WO2012113208A1 - 混凝土泵送设备的动力驱动装置和混凝土泵送设备 - Google Patents

混凝土泵送设备的动力驱动装置和混凝土泵送设备 Download PDF

Info

Publication number
WO2012113208A1
WO2012113208A1 PCT/CN2011/078570 CN2011078570W WO2012113208A1 WO 2012113208 A1 WO2012113208 A1 WO 2012113208A1 CN 2011078570 W CN2011078570 W CN 2011078570W WO 2012113208 A1 WO2012113208 A1 WO 2012113208A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
hydraulic pump
valve
power source
power
Prior art date
Application number
PCT/CN2011/078570
Other languages
English (en)
French (fr)
Inventor
刘波
郭岗
裴杰
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Publication of WO2012113208A1 publication Critical patent/WO2012113208A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/214Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being hydrotransformers

Definitions

  • the present invention relates to a power drive apparatus for a concrete pumping apparatus and a concrete pumping apparatus including the power drive apparatus.
  • CN201386294Y discloses a dual power device for construction machinery, as shown in Fig. 1, the device comprises a first power source 1, a second power source 2, a first hydraulic pump 3, a hydraulic motor 6, a transfer case 7 and a second a hydraulic pump 8, the first power source 1 is drivingly connected to a first power input end of the transfer case 7 through the first hydraulic pump 3 and a hydraulic motor 6, and the second power source 2 is drivingly connected to the The second power input end of the transfer case 7 is connected to the second hydraulic pump 8 by the power output end of the transfer case 7.
  • the dual power device for construction machinery has two power output routes, and the first power output route is: the first power source 1 drives the first hydraulic pump 3, the first hydraulic pump 3 drives the hydraulic motor 6 to rotate, and the hydraulic motor 6 passes the minute
  • the movable box 7 drives the second hydraulic pump 8, and the second hydraulic pump 8 drives the working element to operate;
  • the second power output route is: the second power source 2 drives the second hydraulic pump 8 through the transfer case 7, the second hydraulic pump 8 then drive the working component to work.
  • the above-described dual power unit for construction machinery has an advantage in that the first power source 1 and the second power source 2 can be set as the motor and the engine, respectively, so that the second hydraulic pump 8 can be driven by the motor where there is an external power source.
  • the present invention provides a power driving device for a concrete pumping apparatus, the device comprising a first power source, a second power source, a first hydraulic pump, a hydraulic motor, a transfer case and a second hydraulic pump,
  • the first power source is coupled to a first power input of the transfer case by the first hydraulic pump and a hydraulic motor
  • the second power source is coupled to a second power input of the transfer case
  • the power output end of the transfer case is connected to the second hydraulic pump, and the second hydraulic pump hydraulically drives the working element through the hydraulic drive line, wherein the oil outlet of the first hydraulic pump is hydraulically connected To the hydraulic drive line.
  • the apparatus includes a hydraulic control element for controlling an oil outlet of the first hydraulic pump to selectively communicate with or communicate with an oil inlet of the hydraulic motor.
  • the hydraulic control element comprises a first cartridge valve and a second cartridge valve, wherein the two working ports of the first cartridge valve respectively correspond to the oil outlet of the first hydraulic pump and the hydraulic pressure
  • the oil inlet of the motor is hydraulically connected
  • the two working ports of the second cartridge valve are respectively hydraulically connected to the oil outlet of the first hydraulic pump and the hydraulic drive line.
  • the hydraulic control element comprises a reversing valve, and the two working ports of the reversing valve are respectively hydraulically connected with the control port of the first cartridge valve and the control port of the second cartridge valve .
  • the oil inlet of the reversing valve is hydraulically connected to the oil outlet of the first hydraulic pump.
  • the oil inlet of the reversing valve is hydraulically connected to the oil outlet of the second hydraulic pump.
  • a first one-way valve is connected in series between the oil inlet of the reversing valve and the oil outlet of the first hydraulic pump, and the oil inlet of the reversing valve and the first A second check valve is connected in series between the oil outlets of the two hydraulic pumps.
  • the hydraulic control element comprises a two-position three-way reversing valve, the oil inlet of the two-position three-way reversing valve is hydraulically connected to the oil outlet of the first hydraulic pump, and one working port is hydraulically connected to The oil inlet of the hydraulic motor and the other working port are hydraulically connected to the hydraulic drive line.
  • the hydraulic drive line is connected in series with a first reversing valve, and the oil outlet of the first hydraulic pump is hydraulically connected to the first between the first reversing valve and the second hydraulic pump Hydraulically driven piping.
  • the hydraulic drive line is connected in series with a first reversing valve, and the oil outlet of the first hydraulic pump is hydraulically connected to the first reversing valve and the working element through a second reversing valve The hydraulic drive line between the two.
  • the first power source is an electric motor
  • the second power source is an engine
  • the present invention provides a concrete pumping apparatus, wherein the concrete pumping apparatus comprises the above-described power driving apparatus.
  • the power driving device of the concrete pumping device provided by the present invention since the oil outlet of the first hydraulic pump is hydraulically connected to the hydraulic drive line, the power driving device of the concrete pumping device provided by the present invention has three powers The output route, the first power output route is: the first power source drives the first hydraulic pump, the first hydraulic pump drives the hydraulic motor to rotate, the hydraulic motor drives the second hydraulic pump through the transfer case, and the second hydraulic pump drives the working element
  • the second power output route is: the second power source drives the second hydraulic pump through the transfer case, and the second hydraulic pump drives the working component to work
  • the third power output route is: the first power source drives the first hydraulic pressure The pump, while the second power source drives the second hydraulic pump through the transfer case, and the first hydraulic pump and the second hydraulic pump merge to drive the working element to work.
  • the power driving device of the concrete pumping device provided by the invention has the third power output route, the power requirement of the high-pressure large-displacement concrete pumping device can be met, and the requirements of the high-level pumping can be met, thereby greatly improving Pumping performance of concrete pumping equipment.
  • the first power source or the second power source can be used for power supply during low-pressure pumping, and the first power source and the second power source are used for power supply during high-pressure pumping, the concrete pumping equipment is improved. The adaptability of working conditions reduces the cost per concrete during high/low pressure pumping, thus achieving high economic benefits.
  • FIG. 1 is a schematic diagram of a schematic diagram of a dual power drive device for a conventional construction machine
  • FIG. 2 is a schematic diagram of a power driving device of a concrete pumping device provided by the present invention
  • FIG. 3 is a schematic structural view of an embodiment of a power driving device for a concrete pumping device provided by the present invention
  • Figure 4 is a schematic view showing the structure of another embodiment of the power driving device of the concrete pumping device provided by the present invention.
  • Fig. 5 is a structural schematic view showing still another embodiment of the power driving device of the concrete pumping apparatus provided by the present invention. Description of the reference numerals
  • first power source 1: first power source; 2: second power source; 3: first hydraulic pump; 4: first hydraulic line; 5: drive shaft; 6: hydraulic motor; 7: transfer case; Pump; 9: second hydraulic line; 10: second check valve; 11: reversing valve; 12: first cartridge valve; 13: second cartridge valve; 14: working element; 15: two three Through-way valve; 16: hydraulic drive line; 17: first reversing valve; 18: second reversing valve; 19: first check valve; 20: first relief valve; 21: first pressure gauge 22: third check valve; 23: filling valve; 24: second relief valve; 25: second pressure gauge; 26: fuel tank; 27: filter.
  • drive connection means the passage of a power transmission member (for example, a transmission shaft, a hydraulic pipe), unless otherwise stated. Roads, etc. are connected to achieve power transfer when needed;
  • hydraulic connection means connecting through hydraulic lines (and necessary hydraulic components) to achieve hydraulic oil transfer when needed.
  • the present invention provides a power driving device for a concrete pumping apparatus, which includes a first power source 1, a second power source 2, a first hydraulic pump 3, a hydraulic motor 6, a transfer case 7, and a second hydraulic pump 8.
  • the first power source 1 is drivingly connected to the first power input end of the transfer case 7 through the first hydraulic pump 3 and the hydraulic motor 6, and the second power source 2 is drivingly connected to the transfer a second power input end of the transfer case 7 , the power output end of the transfer case 7 is connected to the second hydraulic pump 8 , and the second hydraulic pump 8 hydraulically drives the working element 14 via the hydraulic drive line 16 , wherein
  • the oil outlet of the first hydraulic pump 3 is hydraulically connected to the hydraulic drive line 16.
  • the power driving device of the concrete pumping device provided by the present invention since the oil outlet of the first hydraulic pump 3 is hydraulically connected to the hydraulic drive line 16, the power driving device of the concrete pumping device provided by the present invention has The three power output routes, the first power output route is: the first power source 1 drives the first hydraulic pump 3, the first hydraulic pump 3 drives the hydraulic motor 6 to rotate, and the hydraulic motor 6 drives the second hydraulic pump 8 through the transfer case 7.
  • the second hydraulic pump 8 drives the working element 14 to operate;
  • the second power output route is: the second power source 2 drives the second hydraulic pump 8 through the transfer case 7, and the second hydraulic pump 8 drives the working element 14 to operate;
  • the third power output route is: the first power source 1 drives the first hydraulic pump 3, while the second power source 2 drives the second hydraulic pump 8 through the transfer case 7, and the first hydraulic pump 3 and the second hydraulic pump 8 merge
  • the working element 14 is then driven to work. Since the power driving device of the concrete pumping device provided by the invention has the third power output route, the power requirement of the high-pressure large-displacement concrete pumping device can be met, and the requirements of the high-level pumping can be met, thereby greatly improving Pumping performance of concrete pumping equipment.
  • first power source 1 or the second power source 2 can be used for power supply during low pressure pumping, and high pressure pumping At the same time, the first power source 1 and the second power source 2 are used to provide power, so that the adaptability of the concrete pumping equipment is improved, and the cost per concrete during high/low pressure pumping is reduced, thereby achieving a higher Economic benefits.
  • the oil outlet of the first hydraulic pump 3 can be hydraulically connected to the hydraulic motor 6 through the first hydraulic line 4 and hydraulically connected to the hydraulic drive line 16 via the second hydraulic line 9.
  • the oil outlet of the first hydraulic pump 3 is selectively communicated with the oil inlet of the hydraulic motor 6 or with the hydraulic pressure
  • the drive line 16 is in communication, preferably, the device includes a hydraulic control element for controlling the oil outlet of the first hydraulic pump 3 to selectively communicate with the oil inlet of the hydraulic motor 6 or with the hydraulic drive Line 16 is connected.
  • the hydraulic control element can be appropriately selected to achieve the above functions.
  • the hydraulic control element includes a first cartridge valve 12 and a second cartridge valve 13, and the two working ports of the first cartridge valve 12 are respectively Hydraulically connected to the oil outlet of the first hydraulic pump 3 and the oil inlet of the hydraulic motor 6, the two working ports of the second cartridge valve 13 and the outlet of the first hydraulic pump 3, respectively
  • the oil port and the hydraulic drive line 16 are hydraulically connected.
  • the opening and closing of the first cartridge valve 12 and the second cartridge valve 13 the opening and closing of the first hydraulic line 4 and the second hydraulic line 9 can be conveniently controlled, thereby selectively achieving the first A power output route or a third power output route.
  • This type of control can be used when the displacement of the first hydraulic pump 3 is relatively large.
  • the hydraulic control element comprises a reversing valve 11, the two working ports of the reversing valve 11 respectively
  • the control port of the first cartridge valve 12 and the control port of the second cartridge valve 13 are hydraulically connected.
  • the reversing valve 11 can appropriately select various reversing valves, and the three-position four-way reversing valve is shown in FIG.
  • the three-position four-way reversing valve When it is required to work with the first power output route, the three-position four-way reversing valve is in the left position, the first cartridge valve 12 is opened, and the second cartridge valve 13 is closed; when the second power output route is required to work The three-position four-way reversing valve is in the middle position, and the first cartridge valve 12 and the second cartridge valve 13 are both closed; when the third power output route is required to be operated, the three-position four-way reversing valve is in the right position. , the first The cartridge valve 12 is closed and the second cartridge valve 13 is opened.
  • the oil inlet of the reversing valve 11 is hydraulically connected to the oil outlet of the first hydraulic pump 3.
  • oil can be supplied to the switching valve 11 through the first hydraulic pump 3, so that it is not necessary to additionally provide an oil supply device, which is convenient to arrange and save energy.
  • the oil inlet of the reversing valve 11 is hydraulically connected to the oil outlet of the second hydraulic pump 8.
  • the oil can be supplied to the reversing valve 11 through the second hydraulic pump 8, so that it is not necessary to additionally provide an oil supply device, which is convenient to arrange and save energy.
  • the oil inlet of the reversing valve 11 is simultaneously hydraulically connected to the oil outlet of the first hydraulic pump 3 and the oil outlet of the second hydraulic pump 8.
  • the oil inlet of the reversing valve 11 may also be hydraulically connected only to the oil outlet of the first hydraulic pump 3 or the oil outlet of the second hydraulic pump 8.
  • the first cartridge valve 12 and the second cartridge valve are ensured. 13 is opened and closed, preferably, a first check valve 19 is connected in series between the oil inlet of the reversing valve 11 and the oil outlet of the first hydraulic pump 3, the reversing A second check valve 10 is connected in series to the line between the oil inlet of the valve 11 and the oil outlet of the second hydraulic pump 8.
  • the hydraulic control element includes a two-position three-way switching valve 15, and an oil inlet of the two-position three-way switching valve 15 is hydraulically connected to the first An oil outlet of a hydraulic pump 3, one working port is hydraulically connected to the oil inlet of the hydraulic motor 6, and the other working port is hydraulically connected to the hydraulic drive line 16.
  • the opening and closing of the first hydraulic line 4 and the second hydraulic line 9 can be conveniently controlled, thereby selectively implementing the first power output route or the third line. Power output route.
  • a first reversing valve 17 is serially connected to the hydraulic drive line 16, and an oil outlet of the first hydraulic pump 3 is hydraulically connected to the first The hydraulic drive line 16 between a reversing valve 17 and the second hydraulic pump 8.
  • Such a solution can be used when the displacements of the first hydraulic pump 3 and the second hydraulic pump 8 are small, and the flow rate of the oil discharged from the first hydraulic pump 3 and the oil discharged from the second hydraulic pump 8 is merged. It is smaller than the rated flow rate of the first reversing valve 17. In this case, the oil discharged from the first hydraulic pump 3 may first merge with the oil discharged from the second hydraulic pump 8, and may be reversed by the first switching valve 17.
  • the hydraulic drive line 16 is connected in series with a first reversing valve 17, and the oil outlet of the first hydraulic pump 3 passes through the second reversing direction.
  • Valve 18 is hydraulically coupled to the hydraulic drive line 16 between the first diverter valve 17 and the working element 14.
  • This solution can be used in the case where one of the reversing valves cannot satisfy the total displacement of the first hydraulic pump 3 and the second hydraulic pump 8.
  • the oil discharged from the first hydraulic pump 3 and the oil discharged from the second hydraulic pump 8 may be reversed by the second switching valve 18 and the first reversing valve 17, respectively, and then merged. Preventing the flow requirements from being met in the case where only one directional control valve is provided.
  • the first reversing valve 17 and the second reversing valve 18 can appropriately select various reversing valves, such as electro-hydraulic reversing valves.
  • the first power source 1 is used to drive the first hydraulic pump 3 to operate, and the second power source 2 is generally connected to the second power input end of the transfer case 7 via the transmission shaft 5, thereby driving the second hydraulic pump 8 jobs.
  • the first power source 1 may be an electric motor or an engine
  • the second power source 2 may also be an electric motor or an engine.
  • the engine can be a gasoline engine or a diesel engine.
  • the first power source 1 is an electric motor and the second power source 2 is an engine.
  • the second hydraulic pump 8 can be driven by the electric motor in the place where the external power source is used, thereby achieving the purpose of energy saving and environmental protection, and reducing the use cost; the second hydraulic pump 8 is driven by the engine in the place where the power is cut off or no external power source is used, Easy to use.
  • the concrete pumping device is a vehicle-mounted concrete pump or a concrete pump truck
  • the engine can advantageously select the chassis engine.
  • a first relief valve 20 for achieving overload protection is connected in series to the hydraulic line of the first hydraulic pump 3, and the first relief valve 20 can function as a safety valve.
  • the hydraulic circuit of the first hydraulic pump 3 may further be provided with a pressure measuring branch, and the pressure measuring branch is provided with a first pressure gauge 21 for measuring the pumping of the first hydraulic pump 3 pressure.
  • a third check valve 22 is provided between the oil port A and the port B of the hydraulic motor 6 which are mutually inlet and outlet.
  • the port B of the hydraulic motor 6 is further provided with a liquid filling branch, and the liquid filling branch is provided with a filling valve 23, for example, a conventional one-way valve can be selected as the filling valve 23.
  • a second relief valve 24 for realizing overload protection is connected in series to the hydraulic line of the second hydraulic pump 8, and the second relief valve 24 can function as a safety valve.
  • the hydraulic circuit of the second hydraulic pump 8 may further be provided with a pressure measuring branch, and the pressure measuring branch is provided with a second pressure gauge 25 for measuring the pumping of the second hydraulic pump 8. pressure.
  • the first hydraulic pump 3 may be a fixed pump or a variable pump, and may be selected according to specific needs.
  • the structures of the two-way valve 10, the two-position three-way reversing valve 15, the first reversing valve 17, and the second reversing valve 18 are well known to those skilled in the art, and are not described herein again.
  • the working element 14 is typically a pumping cylinder for concrete pumping equipment.
  • the present invention provides a concrete pumping apparatus including the above-described power driving apparatus.
  • the concrete pumping device can be of various types, such as a vehicle-mounted hybrid Concrete pump or concrete pump truck.
  • the first power source 1 when the first power output route is adopted, the first power source 1 is activated, the second hydraulic circuit 9 is disconnected by the hydraulic control element, and the first hydraulic circuit 4 is turned on.
  • the first power source 1 drives the first hydraulic pump 3 to operate, the first hydraulic pump 3 drives the hydraulic motor 6 through the first hydraulic line 4, and the hydraulic motor 6 drives the second hydraulic pump 8 through the transfer case 7,
  • the second hydraulic pump 8 drives the working element 14.
  • the second power output route is adopted, the second power source 2 is activated, and when the second power source 2 is the chassis engine, the connection between the second power source 2 and the rear axle transmission shaft is also disconnected through the transfer case 7.
  • the second power source 2 is caused to drive the second hydraulic pump 8 through the transfer case 7, and the second hydraulic pump 8 drives the working element 14.
  • the first power source 1 and the second power source 2 are activated, the first hydraulic line 4 is disconnected by the hydraulic control element, and the second hydraulic line 9 is turned on, when the first When the second power source 2 is the chassis engine, the connection between the second power source 2 and the rear axle transmission shaft is also disconnected through the transfer case 7, so that the first power source 1 drives the first hydraulic pump 3 to operate, and the second power source 2, the second hydraulic pump 8 is driven by the transfer case 7, and the oil discharged from the first hydraulic pump 3 is merged with the oil discharged from the second hydraulic pump 8 through the second hydraulic line 9, and the combined oil is driven together.
  • Element 14 works.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

混凝土泵送设备的动力驱动装置和混凝土泵送设备 技术领域
本发明涉及混凝土泵送设备的动力驱动装置和包括该动力驱动装置的 混凝土泵送设备。 背景技术
CN201386294Y公开了一种工程机械用双动力装置,如图 1所示,该装 置包括第一动力源 1、 第二动力源 2、 第一液压泵 3、 液压马达 6、 分动箱 7 和第二液压泵 8,所述第一动力源 1通过所述第一液压泵 3和液压马达 6传 动连接到所述分动箱 7的第一动力输入端, 所述第二动力源 2传动连接到 所述分动箱 7的第二动力输入端, 所述分动箱 7的动力输出端传动连接所 述第二液压泵 8。该工程机械用双动力装置具有两条动力输出路线,第一条 动力输出路线为: 第一动力源 1驱动第一液压泵 3, 第一液压泵 3驱动液压 马达 6旋转, 液压马达 6通过分动箱 7驱动第二液压泵 8, 第二液压泵 8再 驱动工作元件工作; 第二条动力输出路线为: 第二动力源 2通过分动箱 7 驱动第二液压泵 8, 第二液压泵 8再驱动工作元件工作。上述工程机械用双 动力装置的优点在于可以分别将第一动力源 1和第二动力源 2设定为电动 机和发动机, 这样, 在有外用电源的地方就能通过电动机来驱动第二液压 泵 8, 达到节能和环保的目的, 降低了使用成本; 在停电或无外用电源的地 方就通过发动机驱动第二液压泵 8, 使用方便。但是, 由于第一动力源 1和 第二动力源 2不能同时工作, 所以无法满足高压大排量混凝土泵送设备的 需要。 发明内容
本发明的目的是提供一种能够满足高压大排量混凝土泵送设备对功率 的需求的混凝土泵送设备的动力驱动装置和包括该动力驱动装置的混凝土 泵送设备。
为了实现上述目的, 本发明提供了一种混凝土泵送设备的动力驱动装 置, 该装置包括第一动力源、 第二动力源、 第一液压泵、 液压马达、 分动 箱和第二液压泵, 所述第一动力源通过所述第一液压泵和液压马达传动连 接到所述分动箱的第一动力输入端, 所述第二动力源传动连接到所述分动 箱的第二动力输入端, 所述分动箱的动力输出端传动连接所述第二液压泵, 所述第二液压泵通过液压驱动管路液压驱动工作元件, 其中, 所述第一液 压泵的出油口液压连接到所述液压驱动管路。
优选地, 该装置包括液压控制元件, 用于控制所述第一液压泵的出油 口选择性地与所述液压马达的进油口连通或者与所述液压驱动管路连通。
优选地, 所述液压控制元件包括第一插装阀和第二插装阀, 所述第一 插装阀的两个工作油口分别与所述第一液压泵的出油口和所述液压马达的 进油口液压连接, 所述第二插装阀的两个工作油口分别与所述第一液压泵 的出油口和所述液压驱动管路液压连接。
优选地, 所述液压控制元件包括换向阀, 该换向阀的两个工作油口分 别与所述第一插装阀的控制油口和所述第二插装阀的控制油口液压连接。
优选地, 所述换向阀的进油口液压连接到所述第一液压泵的出油口。 优选地, 所述换向阀的进油口液压连接到所述第二液压泵的出油口。 优选地, 所述换向阀的进油口和所述第一液压泵的出油口之间的管路 上串接有第一单向阀, 所述换向阀的进油口和所述第二液压泵的出油口之 间的管路上串接有第二单向阀。
优选地, 所述液压控制元件包括二位三通换向阀, 该二位三通换向阀 的进油口液压连接到所述第一液压泵的出油口, 一个工作油口液压连接到 所述液压马达的进油口, 另一个工作油口液压连接到所述液压驱动管路。 优选地, 所述液压驱动管路上串接有第一换向阀, 所述第一液压泵的 出油口液压连接到所述第一换向阀与所述第二液压泵之间的所述液压驱动 管路。
优选地, 所述液压驱动管路上串接有第一换向阀, 所述第一液压泵的 出油口通过第二换向阀液压连接到所述第一换向阀与所述工作元件之间的 所述液压驱动管路。
优选地, 所述第一动力源为电动机, 所述第二动力源为发动机。
此外, 本发明还提供了一种混凝土泵送设备, 其中, 该混凝土泵送设 备包括上述动力驱动装置。
在本发明提供的混凝土泵送设备的动力驱动装置中, 由于第一液压泵 的出油口液压连接到所述液压驱动管路, 所以本发明提供的混凝土泵送设 备的动力驱动装置具有三条动力输出路线, 第一条动力输出路线为: 第一 动力源驱动第一液压泵, 第一液压泵驱动液压马达旋转, 液压马达通过分 动箱驱动第二液压泵, 第二液压泵再驱动工作元件工作; 第二条动力输出 路线为: 第二动力源通过分动箱驱动第二液压泵, 第二液压泵再驱动工作 元件工作; 第三条动力输出路线为: 第一动力源驱动第一液压泵, 同时第 二动力源通过分动箱驱动第二液压泵, 第一液压泵和第二液压泵合流后再 驱动工作元件工作。 由于本发明提供的混凝土泵送设备的动力驱动装置具 有第三条动力输出路线, 所以可以满足高压大排量混凝土泵送设备对功率 的需求, 同时能够满足高层泵送的要求, 从而极大地提高了混凝土泵送设 备的泵送性能。 此外, 由于在低压泵送时可以采用第一动力源或第二动力 源提供动力, 而在高压泵送时同时采用第一动力源和第二动力源提供动力, 所以提高了混凝土泵送设备的工况适应能力, 降低了高 /低压泵送时每方混 凝土的成本, 从而实现了较高的经济效益。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与下面的具体实施方式一起用于解释本发明, 但并不构成对本发明的限制。 在附图中:
图 1是现有工程机械用双动力驱动装置的原理性示意图;
图 2是本发明提供的混凝土泵送设备的动力驱动装置的原理性示意图; 图 3 是本发明提供的混凝土泵送设备的动力驱动装置的一种实施方式 的结构示意图;
图 4是本发明提供的混凝土泵送设备的动力驱动装置的另一种实施方 式的结构示意图;
图 5 是本发明提供的混凝土泵送设备的动力驱动装置的又一种实施方 式的结构示意图。 附图标记说明
1: 第一动力源; 2: 第二动力源; 3 : 第一液压泵; 4: 第一液压管路; 5: 传动轴; 6: 液压马达; 7: 分动箱; 8: 第二液压泵; 9: 第二液压管路; 10: 第二单向阀; 11 : 换向阀; 12: 第一插装阀; 13 : 第二插装阀; 14: 工作元件; 15 : 二位三通换向阀; 16 : 液压驱动管路; 17 : 第一换向阀; 18: 第二换向阀; 19: 第一单向阀; 20: 第一溢流阀; 21 : 第一压力表; 22: 第三单向阀; 23 : 充液阀; 24: 第二溢流阀; 25 : 第二压力表; 26: 油箱; 27 : 过滤器。 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。 应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明, 并不用于限制本发 明。
在对本发明的具体实施方式进行描述之前需要说明的是, 在未作相反 说明的情况下, 本发明中所使用的术语 "传动连接" 的含义为通过动力传 递部件 (例如, 传动轴、 液压管路等) 进行连接, 以在需要时实现动力的 传递; "液压连接" 的含义为通过液压管路 (以及必要的液压元件) 进行连 接, 以在需要时实现液压油的传送。
本发明提供了一种混凝土泵送设备的动力驱动装置, 该装置包括第一 动力源 1、 第二动力源 2、 第一液压泵 3、 液压马达 6、 分动箱 7和第二液 压泵 8,所述第一动力源 1通过所述第一液压泵 3和液压马达 6传动连接到 所述分动箱 7的第一动力输入端, 所述第二动力源 2传动连接到所述分动 箱 7的第二动力输入端, 所述分动箱 7的动力输出端传动连接所述第二液 压泵 8, 所述第二液压泵 8通过液压驱动管路 16液压驱动工作元件 14, 其 中, 所述第一液压泵 3的出油口液压连接到所述液压驱动管路 16。
在本发明提供的混凝土泵送设备的动力驱动装置中,由于第一液压泵 3 的出油口液压连接到所述液压驱动管路 16, 所以本发明提供的混凝土泵送 设备的动力驱动装置具有三条动力输出路线, 第一条动力输出路线为: 第 一动力源 1驱动第一液压泵 3,第一液压泵 3驱动液压马达 6旋转, 液压马 达 6通过分动箱 7驱动第二液压泵 8, 第二液压泵 8再驱动工作元件 14工 作;第二条动力输出路线为:第二动力源 2通过分动箱 7驱动第二液压泵 8, 第二液压泵 8再驱动工作元件 14工作; 第三条动力输出路线为: 第一动力 源 1驱动第一液压泵 3,同时第二动力源 2通过分动箱 7驱动第二液压泵 8, 第一液压泵 3和第二液压泵 8合流后再驱动工作元件 14工作。 由于本发明 提供的混凝土泵送设备的动力驱动装置具有第三条动力输出路线, 所以可 以满足高压大排量混凝土泵送设备对功率的需求, 同时能够满足高层泵送 的要求, 从而极大地提高了混凝土泵送设备的泵送性能。 此外, 由于在低 压泵送时可以采用第一动力源 1或第二动力源 2提供动力, 而在高压泵送 时同时采用第一动力源 1和第二动力源 2提供动力, 所以提高了混凝土泵 送设备的工况适应能力, 降低了高 /低压泵送时每方混凝土的成本, 从而实 现了较高的经济效益。
如图 2所示, 第一液压泵 3的出油口可以通过第一液压管路 4液压连 接到液压马达 6, 而通过第二液压管路 9液压连接到液压驱动管路 16。 为 了方便地控制第一液压管路 4和第二液压管路 9的通断, 使第一液压泵 3 的出油口选择性地与所述液压马达 6 的进油口连通或者与所述液压驱动管 路 16连通, 优选地, 该装置包括液压控制元件, 用于控制所述第一液压泵 3的出油口选择性地与所述液压马达 6的进油口连通或者与所述液压驱动管 路 16连通。 可以对液压控制元件进行适当选择, 以实现上述功能。
如图 3所示, 根据本发明的一种实施方式, 所述液压控制元件包括第 一插装阀 12和第二插装阀 13, 所述第一插装阀 12的两个工作油口分别与 所述第一液压泵 3的出油口和所述液压马达 6的进油口液压连接, 所述第 二插装阀 13的两个工作油口分别与所述第一液压泵 3的出油口和所述液压 驱动管路 16液压连接。 这样, 通过控制第一插装阀 12和第二插装阀 13的 开启和关闭, 可以方便地控制第一液压管路 4和第二液压管路 9的通断, 从而选择性地实现第一条动力输出路线或者第三条动力输出路线。 该种控 制方式可以在第一液压泵 3排量比较大的情况下使用。
为了方便地控制第一插装阀 12和第二插装阀 13的开启和关闭, 优选 地, 所述液压控制元件包括换向阀 11, 该换向阀 11的两个工作油口分别与 所述第一插装阀 12的控制油口和所述第二插装阀 13的控制油口液压连接。 换向阀 11可以适当地选择各种换向阀, 图 3所示的为三位四通换向阀。 当 需要采用第一条动力输出路线工作时, 三位四通换向阀处于左位, 第一插 装阀 12开启, 第二插装阀 13关闭; 当需要采用第二条动力输出路线工作 时, 三位四通换向阀处于中位, 第一插装阀 12和第二插装阀 13均关闭; 当需要采用第三条动力输出路线工作时, 三位四通换向阀处于右位, 第一 插装阀 12关闭, 第二插装阀 13开启。
根据本发明的一种优选实施方式, 所述换向阀 11的进油口液压连接到 所述第一液压泵 3的出油口。 这样, 可以通过第一液压泵 3向换向阀 11供 油, 从而无需额外地设置供油装置, 方便布置, 且节约能源。 根据本发明 的另一种优选实施方式, 所述换向阀 11的进油口液压连接到所述第二液压 泵 8的出油口。 这样, 可以通过第二液压泵 8向换向阀 11供油, 从而无需 额外地设置供油装置, 方便布置, 且节约能源。 在图 3所示的实施方式中, 换向阀 11的进油口同时液压连接到所述第一液压泵 3的出油口和所述第二 液压泵 8的出油口。 当然, 作为选择, 换向阀 11的进油口也可以只液压连 接到第一液压泵 3的出油口或者第二液压泵 8的出油口。
为了使换向阀 11的进油口压力为第一液压泵 3的出油口压力和第二液 压泵 8的出油口压力的最大值, 确保第一插装阀 12和第二插装阀 13的开 启和关闭, 优选地, 所述换向阀 11的进油口和所述第一液压泵 3的出油口 之间的管路上串接有第一单向阀 19,所述换向阀 11的进油口和所述第二液 压泵 8的出油口之间的管路上串接有第二单向阀 10。
如图 5所示, 根据本发明的另一种实施方式, 所述液压控制元件包括 二位三通换向阀 15,该二位三通换向阀 15的进油口液压连接到所述第一液 压泵 3的出油口, 一个工作油口液压连接到所述液压马达 6的进油口, 另 一个工作油口液压连接到所述液压驱动管路 16。 这样, 通过控制该二位三 通换向阀 15, 可以方便地控制第一液压管路 4和第二液压管路 9的通断, 从而选择性地实现第一条动力输出路线或者第三条动力输出路线。 如图 5 所示, 当需要采用第一条动力输出路线工作时, 二位三通换向阀 15处于右 位;当需要采用第三条动力输出路线工作时,二位三通换向阀 15处于左位; 而当需要采用第二条动力输出路线工作时, 可以将第一动力源 1 关闭, 而 只启动第二动力源 2。该种控制方式方便布置, 可以在第一液压泵 3排量比 较小的情况下使用。 如图 3所示, 根据本发明的一种实施方式, 所述液压驱动管路 16上串 接有第一换向阀 17, 所述第一液压泵 3的出油口液压连接到所述第一换向 阀 17与所述第二液压泵 8之间的所述液压驱动管路 16。该种方案可以在第 一液压泵 3和第二液压泵 8的排量较小的情况下使用, 保证第一液压泵 3 排出的油液和第二液压泵 8排出的油液合流后的流量小于第一换向阀 17的 额定流量。 在这种情况下, 第一液压泵 3 排出的油液可先与第二液压泵 8 排出的油液合流, 再通过第一换向阀 17进行换向。
如图 4所示, 根据本发明的另一种实施方式, 所述液压驱动管路 16上 串接有第一换向阀 17,所述第一液压泵 3的出油口通过第二换向阀 18液压 连接到所述第一换向阀 17与所述工作元件 14之间的所述液压驱动管路 16。 该种方案可以在一个换向阀无法满足第一液压泵 3和第二液压泵 8的总排 量的情况下使用。 在这种情况下, 可以使第一液压泵 3排出的油液和第二 液压泵 8排出的油液先分别经第二换向阀 18和第一换向阀 17换向后再合 流, 以防止在只设置一个换向阀的情况下, 无法满足通流要求。 所述第一 换向阀 17和第二换向阀 18可以适当地选择各种换向阀, 例如电液换向阀。
所述第一动力源 1用于驱动第一液压泵 3工作, 所述第二动力源 2通 常通过传动轴 5传动连接到分动箱 7的第二动力输入端, 从而驱动第二液 压泵 8工作。对第一动力源 1和第二动力源 2的具体类型没有特别的要求, 例如第一动力源 1可以为电动机或者发动机, 第二动力源 2也可以为电动 机或者发动机。 而所述发动机又可以为汽油机或者柴油机。 根据本发明的 一种优选实施方式, 所述第一动力源 1为电动机, 所述第二动力源 2为发 动机。 这样, 在有外用电源的地方就能通过电动机来驱动第二液压泵 8, 达 到节能和环保的目的, 降低了使用成本; 在停电或无外用电源的地方就通 过发动机驱动第二液压泵 8, 使用方便。 需要说明的是, 当混凝土泵送设备 为车载式混凝土泵或者混凝土输送泵车时, 所述发动机可以有利地选择底 盘发动机。 如图 3至图 5所示, 第一液压泵 3的液压管路上串接有用于实现过载 保护的第一溢流阀 20, 该第一溢流阀 20可以起到安全阀的作用。 此外, 第 一液压泵 3 的液压管路上还可以设置有测压支路, 该测压支路上设置有第 一压力表 21, 该第一压力表 21用于测定第一液压泵 3的泵送压力。
如图 3至图 5所示, 液压马达 6的互为进油口和出油口的油口 A和油 口 B之间设置有第三单向阀 22。 此外, 液压马达 6的油口 B还设置有充液 支路, 该充液支路上设置有充液阀 23, 例如可以选择常规的单向阀作为充 液阀 23。 这样, 当需要使用第二动力源 2驱动第二液压泵 8工作时, 由于 第二液压泵 8通常与液压马达 6同轴设置, 所以液压马达 6会随着第二液 压泵 8空转,此时液压马达 6的油口 A部分油液会通过第三单向阀 22流回 液压马达 6的油口 B。 同时, 充液阀 23可以有效地保证在液压马达 6空转 时油口 B不会出现吸空现象, 从而可以延长液压马达 6的使用寿命。
如图 3至图 5所示, 第二液压泵 8的液压管路上串接有用于实现过载 保护的第二溢流阀 24, 该第二溢流阀 24可以起到安全阀的作用。 此外, 第 二液压泵 8 的液压管路上还可以设置有测压支路, 该测压支路上设置有第 二压力表 25, 该第二压力表 25用于测定第二液压泵 8的泵送压力。
所述第一液压泵 3可以为定量泵, 也可以为变量泵, 根据具体需要进 行选择。 所述第一液压泵 3、 液压马达 6、 分动箱 7、 第二液压泵 8、 第一 插装阀 12、 第二插装阀 13、 换向阀 11、 第一单向阀 19、 第二单向阀 10、 二位三通换向阀 15、 第一换向阀 17和第二换向阀 18的结构为本领域技术 人员所公知, 在此不再赘述。 所述工作元件 14通常为混凝土泵送设备的泵 送油缸。 另外, 图中未加以说明的附图标记 26代表油箱, 附图标记 27代 表过滤器, 该两个液压元件的结构和功能为本领域技术人员所公知, 在此 不再赘述。
此外, 本发明还提供了一种混凝土泵送设备, 该混凝土泵送设备包括 上述动力驱动装置。 所述混凝土泵送设备可以为各种类型, 例如车载式混 凝土泵或者混凝土输送泵车。
下面结合图 2至图 5描述本发明提供的混凝土泵送设备的动力驱动装 置的操作。
如图 2至图 5所示,当采用第一条动力输出路线时,启动第一动力源 1, 通过液压控制元件将第二液压管路 9断开, 同时将第一液压管路 4接通, 这样, 第一动力源 1驱动第一液压泵 3工作, 第一液压泵 3通过第一液压 管路 4驱动液压马达 6, 液压马达 6又通过分动箱 7驱动第二液压泵 8, 第 二液压泵 8驱动工作元件 14。 当采用第二条动力输出路线时, 启动第二动 力源 2, 当第二动力源 2为底盘发动机时, 还要通过分动箱 7断开第二动力 源 2与后桥传动轴的连接,使第二动力源 2通过分动箱 7驱动第二液压泵 8, 第二液压泵 8驱动工作元件 14。 当采用第三条动力输出路线时, 启动第一 动力源 1和第二动力源 2, 通过液压控制元件将第一液压管路 4断开, 同时 将第二液压管路 9接通, 当第二动力源 2为底盘发动机时, 还要通过分动 箱 7断开第二动力源 2与后桥传动轴的连接, 这样, 第一动力源 1驱动第 一液压泵 3工作, 第二动力源 2通过分动箱 7驱动第二液压泵 8工作, 第 一液压泵 3排出的油液通过第二液压管路 9与第二液压泵 8排出的油液合 流, 合流后的油液共同驱动工作元件 14工作。
以上结合附图详细描述了本发明的优选实施方式, 但是, 本发明并不 限于上述实施方式中的具体细节, 在本发明的技术构思范围内, 可以对本 发明的技术方案进行多种简单变型, 这些简单变型均属于本发明的保护范 围。
此外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只要 其不违背本发明的思想, 其同样应当视为本发明所公开的内容。

Claims

权利要求
1、一种混凝土泵送设备的动力驱动装置, 该装置包括第一动力源(1)、 第二动力源 (2)、 第一液压泵 (3)、 液压马达 (6)、 分动箱 (7) 和第二液 压泵(8), 所述第一动力源(1)通过所述第一液压泵(3)和液压马达(6) 传动连接到所述分动箱 (7) 的第一动力输入端, 所述第二动力源 (2) 传 动连接到所述分动箱 (7) 的第二动力输入端, 所述分动箱 (7) 的动力输 出端传动连接所述第二液压泵 (8), 所述第二液压泵 (8)通过液压驱动管 路 (16) 液压驱动工作元件 (14), 其特征在于,
所述第一液压泵 (3) 的出油口液压连接到所述液压驱动管路 (16)。
2、 根据权利要求 1所述的装置, 其中, 该装置包括液压控制元件, 用 于控制所述第一液压泵 (3) 的出油口选择性地与所述液压马达 (6) 的进 油口连通或者与所述液压驱动管路 (16) 连通。
3、 根据权利要求 2所述的装置, 其中, 所述液压控制元件包括第一插 装阀 (12) 和第二插装阀 (13), 所述第一插装阀 (12) 的两个工作油口分 别与所述第一液压泵 (3) 的出油口和所述液压马达 (6) 的进油口液压连 接, 所述第二插装阀 (13) 的两个工作油口分别与所述第一液压泵 (3) 的 出油口和所述液压驱动管路 (16) 液压连接。
4、 根据权利要求 3所述的装置, 其中, 所述液压控制元件包括换向阀 (11), 该换向阀 (11) 的两个工作油口分别与所述第一插装阀 (12) 的控 制油口和所述第二插装阀 (13) 的控制油口液压连接。
5、 根据权利要求 4所述的装置, 其中, 所述换向阀 (11) 的进油口液
6、 根据权利要求 5所述的装置, 其中, 所述换向阀 (11) 的进油口液 压连接到所述第二液压泵 (8) 的出油口。
7、 根据权利要求 6所述的装置, 其中, 所述换向阀 (11) 的进油口和 所述第一液压泵 (3) 的出油口之间的管路上串接有第一单向阀 (19), 所 述换向阀 (11) 的进油口和所述第二液压泵 (8) 的出油口之间的管路上串 接有第二单向阀 (10)。
8、 根据权利要求 2所述的装置, 其中, 所述液压控制元件包括二位三 通换向阀 (15), 该二位三通换向阀 (15) 的进油口液压连接到所述第一液 压泵 (3) 的出油口, 一个工作油口液压连接到所述液压马达 (6) 的进油 口, 另一个工作油口液压连接到所述液压驱动管路 (16)。
9、 根据权利要求 1所述的装置, 其中, 所述液压驱动管路 (16) 上串 接有第一换向阀 (17), 所述第一液压泵 (3) 的出油口液压连接到所述第 一换向阀 (17) 与所述第二液压泵 (8) 之间的所述液压驱动管路 (16)。
10、 根据权利要求 1所述的装置, 其中, 所述液压驱动管路 (16) 上 串接有第一换向阀 (17), 所述第一液压泵 (3) 的出油口通过第二换向阀
(18) 液压连接到所述第一换向阀 (17) 与所述工作元件 (14) 之间的所 述液压驱动管路 (16)。
11、 根据权利要求 1所述的装置, 其中, 所述第一动力源 (1) 为电动 机, 所述第二动力源 (2) 为发动机。
12、一种混凝土泵送设备,其中,该混凝土泵送设备包括权利要求 1-11 中任意一项所述的动力驱动装置。
PCT/CN2011/078570 2011-02-24 2011-08-18 混凝土泵送设备的动力驱动装置和混凝土泵送设备 WO2012113208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110045442.4 2011-02-24
CN2011100454424A CN102650303A (zh) 2011-02-24 2011-02-24 混凝土泵送设备的动力驱动装置和混凝土泵送设备

Publications (1)

Publication Number Publication Date
WO2012113208A1 true WO2012113208A1 (zh) 2012-08-30

Family

ID=46692397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078570 WO2012113208A1 (zh) 2011-02-24 2011-08-18 混凝土泵送设备的动力驱动装置和混凝土泵送设备

Country Status (2)

Country Link
CN (1) CN102650303A (zh)
WO (1) WO2012113208A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106437490B (zh) * 2016-08-30 2020-01-14 中石化石油机械股份有限公司研究院 一种机械钻机用集成式液压动力***
CN107059589B (zh) * 2017-04-24 2019-02-26 陆厚铭 一种桩梁式桥整体结构及施工工艺和施工机械
CN109340199A (zh) * 2018-12-03 2019-02-15 三汽车制造有限公司 泵送机械液压***
EP4375517A1 (de) * 2022-11-28 2024-05-29 Scanwill ApS Hydraulisches vorschaltgerät für einfachwirkenden hydraulikzylinder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014773A (zh) * 2004-09-10 2007-08-08 日立建机株式会社 作业机械
CN101037869A (zh) * 2006-03-15 2007-09-19 神钢建设机械株式会社 混合动力建筑机械
CN101398017A (zh) * 2007-09-28 2009-04-01 利勃海尔南兴有限公司 液压驱动***
CN201386294Y (zh) * 2009-03-11 2010-01-20 长沙中联重工科技发展股份有限公司 工程机械用双动力装置
CN101918649A (zh) * 2007-12-28 2010-12-15 住友重机械工业株式会社 混合式施工机械
CN201963620U (zh) * 2011-02-24 2011-09-07 长沙中联重工科技发展股份有限公司 混凝土泵送设备的动力驱动装置和混凝土泵送设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179465B2 (ja) * 2002-07-31 2008-11-12 株式会社小松製作所 建設機械
CN101920910B (zh) * 2009-06-11 2013-01-23 上海三一科技有限公司 一种履带起重机主执行机构闭式液压***
CN201677732U (zh) * 2009-12-29 2010-12-22 长沙中联重工科技发展股份有限公司 混凝土泵车、车载式混凝土泵及其双动力驱动***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014773A (zh) * 2004-09-10 2007-08-08 日立建机株式会社 作业机械
CN101037869A (zh) * 2006-03-15 2007-09-19 神钢建设机械株式会社 混合动力建筑机械
CN101398017A (zh) * 2007-09-28 2009-04-01 利勃海尔南兴有限公司 液压驱动***
CN101918649A (zh) * 2007-12-28 2010-12-15 住友重机械工业株式会社 混合式施工机械
CN201386294Y (zh) * 2009-03-11 2010-01-20 长沙中联重工科技发展股份有限公司 工程机械用双动力装置
CN201963620U (zh) * 2011-02-24 2011-09-07 长沙中联重工科技发展股份有限公司 混凝土泵送设备的动力驱动装置和混凝土泵送设备

Also Published As

Publication number Publication date
CN102650303A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
CN102229328B (zh) 一种多泵合流的车辆机械节能液压***
CN110435757B (zh) 一种转向桥的电控转向***
CN105864133B (zh) 一种柴油机单轨吊液压***
WO2013086885A1 (zh) 工程机械的驱动***及其闭式液压回路
WO2012113208A1 (zh) 混凝土泵送设备的动力驱动装置和混凝土泵送设备
CN103062140A (zh) 基于合流控制方式的液压装置
US20080112818A1 (en) Auxiliary Energy-Accumulation And Flow-Enhancement Device For Hydraulic System Of Concrete Pump
CN202482016U (zh) 具有安全保护机构的内燃叉车液压***
CN216102364U (zh) 一种新型应急转向液压***及工程机械
CN201553113U (zh) 一种履带式牵引机的液压***
CN103031957B (zh) 一种用于混凝土机械的控制***及方法
CN101004190A (zh) 开式整体液压马达***
CN104088324A (zh) 一种挖掘机液压***及挖掘机
WO2024001145A1 (zh) 液压动力***、作业机械及液压动力***的控制方法
CN203062948U (zh) 油液混合动力混凝土搅拌车的液压先导控制***
CN202347856U (zh) 车载式混凝土泵双泵合流型动力装置
CN201963620U (zh) 混凝土泵送设备的动力驱动装置和混凝土泵送设备
US11371535B2 (en) Fluid pressure circuit
CN104454737B (zh) 一种用于小型挖掘机的片式多路阀液压***
CN112112867B (zh) 液控式排气阀单元、液控排气式卷扬控制***和卷扬机
CN212717419U (zh) 一种破碎机电比例流量控制液压***
CN107299655A (zh) 一种挖掘机的动臂下降速度控制回路
CN202789810U (zh) 一种用于全液压双钢轮压路机的多功能阀
KR101024720B1 (ko) 건설장비용 유압펌프의 토출 유량 제어시스템
US20100129250A1 (en) Auxiliary energy-accumulation and flow-enhancement device for hydraulic system of concrete pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859562

Country of ref document: EP

Kind code of ref document: A1