WO2012105079A1 - 薄膜太陽電池及びその製造方法 - Google Patents

薄膜太陽電池及びその製造方法 Download PDF

Info

Publication number
WO2012105079A1
WO2012105079A1 PCT/JP2011/069874 JP2011069874W WO2012105079A1 WO 2012105079 A1 WO2012105079 A1 WO 2012105079A1 JP 2011069874 W JP2011069874 W JP 2011069874W WO 2012105079 A1 WO2012105079 A1 WO 2012105079A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
insulating substrate
transparent electrode
back electrode
hole
Prior art date
Application number
PCT/JP2011/069874
Other languages
English (en)
French (fr)
Inventor
竹内 正樹
浩昭 中原
和田 雄人
悟 澤柳
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to US13/634,281 priority Critical patent/US20130000720A1/en
Priority to CN2011800138073A priority patent/CN102792459A/zh
Priority to EP11857798.0A priority patent/EP2672521A1/en
Priority to JP2012555685A priority patent/JP5387788B2/ja
Publication of WO2012105079A1 publication Critical patent/WO2012105079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film solar cell in which a metal electrode layer, a photoelectric conversion layer, and a transparent electrode layer are laminated on a film substrate.
  • FIG. 8 is a plan view of a conventional thin film solar cell.
  • 9 is a cross-sectional view taken along the line AA in FIG. 8
  • FIG. 10 is a cross-sectional view taken along the line BB in FIG.
  • the conventional thin-film solar cell 21 includes an insulating substrate 22.
  • Metal electrode layers 23 are formed on both surfaces 22 a and 22 b of the insulating substrate 22.
  • the metal electrode layer 23 on one surface 22a of the insulating substrate 22 functions as the back electrode layer 23a
  • the metal electrode layer 23 on the other surface 22b of the insulating substrate 22 is the first back electrode. It functions as the layer 23b.
  • the photoelectric conversion layer 24 and the transparent electrode layer 25 are laminated in this order on the back electrode layer 23a.
  • the second back electrode layer 26 is laminated on the first back electrode layer 23b.
  • the insulating substrate 22 is provided with a first through hole 27 that penetrates the insulating substrate 22, and the transparent electrode layer 25 and the second back electrode layer 26 are formed. The first through hole 27 is electrically connected.
  • the insulating substrate 22 is provided with a second through hole 28 that penetrates the insulating substrate 22, and the back electrode layer 23a and the first back electrode layer 23b are provided. The second through hole 28 is electrically connected.
  • the layer laminated on one surface 22a of the insulating substrate 22 shown in FIG. 9 is divided by the first patterning line 29 as shown in FIG. 8, and the other surface 22b of the insulating substrate 22 shown in FIG. As shown in FIGS. 8 and 10, the stacked layers are divided by the second patterning line 30. Thereby, the laminated layer on the insulating substrate 22 is divided into a plurality of unit cells.
  • the first patterning lines 29 and the second patterning lines 30 are alternately arranged on the insulating substrate 22.
  • Patent Document 1 discloses another example of a conventional thin film solar cell.
  • a first electrode layer, a photoelectric conversion layer, and a second electrode layer are laminated on one surface of a film substrate made of an electrically insulating resin, and the opposite side of the film substrate ( On the back surface, a third electrode layer and a fourth electrode layer are laminated.
  • Patent Document 2 discloses yet another example of a conventional thin film solar cell.
  • the connection hole is closed with a printed electrode made of a conductive material (particularly, see paragraph 0035 and FIG. 27).
  • the transparent electrode layer is formed over the entire width of the photoelectric conversion layer.
  • a region separation line is formed for electrically separating a region near the connection hole (second through hole) and a region including the current collecting hole (first through hole) ( In particular, see paragraph 0046 and FIG.
  • Non-Patent Document 1 describes laser patterning when manufacturing a thin film solar cell.
  • an excimer laser having a wavelength of 248 nm and a pulse width of 40 ns is used (page 39).
  • the transparent electrode layer 25 on the insulating substrate 22 and the like may be damaged by contact between the transparent electrode layer 25 on the insulating substrate 22 and the mask. was there.
  • Patent Document 3 since a thin linear mask is used, there is a high possibility that the transparent electrode layer 25 and the mask are in contact with each other and the transparent electrode layer 25 is damaged.
  • the leakage current and the like increase, and there is a problem that the defect rate when the thin film solar cell 21 is manufactured increases.
  • connection hole is closed with a conductive material, there is a problem that the insulation in the connection hole is not sufficient in the first place and the leakage current increases.
  • connection hole is closed with an insulating resin, a polyimide or polyamide resin, but the insulating resin is applied before the semiconductor layer is formed. Accordingly, there has been a problem that moisture adsorbed on the insulating resin from the atmosphere is released when the semiconductor layer is formed, and the characteristics of the thin film solar cell deteriorate. In addition, since it takes a long time to cure the insulating resin, there is a problem that the manufacturing cost increases. Further, since the substrate is locally thickened by the thickness of the resin, problems are likely to occur when the substrate is transported.
  • Non-Patent Document 1 describes the wavelength and pulse width of a laser when performing laser patterning, but does not describe the conditions regarding energy density. Therefore, even if laser patterning is performed under the conditions of Non-Patent Document 1, there is a problem in that alteration of a peripheral power generation layer (photoelectric conversion layer or the like) that performs laser processing cannot be suppressed.
  • the present invention has been made in view of such circumstances, and its purpose is to increase the output area of the thin-film solar cell by expanding the effective area of the transparent electrode layer and to ensure insulation in the second through hole. Then, it is providing the thin film solar cell which can reduce the defect rate at the time of manufacturing a thin film solar cell, and its manufacturing method.
  • the present invention includes a back electrode layer, a photoelectric conversion layer, and a transparent electrode layer laminated in this order on one surface of an insulating substrate. On the other surface, the first back electrode layer and the second back electrode layer are laminated in this order, and the patterning lines are alternately formed on the layers laminated on both surfaces of the insulating substrate.
  • An insulating substrate is divided into a plurality of unit cells, and the transparent electrode layer and the second back electrode layer are electrically connected via a first through hole penetrating the insulating substrate, and the back surface
  • the transparent electrode layer around the second through hole is Separated by a groove, and the transparent electrode layer and the second back electrode layer is electrically insulated.
  • the groove of the transparent electrode layer is formed by irradiating a pulse laser.
  • the groove of the transparent electrode layer is formed by irradiating a laser whose wavelength is in the ultraviolet region.
  • the insulating substrate is formed of a heat resistant film of polyimide, polyamideimide, or polyethylene naphthalate.
  • the present invention includes a back electrode layer, a photoelectric conversion layer, and a transparent electrode layer laminated in this order on one surface of an insulating substrate. On the other surface, the first back electrode layer and the second back electrode layer are laminated in this order, and the patterning lines are alternately formed on the layers laminated on both surfaces of the insulating substrate.
  • An insulating substrate is divided into a plurality of unit cells, and the transparent electrode layer and the second back electrode layer are electrically connected via a first through hole penetrating the insulating substrate, and the back surface
  • the transparent electrode layer around the second through-hole is Separated by, and the transparent electrode layer and the second back electrode layer is electrically and insulated, the groove was adjusted beam energy density 0.2 ⁇ 0.3J / cm 2 YAG- It is formed using a THG laser (wavelength 355 nm).
  • the groove of the transparent electrode layer is formed using a laser having a circular or rectangular beam shape, a Gaussian beam profile, or a top hat laser.
  • the groove of the transparent electrode layer is formed using a laser having a pulse width of 20 ps or less.
  • the insulating substrate is formed of a heat resistant film of polyimide, polyamideimide, or polyethylene naphthalate.
  • a method of manufacturing a thin film solar cell according to the present invention includes a step of forming a second through hole in an insulating substrate, and a back electrode layer on one surface of the insulating substrate. And forming a first back electrode layer on the other surface of the insulating substrate, and forming the back electrode layer and the first back electrode layer, and then forming a first back electrode layer on the insulating substrate.
  • the transparent around the Forming a groove in electrode layer comprises electrically step of insulating the said transparent electrode layer and the second back electrode layer.
  • the step of forming a groove in the transparent electrode layer around the second through hole is performed by irradiating a pulse laser.
  • the step of forming a groove in the transparent electrode layer around the second through hole is performed by irradiating a laser having a wavelength in the ultraviolet region. .
  • the step of forming a groove in the transparent electrode layer around the second through hole has a beam energy density of 0.2 to 0.3 J / cm 2. This is performed by irradiating with a YAG-THG laser (wavelength 355 nm) adjusted to 1.
  • the step of forming a groove in the transparent electrode layer around the second through-hole includes a circular or rectangular beam shape, and a Gaussian beam profile. This is performed by irradiating a laser of a top hat or a top hat.
  • the step of forming a groove in the transparent electrode layer around the second through hole is performed by irradiating a laser having a pulse width of 20 ps or less. .
  • the back electrode layer, the photoelectric conversion layer, and the transparent electrode layer are laminated in this order on one surface of the insulating substrate, and the other surface of the insulating substrate is stacked on the other surface.
  • the first back electrode layer and the second back electrode layer are stacked in this order, and a plurality of the insulating substrates are formed by alternately forming patterning lines on the layers stacked on both surfaces of the insulating substrate.
  • the transparent electrode layer and the second back electrode layer are electrically connected via a first through hole penetrating the insulating substrate, and the back electrode layer and the second back electrode layer are electrically connected to each other.
  • the second through hole The transparent electrode layer around is separated by a groove And the transparent electrode layer and the second back electrode layer is electrically insulated.
  • mask processing or insulating resin is arranged around the second through-hole, but according to the present invention, the transparent electrode layer and the first electrode can be formed without performing such processing. The insulation between the two back electrode layers can be ensured.
  • the mask processing is not performed around the second through-hole, and only the transparent electrode layer is removed, so that the area where the transparent electrode layer is not formed is smaller than the mask processing, and the transparent electrode The effective area of the layer can be increased. Thereby, the output of a thin film solar cell can be increased.
  • the groove of the transparent electrode layer is formed by irradiating a pulse laser, a short circuit due to crystallization of a power generation layer such as a photoelectric conversion layer is suppressed. be able to.
  • the groove of the transparent electrode layer is formed by irradiating a laser having a wavelength in the ultraviolet region, so that light absorption by the transparent electrode layer is increased. The thermal damage to the power generation layer can be reduced.
  • the back electrode layer, the photoelectric conversion layer, and the transparent electrode layer are laminated in this order on one surface of the insulating substrate, and the other surface of the insulating substrate.
  • the first back electrode layer and the second back electrode layer are stacked in this order, and the insulating substrate is formed by alternately forming patterning lines on the layers stacked on both surfaces of the insulating substrate.
  • the transparent electrode layer and the second back electrode layer are electrically connected via a first through hole penetrating the insulating substrate, and the back electrode layer
  • the second The transparent electrode layer around the through hole is separated by a groove Is, the transparent electrode layer and the second back electrode layer is electrically and insulated, the groove, YAG-THG laser to adjust the beam energy density 0.2 ⁇ 0.3 J / cm 2 (Wavelength of 355 nm), it is possible to suppress the deterioration (that is, crystallization, etc.) of the power generation layer such as the peripheral photoelectric conversion layer where laser processing is performed. Further, since a laser in the ultraviolet region (wavelength 400 nm or less) is used as the processing laser, light absorption by the transparent electrode layer is increased, and thermal damage to the power generation layer can be reduced.
  • the groove of the transparent electrode layer is formed using a laser having a pulse width of 20 ps or less. Can reduce the impact
  • the step of forming the second through hole in the insulating substrate, the formation of the back electrode layer on one surface of the insulating substrate, and the insulating property Forming a first back electrode layer on the other surface of the substrate; forming a first through hole in the insulating substrate after forming the back electrode layer and the first back electrode layer; Laminating a photoelectric conversion layer and a transparent electrode layer in this order from one surface side of the insulating substrate, and laminating a second back electrode layer from the other surface side of the insulating substrate; Patterning lines are alternately formed on the layers laminated on both surfaces of the insulating substrate, the insulating substrate is divided into a plurality of unit cells, and the transparent electrode layer around the second through hole is formed on the transparent electrode layer.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1. It is an enlarged view of C in FIG.
  • FIG. 2 is a sectional view taken along line BB in FIG.
  • D in Drawing 4 (a) is a sectional view before removing a transparent electrode layer, and (b) is a sectional view after removing a transparent electrode layer.
  • FIG. 8 It is a top view of the conventional thin film solar cell.
  • A) is the sectional view on the AA line of FIG. 8,
  • (b) is the enlarged view of C in (a).
  • (A) is a sectional view taken along line BB in FIG. 8, and
  • (b) is an enlarged view of D in (a).
  • FIG. 1 is a plan view of the thin-film solar cell according to the first embodiment.
  • 2 is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 3 is an enlarged view of C in FIG. 4
  • FIG. 5 is an enlarged view of C in FIG.
  • the thin-film solar cell 1 includes an insulating substrate 2 (see FIGS. 3 and 5).
  • the insulating substrate 2 is made of a film material, for example, a material such as polyimide, polyamideimide, polyethylene naphthalate, or aramid.
  • a metal electrode layer 3 made of a metal such as Ag / ZnO is formed on both surfaces 2a and 2b of the insulating substrate 2.
  • the metal electrode layer 3 on the one surface 2a of the insulating substrate 2 functions as the back electrode layer 3a
  • the metal electrode layer 3 on the other surface 2b of the insulating substrate 2 is the first back electrode. It functions as the layer 3b.
  • the photoelectric conversion layer 4 and the transparent electrode layer 5 are laminated in this order on the back electrode layer 3 a on the one surface 2 a of the insulating substrate 2.
  • the photoelectric conversion layer 4 an amorphous semiconductor or an amorphous semiconductor containing microcrystals, a dye-sensitized solar cell, an organic solar cell, or a CIGS organic solar cell can be used.
  • the second back electrode layer 6 is laminated on the first back electrode layer 3 b on the other surface 2 b of the insulating substrate 2.
  • the insulating substrate 2 is provided with a plurality of first through holes 7 penetrating the insulating substrate 2, and the plurality of first through holes 7 are spaced apart from each other. Are arranged. Further, as shown in FIG. 3, the transparent electrode layer 5 and the second back electrode layer 6 are connected so as to overlap each other on the side wall portion 7 a of the first through hole 7.
  • the insulating substrate 2 is provided with a plurality of second through holes 8 that penetrate the insulating substrate 2.
  • the second through holes 8 are disposed at both ends in the width direction of the insulating substrate 2 of the thin film solar cell 1.
  • the back electrode layer 3 a and the first back electrode layer 3 b are electrically connected via the side wall portion 8 a of the second through hole 8.
  • the 1st and 2nd through-holes 7 and 8 are the 1st and 2nd back electrode layers 3b and 6-> 1st through-hole 7-> transparent electrode layer 5-> photoelectric conversion layer 4-> back electrode layer. It is used for connecting in the order of 3a ⁇ second through hole 8 ⁇ first back electrode layer 3b.
  • the layers (back electrode layer 3a, photoelectric conversion layer 4, transparent electrode layer 5) laminated on one surface 2a of the insulating substrate 2 are formed by a first patterning line 9 by laser processing. It is divided into multiple parts. Further, as shown in FIGS. 1 and 5, the layers (first back electrode layer 3b, second back electrode layer 6) laminated on the other surface 2b of the insulating substrate 2 are similarly laser processed.
  • the second patterning line 10 is divided into a plurality of parts.
  • the first patterning lines 9 and the second patterning lines 10 are alternately arranged on the insulating substrate 2.
  • the first and second patterning lines 9 and 10 are divided into unit cells (unit solar cells) composed of layers on one surface 2a of the insulating substrate 2 and layers on the other surface 2b. Yes.
  • the thin-film solar cell 1 is formed by shifting the separation positions of the electrode layers on both surfaces 2a and 2b of the insulating substrate 2 and connecting the electrode layers on both surfaces 2a and 2b of the insulating substrate 2 with the second through holes 28. Adjacent unit cells are connected in series.
  • a process for removing the transparent electrode layer 5 is performed around the second through hole 8.
  • a separation groove 11 is provided around the second through hole 8, and the separation groove 11 has a diameter of the second through hole 8. It is formed outside in the direction. That is, as shown in FIG. 5B, the separation groove 11 is located on the radially outer side with respect to the side wall portion 8 a of the second through hole 8.
  • the separation groove 11 is formed concentrically with the second through hole 8, and is formed in an annular shape in plan view. 5B, the depth of the separation groove 11 reaches the photoelectric conversion layer 4, and the transparent electrode layer 5 and the second transparent electrode layer 6 are electrically insulated. Yes.
  • FIG. 6 is a flowchart when manufacturing the thin-film solar cell 1 according to this embodiment.
  • the thin film solar cell 1 uses the film material as described above as the insulating substrate 2.
  • a roll-to-roll method or an ink jet printing technique is used as a method for manufacturing the thin-film solar cell 1.
  • the roll-to-roll method is a method in which a film material substrate is conveyed by a plurality of rollers (conveying means), and a thin film is continuously formed on the substrate in a deposition chamber that is continuously arranged.
  • step S1 pretreatment of the insulating substrate 2 is performed. Specifically, pretreatment is performed to saturate the deformation of the substrate by applying tension while heating the insulating substrate 2.
  • step S ⁇ b> 2 the second through hole 8 is formed in the insulating substrate 2.
  • the second through hole 8 is formed by punching (a perforating method).
  • the shape of the second through hole 8 is a circle having a diameter of 1 mm.
  • the second through hole 8 has a circular diameter set in the range of 0.05-1 mm, and the number of perforations of the second through hole 8 can be adjusted according to the design.
  • step S3 a back electrode layer 3a and a first back electrode layer 3b are formed on both surfaces 2a and 2b of the insulating substrate 2 by performing a sputtering process. At this time, the back electrode layer 3 a and the first back electrode layer 3 b are electrically connected through the second through hole 8.
  • step S4 the layers formed on both surfaces 2a and 2b of the insulating substrate 2 are removed by laser processing to form a primary patterning line (not shown). At this time, the lines formed on both surfaces 2a and 2b of the insulating substrate 2 are formed so as to be shifted from each other.
  • step S ⁇ b> 5 the first through hole 7 is formed in the insulating substrate 2. The first through hole 7 is formed by punching.
  • step S6 the photoelectric conversion layer 4 is formed on the back electrode layer 3a of the insulating substrate 2, and then in step S7, the transparent electrode layer 5 is further formed on the photoelectric conversion layer 4.
  • step S ⁇ b> 8 the second back electrode layer 6 is formed on the first back electrode layer 3 b of the insulating substrate 2.
  • step S9 the photoelectric conversion layer 4 and the transparent electrode layer 5 on the primary patterning line formed in step S4 are removed again by laser processing to form the first patterning line 9. Further, in step S10, the second back electrode layer 6 on the primary patterning line formed in step S4 is removed again by laser processing to form the second patterning line 10.
  • the first and second patterning lines 9 and 10 separate the layer on the insulating substrate 2 into a plurality of unit cells.
  • step S ⁇ b> 11 laser processing is performed on the transparent electrode layer 5 around the second through hole 8 to form a separation groove (third patterning line) 11 around the second through hole 8. .
  • the separation groove 11 is concentric with the second through hole 8 and is formed on the radially outer side of the second through hole 8 (see FIG. 1). Further, the depth of the separation groove 11 reaches the photoelectric conversion layer 4 (see FIG. 5B). Thereby, the transparent electrode layer 5 outside the separation groove 11, the back electrode layer 6 and the first back electrode layer 3b are separated by the separation groove 11, and as a result, the transparent electrode layer 5 and the back electrode layer 6 are separated from each other. Are electrically isolated.
  • a pulse laser can be used as the laser for forming the separation groove 11.
  • the wavelength of the pulse laser is preferably in the ultraviolet region.
  • the pulse laser pulse time width is set to 100 ps or less, preferably 20 ps or less.
  • the back electrode layer 3a, the photoelectric conversion layer 4, and the transparent electrode layer 5 are laminated in this order on one surface 2a of the insulating substrate 2.
  • the first back electrode layer 3b and the second back electrode layer 6 are laminated in this order on the other surface 2b of the insulating substrate 2, and the layers laminated on both surfaces 2a and 2b of the insulating substrate 2
  • the insulating substrate 2 is divided into a plurality of unit cells by alternately forming the first and second patterning lines 9 and 10, and the transparent electrode layer 5 and the second back electrode layer 6 are insulative.
  • the first and second back electrode layers 3a and 3b are electrically connected via a first through hole 7 penetrating the substrate 2, and the second through hole 8 penetrating the insulating substrate 2 is connected to the back electrode layer 3a and the first back electrode layer 3b.
  • the transparent electrode layer 5 around the second through-holes 8 are separated by separation grooves 11, and the transparent electrode layer 5 and the second back electrode layer 6 are electrically insulated.
  • mask processing or insulating resin is arranged around the second through-hole, but according to the present invention, the second through-hole can be obtained without performing such processing. 8, the insulation between the transparent electrode layer 5 and the second back electrode layer 6 can be ensured.
  • the transparent electrode layer 5 is simply removed by the laser without performing mask processing around the second through-hole 8, there is a region where the transparent electrode layer 5 is not formed compared to mask processing. It becomes small and the effective area of the transparent electrode layer 5 can be expanded compared with the past. Thereby, the output of the thin film solar cell 1 can be increased.
  • the thin film solar cell 1 since a pulse laser is used as the laser for forming the separation groove 11, a short circuit due to crystallization of the power generation layer such as the photoelectric conversion layer 4 is prevented. Can be suppressed.
  • the time width of the pulse of the pulse laser is set short (100 ps or less), the influence of heat during laser processing can be suppressed.
  • the first through hole 7 is formed in the first substrate 2 and the photoelectric conversion layer 4 and the transparent electrode layer 5 are laminated in this order from the one surface 2a side of the insulating substrate 2, and the other surface of the insulating substrate 2 is formed.
  • the step of laminating the second back electrode layer 6 from the 2b side and the patterning lines 9 and 10 are alternately formed on the layers laminated on both surfaces 2a and 2b of the insulating substrate 2 to form a plurality of insulating substrates 2.
  • Dividing the unit cell into a second unit cell Forming a separation groove 11 in the transparent electrode layer 5 around the hole 8 to electrically insulate the transparent electrode layer 5 and the second back electrode layer 6 from each other. It is not necessary to perform masking or the like in the vicinity of the through hole, and the yield at the time of manufacturing the thin film solar cell 1 is improved.
  • the mask and the layer on the insulating substrate 2 do not come into contact with each other and the layer on the insulating substrate 2 is not damaged. Thereby, the leakage current does not increase in the thin film solar cell 1, and the defect rate when the thin film solar cell 1 is manufactured can be reduced.
  • FIG. 7 is a diagram showing the relationship between the energy density and the crystallization rate when the transparent electrode layer 5 (see FIG. 5B) is processed by laser irradiation.
  • the crystallization rate is calculated using the peak intensity ratio measured by Raman spectroscopy.
  • Ic peak intensity of crystalline Si
  • Ia peak intensity of amorphous Si
  • Ic / Ia the crystallization rate. Note that the crystallization rate of the power generation layer before laser irradiation is 1, and the relative value to the crystallization rate after laser irradiation is obtained.
  • the energy density increases, thermal damage is applied to the power generation layer, and crystallization proceeds (that is, the crystallization rate increases).
  • the energy density is required to be 0.2 J / cm 2 in laser processing.
  • the upper limit threshold of the crystallization rate is 2 (relative value)
  • the upper limit of the energy density is 0.31 J / cm 2 as shown in FIG.
  • a YAG-THG laser (wavelength 355 nm) is used as means for processing the transparent electrode layer 5 to form the separation groove 11. Then, using the result of FIG. 7, the energy density of the YAG-THG laser is set in a range of 0.2 to 0.3 J / cm 2 . If the energy density of the laser is in the range of 0.2 to 0.3 J / cm 2 , a beam with a circular Gaussian distribution can be used. Preferably, a rectangular beam (top hat) with a good energy distribution is used.
  • the pulse laser pulse time width may be set to 100 ps or less, more preferably 20 ps or less.
  • the separation groove 11 has a YAG-THG laser (wavelength 355 nm) in which the beam energy density is adjusted to 0.2 to 0.3 J / cm 2. Therefore, alteration (that is, crystallization, etc.) of the power generation layer such as the peripheral photoelectric conversion layer where laser processing is performed can be suppressed. Further, since a laser in the ultraviolet region (wavelength 400 nm or less) is used as the processing laser, light absorption by the transparent electrode layer 5 is increased, and thermal damage to the power generation layer can be reduced.
  • a laser in the ultraviolet region wavelength 400 nm or less
  • the separation groove 11 is formed in an annular shape in plan view, but the transparent electrode layer 5 and the second transparent electrode layer 6 may be electrically insulated, and may have another shape.
  • the separation groove 11 may be formed in a rectangular shape around the second through hole 8 in plan view.
  • the step (S11) of performing laser processing on the transparent electrode layer 5 around the second through-hole 8 is performed last, but may be performed after step S8.
  • the order of S11 can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明の目的は、透明電極層の有効面積を広げて薄膜太陽電池の出力を増加させるとともに、第2の貫通孔における絶縁性を確保して薄膜太陽電池を製造する際の不良率を低下させることが可能な薄膜太陽電池及びその製造方法を提供することにある。本発明の薄膜太陽電池1では、絶縁性基板2の一方の面2aには、裏面電極層3aと光電変換層4と透明電極層5とが当該順で積層され、絶縁性基板2の他方の面2bには、第1の背面電極層3bと第2の背面電極層6とが当該順で積層されている。また、透明電極層5と第2の背面電極層6とが、絶縁性基板2を貫通する第1の貫通孔7を介して電気的に接続され、裏面電極層3aと第1の背面電極層3bとが、絶縁性基板2を貫通する第2の貫通孔8を介して電気的に接続されている。本発明では、第2の貫通孔8の周囲の透明電極層5が、溝11により分離され、透明電極層5と第2の背面電極層6とが、電気的に絶縁されている。

Description

薄膜太陽電池及びその製造方法
 本発明は、フィルム基板上に金属電極層と光電変換層と透明電極層とを積層してなる薄膜太陽電池に関するものである。
 図8は、従来の薄膜太陽電池の平面図である。また、図9は、図8のA-A線断面図であり、図10は、図8のB-B線断面図である。
 図9及び図10に示すように、従来の薄膜太陽電池21は、絶縁性基板22を備えている。絶縁性基板22の両面22a,22bには、金属電極層23が形成されている。ここで、絶縁性基板22の一方の面22a上の金属電極層23は、裏面電極層23aとして機能し、絶縁性基板22の他方の面22b上の金属電極層23は、第1の背面電極層23bとして機能する。
 また、図9及び図10に示すように、裏面電極層23aには、光電変換層24と透明電極層25とが当該順で積層されている。一方、第1の背面電極層23bには、第2の背面電極層26が積層されている。
 また、図8及び図9に示すように、絶縁性基板22には、絶縁性基板22を貫通する第1の貫通孔27が設けられ、透明電極層25と第2の背面電極層26とが、第1の貫通孔27を介して電気的に接続されている。また、図8及び図10に示すように、絶縁性基板22には、絶縁性基板22を貫通する第2の貫通孔28が設けられ、裏面電極層23aと第1の背面電極層23bとが、第2の貫通孔28を介して電気的に接続されている。
 図9に示す絶縁性基板22の一方の面22aに積層された層は、図8に示すように、第1のパターニングライン29で分割され、図10に示す絶縁性基板22の他方の面22bに積層された層は、図8,図10に示すように、第2のパターニングライン30で分割されている。これにより、絶縁性基板22上の積層された層が、複数のユニットセルに分割される。
 ここで、第1のパターニングライン29及び第2パターニングライン30は、絶縁性基板22において互い違いに配置されている。絶縁性基板22の両面22a,22bの電極層の分離位置を互いにずらし、且つ絶縁性基板22の両面22a,22bの電極層を第2の貫通孔28で接続することにより、隣接するユニットセルが直列で接続される構造となっている。
 一方、特許文献1には、従来の薄膜太陽電池の別の例が開示されている。特許文献1の薄膜太陽電池において、電気絶縁性樹脂からなるフィルム基板の一方の面には、第1電極層と、光電変換層と、第2電極層とが積層され、フィルム基板の反対側(裏面)には、第3電極層と、第4電極層とが積層されている。
 特許文献2には、従来の薄膜太陽電池の更に別の例が開示されている。特許文献2の薄膜太陽電池においては、接続孔が、導電性の材料からなる印刷電極で塞がれている(特に、段落0035及び図27参照)。
 また、特許文献3では、透明電極層が光電変換層の全幅にわたって形成されている。この透明電極層には、接続孔(第2の貫通孔)の近傍領域と、集電孔(第1の貫通孔)を含む領域とを電気的に分離する領域分離ラインが形成されている(特に、段落0046及び図1参照)。
 また、非特許文献1には、薄膜太陽電池を製造する際のレーザパターニングについて記載されている。非特許文献1では、波長248nmかつパルス幅40nsのエキシマレーザが使用されている(39頁)。
特開2001-298203号公報 特開平6-342924号公報 特開2003-60219号公報
SANYO TECHINICAL REVIEW,vol.36,No.2,DEC.2004,p34-p42
 しかしながら、上述の図8ないし図10の構成では、以下のような問題が生じる。
 従来の構成においては、第2の貫通孔28において透明電極層25と第2の背面電極層26とが接触しないように、透明電極層25を形成する際には、第2の貫通孔28の近傍においてメタルマスクによるマスク処理を行っていた。メタルマスクを用いる場合、マスク処理の際の製造条件や、成膜時の膜の回り込みのための余裕の確保などを考慮する必要があり、メタルマスクの面積は、第2の貫通孔28よりも大幅に大きい面積となる。したがって、図10(b)に示すように、第2の貫通孔28の近傍では、透明電極層25が形成されない部分が大きくなり、透明電極層25の有効面積が制限されていた。
 したがって、透明電極層25の有効面積を確保する構造が必要となる。
 また、第2の貫通孔28の近傍をマスク処理する場合、絶縁性基板22上の透明電極層25とマスクとが接触することにより絶縁性基板22上の透明電極層25などが損傷する可能性があった。特に、特許文献3では、細い線状のマスクを用いているので、透明電極層25とマスクとが接触して透明電極層25損傷する可能性が高かった。
 このように絶縁性基板22上にある層が損傷すると、リーク電流などが増加することになり、薄膜太陽電池21を製造する際の不良率が増加してしまうという問題があった。
 また、特許文献2に開示された技術では、接続孔を導電性のある材料で塞いでいるので、そもそも接続孔における絶縁性が十分でなく、リーク電流が増加してしまうという問題があった。
 さらに、特許文献3では、接続孔を絶縁性樹脂、ポリイミドやポリアミドの樹脂で塞いでいるが、半導体層を成膜する前に絶縁性樹脂を塗布している。したがって、大気から絶縁性樹脂に吸着した水分等が、半導体層を成膜する際に放出され、薄膜太陽電池の特性が低下するという問題があった。また、絶縁性樹脂の硬化に長い時間がかかるために、製造コストが増大するという問題もあった。また、樹脂の厚さ分だけ基板が局所的に厚くなるので、基板を搬送する際に問題が生じやすい。
 また、非特許文献1には、レーザパターニングを行う際のレーザの波長やパルス幅が記載されているが、エネルギー密度に関する条件が記載されていない。したがって、非特許文献1の条件でレーザパターニングを行ったとしても、レーザ加工を行う周辺の発電層(光電変換層など)の変質を抑えることができないという問題があった。
 本発明はこのような実情に鑑みてなされたものであって、その目的は、透明電極層の有効面積を広げて薄膜太陽電池の出力を増加させるとともに、第2の貫通孔における絶縁性を確保して薄膜太陽電池を製造する際の不良率を低下させることが可能な薄膜太陽電池及びその製造方法を提供することにある。
 上記従来技術の有する課題を解決するために、本発明は、絶縁性基板の一方の面には、裏面電極層と光電変換層と透明電極層とが当該順で積層され、前記絶縁性基板の他方の面には、第1の背面電極層と第2の背面電極層とが当該順で積層され、前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成することにより前記絶縁性基板が複数のユニットセルに分割され、前記透明電極層と前記第2の背面電極層とが、前記絶縁性基板を貫通する第1の貫通孔を介して電気的に接続され、前記裏面電極層と前記第1の背面電極層とが、前記絶縁性基板を貫通する第2の貫通孔を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池において、前記第2の貫通孔の周囲の前記透明電極層が、溝により分離され、前記透明電極層と前記第2の背面電極層とが、電気的に絶縁されている。
 また、本発明の薄膜太陽電池によれば、前記透明電極層の前記溝は、パルスレーザを照射することにより形成されている。
 また、本発明の薄膜太陽電池によれば、前記透明電極層の前記溝は、波長が紫外線領域にあるレーザを照射することにより形成されている。
 また、本発明の薄膜太陽電池によれば、前記絶縁性基板が、ポリイミド又はポリアミドイミド又はポリエチレンナフタレートの耐熱性フィルムから形成されている。
 上記従来技術の有する課題を解決するために、本発明は、絶縁性基板の一方の面には、裏面電極層と光電変換層と透明電極層とが当該順で積層され、前記絶縁性基板の他方の面には、第1の背面電極層と第2の背面電極層とが当該順で積層され、前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成することにより前記絶縁性基板が複数のユニットセルに分割され、前記透明電極層と前記第2の背面電極層とが、前記絶縁性基板を貫通する第1の貫通孔を介して電気的に接続され、前記裏面電極層と前記第1の背面電極層とが、前記絶縁性基板を貫通する第2の貫通孔を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池において、前記第2の貫通孔の周囲の前記透明電極層が、溝により分離され、前記透明電極層と前記第2の背面電極層とが、電気的に絶縁されており、前記溝は、ビームエネルギー密度を0.2~0.3J/cmに調節したYAG-THGレーザ(波長355nm)を用いて形成されている。
 また、本発明の薄膜太陽電池によれば、前記透明電極層の前記溝は、ビーム形状が円形や矩形のもの、更にビームプロファイルがガウシアンのものやトップハットのレーザを用いて形成されている。
 また、本発明の薄膜太陽電池によれば、前記透明電極層の前記溝は、パルス幅が20ps以下のレーザを用いて形成されている。
 また、本発明の薄膜太陽電池によれば、前記絶縁性基板が、ポリイミド又はポリアミドイミド又はポリエチレンナフタレートの耐熱性フィルムから形成されている。
 上記従来技術の有する課題を解決するために、本発明の薄膜太陽電池の製造方法は、絶縁性基板に第2の貫通孔を形成するステップと、前記絶縁性基板の一方の面に裏面電極層を形成するとともに、前記絶縁性基板の他方の面に第1の背面電極層を形成するステップと、前記裏面電極層及び前記第1の背面電極層を形成した後に、前記絶縁性基板に第1の貫通孔を形成するステップと、前記絶縁性基板の一方の面側から光電変換層と透明電極層とを当該順で積層するとともに、前記絶縁性基板の他方の面側から第2の背面電極層を積層するステップと、前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成して、前記絶縁性基板を複数のユニットセルに分割するステップと、前記第2の貫通孔の周囲の前記透明電極層に溝を形成して、前記透明電極層と前記第2の背面電極層とを電気的に絶縁するステップとを含む。
 また、本発明の薄膜太陽電池の製造方法によれば、前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、パルスレーザを照射することにより行われる。
 また、本発明の薄膜太陽電池の製造方法によれば、前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、波長が紫外線領域にあるレーザを照射することにより行われる。
 また、本発明の薄膜太陽電池の製造方法によれば、前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、ビームエネルギー密度を0.2~0.3J/cmに調節したYAG-THGレーザ(波長355nm)を照射することにより行われる。
 また、本発明の薄膜太陽電池の製造方法によれば、前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、ビーム形状が円形や矩形のもの、更にビームプロファイルがガウシアンのものやトップハットのレーザを照射することにより行われる。
 また、本発明の薄膜太陽電池の製造方法によれば、前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、パルス幅が20ps以下のレーザを照射することにより行われる。
 本発明に係る薄膜太陽電池によれば、絶縁性基板の一方の面には、裏面電極層と光電変換層と透明電極層とが当該順で積層され、前記絶縁性基板の他方の面には、第1の背面電極層と第2の背面電極層とが当該順で積層され、前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成することにより前記絶縁性基板が複数のユニットセルに分割され、前記透明電極層と前記第2の背面電極層とが、前記絶縁性基板を貫通する第1の貫通孔を介して電気的に接続され、前記裏面電極層と前記第1の背面電極層とが、前記絶縁性基板を貫通する第2の貫通孔を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池において、前記第2の貫通孔の周囲の前記透明電極層が、溝により分離され、前記透明電極層と前記第2の背面電極層とが、電気的に絶縁されている。従来では、第2の貫通孔の周辺にマスク処理を行ったり又は絶縁性樹脂を配置したりしていたが、本発明によれば、このような処理を行わなくても、透明電極層と第2の背面電極層との間の絶縁性を確保することができる。しかも、第2の貫通孔の周辺にマスク処理を行なわず、透明電極層を除去するだけの構成になっているので、マスク処理に比べて、透明電極層が形成されない領域が小さくなり、透明電極層の有効面積を広げることができる。これにより、薄膜太陽電池の出力を増加させることができる。
 また、本発明に係る薄膜太陽電池によれば、前記透明電極層の前記溝は、パルスレーザを照射することにより形成されているので、光電変換層などの発電層の結晶化によるショートを抑制することができる。
 また、本発明に係る薄膜太陽電池によれば、前記透明電極層の前記溝は、波長が紫外線領域にあるレーザを照射することにより形成されているので、透明電極層での光吸収が大きくなり、発電層への熱的ダメージを小さくすることができる。 
 また、本発明に係る薄膜太陽電池によれば、絶縁性基板の一方の面には、裏面電極層と光電変換層と透明電極層とが当該順で積層され、前記絶縁性基板の他方の面には、第1の背面電極層と第2の背面電極層とが当該順で積層され、前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成することにより前記絶縁性基板が複数のユニットセルに分割され、前記透明電極層と前記第2の背面電極層とが、前記絶縁性基板を貫通する第1の貫通孔を介して電気的に接続され、前記裏面電極層と前記第1の背面電極層とが、前記絶縁性基板を貫通する第2の貫通孔を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池において、前記第2の貫通孔の周囲の前記透明電極層が、溝により分離され、前記透明電極層と前記第2の背面電極層とが、電気的に絶縁されており、前記溝は、ビームエネルギー密度を0.2~0.3J/cmに調節したYAG-THGレーザ(波長355nm)を用いて形成されているので、レーザ加工を行う周辺の光電変換層などの発電層の変質(すなわち、結晶化など)を抑えることができる。
 また、加工用レーザに、紫外線領域(波長400nm以下)のレーザを使用しているので、透明電極層での光吸収が大きくなり、発電層への熱的ダメージを小さくすることができる。
 また、本発明に係る薄膜太陽電池によれば、前記透明電極層の前記溝は、パルス幅が20ps以下のレーザを用いて形成されているので、レーザのパルスの時間幅が短くなり、熱の影響を抑えることができる
 また、本発明の薄膜太陽電池の製造方法によれば、絶縁性基板に第2の貫通孔を形成するステップと、前記絶縁性基板の一方の面に裏面電極層を形成するとともに、前記絶縁性基板の他方の面に第1の背面電極層を形成するステップと、前記裏面電極層及び前記第1の背面電極層を形成した後に、前記絶縁性基板に第1の貫通孔を形成するステップと、前記絶縁性基板の一方の面側から光電変換層と透明電極層とを当該順で積層するとともに、前記絶縁性基板の他方の面側から第2の背面電極層を積層するステップと、前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成して、前記絶縁性基板を複数のユニットセルに分割するステップと、前記第2の貫通孔の周囲の前記透明電極層に溝を形成して、前記透明電極層と前記第2の背面電極層とを電気的に絶縁するステップとを含む。従来では、第2の貫通孔の周辺にマスク処理を行ったり又は絶縁性樹脂を配置する処理が必要だったが、本発明によれば、従来のように第2の貫通孔の近傍にマスク処理などを行う必要がなくなり、薄膜太陽電池1の製造時の歩留まりが向上する。加えて、第2の貫通孔の近傍にマスク処理を行う必要がなくなるので、マスクと絶縁性基板2上の層とが接触して絶縁性基板2上の層が損傷することもなくなる。これにより、薄膜太陽電池1においてリーク電流が増加することもなくなり、薄膜太陽電池1を製造する際の不良率を低下させることができる。
本発明の第1実施形態に係る薄膜太陽電池の平面図である。 図1のA-A線断面図である。 図2におけるCの拡大図である。 図1のB-B線断面図である。 図4におけるDの拡大図であり、(a)は、透明電極層を除去する前の断面図であり、(b)は、透明電極層を除去した後の断面図である。 本発明の第1実施形態に係る薄膜太陽電池を製造する際のフローチャートである。 レーザを照射して透明電極層を加工する際のエネルギー密度と結晶化率との関係を示した図である。 従来の薄膜太陽電池の平面図である。 (a)は図8のA-A線断面図であり、(b)は(a)におけるCの拡大図である。 (a)は図8のB-B線断面図であり、(b)は(a)におけるDの拡大図である。
 以下、本発明の実施形態に係る薄膜太陽電池を、図面を参照しながら説明する。図1は、第1実施形態に係る薄膜太陽電池の平面図である。図2は、図1のA-A線断面図であり、図3は、図2におけるCの拡大図である。また、図4は、図1のB-B線断面図であり、図5は、図4におけるCの拡大図である。
[第1実施形態]
 図1ないし図5に示すように、本実施形態に係る薄膜太陽電池1は、絶縁性基板2(図3及び図5参照)を備えている。この絶縁性基板2は、フィルム材料から形成されており、例えば、ポリイミド、ポリアミドイミド、ポリエチレンナフタレート、あるいはアラミド等の材料から形成されている。
 図3に示すように、絶縁性基板2の両面2a,2bには、Ag/ZnO等の金属からなる金属電極層3が形成されている。ここで、絶縁性基板2の一方の面2a上の金属電極層3は、裏面電極層3aとして機能し、絶縁性基板2の他方の面2b上の金属電極層3は、第1の背面電極層3bとして機能する。
 また、図3及び図5に示すように、絶縁性基板2の一方の面2a上にある裏面電極層3aには、光電変換層4と透明電極層5とが当該順で積層されている。ここで、光電変換層4としては、アモルファス半導体或いは微結晶を含むアモルファス半導体、色素増感形太陽電池、有機太陽電池、又はCIGS系有機太陽電池を用いることができる。一方、絶縁性基板2の他方の面2b上にある第1の背面電極層3bには、第2の背面電極層6が積層されている。
 図1に示すように、絶縁性基板2には、絶縁性基板2を貫通する複数の第1の貫通孔7が設けられており、複数の第1の貫通孔7は、一定の間隔をおいて配置されている。また、図3に示すように、透明電極層5と第2の背面電極層6とは、第1の貫通孔7の側壁部7a上で互いに重なり合うような形で接続している。
 また、図1に示すように、絶縁性基板2には、絶縁性基板2を貫通する複数の第2の貫通孔8が設けられている。本実施形態において、第2の貫通孔8は、薄膜太陽電池1の絶縁性基板2の幅方向の両端部に配置されている。そして、図5に示すように、裏面電極層3aと第1の背面電極層3bとは、第2の貫通孔8の側壁部8aを介して電気的に接続されている。
 このように、第1及び第2の貫通孔7,8は、第1及び第2の背面電極層3b,6→第1の貫通孔7→透明電極層5→光電変換層4→裏面電極層3a→第2の貫通孔8→第1の背面電極層3bの順に接続するために利用されている。
 図1に示すように、絶縁性基板2の一方の面2a上に積層された層(裏面電極層3a、光電変換層4、透明電極層5)は、レーザ加工による第1のパターニングライン9により複数に分割されている。
 また、図1及び図5に示すように、絶縁性基板2の他方の面2b上に積層された層(第1の背面電極層3b、第2の背面電極層6)も同様に、レーザ加工による第2のパターニングライン10により複数に分割されている。ここで、第1のパターニングライン9及び第2のパターニングライン10は、絶縁性基板2において互い違いに配置されている。
 このような第1及び第2のパターニングライン9,10によって、絶縁性基板2の一方の面2a上の各層と他方の面2b上の各層とからなるユニットセル(単位太陽電池)に分割されている。薄膜太陽電池1は、絶縁性基板2の両面2a,2bの電極層の分離位置を互いにずらし、且つ絶縁性基板2の両面2a,2bの電極層を第2の貫通孔28で接続することにより、隣接するユニットセルが直列で接続される構造となっている。
 本実施形態の特徴としては、図1及び図5(b)に示すように、第2の貫通孔8の周辺には、透明電極層5を除去する加工が施されている。詳細には、図1及び図5(b)に示すように、第2の貫通孔8の周辺には、分離溝11が設けられており、分離溝11は、第2の貫通孔8の径方向外側に形成されている。すなわち、図5(b)に示すように、分離溝11は、第2の貫通孔8の側壁部8aに対して径方向外側に位置している。
 図1に示すように、分離溝11は、第2の貫通孔8と同心状に形成されており、平面視で環状に形成されている。また、図5(b)に示すように、分離溝11の深さは、光電変換層4まで達しており、透明電極層5と第2の透明電極層6とが、電気的に絶縁されている。
 次に、本発明の実施形態に係る薄膜太陽電池の製造方法について図面を参照して説明する。図6は、本実施形態に係る薄膜太陽電池1を製造する際のフローチャートである。
 本実施形態に係る薄膜太陽電池1は、絶縁性基板2として上述したようなフィルム材料を用いる。薄膜太陽電池1を製造する方法としては、ロールツーロール方式やインクジェットによる印刷技術を用いる。例えば、ロールツーロール方式は、フィルム材料の基板が複数のローラー(搬送手段)によって搬送され、連続して配置された成膜室内において基板上に連続的に薄膜を成膜する方式である。
 薄膜太陽電池1を製造する際には、図6に示すように、まずステップS1において、絶縁性基板2の前処理を行う。具体的には、絶縁性基板2を加熱しながら張力をかけることによって基板の変形を飽和させる前処理を行なう。
 次に、ステップS2において、絶縁性基板2に第2の貫通孔8を形成する。第2の貫通孔8はパンチング(穿孔法)により形成する。第2の貫通孔8の形状としては、直径が1mmの円形としている。第2の貫通孔8は、円形の直径を0.05-1mmの範囲で設定され、第2の貫通孔8の穿孔数は設計に応じて調整することができる。
 次に、ステップS3において、スパッタリング処理を行うことにより絶縁性基板2の両面2a,2bに裏面電極層3a及び第1の背面電極層3bを形成する。この際、裏面電極層3a及び第1の背面電極層3bが第2の貫通孔8を介して電気的に接続することになる。
 その後、ステップS4において、絶縁性基板2の両面2a,2bに形成した層をレーザ加工により除去して1次パターニングライン(図示せず)を形成する。この際、絶縁性基板2の両面2a,2bに形成するラインは、互いにずらして形成される。
 そして、ステップS5において、絶縁性基板2に第1の貫通孔7を形成する。第1の貫通孔7はパンチングにより形成する。
 そして、ステップS6において、絶縁性基板2の裏面電極層3a上に光電変換層4を形成し、その後、ステップS7において、光電変換層4上に更に透明電極層5を形成する。
 次に、ステップS8において、絶縁性基板2の第1の背面電極層3b上に第2の背面電極層6を形成する。
 次に、ステップS9において、ステップS4で形成した1次パターニングライン上の光電変換層4及び透明電極層5を、レーザ加工により再度除去して第1のパターニングライン9を形成する。
 さらに、ステップS10において、ステップS4で形成した1次パターニングライン上の第2の背面電極層6を、レーザ加工により再度除去して第2のパターニングライン10を形成する。これら第1及び第2のパターニングライン9,10により絶縁性基板2上の層が複数のユニットセルに分離される。
 次に、ステップS11において、第2の貫通孔8の周辺の透明電極層5に対してレーザ加工を行い、第2の貫通孔8の周辺に分離溝(第3のパターニングライン)11を形成する。分離溝11は、第2の貫通孔8と同心状で、且つ第2の貫通孔8の径方向外側に形成される(図1参照)。また、分離溝11の深さは、光電変換層4まで達している(図5(b)参照)。これにより、分離溝11の外側の透明電極層5と、裏面電極層6や第1の背面電極層3bとが、分離溝11によって分離され、その結果、透明電極層5と裏面電極層6とが、電気的に絶縁される。
 ここで、分離溝11を形成するレーザとしては、パルスレーザを用いることができる。パルスレーザを用いることにより、発電層の結晶化によるショートを抑制することができる。また、パルスレーザの波長を紫外線領域にするとよい。波長を紫外線領域に設定することにより、熱の影響が小さくしつつ、分子を切断して除去するアブレーションの効果が大きくすることができる。
 また、パルスレーザのパルスの時間幅を短くすると、熱の影響を抑えることができる。パルスレーザのパルスの時間幅としては、100ps以下、好ましくは、20ps以下に設定するとよい。
 以上により、薄膜太陽電池1の直列接続が完成する。
 本発明の第1実施形態に係る薄膜太陽電池1によれば、絶縁性基板2の一方の面2aには、裏面電極層3aと光電変換層4と透明電極層5とが当該順で積層され、絶縁性基板2の他方の面2bには、第1の背面電極層3bと第2の背面電極層6とが当該順で積層され、絶縁性基板2の両面2a,2bに積層した層に対して互い違いに第1及び第2のパターニングライン9,10を形成することにより絶縁性基板2が複数のユニットセルに分割され、透明電極層5と第2の背面電極層6とが、絶縁性基板2を貫通する第1の貫通孔7を介して電気的に接続され、裏面電極層3aと第1の背面電極層3bとが、絶縁性基板2を貫通する第2の貫通孔8を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池1において、第2の貫通孔8の周囲の透明電極層5が、分離溝11により分離され、透明電極層5と第2の背面電極層6とが、電気的に絶縁されている。従来では、第2の貫通孔の周辺にマスク処理を行ったり又は絶縁性樹脂を配置したりしていたが、本発明によれば、このような処理を行わなくても、第2の貫通孔8において透明電極層5と第2の背面電極層6との間の絶縁性を確保することができる。しかも、第2の貫通孔8の周辺にマスク処理を行なわず、透明電極層5をレーザで除去するだけの構成になっているので、マスク処理に比べて、透明電極層5が形成されない領域が小さくなり、従来に比べて透明電極層5の有効面積を広げることができる。これにより、薄膜太陽電池1の出力を増加させることができる。
 また、本発明の第1実施形態に係る薄膜太陽電池1によれば、分離溝11を形成するレーザとして、パルスレーザを用いているので、光電変換層4などの発電層の結晶化によるショートを抑制することができる。
 また、パルスレーザのパルスの時間幅を短く設定している(100ps以下)ので、レーザ加工する際の熱の影響を抑えることができる。
 本発明の第1実施形態に係る薄膜太陽電池1の製造方法によれば、絶縁性基板2に第2の貫通孔8を形成するステップと、絶縁性基板2の一方の面2aに裏面電極層3aを形成するとともに、絶縁性基板2の他方の面2bに第1の背面電極層3bを形成するステップと、裏面電極層3a及び第1の背面電極層3bを形成した後に、絶縁性基板2に第1の貫通孔7を形成するステップと、絶縁性基板2の一方の面2a側から光電変換層4と透明電極層5とを当該順で積層するとともに、絶縁性基板2の他方の面2b側から第2の背面電極層6を積層するステップと、絶縁性基板2の両面2a,2bに積層した層に対して互い違いにパターニングライン9,10を形成して、絶縁性基板2を複数のユニットセルに分割するステップと、第2の貫通孔8の周囲の透明電極層5に分離溝11を形成して、透明電極層5と第2の背面電極層6とを電気的に絶縁するステップとを含むので、従来のように第2の貫通孔の近傍にマスク処理などを行う必要がなくなり、薄膜太陽電池1の製造時の歩留まりが向上する。加えて、第2の貫通孔8の近傍にマスク処理を行う必要がなくなるので、マスクと絶縁性基板2上の層とが接触して絶縁性基板2上の層が損傷することもなくなる。これにより、薄膜太陽電池1においてリーク電流が増加することもなくなり、薄膜太陽電池1を製造する際の不良率を低下させることができる。
[第2実施形態]
 以下、本発明の第2実施形態に係る薄膜太陽電池1を説明する。なお、第2実施形態に係る薄膜太陽電池1において、分離溝11(図5(b)参照)を形成するまでの製造工程は、第1実施形態と同様である。したがって、重複する説明は省略する。
 図7は、レーザを照射して透明電極層5(図5(b)参照)を加工する際のエネルギー密度と結晶化率との関係を示した図である。ここで、結晶化率は、ラマン分光法で測定されたピーク強度比を用いて計算されている。結晶Siのピーク強度をIc、非結晶Siのピーク強度をIaとすると、Ic/Iaが結晶化率である。なお、レーザ照射前の発電層の結晶化率を1とし、レーザ照射後の結晶化率との相対値を求めている。
 図7に示すように、エネルギー密度が大きくなると、発電層へ熱的なダメージが加わり、結晶化が進んでいく(すなわち、結晶化率が大きくなる)。まず、エネルギー密度が小さすぎると、透明電極層5の加工ができなくなるため、レーザ加工においてエネルギー密度は、0.2J/cmは必要となる。ここで、結晶化率の上限の閾値を2(相対値)とすると、図7に示すように、エネルギー密度の上限値は、0.31J/cmとなる。
 この第2実施形態においては、透明電極層5を加工して分離溝11を形成する手段として、YAG-THGレーザ(波長355nm)を用いる。そして、図7の結果を用いて、YAG-THGレーザのエネルギー密度を0.2~0.3J/cmの範囲に設定する。
 また、レーザのエネルギー密度は、0.2~0.3J/cmの範囲内であれば、円形ガウシアン分布のビームを用いることができる。なお、好ましくは、エネルギー分布が良好な矩形形状のビーム(トップハット)を用いるとよい。
 また、第1実施形態と同様に、レーザのパルスの時間幅を短くすると、熱の影響を抑えることができる。パルスレーザのパルスの時間幅としては、100ps以下、より好ましくは、20ps以下に設定するとよい。
 本発明の第2実施形態に係る薄膜太陽電池1の製造方法によれば、分離溝11が、ビームエネルギー密度を0.2~0.3J/cmに調節したYAG-THGレーザ(波長355nm)を用いて形成されるので、レーザ加工を行う周辺の光電変換層などの発電層の変質(すなわち、結晶化など)を抑えることができる。
 また、加工用レーザに、紫外線領域(波長400nm以下)のレーザを使用しているので、透明電極層5での光吸収が大きくなり、発電層への熱的ダメージを小さくすることができる。
 以上、本発明の実施の形態につき述べたが、本発明は既述の実施形態に限定されるものでなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
 上述の実施形態では、分離溝11は、平面視で環状に形成されているが、透明電極層5と第2の透明電極層6とが電気的に絶縁されればよく、別の形状でもよい。例えば、分離溝11を第2の貫通孔8の周囲に平面視で矩形状に形成してもよい。
 上述の実施形態では、第2の貫通孔8の周囲の透明電極層5に対してレーザ加工を行うステップ(S11)は、最後に行っているが、ステップS8の実施以降であればよく、ステップS11の順序を入れ替えることができる。
1 薄膜太陽電池
2 絶縁性基板
3 金属電極層
3a 裏面電極層
3b 第1の背面電極層
4 光電変換層
5 透明電極層
6 第2の背面電極層
7 第1の貫通孔
8 第2の貫通孔
9 第1のパターニングライン
10 第2のパターニングライン
11 分離溝

Claims (14)

  1.  絶縁性基板の一方の面には、裏面電極層と光電変換層と透明電極層とが当該順で積層され、前記絶縁性基板の他方の面には、第1の背面電極層と第2の背面電極層とが当該順で積層され、前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成することにより前記絶縁性基板が複数のユニットセルに分割され、前記透明電極層と前記第2の背面電極層とが、前記絶縁性基板を貫通する第1の貫通孔を介して電気的に接続され、前記裏面電極層と前記第1の背面電極層とが、前記絶縁性基板を貫通する第2の貫通孔を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池において、
     前記第2の貫通孔の周囲の前記透明電極層が、溝により分離され、前記透明電極層と前記第2の背面電極層とが、電気的に絶縁されていることを特徴とする薄膜太陽電池。
  2.  前記透明電極層の前記溝は、パルスレーザを照射することにより形成されていることを特徴とする請求項1に記載の薄膜太陽電池。
  3.  前記透明電極層の前記溝は、波長が紫外線領域にあるレーザを照射することにより形成されていることを特徴とする請求項1又は2に記載の薄膜太陽電池。
  4.  前記絶縁性基板が、ポリイミド又はポリアミドイミド又はポリエチレンナフタレートの耐熱性フィルムから形成されていることを特徴とする請求項1ないし3のいずれか一項に記載の薄膜太陽電池。
  5.  絶縁性基板の一方の面には、裏面電極層と光電変換層と透明電極層とが当該順で積層され、前記絶縁性基板の他方の面には、第1の背面電極層と第2の背面電極層とが当該順で積層され、前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成することにより前記絶縁性基板が複数のユニットセルに分割され、前記透明電極層と前記第2の背面電極層とが、前記絶縁性基板を貫通する第1の貫通孔を介して電気的に接続され、前記裏面電極層と前記第1の背面電極層とが、前記絶縁性基板を貫通する第2の貫通孔を介して電気的に接続され、隣接するユニットセルが直列接続されている薄膜太陽電池において、
     前記第2の貫通孔の周囲の前記透明電極層が、溝により分離され、前記透明電極層と前記第2の背面電極層とが、電気的に絶縁されており、前記溝は、ビームエネルギー密度を0.2~0.3J/cmに調節したYAG-THGレーザ(波長355nm)を用いて形成されていることを特徴とする薄膜太陽電池。
  6.  前記透明電極層の前記溝は、ビーム形状が円形や矩形のもの、更にビームプロファイルがガウシアンのものやトップハットのレーザを用いて形成されていることを特徴とする請求項5に記載の薄膜太陽電池。
  7.  前記透明電極層の前記溝は、パルス幅が20ps以下のレーザを用いて形成されていることを特徴とする請求項5又は6に記載の薄膜太陽電池。
  8.  前記絶縁性基板が、ポリイミド又はポリアミドイミド又はポリエチレンナフタレートの耐熱性フィルムから形成されていることを特徴とする請求項5ないし7のいずれか一項に記載の薄膜太陽電池。
  9.  絶縁性基板に第2の貫通孔を形成するステップと、
     前記絶縁性基板の一方の面に裏面電極層を形成するとともに、前記絶縁性基板の他方の面に第1の背面電極層を形成するステップと、
     前記裏面電極層及び前記第1の背面電極層を形成した後に、前記絶縁性基板に第1の貫通孔を形成するステップと、
     前記絶縁性基板の一方の面側から光電変換層と透明電極層とを当該順で積層するとともに、前記絶縁性基板の他方の面側から第2の背面電極層を積層するステップと、
     前記絶縁性基板の両面に積層した層に対して互い違いにパターニングラインを形成して、前記絶縁性基板を複数のユニットセルに分割するステップと、
     前記第2の貫通孔の周囲の前記透明電極層に溝を形成して、前記透明電極層と前記第2の背面電極層とを電気的に絶縁するステップと
     を含むことを特徴とする薄膜太陽電池の製造方法。
  10.  前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、パルスレーザを照射することにより行われることを特徴とする請求項9に記載の薄膜太陽電池の製造方法。
  11.  前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、波長が紫外線領域にあるレーザを照射することにより行われることを特徴とする請求項9又は10に記載の薄膜太陽電池の製造方法。
  12.  前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、ビームエネルギー密度を0.2~0.3J/cmに調節したYAG-THGレーザ(波長355nm)を照射することにより行われることを特徴とする請求項9ないし11のいずれか一項に記載の薄膜太陽電池の製造方法。
  13.  前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、ビーム形状が円形や矩形のもの、更にビームプロファイルがガウシアンのものやトップハットのレーザを照射することにより行われることを特徴とする請求項9ないし12のいずれか一項に記載の薄膜太陽電池の製造方法。
  14.  前記第2の貫通孔の周囲の前記透明電極層に溝を形成するステップは、パルス幅が20ps以下のレーザを照射することにより行われることを特徴とする請求項9ないし13のいずれか一項に記載の薄膜太陽電池の製造方法。
PCT/JP2011/069874 2011-01-31 2011-09-01 薄膜太陽電池及びその製造方法 WO2012105079A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/634,281 US20130000720A1 (en) 2011-01-31 2011-09-01 Thin-film photovoltaic cell and method for manufacturing same
CN2011800138073A CN102792459A (zh) 2011-01-31 2011-09-01 薄膜太阳能电池及其制造方法
EP11857798.0A EP2672521A1 (en) 2011-01-31 2011-09-01 Thin film photovoltaic cell and method of producing same
JP2012555685A JP5387788B2 (ja) 2011-01-31 2011-09-01 薄膜太陽電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011018206 2011-01-31
JP2011-018206 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105079A1 true WO2012105079A1 (ja) 2012-08-09

Family

ID=46602316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069874 WO2012105079A1 (ja) 2011-01-31 2011-09-01 薄膜太陽電池及びその製造方法

Country Status (5)

Country Link
US (1) US20130000720A1 (ja)
EP (1) EP2672521A1 (ja)
JP (1) JP5387788B2 (ja)
CN (1) CN102792459A (ja)
WO (1) WO2012105079A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277473B (zh) * 2019-05-31 2024-03-26 信利半导体有限公司 一种薄膜光伏电池的制造方法及薄膜光伏电池
KR102531362B1 (ko) * 2020-11-26 2023-05-12 한국생산기술연구원 타공형 실리콘 슁글드 태양광 모듈 구조 및 그 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342924A (ja) 1992-12-28 1994-12-13 Fuji Electric Co Ltd 薄膜太陽電池およびその製造方法
JP2001094131A (ja) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd 集積型光起電力装置の製造方法
JP2001298203A (ja) 2000-04-14 2001-10-26 Fuji Electric Co Ltd 薄膜太陽電池の製造方法
JP2003060219A (ja) 2001-06-04 2003-02-28 Fuji Electric Corp Res & Dev Ltd 薄膜太陽電池とその製造方法
JP2005260107A (ja) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
JP2006237100A (ja) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd 光起電力装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342924A (ja) 1992-12-28 1994-12-13 Fuji Electric Co Ltd 薄膜太陽電池およびその製造方法
JP2001094131A (ja) * 1999-09-22 2001-04-06 Sanyo Electric Co Ltd 集積型光起電力装置の製造方法
JP2001298203A (ja) 2000-04-14 2001-10-26 Fuji Electric Co Ltd 薄膜太陽電池の製造方法
JP2003060219A (ja) 2001-06-04 2003-02-28 Fuji Electric Corp Res & Dev Ltd 薄膜太陽電池とその製造方法
JP2005260107A (ja) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
JP2006237100A (ja) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd 光起電力装置およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANYO TECHNICAL REVIEW, vol. 36, no. 2, December 2004 (2004-12-01), pages 34,42
W. SHINOHARA ET AL.: "Amorphous Silicon/Usumaku Kessho Silicon Sekiso-gata Taiyo Denchi", SANYO TECHNICAL REVIEW, vol. 36, no. 2, 2004, pages 34 - 42 *

Also Published As

Publication number Publication date
CN102792459A (zh) 2012-11-21
JP5387788B2 (ja) 2014-01-15
EP2672521A1 (en) 2013-12-11
US20130000720A1 (en) 2013-01-03
JPWO2012105079A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
TWI692878B (zh) 製造薄膜太陽電池面板的方法及薄膜太陽電池配置
JP2010034539A5 (ja) 光電変換装置モジュールの作製方法
WO2010098467A1 (ja) 光電変換モジュールおよびその製造方法
JP5387788B2 (ja) 薄膜太陽電池及びその製造方法
TW201810702A (zh) 製造內連太陽電池的方法以及該內連太陽電池
JP2007311578A (ja) 集積型薄膜太陽電池およびその製造方法
WO2013038578A1 (ja) 薄膜太陽電池及びその製造方法
US20130032205A1 (en) Solar photovoltaic device and a production method therefor
WO2013121839A1 (ja) 薄膜太陽電池およびその製造方法
WO2012172827A1 (ja) 薄膜太陽電池及びその製造方法
WO2012108231A1 (ja) 薄膜太陽電池及びその製造方法
JP4215607B2 (ja) 光起電力装置の製造方法
JP2006165338A (ja) 集積型薄膜太陽電池及びその製造方法
JP2012243864A (ja) 集積型薄膜太陽電池とその製造方法及びそのレーザ加工方法
JPH11224956A (ja) 薄膜太陽電池およびその製造方法
JP5168428B2 (ja) 薄膜太陽電池の製造方法
JP3685964B2 (ja) 光電変換装置
JP2006185979A (ja) 薄膜太陽電池モジュールおよびその製造方法
JP2011040462A (ja) 光電変換装置およびその製造方法
KR102065148B1 (ko) 태양전지용 탄소섬유상의 실리콘층 및 그 제조방법
JP2012023290A (ja) 薄膜太陽電池の製造方法
JP2014060356A (ja) 薄膜太陽電池およびその製造方法
JP2012039038A (ja) 薄膜太陽電池及びその製造方法
JP2013065608A (ja) 薄膜太陽電池
JP2010067883A (ja) 光電変換素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013807.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012555685

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13634281

Country of ref document: US

Ref document number: 2011857798

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE