WO2024001145A1 - 液压动力***、作业机械及液压动力***的控制方法 - Google Patents

液压动力***、作业机械及液压动力***的控制方法 Download PDF

Info

Publication number
WO2024001145A1
WO2024001145A1 PCT/CN2022/144124 CN2022144124W WO2024001145A1 WO 2024001145 A1 WO2024001145 A1 WO 2024001145A1 CN 2022144124 W CN2022144124 W CN 2022144124W WO 2024001145 A1 WO2024001145 A1 WO 2024001145A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
load
oil
pipeline
power system
Prior art date
Application number
PCT/CN2022/144124
Other languages
English (en)
French (fr)
Inventor
陈宇
王宇
肖文斌
Original Assignee
三一汽车起重机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车起重机械有限公司 filed Critical 三一汽车起重机械有限公司
Publication of WO2024001145A1 publication Critical patent/WO2024001145A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors

Definitions

  • the present application relates to the technical field of engineering machinery, and in particular to a hydraulic power system, working machinery and a control method of the hydraulic power system.
  • the power take-off shaft connected to the motor and the gearbox PTO is connected in series, which takes up a lot of space, and the axial space is limited.
  • This application provides a control method for a hydraulic power system, a working machine, and a hydraulic power system. It solves the problem that in the existing engineering machinery with dual power sources of oil and electricity, the installation of the power source takes up a large space and the axial space is limited, making it difficult for some models to meet the layout requirements.
  • the shortcomings in space requirements can improve the versatility and convenience of power system installation.
  • This application provides a hydraulic power system, including: a hydraulic oil tank, an engine, a motor, a first pump group and a second pump group.
  • the engine is connected to the first pump group
  • the motor is connected to the second pump group.
  • connection, the first pump group and the second pump group are respectively connected to the hydraulic oil tank
  • the first pump group includes a first load-sensitive pump
  • the second pump group includes a second load-sensitive pump, so
  • the oil outlet pipeline of the first load-sensing pump and the oil outlet pipeline of the second load-sensing pump are connected in parallel
  • the feedback pipeline of the first load-sensing pump and the feedback pipeline of the second load-sensing pump are connected through a switch. Connect the valves in parallel.
  • the first load-sensing pump and the second load-sensing pump are both dual load-sensing pumps, and the first oil outlet line of the first load-sensing pump and the second load-sensing pump
  • the first oil outlet pipeline of the load-sensitive pump is connected in parallel, and the second oil outlet pipeline of the first load-sensitive pump and the second oil outlet pipeline of the second load-sensitive pump are connected in parallel;
  • the first feedback pipeline and the first feedback pipeline of the second load-sensing pump are connected in parallel through the first reversing valve, and the second feedback pipeline of the first load-sensing pump and the second feedback pipeline of the second load-sensing pump are connected in parallel.
  • the second feedback line is connected in parallel through the second reversing valve.
  • the first feedback pipeline of the first load-sensitive pump and the first feedback pipeline of the second load-sensitive pump and the two oil ports at one end of the first reversing valve One-to-one correspondence, one of the two oil ports at the other end of the first reversing valve is connected to the first feedback port, and the other oil port is connected to the hydraulic oil tank; the first load-sensitive pump
  • the second feedback pipeline and the second feedback pipeline of the second load-sensitive pump are connected to the two oil ports at one end of the second reversing valve in a one-to-one correspondence, and the two oil ports at the other end of the second reversing valve are connected in a one-to-one correspondence.
  • One of the oil ports is connected to the second feedback port, and the other oil port is connected to the hydraulic oil tank.
  • the first oil outlet pipeline of the first load-sensing pump and the first oil outlet pipeline of the second load-sensing pump are connected in parallel to the first inlet of the main valve, and the first The second oil outlet pipeline of the load-sensing pump and the second oil outlet pipeline of the second load-sensing pump are connected in parallel to the second inlet of the main valve, and the main valve is used to connect the actuator.
  • the first pump group further includes a first gear pump
  • the second pump group further includes a second gear pump, the oil outlet line of the first gear pump and the second gear pump.
  • the oil outlet pipeline of the gear pump is connected in parallel.
  • the first gear pump and the second gear pump are both double gear pumps, and the first oil outlet line of the first gear pump and the third oil pipe of the second gear pump An oil outlet pipeline is connected in parallel to the inlet of the multi-way valve of the vehicle; the second oil outlet pipeline of the first gear pump and the second oil outlet pipeline of the second gear pump are connected in parallel to the air conditioning radiator motor.
  • one-way valves are respectively provided on each oil outlet pipeline of the first pump group and each oil outlet pipeline of the second pump group.
  • the hydraulic oil tank is connected to an oil inlet pipeline, and the oil inlet of the first pump group and the oil inlet of the second pump group are respectively connected to the oil inlet pipeline; There is a stop valve on the oil inlet pipeline.
  • the hydraulic oil tank is also connected to an oil drain pipeline, and the oil drain pipeline is used to connect the oil drain port.
  • the hydraulic oil tank is also connected to an oil return pipeline, the oil return pipeline is used to connect the oil return port, and the oil return pipeline is provided with an oil return filter.
  • This application also provides a working machine, including the above-mentioned hydraulic power system.
  • This application also provides a control method for a hydraulic power system, based on any of the above-mentioned hydraulic power systems.
  • the control method includes: detecting the motor speed when the hydraulic power system switches to engine mode; When the rotational speed is zero, adjust the reversing valve so that the first load-sensitive pump is connected to the feedback port and connects the engine and the first pump group; the engine mode is operated.
  • control method further includes: when the hydraulic power system is switched to the motor mode, disconnecting the engine and the first pump group; adjusting the reversing valve so that A second load-sensitive pump is connected to the feedback port; the motor mode is operated.
  • the technical solution provided by this application is to set up the engine and the motor to each be connected to a pump set, and the first pump set and the second pump set are arranged in parallel, which can realize the switching of the two power sources of the engine and the motor, which is beneficial to reducing engine fuel consumption. Reduce operation and maintenance costs and meet environmental protection requirements; and the motor does not need to share a pump set with the engine.
  • the motor can be separated from the connection restrictions of the gearbox power take-off and can be arranged flexibly.
  • the motor and the second pump set are not limited to being installed on the chassis, thereby improving installation versatility. sex and convenience.
  • FIG. 1 is a schematic diagram of the hydraulic power system provided by this application.
  • FIG. 2 is a schematic diagram of the control method of the hydraulic power system provided by this application.
  • FIG. 1 is a schematic diagram of the hydraulic power system provided by this application.
  • the hydraulic power system includes: a hydraulic oil tank 3, an engine 1, a motor 2, a first pump group and a second pump group.
  • the engine 1 is connected to the first pump group
  • the motor 2 is connected to the second pump group.
  • the first pump group and the second pump group are respectively connected to the hydraulic oil tank 3.
  • the hydraulic oil tank 3 supplies oil to the first pump group and the second pump group.
  • the first pump group includes a first load-sensing pump 101
  • the second pump group includes a second load-sensing pump 201, the oil outlet line of the first load-sensing pump 101 and the oil outlet line of the second load-sensing pump 201.
  • the oil outlet pipeline is connected in parallel, and the feedback pipeline of the first load-sensing pump 101 and the feedback pipeline of the second load-sensing pump 201 are connected in parallel through a reversing valve.
  • two power sources engine 1 and motor 2 are each connected to a pump set.
  • the two pump sets are connected in parallel, and the power source mode can be flexibly switched, so that both engine 1 and motor 2 can be driven.
  • the first load-sensing pump 101 can be driven by the engine 1, and the oil supply line of the first load-sensing pump 101 supplies oil to the actuator;
  • the second load-sensing pump 201 can also be driven by the motor 2, and the second load-sensing pump 201 can be driven by the second load-sensing pump 101.
  • the oil outlet line of the pump 201 supplies oil to the actuator.
  • Setting up a load-sensitive pump can sense system pressure and flow requirements, and adapt the operation of the pump according to changes in flow and pressure requirements.
  • the reversing valve can be adjusted to connect the feedback pipeline of the first load-sensitive pump 101 to sense the pressure and flow requirements in the system and make the first
  • the operation of the load-sensitive pump 101 is adapted; in the motor 2 mode, that is, when the motor 2 is the power source, the reversing valve can be adjusted to connect the feedback pipeline of the second load-sensitive pump 201 to sense the pressure and flow in the system. demand and adapt the operation of the second load-sensitive pump 201 to the demand.
  • This embodiment provides a hydraulic power system.
  • the engine 1 and the motor 2 are each connected to a pump set.
  • the first pump set and the second pump set are arranged in parallel, which can realize the two power sources of the engine 1 and the motor 2.
  • Switching is conducive to reducing the fuel consumption of engine 1, reducing operation and maintenance costs and meeting environmental protection requirements; and motor 2 does not need to share the pump set with engine 1.
  • Motor 2 can be separated from the connection restrictions of the gearbox power take-off and can be arranged flexibly.
  • Motor 2 and the second The pump set is not limited to being installed on the chassis, thereby improving installation versatility and convenience.
  • the first load-sensitive pump 101 and the second load-sensitive pump 201 may both be dual load-sensitive pumps.
  • the first oil outlet pipe of the first load-sensitive pump 101 The pipeline P1 and the first oil outlet pipeline P1' of the second load-sensing pump 201 are connected in parallel, and the second oil outlet pipeline P2 of the first load-sensing pump 101 and the second outlet of the second load-sensing pump 201 are connected in parallel.
  • the oil pipeline P2' is connected in parallel.
  • the first load-sensitive pump 101 and the second load-sensitive pump 201 can be set as double plunger load-sensitive pumps, that is, double variable plunger pumps.
  • the double plunger load-sensitive pump has two oil outlet lines. And two feedback pipelines can be connected to two oil interfaces, which is helpful to reduce the installation space and improve the efficiency of the entire machine.
  • the first load-sensitive pump 101 has two oil outlet pipes: the first oil outlet pipe P1 and the second oil outlet pipe P2;
  • the second load-sensitive pump 201 has two oil outlet pipes: the first oil outlet pipe P1' and the second oil outlet pipe Oil outlet pipe P2'.
  • the two oil outlet pipes of the first load-sensitive pump 101 and the two oil outlet pipes of the second load-sensitive pump 201 are connected in parallel in a one-to-one correspondence. By controlling the operation of the engine 1 and the operation of the motor 2, switching between the two power source modes can be realized. .
  • the first feedback line Ls1 of the first load-sensing pump 101 and the first feedback line Ls1' of the second load-sensing pump 201 are connected in parallel through the first reversing valve 4.
  • the first load-sensing pump 101 The second feedback line Ls2 and the second feedback line Ls2' of the second load-sensing pump 201 are connected in parallel through the second reversing valve 5 .
  • the first load-sensing pump 101 has two feedback lines: a first feedback line Ls1 and a second feedback line Ls2.
  • the two feedback lines of the first load-sensing pump 101 and the two outputs of the first load-sensing pump 101 The oil pipelines correspond one to one.
  • the second load-sensitive pump 201 has two feedback lines: a first feedback line Ls1' and a second feedback line Ls2'.
  • the two feedback lines of the second load-sensitive pump 201 are the same as the two feedback lines of the second load-sensitive pump 201.
  • Each oil outlet pipeline corresponds one to one.
  • the two feedback pipelines of the first load-sensing pump 101 and the two feedback pipelines of the second load-sensing pump 201 are also connected in parallel in a one-to-one correspondence.
  • the first reversing valve 4 and the second reversing valve 5 can be controlled according to the specific power source mode to make the corresponding feedback pipelines conductive.
  • the first reversing valve 4 can be a two-position four-way reversing valve.
  • the first reversing valve 4 has two oil ports at one end and two oil ports at the other end. Also has two oil ports.
  • the first feedback pipeline Ls1 of the first load-sensing pump 101 and the first feedback pipeline Ls1' of the second load-sensing pump 201 correspond to the two oil ports at one end of the first reversing valve 4 in one-to-one correspondence.
  • one of the two oil ports at the other end of the first reversing valve 4 is connected to the first feedback port B1, and the other of the two oil ports at the other end of the first reversing valve 4 is connected to the hydraulic pressure port.
  • Tank 3 is connected.
  • the dotted line in Figure 1 represents the feedback pipeline.
  • the first feedback port B1 is connected to the first feedback line Ls1 ′ of the second load-sensitive pump 201 , which is the state in the motor 2 mode.
  • the valve position of the first reversing valve 4 can be switched, so that the first feedback port B1 can be connected to the first feedback line Ls1 of the first load-sensitive pump 101 .
  • the adjustment of the first reversing valve 4 can adapt to the switching of the two power source modes of the engine 1 and the motor 2.
  • the second reversing valve 5 can also be a two-position four-way reversing valve.
  • the second reversing valve 5 has two oil ports at one end and two oil ports at the other end.
  • the second feedback pipeline Ls2 of the first load-sensing pump 101 and the second feedback pipeline Ls2' of the second load-sensing pump 201 correspond to the two oil ports at one end of the second reversing valve 5 in one-to-one correspondence. connected, one of the two oil ports at the other end of the second reversing valve 5 is connected to the second feedback port B2, and the other of the two oil ports at the other end of the second reversing valve 5 is connected to the hydraulic pressure Tank 3 is connected.
  • the second feedback port B2 of the second reversing valve 5 is connected to the second feedback line Ls2 ′ of the second load-sensitive pump 201 , which is the state in the motor 2 mode.
  • the valve position of the second reversing valve 5 can be switched, so that the second feedback port B2 can be connected to the second feedback line Ls2 of the first load-sensitive pump 101 .
  • the adjustment of the second reversing valve 5 can adapt to the switching of the two power source modes of the engine 1 and the motor 2.
  • the first oil outlet pipeline P1 of the first load-sensing pump 101 and the first oil outlet pipeline P1' of the second load-sensing pump 201 are connected in parallel to The first inlet A1 of the main valve, the second oil outlet pipeline P2 of the first load-sensing pump 101 and the second oil outlet pipeline P2' of the second load-sensing pump 201 are connected in parallel to the second inlet A2 of the main valve.
  • the main valve is used to connect the actuator.
  • the main valve may have two inlets, a first inlet and a second inlet, and each inlet is connected to the first load-sensitive pump 101 and the second load-sensitive pump 201 , that is, it can be realized by controlling the operation of the engine 1 and the motor 2
  • the engine 1 supplies oil to the two inlets of the main valve, and the motor 2 can also supply oil to the two inlets of the main valve, thereby realizing two power source modes.
  • the main valve can be used to connect actuators with heavy loads.
  • the main valve can be used to connect the upper and lower slewing mechanisms. This application does not limit the specific actuator connected to the main valve.
  • first oil outlet pipeline P1 of the first load-sensing pump 101 and the first oil outlet pipeline P1' of the second load-sensing pump 201 can also be connected to the first valve in parallel, and the second outlet of the first load-sensing pump 101 can be connected in parallel.
  • the oil pipeline P2 and the second oil outlet pipeline P2' of the second load-sensitive pump 201 can be connected to the second valve in parallel.
  • the first valve and the second valve can be two independent valves. The first valve and the second valve are respectively used. to connect the actuator. This application does not limit the specific connection locations of the two oil delivery pipelines of the double load-sensitive pump, and can be flexibly set according to the specific application environment.
  • the first pump group further includes a first gear pump 102
  • the second pump group further includes a second gear pump 202 .
  • Providing the first gear pump 102 and the second gear pump 202 can be used to connect more actuators.
  • the oil outlet pipeline of the first gear pump 102 and the oil outlet pipeline of the second gear pump 202 are connected in parallel, which can realize switching of the output oil of the first gear pump 102 and the second gear pump 202, that is, the engine 1 and the motor can be switched. 2. Switching between two power sources.
  • the first gear pump 102 and the second gear pump 202 are double gear pumps, and the first oil outlet pipeline P3 of the first gear pump 102 and the The first oil outlet pipeline P3' of the second gear pump 202 is connected in parallel to the inlet F of the disembarking multi-way valve; the second oil outlet pipeline P4 of the first gear pump 102 and the second outlet of the second gear pump 202 The oil pipeline P4' is connected to the air conditioning radiator motor C in parallel.
  • the hydraulic power system is used for working machines with an upper hydraulic system and an lower outrigger system, such as cranes, excavators, compactors, etc.
  • the gear pump can be used to connect the inlet F of the multi-way valve of the undercarriage to drive the outrigger system of the undercarriage, specifically driving the outrigger cylinder and other operations.
  • the gear pump is a double gear pump, it can also be connected to the air conditioner radiator motor C.
  • the oil delivery pipelines of the first gear pump 102 and the second gear pump 202 are arranged in parallel, and the power source can be switched.
  • one-way valves 6 are respectively provided on each oil outlet pipeline of the first pump group and each oil outlet pipeline of the second pump group.
  • the one-way valves 6 on each oil outlet pipeline of the first pump group are used to prevent the oil in the pipeline from flowing to the first pump group;
  • the one-way valves 6 on each oil outlet pipeline of the second pump group are used to prevent the oil in the pipeline from flowing to the first pump group. to the second pump set.
  • a one-way valve 6 is provided on the oil outlet pipeline of the first load-sensitive pump 101 and the oil outlet pipeline of the second load-sensitive pump 201 respectively; the oil outlet pipeline of the first gear pump 102 and the oil outlet pipe of the second gear pump 202
  • One-way valves 6 are also provided on the road.
  • the first oil outlet pipe P1 of the first load-sensing pump 101 and the second oil outlet pipe of the first load-sensing pump 101 are dual load-sensing pumps
  • the first oil outlet pipe P1 of the first load-sensing pump 101 and the second oil outlet pipe of the first load-sensing pump 101 One-way valves 6 are respectively provided on the line P2, the first oil outlet line P1' of the second load-sensing pump 201, and the second oil outlet line P2' of the second load-sensing pump 201.
  • first gear pump 102 and the second gear pump 202 are double gear pumps
  • first oil outlet pipeline P3 of the first gear pump 102 , the second oil outlet pipeline P4 of the first gear pump 102 , and the second oil outlet pipeline P4 of the second gear pump 202 are respectively provided with one-way valves 6.
  • One-way valves 6 are provided on each oil outlet pipeline to prevent the oil in the system pipeline from flowing away through pipelines without operating power sources to relieve pressure.
  • the hydraulic oil tank 3 is connected to an oil inlet pipeline 7, and the oil inlet of the first pump group and the oil inlet of the second pump group are connected respectively.
  • the oil inlet pipeline 7 is provided with a stop valve 8 .
  • the oil inlets of the first load-sensing pump 101 , the first gear pump 102 , the second load-sensing pump 201 and the second gear pump 202 are respectively connected to the oil inlet pipeline 7 through pipelines to communicate with the hydraulic oil tank 3 .
  • the two oil inlets of the first load-sensing pump 101 and the two oil inlets of the second load-sensing pump 201 are connected with the inlets respectively.
  • Oil pipeline 7 is connected.
  • the stop valve 8 can control the opening and closing of the oil inlet pipeline 7 .
  • the oil drain port of the first pump group and the oil drain port of the second pump group are respectively connected to the hydraulic oil tank 3.
  • the oil drain port of the first load-sensitive pump 101 and the oil drain port of the second load-sensitive pump 201 are respectively connected to the hydraulic oil tank 3 to realize oil drain.
  • the two drain ports of the first load-sensing pump 101 and the two drain ports of the second load-sensing pump 201 are connected to the hydraulic pressure respectively.
  • Tank 3 is connected.
  • the hydraulic oil tank 3 is also connected to an oil drain pipeline 9, which is used to connect the oil drain port; and/or the hydraulic oil tank 3 is also connected to an oil return pipeline 10, an oil return pipeline.
  • Road 10 is used to connect the oil return port, and the oil return pipeline 10 is provided with an oil return filter 11 .
  • the hydraulic power system is used for working machinery.
  • the oil drain port is the oil drain port of the actuator of the working machine and is used for draining oil.
  • the oil return port is the oil return port of the actuator of the working machine and is used for oil return.
  • the oil drain line 9 can be used to connect the bodywork drain port D.
  • the oil return pipeline 10 is connected to the upper body oil return port E and the lower body multi-way valve oil return port G respectively.
  • the oil return pipeline 10 can be used to connect the top-mounted oil return port E and the bottom-mounted multi-way valve oil return port G.
  • An oil return filter 11 is provided on the oil return pipeline 10 for filtering impurities in the oil flowing back to the hydraulic oil tank 3 .
  • first reversing valve 4 and the second reversing valve 5 may be electromagnetic reversing valves.
  • this embodiment further provides a working machine, which includes the hydraulic power system described in any of the above embodiments.
  • the working machinery can be cranes, compactors, excavators and other machinery that require a hydraulic power system, which is not specifically limited in this application.
  • this embodiment provides a control method of a hydraulic power system. Based on the hydraulic power system described in any of the above embodiments, as shown in Figure 2, the control method includes:
  • Step S110 When the hydraulic power system switches to the engine 1 mode, detect the rotation speed of the motor 2.
  • Step S120 When the rotation speed of the motor 2 is zero, adjust the reversing valve so that the first load-sensitive pump 101 is connected to the feedback port and connects the engine 1 and the first pump group.
  • Step S130 Run engine 1 mode.
  • the above method further includes:
  • Step S140 When the hydraulic power system switches to the motor 2 mode, disconnect the engine 1 and the first pump group.
  • Step S150 Adjust the reversing valve so that the second load-sensitive pump 201 is connected to the feedback port.
  • Step S160 Run motor 2 mode.
  • the motor 2 mode can be operated under the condition that the power required by the motor 2 is met; and the engine 1 mode can be operated under the condition that the power required by the motor 2 is not met.
  • this embodiment provides a hydraulic power system.
  • the transmission power take-off (PTO) connected to the engine 1 is connected to a set of pump groups, specifically a double plunger.
  • motor 2 is individually connected to another identical pump set.
  • the motor 2 and its connected pump set can be flexibly arranged according to the specific conditions of the space.
  • the two pump sets are connected in parallel through pipelines and share the hydraulic oil tank 3.
  • This hydraulic power system can be used for operating machinery with a top-mounted hydraulic system and a bottom-mounted outrigger system, such as cranes, etc.
  • the two pump sets share a top-mounted hydraulic system and a bottom-mounted outrigger system.
  • the top-mounted hydraulic system specifically includes a main valve and an actuator. Mechanisms, such as winch motors, etc.
  • a check valve 6 is added to the oil outlet of the oil pump to prevent the pump unit from releasing pressure when the other power source stops.
  • the load feedback ports of the two load-sensitive pump units are switched through two electromagnetic reversing valves.
  • the hydraulic principle is shown in Figure 1. , when switching engine 1 mode (that is, PTO output power), two conditions must be met: 1. It is detected that the speed of motor 2 is 0, and motor 2 is in a stopped state. It is allowed to get off the vehicle and engine 1 can be hooked up to take power, that is, engine 1 and The gearbox is connected, otherwise it will be forced to hang up and power cannot be taken; 2.
  • the first reversing valve 4 and the second reversing valve 5 are powered at the same time, that is, they are connected to the load feedback line Ls1 and the load feedback line of the bodywork hydraulic system. Ls2.
  • the power taken by engine 1 has been disconnected, that is, engine 1 and the gearbox are disconnected; 2.
  • the first reversing valve 4 and the second reversing valve 5 are de-energized at the same time. That is, the load feedback pipeline Ls1' and the load feedback pipeline Ls2' are connected to the bodywork hydraulic system.
  • the dual power system composed of the motor 2 and the pump in this embodiment has a parallel structure; it is a load-sensitive system with dual power + dual pump sets in parallel mode.
  • the motor 2 and the gearbox PTO are each connected to a pump set, and the two pump sets are connected in parallel.
  • the hydraulic principle and control logic are provided, see Figure 1.
  • Motor 2 can be flexibly arranged without the restriction of PTO through-shaft connection.
  • the two sets of power sources share an upper hydraulic system and an lower outrigger system to achieve normal execution of work actions when switching between the two power source modes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Abstract

一种液压动力***及作业机械,其中液压动力***包括:液压油箱(3)、发动机(1)、电机(2)、第一泵组和第二泵组,发动机(1)和第一泵组连接,电机(2)和第二泵组连接,第一泵组包括第一负载敏感泵(101),第二泵组包括第二负载敏感泵(201),第一负载敏感泵(101)的出油管路和第二负载敏感泵(201)的出油管路并联连接,第一负载敏感泵(101)的反馈管路和第二负载敏感泵(201)的反馈管路通过换向阀并联连接。通过设置发动机(1)和电机(2)各接一套泵组,第一泵组和第二泵组并联的布置方式,可实现发动机(1)和电机(2)两种动力源的切换;且电机(2)可以脱离变速箱取力器连接限制从而灵活布置,电机(2)和第二泵组不局限于安装在底盘,提高了安装通用性和便捷性。

Description

液压动力***、作业机械及液压动力***的控制方法 技术领域
本申请涉及工程机械技术领域,尤其涉及一种液压动力***、作业机械及液压动力***的控制方法。
发明背景
目前,起重机大部分采用柴油机单驱动形式,柴油机驱动的起重机其运行成本相对比较大,对于一些老型号的柴油机排放不满足新环保法的要求,另外柴油机运行维护成本高,而且故障率高。随着机电液技术发展,工程机械电动化成为未来发展的趋势。为满足起重机各种环境作业需求和环保排放要求,同样需要开发相应的机电液技术。起重机等工程机械双动力技术现状大多是电机与柴油机连接的变速箱取力器(PTO)串联,共用泵组为整机液压***提供油源。
现有油电双重动力源的工程机械,电机与变速箱PTO连接的取力轴串联,占用空间大,而轴向空间有限,部分车型尤其是轴向安装空间不足的油电双重动力起重机或其他相关机械难以满足布置的空间需求。
发明内容
本申请提供一种液压动力***、作业机械及液压动力***的控制方法,解决了现有技术中油电双重动力源的工程机械,动力源安装占用空间大,轴向空间有限,部分车型难以满足布置空间需求的缺陷,能够提高动力***安装通用性和便捷性。
本申请提供一种液压动力***,包括:液压油箱、发动机、电机、第一泵组和第二泵组,所述发动机和所述第一泵组连接,所述电机和所述第二泵组连接,所述第一泵组和所述第二泵组分别与所述液压油箱连接,所述第一泵组包括第一负载敏感泵,所述第二泵组包括第二负载敏感泵,所述第一负载敏感泵的出油管路和所述第二负载敏感泵的出油管路并联连接,所述第一负载敏感泵的反馈管路和所述第二负载敏感泵的反馈管路通过换向阀并联连接。
根据本申请提供的液压动力***,所述第一负载敏感泵和所述第二负载敏感泵均为双联负载敏感泵,所述第一负载敏感泵的第一出油管路和所述第二负载敏感泵的第一出油管路并联连接,所述第一负载敏感泵的第二出油管路和所述第二负载敏感泵的第二出油管路并联连接;所述第一负载敏感泵的第一反馈管路和所述第二负载敏感泵的第一反馈管路通过第一换向阀并联连接,所述第一负载敏感 泵的第二反馈管路和所述第二负载敏感泵的第二反馈管路通过第二换向阀并联连接。
根据本申请提供的液压动力***,所述第一负载敏感泵的第一反馈管路和所述第二负载敏感泵的第一反馈管路与所述第一换向阀一端的两个油口一一对应相连,所述第一换向阀另一端的两个油口中的其中一个油口与第一反馈口相连,另一个油口与所述液压油箱相连;所述第一负载敏感泵的第二反馈管路和所述第二负载敏感泵的第二反馈管路与所述第二换向阀一端的两个油口一一对应相连,所述第二换向阀另一端的两个油口中的其中一个油口与第二反馈口相连,另一个油口与所述液压油箱相连。
根据本申请提供的液压动力***,所述第一负载敏感泵的第一出油管路和所述第二负载敏感泵的第一出油管路并联连接于主阀的第一进口,所述第一负载敏感泵的第二出油管路和所述第二负载敏感泵的第二出油管路并联连接于主阀的第二进口,所述主阀用于连接执行机构。
根据本申请提供的液压动力***,所述第一泵组还包括第一齿轮泵,所述第二泵组还包括第二齿轮泵,所述第一齿轮泵的出油管路和所述第二齿轮泵的出油管路并联连接。
根据本申请提供的液压动力***,所述第一齿轮泵和所述第二齿轮泵均为双联齿轮泵,所述第一齿轮泵的第一出油管路和所述第二齿轮泵的第一出油管路并联连接于下车多路阀进口;所述第一齿轮泵的第二出油管路和所述第二齿轮泵的第二出油管路并联连接于空调散热马达。
根据本申请提供的液压动力***,所述第一泵组的各个出油管路和所述第二泵组的各个出油管路上分别设有单向阀。
根据本申请提供的液压动力***,所述液压油箱连接有进油管路,所述第一泵组的进油口和所述第二泵组的进油口分别连接于所述进油管路;所述进油管路上设有截止阀。
根据本申请提供的液压动力***,所述液压油箱还连接有泄油管路,所述泄油管路用于连接泄油口。
根据本申请提供的液压动力***,所述液压油箱还连接有回油管路,所述回油管路用于连接回油口,所述回油管路上设有回油过滤器。
本申请还提供一种作业机械,包括上述液压动力***。
本申请还提供一种液压动力***的控制方法,基于上述任一所述的液压动力***,所述控制方法包括:在所述液压动力***切换为发动机模式时,检测电机转速;在所述电机转速为零时,调节换向阀,使得第一负载敏感泵与反馈口连接,并连接发动机和第一泵组;运行所述发动机模式。
根据本申请提供的控制方法,所述控制方法还包括:在所述液压动力***切 换为电机模式时,断开所述发动机和所述第一泵组的连接;调节所述换向阀,使得第二负载敏感泵与所述反馈口连接;运行所述电机模式。
本申请提供的技术方案,设置发动机和电机各接一套泵组,第一泵组和第二泵组并联的布置方式,可实现发动机和电机两种动力源的切换,有利于降低发动机油耗,降低运行维护成本以及满足环保要求;且电机无需与发动机共用泵组,电机可以脱离变速箱取力器的连接限制从而灵活布置,电机和第二泵组不局限于安装在底盘,从而提高安装通用性和便捷性。
附图简要说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的液压动力***的示意图。
图2是本申请提供的液压动力***的控制方法的示意图。
附图标记:
1:发动机;2:电机;3:液压油箱;4:第一换向阀;5:第二换向阀;6:单向阀;7:进油管路;8:截止阀;9:泄油管路;10:回油管路;11:回油过滤器;101:第一负载敏感泵;102:第一齿轮泵;201:第二负载敏感泵;202:第二齿轮泵;A1:主阀的第一进口;A2:主阀的第二进口;B1:第一反馈口;B2:第二反馈口;C:空调散热马达;D:上装泄油口;E:上装回油口;F:下车多路阀进口;G:下车多路阀回油口。
实施本发明的方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1描述本申请的液压动力***、作业机械及液压动力***的控制方法。
图1是本申请提供的液压动力***的示意图。参考图1,该液压动力***包括:液压油箱3、发动机1、电机2、第一泵组和第二泵组。所述发动机1和所述第一泵组连接,所述电机2和所述第二泵组连接。所述第一泵组和所述第二泵组分别与所 述液压油箱3连接。液压油箱3为第一泵组和第二泵组供油。所述第一泵组包括第一负载敏感泵101,所述第二泵组包括第二负载敏感泵201,所述第一负载敏感泵101的出油管路和所述第二负载敏感泵201的出油管路并联连接,所述第一负载敏感泵101的反馈管路和所述第二负载敏感泵201的反馈管路通过换向阀并联连接。
本实施例设置发动机1和电机2两种动力源各连接一套泵组,两套泵组是并联连接结构,可灵活切换动力源模式,即能够实现发动机1驱动,也能够实现电机2驱动。具体的,可以通过发动机1驱动第一负载敏感泵101,通过第一负载敏感泵101的出油管路为执行机构供油;还可以通过电机2驱动第二负载敏感泵201,通过第二负载敏感泵201的出油管路为执行机构供油。
设置负载敏感泵能够感应***压力和流量的需求,并根据流量和压力需求的变化对泵的运行进行适应调节。具体的,在发动机1模式下,即发动机1为动力源时,可调节换向阀,使得第一负载敏感泵101的反馈管路连通,以感应***中的压力和流量需求,并使得第一负载敏感泵101的运行相适应;在电机2模式下,即电机2为动力源时,可调节换向阀,使得第二负载敏感泵201的反馈管路连通,以感应***中的压力和流量需求,并使得第二负载敏感泵201的运行相适应。
本实施例提供的一种液压动力***,设置发动机1和电机2各接一套泵组,第一泵组和第二泵组并联的布置方式,可实现发动机1和电机2两种动力源的切换,有利于降低发动机1油耗,降低运行维护成本以及满足环保要求;且电机2无需与发动机1共用泵组,电机2可以脱离变速箱取力器的连接限制从而灵活布置,电机2和第二泵组不局限于安装在底盘,从而提高安装通用性和便捷性。
在上述实施例的基础上,进一步地,所述第一负载敏感泵101和所述第二负载敏感泵201可以均为双联负载敏感泵,所述第一负载敏感泵101的第一出油管路P1和所述第二负载敏感泵201的第一出油管路P1'并联连接,所述第一负载敏感泵101的第二出油管路P2和所述第二负载敏感泵201的第二出油管路P2'并联连接。
本实施例中,第一负载敏感泵101和第二负载敏感泵201可设为双联柱塞负载敏感泵,即双联变量柱塞泵,双联柱塞负载敏感泵具有两个出油管路和两个反馈管路,可连接两个用油接口,有利于减少安装占用空间且提高整机效率。第一负载敏感泵101具有两个出油管路:第一出油管路P1和第二出油管路P2;第二负载敏感泵201具有两个出油管路:第一出油管路P1'和第二出油管路P2'。第一负载敏感泵101的两个出油管路和第二负载敏感泵201的两个出油管路一一对应并联连接,通过控制发动机1运行和电机2运行,可实现两种动力源模式的切换。
所述第一负载敏感泵101的第一反馈管路Ls1和所述第二负载敏感泵201的第一反馈管路Ls1'通过第一换向阀4并联连接,所述第一负载敏感泵101的第二反馈管路Ls2和所述第二负载敏感泵201的第二反馈管路Ls2'通过第二换向阀5并联连接。第一负载敏感泵101具有两个反馈管路:第一反馈管路Ls1和第二反馈管路Ls2, 第一负载敏感泵101的两个反馈管路与第一负载敏感泵101的两个出油管路一一对应。第二负载敏感泵201具有两个反馈管路:第一反馈管路Ls1'和第二反馈管路Ls2',第二负载敏感泵201的两个反馈管路与第二负载敏感泵201的两个出油管路一一对应。
第一负载敏感泵101的两个反馈管路和第二负载敏感泵201的两个反馈管路同样一一对应并联连接。可根据具体的动力源模式控制第一换向阀4和第二换向阀5使得相应的反馈管路导通。
在上述实施例的基础上,进一步地,参考图1,本实施例中第一换向阀4可以为二位四通换向阀,第一换向阀4一端具有两个油口,另一端同样具有两个油口。所述第一负载敏感泵101的第一反馈管路Ls1和所述第二负载敏感泵201的第一反馈管路Ls1'与所述第一换向阀4一端的两个油口一一对应相连,所述第一换向阀4另一端的两个油口中的其中一个油口与第一反馈口B1相连,第一换向阀4另一端的两个油口中的另一个油口与液压油箱3相连。
图1中虚线表示的是反馈管路。第一换向阀4在图1所示的状态下,第一反馈口B1与第二负载敏感泵201的第一反馈管路Ls1'导通,此时为电机2模式下的状态。在需要调整为发动机1模式时,可切换第一换向阀4的阀位,从而可使得第一反馈口B1与第一负载敏感泵101的第一反馈管路Ls1导通。通过第一换向阀4的调整可适应发动机1和电机2两种动力源模式的切换。
参考图1,本实施例中第二换向阀5同样可为二位四通换向阀,第二换向阀5一端具有两个油口,另一端同样具有两个油口。所述第一负载敏感泵101的第二反馈管路Ls2和所述第二负载敏感泵201的第二反馈管路Ls2'与所述第二换向阀5一端的两个油口一一对应相连,所述第二换向阀5另一端的两个油口中的其中一个油口与第二反馈口B2相连,第二换向阀5另一端的两个油口中的另一个油口与液压油箱3相连。
第二换向阀5在图1所示的状态下,第二反馈口B2与第二负载敏感泵201的第二反馈管路Ls2'导通,此时为电机2模式下的状态。在需要调整为发动机1模式时,可切换第二换向阀5的阀位,从而可使得第二反馈口B2与第一负载敏感泵101的第二反馈管路Ls2导通。通过第二换向阀5的调整可适应发动机1和电机2两种动力源模式的切换。
在上述实施例的基础上,进一步地,参考图1,所述第一负载敏感泵101的第一出油管路P1和所述第二负载敏感泵201的第一出油管路P1'并联连接于主阀的第一进口A1,所述第一负载敏感泵101的第二出油管路P2和所述第二负载敏感泵201的第二出油管路P2'并联连接于主阀的第二进口A2,所述主阀用于连接执行机构。
具体的,主阀可具有第一进口和第二进口两个进口,每个进口均与第一负载敏感泵101和第二负载敏感泵201连接,即通过控制发动机1和电机2的运行可实现 通过发动机1向主阀的两个进口供油,还可实现通过电机2向主阀的两个进口供油,从而可实现两种动力源模式。主阀可用于连接负载较大的执行机构。液压动力***用于具有上下装的作业机械,例如起重机、挖掘机、强夯机等时,主阀可用于连接上装回转机构。本申请对主阀具体连接的执行机构不做限定。
进一步地,第一负载敏感泵101的第一出油管路P1和第二负载敏感泵201的第一出油管路P1'还可并联连接于第一阀门,第一负载敏感泵101的第二出油管路P2和第二负载敏感泵201的第二出油管路P2'可并联连接于第二阀门,第一阀门和第二阀门可为两个独立的阀门,第一阀门和第二阀门分别用于连接执行机构。本申请对双联负载敏感泵的两个出油管路的具体连接部位不做限定,可根据具体的应用环境灵活设置。
在上述实施例的基础上,进一步地,所述第一泵组还包括第一齿轮泵102,所述第二泵组还包括第二齿轮泵202。设置第一齿轮泵102和第二齿轮泵202可用于连接更多的执行机构。所述第一齿轮泵102的出油管路和所述第二齿轮泵202的出油管路并联连接,可实现第一齿轮泵102和第二齿轮泵202输出油的切换,即实现发动机1和电机2两种动力源的切换。
在上述实施例的基础上,进一步地,所述第一齿轮泵102和所述第二齿轮泵202均为双联齿轮泵,所述第一齿轮泵102的第一出油管路P3和所述第二齿轮泵202的第一出油管路P3'并联连接于下车多路阀进口F;所述第一齿轮泵102的第二出油管路P4和所述第二齿轮泵202的第二出油管路P4'并联连接于空调散热马达C。
即本实施例中液压动力***用于具有上装液压***和下车支腿***的作业机械,例如起重机、挖掘机、强夯机等。齿轮泵可用于连接下车多路阀进口F,以驱动下车支腿***,具体驱动支腿油缸等作业。齿轮泵为双联齿轮泵时,还可连接空调散热马达C。第一齿轮泵102和第二齿轮泵202的出油管路并联设置,可切换动力源。
在上述实施例的基础上,进一步地,所述第一泵组的各个出油管路和所述第二泵组的各个出油管路上分别设有单向阀6。第一泵组的各个出油管路上的单向阀6用于防止管路中的油流向第一泵组;第二泵组的各个出油管路上的单向阀6用于防止管路中的油流向第二泵组。具体地,第一负载敏感泵101的出油管路和第二负载敏感泵201的出油管路上分别设有单向阀6;第一齿轮泵102的出油管路和第二齿轮泵202的出油管路上同样分别设有单向阀6。
参考图1,第一负载敏感泵101和第二负载敏感泵201为双联负载敏感泵时,第一负载敏感泵101的第一出油管路P1、第一负载敏感泵101的第二出油管路P2、第二负载敏感泵201的第一出油管路P1'以及第二负载敏感泵201的第二出油管路P2'上分别设有单向阀6。第一齿轮泵102和第二齿轮泵202为双联齿轮泵时,第一齿轮泵102的第一出油管路P3、第一齿轮泵102的第二出油管路P4、第二齿轮泵202的 第一出油管路P3'以及第二齿轮泵202的第二出油管路P4'上分别设有单向阀6。在各个出油管路上设置单向阀6,可防止***管路中的油通过没有运行的动力源的管路流走卸压。
在上述实施例的基础上,进一步地,参考图1,所述液压油箱3连接有进油管路7,所述第一泵组的进油口和所述第二泵组的进油口分别连接于所述进油管路7;所述进油管路7上设有截止阀8。具体的,第一负载敏感泵101、第一齿轮泵102、第二负载敏感泵201和第二齿轮泵202的进油口分别通过管路与进油管路7连通,以连通液压油箱3。
在第一负载敏感泵101和第二负载敏感泵201为双联负载敏感泵时,第一负载敏感泵101的两个进油口以及第二负载敏感泵201的两个进油口分别与进油管路7连通。截止阀8可控制进油管路7的通断。
参考图1,第一泵组的泄油口和第二泵组的泄油口分别连接于液压油箱3。具体的,第一负载敏感泵101的泄油口和第二负载敏感泵201的泄油口分别连接于液压油箱3,以实现泄油。在第一负载敏感泵101和第二负载敏感泵201为双联负载敏感泵时,第一负载敏感泵101的两个泄油口以及第二负载敏感泵201的两个泄油口分别与液压油箱3连通。
在上述实施例的基础上,进一步地,液压油箱3还连接有泄油管路9,泄油管路9用于连接泄油口;和/或,液压油箱3还连接有回油管路10,回油管路10用于连接回油口,回油管路10上设有回油过滤器11。
液压动力***用于作业机械,泄油口为作业机械的执行机构的泄油口,用于泄油;回油口为作业机械的执行机构的回油口,用于回油。具体的,在作业机械为具有上装液压***和下车支腿***的机械,例如起重机等时,泄油管路9可用于连接上装泄油口D。
进一步地,回油管路10与上装回油口E和下车多路阀回油口G分别连接。具体地,在作业机械为具有上装液压***和下车支腿***的机械,例如起重机等时,回油管路10可用于连接上装回油口E和下车多路阀回油口G。在回油管路10上设置回油过滤器11,用于过滤流回液压油箱3的油中的杂质。
进一步地,第一换向阀4和第二换向阀5可为电磁换向阀。
在上述实施例的基础上,进一步地,本实施例提供一种作业机械,该作业机械包括上述任一项实施例所述的液压动力***。具体的,作业机械可为起重机、强夯机、挖掘机等需要液压动力***的机械,本申请对此不做具体限定。
在上述实施例的基础上,进一步地,本实施例提供一种液压动力***的控制方法,基于上述任一实施例所述的液压动力***,如图2所示,该控制方法包括:
步骤S110:在液压动力***切换为发动机1模式时,检测电机2转速。
步骤S120:在电机2转速为零时,调节换向阀,使得第一负载敏感泵101与反 馈口连接,并连接发动机1和第一泵组。
步骤S130:运行发动机1模式。
在本申请的另一个实施例中,上述方法还包括:
步骤S140:在液压动力***切换为电机2模式时,断开发动机1和第一泵组的连接。
步骤S150:调节换向阀,使得第二负载敏感泵201与反馈口连接。
步骤S160:运行电机2模式。
根据本申请提供的液压动力***的控制方法,可在满足电机2所需电源的条件下,运行电机2模式;在不满足电机2所需电源的条件下,运行发动机1模式。
在上述实施例的基础上,进一步地,本实施例提供一种液压动力***,该液压动力***中发动机1连接的变速箱取力器(PTO)连接一套泵组,具体为双联柱塞负载敏感泵和双联齿轮泵,电机2单独连接另一套相同泵组。电机2及其连接的泵组可以根据空间具体情况来灵活布置,两套泵组通过管路一一对应并联,共用液压油箱3。该液压动力***可用于具有上装液压***和下车支腿***的作业机械,例如起重机等,两套泵组共用一套上装液压***和下车支腿***,上装液压***具体包括主阀和执行机构,如卷扬马达等。
油泵出油口均添加单向阀6,防止另一动力源停止时从该处泵组卸压,两套负载敏感泵组的负载反馈口通过两个电磁换向阀切换,液压原理见图1,切换发动机1模式时(即PTO输出动力),要满足两个条件:1、检测到电机2转速为0,电机2为停机状态,允许下车发动机1可以挂上取力,即发动机1与变速箱连接,否则强制挂不上取力;2、第一换向阀4和第二换向阀5同时得电,即连至上装液压***的是的负载反馈管路Ls1和负载反馈管路Ls2。切换电机2模式时,要满足两个条件:1、发动机1取力已脱开,即发动机1和变速箱脱开;2、第一换向阀4和第二换向阀5同时失电,即连至上装液压***的是负载反馈管路Ls1'和负载反馈管路Ls2'。
本实施例的电机2和泵组成的双动力***为并列式结构;为双动力+双泵组并联模式的负载敏感***。采用电机2与变速箱PTO各接一套泵组,两套泵组并联的布置方式,并提供了液压原理和控制逻辑,参见图1。电机2可以脱离PTO通轴连接限制而灵活布置,两套动力源共用一套上车液压***和下车支腿***,实现两种动力源模式切换下,作业动作的正常执行。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种液压动力***,其特征在于,包括:液压油箱、发动机、电机、第一泵组和第二泵组,所述发动机和所述第一泵组连接,所述电机和所述第二泵组连接,所述第一泵组和所述第二泵组分别与所述液压油箱连接,所述第一泵组包括第一负载敏感泵,所述第二泵组包括第二负载敏感泵,所述第一负载敏感泵的出油管路和所述第二负载敏感泵的出油管路并联连接,所述第一负载敏感泵的反馈管路和所述第二负载敏感泵的反馈管路通过换向阀并联连接。
  2. 根据权利要求1所述的液压动力***,其特征在于,所述第一负载敏感泵和所述第二负载敏感泵均为双联负载敏感泵,所述第一负载敏感泵的第一出油管路和所述第二负载敏感泵的第一出油管路并联连接,所述第一负载敏感泵的第二出油管路和所述第二负载敏感泵的第二出油管路并联连接;
    所述第一负载敏感泵的第一反馈管路和所述第二负载敏感泵的第一反馈管路通过第一换向阀并联连接,所述第一负载敏感泵的第二反馈管路和所述第二负载敏感泵的第二反馈管路通过第二换向阀并联连接。
  3. 根据权利要求2所述的液压动力***,其特征在于,所述第一负载敏感泵的第一反馈管路和所述第二负载敏感泵的第一反馈管路与所述第一换向阀一端的两个油口一一对应相连,所述第一换向阀另一端的两个油口中的其中一个油口与第一反馈口相连,另一个油口与所述液压油箱相连;
    所述第一负载敏感泵的第二反馈管路和所述第二负载敏感泵的第二反馈管路与所述第二换向阀一端的两个油口一一对应相连,所述第二换向阀另一端的两个油口中的其中一个油口与第二反馈口相连,另一个油口与所述液压油箱相连。
  4. 根据权利要求2所述的液压动力***,其特征在于,所述第一负载敏感泵的第一出油管路和所述第二负载敏感泵的第一出油管路并联连接于主阀的第一进口,所述第一负载敏感泵的第二出油管路和所述第二负载敏感泵的第二出油管路并联连接于主阀的第二进口,所述主阀用于连接执行机构。
  5. 根据权利要求1至4任一项所述的液压动力***,其特征在于,所述第一泵组还包括第一齿轮泵,所述第二泵组还包括第二齿轮泵,所述第一齿轮泵的出油管路和所述第二齿轮泵的出油管路并联连接。
  6. 根据权利要求5所述的液压动力***,其特征在于,所述第一齿轮泵和所述第二齿轮泵均为双联齿轮泵,所述第一齿轮泵的第一出油管路和所述第二齿轮泵的第一出油管路并联连接于下车多路阀进口;所述第一齿轮泵的第二出油管路和所述第二齿轮泵的第二出油管路并联连接于空调散热马达。
  7. 根据权利要求1至6任一项所述的液压动力***,其特征在于,所述第一 泵组的各个出油管路和所述第二泵组的各个出油管路上分别设有单向阀。
  8. 根据权利要求1至7任一项所述的液压动力***,其特征在于,所述液压油箱连接有进油管路,所述第一泵组的进油口和所述第二泵组的进油口分别连接于所述进油管路;所述进油管路上设有截止阀。
  9. 根据权利要求1至8任一项所述的液压动力***,其特征在于,所述液压油箱还连接有泄油管路,所述泄油管路用于连接泄油口。
  10. 根据权利要求1至9任一项所述的液压动力***,其特征在于,所述液压油箱还连接有回油管路,所述回油管路用于连接回油口,所述回油管路上设有回油过滤器。
  11. 一种作业机械,其特征在于,包括上述权利要求1至10任一项所述的液压动力***。
  12. 一种液压动力***的控制方法,基于上述权利要求1-10中任一项所述的液压动力***,其特征在于,所述控制方法包括:在所述液压动力***切换为发动机模式时,检测电机转速;
    在所述电机转速为零时,调节换向阀,使得第一负载敏感泵与反馈口连接,并连接发动机和第一泵组;
    运行所述发动机模式。
  13. 根据权利要求12所述的控制方法,其特征在于,还包括:
    在所述液压动力***切换为电机模式时,断开所述发动机和所述第一泵组的连接;
    调节所述换向阀,使得第二负载敏感泵与所述反馈口连接;
    运行所述电机模式。
PCT/CN2022/144124 2022-06-29 2022-12-30 液压动力***、作业机械及液压动力***的控制方法 WO2024001145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221670253.6 2022-06-29
CN202221670253.6U CN217708618U (zh) 2022-06-29 2022-06-29 液压动力***及作业机械

Publications (1)

Publication Number Publication Date
WO2024001145A1 true WO2024001145A1 (zh) 2024-01-04

Family

ID=83774429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144124 WO2024001145A1 (zh) 2022-06-29 2022-12-30 液压动力***、作业机械及液压动力***的控制方法

Country Status (2)

Country Link
CN (1) CN217708618U (zh)
WO (1) WO2024001145A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217708618U (zh) * 2022-06-29 2022-11-01 三一汽车起重机械有限公司 液压动力***及作业机械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200905A (ja) * 1992-12-28 1994-07-19 Kayaba Ind Co Ltd 2ポンプ式の負荷感応形回路
JP2003329005A (ja) * 2002-05-15 2003-11-19 Kayaba Ind Co Ltd 流体圧駆動装置
CN106678099A (zh) * 2017-01-20 2017-05-17 徐州徐工施维英机械有限公司 混凝土施工机械的双动力液压***和混凝土施工机械
CN212225638U (zh) * 2020-05-22 2020-12-25 徐州徐工筑路机械有限公司 双动力源开闭式双回路转子驱动***及铣刨机械
CN214404147U (zh) * 2020-12-23 2021-10-15 河南易沃克工业设备有限公司 一种冷切割液压控制***
CN214465195U (zh) * 2021-02-02 2021-10-22 湖南三一路面机械有限公司 负载敏感液压***和作业机械
CN217708618U (zh) * 2022-06-29 2022-11-01 三一汽车起重机械有限公司 液压动力***及作业机械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200905A (ja) * 1992-12-28 1994-07-19 Kayaba Ind Co Ltd 2ポンプ式の負荷感応形回路
JP2003329005A (ja) * 2002-05-15 2003-11-19 Kayaba Ind Co Ltd 流体圧駆動装置
CN106678099A (zh) * 2017-01-20 2017-05-17 徐州徐工施维英机械有限公司 混凝土施工机械的双动力液压***和混凝土施工机械
CN212225638U (zh) * 2020-05-22 2020-12-25 徐州徐工筑路机械有限公司 双动力源开闭式双回路转子驱动***及铣刨机械
CN214404147U (zh) * 2020-12-23 2021-10-15 河南易沃克工业设备有限公司 一种冷切割液压控制***
CN214465195U (zh) * 2021-02-02 2021-10-22 湖南三一路面机械有限公司 负载敏感液压***和作业机械
CN217708618U (zh) * 2022-06-29 2022-11-01 三一汽车起重机械有限公司 液压动力***及作业机械

Also Published As

Publication number Publication date
CN217708618U (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US20230048551A1 (en) Lubrication System for Continuous High-Power Turbine Fracturing Equipment
WO2024001145A1 (zh) 液压动力***、作业机械及液压动力***的控制方法
WO2023036000A1 (zh) 一种闭式液压控制***及工程机械
CN104421229A (zh) 静液压驱动机构
CN104452868A (zh) 双液压缸混合驱动控制***
CN100523566C (zh) 用于机动车辆的液压传动装置
CN212605500U (zh) 一种飞机牵引车驾驶室用双向平衡阀式缓冲***
CN207761575U (zh) 旋挖钻机主泵辅泵合流控制***
US8984875B2 (en) Pump control operating system of construction machine
CN203702696U (zh) 负载敏感液压***及工程机械
CN105329817B (zh) 一种叉车用单泵液压***
WO2012113208A1 (zh) 混凝土泵送设备的动力驱动装置和混凝土泵送设备
CN103661340A (zh) 车辆制动***及车辆
CN207905007U (zh) 装载机液压控制***
CN201330683Y (zh) 用于拆炉机上的负载传感变量双泵
CN204025197U (zh) 一种混合动力工程车辆液压***
CN111255874A (zh) 一种机电耦合器液压控制***及其控制方法
CN216131160U (zh) 一种双泵合流的摊铺机负载敏感液压***
CN113606207B (zh) 一种装载机液压***及装载机
CN210829933U (zh) 一种具有串并联可切换多执行器的液压行走***
CN219298322U (zh) 高原型装载机液压***
CN210634539U (zh) 刹车***及汽车
CN219432175U (zh) 液压***和工程机械
CN202047982U (zh) 多齿轮泵有级变量***
CN209892538U (zh) 用于作业机械的液压***及作业机械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022949220

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022949220

Country of ref document: EP

Effective date: 20240606