WO2012111047A1 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2012111047A1
WO2012111047A1 PCT/JP2011/003605 JP2011003605W WO2012111047A1 WO 2012111047 A1 WO2012111047 A1 WO 2012111047A1 JP 2011003605 W JP2011003605 W JP 2011003605W WO 2012111047 A1 WO2012111047 A1 WO 2012111047A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
insulating film
solid
light
imaging device
Prior art date
Application number
PCT/JP2011/003605
Other languages
English (en)
French (fr)
Inventor
敦生 中川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012111047A1 publication Critical patent/WO2012111047A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding

Definitions

  • the present invention relates to a solid-state imaging device, and more particularly to a configuration of an insulating film covering a light shielding film on a transfer electrode.
  • n-type semiconductor region photoelectric conversion region
  • p-type semiconductor substrate silicon substrate
  • a signal is generated in the n-type semiconductor region according to the amount of incident light. Charge is generated.
  • a video signal can be obtained from the signal charges generated in each pixel.
  • FIG. 9 is a cross-sectional view showing an example of a conventional solid-state imaging device represented by Patent Document 1 or Patent Document 2, and shows a range including one of the pixels arranged on the semiconductor substrate 901.
  • a light receiving portion 902 made of a photodiode is provided for each pixel on a surface layer portion of a semiconductor substrate 901, and a light receiving portion is formed on the surface layer portion of the semiconductor substrate 901 and adjacent to the light receiving portion 902.
  • a transfer region 903 for transferring charges generated by photoelectric conversion at 902 is formed.
  • a silicon oxide film 905 is provided on the semiconductor substrate 901, and a transfer electrode 904 is provided on the silicon oxide film 905 and at a position corresponding to the upper portion of the transfer region 903.
  • a light shielding film 907 having an opening above the light receiving portion 902 is provided on the transfer electrode 904 via a PSG (Phosphorus silicate glass) film 906.
  • the light shielding film 907 is made of a metal such as aluminum or tungsten, and reflects and absorbs stray light that has not entered the light receiving portion 902, so that the stray light directly enters the charge transfer region 903 and generates a false signal called smear. Prevent it from occurring.
  • a plasma silicon nitride film 908 is provided on the light shielding film 907.
  • This plasma silicon nitride film 908 is formed by using the plasma CVD method and then annealed. By this annealing, hydrogen contained in the plasma silicon nitride film 908 is desorbed, and dangling on the surface of the semiconductor substrate 901 is performed. By terminating the bond, the interface state can be lowered and the dark current can be reduced.
  • the plasma silicon nitride film 908 is smaller than 0.75 which is the composition ratio of silicon to nitrogen in the stoichiometrically stable composition ratio Si 3 N 4 , that is, nitrogen-rich.
  • sufficient hydrogen can be supplied to increase the number of NH bonds desorbed during annealing and terminate dangling bonds on the surface of the semiconductor substrate 901.
  • the refractive index of the plasma silicon nitride film 908 decreases as it becomes richer in nitrogen, light incident on the light receiving portion 902 from above is not refracted obliquely near the edge of the light shielding film 907, and is inclined. It is suggested that a false signal, that is, a so-called smear, which is generated when light enters the charge transfer region 903 directly by multiple reflection between the light shielding film 907 and the semiconductor substrate 901 can be prevented.
  • a silicon oxide film 909 as an interlayer insulating film is deposited on the plasma silicon nitride film 908.
  • the light shielding film 907 even if a metal film such as tungsten or aluminum is used for the light shielding film 907, the light incident on the surface (metal surface) of the light shielding film 907 is not completely reflected. However, a part of the light is absorbed by the light shielding film 907 and the sensitivity of the solid-state imaging device is lowered.
  • the refractive index of the plasma silicon nitride film 908 covering the light shielding film 907 is more than the refractive index of the silicon oxide film 909 (interlayer insulating film) covering it. Therefore, the light incident on the solid-state imaging device is refracted toward the plasma silicon nitride film 908 having a high refractive index and hits the light shielding film 907 provided under the plasma silicon nitride film 908, thereby causing such a problem. appear.
  • the refractive index of the plasma silicon nitride film 908 decreases with increasing nitrogen richness.
  • the composition ratio of the plasma silicon nitride film 908 is changed to increase the nitrogen richness.
  • the refractive index is described to be about 1.8, and the above problem cannot be solved.
  • the refractive index of a silicon oxide film 909 generally used as an interlayer insulating film in a solid-state imaging device is about 1.45, the refractive index (1.
  • the refractive index of the film such as the silicon oxide film 908 covering the silicon oxide film 908 is much higher.
  • the present invention has been made in view of the above problems, and suppresses a decrease in sensitivity even in a configuration in which a film having a refractive index higher than that of a silicon oxide film is formed on a light shielding film in order to reduce dark current.
  • An object of the present invention is to provide a solid-state imaging device that can be used.
  • the solid-state imaging device includes a semiconductor substrate, a transfer electrode, a light shielding film, a first insulating film, and a second insulating film.
  • a photoelectric conversion region for photoelectrically converting incident light into charges and a transfer region for transferring the generated charges are provided adjacent to each other on one main surface side.
  • the transfer electrode is provided on the semiconductor substrate and in a region corresponding to the transfer region.
  • the light shielding film covers the upper area of the transfer area and has an opening corresponding to the upper area of the photoelectric conversion area.
  • the first insulating film is formed on the light shielding film.
  • the second insulating film is formed on the first insulating film.
  • the second insulating film is a film containing hydrogen, and the refractive index of the first insulating film is lower than the refractive index of the second insulating film.
  • a solid-state imaging device includes a semiconductor substrate, a transfer electrode, a light shielding film, a first insulating film, a second insulating film, and a third insulating film.
  • a photoelectric conversion region for photoelectrically converting incident light into charges and a transfer region for transferring the generated charges are provided adjacent to each other on one main surface side.
  • the transfer electrode is provided on the semiconductor substrate and in a region corresponding to the transfer region.
  • the light shielding film covers the upper area of the transfer area and has an opening corresponding to the upper area of the photoelectric conversion area.
  • the first insulating film is formed on the light shielding film.
  • the second insulating film is formed on the first insulating film.
  • the third insulating film is formed on the second insulating film.
  • the first insulating film is a film containing hydrogen, and the refractive index of the second insulating film is lower than the refractive index of the third insulating film.
  • the hydrogen contained in the second insulating film containing hydrogen is desorbed by annealing and terminates dangling bonds on the surface of the semiconductor substrate. It is possible to reduce the interface state and to reduce the dark current.
  • the first insulating film having a refractive index lower than that of the second insulating film is interposed between the light shielding film and the second insulating film, whereby the interface between the first insulating film and the second insulating film.
  • the reflectance of the light propagating in the direction of the light shielding film is improved, and the light incident on the solid-state imaging device is prevented from reaching the light shielding film and being partially absorbed by the light shielding film.
  • the sensitivity of the solid-state imaging device can be improved.
  • the solid-state imaging device of the present invention according to (2) above, hydrogen contained in the first insulating film containing hydrogen is desorbed by annealing, and dangling bonds on the surface of the semiconductor substrate are terminated.
  • the interface state of the transfer region can be lowered and the dark current can be reduced.
  • the light since light propagating in the direction of the light shielding film is totally reflected at the interface between the second insulating film and the third insulating film, the light can be reflected in the direction of the photoelectric conversion region. Thereby, absorption of the light by a light shielding film can be suppressed and the sensitivity of a solid-state imaging device can be improved.
  • the insulating film having a higher refractive index than the silicon oxide film is formed on the light shielding film in order to reduce the dark current.
  • the amount of light that reaches the light shielding film surface and is absorbed is reduced, light absorption by the light shielding film is reduced, and a lot of light can be guided to the light receiving part by reflecting the light in the direction of the light receiving part, Sensitivity decline is suppressed.
  • the following variation configuration can be adopted as an example.
  • the first insulating film can be opened at a portion corresponding to the upper part of the photoelectric conversion region.
  • the second insulating film may be a silicon nitride film formed using a plasma CVD method.
  • the solid-state imaging device of the present invention according to the above (1) can be configured such that the first insulating film is a silicon oxide film.
  • the thickness of the first insulating film is 120 [nm] to 220 [nm]
  • the thickness of the second insulating film is 80 [nm]. It can be configured to be 130 nm.
  • the second insulating film can be configured to be opened at a portion corresponding to the upper part of the photoelectric conversion region.
  • the first insulating film may be a silicon nitride film formed using a plasma CVD method.
  • the second insulating film can be a silicon oxide film and the third insulating film can be a silicon nitride film.
  • FIG. 1 is a block diagram schematically showing an overall configuration of a solid-state imaging device 1 according to Embodiment 1 of the present invention.
  • 2 is a cross-sectional view schematically showing a configuration of a pixel region 10 in the solid-state imaging device 1.
  • FIG. (A) is a conceptual diagram which shows reflection of the light ray in the light shielding film in the solid-state imaging device which concerns on an Example, and the film structure of the upper part
  • (b) is the light-shielding film in the solid-state imaging device which concerns on a comparative example
  • a plurality of pixels 100 are arranged in a matrix in the XY plane direction.
  • a vertical CCD unit 21 extending in the Y-axis direction is provided between the rows, and a horizontal CCD unit 22 extending in the X-axis direction is provided at the lower end of the vertical CCD unit 21 in the Y-axis direction. It has been.
  • a region including the plurality of pixels 100 and the vertical CCD unit 21 is a pixel region 10.
  • An output amplifier unit 23 is connected to the horizontal CCD unit 22.
  • FIG. 2 shows a cross-sectional view including one pixel 100 of the solid-state imaging device 1.
  • the parts 103 are arranged alternately.
  • a transfer electrode 104 is provided above the charge transfer unit 103 with a silicon oxide film 105 (hereinafter referred to as “first silicon oxide film” for distinction) 105 interposed therebetween.
  • the light 110 incident on the solid-state imaging device 1 is photoelectrically converted into charges by the light receiving unit 102, and the charges are transferred in the area of the charge transfer unit 103.
  • a silicon oxide film (hereinafter referred to as a “second silicon oxide film” 106) is provided on the first silicon oxide film 105 and the transfer electrode 104.
  • the light shielding film 107 has an opening corresponding to the upper part of the light receiving unit 102.
  • An insulating film 108 is provided on the light shielding film 107, and a hydrogen-containing film 109 is provided on the insulating film 108.
  • the refractive index of the insulating film 108 is lower than the refractive index of the hydrogen-containing film 109.
  • a silicon nitride film as the hydrogen-containing film 109 is formed using, for example, a plasma CVD method, and then annealed, whereby hydrogen contained in the film is desorbed, and dangling bonds on the surface of the semiconductor substrate 101 are terminated. Fulfills the function of As a result, the interface state of the semiconductor substrate 101 is lowered, and the dark current can be reduced.
  • the refractive index of the hydrogen-containing film 109 made of a silicon nitride film formed by the plasma CVD method is about 1.9 although it depends on the composition ratio of silicon and nitrogen.
  • an interlayer insulating film made of a silicon oxide film is generally formed on the hydrogen-containing film 109, which is a silicon nitride film (not shown).
  • the refractive index of this silicon oxide film is about 1. 45.
  • the refractive index of the silicon nitride film is higher than the refractive index of the interlayer insulating film of the silicon oxide film formed thereon, and the light incident on the solid-state imaging device 1 enters the silicon nitride film having a high refractive index. Propagated toward the light shielding film in the lower part thereof.
  • the insulating film 108 made of a material having a lower refractive index than that of the silicon nitride film is provided between the silicon nitride film that is the hydrogen-containing film 109 and the light-shielding film 107, so that the hydrogen-containing film 109
  • the reflectance of light propagating in the direction of the light shielding film 107 at the interface between the film 109 and the insulating film 108 is improved, and the light incident on the solid-state imaging device 1 reaches the light shielding film 107 as indicated by a light beam 110 in FIG.
  • the insulating film 108 made of a material having a refractive index lower than that of the silicon nitride film is present in the portion where the light shielding film 107 is opened (the portion corresponding to the upper portion of the light receiving portion 102). Then, if the insulating film 108 is removed and the hydrogen-containing film 109 is provided, the refractive index of the medium in this portion can be increased, and the sensitivity of the solid-state imaging device 1 can be improved.
  • FIG. 3A shows a simulation structure of the solid-state imaging device according to the embodiment.
  • the flat film 202 made of the first silicon oxide film is formed on the flat film 201 made of tungsten (W) having a sufficiently thick film thickness so that it can be considered that there is no back surface reflection.
  • a flat film 203 made of a plasma silicon nitride film, and a flat film 204 made of a second silicon oxide film is further formed thereon.
  • FIG. 3B shows a simulation structure of the solid-state imaging device according to the comparative example.
  • a plasma silicon nitride film 952 is provided on the light shielding film 951, and a silicon oxide film 953 is provided thereon.
  • a characteristic matrix method which is general for light interference calculation in a thin film was used.
  • the average value of the P-polarized light and the S-polarized light was obtained as the reflectance.
  • FIG. 4 shows the simulation result.
  • the thickness of the flat film 202 is set to 100 [nm]
  • the thickness of the flat film 203 is set to 100 [nm].
  • a plasma silicon nitride film 952 is provided on the light shielding film 951 and the silicon oxide film is formed thereon, as in the structure according to the prior art shown in FIG. 953 is provided.
  • incident light 954 is reflected at the interface between the silicon oxide film 953 and the plasma silicon nitride film 952 and at the interface between the plasma silicon nitride film 952 and the light shielding film 951, but some of the light is reflected in the plasma silicon nitride film.
  • the light is not reflected at the interface between 952 and the light shielding film 951 but is absorbed by the light shielding film 951.
  • the first film is formed between the flat film (light-shielding film) 201 made of tungsten (W) and the flat film 203 made of plasma silicon nitride film.
  • the flat film 202 which is a silicon oxide film
  • the flat film (light-shielding film) 201 is reached by the amount of reflection at the interface between the flat film 203 and the flat film 202 as compared with the structure according to the comparative example. It is considered that the amount of light absorbed can be reduced and the reflectance can be increased.
  • a silicon oxide film is provided between the flat film 201 that is a light shielding film and the flat film 203 that is a plasma silicon nitride film as in the configuration according to the embodiment.
  • the flat film 202 see FIG. 3A
  • the flat film is compared with the structure according to the comparative example (see FIG. 3B) in which there is no flat film 202 that is a silicon oxide film therebetween.
  • the reflectance of the light 205 toward the 201 can be increased, the light absorption by the flat film 201 can be suppressed, more light can be reflected toward the light receiving unit, and the sensitivity reduction of the solid-state imaging device can be suppressed. It is thought that it shows.
  • the reflectance when the film thicknesses of the flat film 202 as the first silicon oxide film and the flat film 203 as the plasma silicon nitride film are changed.
  • the film thickness dependence was calculated using simulation. The simulation results are shown in FIGS.
  • the incident angle ⁇ 60 [°]
  • 70 [°]
  • 80 [°].
  • the reflectance was calculated by changing the thickness of the flat film 202 as the first silicon oxide film and the flat film 203 as the plasma silicon nitride film.
  • the condition for the highest reflectivity is to block the light incident on the solid-state imaging device. This is when the incident angle ⁇ toward the film is about 70 [°].
  • the film thickness range suitable for obtaining a high reflectance is that the film thickness of the flat film 202 as the first silicon oxide film is 120 [nm]. It can be seen that the thickness of the flat film 203 that is a plasma silicon nitride film is in the range of 80 [nm] to 130 [nm].
  • the film thickness in such a range, 50% or more of the light 110 incident on the light shielding film 107 in the solid-state imaging device 1 according to the present embodiment shown in FIG. Can be reflected in the direction of the light receiving unit 102.
  • the sensitivity of the solid-state imaging device 1 can be improved by 4% or more compared to the configuration of the solid-state imaging device according to the related art.
  • the incident light 110 is suppressed from being absorbed by the light shielding film 107, and more light 110 is reflected in the direction of the light receiving unit 102. As a result, a decrease in sensitivity can be suppressed.
  • Embodiment 2 a solid-state imaging device according to Embodiment 2 of the present invention will be described with reference to a cross-sectional view of the main part of FIG.
  • the light receiving unit 302 and the charge transfer unit 303 are formed on the semiconductor substrate 301, and the transfer electrode 304 is formed through the silicon oxide film 305. .
  • a light shielding film 307 is formed on the transfer electrode 304 via silicon oxide films 305 and 306, and the light shielding film 307 has an opening corresponding to the upper part of the light receiving portion 302.
  • the structure similar to the solid-state imaging device 1 which concerns on the said Embodiment 1 Moreover, there is no place which changes also about structures, such as a vertical CCD part and a horizontal CCD part which are not shown in figure.
  • a hydrogen-containing film 308 is provided on the light-shielding film 307, and an insulating film (hereinafter, “ 309 is provided, and an insulating film (hereinafter, also referred to as “second insulating film” 310) is provided thereon. Yes.
  • the hydrogen-containing film 308 is made of, for example, a plasma silicon nitride film formed using a plasma CVD method.
  • the refractive index of the first insulating film 309 is lower than the refractive index of the second insulating film 310.
  • the light 311 incident on the light shielding film 307 is totally reflected at the interface between the first insulating film 309 and the second insulating film 310. . For this reason, light can be reflected in the direction of the light receiving unit 302, light absorption by the light shielding film 307 can be suppressed, and a decrease in sensitivity of the solid-state imaging device can be suppressed.
  • the film thickness of the first insulating film 309 is a distance at which evanescent light oozes out in the direction of the first insulating film 309 in total reflection at the interface between the first insulating film 309 and the second insulating film 310. It is desirable to make it thicker than, for example, 50 [nm] or more.
  • Electrode light means that when light is incident on a low medium from a medium having a high refractive index, the light is totally reflected when the incident angle is set to a certain critical angle or more. This refers to the phenomenon of light penetrating into the interior.
  • the light shielding film 307 is as much as possible at the opening of the light shielding film 307 (the portion corresponding to the upper part of the light receiving portion 302).
  • the first insulating film 309 made of a material having a refractive index lower than that of the second insulating film 310 exists in the opening of the light shielding film 307. In this region, the first insulating film If the second insulating film 310 is provided by removing 309, the refractive index of the medium in that portion can be increased, and the sensitivity of the solid-state imaging device can be improved.
  • the solid-state imaging device by adopting the above configuration, the light 311 incident on the solid-state imaging device is blocked by the light-shielding film as in the solid-state imaging device 1 according to the first embodiment.
  • the light-shielding film By suppressing absorption by 307 and reflecting more light in the direction of the light receiving unit 302, it is possible to suppress a decrease in sensitivity of the solid-state imaging device.
  • the present invention is useful for realizing a solid-state imaging device having high sensitivity as an imaging device used for a digital camera or the like.
  • Solid-state imaging device 10. Pixel area 21. Vertical CCD unit 22. Horizontal CCD unit 23. Amplifier unit 100. Pixels 101, 301. Semiconductor substrates 102, 302. Light receiving units 103, 303. Charge transfer unit 104, 304. Transfer electrodes 105, 106, 305, 306. Silicon oxide films 107 and 307. Light shielding films 108, 309, 310. Insulating films 109, 308. Hydrogen-containing films 110, 205, 311. Incident rays 201, 202, 203, 204. Flat film

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 固体撮像装置では、半導体基板101内において、光電変換領域102と転送領域103とが互いに隣接して形成されている。 半導体基板101上の、転送領域103上方に相当する領域には、転送電極104が設けられており、当該転送電極104上を覆うように遮光膜107が形成されている。遮光膜107は、光電変換領域102の上方に相当する部分が開口されている。遮光膜107上には、第1の絶縁膜108と第2の絶縁膜109とが、順に積層されている。第2の絶縁膜109は、水素を含有する膜であり、第1の絶縁膜108の屈折率は、第2の絶縁膜109の屈折率よりも低い。

Description

固体撮像装置
 本発明は、固体撮像装置に関し、特に、転送電極上の遮光膜の上を覆う絶縁膜の構成に関する。
 固体撮像装置において、p型の半導体基板(シリコン基板)の表層部分に形成されたn型半導体領域(光電変換領域)に光が入射すると、そのn型半導体領域において、入射した光量に応じて信号電荷が発生する。このようにして個々の画素において発生する該信号電荷より、映像信号を得ることができる。
 図9は、特許文献1あるいは特許文献2に代表される従来の固体撮像装置の一例を示す断面図であり、半導体基板901上に配列された画素の一つを含む範囲を示している。
 図9において、半導体基板901の表層部分にはフォトダイオードからなる受光部902が画素ごとに設けられ、半導体基板901の表層部分であって、且つ、受光部902の隣接する領域には、受光部902で光電変換により生成された電荷を転送するための転送領域903が形成されている。さらに、半導体基板901上には、シリコン酸化膜905が設けられ、当該シリコン酸化膜905上であって、転送領域903の上部に相当する箇所には、転送電極904が設けられている。
 図9に示すように、転送電極904の上には、受光部902の上方で開口を有する遮光膜907がPSG(Phosphorus silicate glass)膜906を介して設けられている。この遮光膜907は、アルミニウムやタングステン等の金属からなり、受光部902に入射しなかった迷光を反射、吸収することによって、迷光が直接、電荷転送領域903に入射してスミアと呼ばれる偽信号を発生することを防ぐ。
 遮光膜907の上には、プラズマシリコン窒化膜908が設けられている。このプラズマシリコン窒化膜908は、プラズマCVD法を用いて形成された後にアニールされてなるが、このアニールによってプラズマシリコン窒化膜908中に含有されている水素が脱離し、半導体基板901表面のダングリングボンドを終端することによって界面準位を低下させ、暗電流を低減することができる。
 ここで、特許文献1では、プラズマシリコン窒化膜908を、化学量論的に安定な組成比Siにおけるシリコンの窒素に対する組成比である0.75よりも小さく、即ち、窒素リッチにすることによって、アニールの際に脱離するN-H結合を増やし、半導体基板901表面のダングリングボンドを終端するのに十分な水素を供給することができると示唆されている。
 さらに、プラズマシリコン窒化膜908は、窒素リッチになるほど屈折率が小さくなるため、上方から受光部902へ向かって入射した光が遮光膜907のエッジの近くで斜めに屈折されることがなく、斜め光が遮光膜907と半導体基板901との間を多重反射して直接、電荷転送領域903に入り込むことによって生じる偽信号、いわゆる、スミアを防ぐことができると示唆されている。
 プラズマシリコン窒化膜908の上には、層間絶縁膜としてのシリコン酸化膜909が堆積されている。
特開平6-112453号公報 特開2002-324899号公報 特開2003-309119号公報
 しかし、上記の従来技術に係る固体撮像装置の構造には、以下の問題がある。
 図9に示す従来技術に係る固体撮像装置では、遮光膜907にタングステンやアルミニウムといった金属膜を使用しても、遮光膜907の表面(金属表面)に入射した光は完全に反射されるのではなく、一部が遮光膜907に吸収されてしまい固体撮像装置の感度が低下するという問題が生じる。
 特に、図9に示す従来技術に係る固体撮像装置の構成では、遮光膜907を覆うプラズマシリコン窒化膜908の屈折率が、さらにその上を覆うシリコン酸化膜909(層間絶縁膜)の屈折率より大きいため、固体撮像装置に入射した光は、屈折率の高いプラズマシリコン窒化膜908に向かって屈折し、プラズマシリコン窒化膜908の下に設けられている遮光膜907に当たることでこのような問題が発生する。
 なお、特許文献1によれば、プラズマシリコン窒化膜908は、窒素リッチになるほど屈折率が小さくなるとされているが、特許文献3によれば、プラズマシリコン窒化膜908の組成比を変えて窒素リッチにした場合でも、その屈折率は1.8程度であると記載され、上記問題の解決には至らない。
 一方、固体撮像装置において、層間絶縁膜として一般的に用いられているシリコン酸化膜909の屈折率は、1.45程度であるため、窒素リッチとしたプラズマシリコン窒化膜908の屈折率(1.8程度)であっても、その上を覆うシリコン酸化膜908などの膜の屈折率よりはかなり大きいため、上記の問題の解決には至らないと考えられる。
 本発明は、以上の課題に鑑みてなされたものであり、暗電流を低減するためにシリコン酸化膜よりも高い屈折率を有する膜を遮光膜上に形成した構成においても、感度の低下を抑制できる固体撮像装置を提供することを目的とする。
 そこで、本発明では、次の構成を採用することとした。
 (1) 本発明に係る固体撮像装置では、半導体基板と、転送電極と、遮光膜と、第1の絶縁膜と、第2の絶縁膜と、を備える。
 ・半導体基板には、一方の主面側内部に、入射光を電荷に光電変換する光電変換領域と、生成された電荷を転送する転送領域とが、互いに隣接した状態で設けられている。
 ・転送電極は、半導体基板上であって、且つ、転送領域に対応する領域に設けられている。
 ・遮光膜は、転送領域の上方を覆い、且つ、光電変換領域の上方に相当する領域が開口されている。
 ・第1の絶縁膜は、遮光膜上に形成されている。
 ・第2の絶縁膜は、第1の絶縁膜上に形成されている。
 本発明に係る固体撮像装置では、上記構成において、第2の絶縁膜が水素を含有する膜であり、第1の絶縁膜の屈折率が第2の絶縁膜の屈折率よりも低い、ことを特徴とする。
 (2) 本発明に係る固体撮像装置は、半導体基板と、転送電極と、遮光膜と、第1の絶縁膜と、第2の絶縁膜と、第3の絶縁膜と、を備える。
 ・半導体基板には、一方の主面側内部に、入射光を電荷に光電変換する光電変換領域と、生成された電荷を転送する転送領域とが、互いに隣接した状態で設けられている。
 ・転送電極は、半導体基板上であって、且つ、転送領域に対応する領域に設けられている。
 ・遮光膜は、転送領域の上方を覆い、且つ、光電変換領域の上方に相当する領域が開口されている。
 ・第1の絶縁膜は、遮光膜上に形成されている。
 ・第2の絶縁膜は、第1の絶縁膜上に形成されている。
 ・第3の絶縁膜は、第2の絶縁膜上に形成されている。
 本発明に係る固体撮像装置では、上記構成において、第1の絶縁膜が水素を含有する膜であり、第2の絶縁膜の屈折率が第3の絶縁膜の屈折率よりも低い、ことを特徴とする。
 上記(1)に係る本発明の固体撮像装置では、水素を含有する第2の絶縁膜中に含有されている水素がアニールによって脱離し、半導体基板表面のダングリングボンドを終端するため、転送領域の界面準位を低下させ、暗電流を低減することができる。
 また、遮光膜と第2の絶縁膜との間に、第2の絶縁膜よりも屈折率の低い第1の絶縁膜を挟むことによって、第1の絶縁膜と第2の絶縁膜との界面において遮光膜方向に伝搬する光の反射率を向上させ、固体撮像装置に入射した光が遮光膜まで到達して遮光膜によって一部の光が吸収されることを抑制し、より多くの光を光電変換領域の方向へ反射させることで、固体撮像装置の感度を向上させることができる。
 また、上記(2)に係る本発明の固体撮像装置では、水素を含有する第1の絶縁膜中に含有されている水素がアニールによって脱離し、半導体基板表面のダングリングボンドを終端するため、転送領域の界面準位を低下させ、暗電流を低減することができる。また、遮光膜方向に伝搬する光が第2の絶縁膜と第3の絶縁膜との界面で全反射するため、光電変換領域の方向へ光を反射させることができる。これにより、遮光膜による光の吸収を抑制し、固体撮像装置の感度を向上させることができる。
 以上より、上記(1)および上記(2)に係る本発明の固体撮像装置では、暗電流を低減するためにシリコン酸化膜よりも高い屈折率を有する絶縁膜を遮光膜上に形成した構成においても、遮光膜表面まで到達して吸収される光の量を減らして遮光膜による光吸収を低減し、受光部の方向へ光を反射させることで多くの光を受光部へ導くことができ、感度低下が抑制される。
 本発明に係る固体撮像装置では、一例として、次のようなバリエーション構成を採用することができる。
 上記(1)に係る本発明の固体撮像装置では、第1の絶縁膜が、光電変換領域の上方に相当する部分で開口されている、という構成とすることができる。
 上記(1)に係る本発明の固体撮像装置では、第2の絶縁膜がプラズマCVD法を用い形成されたシリコン窒化膜である、という構成とすることができる。
 上記(1)に係る本発明の固体撮像装置では、第1の絶縁膜がシリコン酸化膜である、という構成とすることができる。
 上記(1)に係る本発明の固体撮像装置では、第1の絶縁膜の膜厚が120[nm]~220[nm]であり、且つ、第2の絶縁膜の膜厚が80[nm]~130[nm]である、という構成とすることができる。
 上記(2)に係る本発明の固体撮像装置では、第2の絶縁膜が、光電変換領域の上方に相当する部分で開口されている、という構成とすることができる。
 上記(2)に係る本発明の固体撮像装置では、第1の絶縁膜がプラズマCVD法を用い形成されたシリコン窒化膜である、という構成とすることができる。
 上記(2)に係る本発明の固体撮像装置では、第2の絶縁膜がシリコン酸化膜であり、且つ、第3の絶縁膜がシリコン窒化膜である、という構成とすることができる。
本発明の実施の形態1に係る固体撮像装置1の全体構成を模式的に示すブロック図である。 固体撮像装置1における画素領域10の構成を模式的に示す断面図である。 (a)は、実施例に係る固体撮像装置での遮光膜とその上部の膜構成における光線の反射を示す概念図であり、(b)は、比較例に係る固体撮像装置での遮光膜とその上部の膜構成における光線の反射を示す概念図である。 反射率のシミュレーション結果を示すグラフである。 光の入射角度θ=60°の場合における遮光膜付近での各層の膜厚に対する光の反射率シミュレーション結果を示す模式図である。 光の入射角度θ=70°の場合における遮光膜付近での各層の膜厚に対する光の反射率シミュレーション結果を示す模式図である。 光の入射角度θ=80°の場合における遮光膜付近での各層の膜厚に対する光の反射率シミュレーション結果を示す模式図である。 本発明の実施の形態2に係る固体撮像装置における画素領域の構成を模式的に示す断面図である。 従来技術に係る固体撮像装置における画素領域の構成を模式的に示す断面図である。
 以下では、本発明を実施するための形態について、図面を参酌しながら説明する。なお、以下の各実施の形態は、本発明の構成およびそこから奏される作用・効果を分かり易く説明するために用いる例であって、本発明は、本質的な特徴部分以外に何ら以下の形態に限定を受けるものではない。
 [実施の形態1]
 1.固体撮像装置1の全体構成
 本実施の形態に係る固体撮像装置1の全体構成について、図1を用い説明する。なお、本実施の形態では、インタライン転送CCD型固体撮像素子を一例としている。
 図1に示すように、固体撮像装置1では、X-Y面方向において、複数の画素100がマトリクス状に配列されている。そして、複数の画素100に対し、各行間にはY軸方向に延伸する垂直CCD部21が設けられ、垂直CCD部21のY軸方向下端において、X軸方向に延伸する水平CCD部22が設けられている。複数の画素100および垂直CCD部21などを含めた領域が、画素領域10となる。
 水平CCD部22には、出力アンプ部23が接続されている。
 2.画素領域10の構成
 図2では、固体撮像装置1の1つの画素100を含む断面図を示しているが、上記のように、固体撮像装置1では、半導体基板101内に受光部102と電荷転送部103が交互に並設されている。また、電荷転送部103の上部には、シリコン酸化膜(以下では、区別のため「第1のシリコン酸化膜」と記載する。)105を介した状態で、転送電極104が設けられている。固体撮像装置1に入射した光110は、受光部102で光電変換され電荷となるが、その電荷は電荷転送部103の領域にて転送される。
 第1のシリコン酸化膜105および転送電極104の上には、シリコン酸化膜(以下では、区別のため「第2のシリコン酸化膜」と記載する。)106が設けられている。第2のシリコン酸化膜106の上には、例えば、タングステン(W)やアルミニウム(Al)からなる遮光膜107が設けられ、電荷転送部103に直接光が入り込むことを防ぎ、光の入射により生じる偽信号、所謂、スミアを防ぐことができる。なお、遮光膜107は、受光部102の上部に相当する部分が開口されている。
 遮光膜107の上には、絶縁膜108が設けられ、絶縁膜108の上には、水素含有膜109が設けられている。ここで、絶縁膜108の屈折率は、水素含有膜109の屈折率よりも低い。
 水素含有膜109としてのシリコン窒化膜を、例えば、プラズマCVD法を用いて形成した後に、アニールすることによって、膜中に含有されている水素が脱離し、半導体基板101表面のダングリングボンドを終端する作用を果たす。これによって、半導体基板101の界面準位が低下し、暗電流を低減することができる。
 ここで、プラズマCVD法で形成されたシリコン窒化膜からなる水素含有膜109の屈折率は、シリコンと窒素の組成比に依存するものの約1.9である。
 一方、このシリコン窒化膜である水素含有膜109の上には、一般的にシリコン酸化膜からなる層間絶縁膜が形成されるが(図示を省略)、このシリコン酸化膜の屈折率は約1.45である。このため、シリコン窒化膜の屈折率は、その上に形成されるシリコン酸化膜の層間絶縁膜の屈折率と比べて高く、固体撮像装置1に入射した光は、屈折率の高いシリコン窒化膜に向かって伝搬し、その下部の遮光膜方向に向かうことになる。
 しかしながら、遮光膜107自体に光が当たると一部の光は吸収されてしまうため、受光部102に入射する光量が減少し、固体撮像装置1の感度が低下してしまう。
 そこで、本実施の形態では、水素含有膜109であるシリコン窒化膜と、遮光膜107との間に、シリコン窒化膜よりも低い屈折率を有する材料からなる絶縁膜108を設けることによって、水素含有膜109と絶縁膜108との界面において遮光膜107方向に伝搬する光の反射率を向上させ、図2中の光線110に示すように、固体撮像装置1に入射した光が遮光膜107まで到達し難いようにし、これにより遮光膜107で一部の光が吸収されることを抑制し、より多くの光を受光部102の方向へ反射させることで、固体撮像装置1の感度低下を抑制することができる。
 なお、固体撮像装置1に入射する光は、媒質の屈折率の高いほど絞られて伝搬するため、遮光膜107の開口部においては、可能な限り遮光膜107に光を当てることなく、光を狭く絞って通すことで受光部102への光の到達量が増加し、固体撮像装置1の感度が向上する効果が得られる。そのため、遮光膜107が開口された部分(受光部102の上部に相当する部分)においては、シリコン窒化膜よりも低い屈折率を有する材料からなる絶縁膜108が存在することは好ましくなく、この領域では絶縁膜108を除去して水素含有膜109を設ければ、この部分における媒質の屈折率を高くでき、固体撮像装置1の感度を向上することができる。
 3.光の反射率
 次に、本実施の形態に係る固体撮像装置1での、遮光膜107とその上部の膜構成における光の反射率を、シミュレーションを用いて計算した。その結果について、図3から図7を用い説明する。
 先ず、図3(a)に、実施例に係る固体撮像装置のシミュレーション構造を示す。図3(a)に示すように、シミュレーション構造は、裏面反射が無いとみなせるほどに十分厚い膜厚のタングステン(W)からなる平坦膜201上に、第1のシリコン酸化膜からなる平坦膜202を設け、その上にプラズマシリコン窒化膜からなる平坦膜203を設け、更にその上に第2のシリコン酸化膜からなる平坦膜204を設けた積層平坦膜である。
 ここで、平坦膜201の屈折率nおよび消衰係数kは、それぞれn=3.5、k=2.7とし、平坦膜202および平坦膜204の屈折率nおよび消衰係数kは、それぞれn=1.45、k=0とし、平坦膜203の屈折率nおよび消衰係数kは、それぞれn=1.9、k=0とした。
 次に、図3(b)に、比較例に係る固体撮像装置のシミュレーション構造を示す。図3(b)に示すように、比較例に係るシミュレーション構造は、遮光膜951上にプラズマシリコン窒化膜952が設けられ、その上にシリコン酸化膜953が設けられている。
 シミュレーション方法としては、薄膜における光の干渉計算に関して一般的である特性マトリクス法を用いた。ここで、光の入射波長λをλ=450[nm]、530[nm]、600[nm]の3条件とし、入射角度θを変化させて計算を行った。また、反射率の偏光依存性を考慮し、反射率はP偏光とS偏光の平均値を求めた。図4に、そのシミュレーション結果を示す。
 なお、実施例においては、平坦膜202の膜厚を100[nm]とし、平坦膜203の厚さは100[nm]で統一した。
 図4に示すように、これらの構造において光の入射角度θを0~90°まで変化させた結果、実施例に係る構造の反射率はどの入射角度においても比較例に係る構造よりも高い。この理由について、図3(a)と図3(b)とを比較しながら説明する。
 図3(b)に示すように、比較例に係る構造では、図9に示す従来技術に係る構造と同様に、遮光膜951上にプラズマシリコン窒化膜952が設けられ、その上にシリコン酸化膜953が設けられている。ここで、入射光線954は、シリコン酸化膜953とプラズマシリコン窒化膜952との界面、およびプラズマシリコン窒化膜952と遮光膜951との界面において反射されるが、一部の光はプラズマシリコン窒化膜952と遮光膜951との界面において反射されずに、遮光膜951で吸収される。
 一方、図3(a)に示すように、実施例に係る構成では、タングステン(W)からなる平坦膜(遮光膜)201とプラズマシリコン窒化膜からなる平坦膜203との間に、第1のシリコン酸化膜である平坦膜202を設けることによって、上記比較例に係る構造と比較して、平坦膜203と平坦膜202との界面において反射が生じる分、平坦膜(遮光膜)201まで到達して吸収される光の量を減らすことができ、反射率を増加することができると考えられる。
 以上の理由から、図4のシミュレーション結果に示す通り、実施例に係る構成のように、遮光膜である平坦膜201とプラズマシリコン窒化膜である平坦膜203との間に、シリコン酸化膜である平坦膜202を設けることによって(図3(a)を参照)、当該間にシリコン酸化膜である平坦膜202が無い比較例に係る構造(図3(b)を参照)に比べて、平坦膜201に向かう光205の反射率を高めることができ、平坦膜201での光吸収を抑制し、より多くの光を受光部に向かって反射させることができ、固体撮像装置の感度低下を抑制できることを示しているものと考えられる。
 さらに、図3(a)に示す構造の実施例に関し、第1のシリコン酸化膜である平坦膜202、およびプラズマシリコン窒化膜である平坦膜203の膜厚を、それぞれ変化させたときの反射率の膜厚依存性について、シミュレーションを用いて計算した。そのシミュレーション結果を図5から図7に示す。
 図5から図7において、光の入射波長λはλ=450nm、530nm、600nmの3条件とし、図5では、入射角度θ=60[°]、図6では、θ=70[°]、図7では、θ=80[°]とした。そして、各条件の組み合わせに対して、第1のシリコン酸化膜である平坦膜202およびプラズマシリコン窒化膜である平坦膜203の膜厚を変化させて、反射率を計算した。
 反射率は、入射波長λおよび入射角度θに依存して変わるが、図7に示すように、実施例に係る構造において、最も反射率が高くなる条件は、固体撮像装置に入射した光の遮光膜に向かう入射角度θが略70[°]程度の時である。このため、図7に示すθ=70°での結果から、高い反射率を得るのに適した膜厚の範囲は、第1のシリコン酸化膜である平坦膜202の膜厚が120[nm]~220[nm]の範囲であり、且つ、プラズマシリコン窒化膜である平坦膜203の膜厚が80[nm]~130[nm]の範囲であることがわかる。
 このような膜厚範囲に設定することで、図2に示した本実施の形態に係る固体撮像装置1での、遮光膜107に向かって入射した光110のうち、50[%]以上の光を受光部102の方向へ反射することができる。
 一方で、第1のシリコン酸化膜である平坦膜202が形成されていない図9に示す従来技術に係る固体撮像装置の構成では、対応する反射率が、図5から図7に示したシミュレーション結果より、θ=70[°]の場合では30[%]以下である。
 以上の結果より、遮光膜に当たる光の量を入射光の20[%]と仮定した場合、従来技術に係る固体撮像装置の構成では、遮光膜で反射される光は入射光の6[%]以下であるが、図2に示す本実施の形態に係る固体撮像装置1の構成では、遮光膜107で反射される光は入射光の10[%]以上となることから、本実施の形態に係る固体撮像装置1の構成を採用することによって、従来技術に係る固体撮像装置の構成に比べて、固体撮像装置1の感度を4[%]以上向上することができる。
 以上のように、本実施の形態に係る固体撮像装置1の構成では、入射した光110が遮光膜107に吸収されることを抑制し、より多くの光110を受光部102の方向へ反射させることで、感度低下を抑制することができる。
 [実施の形態2]
 以下、本発明の実施の形態2に係る固体撮像装置について、図8の要部断面図を参照しながら説明する。
 図8に示すように、本実施の形態に係る固体撮像装置においても、半導体基板301に受光部302および電荷転送部303が形成され、シリコン酸化膜305を介して転送電極304が形成されている。そして、転送電極304の上には、シリコン酸化膜305,306を介して遮光膜307が形成され、遮光膜307は、受光部302の上方に相当する部分が開口されている。これらについては、上記実施の形態1に係る固体撮像装置1と同様の構成であり、また、図示をしない垂直CCD部、水平CCD部などの構成についても変るところはない。
 図8に示すように、本実施の形態に係る固体撮像装置では、遮光膜307の上に、水素含有膜308が設けられ、水素含有膜308の上に絶縁膜(以下では、区別のため「第1の絶縁膜」ということがある。)309が設けられ、さらに、その上に絶縁膜(以下では、区別のために「第2の絶縁膜」ということがある。)310が設けられている。
 上記において、水素含有膜308は、例えば、プラズマCVD法を用いて形成されたプラズマシリコン窒化膜からなる。また、第1の絶縁膜309の屈折率は、第2の絶縁膜310の屈折率よりも低い。
 このような構成を有する本実施の形態に係る固体撮像装置においては、遮光膜307に向かって入射した光311が、第1の絶縁膜309と第2の絶縁膜310との界面で全反射する。このため、受光部302の方向へ光を反射させることができ、遮光膜307での光の吸収を抑制することができ、固体撮像装置の感度の低下を抑制することができる。
 ここで、第1の絶縁膜309の膜厚は、第1の絶縁膜309と第2の絶縁膜310との界面の全反射において、エバネッセント光が第1の絶縁膜309の方向へ染み出す距離よりも厚くすることが望ましく、例えば、50[nm]以上とすることが望ましい。
 なお、「エバネッセント光」とは、屈折率の高い媒質から低い媒質に光が入射する場合、入射角をある臨界角以上にすると光は全反射するが、その際に1波長程度まで低媒質側の内部に光が浸透する現象をいう。
 固体撮像装置に入射する光311は、媒質の屈折率の高いほど絞られて伝搬するため、遮光膜307の開口部(受光部302の上方に相当する部分)においては、可能な限り遮光膜307に光を当てることなく、光を狭く絞って通すことで受光部302への光の到達量が増加し、固体撮像装置の感度が向上する効果が得られる。そのため、遮光膜307の開口部においては、第2の絶縁膜310よりも低い屈折率を有する材料からなる第1の絶縁膜309が存在することは好ましくなく、この領域では、第1の絶縁膜309を除去して第2の絶縁膜310を設ければ、当該部分における媒質の屈折率を高くでき、固体撮像装置の感度を向上することができる。
 以上のように、本実施の形態に係る固体撮像装置では、上記構成を採用することで、上記実施の形態1に係る固体撮像装置1と同様に、固体撮像装置に入射した光311が遮光膜307に吸収されることを抑制し、より多くの光を受光部302の方向へ反射させることで、固体撮像装置の感度低下を抑制することができる。
 本発明は、ディジタルカメラなどに用いる撮像デバイスとして、高い感度を有する固体撮像装置を実現するのに有用である。
  1.固体撮像装置
 10.画素領域
 21.垂直CCD部
 22.水平CCD部
 23.アンプ部
100.画素
101,301.半導体基板
102,302.受光部
103,303.電荷転送部
104,304.転送電極
105,106,305,306.シリコン酸化膜
107,307.遮光膜
108,309,310.絶縁膜
109,308.水素含有膜
110,205,311.入射光線
201,202,203,204.平坦膜

Claims (9)

  1.  一方の主面側内部に、入射光を電荷に光電変換する光電変換領域と、前記電荷を転送する転送領域とが、互いに隣接した状態で設けられてなる半導体基板と、
     前記半導体基板上であって、且つ、前記転送領域に対応する領域に設けられた転送電極と、
     前記転送領域の上方を覆い、且つ、前記光電変換領域の上方に相当する領域が開口された遮光膜と、
     前記遮光膜上に形成された第1の絶縁膜と、
     前記第1の絶縁膜上に形成された第2の絶縁膜と、
    を備え、
     前記第2の絶縁膜は、水素を含有する膜であり、
     前記第1の絶縁膜の屈折率は、前記第2の絶縁膜の屈折率よりも低い
     ことを特徴とする固体撮像装置。
  2.  前記第1の絶縁膜は、前記光電変換領域の上方に相当する領域が開口されている
     ことを特徴とする請求項1に記載の固体撮像装置。
  3.  前記第2の絶縁膜は、プラズマCVD法を用い形成されたシリコン窒化膜である
     ことを特徴とする請求項1または請求項2に記載の固体撮像装置。
  4.  前記第1の絶縁膜は、シリコン酸化膜である
     ことを特徴とする請求項1から請求項3の何れかに記載の固体撮像装置。
  5.  前記第1の絶縁膜の膜厚は、120nm~220nmであり、
    且つ、
     前記第2の絶縁膜の膜厚は、80nm~130nmである
     ことを特徴とする請求項1から請求項4の何れかに記載の固体撮像装置。
  6.  一方の主面側内部に、入射光を電荷に光電変換する光電変換領域と、前記電荷を転送する転送領域とが、互いに隣接した状態で設けられてなる半導体基板と、
     前記半導体基板上であって、且つ、前記転送領域に対応する領域に設けられた転送電極と、
     前記転送領域の上方を覆い、且つ、前記光電変換領域の上方に相当する領域が開口された遮光膜と、
     前記遮光膜上に形成された第1の絶縁膜と、
     前記第1の絶縁膜上に形成された第2の絶縁膜と、
     前記第2の絶縁膜上に形成された第3の絶縁膜と、
    を備え、
     前記第1の絶縁膜は、水素を含有する膜であり、
     前記第2の絶縁膜の屈折率は、前記第3の絶縁膜の屈折率よりも低い
     ことを特徴とする固体撮像装置。
  7.  前記第2の絶縁膜は、前記光電変換領域の上方に相当する領域が開口されている
     ことを特徴とする請求項6に記載の固体撮像装置。
  8.  前記第1の絶縁膜は、プラズマCVD法を用い形成されたシリコン窒化膜である
     ことを特徴とする請求項6または請求項7に記載の固体撮像装置。
  9.  前記第2の絶縁膜は、シリコン酸化膜であり、
    且つ、
     前記第3の絶縁膜は、シリコン窒化膜である
     ことを特徴とする請求項6から請求項8の何れかに記載の固体撮像装置。
PCT/JP2011/003605 2011-02-14 2011-06-23 固体撮像装置 WO2012111047A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-028693 2011-02-14
JP2011028693 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012111047A1 true WO2012111047A1 (ja) 2012-08-23

Family

ID=46672013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003605 WO2012111047A1 (ja) 2011-02-14 2011-06-23 固体撮像装置

Country Status (1)

Country Link
WO (1) WO2012111047A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132515A (ja) * 1992-10-16 1994-05-13 Sony Corp 固体撮像素子
JPH10112532A (ja) * 1996-10-04 1998-04-28 Sony Corp 撮像素子
JP2000252451A (ja) * 1999-03-01 2000-09-14 Matsushita Electronics Industry Corp 固体撮像装置およびその製造方法
JP2002319667A (ja) * 2001-04-24 2002-10-31 Fuji Film Microdevices Co Ltd 固体撮像素子およびその製造方法
JP2009295918A (ja) * 2008-06-09 2009-12-17 Panasonic Corp 固体撮像装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132515A (ja) * 1992-10-16 1994-05-13 Sony Corp 固体撮像素子
JPH10112532A (ja) * 1996-10-04 1998-04-28 Sony Corp 撮像素子
JP2000252451A (ja) * 1999-03-01 2000-09-14 Matsushita Electronics Industry Corp 固体撮像装置およびその製造方法
JP2002319667A (ja) * 2001-04-24 2002-10-31 Fuji Film Microdevices Co Ltd 固体撮像素子およびその製造方法
JP2009295918A (ja) * 2008-06-09 2009-12-17 Panasonic Corp 固体撮像装置及びその製造方法

Similar Documents

Publication Publication Date Title
US8110885B2 (en) Solid state imaging device comprising hydrogen supply film and antireflection film
TWI399849B (zh) 固態成像裝置,製造固態成像裝置之方法,及電子設備
JP5092251B2 (ja) 光検出装置
US8866251B2 (en) Solid-state imaging element having optical waveguide with insulating layer
TWI442556B (zh) A solid-state image pickup device, a method of manufacturing the same, and an image pickup device
JP2008091771A (ja) 固体撮像装置およびその製造方法
WO2021100330A1 (ja) 撮像素子および撮像装置
JP2013207053A (ja) 固体撮像素子、電子機器
JP2006332124A (ja) 固体撮像素子及びその製造方法
US12027551B2 (en) Image pickup device
JP4878117B2 (ja) 固体撮像装置及び撮像システム
WO2012111047A1 (ja) 固体撮像装置
JPH04152674A (ja) 固体撮像素子
JP2012124275A (ja) 固体撮像素子およびその製造方法、並びにそれを備えた電子機器
WO2013111418A1 (ja) 固体撮像素子
JPH1145989A (ja) 固体撮像装置およびその製造方法
JP3496888B2 (ja) 固体撮像素子
JP2008294242A (ja) 固体撮像装置およびその製造方法
JP6945665B2 (ja) 固体撮像素子、電子機器および製造方法
JP5318165B2 (ja) 固体撮像装置及び撮像システム
WO2023132133A1 (ja) 光検出装置及び電子機器
JP4449298B2 (ja) 固体撮像素子の製造方法および固体撮像素子
US20220020787A1 (en) Semiconductor device, semiconductor image sensor, and method of manufacturing the same
JP3196727B2 (ja) 固体撮像装置
JPH08222722A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP