2016160513A (ja) 耐摩耗鋼板およびその製造方法
JP2007231320A (ja) 耐摩耗鋼板
JP2007231321A (ja) 耐摩耗鋼板
JP2020193380A (ja) 耐摩耗鋼板およびその製造方法
JP2012177192A (ja) 引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013002757

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: 002140-2013

Country of ref document: PE

Ref document number: MX/A/2013/011154

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012765557

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012233197

Country of ref document: AU

Date of ref document: 20120328

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137026383

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14008104

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013025002

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013025002

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130927