WO2012104969A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2012104969A1
WO2012104969A1 PCT/JP2011/051943 JP2011051943W WO2012104969A1 WO 2012104969 A1 WO2012104969 A1 WO 2012104969A1 JP 2011051943 W JP2011051943 W JP 2011051943W WO 2012104969 A1 WO2012104969 A1 WO 2012104969A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
sbd
phase
diode
voltage
Prior art date
Application number
PCT/JP2011/051943
Other languages
English (en)
French (fr)
Inventor
祐二 野尻
加藤 昌則
今中 晶
雅哉 原川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011525774A priority Critical patent/JP4818489B1/ja
Priority to CN201180066413.4A priority patent/CN103354973B/zh
Priority to PCT/JP2011/051943 priority patent/WO2012104969A1/ja
Priority to US13/982,145 priority patent/US9281776B2/en
Publication of WO2012104969A1 publication Critical patent/WO2012104969A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0051Diode reverse recovery losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device.
  • a SiC-JFET is adopted as a transistor provided in a power converter (inverter), and a SiC-SBD (Schottky barrier diode) is used as a free-wheeling diode connected in reverse parallel to the SiC-JFET.
  • a SiC-JFET is adopted as a transistor provided in a power converter (inverter), and a SiC-SBD (Schottky barrier diode) is used as a free-wheeling diode connected in reverse parallel to the SiC-JFET. Adopted.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a power conversion device capable of ensuring reliability and improving efficiency against thermal destruction while suppressing an increase in cost.
  • a power converter according to the present invention is a voltage-type bridge having a vertical arm configuration in which a transistor and a switching element having a free-wheeling diode connected in antiparallel to the transistor are connected in series.
  • the power conversion device having at least one circuit is configured to include at least one of SiC-SBD (SiC-Schottky-Barrier Diode) and a diode other than SiC-SBD as the freewheeling diode. It is characterized by.
  • the power conversion device of the present invention there is an effect that it is possible to achieve reliability and high efficiency against thermal destruction while suppressing an increase in cost.
  • FIG. 1 is a diagram illustrating a configuration of the power conversion device according to the first embodiment.
  • FIG. 2 is a diagram showing a current flow according to the prior art before the transistor 1d is turned on.
  • FIG. 3 is a diagram illustrating a current flow according to the related art after the transistor 1d is turned on.
  • FIG. 4 is a diagram for explaining an increase in turn-on loss according to the prior art when the transistor 1d is turned on.
  • FIG. 5 is a diagram showing a current flow according to the first embodiment before the transistor 1d is turned on.
  • FIG. 6 is a diagram showing a current flow according to the first embodiment after the transistor 1d is turned on.
  • FIG. 7 is a diagram for explaining an increase in turn-on loss according to the first embodiment when the transistor 1d is turned on.
  • FIG. 1 is a diagram illustrating a configuration of the power conversion device according to the first embodiment.
  • FIG. 2 is a diagram showing a current flow according to the prior art before the transistor 1d is turned on.
  • FIG. 8 is a diagram showing a loss reduction region according to the first embodiment viewed from a three-phase current waveform.
  • FIG. 9 is a diagram for explaining the control timing when performing DC braking according to the prior art.
  • FIG. 10 is a diagram illustrating a PWM voltage command at the time of DC braking in the three-phase power conversion device of the second embodiment.
  • FIG. 11 is a diagram showing a current path flowing in region A shown in FIG.
  • FIG. 12 is a diagram showing a current path flowing in the region B shown in FIG.
  • FIG. 13 is a diagram illustrating the control timing when performing DC braking according to the third embodiment.
  • FIG. 14 is a diagram illustrating another configuration example of the power conversion device according to the third embodiment.
  • FIG. 14 is a diagram illustrating another configuration example of the power conversion device according to the third embodiment.
  • FIG. 15 is a diagram for explaining the control timing during execution of DC braking suitable for use in the power conversion device shown in FIG. 14.
  • FIG. 16 is a diagram illustrating another configuration example different from FIG. 14 of the power conversion device according to the third embodiment.
  • FIG. 17 is a diagram for explaining control timing when performing DC braking suitable for use in the power conversion device shown in FIG. 16.
  • FIG. 18 is a diagram illustrating another configuration example different from FIGS. 14 and 16 of the power conversion device according to the third embodiment.
  • FIG. 19 is a diagram for explaining control timing when performing DC braking suitable for use in the power converter shown in FIG.
  • FIG. 20 is a diagram illustrating another configuration example different from FIGS. 14, 16, and 18 of the power conversion device according to the third embodiment.
  • FIG. 21 is a diagram for explaining the control timing during execution of DC braking suitable for use in the power conversion apparatus shown in FIG.
  • FIG. 22 is a diagram illustrating an example in which SiC-SBD is applied to a single-phase power conversion device having a half-bridge configuration.
  • FIG. 23 is a diagram illustrating an example when SiC-SBD is applied to a single-phase power conversion device having a full bridge configuration.
  • FIG. 1 is a diagram illustrating a configuration of the power conversion device according to the first embodiment.
  • power conversion apparatus 100 according to Embodiment 1 includes power conversion circuit unit 50, smoothing capacitor 13, and control unit 14 as main components.
  • the power conversion circuit unit 50 is parallel to the smoothing capacitor 13 with a voltage-type bridge circuit having an upper and lower arm configuration in which a switching element having a transistor and a free-wheeling diode connected in reverse parallel to the transistor is connected in series as one phase.
  • Three connected phases (U phase, V phase, W phase) are constituted.
  • the U-phase upper arm has a freewheeling diode 19a connected in reverse parallel to the transistor 1a
  • the U-phase lower arm has a freewheeling diode 2d connected in reverse parallel to the transistor 1d. The same applies to the V-phase and the W-phase.
  • the V-phase upper arm is formed by connecting the free-wheeling diode 2b to the transistor 1b in antiparallel
  • the V-phase lower arm is formed by connecting the free-wheeling diode 2e to the transistor 1e in antiparallel
  • the W-phase upper arm has a freewheeling diode 2c connected in reverse parallel to the transistor 1c
  • the W-phase lower arm has a freewheeling diode 2f connected in reverse parallel to the transistor 1f.
  • the connecting portion between the upper arm and the lower arm of each phase forms an output end (AC output end) of the power conversion circuit portion 50, and the motor 15 is connected to these output ends.
  • a motor 15 that is a load (drive target) is connected to an output end (AC output end) of the power conversion circuit unit 50, and the power conversion circuit unit 50 is connected between the power conversion circuit unit 50 and the motor 15.
  • Current sensors 16 to 18 for detecting current information flowing between the motor 15 and the motor 15.
  • the current sensor 16 detects the current flowing in the U phase
  • the current sensor 17 detects the current flowing in the V phase
  • the current sensor 18 detects the current flowing in the W phase.
  • Current information detected by the current sensors 16 to 18 is input to the control unit 14.
  • the control unit 14 acquires current magnitude and phase information based on the current information detected by the current sensors 16 to 18. Further, the control unit 14 converts a speed command given from the outside into a voltage command for each phase, compares the converted voltage command with a triangular wave, and switches the switching of each switching element depending on whether the difference is positive or negative. ON time, that is, a switching command is determined, and the switching command is applied to the switching element configured in the power conversion circuit unit 50.
  • the DC voltage charged in the smoothing capacitor 13 is modulated into pulses of an arbitrary width by the switching elements of the upper and lower arms constituting the voltage source bridge circuit, and complementary for each phase.
  • the pseudo sine wave having a desired voltage and a desired frequency is supplied to the motor 15 by performing an on / off operation.
  • Such a driving method is called PWM driving, and the applied voltage is called PWM voltage.
  • the gist of the power conversion device according to Embodiment 1 is that one of the six free-wheeling diodes constituting the U-phase to the W-phase is composed of SiC-SBD. More specifically, in the configuration of FIG. 1, the transistors 1a to 1f are, for example, Si-IGBT (Si-Insulated Gate Bipolar Transistor), and the free-wheeling diodes 2b to 2f are, for example, Si-FRD (Si-Fast Recovery Diode). ). On the other hand, the free-wheeling diode 19a surrounded by a thick solid line is a SiC-SBD (SiC-Schottky-Barrier Diode).
  • either the upper arm or the lower arm free wheel diode in one phase of the voltage source bridge circuit (in the configuration of FIG. 1, the free diode 19a of the U phase upper arm) is configured by SiC-SBD, and the remaining free wheel diodes ( In the configuration of FIG. 1, the reflux diodes 2b to 2f) other than the U-phase upper arm are configured by diodes other than SiC-SBD (for example, Si-FRD).
  • SiC-SBD for example, Si-FRD
  • FIGS. 2 to 4 show various waveforms when the free-wheeling diode of the U-phase upper arm is composed of Si-FRD 2a, that is, when all the free-wheeling diodes in the power conversion circuit unit 50 are Si-FRD. More specifically, FIG. 2 is a diagram illustrating a current flow according to the prior art before the transistor 1d is turned on, and FIG. 3 is a diagram illustrating a current flow according to the prior art after the transistor 1d is turned on. FIG. FIG.
  • FIG. 4 is a diagram for explaining an increase in turn-on loss according to the prior art when the transistor 1d is turned on.
  • FIG. 4A shows the collector current 104 and the collector-emitter voltage 105 after the transistor 1d is turned on. A waveform is shown, and (b) shows a loss waveform after the transistor 1d is turned on.
  • the loss related to the transistor includes a conduction loss caused by a constant current flow and a switching loss caused by a switching operation.
  • the switching loss can be classified into a turn-on loss when changing from off to on and a turn-off loss when changing from on to off.
  • the loss related to the freewheeling diode includes a conduction loss caused by a constant current flow and a reverse recovery loss caused by a reverse recovery current flowing due to the turn-on switching of the switching element of the reverse arm in the same phase of the voltage-type bridge circuit.
  • Losses relating to these switching elements and freewheeling diodes not only lower the efficiency, but also cause a decrease in the reliability of the apparatus due to thermal destruction or the like, and therefore it is preferable to reduce these losses as much as possible.
  • FIG. 2 shows a state in which the motor current 102 flows into the connection portion between the upper arm and the lower arm, but now the direction of the current shown in FIG.
  • the transistor 1a when the transistor 1a is normally on, the motor current 102 flows as it is in the forward current 101 flowing through the freewheeling diode.
  • FIGS. 5 to 8 show various waveforms when the free-wheeling diode of the U-phase upper arm is made of Si-FRD 19a. More specifically, FIG. 5 is a diagram illustrating a current flow according to the first embodiment before the transistor 1d is turned on, and FIG. 6 is a current according to the first embodiment after the transistor 1d is turned on. FIG. 7 is a diagram illustrating an increase in turn-on loss according to the first embodiment when the transistor 1d is turned on, and FIG. 8 is an embodiment viewed from a three-phase current waveform. 1 is a diagram illustrating a loss reduction region according to FIG.
  • the collector current 108 of the transistor 1d is obtained by superimposing the reverse recovery current 107 of the SiC-SBD 19a on the motor current 102.
  • the reverse recovery current 107 of the SiC-SBD 19a is very small, The current 108 can be made smaller than before, and as a result, the turn-on loss of the transistor 1d can also be reduced.
  • the collector current 108 of the transistor 1d on which the reverse recovery current is superimposed is as shown in the hatched portion in FIG. 4 due to the decrease of the reverse recovery current of the SiC-SBD 19a. There is no large overlap area. For this reason, the turn-on loss of the transistor 1d is smaller in the first embodiment, as is apparent from the comparison of the waveforms in FIG. 7B and FIG. 4B.
  • the free wheel diode is configured to include at least one SiC-SBD and at least one Si-FRD as a diode other than SiC-SBD. Therefore, the conduction loss and reverse recovery loss of the SiC-SBD can be reduced, and the turn-on loss of the transistor located on the reverse arm side of the SiC-SBD can be reduced. It is possible to achieve reliability and high efficiency.
  • Embodiment 2 FIG. In Embodiment 1, the effect of reducing conduction loss, reverse recovery loss, and turn-on loss during normal operation has been described. In Embodiment 2, the effect of reducing conduction loss during DC braking will be described. Note that the premise of the configuration of the power conversion circuit unit 50 is the same as that of the first embodiment.
  • DC braking is a control method in which braking is performed by converting three-phase AC to DC and stopping the rotating magnetic field of the motor.
  • FIG. 9 is a diagram for explaining the control timing when performing DC braking according to the prior art.
  • a position (time) indicated by a broken line indicates a timing at which DC braking is started.
  • the phase is fixed when the DC braking command is entered, the magnitude of the current in each phase becomes unbalanced, and there is a possibility that loss concentrates on one element and causes thermal destruction. come.
  • FIG. 10 is a diagram showing a PWM voltage command at the time of DC braking in the three-phase power converter of the second embodiment.
  • 11 is a diagram showing a current path flowing in the region A shown in FIG. 10
  • FIG. 12 is a diagram showing a current path flowing in the region B shown in FIG.
  • the waveform at the upper stage shows a triangular wave comparison with voltage commands for the U phase, V phase, and W phase during DC braking
  • the waveform at the middle stage is generated depending on whether the difference in the triangular wave comparison is positive or negative.
  • the U-phase PWM voltage and the V-phase and W-phase PWM voltages are shown, and the waveform in the lower part shows the PWM voltage between the U-V line and the U-W line.
  • the zero vector period in which the U-phase, V-phase, and W-phase PWM voltages are all on is defined as region A, and the zero vector in which all the U-phase, V-phase, and W-phase PWM voltages are off.
  • the period is a region B.
  • the upper arm UVW phase includes the transistors 1a, 1b, and 1c and the freewheeling diodes 19a and 2b. 2c is short-circuited, and a current having no potential difference flows on a path indicated by a thick solid line in FIG. 10 is a zero vector period in which all of the U-phase, V-phase, and W-phase PWM voltages are off, the upper arm UVW phase includes the transistors 1d, 1e, and 1f and the freewheeling diode 2d.
  • FIGS. 11 and 12 have the same electrical meaning as the current paths as viewed from the motor 15. For this reason, as long as the time width (period) of the area A and the area B is equal to the sum of both periods, there is no problem even if the ratio of the time width in these areas is changed.
  • the PWM voltage between the UV and UW lines as shown in the lower part is obtained. Can do.
  • the period of the region A becomes longer per cycle.
  • the conduction period of Si-FRD 2d becomes shorter than the conduction period of SiC-SBD 19a, and the current flowing through SiC-SBD 19a with a small conduction loss can be increased as compared with Si-FRD 2d with a large conduction loss. This action makes it possible to reduce conduction loss in the free wheel diode.
  • either the upper arm or the lower arm free-wheeling diode in the voltage source bridge circuit of any one phase is composed of SiC-SBD
  • the other free-wheeling diodes are composed of diodes other than SiC-SBD
  • the arm on the side on which SiC-SBD is provided is less than the zero vector period in which the arm on the side on which SiC-SBD is not provided is fully on. Since a switching command is given so that the zero vector period in the ON state becomes longer, conduction loss in the free wheel diode can be reduced.
  • Embodiment 3 In the second embodiment, the effect of reducing conduction loss during DC braking has been described. In the third embodiment, a control method for increasing the effect of reducing conduction loss during DC braking will be described.
  • the configuration of the power conversion circuit unit 50 that is a premise is the same as or equivalent to that of the first embodiment.
  • the U phase has a larger current than the V phase and the W phase, but since the U-phase freewheeling diode is composed of SiC-SBD, the conduction loss, reverse recovery loss, and reverse arm turn-on loss do not increase. By this control, the reliability against thermal destruction is increased and the efficiency can be increased.
  • FIG. 14 is a diagram showing another configuration example of the power conversion device according to the third embodiment, in which a pair of upper and lower arm free-wheeling diodes in the same phase of the voltage source bridge circuit is configured with SiC-SBD.
  • the free-wheeling diodes in the U-phase upper and lower arms are shown as SiC-SBDs 19a and 19d, respectively.
  • Other configurations are the same as those in FIG.
  • FIG. 15 is a diagram for explaining the control timing at the time of execution of DC braking suitable for use in the power conversion device shown in FIG. As shown in FIG. 14, by configuring the free-wheeling diodes in the U-phase upper and lower arms with SiC-SBD, negative currents flowing from the motor 15 to the upper and lower arm connecting portions, and from the upper and lower arm connecting portions to the motor 15, respectively. With the positive current flowing out, the principle of loss is the same in both polarities. For this reason, the DC braking timing starts not only at the negative maximum value of the U-phase current as shown in FIG. 13 but also at the timing of the positive maximum value of the U-phase current as shown in FIG. The loss reduction effect at the time of DC braking can be obtained. In addition, this control also has the effect of shortening the transition time until DC braking.
  • FIG. 16 is a diagram illustrating another configuration example different from that of FIG. 14 of the power conversion device according to the third embodiment, in which a free-wheeling diode of an upper arm or a lower arm in a voltage-type bridge circuit of one phase is represented by SiC ⁇ If it is composed of SBD and is different from the one phase and different from the arm provided with SiC-SBD, that is, the opposite arm of the opposite arm (if the arm provided with SiC-SBD is the upper arm) The lower arm and the lower arm (the upper arm if lower arm) are also composed of SiC-SBD.
  • the U-phase upper arm reflux diode and the V-phase lower arm reflux diode are shown as SiC-SBDs 19a and 19e, respectively.
  • Other configurations are the same as those in FIG.
  • FIG. 17 is a diagram for explaining the control timing at the time of execution of DC braking suitable for use in the power conversion device shown in FIG.
  • the U-phase current is negative
  • the V-phase current is positive
  • DC braking is started at the timing when the W-phase current becomes zero
  • the W-phase current is zero
  • the phase current flows through the SiC-SBD 19a on the upper arm side due to the negative polarity
  • the phase V current flows through the SiC-SBD 19e on the lower arm side due to the positive polarity.
  • the conduction loss due to the W-phase current becomes zero, and both the U-phase current and the V-phase current flow on the SiC-SBD side, so that the conduction loss can be further reduced.
  • FIG. 18 is a diagram illustrating another configuration example different from that of FIG. 14 and FIG. 16 of the power conversion device according to the third embodiment.
  • Each of the free wheel diodes in the upper and lower arms of two phases on the voltage source bridge circuit is illustrated in FIG. It is composed of SiC-SBD.
  • the free-wheeling diodes in the U-phase upper and lower arms are shown as SiC-SBDs 19a and 19d
  • the free-wheeling diodes in the V-phase upper and lower arms are shown as SiC-SBDs 19b and 19e, respectively.
  • Other configurations are the same as those in FIG.
  • FIG. 19 is a diagram for explaining the control timing at the time of execution of DC braking suitable for use in the power conversion device shown in FIG.
  • each of the free-wheeling diodes in the U-phase and V-phase upper and lower arms is composed of SiC-SBD, so that the negative current flowing from the motor 15 to the upper and lower arm connection portions and the upper and lower arm connection portions are With the positive current flowing out from the motor 15 to the motor 15, the principle of loss in both polarities is the same as in FIG. For this reason, the DC braking timing is not only when the W-phase current is negative and the V-phase current is positive in the timing when the W-phase current becomes zero as shown in FIG.
  • the U-phase current may be positive and the V-phase current may be negative. That is, as long as the W-phase current is zero, the timing of the power converter shown in FIG. 18 may be any timing. If DC braking is started at such a timing, loss in DC braking can be reduced, and the transition time to DC braking can be shortened.
  • FIG. 20 is a diagram illustrating another configuration example of the power conversion device according to the third embodiment, which is different from those of FIGS. 14, 16, and 18, and an upper arm or a lower arm in a voltage-type bridge circuit of one phase.
  • the free wheel diode is different from the arm provided with the SiC-SBD (ie, if the arm provided with the SiC-SBD is an upper arm,
  • Each of the free-wheeling diodes of the arm and the upper arm in the case of the lower arm is also composed of SiC-SBD.
  • the U-phase upper arm freewheeling diode, the V-phase lower arm freewheeling diode, and the W-phase lower arm freewheeling diode are shown as SiC-SBDs 19a, 19e, and 19f, respectively. Yes. Other configurations are the same as those in FIG.
  • FIG. 21 is a diagram for explaining the control timing during execution of DC braking suitable for use in the power conversion device shown in FIG. As shown in FIG. 21, when the DC braking is started with the U-phase current having a negative maximum value, a half current of the U-phase current flows in the V-phase / W-phase in the positive direction.
  • the negative U-phase current flows through the SiC-SBD 19a in the upper arm
  • the positive V-phase current flows through the SiC-SBD 19e in the lower arm
  • the positive W-phase current flows in the SiC- While the current flows through the SBD 19f, no current flows through other free-wheeling diodes that are not SiC-SBDs, so that it is possible to further enhance the effect of reducing loss in DC braking.
  • the present invention in which three voltage source bridge circuits having upper and lower arms are connected in parallel has been described as an example.
  • the present invention is not limited to this three-phase power converter. Absent.
  • the present invention can be applied to a single-phase power converter having a half bridge configuration as shown in FIG.
  • the free-wheeling diode of the upper arm is composed of the SiC-SBD 19a, and when the operation for turning on the lower-arm transistor 1d after the current flows into the SiC-SBD 19a is performed, The effect of reducing the loss is obtained.
  • the upper arm freewheeling diode is composed of SiC-SBD, but it goes without saying that the upper and lower relations may be interchanged and the lower arm freewheeling diode may be composed of SiC-SBD. .
  • the present invention can be applied to a single-phase power converter having a full bridge configuration as shown in FIG.
  • the U-phase upper arm free-wheeling diode is composed of an SiC-SBD 19a, and an operation is performed in which the transistor 1d of the U-phase lower arm is turned on after a current flows into the SiC-SBD 19a.
  • the free-wheeling diode of the U-phase upper arm is composed of SiC-SBD
  • the free-wheeling diode of the U-phase lower arm may be composed of SiC-SBD
  • Any of the V-phase lower arms may be made of SiC-SBD.
  • it may be configured by two to three free-wheeling diodes SiC-SBD out of four free-wheeling diodes that form a full-bridge configuration. Similar effects can be obtained.
  • either the upper arm or the lower arm free-wheeling diode in the voltage source bridge circuit of any one phase is composed of SiC-SBD
  • the other free-wheeling diode is composed of a diode other than SiC-SBD
  • the current of the phase in which the SiC-SBD is provided flows in the polarity that flows in the SiC-SBD, and the phase in which the SiC-SBD is not provided. Since the DC braking is started at such a timing that the current flowing in the phase in which the SiC-SBD is provided becomes larger in absolute value than the flowing current, the conduction loss in the free wheel diode can be reduced. .
  • the reverse arm free-wheeling diode in the voltage bridge circuit of the phase in which the SiC-SBD is provided may be configured by SiC-SBD, or the voltage of one of the phases in which no SiC-SBD is provided.
  • the reverse arm free wheel diode on the side where the SiC-SBD is provided may be composed of SiC-SBD.
  • each free-wheeling diode of the upper and lower arms in the voltage-type bridge circuit of any two phases is composed of SiC-SBD, and the free-wheeling diode of the upper and lower arms in the remaining one-phase voltage-type bridge circuit is other than SiC-SBD. You may comprise with a diode.
  • either the upper arm or the lower arm free-wheeling diode in the voltage-type bridge circuit of any first phase is composed of SiC-SBD, and each of the voltage-type bridges of the remaining second and third phases.
  • each free-wheeling diode located on the reverse arm on the side where the first-phase SiC-SBD is provided may be composed of SiC-SBD.
  • SiC-SBD silicon carbide
  • SiC silicon carbide
  • GaN gallium nitride-based material
  • C diamond
  • the diode element formed of such a wide band gap semiconductor has a high withstand voltage and a high allowable current density, so that the diode element can be miniaturized, and this miniaturized diode element should be used.
  • the semiconductor element module can be reduced in size.
  • the heat sink can be downsized, and the cooler or the radiator for cooling the semiconductor element module can be downsized.
  • the power conversion device according to the present invention is useful as an invention capable of ensuring reliability and increasing efficiency against thermal destruction while suppressing an increase in cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 トランジスタおよび、このトランジスタに逆並列接続された還流ダイオードを有するスイッチング素子を直列接続した上下アーム構成の三つの電圧形ブリッジ回路を並列に接続した三相の電力変換装置において、U相の電圧形ブリッジ回路における上アームの還流ダイオード19aをSiC-SBD(SiC-Schottky-Barrier Diode)で構成し、下アームの還流ダイオード2dをSi-FRD(Si-Fast Recovery Diode)で構成する。一方、V相の電圧形ブリッジ回路における上下アームの還流ダイオード2b,2eおよび、W相の電圧形ブリッジ回路における上下アームの還流ダイオード2c,2fについてはSi-FRDで構成する。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 従来の電力変換装置は、トランジスタおよび還流ダイオードの損失が及ぼす熱破壊に対する信頼性の確保のため、高効率化や冷却器のサイズアップを図っていた。その一方で、Si(珪素)よりも低損失、高効率なSiC(炭化珪素)が注目されており、高効率で信頼性が高い電力変換装置への活用が期待されている。
 例えば、下記特許文献1では、電力変換装置(インバータ)に具備されるトランジスタとしてSiC-JFETを採用し、SiC-JFETに逆並列に接続される還流ダイオードとしてSiC-SBD(ショットキーバリアダイオード)を採用している。
特開2000-224867号公報
 しかしながら、SiCはSiに比べて非常に高価であるため、上記特許文献1のように、全ての還流ダイオードにSiCを適用した場合にはコスト上昇を来すという課題が生ずる。
 本発明は、上記に鑑みてなされたものであって、コスト上昇を抑えつつ、熱破壊に対する信頼性の確保と高効率化とを可能とする電力変換装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明に係る電力変換装置は、トランジスタおよび、このトランジスタに逆並列接続された還流ダイオードを有するスイッチング素子を直列接続した上下アーム構成の電圧形ブリッジ回路を少なくとも一つ以上有する電力変換装置において、前記還流ダイオードとして、SiC-SBD(SiC-Schottky-Barrier Diode)と、SiC-SBD以外のダイオードとの双方を少なくとも一つ以上含むように構成したことを特徴とする。
 本発明に係る電力変換装置によれば、コスト上昇を抑えつつ、熱破壊に対する信頼性の確保と高効率化とを実現することができるという効果を奏する。
図1は、実施の形態1に係る電力変換装置の構成を示す図である。 図2は、トランジスタ1dがターンオンする前の従来技術に係る電流の流れを示す図である。 図3は、トランジスタ1dがターンオンした後の従来技術に係る電流の流れを示す図である。 図4は、トランジスタ1dがターンオンしたときの従来技術に係るターンオン損失の増加を説明する図である。 図5は、トランジスタ1dがターンオンする前の実施の形態1に係る電流の流れを示す図である。 図6は、トランジスタ1dがターンオンした後の実施の形態1に係る電流の流れを示す図である。 図7は、トランジスタ1dがターンオンしたときの実施の形態1に係るターンオン損失の増加を説明する図である。 図8は、三相電流波形から見た実施の形態1に係る損失低減領域を示す図である。 図9は、従来技術に係る直流制動実行時の制御タイミングを説明する図である。 図10は、実施の形態2の三相電力変換装置における直流制動時のPWM電圧指令を示す図である。 図11は、図10に示す領域Aにおいて流れる電流経路を示す図である。 図12は、図10に示す領域Bにおいて流れる電流経路を示す図である。 図13は、実施の形態3に係る直流制動実行時の制御タイミングを説明する図である。 図14は、実施の形態3に係る電力変換装置の他の構成例を示す図である。 図15は、図14に示す電力変換装置に用いて好適な直流制動実行時の制御タイミングを説明する図である。 図16は、実施の形態3に係る電力変換装置の図14とは異なる他の構成例を示す図である。 図17は、図16に示す電力変換装置に用いて好適な直流制動実行時の制御タイミングを説明する図である。 図18は、実施の形態3に係る電力変換装置の図14および図16とは異なる他の構成例を示す図である。 図19は、図18に示す電力変換装置に用いて好適な直流制動実行時の制御タイミングを説明する図である。 図20は、実施の形態3に係る電力変換装置の図14、図16および図18とは異なる他の構成例を示す図である。 図21は、図20に示す電力変換装置に用いて好適な直流制動実行時の制御タイミングを説明する図である。 図22は、SiC-SBDをハーフブリッジ構成の単相電力変換装置に適用した場合の一例を示す図である。 図23は、SiC-SBDをフルブリッジ構成の単相電力変換装置に適用した場合の一例を示す図である。
 以下、添付図面を参照し、本発明の実施の形態にかかる電力変換装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置の構成を示す図である。実施の形態1に係る電力変換装置100は、図1に示すように、主たる構成部として、電力変換回路部50、平滑コンデンサ13および制御部14を備えて構成される。
 電力変換回路部50は、トランジスタと、このトランジスタに逆並列接続された還流ダイオードとを有するスイッチング素子を直列接続した上下アーム構成の電圧形ブリッジ回路を一つの相として、平滑コンデンサ13に対して並列接続された三つの相(U相,V相,W相)を構成している。例えば、U相上アームは、還流ダイオード19aがトランジスタ1aに逆並列接続されてなり、U相下アームは、還流ダイオード2dがトランジスタ1dに逆並列接続されてなる。V相およびW相についても同様であり、V相上アームは、還流ダイオード2bがトランジスタ1bに逆並列接続されてなり、V相下アームは、還流ダイオード2eがトランジスタ1eに逆並列接続されてなり、W相上アームは、還流ダイオード2cがトランジスタ1cに逆並列接続されてなり、W相下アームは、還流ダイオード2fがトランジスタ1fに逆並列接続されてなる。なお、以後、各アーム間の関係について説明する場合、各相における上アームと下アームとは互いに逆アームの関係にあり、一つの相のアームと他の相のアームとは互いに対向アームの関係にあるものとして説明する。
 各相の上アームと下アームとの接続部は電力変換回路部50の出力端(交流出力端)を成し、これらの出力端にはモータ15が接続されている。また、電力変換回路部50の出力端(交流出力端)には、負荷(駆動対象)であるモータ15が接続され、これら電力変換回路部50およびモータ15の間には、電力変換回路部50とモータ15との間に流れる電流情報を検出する電流センサ16~18が設けられている。電流センサ16はU相に流れる電流を検出し、電流センサ17はV相に流れる電流を検出し、電流センサ18はW相に流れる電流を検出する。電流センサ16~18が検出した電流情報は制御部14に入力される。
 制御部14は、電流センサ16~18が検出した電流情報に基づき、電流の大きさや位相の情報を取得する。また、制御部14は、外部から与えられた速度指令を各相の電圧指令に変換し、変換した電圧指令を三角波と比較し,その比較結果を差が正か負かにより各スイッチング素子のスイッチングのオン時間、即ちスイッチング指令を決定すると共にし、当該スイッチング指令を電力変換回路部50内に構成されるスイッチング素子に対して付与する。
 上記スイッチング指令が付与された電力変換回路部50では、平滑コンデンサ13に充電された直流電圧が電圧形ブリッジ回路を構成する上下アームのスイッチング素子が任意幅のパルスに変調され、各相毎に相補的にオン・オフ動作することで所望電圧・所望周波数の擬似正弦波がモータ15に供給される。なお、このような駆動方式をPWM駆動といい、印加される電圧をPWM電圧という。
 実施の形態1に係る電力変換装置の要旨は、U相~W相を構成する6つのアームのうちの一つの還流ダイオードをSiC-SBDで構成している点にある。具体的に説明すると、図1の構成において、トランジスタ1a~1fは、例えばSi-IGBT(Si-Insulated Gate Bipolar Transistor)であり、還流ダイオード2b~2fは、例えばSi-FRD(Si-Fast Recovery Diode)である。一方、太実線で囲んだ還流ダイオード19aは、SiC-SBD(SiC-Schottky-Barrier Diode)である。すなわち、電圧形ブリッジ回路の一つの相における上アームまたは下アームいずれかの還流ダイオード(図1の構成では、U相上アームの還流ダイオード19a)をSiC-SBDで構成し、残りの還流ダイオード(図1の構成では、U相上アーム以外の還流ダイオード2b~2f)をSiC-SBD以外のダイオード(例えばSi-FRD)で構成した点にある。この構成により、SiC-SBDの導通損失および逆回復損失ならびに対応するスイッチング素子(図1の構成では、トランジスタ1d)のターンオン損失を低減することが可能となる。
 つぎに、実施の形態1に係る電力変換装置において、導通損失、逆回復損失およびターンオン損失が低減される理由について図2~図4の図面を参照して説明する。なお、図2~図4は、U相上アームの還流ダイオードをSi-FRD2aで構成したとき、すなわち電力変換回路部50における全ての還流ダイオードがSi-FRDであるときの各種波形である。より詳細に説明すると、図2は、トランジスタ1dがターンオンする前の従来技術に係る電流の流れを示す図であり、図3は、トランジスタ1dがターンオンした後の従来技術に係る電流の流れを示す図である。また、図4は、トランジスタ1dがターンオンしたときの従来技術に係るターンオン損失の増加を説明する図であり、(a)にはトランジスタ1dのターンオン後のコレクタ電流104およびコレクタ-エミッタ間電圧105の波形を示し、(b)にはトランジスタ1dのターンオン後の損失波形を示している。
 まず、トランジスタに関する損失には、定常的に電流が流れることによって発生する導通損失と、スイッチング動作によって発生するスイッチング損失とがある。また、スイッチング損失は、オフからオンへ変わる場合のターンオン損失と、オンからオフへ変わる場合のターンオフ損失とに区分できる。
 一方、還流ダイオードに関する損失には、定常的に電流が流れることによって発生する導通損失と、電圧形ブリッジ回路の同一相における逆アームのスイッチング素子のターンオンスイッチングにより流れる逆回復電流によって発生する逆回復損失と、がある。これらスイッチング素子および還流ダイオードに関する損失は、効率を下げるだけでなく、熱破壊などによって装置の信頼性を低下させる原因となるので、これらの損失を可能な限り低減させることが好ましい。
 ここで、図2では、上アームと下アームの接続部にモータ電流102が流れ込む状態を示しているが、いま、この図2に示す電流の方向を負の極性とする。ここで、トランジスタ1aが定常オンしているとき、還流ダイオードに流れる順方向電流101にはモータ電流102がそのまま流れる。
 つぎに、図3に示すように、図2の状態からトランジスタ1aがオフし、トランジスタ1dがターンオンすると、還流ダイオード2aの逆回復動作により、太破線で示すような逆回復電流103が流れる。このため、トランジスタ1dのコレクタ電流104は、太実線で示すモータ電流102に加え、太破線で示す逆回復電流103が重畳される。このとき、トランジスタ1dに流れるコレクタ電流104には、還流ダイオード2aの逆回復電流103が重畳されるため、ターンオン損失は逆回復電流103の増加分増大する(図4(a)において、ハッチングで示した部分がこれに相当する)。
 一方、図5~図8は、U相上アームの還流ダイオードをSi-FRD19aで構成したときの各種波形である。より詳細に説明すると、図5は、トランジスタ1dがターンオンする前の実施の形態1に係る電流の流れを示す図であり、図6は、トランジスタ1dがターンオンした後の実施の形態1に係る電流の流れを示す図であり、図7は、トランジスタ1dがターンオンしたときの実施の形態1に係るターンオン損失の増加を説明する図であり、図8は、三相電流波形から見た実施の形態1に係る損失低減領域を示す図である。
 図5において、トランジスタ1aが定常オンのとき、負極性のモータ電流102は図2のときと同様に順方向電流106としてSiC-SBD19aに流れる。図5の状態からトランジスタ1aがオフし、トランジスタ1dがターンオンすると、SiC-SBD19aの逆回復動作が始まるが、SiC-SBD19aの特徴として逆回復電流は殆ど流れないため、図6の破線で示すような逆回復電流107はごく僅かな電流となり、逆回復損失は極めて小さくなる。
 また、トランジスタ1dのコレクタ電流108は、モータ電流102にSiC-SBD19aの逆回復電流107が重畳されたものであるが、SiC-SBD19aの逆回復電流107がごく僅かとなるため、トランジスタ1dのコレクタ電流108を従来よりも小さくすることができ、結果的に、トランジスタ1dのターンオン損失も低減することが可能となる。
 また、図7(a)に示すように、逆回復電流が重畳したトランジスタ1dのコレクタ電流108は、SiC-SBD19aの逆回復電流の減少により、図4においてハッチングで示した部分に見られるような大きな重畳領域がなくなる。このため、トランジスタ1dのターンオン損失は、図7(b)と図4(b)との波形を比較すれば明らかなように、実施の形態1の方が小さくなる。
 なお、図1の構成では、U相上アームにおける還流ダイオードのみをSiC-SBDとしているため、図5および図6に示すように負極性のU相電流が流れるときに損失低減効果が得られる。このため、図8に示す三相電流波形上においては、ハッチングで示したU相電流の負の領域が損失低減領域となる。
 以上説明したように、実施の形態1の電力変換装置によれば、還流ダイオードとして、SiC-SBDと、SiC-SBD以外のダイオードとしてのSi-FRDの双方を少なくとも一つ以上含むように構成したので、SiC-SBDの導通損失および逆回復損失を低減し、且つ、当該SiC-SBDの逆アーム側に位置するトランジスタのターンオン損失を低減することができるので、コスト上昇を抑えつつ、熱破壊に対する信頼性の確保と高効率化とを実現することができる。
実施の形態2.
 実施の形態1では、通常運転時における導通損失、逆回復損失およびターンオン損失の低減効果について説明したが、実施の形態2では、直流制動時における導通損失の低減効果について説明する。なお、前提となる電力変換回路部50の構成については、実施の形態1と同一である。
 直流制動は、三相交流を直流に変換してモータの回転磁界を停止させることで制動する制御手法である。ここで、図9は、従来技術に係る直流制動実行時の制御タイミングを説明する図である。図9において、破線で示す位置(時間)は直流制動を開始するタイミングを示している。図に示すように、直流制動指令が入った時点で位相が固定されるため、各相の電流の大きさが不均衡となり、一つの素子に損失が集中し熱破壊を起こす可能性も出てくる。
 一方、図10は、実施の形態2の三相電力変換装置における直流制動時のPWM電圧指令を示す図である。また、図11は、図10に示す領域Aにおいて流れる電流経路を示す図であり、図12は、図10に示す領域Bにおいて流れる電流経路を示す図である。
 図10において、上段部の波形は、直流制動時におけるU相・V相・W相に対する電圧指令との三角波比較を示し、中段部の波形は、三角波比較の差が正か負かによって生成されたU相のPWM電圧ならびに、V相およびW相のPWM電圧を示し、下段部の波形は、U-V線間・U-W線間のPWM電圧を示している。なお、下段部の波形において、U相・V相・W相のPWM電圧が全てオンとなるゼロベクトル期間を領域Aとし、U相・V相・W相のPWM電圧が全てオフとなるゼロベクトル期間を領域Bとしている。
 図10に示す領域Aは、U相・V相・W相のPWM電圧が全てオンとなるゼロベクトル期間であるため、上アームのUVW相は、トランジスタ1a、1b、1cおよび還流ダイオード19a、2b、2cによって短絡され、図11中に太実線で示す経路上において電位差のない電流が流れる。また、図10に示す領域Bは、U相・V相・W相のPWM電圧が全てオフとなるゼロベクトル期間であるため、上アームのUVW相は、トランジスタ1d、1e、1fおよび還流ダイオード2d、2e、2fによって短絡され、図12中に太実線で示す経路上において電位差のない電流が流れる。なお、図11および図12の電流経路は、モータ15から見た場合の電流経路としては、電気的には同じ意味である。このため、領域Aと領域Bの時間幅(期間)は、双方の期間の和が等しければ、これらの領域における時間幅の割合を変えても問題はない。
 よって、図10の上段部に示すように、各相の電圧指令を三角波の正側頂点付近に設定することで、下段部に示すようなU-V・U-W線間PWM電圧とすることができる。このようなPWM電圧を生成した場合、一周期あたり領域Aの期間が長くなる。その結果、Si-FRD2dの導通期間がSiC-SBD19aの導通期間より短くなり、導通損失の大きなSi-FRD2dよりも、導通損失の小さなSiC-SBD19aに流れる電流を多くすることができる。この作用により、還流ダイオードにおける導通損失の低減が可能となる。
 以上説明したように、実施の形態2の電力変換装置によれば、任意の一つの相の前記電圧形ブリッジ回路における上アームまたは下アームの還流ダイオードの何れかをSiC-SBDで構成すると共に、他の還流ダイオードをSiC-SBD以外のダイオードで構成し、SiC-SBDが設けられていない側のアームが全オン状態となるゼロベクトル期間よりもSiC-SBDが設けられている側のアームが全オン状態となるゼロベクトル期間の方が長くなるようなスイッチング指令を付与されるので、還流ダイオードにおける導通損失の低減が可能となる。
実施の形態3.
 実施の形態2では、直流制動時における導通損失の低減効果について説明したが、実施の形態3では、直流制動時における導通損失の低減効果を高める制御手法について説明する。なお、前提となる電力変換回路部50の構成については、実施の形態1と同一または同等である。
 従来の制御手法では、図9に示すように、直流制動が入った時点で電流位相が固定されるため、相ごとで電流の大きさが不均衡となり、ある特定の素子に損失が集中していた。そこで、図13に示すように、三相交流でモータを駆動しているときに、上下アームの接続部からモータへ電流が流れ出す向きを電流の正として、負のU相電流が最大になる位相で直流制動を開始するようにする。このようなタイミングで直流制動を開始すると、V相・W相に流れる電流をU相に流れる電流の半分にすることができるため、V相・W相は損失を半分にでき、且つ、損失を均一化することができる。なお、U相は、V相・W相より電流が多くなるが、U相の還流ダイオードはSiC-SBDで構成しているため、導通損失および逆回復損失ならびに逆アームのターンオン損失は増大しない。この制御により、熱破壊に対する信頼性が高くなり、効率も高くすることができる。
 図14は、実施の形態3に係る電力変換装置の他の構成例を示す図であり、電圧形ブリッジ回路の同一相における一対の上下アームの還流ダイオードをSiC-SBDで構成したものである。なお、図14の構成例では、U相の上下アームにおける還流ダイオードをそれぞれSiC-SBD19a,19dとして示している。また、その他の構成は、図1と同一である。
 図15は、図14に示す電力変換装置に用いて好適な直流制動実行時の制御タイミングを説明する図である。図14に示すように、U相の上下アームにおける還流ダイオードをSiC-SBDで構成することにより、モータ15から上下アームの接続部に流れ込む負極性の電流と、上下アームの接続部からモータ15に流れ出る正極性の電流とでは、両極性において損失の原理は同一である。このため、直流制動のタイミングは、図13に示すようなU相電流の負の最大値だけでなく、図15に示すようなU相電流の正の最大値のタイミングにおいて直流制動を開始してもよく、直流制動時における損失低減効果が得られる。また、この制御により、直流制動までの移行時間を短縮できるという効果も得られる。
 図16は、実施の形態3に係る電力変換装置の図14とは異なる他の構成例を示す図であり、ある一つの相の電圧形ブリッジ回路における上アームまたは下アームの還流ダイオードをSiC-SBDで構成すると共に、当該一つの相とは異なり、且つ、SiC-SBDが設けられたアームとは異なるアーム、すなわち対向アームの逆アーム(SiC-SBDが設けられたアームが上アームであれば下アーム、下アームであれば上アーム)の還流ダイオードもSiC-SBDで構成したものである。なお、図16の構成例では、U相の上アームの還流ダイオードと、V相の下アームの還流ダイオードとをそれぞれSiC-SBD19a,19eとして示している。また、その他の構成は、図1と同一である。
 図17は、図16に示す電力変換装置に用いて好適な直流制動実行時の制御タイミングを説明する図である。図17に示すように、U相電流が負極性、V相電流が正極性であり、且つ、W相電流がゼロとなるタイミングで直流制動を開始すれば、W相電流はゼロであり、U相電流は負極性のため上アーム側のSiC-SBD19aを流れ、V相電流は正極性のため下アーム側のSiC-SBD19eを流れる。このため、W相電流による導通損失はゼロになり、U相電流およびV相電流は共にSiC-SBD側を流れるので、導通損失の更なる低減が可能となる。
 図18は、実施の形態3に係る電力変換装置の図14および図16とは異なる他の構成例を示す図であり、電圧形ブリッジ回路上のある二つの相の上下アームにおける各還流ダイオードをSiC-SBDで構成したものである。なお、図18の構成例では、U相の上下アームにおける各還流ダイオードをSiC-SBD19a,19dとして示し、V相の上下アームにおける各還流ダイオードをそれぞれSiC-SBD19b,19eとして示している。また、その他の構成は、図1と同一である。
 図19は、図18に示す電力変換装置に用いて好適な直流制動実行時の制御タイミングを説明する図である。図17に示すように、U相およびV相の上下アームにおける各還流ダイオードをSiC-SBDで構成することにより、モータ15から上下アームの接続部に流れ込む負極性の電流と、上下アームの接続部からモータ15に流れ出る正極性の電流とでは、両極性において損失の原理は図16と同一である。このため、直流制動のタイミングは、図17に示すような、W相電流がゼロとなるタイミングの中で、U相電流が負極性であり、V相電流が正極性である場合のみならず、W相電流がゼロとなるタイミングであれば、U相電流が正極性であり、V相電流が負極性であっても構わない。すなわち、図18に示す電力変換装置の構成であれば、W相電流がゼロとなるタイミングであれば、何れのタイミングであっても構わない。このようなタイミングで直流制動を開始すれば、直流制動における損失低減が可能となり、直流制動までの移行時間を短縮できるという効果が得られる。
 図20は、実施の形態3に係る電力変換装置の図14、図16および図18とは異なる他の構成例を示す図であり、ある一つの相の電圧形ブリッジ回路における上アームまたは下アームの還流ダイオードをSiC-SBDで構成すると共に、他の二つの相において、当該SiC-SBDが設けられたアームとは異なるアーム(すなわち、SiC-SBDが設けられたアームが上アームであれば下アーム、下アームであれば上アーム)の各還流ダイオードもSiC-SBDで構成したものである。なお、図20の構成例では、U相の上アームの還流ダイオードと、V相の下アームの還流ダイオードと、W相の下アームの還流ダイオードとをそれぞれSiC-SBD19a,19e,19fとして示している。また、その他の構成は、図1と同一である。
 図21は、図20に示す電力変換装置に用いて好適な直流制動実行時の制御タイミングを説明する図である。図21に示すように、U相電流が負極性の最大値で直流制動を開始すると、V相・W相には正方向にU相電流の1/2の電流が流れる。このとき、負極性のU相電流は上アームにあるSiC-SBD19aを流れ、正極性のV相電流は下アームにあるSiC-SBD19eを流れ、正極性のW相電流は下アームにあるSiC-SBD19fを流れる一方で、SiC-SBDではない他の還流ダイオードには電流が流れないため、直流制動における損失低減の効果を更に高めることが可能となる。
 なお、上記実施の形態1~3では、上下アーム構成の三つの電圧形ブリッジ回路を並列に接続した三相電力変換装置を一例として説明したが、この三相電力変換装置に限定されるものではない。例えば、図22に示すようなハーフブリッジ構成の単相電力変換装置に適用することも可能である。図22に示す例では、上アームの還流ダイオードをSiC-SBD19aで構成しており、SiC-SBD19aに電流が流れ込んだ後に下アームのトランジスタ1dがオンするような動作が行われる場合には、上述した損失低減の効果が得られる。なお、図22の構成では、上アームの還流ダイオードをSiC-SBDで構成しているが、上下の関係を入れ替え、下アームの還流ダイオードをSiC-SBDで構成してもよいことは無論である。
 また、例えば、図23に示すようなフルブリッジ構成の単相電力変換装置に適用することも可能である。図23に示す例では、U相上アームの還流ダイオードをSiC-SBD19aで構成しており、SiC-SBD19aに電流が流れ込んだ後にU相下アームのトランジスタ1dがオンするような動作が行われる場合には、上述した損失低減の効果が得られる。なお、図23の構成では、U相上アームの還流ダイオードをSiC-SBDで構成しているが、U相下アームの還流ダイオードをSiC-SBDで構成してもよいし、V相上アームまたはV相下アームのうちの何れかをSiC-SBDで構成してもよい。さらに、実施の形態3の他の構成例に示すように、フルブリッジ構成を成す4つの還流ダイオードのうちの2~3個の還流ダイオードSiC-SBDで構成してもよく、実施の形態3と同様な効果が得られる。
 以上説明したように、実施の形態3の電力変換装置によれば、任意の一つの相の前記電圧形ブリッジ回路における上アームまたは下アームの還流ダイオードの何れかをSiC-SBDで構成すると共に、他の還流ダイオードをSiC-SBD以外のダイオードで構成し、SiC-SBDが設けられている相の電流を当該SiC-SBDを流れる極性に流し、且つ、当該SiC-SBDが設けられていない相に流れる電流よりも当該SiC-SBDが設けられている相に流れる電流の方が絶対値として大きくなるようなタイミングで直流制動を開始することとしたので、還流ダイオードにおける導通損失の低減が可能となる。
 なお、SiC-SBDが設けられている相の電圧ブリッジ回路における逆アームの還流ダイオードをSiC-SBDで構成してもよいし、SiC-SBDが設けられていない相のうちの一つの相の電圧ブリッジ回路において、SiC-SBDが設けられている側の逆アームの還流ダイオードをSiC-SBDで構成してもよい。また、任意の二つの相の電圧形ブリッジ回路における上下アームの各還流ダイオードをSiC-SBDで構成すると共に、残りの一つの相の電圧形ブリッジ回路における上下アームの還流ダイオードをSiC-SBD以外のダイオードで構成してもよい。さらに、任意の第1の相の前記電圧形ブリッジ回路における上アームまたは下アームの還流ダイオードの何れかをSiC-SBDで構成すると共に、残りの第2、第3の相の前記各電圧形ブリッジ回路において、前記第1の相のSiC-SBDが設けられている側の逆アームに位置するそれぞれの還流ダイオードをSiC-SBDで構成してもよい。これらの構成によって、直流制動に関する種々のバリエーションが生まれ、還流ダイオードにおける導通損失の低減効果を高めることが可能となる。
 なお、実施の形態1~3では、U相~W相を構成する6つのアームのうちの一つの還流ダイオードをSiC-SBDとする構成を開示したが、SiC-SBDに限定されるものではない。SiC(炭化珪素)は、Si(珪素)よりもバンドギャップが大きいという特性を捉えて、ワイドバンドギャップ半導体と称される半導体の一例である。このSiC以外にも、例えば窒化ガリウム系材料(GaN)または、ダイヤモンド(C)を用いて形成される半導体もワイドバンドギャップ半導体に属しており、それらの特性もSiCに類似した点が多い。したがって、SiC以外の他のワイドバンドギャップ半導体を用いる構成も、本発明の要旨を成すものである。
 また、このようなワイドバンドギャップ半導体によって形成されたダイオード素子は、耐電圧性が高く、許容電流密度も高いため、ダイオード素子の小型化が可能であり、この小型化されたダイオード素子を用いることにより半導体素子モジュールの小型化が可能となる。
 また、ワイドバンドギャップ半導体によって形成された素子は、耐熱性も高いため、ヒートシンクの小型化が可能となり、半導体素子モジュールを冷却する冷却器または放熱器の小型化が可能になる。
 以上のように、本発明に係る電力変換装置は、コスト上昇を抑えつつ、熱破壊に対する信頼性の確保と高効率化とを実現することができる発明として有用である。
 1a~1f トランジスタ
 2a~2f 還流ダイオード(Si-FRD)
 13 平滑コンデンサ
 14 制御部
 15 モータ
 16~18 電流センサ
 19a~19f 還流ダイオード(SiC-SBD)
 50 電力変換回路部
 100 電力変換装置

Claims (15)

  1.  トランジスタおよび、このトランジスタに逆並列接続された還流ダイオードを有するスイッチング素子を直列接続した上下アーム構成の電圧形ブリッジ回路を少なくとも一つ以上有する電圧変換回路部を備えた電力変換装置において、
     前記電圧変換回路部は、前記還流ダイオードとして、SiC-SBD(SiC-Schottky-Barrier Diode)と、SiC-SBD以外のダイオードとの双方を少なくとも一つ以上含むように構成されていることを特徴とする電力変換装置。
  2.  前記SiC-SBD以外のダイオードが、Si-FRD(Si-Fast Recovery Diode)であることを特徴とする請求項1に記載の電力変換装置。
  3.  トランジスタおよび、このトランジスタに逆並列接続された還流ダイオードを有するスイッチング素子を直列接続した上下アーム構成の三つの電圧形ブリッジ回路を並列に接続した電圧変換回路部を有する三相の電力変換装置において、
     任意の一つの相の前記電圧形ブリッジ回路における上アームまたは下アームの還流ダイオードの何れかをSiC-SBDで構成すると共に、他の還流ダイオードをSiC-SBD以外のダイオードで構成したことを特徴とする電力変換装置。
  4.  前記電圧変換回路部に接続される負荷を直流制動する際に、前記SiC-SBDが設けられていない側のアームのスイッチング素子が全てオン状態となるゼロベクトル期間よりも前記SiC-SBDが設けられている側のアームのスイッチング素子が全てオン状態となるゼロベクトル期間の方が長くなるようにスイッチング指令が与えられることを特徴とする請求項3に記載の電力変換装置。
  5.  トランジスタおよび、このトランジスタに逆並列接続された還流ダイオードを有するスイッチング素子を直列接続した上下アーム構成の三つの電圧形ブリッジ回路を並列に接続した電圧変換回路部を有する三相の電力変換装置において、
     任意の一つの相の前記電圧形ブリッジ回路における上アームまたは下アームの還流ダイオードの何れかをSiC-SBDで構成すると共に、他の還流ダイオードをSiC-SBD以外のダイオードで構成したことを特徴とする電力変換装置。
  6.  前記電圧変換回路部に接続される負荷を直流制動する際に、前記SiC-SBDが設けられている相の電流を当該SiC-SBDを流れる極性に流し、且つ、当該SiC-SBDが設けられていない相に流れる電流よりも当該SiC-SBDが設けられている相に流れる電流の方が絶対値として大きくなるようなタイミングで直流制動を開始することを特徴とする請求項5に記載の電力変換装置。
  7.  前記SiC-SBDが設けられている相の電圧ブリッジ回路における逆アームの還流ダイオードをSiC-SBDで構成したことを特徴とする請求項6に記載の電力変換装置。
  8.  前記SiC-SBDが設けられていない相のうちの一つの相の電圧ブリッジ回路において、前記SiC-SBDが設けられている側の逆アームの還流ダイオードをSiC-SBDで構成したことを特徴とする請求項6に記載の電力変換装置。
  9.  前記SiC-SBDが設けられていない相に流れる電流がゼロとなるタイミングで直流制動を開始することを特徴とする請求項8に記載の電力変換装置。
  10.  トランジスタおよび、このトランジスタに逆並列接続された還流ダイオードを有するスイッチング素子を直列接続した上下アーム構成の三つの電圧形ブリッジ回路を並列に接続した電圧変換回路部を有する三相の電力変換装置において、
     任意の二つの相の前記電圧形ブリッジ回路における上下アームの各還流ダイオードをSiC-SBDで構成すると共に、残りの一つの相の前記電圧形ブリッジ回路における上下アームの還流ダイオードをSiC-SBD以外のダイオードで構成したことを特徴とする電力変換装置。
  11.  前記SiC-SBDが設けられていない相に流れる電流がゼロとなるタイミングで直流制動を開始することを特徴とする請求項10に記載の電力変換装置。
  12.  トランジスタおよび、このトランジスタに逆並列接続された還流ダイオードを有するスイッチング素子を直列接続した上下アーム構成の三つの電圧形ブリッジ回路を並列に接続し電圧変換回路部を有するた三相の電力変換装置において、
     任意の第1の相の前記電圧形ブリッジ回路における上アームまたは下アームの還流ダイオードの何れかをSiC-SBDで構成すると共に、残りの第2、第3の相の前記各電圧形ブリッジ回路において、前記第1の相のSiC-SBDが設けられている側の逆アームに位置するそれぞれの還流ダイオードをSiC-SBDで構成したことを特徴とする電力変換装置。
  13.  前記電圧変換回路部に接続される負荷を直流制動する際に、前記第1の相の電流を当該第1の相のSiC-SBDを流れる極性に流し、且つ、前記第2および第3の相に流れるそれぞれの電流よりも前記第1の相に流れる電流の方が絶対値として大きくなるようなタイミングで直流制動を開始することを特徴とする請求項12に記載の電力変換装置。
  14.  前記直流制動を開始するタイミングが前記第1の相に流れる電流の最大値であることを特徴とする請求項13に記載の電力変換装置。
  15.  前記SiC-SBD以外のダイオードが、Si-FRD(Si-Fast Recovery Diode)であることを特徴とする請求項3~14の何れか1項に記載の電力変換装置。
PCT/JP2011/051943 2011-01-31 2011-01-31 電力変換装置 WO2012104969A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011525774A JP4818489B1 (ja) 2011-01-31 2011-01-31 電力変換装置
CN201180066413.4A CN103354973B (zh) 2011-01-31 2011-01-31 功率转换装置
PCT/JP2011/051943 WO2012104969A1 (ja) 2011-01-31 2011-01-31 電力変換装置
US13/982,145 US9281776B2 (en) 2011-01-31 2011-01-31 Power conversion apparatus including different voltage-type bridge circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051943 WO2012104969A1 (ja) 2011-01-31 2011-01-31 電力変換装置

Publications (1)

Publication Number Publication Date
WO2012104969A1 true WO2012104969A1 (ja) 2012-08-09

Family

ID=45327045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051943 WO2012104969A1 (ja) 2011-01-31 2011-01-31 電力変換装置

Country Status (4)

Country Link
US (1) US9281776B2 (ja)
JP (1) JP4818489B1 (ja)
CN (1) CN103354973B (ja)
WO (1) WO2012104969A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247695A (ja) * 2012-05-23 2013-12-09 Daikin Ind Ltd 電力変換装置
WO2014186448A1 (en) * 2013-05-14 2014-11-20 Cree, Inc. High performance power module
JP2015231243A (ja) * 2014-06-03 2015-12-21 株式会社ダイヘン インバータ装置、このインバータ装置を備えた誘導加熱装置およびワイヤレス給電装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673283B2 (en) 2011-05-06 2017-06-06 Cree, Inc. Power module for supporting high current densities
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
JP5822773B2 (ja) * 2012-04-17 2015-11-24 三菱電機株式会社 電力変換装置
KR101980197B1 (ko) 2012-09-04 2019-05-20 삼성전자주식회사 고전자 이동도 트랜지스터 및 그 제조방법
EP3262750B1 (en) * 2015-02-25 2020-01-29 Otis Elevator Company Interposition inductor arrangement for multiple drives in parallel
JP6390797B2 (ja) 2015-08-28 2018-09-19 富士電機株式会社 半導体装置
CN105141162A (zh) * 2015-10-22 2015-12-09 保定四方三伊电气有限公司 基于碳化硅mosfet的串联谐振逆变器
JP6610586B2 (ja) * 2017-03-13 2019-11-27 トヨタ自動車株式会社 駆動装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219687A (ja) * 2002-01-23 2003-07-31 Mitsubishi Electric Corp モータ駆動装置及び送風機及び圧縮機及び冷凍空調装置
JP2004140068A (ja) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd 積層型半導体装置およびその組み立て方法
JP2011004243A (ja) * 2009-06-19 2011-01-06 Sumitomo Electric Ind Ltd スイッチ回路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2976714B2 (ja) 1992-09-08 1999-11-10 松下電器産業株式会社 モータ駆動装置
SE9502249D0 (sv) * 1995-06-21 1995-06-21 Abb Research Ltd Converter circuitry having at least one switching device and circuit module
JP2000224867A (ja) 1999-01-28 2000-08-11 Sumitomo Electric Ind Ltd インバータ
JP3638265B2 (ja) 2001-12-21 2005-04-13 三菱電機株式会社 電力変換装置
US7042086B2 (en) 2002-10-16 2006-05-09 Nissan Motor Co., Ltd. Stacked semiconductor module and assembling method of the same
JP5532192B2 (ja) * 2008-01-24 2014-06-25 独立行政法人産業技術総合研究所 電力変換装置
JP5770412B2 (ja) * 2008-01-31 2015-08-26 ダイキン工業株式会社 電力変換装置
ATE515101T1 (de) * 2008-04-24 2011-07-15 Abb Oy Verfahren und anordnung in verbindung mit einem brems-chopper
JP5476028B2 (ja) * 2009-04-17 2014-04-23 株式会社日立製作所 パワー半導体スイッチング素子のゲート駆動回路及びインバータ回路
JP2011003760A (ja) * 2009-06-19 2011-01-06 Sanyo Electric Co Ltd 半導体装置
CN103081332B (zh) * 2010-09-09 2016-06-01 三菱电机株式会社 功率半导体模块、电力转换装置及铁路车辆

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219687A (ja) * 2002-01-23 2003-07-31 Mitsubishi Electric Corp モータ駆動装置及び送風機及び圧縮機及び冷凍空調装置
JP2004140068A (ja) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd 積層型半導体装置およびその組み立て方法
JP2011004243A (ja) * 2009-06-19 2011-01-06 Sumitomo Electric Ind Ltd スイッチ回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247695A (ja) * 2012-05-23 2013-12-09 Daikin Ind Ltd 電力変換装置
WO2014186448A1 (en) * 2013-05-14 2014-11-20 Cree, Inc. High performance power module
EP3832711A1 (en) * 2013-05-14 2021-06-09 Cree, Inc. High performance power module
JP2015231243A (ja) * 2014-06-03 2015-12-21 株式会社ダイヘン インバータ装置、このインバータ装置を備えた誘導加熱装置およびワイヤレス給電装置

Also Published As

Publication number Publication date
JP4818489B1 (ja) 2011-11-16
US9281776B2 (en) 2016-03-08
JPWO2012104969A1 (ja) 2014-07-03
CN103354973B (zh) 2016-08-10
CN103354973A (zh) 2013-10-16
US20130307500A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP4818489B1 (ja) 電力変換装置
JP5438004B2 (ja) 電力変換装置
JP4445036B2 (ja) 電力変換器
US8836258B2 (en) Inverter device, motor driving device, refrigerating air conditioner, and power generation system
JP6468363B2 (ja) 電力変換装置
JP6477915B2 (ja) 電力変換装置
JP5822773B2 (ja) 電力変換装置
US20200389115A1 (en) Rotating electrical machine control device
US10090778B2 (en) Multi-phase power device with two-phase modulation scheme
JP2006020405A (ja) 半導体スイッチ回路
JP2010226919A (ja) 電力変換装置並びに冷凍空調システム及び太陽光発電システム
JP5788540B2 (ja) 電動機駆動装置、及び冷凍空調装置
JP4423950B2 (ja) 交流交流直接変換器の制御装置
JP6641782B2 (ja) 電力変換装置
JP5976953B2 (ja) ブリッジレッグ
JP2016001991A (ja) 電動機駆動装置、及び冷凍空調装置
JP4764986B2 (ja) 三相可変速モータ駆動用モータ駆動装置
JP5857189B2 (ja) インバータ装置
JP2013062937A (ja) 電動機の駆動装置、および冷凍サイクル装置
JP2012217277A (ja) モータの駆動装置
JP6490247B2 (ja) 電力変換装置及びそれを用いた電動機駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011525774

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13982145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857760

Country of ref document: EP

Kind code of ref document: A1