WO2012111267A1 - 気体吸着デバイス及びそれを備えた真空断熱材 - Google Patents

気体吸着デバイス及びそれを備えた真空断熱材 Download PDF

Info

Publication number
WO2012111267A1
WO2012111267A1 PCT/JP2012/000676 JP2012000676W WO2012111267A1 WO 2012111267 A1 WO2012111267 A1 WO 2012111267A1 JP 2012000676 W JP2012000676 W JP 2012000676W WO 2012111267 A1 WO2012111267 A1 WO 2012111267A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage container
gas
heat transfer
gas adsorbing
gas adsorption
Prior art date
Application number
PCT/JP2012/000676
Other languages
English (en)
French (fr)
Inventor
真弥 小島
将裕 越山
昌道 橋田
浅明 安田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012532181A priority Critical patent/JP5261616B2/ja
Priority to CN201280008893.3A priority patent/CN103370120B/zh
Priority to US13/983,503 priority patent/US8940084B2/en
Priority to EP12747844.4A priority patent/EP2676715B1/en
Publication of WO2012111267A1 publication Critical patent/WO2012111267A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering
    • H01J7/186Getter supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/302Alkali metal compounds of lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Definitions

  • the present invention relates to a gas adsorption device and a vacuum heat insulating material provided with the gas adsorption device.
  • a vacuum insulation material is a core material that forms a fine void with a high gas phase volume ratio, such as glass wool, in a laminating film that has a gas barrier property that is processed into a bag shape.
  • the laminate film is sealed under reduced pressure.
  • the gas heat conductive component of a vacuum heat insulating material becomes small by making the space
  • the influence of the convective heat transfer component can be ignored in a fine gap of about 1 mm.
  • the influence of the radiation component is slight near room temperature, the solid heat conduction component of the core material and the slightly remaining gas heat conduction component are dominant as the heat conduction component in the vacuum heat insulating material. For this reason, it is said that the heat conductivity of a vacuum heat insulating material is very small compared with other heat insulating materials.
  • the desiccant is on the open side of the upper open container and the Ba-Li alloy getter material is in the upper open container.
  • a gas adsorbing device configured to contain a desiccant and a Ba—Li alloy getter so as to have a two-layer structure on the sealing part side is sealed under reduced pressure together with a core material as a component of a vacuum heat insulating material.
  • FIG. 13 is a longitudinal sectional view showing a gas adsorption device of Conventional Example 1 disclosed in Patent Document 1.
  • the gas adsorbing device 21 of the conventional example 1 is compression-formed at a pressure of about 30 to 1000 bar from an upper open container 22 formed of a gas-impermeable material and a Ba—Li alloy getter material powder.
  • the first pellet 23 accommodated in the lower part of the upper open container 22 and the powder of the drying material are formed so as to completely cover the first pellet 23 from above (the open part side of the upper open container 22).
  • a second pellet 24 housed in the upper part of the upper open container 22.
  • the air that has entered the vacuum heat insulating material passes through the second pellet 24 through the open portion of the upper open container 22. At this time, moisture (water vapor) in the air is adsorbed. The air after moisture (water vapor) is adsorbed by the second pellet 24 is propagated to and adsorbed by the first pellet 23.
  • the gas adsorption device 21 of the conventional example 1 has the first pellet 23 made of the Ba—Li alloy getter material from the open side of the upper open container 22 by the second pellet 24 made of the desiccant.
  • the covering structure is adopted. With this configuration, it is possible to prevent the getter material constituting the first pellet 23 from adsorbing moisture (water vapor) in the air and rapidly deteriorating the air adsorption performance of the getter material, and thus vacuum insulation. It is said that the degree of vacuum in the material can be maintained.
  • FIG. 14 is a side view of the gas adsorption device of Conventional Example 2 disclosed in Patent Document 2 as viewed from a direction perpendicular to both the longitudinal direction and the thickness direction.
  • FIG. 15 is the side view seen from the opening part side which sealed the gas adsorption device of the prior art example 2 disclosed by patent document 2 with the sealing material.
  • the gas adsorption device 25 of Conventional Example 2 is produced through the following manufacturing method.
  • a gas permeable container 26 made of a hollow bottomed cylindrical metal member is prepared.
  • the gas-impermeable container 26 has one end opened and the other end sealed, and the length of the body from the one end to the other end is at least the maximum width of the one end and the other end. It has become.
  • the gas adsorbing material 29 is filled from the opening 27 of the gas permeable container 26.
  • a narrowed portion 26 a in which the inner surfaces of the gas permeable container 26 are close to each other is formed in the vicinity of the opening 27.
  • the sealing material 28 is installed in the narrowed portion 26a, and the sealing material 28 is in a molten state while decompressing the inside of the gas permeable container 26 and the space around the gas permeable container 26.
  • the sealing material 28 and the vicinity of the opening 27 are heated so that the gap of the narrowed portion 26a is closed.
  • the melted sealing material 28 closing the gap of the narrowed portion 26a is cooled and solidified, and as a result, the vicinity of the opening 27 (the gap of the narrowed portion 26a) is sealed.
  • the gas adsorbent 29 can be applied to an apparatus that needs to maintain a vacuum such as a vacuum heat insulating material without touching the atmosphere. Has been.
  • the Ba—Li alloy getter material constituting the first pellet 23 has a high affinity for water vapor (water in the air). For this reason, water vapor (moisture in the air) is completely removed from the air before the air composed of a mixed gas such as oxygen or nitrogen contacts the first pellet 23 (Ba-Li alloy getter material). There is a need. Therefore, the first pellet 23 (Ba—Li alloy getter material) alone is less useful, and the first pellet 23 (Ba—Li alloy getter material) is replaced with the upper open container 22 by the second pellet 24 composed of the drying material. The structure of the two-layer structure covering from the open part side of this must be adopted.
  • the gas adsorption device 21 of the conventional example 1 when used, adsorption of nitrogen or the like starts immediately after the gas adsorption device 21 of the conventional example 1 is exposed to the atmosphere. For this reason, there is a problem that the adsorption capacity of the conventional gas adsorption device 21 gradually decreases until the gas adsorption device 21 of the conventional example 1 is accommodated in a device that needs to maintain a vacuum, such as a vacuum heat insulating material. It was.
  • the gas adsorbing substance 29 accommodated in the gas impermeable container 26 is sealed with the sealing material 28.
  • a vacuum such as a vacuum heat insulating material
  • the sealing with the sealing material 28 is surely performed. It was difficult to determine whether or not. Therefore, there is a possibility that the gas adsorbing device 25 of the conventional example 2 in which the sealing with the sealing material 28 is incomplete and the gas adsorbing performance is unstable is housed in an apparatus that needs to maintain a vacuum.
  • a gas adsorption device includes a gas adsorption material that adsorbs nitrogen, and a metal storage container that stores the gas adsorption material in an elongated flat tube shape in a reduced pressure state.
  • the storage container includes a storage unit that stores the gas adsorbing substance, a sealing unit that seals both sides of the storage unit, and at least one sealing unit of the storage container and the storage A contact portion between which the inner surfaces of the storage containers facing each other are in close contact with each other.
  • the airtightness of the storage container in addition to the function of maintaining the gas adsorption performance, it is possible to suppress the inflow of air as a medium that causes the vibration of the gas adsorption material, and the gas adsorption
  • the substance is stored in a state of being in close contact with the inner surface of the storage container so that vibration in the storage unit is suppressed. Therefore, when the gas adsorption device is vibrated, the vibration of the gas adsorbing substance in the storage unit is suppressed as compared with the gas adsorption device in which the airtightness of the storage container is not ensured (sealing is incomplete).
  • the natural frequency changes (decreases), and a sound corresponding to the change in the natural frequency is generated.
  • the close contact portion is a hollow portion that is recessed in the storage container from the storage portion, and the sound is amplified by providing the recess portion in this way.
  • the airtightness of the storage container is ensured, the adhesion force between the inner surfaces of the storage container at the contact portion is maintained, but when the airtightness of the storage container is not ensured, the inside and outside of the storage container are maintained.
  • the close contact force between the inner surfaces of the storage container at the contact portion due to the pressure difference is lost. Therefore, the ease of vibration of the gas adsorbing material changes depending on the change in the state of the close contact portion according to the presence or absence of the airtightness of the storage container.
  • the difference in sound generated when the gas adsorbing device is vibrated is further clarified as compared with the case where the close contact portion is not provided, so that the confirmation of the reduced pressure sealed state is further facilitated. Can be done.
  • the gas adsorption device with incomplete sealing with the sealing material and unstable gas adsorption performance is obtained. Only a gas adsorption device that can be screened and has a stable gas adsorption performance can be stored in a device that needs to maintain a vacuum, such as a vacuum heat insulating material.
  • a gas adsorption device configured to store a heat transfer material having a higher heat transfer property than a gas adsorbent in a storage container by heat transfer of the heat transfer material. All the gas adsorbing materials in the storage container are shorter than the maximum distance between the central axis of the storage container and the inner surface of the storage container so that the temperature unevenness of the gas adsorbing substance in the container is reduced. It is located within a predetermined distance so as to be in contact with the gas adsorbing substance in the storage container.
  • the heat transfer material having better heat transfer than the gas adsorbed material heats the entire heat transfer material.
  • the entire surface of the heat transfer material has a substantially uniform temperature
  • the temperature of the gas adsorbing material in contact with the heat transfer material also becomes substantially uniform, and all the gas adsorbing materials in the storage container are removed from the heat transfer material.
  • the gas adsorption device provides a heat transfer material having a higher heat transfer property than the gas adsorbing substance in the storage container when the storage container is heated. Contact with the gas adsorbing material so that heating of the gas adsorbing material in the storage container is promoted by heat transfer of the heat transfer material, so that at least a part is exposed from the gas adsorbing material in the storage container. It is provided.
  • the heat transfer material having better heat transfer than the gas adsorbing material is exposed from the gas adsorbing material in the storage container of the heat transfer material, and the radiant heat received from the storage container is absorbed by the gas in the heat transfer material. Since heat is transferred to the gas adsorbent from the part in contact with the substance, heat is transferred to the gas adsorbent in a short time, and the temperature unevenness of the gas adsorbent in the vicinity of the part in contact with the gas adsorbent in the heat transfer material Can be reduced.
  • an object of the present invention is to appropriately provide a gas adsorption device with stabilized gas adsorption performance and a vacuum heat insulating material including the gas adsorption device.
  • an object of the present invention is to provide a gas adsorption device that facilitates confirmation of the reduced-pressure sealed state. It is another object of the present invention to provide a gas adsorption device capable of heat treating a gas adsorbing substance in a storage container almost uniformly even in a reduced pressure and high temperature atmosphere as in a vacuum heating furnace. It is another object of the present invention to provide a gas adsorption device capable of shortening the time required for heat treatment of the gas adsorbent in the storage container even in a reduced pressure and high temperature atmosphere as in a vacuum heating furnace.
  • a gas adsorption device with stabilized gas adsorption performance can be provided appropriately.
  • the gas adsorption device according to the present invention it is possible to easily confirm the reduced-pressure sealed state by a simple method of applying vibration. This makes it possible to screen gas adsorption devices that are not completely sealed with a sealing material and have unstable gas adsorption performance. Only gas adsorption devices with stable gas adsorption performance can be maintained in vacuum, such as vacuum insulation. Can be housed in a device that requires the device.
  • the gas adsorption device of the present invention even in the heat treatment in a reduced pressure and high temperature atmosphere, due to the presence of the heat transfer material, temperature unevenness of the gas adsorbent is reduced, and the gas adsorbent in the storage container is substantially reduced.
  • the heat treatment can be performed evenly, whereby the gas adsorption performance can be stabilized.
  • the time required for the heat treatment of the gas adsorbing substance in the storage container can be shortened due to the presence of the heat transfer material even in the heat treatment in the reduced pressure and high temperature atmosphere.
  • FIG. 1 is a plan view showing a configuration example of a gas adsorption device according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a characteristic diagram showing a characteristic example of sound generated when vibration is applied to the gas adsorption device according to Embodiment 1 of the present invention.
  • FIG. 4 is a plan view showing a configuration example of the gas adsorption device according to Embodiment 2 of the present invention.
  • FIG. 5 is a sectional view taken along line BB of FIG. 6 is a cross-sectional view taken along the line CC of FIG. FIG.
  • FIG. 7 is a characteristic diagram showing a characteristic example of sound generated when vibration is applied to the gas adsorption device according to Embodiment 2 of the present invention.
  • FIG. 8 is a plan view showing a configuration example of the gas adsorption device according to Embodiment 3 of the present invention.
  • 9 is a cross-sectional view taken along line AA in FIG.
  • FIG. 10 is a plan view showing a configuration example of the gas adsorption device according to Embodiment 4 of the present invention.
  • 11 is a cross-sectional view taken along line AA in FIG.
  • FIG. 12 is a schematic cross-sectional view showing a vacuum heat insulating material in Embodiment 5 of the present invention.
  • FIG. 13 is a longitudinal sectional view showing a conventional gas adsorption device disclosed in Patent Document 1.
  • FIG. 14 is a side view of a conventional gas adsorption device disclosed in Patent Document 2 as seen from a direction perpendicular to both the longitudinal direction and the thickness direction.
  • FIG. 15 is a side view of the conventional gas adsorbing device disclosed in Patent Document 2 as viewed from the opening side sealed with a sealing material.
  • the 1st invention has the gas adsorption material which adsorb
  • the said storage container is the said gas adsorption material
  • the “gas adsorbing substance” is a substance having an ability to adsorb nitrogen and oxygen in the air.
  • a lithium compound or ZSM-5 type zeolite exchanged with copper ions can be used.
  • the “storage container” plays a role of storing the gas adsorbing substance in a reduced pressure state and forming a close contact portion in the gas adsorbing device.
  • materials such as aluminum, copper, iron, and stainless steel, can be used.
  • the storage container be annealed so that the close contact portion can be easily formed. More preferably, from the viewpoint of formability and cost, it is desirable to use an aluminum storage container of less than 0.5 mm.
  • “sealing” is a means for keeping the inside of the storage container in a reduced pressure state.
  • a method of filling the inner surface of the storage container with an adhesive member such as a brazing material, an adhesive, or glass is opposed to each other.
  • a method of joining the inner surfaces of the storage container using a method such as high-frequency welding or ultrasonic welding, or a method of molding the bottom so that the inner surfaces of the storage container are continuous by impact press or deep drawing. Can be used.
  • the gas adsorbing material is stored in a state of being in close contact with the inner surface of the storage container.
  • vibration is applied to the gas adsorption device, vibration of the gas adsorbing material is suppressed, and the gas adsorbing material is stored in the storage container
  • the natural frequency changes as compared with a gas adsorption device housed in a state where it is not in close contact with the inner surface, and a sound corresponding to the change in the natural frequency is generated.
  • the close contact portion becomes a depression of the gas adsorption device, and the sound is amplified in the depression.
  • the gas adsorption device according to the present invention can easily confirm the reduced-pressure sealed state by the sound generated when vibration is applied to the gas adsorption device.
  • the close contact portion is a hollow portion that is recessed in the storage container from the storage portion, and the sound is amplified by providing the recess portion in this way.
  • the airtightness of the storage container is ensured, the adhesion force between the inner surfaces of the storage container at the contact portion is maintained, but when the airtightness of the storage container is not ensured, the inside and outside of the storage container are maintained.
  • the close contact force between the inner surfaces of the storage container at the contact portion due to the pressure difference is lost. Therefore, the ease of vibration of the gas adsorbing material changes depending on the change in the state of the close contact portion according to the presence or absence of the airtightness of the storage container. That is, according to the above configuration, the difference in sound generated when the gas adsorbing device is vibrated is further clarified as compared with the case where the close contact portion is not provided. It can be done easily.
  • the second aspect of the invention is particularly that in the first aspect of the invention, at least one of the two flat surfaces of the storage container facing each other has a hollow part that is recessed from the storage part.
  • the recess portion is provided in the storage container, in addition to the operation of the first invention, there is an operation that the sound easily resonates.
  • the storage container is vacuum-sealed so as to follow the shape of the gas adsorbing material, or the recess portion is previously formed in the storage container.
  • a method of forming a contact portion using a storage container having a substantially uniform thickness and using the contact portion as a hollow portion is simple.
  • the thinnest portion of the cut surface cut by a plane perpendicular to the longitudinal direction of the storage container is cut by cutting the contact portion. It is a surface.
  • the thinnest portion of the cut surface perpendicular to the longitudinal direction of the storage container is the cut surface of the close contact portion, in addition to the function of the first or second invention, the sound further resonates. It has the effect of becoming easier.
  • the close contact portion swells so that the inner surfaces of the storage container in the close contact portion It has something in between.
  • the close contact portion swells so that there is a space between the inner surfaces of the storage container in the close contact portion, so that the sealing with the sealing material is complete.
  • the difference in sound that occurs when vibration is applied to the gas adsorption device between the case of being incomplete and the case of being incomplete becomes clearer.
  • the heat transfer material having a higher heat transfer property than the gas adsorbing substance is disposed in contact with the inner surfaces of the storage containers facing each other.
  • the gas adsorbing substance is interposed between both surfaces of the heat transfer material and the inner surface of the storage container.
  • the gas adsorbing substance is a substance whose air adsorption performance is improved by heat treatment, and all the gas adsorbing substances in the storage container are separated from the heat transfer material.
  • the heat transfer material is provided in contact with the gas adsorbing substance in the storage container It is.
  • the heat transfer material having higher heat transfer than the gas adsorbed material is the entire heat transfer material. Heat is transferred to the entire surface of the heat transfer material to a substantially uniform temperature, and the temperature of the gas adsorbing material in contact with the heat transfer material is also substantially uniform.
  • the gas adsorbing substances in the storage container are located within a predetermined distance shorter than the maximum distance between the central axis of the storage container and the inner surface of the storage container from the heat transfer material, the temperature unevenness of the gas adsorption substance is reduced, The gas adsorbing substance in the storage container can be heat-treated substantially uniformly.
  • the configuration of the gas adsorption device According to the configuration of the gas adsorption device according to the present invention, even in the heat treatment in the reduced pressure and high temperature atmosphere, due to the presence of the heat transfer material, the temperature unevenness of the gas adsorption material is reduced, and the gas adsorption material in the storage container is reduced. Can be heat-treated substantially uniformly, and heat treatment for giving the gas adsorbing material the ability to adsorb gas can be performed with stable quality.
  • the gas adsorbing substance is a substance whose air adsorbing performance is improved by heat treatment, and the heat transfer material contacts the gas adsorbing substance in the storage container. And at least a part of the heat transfer material is provided so as to be exposed from the gas adsorbing substance in the storage container.
  • the gas adsorbing substance can receive heat from the portion that is in close contact with the inner surface of the storage container during the heat treatment. Also, the portion of the storage container exposed from the gas adsorbent of the heat transfer material receives the radiant heat from the storage container, and the heat transfer material has better heat transfer than the gas adsorption material, so the heat transfer material that has received the heat Transmits heat to the entire heat transfer material, and the entire surface of the heat transfer material has a substantially uniform temperature. Furthermore, since the heat transfer material is in contact with the gas adsorbing material at a portion embedded in the gas adsorbing material of the heat transfer material, heat is transferred to the gas adsorbing material.
  • the heat transfer material superior in heat transfer property to the gas adsorbing material is a portion exposed from the gas adsorbing material in the storage container of the heat transfer material, and the radiant heat received from the storage container is converted into the gas in the heat transfer material. Since it is transferred to the gas adsorbent from the part in contact with the adsorbent, heat is transferred to the gas adsorbent in a short time, and the temperature of the gas adsorbent in the vicinity of the part in contact with the gas adsorbent in the heat transfer material Unevenness can be reduced.
  • the heat treatment under reduced pressure for giving the gas adsorbing material the ability to adsorb gas can be performed in a short time and with stable quality.
  • the material of the conductive plate is made of metal.
  • the material of the conductive plate is made of metal, in addition to the effect of the seventh aspect of the invention, there is an effect that heat can be easily transferred due to the excellent thermal conductivity of the metal.
  • the material of the conductive plate is made of a metal having a lower emissivity than the storage container.
  • the conductive plate is made of a metal having a lower emissivity than the storage container, so that the conductive plate becomes hotter than the storage container.
  • the conductive plate has the effect of more easily transferring heat to the gas adsorbing substance.
  • a tenth invention includes at least a core material and the gas adsorption device according to the first to ninth inventions, covers the core material and the gas adsorption device with a jacket material having a gas barrier property, It is a vacuum heat insulating material formed by depressurizing the inside.
  • the high heat insulating performance of the vacuum heat insulating material can be maintained over a long period of time.
  • FIG. 1 is a plan view showing a configuration example of a gas adsorption device according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • the gas adsorption device 5a As shown in FIGS. 1 and 2, the gas adsorption device 5a according to the first embodiment has a gas adsorbing substance 9 made of ZSM-5 type zeolite subjected to copper ion exchange and adsorbing nitrogen, and an elongated flat cylindrical shape. And an aluminum storage container 11 for storing the gas adsorbing substance 9 in a reduced pressure state.
  • the storage container 11 includes a storage portion 10 that stores the gas adsorbing substance 9 and sealing portions 12 that are positioned at both ends of the storage portion 10.
  • one sealing portion 12a is a bottom obtained by deep drawing the storage container 11 into a bottomed cylindrical shape.
  • the other sealing part 12b seals the narrow part 14 which made the inner surface of the storage container 11 which opposes mutually approached with the glass for sealing.
  • both of the sealing portions 12a and 12b located at both ends of the storage portion 10 may be formed with a narrowed portion 14 and sealed with sealing glass.
  • the storage container 11 has a close contact portion 13 between the other sealing portion 12b and the storage portion 10 so that the inner surfaces of the storage containers 11 facing each other are in close contact with each other.
  • the gas adsorption device 5 a has a recessed portion that is recessed from the storage portion 10 on both two flat surfaces of the storage container 11 that face each other.
  • the close contact portion 13 that forms the bottom and the sealing portion that forms an edge that rises with a certain inclination along the thickness direction of the storage container 11 from each of the two flat surfaces (bottom surfaces) of the close contact portion 13.
  • the above-mentioned hollow part is formed by 12b and the accommodating part 10.
  • the depressions may be formed on either one of the two flat surfaces of the storage container 11 facing each other. Good.
  • the gas adsorbing device 5a allows the inner space of the storage container 11 to communicate with the outside of the storage container 11 (opens the gas adsorbing device 5a). There is a space between the inner surfaces. In other words, when the gas adsorbing device 5a is opened, air serving as a vibration medium flows into the storage container 11, and the gas adsorbing substance 9 is in close contact with the inner surface of the storage container 11 in the storage unit 10 from the inner surface. It will be in a separated state.
  • the gas adsorption device 5a as described above is manufactured by the following manufacturing method.
  • the manufacturing method of the gas adsorbing device 5a includes the step of storing the gas adsorbing substance 9 in the storage container 11, the step of forming the constricted portion 14 while forming the contact portion 13 by external force, and the other sealing portion 12b.
  • the step of performing the heat treatment specifically includes the step of activating the gas adsorbing substance 9, the step of melting the sealing glass under reduced pressure, and the sealing glass while gradually cooling the heating furnace.
  • a solidifying step and a step of annealing the storage container is a solidifying step and a step of annealing the storage container.
  • the storage container 11 at the time of deep drawing is formed so that a close contact part 13 is formed between the storage part 10 and the other sealing part 12b on the narrowed part 14 side due to a pressure difference between the inside and outside of the storage container 11. It is preferable to have a step in which the flatness of the container and the thickness of the storage container 11 are adjusted.
  • the amount of the gas adsorbing substance 9 is large.
  • gas is released from the gas adsorbing substance 9 in the storage container 11. Therefore, if there is too much gas adsorbing substance 9, the internal pressure increases due to the released gas, and the storage container 11 is sealed. It becomes difficult.
  • the sealing material disposed in the narrowed portion 14 is displaced by the momentum of the released gas, and the narrowed portion 14 cannot be properly sealed with the sealing material.
  • the ratio between the length of the close contact portion 13 and the length of the storage portion 10 is approximately 1: 1.
  • the longitudinal direction of the storage container 11 is a vertical direction between the time when it is put in the vacuum heating furnace and the time when the sealing glass is solidified to return the external pressure of the storage container 11 to the atmospheric pressure. It is preferable to have a step of placing the storage container 11 vertically so that the sealing portion 12b is positioned above the one sealing portion 12a in the vertical direction.
  • FIG. 3 shows the analysis result of the 1/3 octave spectrum band obtained by analyzing the sound when the gas adsorption device 5a is vibrated.
  • a peak can be confirmed in the vicinity of 6000 Hz.
  • the gas adsorbing device 5a includes the gas adsorbing substance 9 and the metal storage container 11 that stores the gas adsorbing substance 9 in an elongated flat tube shape in a reduced pressure state. It has the accommodating part 10 which accommodates the adsorption substance 9, and the sealing part 12 located in the both ends of the accommodating part 10, and mutually opposes between one sealing part (12a, 12b) and the accommodating part 10. It has the close_contact
  • the airtightness of the storage container 11 in addition to the function of maintaining the gas adsorption performance, it is possible to suppress the inflow of air serving as a medium that causes the vibration of the gas adsorbing substance 9, and
  • the gas adsorbing substance 9 is stored in a state of being in close contact with the inner surface of the storage container 11 so that the vibration in the storage unit 10 is suppressed. Therefore, when vibration is applied to the gas adsorption device 5a, the gas adsorbing substance 9 in the storage unit 10 is compared with a gas adsorption device in which the airtightness of the storage container 11 is not ensured (sealing is incomplete).
  • the vibration is suppressed, the natural frequency changes (decreases), and a sound corresponding to the change in the natural frequency is generated. That is, whether or not the airtightness of the storage container 11 is ensured by the difference in sound generated when vibration is applied to the gas adsorption device, that is, confirmation of the reduced-pressure sealed state (whether the gas adsorption performance is maintained). Confirmation) can be easily performed.
  • a recess portion that is recessed from the storage portion 10 is provided on at least one of the two flat surfaces of the storage container 11 that face each other.
  • the close contact portion 13 is the above-described hollow portion. According to this configuration, the sound easily resonates, and the difference in sound generated when the gas adsorbing device is vibrated becomes further clear, so that the confirmation of the reduced-pressure sealed state can be performed more easily.
  • the gas adsorption device 5a when the airtightness of the storage container 11 is ensured, the adhesion between the inner surfaces of the storage container 11 in the contact portion 13 is maintained, but the airtightness of the storage container 11 is ensured. If not, the contact force between the inner surfaces of the storage container 11 at the contact part 13 due to the pressure difference between the inside and the outside of the storage container 11 is lost. Therefore, the ease of vibration of the gas adsorbing substance 9 changes depending on the state change of the close contact portion 13 according to the presence or absence of the airtightness of the storage container 11. That is, according to the above configuration, the difference in sound generated when the gas adsorption device is vibrated becomes clearer than in the case where the close contact portion 13 is not provided. Can be done.
  • the close contact portion 13 swells to have a space between the inner surfaces of the storage container 11 in the close contact portion 13.
  • the gas adsorbing substance 9 may be any substance having an ability to adsorb nitrogen or oxygen in the air, and is not limited to ZSM-5 type zeolite.
  • a lithium compound can be used as the gas adsorbing substance 9.
  • the storage container 11 is not limited to an aluminum storage container as long as it has a function of storing the gas adsorbing substance 9 in a reduced pressure state and a function of forming the contact portion 13.
  • it is desirable that the storage container 11 is annealed so that the close contact portion 13 can be easily formed.
  • the sealing parts 12a and 12b should just be means for maintaining the inside of the storage container 11 in a pressure-reduced state, and are not limited to sealing the narrowing part 14 with the glass for sealing.
  • a method of molding the bottom so that the inner surfaces of the storage container 11 are continuous (contacted) by impact press or deep drawing are similarly applied to the following embodiments.
  • FIG. 4 is a plan view showing a configuration example of the gas adsorption device according to Embodiment 2 of the present invention.
  • FIG. 5 is a sectional view taken along line BB of FIG. 6 is a cross-sectional view taken along the line CC of FIG.
  • the gas adsorption device 5b of the present embodiment includes a gas adsorption material 9 made of ZSM-5 type zeolite exchanged with copper ions and adsorbing nitrogen, and an elongated flat cylindrical gas. It has an aluminum storage container 11 that seals both sides of a storage unit 10 that stores the adsorbed substance 9 in a decompressed state.
  • One sealing portion 12a of the sealing portions 12 located at both ends of the storage portion 10 is sealed by ultrasonic welding with the inner surfaces of the storage containers 11 facing each other approaching each other, and the other sealing portion As in the first embodiment, the portion 12b is formed by sealing the narrowed portion 14 with the inner surfaces of the storage containers 11 facing each other approaching each other with sealing glass.
  • both the two flat surfaces of the storage container 11 facing each other have a recessed portion that is recessed from the storage portion.
  • the recess portion described above is formed by 12 a and the storage portion 10.
  • the recess 10 is formed by the storage unit 10.
  • the depressions may be formed on either one of the two flat surfaces of the storage container 11 facing each other. Good.
  • vertical to the longitudinal direction of the said storage container 11 is a cut surface which cut
  • the close contact portion 13a along the short direction (width direction) of the storage container 11 is formed so that edges are formed at both ends of the close contact portions 13a and 13b along the short direction (width direction) of the storage container 11.
  • 13b is recessed in the center.
  • the contact portions 13 a and 13 b are within a predetermined distance along the short direction (width direction) of the storage container 11 from the center line of the contact portions 13 a and 13 b along the longitudinal direction of the storage container 11. At the bottom.
  • the close contact parts 13a and 13b swell to expand the storage in the close contact parts 13a and 13b. There is a space between the inner surfaces of the container 11.
  • the gas adsorption device 5b is manufactured by the following manufacturing method. First, one end of the storage container 11 is sealed by ultrasonic welding. Next, the one sealing portion 12a and the storage portion 10 are formed so that a close contact portion 13a is formed between the one sealing portion 12a sealed by ultrasonic welding and the storage portion 10 storing the gas adsorbing substance 9. The part which becomes the contact part 13a in between is adhered by an external force. Next, the gas adsorbing substance 9 is stored in the storage container 11. Next, the narrowed portion 14 for forming the other sealing portion 12b is formed. Next, heat treatment is performed by placing the sealing glass on the inner surface of the storage container 11 serving as the other sealing portion 12b in a vacuum heating furnace.
  • the heat treatment process of the gas adsorption device 5b includes a process of activating the gas adsorption material 9, a process of melting the sealing glass under reduced pressure, and a slow cooling of the heating furnace, as in the first embodiment.
  • it has the process of solidifying the glass for sealing, and the process of annealing a storage container.
  • the flatness of the storage container 11 and the thickness of the storage container 11 are formed so that a close contact part 13b is formed between the storage part 10 and the other sealing part 12b on the narrowed part 14 side due to the pressure difference between the inside and outside of the storage container 11. It is preferable to have the process of adjusting these.
  • the close contact portion 13a and the constriction portion 14 on the side of one sealing portion 12a sealed by ultrasonic welding with respect to the amount (volume) of the gas adsorbing substance 9 put in the storage container 11 It is preferable to have a step of adjusting the volume of the storage container 11 between them (in other words, the volume of the storage unit 10 and the close contact part 13b) to be sufficiently large.
  • the longitudinal direction of the storage container 11 is along the vertical direction and the constriction 14 It is preferable to have a step of placing the storage container 11 vertically so that the other sealing portion 12b on the side is positioned above the one sealing portion 12a sealed by ultrasonic welding.
  • FIG. 7 the sound when the gas adsorption device 5b manufactured through the manufacturing method is vibrated is analyzed, and the analysis result is compared with the gas adsorption device 5a of Embodiment 1 by 1/3 octave.
  • the results of the band analysis are shown.
  • edges are formed on both end sides of the close contact portions 13a and 13b along the short direction (width direction) of the storage container 11 (the central portions of the close contact portions 13a and 13b are depressed).
  • the gas adsorbing device 5b (Embodiment 2)
  • no edge is formed on both end sides of the close contact portion 13 along the short direction of the storage container 11 (the outer surface of the close contact portion 13 is substantially flat).
  • FIG. 8 is a plan view showing a schematic configuration example of a gas adsorption device according to Embodiment 3 of the present invention.
  • 9 is a cross-sectional view taken along line AA in FIG.
  • the gas adsorption device 5c according to Embodiment 3 is composed of a ZSM-5 type zeolite subjected to copper ion exchange, adsorbs nitrogen, and improves the air adsorption performance by heat treatment.
  • an aluminum storage container 11 in which both sides of a storage portion 10 for storing the gas adsorbing substance 9 in a decompressed state are stored in a thin and substantially flat cylindrical shape, and a metal material having a higher heat transfer property than the gas adsorbing substance 9 And a single plate-like heat transfer material 15 embedded in the gas adsorbing substance 9 in the storage container 11.
  • the close contact portion 13 is formed in the storage container 11 as in the first or second embodiment. In the case of the example shown in FIGS. 8 and 9, the close contact portion 13 is formed between the storage portion 10 and the other sealing portion 12 b.
  • One plate-like heat transfer material 15 is arranged so as not to be in contact with the inner surface of the opposing storage container 11 from the viewpoint of heat transfer as uniformly as possible to the entire gas adsorbing substance 9.
  • the gas adsorbing substance 9 is provided between both surfaces of the material 15 and the inner surface of the storage container 11. However, in the present embodiment, all the gas adsorbing substances 9 in the storage container 11 are reduced so that the temperature unevenness of the gas adsorbing substance 9 in the storage container 11 is more efficiently reduced by the heat transfer of the heat transfer material 15.
  • the plate-like surface is located within a predetermined distance shorter than the maximum distance between the central axis of the storage container 11 and the inner surface of the storage container 11 from the heat transfer material 15 and contacts the gas adsorbing substance 9 in the storage container 11. And the plate-like surface in the storage container 11 in a direction opposite to the two substantially flat surfaces of the storage container 11 facing each other at an intermediate position between the two substantially flat surfaces of the storage container 11 facing each other. It is embedded in the gas adsorbing substance 9.
  • the heat transfer material 15 is formed in a single plate shape.
  • the present invention is not limited to this.
  • Various shapes such as a shape and a spiral shape can be used.
  • the material of the heat transfer material 15 is not limited, when the material of the heat transfer material 15 is a metal, the heating of the gas adsorbing substance 9 in the storage container 11 is further promoted by the excellent heat transfer property. The heat treatment of the gas adsorbing substance 9 can be performed satisfactorily.
  • the material of the heat transfer material 15 is a metal material having a lower emissivity than the metal material of the storage container 11, for example, the storage container 11 is copper and the heat transfer material 15 is aluminum, In comparison, the radiation equilibrium temperature of the heat transfer material 15 is increased. For this reason, heat conduction of the gas adsorbing material 9 is further improved in a shorter time and more uniformly by promoting heat conduction from the portion of the gas adsorbing material 9 where the heat transfer material 15 is buried, that is, the inside of the gas adsorbing material 9. Can be implemented.
  • the thickness of the heat transfer material 15 As a method of increasing the heat transfer property of the heat transfer material 15, there is a method of increasing the thickness of the heat transfer material 15 in addition to the metal material having excellent heat transfer property, and selecting a metal material having more excellent heat transfer property. It is better in terms of cost to increase the thickness of the heat transfer material 15 than to increase the thickness. However, if the thickness of the heat transfer material 15 is increased too much, the amount of the gas adsorbing substance 9 that can be accommodated in the gas adsorbing device 5c decreases, and the amount of air that can be adsorbed by the gas adsorbing device 5c decreases. On the other hand, the thickness and size of the gas adsorbing device 5c are increased in order to prevent the amount of the gas adsorbing substance 9 stored in the gas adsorbing device 5c from being reduced. It is better to do it properly.
  • One sealing part 12a among the sealing parts 12 positioned at both ends of the storage part 10 is a bottom obtained by deep drawing the storage container 11 into a bottomed cylindrical shape.
  • the other sealing portion 12b is obtained by sealing the constricted portion 14 in which the inner surfaces of the storage containers 11 facing each other are brought close to each other with the sealing glass after the heat treatment of the gas adsorbing substance 9.
  • the gas adsorption device 5c is provided with a narrowed portion 14 for forming the other sealing portion 12b after the gas adsorbing substance 9 is accommodated in the storage container 11, and is provided on the inner surface of the storage container 11 serving as the other sealing portion 12b. It is manufactured by placing the glass for sealing in a vacuum heating furnace and performing a heat treatment. As in the first and second embodiments, the heat treatment step includes the step of activating the gas adsorbing substance 9, the step of melting the sealing glass under reduced pressure, and sealing while heating the heating furnace slowly. A step of solidifying the stop glass and a step of annealing the container.
  • the metal heat transfer material 15 having better heat transfer than the gas adsorbing material 9 is used, and all the gas adsorbing materials 9 in the storage container 11 are moved from the heat transfer material 15 to the center of the storage container 11. It is located within a predetermined distance shorter than the maximum distance between the shaft and the inner surface of the storage container 11 and is provided so as to contact the gas adsorbing substance 9 in the storage container 11. Thereby, the temperature nonuniformity of the gas adsorption substance 9 in the storage container 11 is reduced by the heat transfer of the heat transfer material 15.
  • the heat transfer material 15 When the heat transferred from the inner surface of the storage container 11 to the heat transfer material 15 is transmitted to the heat transfer material 15 in a reduced pressure and high temperature atmosphere in the vacuum heating furnace, the heat transfer material 15 having a higher heat transfer property than the gas adsorption material 9. The heat is transferred to the entire heat transfer material 15 so that the entire surface of the heat transfer material 15 has a substantially uniform temperature, and the temperature of the gas adsorbing substance 9 in contact with the heat transfer material 15 also becomes substantially uniform.
  • all the gas adsorbing substances 9 in the storage container 11 are located within a predetermined distance shorter than the maximum distance between the central axis of the storage container 11 and the inner surface of the storage container 11 from the heat transfer material 15, The temperature unevenness can be reduced and the gas adsorbing substance 9 in the storage container 11 can be heat-treated substantially uniformly.
  • the gas adsorption device 5c is a heat treatment for activating the gas adsorbent 9 in a reduced-pressure high-temperature atmosphere as in a vacuum heating furnace, the temperature of the gas adsorbent 9 due to the presence of the heat transfer material 15 Unevenness can be reduced and the gas adsorbing substance 9 in the storage container 11 can be heat-treated substantially uniformly. Thereby, the heat processing for giving the gas adsorbing substance 9 the ability to adsorb gas can be performed with stable quality.
  • FIG. 10 is a plan view showing a schematic configuration example of the gas adsorption device according to the embodiment of the present invention.
  • 11 is a cross-sectional view taken along line AA in FIG.
  • the gas adsorbing device 5d of the present embodiment includes a gas adsorbing substance 9 made of ZSM-5 type zeolite exchanged with copper ions and adsorbing nitrogen and improving the air adsorbing performance by heat treatment.
  • the container 11 is made of an aluminum storage container 11 that is sealed in both sides of a storage portion 10 that stores the gas adsorbing substance 9 in a decompressed state, and a metal material that is more heat conductive than the gas adsorbing substance 9. , A part of which is exposed from the gas adsorbing substance 9 in the storage container 11, and the remaining part is a single plate-like heat transfer material 15 embedded in the gas adsorbing substance 9 in the storage container 11.
  • the close contact portion 13 is formed in the storage container 11 as in the first or second embodiment.
  • adherence part 13 is formed between the accommodating part 10 and the other sealing part 12b.
  • One plate-like heat transfer material 15 is arranged so as not to be in contact with the inner surface of the opposing storage container 11 from the viewpoint of heat transfer as uniformly as possible to the entire gas adsorbing substance 9.
  • the gas adsorbing substance 9 is provided between both surfaces of the material 15 and the inner surface of the storage container 11. However, in the present embodiment, all the gas adsorbing substances 9 in the storage container 11 are reduced so that the temperature unevenness of the gas adsorbing substance 9 in the storage container 11 is more efficiently reduced by the heat transfer of the heat transfer material 15.
  • the dimension of the plate-like surface is set so as to be exposed from the gas adsorbing substance 9 inside.
  • the gas adsorbing substance in the storage container 11 in such a direction that the plate-shaped surface faces the substantially flat two mutually opposed surfaces of the storage container 11 at an intermediate position between the two substantially flat surfaces facing each other. 9 is embedded except for some exposed portions.
  • the heat transfer material 15 is formed in a single plate shape as in the third embodiment. There is no problem even if it has a variety of shapes, such as an opening, a shape in which plates are joined in a cross or radial shape, or a spiral shape.
  • one sealing part 12a is a bottom obtained by deep drawing the storage container 11 into a bottomed cylindrical shape.
  • the other sealing portion 12b is obtained by sealing the constricted portion 14 in which the inner surfaces of the storage containers 11 facing each other are brought close to each other with the sealing glass after the heat treatment of the gas adsorbing substance 9.
  • the gas adsorption device 5d is provided with a narrowed portion 14 for forming the other sealing portion 12b after the gas adsorbing substance 9 is accommodated in the storage container 11, and is provided on the inner surface of the storage container 11 serving as the other sealing portion 12b. It is manufactured by placing the glass for sealing in a vacuum heating furnace and performing a heat treatment. *
  • the step of performing the heat treatment includes a step of activating the gas adsorbing substance 9, a step of melting the sealing glass under reduced pressure, and a step for sealing while gradually cooling the heating furnace.
  • a metal heat transfer material 15 having a heat transfer property superior to that of the gas adsorbing substance 9 is provided so that at least a part thereof is exposed from the gas adsorbing substance 9 in the storage container 11. .
  • the heat transfer material 15 is stored in such a manner that all the gas adsorbing substances 9 in the storage container 11 are located within a predetermined distance shorter than the maximum distance between the central axis of the storage container 11 and the inner surface of the storage container 11 from the heat transfer material 15. It is provided so as to come into contact with the gas adsorbing substance 9 in the container 11.
  • the heating of the gas adsorbing substance 9 in the storage container 11 is promoted by the heat transfer of the heat transfer material 15 when the storage container 11 is heated, and the gas in the storage container 11 is transferred by the heat transfer of the heat transfer material 15.
  • the temperature unevenness of the adsorbing substance 9 is reduced.
  • the step of activating the gas adsorbing material 9 by heat treatment is performed in a reduced-pressure atmosphere in the vacuum heating furnace, so that there is almost no heat transfer to the gas adsorbing material 9 via the gas substance in the vacuum heating furnace. For this reason, the gas adsorbing substance 9 is heated by heat transfer through the contact portion between the inner surface of the storage container 11 heated in the vacuum heating furnace and the gas adsorbing substance 9. The portion of the heat transfer material 15 exposed from the gas adsorbing substance 9 in the storage container 11 receives radiant heat from the storage container 11.
  • the heat transferred from the inner surface of the storage container 11 to the heat transfer material 15 is transmitted to the heat transfer material 15 in the reduced pressure and high temperature atmosphere in the vacuum heating furnace.
  • radiant heat from the storage container 11 is received by the exposed heat transfer material 15, heat is transferred to the entire heat transfer material 15, and the entire surface of the heat transfer material 15 reaches a substantially uniform temperature.
  • the temperature of the gas adsorbing substance 9 in contact with the gas becomes substantially uniform.
  • all the gas adsorbing substances 9 in the storage container 11 are located within a predetermined distance shorter than the maximum distance between the central axis of the storage container 11 and the inner surface of the storage container 11 from the heat transfer material 15, The temperature unevenness can be reduced, and the gas adsorbing substance 9 in the storage container 11 can be heat-treated in a substantially short time.
  • the gas adsorption device 5d is a heat treatment for activating the gas adsorbent 9 in a reduced-pressure high-temperature atmosphere such as in a vacuum heating furnace
  • the temperature of the gas adsorbent 9 due to the presence of the heat transfer material 15 Unevenness can be reduced, the gas adsorbing substance 9 in the storage container 11 can be heat-treated substantially uniformly, and heat treatment for allowing the gas adsorbing substance 9 to adsorb gas can be performed with stable quality.
  • the portion of the heat transfer material 15 where the plate-like surface is exposed from the gas adsorbing substance 9 in the storage container 11 is opposed to the substantially flat two mutually opposed surfaces of the substantially flat cylindrical storage container 11. Since it is arranged in the direction, the radiant heat can be efficiently received from the storage container 11.
  • the radiant heat received from the storage container 11 at the portion of the heat transfer material 15 exposed from the gas adsorption material 9 in the storage container 11 is transferred from the portion of the heat transfer material 15 that is in contact with the gas adsorption material 9 to the gas adsorption material. Therefore, heat can be transferred to the gas adsorbing substance 9 in a short time. For this reason, the gas adsorption device 5d can perform the heat treatment under reduced pressure to give the gas adsorbing substance 9 the ability to adsorb gas in a short time and with stable quality.
  • the material of the heat transfer material 15 is not limited, when the material of the heat transfer material 15 is a metal, the heating of the gas adsorbing substance 9 in the storage container 11 is further promoted by the excellent heat transfer property.
  • the heat treatment of the gas adsorbing substance 9 can be performed satisfactorily. As a result, it is possible to provide an inexpensive gas adsorption device 5 with stable gas adsorption performance.
  • the material of the heat transfer material 15 is a metal material having a lower emissivity than the metal material of the storage container 11, for example, the material of the storage container 11 is copper and the material of the heat transfer material 15 is aluminum, during heat treatment under reduced pressure, Compared with the storage container 11, the radiation equilibrium temperature of the heat transfer material 15 becomes higher. For this reason, heat conduction of the gas adsorbing material 9 can be performed in a shorter time and more uniformly by promoting heat conduction from the portion of the gas adsorbing material 9 where the heat transfer material 15 is buried, that is, the inside of the gas adsorbing material 9. can do. As a result, an inexpensive gas adsorption device 5d having stable gas adsorption performance can be provided.
  • FIG. 12 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 5 of the present invention.
  • the vacuum heat insulating material 16 covers the core material 17 and the gas adsorption device 5 according to any one of the first to fourth embodiments with an outer cover material 18, and is sealed under reduced pressure. It is a thing.
  • the gas adsorbing device 5 includes a storage container 11 that stores a gas adsorbing substance and an opening member 7 that is attached to the storage container 11.
  • the opening member 7 is deformed by applying an external force, and when opening is performed by opening a through hole in the storage container 11, an external force is applied. The state in which the indentation trace 33 is formed in the location of the workpiece 18 is shown.
  • the installation positions of the storage container 11 and the opening member 7 appear as irregularities on the jacket material 18.
  • an external force within a range necessary for the opening operation is applied with the position where the opening member 7 is installed as a mark. That is, no external force is applied to the entire storage container 11, and the push-in trace 33 is a range of a part of the upper portion of the installation position of the storage container 11 on the outer covering material 18.
  • the jacket material 18 plays a role of maintaining the degree of vacuum of the vacuum heat insulating material 16, and includes metal foil and metal atoms as the innermost layer heat-welded film and the gas barrier film as the intermediate layer. A vapor-deposited resin film and a surface protective film as an outermost layer are respectively laminated.
  • Gas barrier films include metal foil such as aluminum foil and copper foil, polyethylene terephthalate film or ethylene-vinyl alcohol copolymer, and metal or metal oxide such as aluminum or copper. The film etc. which vapor-deposited the thing can be used.
  • the surface protective film a conventionally known material such as a nylon film, a polyethylene terephthalate film, or a polypropylene film can be used.
  • the manufacturing method of the vacuum heat insulating material is not particularly specified, but for example, the following manufacturing method can be mentioned.
  • a first manufacturing method a single laminate film is folded, and a heat-bonding film located at the end of the opposite laminate film is thermally welded to obtain a bag-like laminate film.
  • a core material is inserted into the film, and the heat-welded films located at the opening of the bag-like laminate film are heat-welded under reduced pressure.
  • two laminated films are arranged so that the heat-welding films face each other, and the heat-welding films located at the end portions of the respective laminating films are heat-welded with each other to form a bag.
  • a laminate film is obtained, a core material is inserted into the bag-like laminate film, and the heat-welded films located near the opening of the bag-like laminate film are thermally welded under reduced pressure.
  • the core material 17 serves as a skeleton of the vacuum heat insulating material 16 and plays a role of forming a vacuum space.
  • the material of the core material 17 is not particularly specified, but conventionally known materials such as inorganic fibers such as glass wool, rock wool, alumina fibers, metal fibers, and polyethylene terephthalate fibers are used. Available.
  • the metal fiber which consists of a metal excellent in heat conductivity among metals is not preferable.
  • a gas adsorbing substance plays a role of adsorbing a mixed gas such as water vapor or air that remains or enters a sealed space such as a vacuum heat insulating material, and is not particularly specified.
  • An adsorbent material, a physical adsorbent material such as zeolite, or a mixture thereof can be used.
  • ZSM-5 type zeolite exchanged with copper ions having chemical adsorption properties and physical adsorption properties can also be used.
  • the storage container 11 has a property that it is difficult for gas such as air and water vapor to pass therethrough and plays a role of preventing the gas adsorbing substance from coming into contact with the gas.
  • the material of the storage container 11 is not particularly specified, but a laminate film similar to the jacket material described above can be used, and if the gas adsorbing material can be stored without being in contact with the outside air under reduced pressure sealing. It can be used.
  • the shape of the storage container 11 is not particularly specified as long as it can store a gas adsorbing substance inside and can store the gas adsorbing substance without contact with outside air by sealing under reduced pressure.
  • the gas adsorption device 5 can sufficiently exhibit its original function, and the vacuum heat insulating material 16 can maintain a high vacuum inside for a long period of time and have high heat insulating performance.
  • the gas adsorption device according to the present invention can be applied to equipment that needs to maintain a vacuum, such as a vacuum heat insulating material, a vacuum heat insulating container, a plasma display, and a fluorescent lamp.
  • a vacuum heat insulating material such as a vacuum heat insulating material, a vacuum heat insulating container, a plasma display, and a fluorescent lamp.
  • Other vacuum heat insulating materials of the present invention can be applied to equipment that needs to maintain heat insulating performance, such as refrigerators, vending machines, hot water supply containers, heat insulating materials for buildings, heat insulating materials for automobiles, and cold insulation / heat insulating boxes. .
  • Gas adsorption device 9 ... Gas adsorption material 10 ... Storage part 11 ... Storage container 12, 12a, 12b ... Sealing part 13, 13a, 13b ... Adhesion part 14 ... Constriction part 15 ... Transmission Heat material 16 ... Vacuum heat insulating material 17 ... Core material 18 ... Cover material 21 ... Gas adsorption device 22 ... Upper open container 23 ... Pellet 24 ... Pellet 25 ... Gas adsorption device 26 ... Gas poorly permeable container 26a ... Narrow part 27 ... Opening 28 ... Sealing material 29 ... Gas adsorbing substance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Thermal Insulation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Refrigerator Housings (AREA)

Abstract

本発明に係る気体吸着デバイス(5a)は、少なくとも窒素を吸着する気体吸着物質(9)と、細長い扁平な筒状で気体吸着物質(9)を減圧状態で収納する収納部(10)の両側を封止した金属製の収納容器(11)とを有し、収納容器(11)の少なくともどちらか一方の封止部(12a,12b)と収納部(10)との間に、互いに対向する収納容器(11)の内面同士が密着する密着部(13)を有する。

Description

気体吸着デバイス及びそれを備えた真空断熱材
 本発明は、気体吸着デバイス及びそれを備えた真空断熱材に関する。
 近年、地球環境問題である温暖化の対策として、省エネルギーを推進する動きが活発となっている。特に、温冷熱利用機器に関しては、熱を有効活用するという観点から、優れた断熱性能を有する真空断熱材が普及しつつある。真空断熱材とは、袋状に加工したガスバリア(gas barrier)性を有するラミネートフィルム(laminate film)内へ、グラスウール(glass wool)のように気相容積比率が高く微細な空隙を構成する芯材を収納し、このラミネートフィルムを減圧して密封したものである。なお、芯材の空隙径を減圧下における気体分子の平均自由行程よりも小さくすることで、真空断熱材の気体熱伝導成分は小さくなる。特に、1mm程度の微細な空隙では対流熱伝達成分の影響は無視できるようになる。さらに、室温付近では輻射成分の影響は軽微であるため、真空断熱材における熱伝導成分としては、芯材の固体熱伝導成分と僅かに残る気体熱伝導成分とが支配的となる。このため、真空断熱材の熱伝導率は他の断熱材と比較して非常に小さいとされている。
 しかしながら、ラミネートフィルムを介して真空断熱材中へ空気が徐々に侵入すると、気体熱伝導成分が増加するため、該真空断熱材の熱伝導率は徐々に増加してゆくという課題を有していた。そこで、前記課題の解決案として、ガス不透過材で形成された上部開放容器内に、乾燥材が上部開放容器の開放部側になり且つBa-Li合金ゲッター(getter)材が上部開放容器の封止部側になる2層構造となるように、乾燥材とBa-Li合金ゲッターとを収納して構成された気体吸着デバイスを、真空断熱材の構成要素として芯材と一緒に減圧密封することが提案されている(例えば、特許文献1参照)。
 図13は、特許文献1に開示された従来例1の気体吸着デバイスを示す縦断面図である。図13に示すように、従来例1の気体吸着デバイス21は、ガス不透過材で形成された上部開放容器22と、Ba-Li合金ゲッター材の粉末から約30~1000barの圧力で圧縮形成されて上部開放容器22内の下部に収納された第1ペレット(pellet)23と、乾燥材の粉末から形成されて第1ペレット23を上(上部開放容器22の開放部側)から完全に覆うように上部開放容器22内の上部に収納された第2ペレット(pellet)24とから成る。
 従来例1の気体吸着デバイス21を芯材と一緒に減圧密封した真空断熱材において、該真空断熱材中に侵入した空気は、上部開放容器22の開放部を経て第2のペレット24を通過する際にその空気中の水分(水蒸気)が吸着されることとなる。そして、第2のペレット24により水分(水蒸気)が吸着された後の空気は、第1のペレット23に伝搬されて吸着されることとなる。
 このように、従来例1の気体吸着デバイス21は、乾燥材で構成された第2のペレット24によってBa-Li合金ゲッター材で構成された第1ペレット23を上部開放容器22の開放部側から覆う構成を採用している。この構成により、第1のペレット23を構成するゲッター材が空気中の水分(水蒸気)を吸着して該ゲッター材の空気吸着性能が早く劣化してしまうことを抑制することができ、ひいては真空断熱材中の真空度を維持できるとされている。
 また、前記課題の別の解決案として、気体難透過性容器内に気体吸着物質を減圧密封した気体吸着デバイスを、真空断熱材の構成要素として芯材と一緒に減圧密封した後に、該気体難透過性容器を開封することが提案されている(例えば、特許文献2参照)。
 図14は、特許文献2に開示された従来例2の気体吸着デバイスを長手方向と厚み方向の両方で垂直な方向から見た側面図である。図15は、特許文献2に開示された従来例2の気体吸着デバイスを封止材で封止した開口部側から見た側面図である。
 図14、図15に示すように、従来例2の気体吸着デバイス25は、つぎのような製造方法を経て作成される。まず、中空の有底筒状金属部材から成る気体難透過性容器26を準備する。なお、気体難透過性容器26は、その一端が開口しているとともにその他端が密封されており、且つその一端からその他端までの胴部の長さが、その一端及びその他端の少なくとも最大幅となっている。つぎに、気体難透過性容器26の開口部27より気体吸着物質29が充填される。つぎに、開口部27近傍に気体難透過性容器26の内面同士が接近した狭窄部26aが形成される。つぎに、狭窄部26aに封止材28が設置され、気体難透過性容器26の内部と気体難透過性容器26の周囲の空間とを減圧しつつ、封止材28が融解状態となって狭窄部26aの隙間を塞いだ状態となるように封止材28と開口部27付近とが加熱される。つぎに、狭窄部26aの隙間を塞いだ融解状態の封止材28が、冷却固化されて、この結果、開口部27近傍(狭窄部26aの隙間)が封止される。
 以上のような工程を経て作製された従来例2の気体吸着デバイス25によれば、気体吸着物質29が大気に触れることなく、真空断熱材等の真空の維持を必要とする機器へ適用できるとされている。
特許第3105542号公報 国際公開第2010/109846号
 図13に示されるような従来例1の気体吸着デバイス21の構成では、第1のペレット23を構成するBa-Li合金ゲッター材は、水蒸気(空気中の水分)に対して親和性が高い。このため、酸素や窒素などの混合ガスから成る空気が第1のペレット23(Ba-Li合金ゲッター材)に接触するまでに、該空気から水蒸気(空気中の水分)を完全に除去しておく必要がある。そこで、第1ペレット23(Ba-Li合金ゲッター材)のみでは有用性が低く、乾燥材で構成された第2のペレット24で第1ペレット23(Ba-Li合金ゲッター材)を上部開放容器22の開放部側から覆う2層構造の構成を採用せざるを得なかった。
 さらに、従来例1の気体吸着デバイス21を用いる場合には、従来例1の気体吸着デバイス21が大気に暴露された直後から窒素等の吸着が始まることとなる。このため、真空断熱材のように真空維持を必要する機器に従来例1の気体吸着デバイス21が収納されるまでの間、従来の気体吸着デバイス21の吸着能力が徐々に低下するといった課題があった。
 一方、従来例2の気体吸着デバイス25の構成では、気体難透過性容器26内に収納した気体吸着物質29が封止材28により密封されている。このため、気体吸着物質29を大気に暴露することなく真空断熱材などの真空維持を必要とする機器への収納が可能となってはいるが、封止材28による封止が確実に行われたか否かの判別が困難であった。したがって、封止材28による封止が不完全であって気体吸着性能が不安定な従来例2の気体吸着デバイス25が真空維持を必要とする機器へ収納される虞があった。
 また、従来例2の気体吸着デバイス25の構成では、気体難透過性容器26内に充填された気体吸着物質29を、真空加熱炉内での減圧高温雰囲気下で熱処理するためには、気体難透過性容器26から気体吸着物質29に伝わる熱伝導による加熱をする他に方法がなかった。このため、気体吸着物質29に熱が均一に伝わらず温度ムラができ、熱処理が均等になされない、つまり気体吸着物質29の気体吸着性能が安定しないという課題があった。
 さらに、従来の気体吸着デバイス25の構成では、気体難透過性容器26内に充填された気体吸着物質29を真空加熱炉内での減圧高温雰囲気下で熱処理するには長時間を要するという課題があった
 前記課題を解決するために、本発明のある形態に係る気体吸着デバイスは、窒素を吸着する気体吸着物質と、細長い扁平な筒状で前記気体吸着物質を減圧状態で収納する金属製の収納容器とを有し、前記収納容器は、前記気体吸着物質を収納する収納部と、該収納部の両側を封止した封止部と、前記収納容器の少なくともどちらか一方の封止部と前記収納部との間に、互いに対向する前記収納容器の内面同士が密着する密着部とを有する、ものである。
 前記構成により、収納容器の両端は封止されているので、収納容器の気密性が確保されている。なお、収納容器の気密性が確保されていない(封止が不完全である)場合には、収納容器の内外の気圧差がほとんどないため、収納容器の内外の気圧差による気体吸着物質と収納容器との密着力がなくなる。言い換えると、収納容器の気密性が確保されている場合には、収納容器の内外の気圧差により気体吸着物質は収納容器の内面に密着した状態で収納される。
 以上のように、収納容器の気密性が確保されることにより、気体吸着性能を維持する作用の他に、気体吸着物質の振動を引き起こす媒体となる空気が流入することが抑えられ、且つ気体吸着物質は収納部内での振動が抑制されるように収納容器の内面に密着した状態で収納されることとなる。したがって、気体吸着デバイスへ加振を与えた場合、収納容器の気密性が確保されていない(封止が不完全な)気体吸着デバイスと比べると、収納部内の気体吸着物質の振動が抑制されて、その固有振動数が変化(減少)し、その固有振動数の変化に応じた音が発生することとなる。つまり、気体吸着デバイスに加振を与えたときに発する音の相違によって、収納容器の気密性が確保されているか否か、つまり、減圧密封状態の確認(気体吸着性能が維持されているか否かの確認)を容易に行うことができる。
 また、前記構成によれば、密着部が収納容器において収納部よりも窪んでいる窪み部となっており、このように窪み部が設けられたことによって音が増幅される。なお、収納容器の気密性が確保されている場合には密着部における収納容器の内面同士の密着力は維持されるが、収納容器の気密性が確保されてない場合には収納容器の内外の気圧差による密着部における収納容器の内面同士の密着力がなくなる。よって、収納容器の気密性の有無に応じた密着部の状態変化によって、気体吸着物質の振動のしやすさが変化することとなる。すなわち、前記構成によれば、密着部が設けられない場合と比べると、気体吸着デバイスに加振を与えたときに発する音の相違がより一層明確になるので、減圧密封状態の確認をさらに容易に行うことができる。
 そして、以上のとおり、気体吸着デバイスに加振を与えたときに発する音の相違を確認することによって、封止材による封止が不完全であって気体吸着性能が不安定な気体吸着デバイスをスクリーニングすることができ、気体吸着性能が安定した気体吸着デバイスのみを真空断熱材などの真空維持を必要とする機器へ収納することが可能となる。
 前記課題を達成するために、本発明の他の形態に係る気体吸着デバイスは、収納容器内の気体吸着物質よりも伝熱性に優れた伝熱材を、前記伝熱材の伝熱により前記収納容器内の前記気体吸着物質の温度ムラが低減されるように前記収納容器内の全ての気体吸着物質が前記伝熱材から前記収納容器の中心軸と前記収納容器の内面との最大距離より短い所定距離内に位置し前記収納容器内の前記気体吸着物質に接触するように設けたものである。
 前記構成において、減圧高温雰囲気で、気体吸着物質が収納容器の内面から伝わった熱を伝熱材に伝えると、気体吸着物質よりも伝熱性に優れた伝熱材は伝熱材の全体に熱を伝えて伝熱材の全表面が略均一な温度になり、伝熱材に接触している気体吸着物質の温度も略均一になり、収納容器内の全ての気体吸着物質が伝熱材から収納容器の中心軸と収納容器の内面との最大距離より短い所定距離内に位置するため、気体吸着物質の温度ムラを減少させ、収納容器内の気体吸着物質を略均等に熱処理することができる。
 前記課題を達成するために、本発明のその他の形態に係る気体吸着デバイスは、収納容器内の気体吸着物質よりも伝熱性に優れた伝熱材を、前記収納容器を加熱している時に前記伝熱材の伝熱により前記収納容器内の前記気体吸着物質の加熱が促進されるように前記気体吸着物質と接触し、少なくとも一部が前記収納容器内で前記気体吸着物質から露出するように設けたものである。
 前記構成により、気体吸着物質よりも伝熱性に優れた伝熱材が、伝熱材における収納容器内で気体吸着物質から露出した部分で、収納容器から受け取った輻射熱を、伝熱材における気体吸着物質と接触している部分から、気体吸着物質に伝えるので、気体吸着物質に熱を短時間で伝え、しかも伝熱材における気体吸着物質と接触している部分の近傍の気体吸着物質の温度ムラを少なくすることができる。
 本発明は、前記課題に鑑み、気体吸着性能の安定化した気体吸着デバイス及びそれを備えた真空断熱材を適切に提供することを目的とする。具体的には、減圧密封状態の確認が容易となるような気体吸着デバイスを提供することを目的とする。また、真空加熱炉内のような減圧高温雰囲気であっても、収納容器内の気体吸着物質を略均等に熱処理できる気体吸着デバイスを提供することを目的とする。また、真空加熱炉内のような減圧高温雰囲気であっても、収納容器内の気体吸着物質の熱処理に要する時間を短縮可能な気体吸着デバイスを提供することを目的とする。
 本発明の前記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明によれば、気体吸着性能の安定化した気体吸着デバイスを適切に提供することができる。具体的は、本発明に係る気体吸着デバイスによれば、加振を与えるといった簡便な方法で、減圧密封状態の確認を容易に行うことができる。これにより、封止材による封止が不完全であって気体吸着性能が不安定な気体吸着デバイスをスクリーニングすることができ、気体吸着性能が安定した気体吸着デバイスのみを真空断熱材などの真空維持を必要とする機器へ収納することが可能となる。また、本発明に係る気体吸着デバイスによれば、減圧高温雰囲気での熱処理であっても、伝熱材の存在により、気体吸着物質の温度ムラを減少させ、収納容器内の気体吸着物質を略均等に熱処理することができ、これにより、気体吸着性能を安定化することができる。また、本発明に係る気体吸着デバイスによれば、減圧高温雰囲気での熱処理であっても、伝熱材の存在により、収納容器内の気体吸着物質の熱処理に要する時間を短縮することができる。
図1は本発明の実施の形態1における気体吸着デバイスの構成例を示す平面図である。 図2は図1のA-A線断面図である。 図3は本発明の実施の形態1における気体吸着デバイスへ加振を与えたときに発生する音の特性例を示す特性図である。 図4は本発明の実施の形態2における気体吸着デバイスの構成例を示す平面図である。 図5は図4のB-B線断面図である。 図6は図4のC-C線断面図である。 図7は本発明の実施の形態2における気体吸着デバイスへ加振を与えたときに発生する音の特性例を示す特性図である。 図8は本発明の実施の形態3における気体吸着デバイスの構成例を示す平面図である。 図9は図8のA-A線断面図である。 図10は本発明の実施の形態4における気体吸着デバイスの構成例を示す平面図である。 図11は図10のA-A線断面図である。 図12は本発明の実施の形態5における真空断熱材を表す模式断面図である。 図13は特許文献1に開示された従来の気体吸着デバイスを示す縦断面図である。 図14は特許文献2に開示された従来の気体吸着デバイスを長手方向と厚み方向の両方に垂直な方向から見た側面図である。 図15は特許文献2に開示された従来の気体吸着デバイスを封止材で封止した開口部側から見た側面図である。
 以下、本発明の実施の形態を、図面を参照しながら説明する。なお、以下ではすべての図を通じて同一又は相当する要素には同一の参照符号を付して、特に言及しない場合にはその重複する説明を省略する。
 第1の発明は、窒素を吸着する気体吸着物質と、細長い扁平な筒状で前記気体吸着物質を減圧状態で収納する金属製の収納容器とを有し、前記収納容器は、前記気体吸着物質を収納する収納部と、該収納部の両側を封止した封止部と、前記収納容器の少なくともどちらか一方の封止部と前記収納部との間に、互いに対向する前記収納容器の内面同士が密着する密着部とを有する、気体吸着デバイスである。
 本発明において、「気体吸着物質」とは、空気中の窒素や酸素を吸着する能力を有する物質である。なお、気体吸着物質の種類に関して特に指定するものではないが、リチウム化合物や銅イオン交換されたZSM-5型ゼオライトが使用できる。
 また、「収納容器」とは、気体吸着物質を減圧状態で収納する役割を果たすとともに、気体吸着デバイスに密着部を形成する役割を果たすものである。なお、収納容器の種類に関して特に指定するものではないが、アルミニウムや銅、鉄、ステンレス等の材料が使用可能である。さらに、密着部を容易に形成できるよう、収納容器には焼き鈍し処理が施されていることが望ましい。さらに望ましくは、成形性やコストの観点から、0.5mm未満のアルミニウム製の収納容器とすることが望ましい。
 また、「封止」とは、収納容器内を減圧状態に保つための手段であって、例えば、ろう材や接着剤やガラス等の接着部材を収納容器の内面に充填する方法、互いに対向する収納容器の内面同士を高周波溶接や超音波溶接等の方法を用いて接合する方法、又はインパクトプレス(impact press)や深絞り成型によって収納容器の内面同士が連続するように底を成型する方法を利用することができる。
 前記構成により、気体吸着物質は収納容器の内面に密着した状態で収納されることになり、気体吸着デバイスへ加振を与えると、気体吸着物質の振動が抑制されて、気体吸着物
質が収納容器の内面に密着しない状態で収納される気体吸着デバイスに比べて固有振動数が変化し、その固有振動数の変化に応じた音が発生する。また、密着部が気体吸着デバイスの窪みとなり、窪みで音が増幅される。
 また、封止材による封止が不完全である場合は、収納容器の内外の気圧差がほとんどないため、収納容器の内外の気圧差による気体吸着物質と収納容器との密着力と収納容器の内外の気圧差による密着部の収納容器の内面同士の密着力がなくなるため、気体吸着デバイスへ加振を与えたときに発生する音が、封止材による封止が完全である場合の音と、明確に異なる。
 したがって、本発明に係る気体吸着デバイスは、気体吸着デバイスへ加振を与えたときに発生する音により、減圧密封状態の確認が容易に行える。
 また、前記構成によれば、密着部が収納容器において収納部よりも窪んでいる窪み部となっており、このように窪み部が設けられたことによって音が増幅される。なお、収納容器の気密性が確保されている場合には密着部における収納容器の内面同士の密着力は維持されるが、収納容器の気密性が確保されてない場合には収納容器の内外の気圧差による密着部における収納容器の内面同士の密着力がなくなる。よって、収納容器の気密性の有無に応じた密着部の状態変化によって、気体吸着物質の振動のしやすさが変化することとなる。すなわち、前記構成によれば、密着部をが設けられない場合と比べると、気体吸着デバイスに加振を与えたときに発する音の相違がより一層明確になるので、減圧密封状態の確認をさらに容易に行うことができる。
 そして、以上のように減圧密封状態の確認を行うことにより、封止材による封止が不完全であって気体吸着性能が不安定な気体吸着デバイスをスクリーニングすることができ、気体吸着性能が安定した気体吸着デバイスのみを真空断熱材などの真空維持を必要とする機器へ収納することが可能となる。
 第2の発明は、特に、第1の発明において、前記収納容器の互いに対向する2つの扁平な面の少なくともどちらか一方が前記収納部より窪んでいる窪み部を有する、ものである。
 前記構成によれば、収納容器に窪み部が設けられたことで、第1の発明の作用に加えて、音が響きやすくなるという作用を有する。なお、収納容器に窪み部が設けられる方法としては、気体吸着物質を窪んだ形状に成形した上で収納容器を気体吸着物質の形状に沿うよう減圧密封する方法や、あらかじめ収納容器に窪み部を設けるように成型する方法がある。ただし、略均一な厚さを有する収納容器を用いて密着部を形成し、この密着部を窪み部として利用する方法が簡便である。
 第3の発明は、特に、第1又は第2の発明において、前記収納容器の長手方向に垂直な面で切断した切断面の中で最も厚みが薄い薄肉部は、前記密着部を切断した切断面である、ものである。
 前記構成によれば、収納容器の長手方向に垂直な切断面のうち最も厚みが薄肉部が密着部の切断面となるので、第1又は第2の発明の作用に加えて、さらに音が響きやすくなるという作用を有する。
 第4の発明は、特に、第1乃至第3の発明において、前記収納容器の内部空間を前記収納容器の外部と連通させると前記密着部が膨らむことで前記密着部における前記収納容器の内面同士間に空間を有する、ものである。
 前記構成によれば、収納容器の内部空間を収納容器の外部と連通させると密着部が膨らむことで密着部における収納容器の内面同士間に空間を有するので、封止材による封止が完全である場合と不完全である場合との間で、気体吸着デバイスへ加振を与えたときに発生する音の違いが、より明確になる。
 第5の発明は、特に、第1乃至第4の発明において、前記気体吸着物質よりも伝熱性に優れた伝熱材が、互いに対向する前記収納容器の内面に接触して配置されることがないように、該伝熱材の両面と前記収納容器の内面との間に前記気体吸着物質が介在するように設けられている、ものである。
 第6の発明は、特に、第5の発明において、前記気体吸着物質は、熱処理により空気吸着性能が向上する物質であり、前記収納容器内の全ての気体吸着物質が、前記伝熱材から前記収納容器の中心軸と前記収納容器の内面との最大距離より短い所定距離内に位置し、前記伝熱材は、前記収納容器内の前記気体吸着物質に接触するように設けられている、ものである。
 前記構成によれば、減圧高温雰囲気で、気体吸着物質が収納容器の内面から伝わった熱を伝熱材に伝えると、気体吸着物質よりも伝熱性に優れた伝熱材は伝熱材の全体に熱を伝えて伝熱材の全表面が略均一な温度になり、伝熱材に接触している気体吸着物質の温度も略均一になる。また、収納容器内の全ての気体吸着物質が伝熱材から収納容器の中心軸と収納容器の内面との最大距離より短い所定距離内に位置するため、気体吸着物質の温度ムラを減少させ、収納容器内の気体吸着物質を略均等に熱処理することができる。
 以上、本発明に係る気体吸着デバイスの構成によれば、減圧高温雰囲気での熱処理であっても、伝熱材の存在により、気体吸着物質の温度ムラを減少させ、収納容器内の気体吸着物質を略均等に熱処理することができ、気体吸着物質に気体を吸着する能力を持たせる為の熱処理を安定した品質で行うことができる。
 第7の発明は、特に、第5の発明において、前記気体吸着物質は、熱処理により空気吸着性能が向上する物質であり、前記伝熱材は、前記収納容器内の前記気体吸着物質に接触するように設けられ、前記伝熱材の少なくとも一部は、前記収納容器内で前記気体吸着物質から露出するように設けられている、ものである。
 前記構成によれば、熱処理の際、気体吸着物質は収納容器の内面に密着した部分から熱を受け取ることができる。また、収納容器内で伝熱材の気体吸着物質から露出した部分では収納容器からの輻射熱を受け取り、伝熱材は気体吸着物質よりも伝熱性に優れているので、熱を受け取った伝熱材は伝熱材の全体に熱を伝え、伝熱材の全表面が略均一な温度になる。さらに伝熱材は伝熱材の気体吸着物質に埋設された部分で気体吸着物質と接触しているので、熱を気体吸着物質に伝える。
 以上のように、気体吸着物質よりも伝熱性に優れた伝熱材が、伝熱材における収納容器内で気体吸着物質から露出した部分で、収納容器から受け取った輻射熱を、伝熱材における気体吸着物質と接触している部分から、気体吸着物質に伝えるので、気体吸着物質に熱を短時間で伝え、しかも伝熱材における気体吸着物質と接触している部分の近傍の気体吸着物質の温度ムラを少なくすることができる。
 したがって、本発明に係る気体吸着デバイスの構成によれば、気体吸着物質に気体を吸着する能力を持たせる為の減圧下での熱処理を、短時間でしかも安定した品質で行うことができる。
 第8の発明は、特に、第6又は第7の発明において、前記伝導板の材料が金属でできているものである。
 前記構成によれば、前記伝導板の材料が金属でできていることで、第7の発明の作用に加えて、更に金属の持つ優れた熱伝導性で熱を伝えやすくなるという作用を有する。
 第9の発明は、特に、第8の発明において、前記伝導板の材料が前記収納容器より輻射率の低い金属でできているものである。
 前記構成によれば、前記伝導板の材料を前記収納容器より輻射率の低い金属にすることで、前記収納容器よりも前記伝導板の方がより高温になり、第8の発明の作用に加えて、気体吸着物質に熱をより伝えやすくなるという作用を有する。
 第10の発明は、芯材と第1乃至第9の発明の気体吸着デバイスとを少なくとも備え、該芯材と該気体吸着デバイスとをガスバリア性を有する外被材で覆い、該外被材の内部を減圧することにより形成された真空断熱材である。
 前記構成によれば、真空断熱材のの高い断熱性能を長期に亘って維持することが可能となる。
 以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。
 (実施の形態1)
 図1は本発明の実施の形態1に係る気体吸着デバイスの構成例を示す平面図である。図2は図1のA-A線断面図である。
 図1及び図2に示すように、実施の形態1に係る気体吸着デバイス5aは、銅イオン交換されたZSM-5型ゼオライトから成り窒素を吸着する気体吸着物質9と、細長い扁平な筒状で気体吸着物質9を減圧状態で収納するアルミニウム製の収納容器11とを有する。
 収納容器11は、気体吸着物質9を収納する収納部10と、収納部10の両端に位置する封止部12とを有する。なお、収納部10の両端に位置する封止部12のうち、一方の封止部12aは、収納容器11を深絞り成形して有底筒状とすることで得られた底である。他方の封止部12bは、互いに対向する収納容器11の内面を接近させた狭窄部14を封止用ガラスにて封止したものである。なお、収納部10の両端に位置する封止部12a,12bの両方とも、狭窄部14を形成して封止用ガラスにより封止してもよい。さらに、収納容器11は、他方の封止部12bと収納部10との間には、互いに対向する収納容器11の内面同士が密着する密着部13を有している。
 なお、図2に示すように、気体吸着デバイス5aは、収納容器11の互いに対向する二つの扁平な面の両方において、収納部10よりも窪んでいる窪み部を有する。具体的には、底を成す密着部13と、密着部13の二つの扁平な面(底)それぞれから収納容器11の厚み方向に沿ってある傾きを持って立ち上がる縁部を形成する封止部12b及び収納部10とによって、前述の窪み部が形成されている。なお、収納容器11の互いに対向する二つの扁平な面の両方に窪み部が形成される他に、収納容器11の互いに対向する二つの扁平な面のいずれか一方に窪み部が形成されてもよい。
 また、気体吸着デバイス5aは、収納容器11の内部空間を収納容器11の外部と連通させる(気体吸着デバイス5aを開封する)ときに、密着部13が膨らむことで密着部13における収納容器11の内面同士間に空間を有する。言い換えると、気体吸着デバイス5aを開封すると、収納容器11内には振動の媒体となる空気が流入するとともに、収納部10では気体吸着物質9が収納容器11の内面に密着した状態から該内面から離れた状態となる。
 以上のような気体吸着デバイス5aは、つぎのような製造方法で作製される。
 つまり、気体吸着デバイス5aの製造方法は、収納容器11内に気体吸着物質9を収納する工程と、外力により密着部13を形成しつつ狭窄部14を形成する工程と、他方の封止部12bとなる収納容器11の内面(狭窄部14)に封止用ガラスを配置する工程と、真空加熱炉に入れて熱処理を行う工程とを有する。特に、この熱処理を行う工程は、具体的には、気体吸着物質9を活性化する工程と、減圧下で封止用ガラスを溶融させる工程と、加熱炉を徐冷しながら封止用ガラスを固化させる工程と、収納容器を焼きなます工程と、を有する。
 なお、前記製造方法において、収納容器11内外の気圧差により収納部10と狭窄部14側の他方の封止部12bとの間に密着部13ができるように、深絞り成形時の収納容器11の扁平度合いと収納容器11の厚みとが調整される工程を有することが好ましい。
 また、前記製造方法において、収納容器11内に入れる気体吸着物質9の分量(体積)に対して、狭窄部14の封止前における、一方の封止部12aと狭窄部14との間の収納容器11の容積を十分大きくするよう調整される工程を有することが好ましい。
 なお、気体吸着効果の向上の観点からは、気体吸着物質9の分量は多い方がよい。しかしながら、真空加熱炉での熱処理では、収納容器11内の気体吸着物質9からガスが放出されるため、気体吸着物質9が多すぎると放出ガスにより内圧が上昇し、収納容器11の封止が困難になる。しかも、狭窄部14に配置した封止材が放出ガスの勢いによって変位し、狭窄部14を封止材によって適切に封止できなくなる可能性がある。従って、狭窄部14より内方の容積に占める気体吸着物質9の分量(換言すれば、収納部10と密着部13との寸法比)は、適切に設定する必要がある。実施の形態では、密着部13の長さと収納部10の長さとの比率として概ね1対1とした。
 さらに、前記製造方法において、真空加熱炉に入れてから、封止用ガラスを固化させて収納容器11の外圧を大気圧に戻すまでの間、収納容器11の長手方向が鉛直方向となり、且つ他方の封止部12bが一方の封止部12aよりも鉛直方向に沿って上方に位置するように、収納容器11を縦置きにする工程を有することが好ましい。
 前記製造方法を経て作製された、気密性が確保された(封止が完全な)気体吸着デバイス5aに加振を与えたところ、約480Hzの固有振動数を得た。一方、封止用ガラスの封止部12に小さな孔を開けて作製した、気密性が確保されてない(封止が不完全な)気体吸着デバイスの固有振動数を測定したところ、約1300Hzとなった。収納容器11や封止用ガラスを充填する部分の気密性の確保が困難な状態で気体吸着デバイスを作製すると、収納容器11内には振動の媒体となる空気が流入するとともに、収納部10では気体吸着物質9が収納容器11の内面に密着した状態から該内面から離れるので、気体吸着物質9が振動しやすくなるため、気体吸着デバイスの固有振動数が変化(増加)したものと考察される。
 図3には、気体吸着デバイス5aに加振を与えたときの音を解析した1/3オクターブスペクトルバンドの分析結果が示されている。図3に示すように、気密性が確保された気体吸着デバイス5aでは6000Hz付近でピークを確認できたが、気密性が確保されていない気体吸着デバイスでは6000Hz付近で明確なピークが存在しないことがわかる。
 以上のように、気体吸着デバイス5aは、気体吸着物質9と、細長い扁平な筒状で気体吸着物質9を減圧状態で収納する金属製の収納容器11とを有し、収納容器11は、気体吸着物質9を収納する収納部10と、収納部10の両端に位置する封止部12とを有し、一方の封止部(12a,12b)と収納部10との間には、互いに対向する収納容器11の内面同士が密着する密着部13を有している。
 前記構成によれば、収納容器11の両端は封止されているので、収納容器11の気密性が確保されている。なお、収納容器11の気密性が確保されていない(封止が不完全である)場合には、収納容器11の内外の気圧差がほとんどないため、収納容器11の内外の気圧差による気体吸着物質9と収納容器11との密着力がなくなる。言い換えると、収納容器11の気密性が確保されている場合には、収納容器11の内外の気圧差により気体吸着物質9は収納容器11の内面に密着した状態で収納される。
 以上のように、収納容器11の気密性が確保されることにより、気体吸着性能を維持する作用の他に、気体吸着物質9の振動を引き起こす媒体となる空気が流入することが抑えられ、且つ気体吸着物質9は収納部10内での振動が抑制されるように収納容器11の内面に密着した状態で収納されることとなる。したがって、気体吸着デバイス5aへ加振を与えた場合、収納容器11の気密性が確保されていない(封止が不完全な)気体吸着デバイスと比べると、収納部10内の気体吸着物質9の振動が抑制されて、その固有振動数が変化(減少)し、その固有振動数の変化に応じた音が発生することとなる。つまり、気体吸着デバイスに加振を与えたときに発する音の相違によって、収納容器11の気密性が確保されているか否か、つまり、減圧密封状態の確認(気体吸着性能が維持されているか否かの確認)を容易に行うことができる。
 また、気体吸着デバイス5aでは、収納容器11の互いに対向する2つの扁平な面の少なくともいずれか一方に収納部10よりも窪んでいる窪み部が設けられている。なお、気体吸着デバイス5aでは、密着部13が前述の窪み部となっている。この構成によれば、音が響きやすくなり、気体吸着デバイスに加振を与えたときに発する音の相違がより一層明確になるので、減圧密封状態の確認をさらに容易に行うことができる。
 また、気体吸着デバイス5aでは、収納容器11の気密性が確保されている場合には密着部13における収納容器11の内面同士の密着力は維持されるが、収納容器11の気密性が確保されてない場合には収納容器11の内外の気圧差による密着部13における収納容器11の内面同士の密着力がなくなる。よって、収納容器11の気密性の有無に応じた密着部13の状態変化によって、気体吸着物質9の振動のしやすさが変化する。すなわち、前記構成によれば、密着部13を設けない場合と比べると、気体吸着デバイスに加振を与えたときに発する音の相違がより一層明確になるので、減圧密封状態の確認をさらに容易に行うことができる。
 以上のとおり、気体吸着デバイスに加振を与えたときに発する音の相違を確認することによって、封止材による封止が不完全であって気体吸着性能が不安定な気体吸着デバイスをスクリーニングすることができ、気体吸着性能が安定した気体吸着デバイスのみを真空断熱材などの真空維持を必要とする機器へ収納することが可能となる。
 また、気体吸着デバイス5aでは、収納容器11の内部空間を収納容器11の外部と連通させると密着部13が膨らむことで密着部13における収納容器11の内面同士間に空間を有する。この構成により、封止材による封止が完全である場合と不完全である場合との間で、気体吸着デバイスへ加振を与えたときに発生する音の違いがより一層明確になる。
 なお 、気体吸着物質9は、空気中の窒素や酸素を吸着する能力を有する物質であればよく、ZSM-5型ゼオライトに限定されるものではない。例えば、気体吸着物質9としてリチウム化合物を使用することができる。また、収納容器11は、気体吸着物質9を減圧状態で収納する役割を果たすとともに、密着部13を形成する役割を果たすものであればよく、アルミニウム製の収納容器に限定されるものではない。例えば、アルミニウムの他に銅、鉄、又はステンレス等の金属材料によって形成されてもよい。さらに、密着部13を容易に形成できるよう、収納容器11には焼き鈍し処理が施されていることが望ましい。さらに望ましくは、成形性やコストの観点から、0.5mm未満のアルミニウム製の収納容器とすることが望ましい。また、封止部12a、12bは、収納容器11内を減圧状態に保つための手段であればよく、狭窄部14を封止用ガラスにて封止することに限定されるものではない。例えば、封止用ガラス以外にろう材や接着剤等の接着部材を収納容器の内面に充填する方法、互いに対向する収納容器11の内面同士を高周波溶接や超音波溶接等の方法を用いて接合する方法、又はインパクトプレスや深絞り成型によって収納容器11の内面同士が連続(密着)するように底を成型する方法を利用することができる。なお、以上の種々の変形例は以下の実施の形態についても同様に採用される。
 (実施の形態2)
 図4は本発明の実施の形態2における気体吸着デバイスの構成例を示す平面図である。図5は図4のB-B線断面図である。図6は図4のC-C線断面図である。
 図4乃至図6に示すように、本実施の形態の気体吸着デバイス5bは、銅イオン交換されたZSM-5型ゼオライトから成り窒素を吸着する気体吸着物質9と、細長い扁平な筒状で気体吸着物質9を減圧状態で収納する収納部10の両側を封止したアルミニウム製の収納容器11とを有する。
 収納部10の両端に位置する封止部12のうち一方の封止部12aは、互いに対向する収納容器11の内面を接近させて超音波溶接することで封止したものあり、他方の封止部12bは、実施の形態1と同様に、互いに対向する収納容器11の内面を接近させた狭窄部14を封止用ガラスにて封止したものである。
 両方の封止部12a,12bと収納部10との間には、それぞれ対向する収納容器11の内面同士が密着する密着部13a,13bを有している。図5に示すように、収納容器11の互いに対向する二つの扁平な面の両方において、収納部より窪んでいる窪み部を有する。具体的には、底を成す密着部13aと、密着部13aの二つの扁平な面(底)それぞれから収納容器11の厚み方向に沿ってある傾きを持って立ち上がる縁部を形成する封止部12a及び収納部10とによって、前述の窪み部が形成されている。同様に、底を成す密着部13bと、密着部13bの二つの扁平な面(底)それぞれから収納容器11の厚み方向に沿ってある傾きを持って立ち上がる縁部を形成する封止部12b及び収納部10とによって、前述の窪み部が形成されている。なお、収納容器11の互いに対向する二つの扁平な面の両方において窪み部が形成される他に、収納容器11の互いに対向する二つの扁平な面のいずれか一方において窪み部が形成されてもよい。
 また、図6に示すように、前記収納容器11の長手方向に垂直な面で切断した切断面の中で最も厚みが薄い薄肉部は、密着部13a,13bを切断した切断面となっている。さらに、収納容器11の短手方向(幅方向)に沿った密着部13a,13bの両端に縁部が形成されるように、収納容器11の短手方向(幅方向)に沿った密着部13a,13bの中央部が窪んでいる。具体的には、収納容器11の長手方向に沿った密着部13a,13bの中心線から収納容器11の短手方向(幅方向)に沿った所定距離の範囲内で、密着部13a,13bは底を成している。また、密着部13a,13bの短手方向(幅方向)に沿った両端側では、密着部13a,13bの底を成す二つの扁平な面それぞれから収納容器11の厚み方向に沿ってある傾きを持って立ち上がる縁部を形成している。
 さらに、気体吸着デバイス5bは、収納容器11の内部空間を収納容器11の外部と連通させる(気体吸着デバイス5bを開封する)と、密着部13a,13bが膨らむことで密着部13a,13bにおける収納容器11の内面同士間に空間を有する。
 気体吸着デバイス5bは、つぎのような製造方法で作製される。まず、収納容器11の一端を超音波溶接で封止する。つぎに、超音波溶接で封止した一方の封止部12aと気体吸着物質9を収納する収納部10との間に密着部13aができるように、一方の封止部12aと収納部10との間の密着部13aにする部分を外力で密着させる。つぎに、収納容器11内に気体吸着物質9を収納する。つぎに、他方の封止部12bを形成するための狭窄部14が形成される。つぎに、他方の封止部12bとなる収納容器11の内面に封止用ガラスを配置したものを真空加熱炉に入れて熱処理が行われる。なお、この気体吸着デバイス5bの熱処理の工程は、実施の形態1と同様に、気体吸着物質9を活性化する工程と、減圧下で封止用ガラスを溶融させる工程と、加熱炉を徐冷しながら封止用ガラスを固化させる工程と、収納容器を焼きなます工程とを有する。
 なお、収納容器11の内外の気圧差により収納部10と狭窄部14側の他方の封止部12bとの間に密着部13bができるように、収納容器11の扁平度合いと収納容器11の厚みとを調整する工程を有することが好ましい。
 また、この調整の工程とともに、収納容器11内に入れる気体吸着物質9の分量(体積)に対して、超音波溶接で封止した一方の封止部12a側の密着部13aと狭窄部14との間の収納容器11の容積(換言すれば、収納部10と密着部13bとを合わせた容積)を十分大きくするよう調整する工程を有することが好ましい。
 また、真空加熱炉に入れてから、封止用ガラスを固化させ収納容器11の外圧を大気圧に戻すまでの間、収納容器11の長手方向が鉛直方向に沿うようにして、且つ狭窄部14側の他方の封止部12bが超音波溶接で封止した一方の封止部12aより上側に位置するように収納容器11を縦置きにする工程を有することが好ましい。
 前記製造方法を経て作製された、気密性が確保された(封止が完全な)気体吸着デバイス5bに加振を与えたところ、約500Hzの固有振動数を得た。一方、封止用ガラスの封止部12a,12bのいずれか一方に小さな孔を開けて作製した、気密性が確保されてない(封止が不完全な)気体吸着デバイスの固有振動数を測定したところ、約1700Hzとなった。すなわち、実施の形態1と同様に、気体吸着デバイスに加振を与えたときに発する音の相違を確認することによって、封止材による封止が不完全であって気体吸着性能が不安定な気体吸着デバイスをスクリーニングすることができ、気体吸着性能が安定した気体吸着デバイスのみを真空断熱材などの真空維持を必要とする機器へ収納することが可能となる。
 図7には、前記製造方法を経て作製された気体吸着デバイス5bに加振を与えたときの音を解析し、その解析結果を実施の形態1の気体吸着デバイス5aと比較した1/3オクターブバンド分析の結果が示されている。図7に示すように、収納容器11の短手方向(幅方向)に沿った密着部13a,13bの両端側に縁部が形成されている(密着部13a,13bの中央部が窪んでいる)気体吸着デバイス5b(実施の形態2)の場合には、収納容器11の短手方向に沿った密着部13の両端側に縁部が形成されていない(密着部13の外表面が略扁平である)気体吸着デバイス5a(実施の形態1)と比べると、6000Hz付近でさらに明確なピークを確認することができる。つまり、実施の形態1と比較すると、音の響きがよくなっているので、気体吸着デバイスに加振を与えたときに発する音の相違をより明確に確認することができる。
(実施の形態3)
 図8は本発明の実施の形態3に係る気体吸着デバイスの概略構成例を示す平面図である。図9は図8のA-A線断面図である。
 図8及び図9に示すように、実施の形態3に係る気体吸着デバイス5cは、銅イオン交換されたZSM-5型ゼオライトから成り窒素を吸着し熱処理により空気吸着性能が向上する気体吸着物質9と、細長い略扁平な筒状で気体吸着物質9を減圧状態で収納する収納部10の両側を封止したアルミニウム製の収納容器11と、気体吸着物質9よりも伝熱性に優れた金属材料から成り収納容器11内の気体吸着物質9に埋設された1枚の板状の伝熱材15とを有する。なお、図8及び図9には示されていないが、実施の形態1又は2のように収納容器11において密着部13が形成されることが好ましい。図8及び図9に示す例の場合、収納部10と他方の封止部12bとの間に密着部13が形成される。
 1枚の板状の伝熱材15は、気体吸着物質9の全体になるべく均一に伝熱させるという観点から、対向する収納容器11の内面に接触して配置されることがないよう、伝熱材15の両面と収納容器11の内面との間に気体吸着物質9が介在するようにして設けられている。但し、本実施の形態では、伝熱材15の伝熱により収納容器11内の気体吸着物質9の温度ムラがより効率的に低減されるように、収納容器11内の全ての気体吸着物質9が伝熱材15から収納容器11の中心軸と収納容器11の内面との最大距離より短い所定距離内に位置し且つ収納容器11内の気体吸着物質9に接触するように、板状の面の寸法を設定すると共に、板状の面が収納容器11の略扁平な互いに対向する2面の中間位置で収納容器11の略扁平な互いに対向する2面に対向する向きで収納容器11内の気体吸着物質9に埋設している。
 図8及び図9に示す形態では、伝熱材15を1枚の板状にしているが、これに限らず、熱伝達に悪影響の少ない範囲で孔あけや、板を十字や放射状に接合した形状、らせん形状など様々な形状にしても差し支えはない。
 なお、伝熱材15の材料を限定するものではないが、伝熱材15の材料を金属とした場合にはその優れた伝熱性により収納容器11内の気体吸着物質9の加熱がさらに促進され気体吸着物質9の熱処理が良好に実施することができる。
 さらに、伝熱材15の材料を収納容器11の金属材料より輻射率の低い金属材料、例えば収納容器11を銅、伝熱材15をアルミニウムとすると、減圧下での熱処理時、収納容器11に比較して伝熱材15の輻射平衡温度は高くなる。このため、気体吸着物質9における伝熱材15の埋設された部分、つまり気体吸着物質9の内部からの熱伝導が促進されることで気体吸着物質9の熱処理が更に短時間でムラ無く良好に実施することができる。
 伝熱材15の伝熱性を高める方法としては、伝熱性に優れた金属材料で構成する以外に伝熱材15の厚みを厚くする方法もあり、より伝熱性に優れた金属材料を選択することよりも伝熱材15の厚みを厚くする方がコスト面で優れる。しかし、伝熱材15の厚みを厚くし過ぎると、気体吸着デバイス5c内に収納できる気体吸着物質9の量が減って気体吸着デバイス5cで吸着できる空気の量が減ることになる。一方、気体吸着デバイス5c内に収納する気体吸着物質9の量が減らないようにするには気体吸着デバイス5cの厚みや大きさが大きくなるので、伝熱材15の厚みと材料の選択は、適切に行う方が良い。
 収納部10の両端に位置する封止部12のうち一方の封止部12aは、収納容器11を深絞り成形して有底筒状とすることで得られた底である。他方の封止部12bは、互いに対向する収納容器11の内面を接近させた狭窄部14を気体吸着物質9の熱処理後に封止用ガラスにて封止したものである。
 気体吸着デバイス5cは、収納容器11内に気体吸着物質9を収納した後に他方の封止部12bを形成するための狭窄部14を設け、他方の封止部12bとなる収納容器11の内面に封止用ガラスを配置したものを真空加熱炉に入れ熱処理を行うことで作製される。なお、熱処理を行う工程は、実施の形態1,2と同様に、気体吸着物質9を活性化する工程と、減圧下で封止用ガラスを溶融させる工程と、加熱炉を徐冷しながら封止用ガラスを固化させる工程と、容器を焼きなます工程とを有する。
 さらに、本実施の形態では、気体吸着物質9よりも伝熱性に優れた金属製の伝熱材15が、収納容器11内の全ての気体吸着物質9が伝熱材15から収納容器11の中心軸と収納容器11の内面との最大距離より短い所定距離内に位置し収納容器11内の気体吸着物質9に接触するように設けられている。これにより、伝熱材15の伝熱により収納容器11内の気体吸着物質9の温度ムラが低減される。
 ところで、気体吸着物質9を熱処理により活性化する工程は、真空加熱炉内の減圧雰囲気で行われるため、真空加熱炉内の気体物質を介した気体吸着物質9への熱伝達は殆どなく、真空加熱炉で加熱された収納容器11の内面と気体吸着物質9との接触部分を通じて熱伝達で気体吸着物質9が加熱される。
 そして、真空加熱炉内の減圧高温雰囲気で、気体吸着物質9が収納容器11の内面から伝わった熱を伝熱材15に伝えると、気体吸着物質9よりも伝熱性に優れた伝熱材15は伝熱材15の全体に熱を伝えて伝熱材15の全表面が略均一な温度になり、伝熱材15に接触している気体吸着物質9の温度も略均一になる。また、収納容器11内の全ての気体吸着物質9が伝熱材15から収納容器11の中心軸と収納容器11の内面との最大距離より短い所定距離内に位置するため、気体吸着物質9の温度ムラを減少させ、収納容器11内の気体吸着物質9を略均等に熱処理することができる。
 したがって、気体吸着デバイス5cは、真空加熱炉内のような減圧高温雰囲気での気体吸着物質9の活性化のための熱処理であっても、伝熱材15の存在により、気体吸着物質9の温度ムラを減少させ、収納容器11内の気体吸着物質9を略均等に熱処理することができる。これにより、気体吸着物質9に気体を吸着する能力を持たせる為の熱処理を安定した品質で行うことができる。
 (実施の形態4)
 図10は本発明の実施の形態における気体吸着デバイスの概略構成例を示す平面図である。図11は図10のA-A線断面図である。
 図10及び図11に示すように、本実施の形態の気体吸着デバイス5dは、銅イオン交換されたZSM-5型ゼオライトから成り窒素を吸着し熱処理により空気吸着性能が向上する気体吸着物質9と、細長い略扁平な筒状で気体吸着物質9を減圧状態で収納する収納部10の両側を封止したアルミニウム製の収納容器11と、気体吸着物質9よりも伝熱性に優れた金属材料から成り、その一部が収納容器11内で気体吸着物質9から露出し且つ残りの部分が収納容器11内の気体吸着物質9に埋設された1枚の板状の伝熱材15とを有する。なお 、図10及び図11には示されていないが、実施の形態1又は2のように収納容器11において密着部13が形成されることが好ましい。図10及び図11に示す例の場合、収納部10と他方の封止部12bとの間に密着部13が形成される。
 1枚の板状の伝熱材15は、気体吸着物質9の全体になるべく均一に伝熱させるという観点から、対向する収納容器11の内面に接触して配置されることがないよう、伝熱材15の両面と収納容器11の内面との間に気体吸着物質9が介在するようにして設けられている。但し、本実施の形態では、伝熱材15の伝熱により収納容器11内の気体吸着物質9の温度ムラがより効率的に低減されるように、収納容器11内の全ての気体吸着物質9が伝熱材15から収納容器11の中心軸と収納容器11の内面との最大距離より短い所定距離内に位置し、且つ収納容器11内の気体吸着物質9に接触し一部が収納容器11内で気体吸着物質9から露出するように、板状の面の寸法を設定する。この設定と共に、板状の面が収納容器11の略扁平な互いに対向する2面の中間位置で収納容器11の略扁平な互いに対向する2面に対向する向きで収納容器11内の気体吸着物質9に一部の露出部分を除いて埋設している。
 図10及び図11に示す本実施の形態では、実施の形態3と同様に、伝熱材15を1枚の板状にしているが、これに限らず、熱伝達に悪影響の少ない範囲で孔あけや、板を十字や放射状に接合した形状、らせん形状など様々な形状をしても差し支えはない。
 収納部10の両端に位置する封止部12のうち、一方の封止部12aは、収納容器11を深絞り成形して有底筒状とすることで得られた底である。他方の封止部12bは、互いに対向する収納容器11の内面を接近させた狭窄部14を気体吸着物質9の熱処理後に封止用ガラスにて封止したものである。
 気体吸着デバイス5dは、収納容器11内に気体吸着物質9を収納した後に他方の封止部12bを形成するための狭窄部14を設け、他方の封止部12bとなる収納容器11の内面に封止用ガラスを配置したものを真空加熱炉に入れ熱処理を行うことで作製される。   
 なお、熱処理を行う工程は、実施の形態3と同様に、気体吸着物質9を活性化する工程と、減圧下で封止用ガラスを溶融させる工程と、加熱炉を徐冷しながら封止用ガラスを固化させる工程と、容器を焼きなます工程とを有する。
 さらに、本実施の形態は、気体吸着物質9よりも伝熱性に優れた金属製の伝熱材15が、少なくとも一部が収納容器11内で気体吸着物質9から露出するように設けられている。さらに、伝熱材15は、収納容器11内の全ての気体吸着物質9が伝熱材15から収納容器11の中心軸と収納容器11の内面との最大距離より短い所定距離内に位置し収納容器11内の気体吸着物質9に接触するように設けられている。これにより、収納容器11を加熱している時に伝熱材15の伝熱により収納容器11内の気体吸着物質9の加熱が促進されて、伝熱材15の伝熱により収納容器11内の気体吸着物質9の温度ムラが低減される。
 ところで、気体吸着物質9を熱処理により活性化する工程は、真空加熱炉内の減圧雰囲気で行われるため、真空加熱炉内の気体物質を介した気体吸着物質9への熱伝達は殆どない。このため、真空加熱炉で加熱された収納容器11の内面と気体吸着物質9との接触部分を通じて熱伝達により気体吸着物質9が加熱される。また、収納容器11内で気体吸着物質9から露出した伝熱材15の部分では収納容器11からの輻射熱が受け取られる。
 そして、真空加熱炉内の減圧高温雰囲気で、気体吸着物質9が収納容器11の内面から伝わった熱が伝熱材15に伝えられ、収納容器11内で伝熱材15の気体吸着物質9から露出した伝熱材15の部分で収納容器11からの輻射熱が受け取られると、伝熱材15の全体に熱を伝えて伝熱材15の全表面が略均一な温度になり、伝熱材15に接触している気体吸着物質9の温度も略均一になる。また、収納容器11内の全ての気体吸着物質9が伝熱材15から収納容器11の中心軸と収納容器11の内面との最大距離より短い所定距離内に位置するため、気体吸着物質9の温度ムラを減少させ、収納容器11内の気体吸着物質9を略均等に短時間で熱処理することができる。
 したがって、気体吸着デバイス5dは、真空加熱炉内のような減圧高温雰囲気での気体吸着物質9の活性化のための熱処理であっても、伝熱材15の存在により、気体吸着物質9の温度ムラを減少させ、収納容器11内の気体吸着物質9を略均等に熱処理することができ、気体吸着物質9に気体を吸着する能力を持たせる為の熱処理を安定した品質で行うことができる。
 また、伝熱材15は、その板状の面が収納容器11内の気体吸着物質9から露出する部分は、略扁平な筒状の収納容器11の略扁平な互いに対向する2面に対向する向きに配置されているので、収納容器11から輻射熱を効率よく受け取ることができる。
 さらに、収納容器11内で気体吸着物質9から露出した伝熱材15の部分で収納容器11から受け取られた輻射熱を、伝熱材15における気体吸着物質9と接触している部分から気体吸着物質9に伝えるので、気体吸着物質9に対して熱を短時間で伝えることができる。このため、気体吸着デバイス5dは、気体吸着物質9に気体を吸着する能力を持たせる為の減圧下での熱処理を、短時間で、しかも安定した品質で行うことができる。
 なお、伝熱材15の材料を限定するものではないが、伝熱材15の材料を金属とした場合にはその優れた伝熱性により収納容器11内の気体吸着物質9の加熱がさらに促進され気体吸着物質9の熱処理が良好に実施することができる。この結果、気体吸着性能の安定した安価な気体吸着デバイス5を提供可能となる。
 さらに、伝熱材15の材料を収納容器11の金属材料より輻射率の低い金属材料、例えば収納容器11の材料を銅、伝熱材15の材料をアルミニウムとすると、減圧下での熱処理時、収納容器11に比較して伝熱材15の輻射平衡温度が高くなる。このため気体吸着物質9における伝熱材15の埋設された部分、つまり気体吸着物質9の内部からの熱伝導が促進されることで気体吸着物質9の熱処理が更に短時間でムラ無く良好に実施することができる。この結果、気体吸着性能の安定した安価な気体吸着デバイス5dを提供可能となる。
 (実施の形態5)
 図12は本発明の実施の形態5に係る真空断熱材の断面図である。
 図12に示すように、本実施の形態の真空断熱材16は、芯材17と、実施の形態1乃至4のいずれかに係る気体吸着デバイス5とを、外被材18で覆い、減圧密封したものである。なお、気体吸着デバイス5は、気体吸着物質を収納した収納容器11と、収納容器11に対して取り付けられた開封部材7とから成る。なお、図12では、真空断熱材16の減圧密封後に、外力を加えることにより開封部材7を変形させ、さらに収納容器11に貫通孔を開けることで開封を行った際に、外力を加えた外被材18の箇所に押込跡33が形成されている状態が示されている。
 ところで、真空断熱材16の減圧密封後には、外被材18上に収納容器11及び開封部材7の設置位置が凹凸となって現れている。そこで、外被材18上の押込跡33では、開封部材7の設置された位置を目印として、開封動作に必要な範囲の外力が加えられている。つまり、収納容器11の全体には外力は加わってはおらず、押込跡33は、外被材18上の、収納容器11の設置位置の上部の一部分の範囲となっている。
 つぎに、真空断熱材16の構成材料について説明する。
 外被材18とは、真空断熱材16の真空度を維持する役割を果たすものであり、最内層の熱溶着フィルムと、中間層としてのガスバリアフィルム(gas barrier film)として金属箔や金属原子を蒸着した樹脂フィルムと、最外層として表面保護フィルムとを、それぞれラミネートしたものである。
 なお、熱溶着フィルムとしては、特に指定するものではないが、低密度ポリエチレンフィルム(polyethylene film)、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム(polypropylene film)、ポリアクリロニトリルフィルム(polyacrylonitrile film)等の熱可塑性樹脂、或いはそれらの混合体が使用できる。また、ガスバリアフィルムとしては、アルミニウム箔や銅箔などの金属箔や、ポリエチレンテレフタレートフィルム(polyethylene terephthalate film)又はエチレン-ビニルアルコール(ethylene-vinyl alcohol)共重合体へアルミニウムや銅等の金属や金属酸化物を蒸着したフィルム等が使用できる。
 また、表面保護フィルムとしては、ナイロンフィルム(nylon film)、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等、従来公知の材料が使用できる。
 さらに、真空断熱材の製造方法に関しては、特に指定するものではないが、例えばつぎのような製造方法が挙げられる。まず、一つ目の製造方法としては、一枚のラミネートフィルムを折り返し、対向するラミネートフィルムの端部に位置する熱溶着フィルム同士を熱溶着することで袋状のラミネートフィルムを得て、このラミネートフィルム内へ、芯材を挿入し、減圧下にて袋状ラミネートフィルムの開口部に位置する熱溶着フィルム同士を熱溶着する方法が挙げられる。また、二つ目の製造方法としては、熱溶着フィルム同士が対向するよう二枚のラミネートフィルムを配置し、各ラミネートフィルムの端部に位置する熱溶着フィルム同士を熱溶着することで袋状のラミネートフィルムを得て、この袋状のラミネートフィルム内に、芯材を挿入し、減圧下にて袋状ラミネートフィルムの開口部付近に位置する熱溶着フィルム同士を熱溶着する方法が挙げられる。
 芯材17とは、真空断熱材16の骨格となり真空空間を形成する役割を果たすものである。なお、芯材17の材質としては、特に指定するものではないが、グラスウール(glass wool)やロックウール(rock wool)、アルミナ繊維、金属繊維など無機繊維や、ポリエチレンテレフタレート繊維など従来公知の材料が利用できる。なお、金属繊維を用いる場合は、金属の中でも比較的熱伝導性に優れた金属から成る金属繊維は、好ましくない。
 その中でも、繊維自体の弾性が高く、また繊維自体の熱伝導率が低く、なおかつ工業的に安価なグラスウールを用いることが望ましい。さらに、繊維の繊維径は、小さいほど真空断熱材の熱伝導率が低下する傾向にあるため、より小さい繊維径の繊維を用いることが望ましいが、汎用的でないため繊維のコストアップが予想される。
 したがって、真空断熱材16用の繊維として一般的に使用されている比較的安価な平均繊維径が3μm~6μm程度の集合体から成るグラスウールがより望ましい。
 気体吸着物質とは、真空断熱材等の密閉空間に残存又は侵入する水蒸気や空気等の混合ガスを吸着する役割を果たすもので、特に指定するものではないが、酸化カルシウムや酸化マグネシウム等の化学吸着物質や、ゼオライトのような物理吸着物質、あるいは、それらの混合物が使用できる。また、化学吸着性と物理吸着性を持った銅イオン交換されたZSM-5型ゼオライトも使用できる。
 収納容器11とは、空気及び水蒸気等の気体を通過させにくい性質を持ち、気体吸着物質を気体に触れさせないようにする役割を果たすものである。
 収納容器11の材質としては、特に指定するものではないが、上記記載の外被材と同様のラミネートフィルム等が使用でき、減圧密封で気体吸着物質を外気と触れることなく保存できるものであるなら使用可能である。
 また、収納容器11の形状としては、内部に気体吸着物質が収納でき、減圧密封で気体吸着物質を外気と触れることなく保存できるものであるなら特に指定しない。
 以上により、前記実施の形態に係る気体吸着デバイス5が本来の機能を十分に発揮でき、真空断熱材16が長期間内部を高真空に保ち、高い断熱性能を持つことができる。
 前記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、前記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明に係る気体吸着デバイスは、真空断熱材、真空断熱容器、プラズマディスプレイ(plasma display)、及び蛍光灯など、真空の維持が必要な機器に適用可能である。その他の本発明の真空断熱材は、冷蔵庫、自動販売機、給湯容器、建造物用断熱材、自動車用断熱材、及び保冷/保温ボックスなど、断熱性能の維持が必要な機器に適用可能である。
5,5a,5b,5c,5d…気体吸着デバイス
9…気体吸着物質
10…収納部
11…収納容器
12,12a,12b…封止部
13,13a,13b…密着部
14…狭窄部
15…伝熱材
16…真空断熱材
17…芯材
18…外被材
21…気体吸着デバイス
22…上部開放容器
23…ペレット
24…ペレット
25…気体吸着デバイス
26…気体難透過性容器
26a…狭窄部
27…開口部
28…封止材
29…気体吸着物質

Claims (10)

  1.  窒素を吸着する気体吸着物質と、細長い扁平な筒状で前記気体吸着物質を減圧状態で収納する金属製の収納容器とを有し、前記収納容器は、前記気体吸着物質を収納する収納部と、該収納部の両側を封止した封止部と、前記収納容器の少なくともどちらか一方の封止部と前記収納部との間に、互いに対向する前記収納容器の内面同士が密着する密着部とを有する、気体吸着デバイス。
  2.  前記収納容器の互いに対向する二つの扁平な面の少なくともどちらか一方が前記収納部より窪んでいる窪み部を有する、請求項1に記載の気体吸着デバイス。
  3.  前記収納容器の長手方向に垂直な面で切断した切断面の中で最も厚みが薄い薄肉部は、前記密着部を切断した切断面である、請求項1又は2に記載の気体吸着デバイス。
  4.  前記収納容器の内部空間を前記収納容器の外部と連通させると前記密着部が膨らむことで前記密着部における前記収納容器の内面同士間に空間を有する、請求項1乃至3のいずれか1項に記載の気体吸着デバイス。
  5.  前記気体吸着物質よりも伝熱性に優れた伝熱材が、該伝熱材の両面と前記収納容器の内面との間に前記気体吸着物質が介在するように設けられている、請求項1乃至4のいずれか1項に記載の気体吸着デバイス。
  6.  前記気体吸着物質は、熱処理により空気吸着性能が向上する物質であり、
     前記収納容器内の全ての気体吸着物質が、前記伝熱材から前記収納容器の中心軸と前記収納容器の内面との最大距離より短い所定距離内に位置し、
     前記伝熱材は、前記収納容器内の前記気体吸着物質に接触するように設けられている、請求項5に記載の気体吸着デバイス。
  7.  前記気体吸着物質は、熱処理により空気吸着性能が向上する物質であり、
     前記伝熱材は、前記収納容器内の前記気体吸着物質に接触するように設けられ、
     前記伝熱材の少なくとも一部は、前記収納容器内で前記気体吸着物質から露出するように設けられている、請求項5に記載の気体吸着デバイス。
  8.  前記伝熱材が金属から成る、請求項5乃至7のいずれか1項に記載の気体吸着デバイス。
  9.  前記伝熱材の輻射率が前記容器の輻射率よりも小さい、請求項8に記載の気体吸着デバイス。
  10.  芯材と請求項1乃至9のいずれかに記載の気体吸着デバイスとを少なくとも備え、該芯材と該気体吸着デバイスとをガスバリア性を有する外被材で覆い、該外被材の内部を減圧することにより形成された真空断熱材。
PCT/JP2012/000676 2011-02-14 2012-02-01 気体吸着デバイス及びそれを備えた真空断熱材 WO2012111267A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012532181A JP5261616B2 (ja) 2011-02-14 2012-02-01 気体吸着デバイス及びそれを備えた真空断熱材
CN201280008893.3A CN103370120B (zh) 2011-02-14 2012-02-01 气体吸附器件和具备该气体吸附器件的真空隔热件
US13/983,503 US8940084B2 (en) 2011-02-14 2012-02-01 Gas adsorbing device and vacuum insulation panel provided with same
EP12747844.4A EP2676715B1 (en) 2011-02-14 2012-02-01 Gas adsorption device and vacuum heat insulating panel provided therewith

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-028214 2011-02-14
JP2011028214 2011-02-14
JP2011084277 2011-04-06
JP2011-084278 2011-04-06
JP2011084278 2011-04-06
JP2011-084277 2011-04-06

Publications (1)

Publication Number Publication Date
WO2012111267A1 true WO2012111267A1 (ja) 2012-08-23

Family

ID=46672214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000676 WO2012111267A1 (ja) 2011-02-14 2012-02-01 気体吸着デバイス及びそれを備えた真空断熱材

Country Status (5)

Country Link
US (1) US8940084B2 (ja)
EP (1) EP2676715B1 (ja)
JP (2) JP5261616B2 (ja)
CN (1) CN103370120B (ja)
WO (1) WO2012111267A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071579A (ja) * 2016-10-25 2018-05-10 トヨタ自動車株式会社 真空断熱パネルの製造方法および中間生成体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990712B1 (en) 2013-04-23 2019-03-27 Panasonic Intellectual Property Management Co., Ltd. Insulator including gas adsorbent
US9559366B2 (en) * 2014-03-20 2017-01-31 Versa Power Systems Ltd. Systems and methods for preventing chromium contamination of solid oxide fuel cells
US10084192B2 (en) 2014-03-20 2018-09-25 Versa Power Systems, Ltd Cathode contact layer design for preventing chromium contamination of solid oxide fuel cells
WO2015177984A1 (ja) * 2014-05-22 2015-11-26 パナソニックIpマネジメント株式会社 密閉容器、断熱体、および気体吸着デバイス
WO2015186358A1 (ja) 2014-06-04 2015-12-10 パナソニックIpマネジメント株式会社 真空断熱体及びこれを用いた断熱容器、断熱壁
DE112015002972T5 (de) * 2014-06-24 2017-03-09 Panasonic Intellectual Property Management Co., Ltd. Gasadsorbierende Vorrichtung und diese nutzender evakuierter Dämmstoff
KR20160057287A (ko) * 2014-11-13 2016-05-23 삼성전자주식회사 가스 흡착재료, 및 이를 이용한 진공단열재
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
WO2017165381A1 (en) * 2016-03-21 2017-09-28 Kansas State University Research Foundation Fluid-filled hollow optical fiber cell
JP6986332B2 (ja) * 2016-04-28 2021-12-22 三星電子株式会社Samsung Electronics Co., Ltd. 断熱材、真空断熱材、それらの製造方法及びそれらを備えた冷蔵庫
JP6807661B2 (ja) 2016-06-01 2021-01-06 三星電子株式会社Samsung Electronics Co.,Ltd. ガス吸着材、その製造方法、これを用いたガス吸着体及びその製造方法
EP3555519A4 (en) 2016-12-15 2020-08-19 Whirlpool Corporation GETTER ACTIVATION UNDER VACUUM
EP4082935A4 (en) * 2019-12-26 2023-07-12 Panasonic Intellectual Property Management Co., Ltd. CONSTANT TEMPERATURE TANK
CN113161215B (zh) * 2021-04-13 2024-07-23 南京华东电子真空材料有限公司 一种高可靠吸气剂热子结构及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166070A (ja) * 1984-09-07 1986-04-04 株式会社東芝 真空断熱パネルの製造方法
JPS61116269A (ja) * 1984-11-10 1986-06-03 株式会社東芝 真空断熱パネルの製造方法
JPS63187084A (ja) * 1986-10-08 1988-08-02 ユニオン・カーバイド・コーポレーション 真空断熱パネル
JPS63279081A (ja) * 1987-02-04 1988-11-16 日本酸素株式会社 真空粉末断熱体の製造方法
JP3105542B2 (ja) 1994-07-07 2000-11-06 サエス ゲッタース ソチエタ ペル アツィオニ 断熱ジャケット内に真空を維持するためのデバイス及びその製造方法
JP2008045580A (ja) * 2006-08-11 2008-02-28 Hitachi Appliances Inc 真空断熱パネル及びそれを備えた機器
JP2010109846A (ja) 2008-10-31 2010-05-13 Willcom Inc 無線通信端末装置
WO2011145481A1 (ja) * 2010-05-18 2011-11-24 三菱電機株式会社 ビーム溶接方法、真空包装方法、及びその真空包装方法により製造した真空断熱材

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091233A (en) 1989-12-18 1992-02-25 Whirlpool Corporation Getter structure for vacuum insulation panels
IT1246786B (it) 1991-04-16 1994-11-26 Getters Spa Processo per l'assorbimento di gas residui, in particolare azoto, mediante una lega getter a base di bario non evaporato.
US5312606A (en) 1991-04-16 1994-05-17 Saes Getters Spa Process for the sorption of residual gas by means of a non-evaporated barium getter alloy
JPH07269780A (ja) 1994-03-30 1995-10-20 Toshiba Corp 真空断熱体および真空断熱体の製造方法
US5551557A (en) * 1994-10-25 1996-09-03 Convey, Inc. Efficient method and apparatus for establishing shelf-life of getters utilized within sealed enclosures
JP3693626B2 (ja) 2002-04-19 2005-09-07 大陽日酸株式会社 吸着剤
JP2004116695A (ja) * 2002-09-27 2004-04-15 Nisshinbo Ind Inc 真空断熱ボード及び該真空断熱ボードを用いた断熱容器
JP2005315310A (ja) 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc 真空断熱パネル及び製造方法
JP4734865B2 (ja) 2004-08-05 2011-07-27 パナソニック株式会社 気体吸着材および断熱体
TW200632245A (en) 2005-01-28 2006-09-16 Matsushita Electric Ind Co Ltd A thermal insulator
JP2006242497A (ja) 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd 断熱体および断熱体の製造方法
EP2554891A3 (en) * 2005-09-26 2013-02-13 Panasonic Corporation Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
US8333279B2 (en) * 2008-09-11 2012-12-18 Simple Container Solutions, Inc. Expandable insulated packaging
EP2399661B1 (en) 2009-03-24 2017-01-18 Panasonic Corporation Fabrication method for gas-adsorbing device, gas-adsorbing device, and method of using the same
KR101775744B1 (ko) * 2010-03-26 2017-09-19 파나소닉 주식회사 기체 흡착 디바이스 구조체와 그 사용 방법
EP2676714A4 (en) 2011-02-14 2013-12-25 Panasonic Corp BODY OF THERMAL INSULATION BODY

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166070A (ja) * 1984-09-07 1986-04-04 株式会社東芝 真空断熱パネルの製造方法
JPS61116269A (ja) * 1984-11-10 1986-06-03 株式会社東芝 真空断熱パネルの製造方法
JPS63187084A (ja) * 1986-10-08 1988-08-02 ユニオン・カーバイド・コーポレーション 真空断熱パネル
JPS63279081A (ja) * 1987-02-04 1988-11-16 日本酸素株式会社 真空粉末断熱体の製造方法
JP3105542B2 (ja) 1994-07-07 2000-11-06 サエス ゲッタース ソチエタ ペル アツィオニ 断熱ジャケット内に真空を維持するためのデバイス及びその製造方法
JP2008045580A (ja) * 2006-08-11 2008-02-28 Hitachi Appliances Inc 真空断熱パネル及びそれを備えた機器
JP2010109846A (ja) 2008-10-31 2010-05-13 Willcom Inc 無線通信端末装置
WO2011145481A1 (ja) * 2010-05-18 2011-11-24 三菱電機株式会社 ビーム溶接方法、真空包装方法、及びその真空包装方法により製造した真空断熱材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2676715A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071579A (ja) * 2016-10-25 2018-05-10 トヨタ自動車株式会社 真空断熱パネルの製造方法および中間生成体

Also Published As

Publication number Publication date
JP5261616B2 (ja) 2013-08-14
CN103370120B (zh) 2016-01-20
CN103370120A (zh) 2013-10-23
EP2676715A1 (en) 2013-12-25
US8940084B2 (en) 2015-01-27
JP2013176764A (ja) 2013-09-09
EP2676715B1 (en) 2015-04-15
EP2676715A4 (en) 2013-12-25
US20130305928A1 (en) 2013-11-21
JPWO2012111267A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5261616B2 (ja) 気体吸着デバイス及びそれを備えた真空断熱材
US8753471B2 (en) Vacuum heat insulating material, method of producing vacuum heat insulating material, and heat insulating box body using vacuum heat insulating material
WO2012111311A1 (ja) 断熱箱体
AU2001234076A1 (en) Evacuated jacket for thermal insulation and process for manufacturing the same
JPH11159693A (ja) 真空断熱パネル及びその製造方法並びにそれを用いた断熱箱体
WO2016084763A1 (ja) 真空断熱材およびその製造方法
JP2009287586A (ja) 真空断熱材
JP2010096291A (ja) 真空断熱箱体
JP6646812B2 (ja) 気体吸着デバイス、およびそれを用いた真空断熱材
JP2004502117A (ja) 円筒状物体の断熱用真空パネル
JP2009287791A (ja) 真空断熱箱体
JP2003269687A (ja) 真空断熱パネル
JP2011089740A (ja) 袋体、および真空断熱材
JP2007138976A (ja) 真空断熱材及びその製造方法
WO2017029727A1 (ja) 真空断熱材及び断熱箱
JP4944567B2 (ja) 真空断熱物品及びその製造方法
JP4378953B2 (ja) 真空断熱材
JP2011208763A (ja) 真空断熱材
JP5732375B2 (ja) 真空断熱材の製造方法
EP3144049B1 (en) Vacuum insulation panel comprising a gas adsorption pack and manufacturing method therefor
JP2013224687A (ja) 真空断熱材
JP2010139006A (ja) 真空断熱材
JP2014043934A (ja) 真空断熱材及び冷蔵庫
US20210131168A1 (en) Glass panel unit and method for manufacturing glass panel unit
JP2007040359A (ja) 真空断熱材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280008893.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012532181

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983503

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004495

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2012747844

Country of ref document: EP