WO2012099186A1 - R-t-b系焼結磁石の製造方法 - Google Patents

R-t-b系焼結磁石の製造方法 Download PDF

Info

Publication number
WO2012099186A1
WO2012099186A1 PCT/JP2012/051032 JP2012051032W WO2012099186A1 WO 2012099186 A1 WO2012099186 A1 WO 2012099186A1 JP 2012051032 W JP2012051032 W JP 2012051032W WO 2012099186 A1 WO2012099186 A1 WO 2012099186A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered magnet
rtb
diffusion
based sintered
magnet material
Prior art date
Application number
PCT/JP2012/051032
Other languages
English (en)
French (fr)
Inventor
國吉 太
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/977,125 priority Critical patent/US9484151B2/en
Priority to EP12736976.7A priority patent/EP2667391B1/en
Priority to CN201280005903.8A priority patent/CN103329224B/zh
Priority to JP2012553761A priority patent/JP5880448B2/ja
Publication of WO2012099186A1 publication Critical patent/WO2012099186A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a method for producing an RTB-based sintered magnet (R is a rare earth element and T is Fe or Fe and Co) having an R 2 T 14 B type compound as a main phase.
  • An RTB-based sintered magnet mainly composed of an R 2 T 14 B-type compound is known as the most powerful magnet among permanent magnets, such as a voice coil motor (VCM) of a hard disk drive, It is used for various motors such as motors for hybrid vehicles and home appliances.
  • VCM voice coil motor
  • H cJ the intrinsic coercive force
  • H cJ the intrinsic coercive force
  • An RTB-based sintered magnet is known to improve coercive force when a portion of R in the R 2 T 14 B-type compound phase is replaced with a heavy rare earth element RH (Dy, Tb). .
  • RH heavy rare earth element
  • it is effective to add a large amount of heavy rare earth element RH to the RTB-based sintered magnet.
  • replacing the light rare earth element RL (Nd, Pr) as R with the heavy rare earth element RH improves the coercive force, while improving the residual magnetic flux density B r (hereinafter simply “ There is a problem that “B r ”) is reduced.
  • the heavy rare earth element RH is a rare resource, it is required to reduce the amount of use thereof.
  • the present applicant performs heat treatment in a state in which a foil or powder containing RH as an RH diffusion source is in contact with the surface of the RTB-based sintered magnet body, whereby the foil is obtained.
  • a method for diffusing RH from powder into the RTB-based sintered magnet body has been proposed.
  • the RH supply source is a foil
  • the one having a thickness of 1 to 50 ⁇ m is used.
  • the RH diffusion source is a powder
  • the thickness is set on the magnet surface by a powder having a particle size of 1 to 50 ⁇ m.
  • a powder layer of 1 to 50 ⁇ m is formed. In this way, a small amount of RH can be efficiently utilized and diffused into the RTB-based sintered magnet body.
  • pure Dy is used as the RH diffusion source.
  • Patent Document 3 a fine powder of an RH-Fe compound having an average particle size of 100 nm to 50 ⁇ m is used as an RH diffusion source, and a slurry in which this is dispersed in a solvent is used as an RTB-based sintered magnet body.
  • a method of applying a heat treatment to the surface of the film is disclosed.
  • H cJ can be greatly improved by using an iron compound as the RH diffusion source.
  • the heat treatment temperature can be lowered, and it is less susceptible to temperature variations during the heat treatment.
  • the RH compound can be uniformly attached to the RTB-based sintered magnet body. Further, it becomes possible to cause RH diffusion more uniformly by heat treatment.
  • Patent Document 4 describes a method in which a heat treatment is performed in a state where a powder of an RH diffusion source, which is an alloy of a rare earth element and an element other than the rare earth element, is present on the surface of the RTB-based sintered magnet body.
  • a powder of an RH diffusion source which is an alloy of a rare earth element and an element other than the rare earth element
  • various M elements which are elements other than rare earth, Fe and Co are essential.
  • the powder of the RH diffusion source is dispersed in an organic solvent or water and applied to the surface of the RTB-based sintered magnet body. It is said that the smaller the average particle size of the powder, the higher the diffusion efficiency.
  • Patent Document 5 an alloy powder containing RH and an iron group transition element having a particle size of 10 ⁇ m or less is used as an RH diffusion source and applied to the surface of an RTB-based sintered magnet body by a barrel painting method or the like. Thus, a heat treatment method is disclosed.
  • Patent Document 6 an RH oxide layer is formed on the inner surface of a heat treatment container, and an RTB-based sintered magnet body is disposed in the heat treatment container to perform heat treatment, thereby sintering the inner surface of the heat treatment container. It is described that even if the magnet body is in contact, both are not fused and adhered, and further, RH of the RH oxide layer is reduced and diffused and penetrates into the sintered magnet, so that an increase in H cJ can be obtained. Has been.
  • Both of the methods described in Patent Document 1 and Patent Document 2 can efficiently diffuse RH without using an organic solvent, an adhesive, or the like. In addition, compared to sputtering or the like, there is no wasteful consumption of RH such as adhering to the heat treatment furnace inner wall.
  • the method described in Patent Document 1 and Patent Document 2 since the RH is less likely to diffuse into the main phase of the magnet surface layer portion, reduction in B r is an excellent method of utmost can be suppressed.
  • the powder of the RH diffusion source is applied to the surface of the RTB-based sintered magnet body using an organic component such as an organic solvent and an adhesive.
  • an organic component such as an organic solvent and an adhesive.
  • the powder application methods are simple, a wet application process is required separately, and the production efficiency is inevitably lowered accordingly.
  • the RH diffusion source since a fine powder having a particle size of 10 ⁇ m or less is used as the RH diffusion source, the RH diffusion source reacts with the RTB-based sintered magnet body and is altered and / or RTB-based sintered. Since it is easy to weld to the magnet body and separation after heat treatment is difficult, it cannot be reused and must be completely diffused inside the magnet.
  • the present invention has been made in view of the above circumstances, and its object is a heavy rare-earth element RH of Dy or Tb without reducing the B r inside the R-T-B based sintered magnet material surface
  • an RTB -based sintered magnet material and an RH diffusion source are arranged in a complicated manner, a solvent, an adhesive, etc.
  • the RH diffusion source can be used repeatedly and effectively without welding the RTB-based sintered magnet material and the RH diffusion source without passing through the coating process using
  • An object of the present invention is to provide a method for producing an RTB -based sintered magnet having high H cJ with high production efficiency by diffusing inside the RTB -based sintered magnet material.
  • the method for producing an RTB-based sintered magnet of the present invention comprises preparing at least one RTB-based sintered magnet material (R is a rare earth element, T is Fe or Fe and Co), Preparing a plurality of RH diffusion sources containing heavy rare earth element RH (Dy and / or Tb) and 30% by mass or more and 80% by mass or less, each having a particle size of greater than 53 ⁇ m and less than 5600 ⁇ m; A TB-based sintered magnet material and an arrangement step of disposing the plurality of RH diffusion sources in a processing container, wherein some of the plurality of RH diffusion sources are replaced with the RTB-based sintered magnet.
  • An RH diffusion source that is not in contact with the sintered magnet material an RH diffusion step in which heat treatment is performed at a temperature of 800 ° C. or higher and 1000 ° C. or lower in an inert atmosphere with a pressure of 5000 Pa or lower, and after the RH diffusion step, Separating the plurality of RH diffusion sources from the RTB-based sintered magnet material.
  • the disposing step is a step of disposing at least a part of the RTB-based sintered magnet material in an assembly of the plurality of RH diffusion sources.
  • the arranging step is a step of arranging the RTB-based sintered magnet material so as to be entirely embedded in an assembly of the plurality of RH diffusion sources.
  • the arranging step is a step of arranging at least a part of the plurality of RTB-based sintered magnet materials inside an assembly of the plurality of RH diffusion sources.
  • the arranging step includes arranging the plurality of RTB-based sintered magnet materials and then filling the plurality of RTB-based sintered magnet materials so as to fill gaps between the plurality of RTB-based sintered magnet materials. Disposing an RH diffusion source.
  • the arranging step includes using the jig for arranging the plurality of RH diffusion sources and the RTB-based sintered magnet material, and the plurality of RH diffusion sources and the RT- After the B-based sintered magnet material is disposed, the method includes a step of moving the plurality of RH diffusion sources and the RTB-based sintered magnet material together with the jig into the processing chamber.
  • the atmospheric pressure in the RH diffusion step is 0.1 Pa or more.
  • the separation step includes a step of recovering the plurality of RH diffusion sources used in the RH diffusion step.
  • an RTB-based sintered magnet material that has not been used in the RH diffusion step, and the plurality of the plurality of recovered recovered in the separation step A second arrangement in which an RH diffusion source is arranged in the processing vessel or another processing vessel, wherein some of the plurality of RH diffusion sources are brought into contact with the RTB-based sintered magnet material; An RTB-based sintered magnet material in a state in which some of the plurality of RH diffusion sources are in contact with each other in the process vessel or the other process vessel, and the RTB-system With respect to the RH diffusion source that is in contact with the sintered magnet material and the RH diffusion source that is not in contact with the RTB-based sintered magnet material, the temperature is 800 ° C.
  • Second RH diffusion process for heat treatment at temperature After the RH diffusion process, and a second separation step of separating said plurality of RH diffusion source from the R-T-B based sintered magnet material.
  • a plurality of RH diffusion sources having a relatively large particle size of more than 53 ⁇ m and containing a heavy rare earth element RH composed of at least one of Dy and Tb and Fe of 30% by mass to 80% by mass Therefore, the RTB-based sintered magnet material and the RH diffusion source can be placed in contact with each other in a simple manner without going through a complicated placement process or a coating process using a solvent, an adhesive, or the like. . For this reason, the labor of arrangement and an extra process are not required, and the production efficiency is high.
  • the above-mentioned RH diffusion source is difficult to weld with the RTB-based sintered magnet material. For this reason, after the RH diffusion step, the RH diffusion source can be easily separated from the RTB-based sintered magnet body and recovered. Further, since the size of each RH diffusion source exceeds 53 ⁇ m, it is possible to avoid consuming all of the RH diffusion source by one RH diffusion process. For this reason, the RH diffusion source can be used repeatedly.
  • the RH diffusion step using the above RH diffusion source is performed under the heat treatment conditions of 800 ° C. or higher and 1000 ° C. or lower in an inert atmosphere with a pressure of 5000 Pa or lower. Both diffusion from the contact point of the diffusion source (contact diffusion) and diffusion due to vaporization / sublimation (non-contact diffusion) of RH from the RH diffusion source that is not in contact with the RTB-based sintered magnet body It can be carried out. As a result, it is easy to appropriately introduce the heavy rare earth element RH into the magnet while avoiding insufficient and excessive supply of RH.
  • FIG. 6 is a view showing another arrangement example of an RTB-based sintered magnet material and an RH diffusion source in a preferred embodiment of the present invention.
  • FIG. 10 is a view showing still another arrangement example of the RTB-based sintered magnet material and the RH diffusion source in a preferred embodiment of the present invention.
  • FIG. 10 is a view showing still another arrangement example of the RTB-based sintered magnet material and the RH diffusion source in a preferred embodiment of the present invention.
  • FIG. 10 is a view showing still another arrangement example of the RTB-based sintered magnet material and the RH diffusion source in a preferred embodiment of the present invention.
  • FIG. 10 is a view showing still another arrangement example of the RTB-based sintered magnet material and the RH diffusion source in a preferred embodiment of the present invention.
  • FIG. 5 is a diagram showing an arrangement example of a jig, an RTB-based sintered magnet body, and an RH diffusion source in a preferred embodiment of the present invention.
  • 6 is a graph showing the relationship between the size of the RH diffusion source, the temperature of the RH diffusion treatment, and the amount of change in H cJ in Samples 3 to 5, 6, 8, 10, and 14 to 16.
  • 6 is a graph showing the relationship between the pressure of the atmospheric gas and the amount of change in H cJ for samples 7 to 9. It is a graph which shows the relationship between the repetition frequency of RH spreading
  • the method for producing an RTB-based sintered magnet according to the present invention comprises a step of preparing at least one RTB-based sintered magnet material (R is a rare earth element, T is Fe, or Fe and Co). And a step of preparing a plurality of RH diffusion sources containing heavy rare earth element RH (Dy and / or TB) and Fe of 30% by mass to 80% by mass, each having a particle size of greater than 53 ⁇ m and less than 5600 ⁇ m. Then, an arrangement step of arranging the RTB-based sintered magnet material and the plurality of RH diffusion sources in the processing container is performed. In this arrangement step, some of the plurality of RH diffusion sources are brought into contact with the RTB-based sintered magnet material.
  • the RTB-based sintered magnet material in a state where some of the plurality of RH diffusion sources are in contact with each other, and the RH diffusion source in contact with the RTB-based sintered magnet material in the processing vessel Then, heat treatment is performed on the RH diffusion source that is not in contact with the RTB-based sintered magnet material, and the heavy rare earth element RH is diffused from the RH diffusion source into the RTB-based sintered magnet material (RH). Diffusion process).
  • heat treatment is performed at a temperature of 800 ° C. or higher and 1000 ° C. or lower in an inert atmosphere with a pressure of 5000 Pa or lower.
  • a separation step of separating a plurality of RH diffusion sources from the RTB-based sintered magnet material is performed. Since the spaced apart RH diffusion sources are reusable, in a preferred embodiment, they can be recovered and used for the next RH diffusion step.
  • some of the plurality of RH diffusion sources are in contact with the RTB-based sintered magnet material, and the rest of the plurality of RH diffusion sources is the RTB-based sintered magnet material.
  • RH is supplied from the RH diffusion source to the surface of the RTB-based sintered magnet material and is diffused inside the magnet material without being in contact with the magnet material.
  • the “contact” here is a state in which the RH diffusion source is temporarily in contact with the magnet material so that the RH diffusion source can be easily separated, unlike the state where the fine powder of the RH diffusion source is applied to the surface of the magnet material. . According to the conventional application, the powder adheres or adheres to the surface of the material, and separation is not easy.
  • the above arranging step may be a step of arranging at least a part of one or a plurality of RTB-based sintered magnet materials inside an assembly of a plurality of RH diffusion sources. Also, in this arranging step, after arranging the plurality of RTB-based sintered magnet materials, a plurality of RH diffusion sources are arranged so as to fill the gaps between the plurality of RTB-based sintered magnet materials. It may be a process of making it. Further, this arrangement step uses a jig for arranging a plurality of RH diffusion sources and RTB-based sintered magnet materials to form a plurality of RH diffusion sources and RTB-based sintered magnet materials. After the arrangement, the jig may be moved into the processing chamber together with the jig.
  • the heavy rare earth element RH is converted into the RTB-based material. Evaporation and sublimation directly from the contact point between the sintered magnet material and the RH diffusion source and from the RH diffusion source at the portion not in contact with the RTB-based sintered magnet material. Supplied to the surface of the magnetized material. Further, the heavy rare earth element RH is supplied from the RH diffusion source to the surface of the RTB-based sintered magnet material, and at the same time, is diffused into the RTB-based sintered magnet material (RH diffusion). Process).
  • the magnet body before the RH diffusion process is referred to as an RTB-based sintered magnet material
  • the magnet body after the RH diffusion process is referred to as an RTB-based sintered magnet. I will call it.
  • the RH diffusion process can be performed by arranging the RTB-based sintered magnet material and the RH diffusion source by a simpler method than in the prior art. For this reason, a process can be shortened. Further, since it is not necessary to arrange the RTB-based sintered magnet material and the RH diffusion source at a predetermined position, the productivity is high.
  • the plurality of RH diffusion sources in the present invention are rare earth iron alloys each having a relatively large particle size and containing RH and 30% by mass or more and 80% by mass or less of Fe. -It is difficult to weld with a TB sintered magnet, and can be reused repeatedly.
  • the RH diffusion source of the present invention contains a large amount of a compound of heavy rare earth element RH and iron, it hardly reacts with the RTB-based sintered magnet material. Since there are few contact points between the RTB-based sintered magnet material and the RH diffusion source, the surface of the RTB-based sintered magnet can be obtained even if RH diffusion treatment is performed at a temperature of 800 ° C or higher and 1000 ° C or lower.
  • the heavy rare earth element RH (at least one of Dy or Tb) supplied to is not excessively supplied. Thus, while suppressing a decrease in B r after RH diffusion, it is possible to obtain a sufficiently high H cJ.
  • RTB-based sintered magnet material First, in the present invention, an RTB-based sintered magnet material to be diffused of heavy rare earth element RH is prepared.
  • this RTB-based sintered magnet material a known material can be used, for example, having the following composition.
  • Rare earth element R 12 to 17 atomic% B (part of B may be substituted with C): 5 to 8 atomic%
  • Additive element M selected from the group consisting of Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one): 0 to 2 atomic% T (which is a transition metal mainly containing Fe and may contain Co) and inevitable impurities: the balance
  • the rare earth element R is at least one selected from light rare earth elements RL (Nd, Pr) Although it is an element, it may contain a heavy rare earth element. In addition, when a heavy rare earth element is contained, it is preferable that at least one of Dy and Tb is included.
  • the RTB-based sintered magnet material having the above composition is manufactured by an arbitrary manufacturing method.
  • the RH diffusion source of the present invention is a rare earth iron alloy containing heavy rare earth element RH (at least one of Dy and Tb) and 30% by mass to 80% by mass of Fe. Within this composition range, the RH diffusion source mainly contains a compound of heavy rare earth element RH such as RHFe 2 and iron.
  • the Fe content of the RH diffusion source is less than 30% by mass, the RH diffusion source is likely to be welded to the RTB-based sintered magnet material, and the RH supply amount becomes unstable or the RH diffusion source is reused. It may be difficult.
  • the Fe content in the RH diffusion source exceeds 80 mass%, the RH content is less than 20 mass%, so the supply amount of the heavy rare earth element RH from the RH diffusion source is reduced, and the desired retention rate is maintained. In order to obtain the effect of improving the magnetic force, the processing time becomes very long, so it is not suitable for mass production.
  • the mass ratio of Fe contained in the RH diffusion source of the present invention is preferably 40% by mass or more and 60% by mass or less from the viewpoint that it is a composition range in which alteration is difficult.
  • the volume ratio of RHFe 3 compounds of DyFe RHFe 2 compounds such as 2 and / or DyFe 3 or the like contained in the RH diffusion source is 90% or more in total of both. When the volume ratio of these compounds is 90% or more in total, the reaction hardly occurs with the RTB-based sintered magnet body, so that the welding is less likely to occur.
  • RH diffusion source may contain at least one selected from the group consisting of Nd, Pr, La, Ce, and Co as long as the effects of the present invention are not impaired, in addition to Dy, Tb, and Fe. Further, as inevitable impurities, for example, 5% by mass or less of Al, Ti, V, Cr, Mn, Ni, Cu, Ga, Nb, Mo, Zn, Zr, Sn, Ag, In, Hf, Ta, W And at least one selected from the group consisting of Pb, Si and Bi.
  • each particle size is controlled in a range of more than 53 ⁇ m and not more than 5600 ⁇ m.
  • the form of the RH diffusion source in the present invention is arbitrary, for example, spherical, linear, flake shaped, lump, powder, etc., and the size thereof is a particle size of more than 53 ⁇ m and not more than 5600 ⁇ m.
  • the particle size of the RH diffusion source is adjusted to a desired particle size by classification according to the method described in JIS Z 2510 using a sieve specified in JIS Z 8801-1. A small amount (for example, 10 mass% or less) of fine powder may be contained for unavoidable reasons such as being unable to pass through during classification or adhering to particles of more than 53 ⁇ m and not more than 5600 ⁇ m.
  • the method for producing the RH diffusion source is arbitrary, but it can be obtained, for example, by cutting or pulverizing an ingot, cast piece, wire or the like of an RH-Fe alloy having a predetermined composition.
  • the particle size of the RH diffusion source is 53 ⁇ m or less, even with the composition of the RH diffusion source of the present invention, welding with the RTB-based sintered magnet material is likely to occur, and from the aspect of reusing the RH diffusion source. It is not preferable.
  • the particle size of the RH diffusion source is preferably more than 100 ⁇ m and not more than 4750 ⁇ m, and more preferably more than 500 ⁇ m and not more than 4000 ⁇ m.
  • the RTB-based sintered magnet material and the RH diffusion source described above are used, and at least a part of the RTB-based sintered magnet material includes a plurality of RH diffusion sources. Place it in contact. At this time, it may be arranged so that organic substances such as organic solvents and adhesives do not exist between the RH diffusion sources and between the RH diffusion source and the RTB-based sintered magnet material. preferable. Thereafter, the RH diffusion process is performed by heat treatment at a predetermined atmospheric pressure and temperature.
  • a container 100 shown in FIG. 1 is a heat-resistant container including a container body 10 having an opening at the top and a lid 20.
  • the inside of the container 100 can be vented to the outside through a gap between the main body 10 and the lid 20.
  • a large number of RH diffusion sources 40 are placed at the bottom of the container 100 so that the container 100 and the RTB-based sintered magnet material 30 do not contact each other.
  • On the aggregate of a plurality of RH diffusion sources 40 a plurality of RTB-based sintered magnet materials 30 are arranged at intervals. Further, by inserting the RH diffusion source 40 so as to hide the RTB-based sintered magnet material 30, the entire RTB-based sintered magnet material 30 is embedded in the assembly of the RH diffusion source 40. ing.
  • the RH diffusion source 40 is covered with an aggregate of the RH diffusion sources 40. If at least a part of the RTB-based sintered magnet material 30 (for example, 50% or more of the surface area of the RTB-based sintered magnet material) is covered with the assembly of the RH diffusion source 40, The effects of the present invention can be obtained. Specifically, the inner wall of the processing vessel 100 and the RTB-based sintered magnet material 30 are in contact with each other, or the RTB-based sintered magnet material 30 is in contact with each other. Even if a partial region of the B-based sintered magnet material 30 is not in direct contact with the RH diffusion source 40, the effect of the present invention is exhibited.
  • the arrangement of the RTB-based sintered magnet material 30 and the RH diffusion source 40 in the present invention is not limited to the example of FIG. As shown in FIG. 2, the RH diffusion source 40 may be disposed in the processing container 100, and the RTB-based sintered magnet material 30 may be placed thereon.
  • a large number of RH diffusion sources 40 may be poured so as to fill the gaps.
  • RTB-based sintered magnet materials 30 are arranged on the bottom surface of the processing vessel 100, they may be covered with an assembly of RH diffusion sources 40.
  • an RTB-based sintered magnet material 30 and an RH diffusion source are further provided thereon.
  • the RTB-based sintered magnet material 30 may be arranged so as to overlap in the vertical direction.
  • the arrangement direction of the RTB-based sintered magnet material 30 is arbitrary.
  • the RTB-based sintered magnet material 30 may be arranged in the horizontal direction or in the vertical direction.
  • FIG. 6A is a view schematically showing a state in which the RTB-based sintered magnet materials 30 are arranged at suitable intervals by the jig 50. As long as the jig has heat resistance, the jig is not limited to the one having the illustrated configuration, and various configurations can be adopted.
  • FIG. 6B is a diagram showing a state in which a large number of RH diffusion sources 40 are charged into the processing vessel 100 in which the jig 50 and the RTB-based sintered magnet material 30 are placed.
  • the RH diffusion source 40 can be stably brought into contact with the surface of the RTB-based sintered magnet material 30 without causing an adhesive or the like to exist.
  • the processing vessel 100 may be formed of a heat resistant metal or alloy such as SUS material, Ti, Mo, Nb, FeCrAl alloy, FeCoCr alloy.
  • the shape of the processing container 100 is arbitrary, and may be a box shape, a cylindrical shape, or the like.
  • the entire heat treatment furnace may be used as the processing vessel 100 as it is. Considering the work efficiency, it is preferable to insert the processing vessel 100 in which the RTB-based sintered magnet material 30 and the RH diffusion source 40 are arranged outside the heat treatment apparatus into the heat treatment furnace.
  • the processing container 100 has a configuration that allows ventilation between the inside and the outside so that the atmosphere inside the processing container 100 can be controlled.
  • the RH diffusion source 40 is used as it is without being dispersed or dissolved in a solvent. Since no solvent or adhesive is used, a substance other than the RH diffusion source 40 and the atmospheric gas is always present between the RH diffusion sources 40 and between the RH diffusion source 40 and the RTB-based sintered magnet material 30. Does not exist. Therefore, the surface of the RTB-based sintered magnet material 30 is not disturbed by the RH vaporized and sublimated from the RH diffusion source 40 that is not in contact with the RTB-based sintered magnet material 30. To be supplied.
  • the thickness of the aggregate of the RH diffusion source 40 in contact with the RTB-based sintered magnet material 30 is preferably 500 ⁇ m or more, and more preferably 1000 ⁇ m or more.
  • the thickness of the aggregate of the RH diffusion sources 40 on the surface facing the RTB-based sintered magnet material is determined by RT- It can be defined by the distance between the B-based sintered magnet materials.
  • the RTB system sintered magnet material 30 is contacted with the RTB system sintered magnet material 30 by covering the RTB system sintered magnet material 30 with an aggregate of thick RH diffusion sources 40 without using an organic material.
  • the effects of both diffusion from the contact point of the RH diffusion source 40 and diffusion from the RH diffusion source 40 not in contact with the RTB-based sintered magnet material 30 can be easily obtained. Further, the arrangement work is easy and efficient, and the productivity is high.
  • the atmosphere during the RH diffusion step is preferably an inert gas atmosphere, and the pressure of the atmospheric gas is 5000 Pa or less.
  • the RTB-based sintering is directly performed from the contact point of the RH diffusion source.
  • the amount of RH that diffuses inside the magnet material is relatively small, the RH in the portion not in contact with the RTB-based sintered magnet material is reduced by setting the atmospheric gas pressure in the RH diffusion process to 5000 Pa or less.
  • RH vaporizes and sublimates from the diffusion source is supplied to the surface of the RTB-based sintered magnet material, diffuses into the RTB-based sintered magnet material, and diffuses from the contact point.
  • the effect makes it possible to perform an efficient RH diffusion process.
  • the lower limit of the atmospheric gas pressure is, for example, about 10 ⁇ 3 Pa, but RH diffusion treatment can be performed. However, if the atmospheric gas pressure is low, the RH diffusion source and the RTB-based sintered magnet material are likely to be welded. Therefore, the lower limit of the atmospheric gas pressure is preferably 0.1 Pa, and more preferably 5 Pa.
  • the heat treatment temperature during the RH diffusion step is 800 ° C. or higher and 1000 ° C. or lower. This temperature range is a preferable temperature range in which the heavy rare earth element RH diffuses inward through the grain boundary phase of the RTB-based sintered magnet material.
  • the RH diffusion source is composed of heavy rare earth element RH and Fe of 30% by mass to 80% by mass, and RH metal is not excessively supplied at 800 ° C. or higher and 1000 ° C. or lower.
  • the heat treatment temperature is less than 800 ° C.
  • the amount of RH elements that vaporize and sublimate is small, so that diffusion does not occur easily, and a desired coercive force improving effect cannot be obtained, or an RH diffusion process for obtaining a desired coercive force improving effect. It takes a long time and is not preferable. Further, when the temperature exceeds 1000 ° C., the problem that the RTB-based sintered magnet material and the RH diffusion source are welded easily occurs.
  • the heat treatment time is the ratio of the amount of RTB-based sintered magnet material and RH diffusion source charged during the RH diffusion treatment, the shape of the RTB-based sintered magnet material, and the shape of the RH diffusion source.
  • amount of heavy rare earth element RH (diffusion amount) to be diffused into the RTB-based sintered magnet material by the RH diffusion treatment for example, 10 minutes to 72 hours. Preferably it is 1 to 12 hours.
  • a first heat treatment may be performed on the RTB-based sintered magnet material for the purpose of homogenizing the diffused heavy rare earth element RH.
  • the first heat treatment is performed in a range of 700 ° C. or higher and 1000 ° C. or lower, in which the heavy rare earth element RH can substantially diffuse, and more preferably is performed at a temperature of 850 ° C. or higher and 950 ° C. or lower.
  • the time for the first heat treatment is, for example, 10 minutes to 72 hours. Preferably it is 1 to 12 hours.
  • the atmosphere of the heat treatment furnace for performing the first heat treatment is preferably a vacuum or an inert gas atmosphere, and the atmospheric gas pressure is preferably equal to or lower than atmospheric pressure.
  • a second heat treatment (400 ° C. or higher and 700 ° C. or lower) is further performed as necessary.
  • the second heat treatment is the first heat treatment. It is preferably performed after the heat treatment (700 ° C. or higher and 1000 ° C. or lower).
  • the RH diffusion treatment, the first heat treatment (700 to 1000 ° C.) and the second heat treatment (400 to 700 ° C.) may be performed in the same treatment chamber.
  • the time for the second heat treatment is, for example, 10 minutes to 72 hours. Preferably it is 1 to 12 hours. Note that only the second heat treatment may be performed without performing the first heat treatment.
  • the atmosphere of the heat treatment furnace for performing the second heat treatment is preferably a vacuum or an inert gas atmosphere, and the atmospheric gas pressure is preferably atmospheric pressure or lower.
  • the composition and size of the RH diffusion source, the pressure of the atmospheric gas during the RH diffusion process, and the heat treatment temperature are set within an appropriate range, and the RTB-based sintered magnet material and the RH diffusion source as described above are used.
  • the RH diffusion process in the arrangement the RH is not in contact with the RTB-based sintered magnet material directly from the contact point between the RTB-based sintered magnet material and the RH diffusion source. Vaporization and sublimation from a part of the RH diffusion source enables supply and diffusion to the surface of the RTB-based sintered magnet material with high efficiency.
  • the RH diffusion source in the present invention is a rare earth iron alloy having a relatively large particle size and containing RH and 30% by mass or more and 80% by mass or less of Fe, in the RH diffusion step, RTB It is difficult to weld with a sintered magnet material and can be easily separated and recovered. Further, since the composition and particle size of the RH diffusion source hardly change even after passing through the RH diffusion step, for example, RTB sintering that is not used in the RH diffusion step, that is, not subjected to RH diffusion treatment. The magnet material can be reused repeatedly. Since the RH diffusion source can be reused as it is without any special treatment, rare RH can be used without waste. A new RH diffusion source that has not been used in the RH diffusion step may be mixed and used.
  • an RH diffusion source having the composition and size shown in Table 1 was prepared.
  • the RH diffusion source slabs of RH—Fe alloy produced by a rapid cooling method were pulverized with a pin mill, and then those having particle sizes shown in Table 1 were selected by classification.
  • Classification was performed according to the method described in JIS Z 2510 using an automatic sieve shaker. Specifically, classification was performed using sieves having openings of 53 ⁇ m, 300 ⁇ m, 500 ⁇ m, 850 ⁇ m, 2000 ⁇ m and 5600 ⁇ m as defined in JIS Z 8801-1.
  • the RTB-based sintered magnet material and RH diffusion source are placed in the processing vessel. did. Specifically, an RH diffusion source having a thickness of 1 to 5 mm is placed at the bottom of a 300 mm ⁇ 150 mm ⁇ 100 mm SUS box-type processing vessel, and an RTB-based sintering is performed on the RH diffusion source. Ten magnet materials were arranged, and the lid was put after inserting the RH diffusion source so that the RTB-based sintered magnet material was hidden. A processing vessel in which the RTB-based sintered magnet material and the RH diffusion source were arranged was placed in a heat treatment furnace, and heat treatment was performed in an Ar atmosphere at the atmospheric pressure, diffusion temperature, and diffusion time shown in Table 1.
  • the heat treatment was performed while evacuating from room temperature, and after the atmospheric pressure and temperature reached the pressure and diffusion temperature shown in Table 1, RH diffusion treatment was performed under the conditions of diffusion time and diffusion temperature shown in Table 1. . Thereafter, after the temperature was lowered to room temperature, the processing vessel was taken out, and the RTB-based sintered magnet material and the RH diffusion source were separated and collected.
  • the RTB system sintered magnet material and the RH diffusion source could be easily separated, but Samples 24 to 27 and 29 were used in the RTB system sintered magnet.
  • the RH diffusion source was welded to the material surface and could not be separated.
  • the recovered RTB-based sintered magnet material was returned to the processing container and again stored in the heat treatment furnace. Thereafter, as in the case of performing the RH diffusion treatment, the temperature was raised while evacuating, and after reaching the first heat treatment temperature, the temperature was maintained for a predetermined time to perform the first heat treatment. Subsequently, after the temperature was lowered to room temperature, the temperature was raised to the second heat treatment temperature, and after reaching the second heat treatment temperature, the temperature was maintained for a predetermined time to perform the second heat treatment.
  • the first heat treatment condition was 900 ° C. for 3 hours, and the second heat treatment condition was 500 ° C. for 3 hours. Sample 23 was subjected to only the second heat treatment without performing the first heat treatment. Note that the first heat treatment condition and the second heat treatment condition are not limited to these examples.
  • FIG. 7 shows the relationship between the size of the RH diffusion source, the temperature of the RH diffusion process, and the amount of change in H cJ in samples 3 to 5, 6, 8, 10, and 14 to 16. In any case, without the B r is greatly reduced, H cJ is that has increased more than 50 kA / m was confirmed.
  • FIG. 8 shows the relationship between the pressure of the atmospheric gas and the amount of change in H cJ in Samples 7 to 9.
  • H cJ is that has increased more than 50 kA / m was confirmed.
  • Example 2 After performing the RH diffusion treatment in the same manner as Samples 1 to 23 in Experimental Example 1, the RTB-based sintered magnet material is taken out from the processing container, and the RTB-based sintered magnet material and the RH diffusion source are taken out. Was separated and recovered. Using the same RTB-based sintered magnet material prepared in Experimental Example 1 and the recovered RH diffusion source, RH diffusion treatment was performed in the same manner as in Experimental Example 1, as a result of measurement of magnetic properties in the same way, in all samples, without the B r is greatly reduced, H cJ was confirmed that has increased the same extent as in experimental example 1.
  • Example 3 After performing the RH diffusion treatment in the same manner as Sample 10 in Experimental Example 1, the RTB-based sintered magnet material is taken out of the processing vessel, and the RTB-based sintered magnet material and the RH diffusion source are separated. And recovered. Using the same RTB-based sintered magnet material prepared in Experiment Example 1 and the recovered RH diffusion source, RH diffusion treatment was performed in the same manner as in Experiment Example 1. Similarly, the RH diffusion treatment was repeated 11 times, and the RH diffusion treatment was performed 13 times in total.
  • FIG. 9 is a graph showing the relationship between the number of repetitions of the RH diffusion process and the amount of change in H cJ . Even when the RH diffusion source was recovered and repeatedly used, it was confirmed that H cJ increased as much as in Experimental Example 1.
  • the present invention efficiently uses rare heavy rare earth elements, it can be suitably used for mass production of RTB-based sintered magnets having excellent magnet characteristics.
  • Processing Container 20 Lid 30 RTB System Sintered Magnet Material 40 RH Diffusion Source 100 Processing Container

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 本発明のR-T-B系焼結磁石の製造方法は、少なくとも1つのR-T-B系焼結磁石素材(Rは希土類元素、TはFeまたはFeとCo)を準備する工程と、重希土類元素RH(Dyおよび/またはTb)および30質量%以上80質量%以下のFeを含有し、各々の粒径が53μm超5600μm以下の複数のRH拡散源を準備する工程と、R-T-B系焼結磁石素材、およびRH拡散源を処理容器内に配置する配置工程であって、RH拡散源の幾つかをR-T-B系焼結磁石素材に接触させる配置工程と、処理容器内においてRH拡散源の幾つかが接触した状態のR-T-B系焼結磁石素材、ならびにR-T-B系焼結磁石素材に接触するRH拡散源および接触していないRH拡散源に対して、圧力5000Pa以下の不活性雰囲気下、800℃以上1000℃以下の温度で熱処理を行うRH拡散工程と、R-T-B系焼結磁石素材からRH拡散源を離間させる分離工程とを含む。

Description

R-T-B系焼結磁石の製造方法
 本発明は、R214B型化合物を主相として有するR-T-B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)の製造方法に関する。
 R214B型化合物を主相とするR-T-B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。
 R-T-B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」と表記する)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高い保磁力を維持することが要求されている。
 R-T-B系焼結磁石は、R214B型化合物相中のRの一部を重希土類元素RH(Dy、Tb)で置換すると、保磁力が向上することが知られている。高温で高い保磁力を得るためには、R-T-B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R-T-B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、保磁力が向上する一方、残留磁束密度Br(以下、単に「Br」と表記する)が低下してしまうという問題がある。また、重希土類元素RHは希少資源であるため、その使用量を削減することが求められている。
 そこで、近年、Brを低下させないように、より少ない重希土類元素RHによってR-T-B系焼結磁石の保磁力を向上させることが検討されている。本出願人は、既に特許文献1において、R-T-B系焼結磁石体表面にDy等の重希土類元素RHを供給しつつ、該表面から重希土類元素RHを焼結磁石体の内部に拡散させる方法(「蒸着拡散法」)を開示している。
 また、本出願人は、特許文献2において、R-T-B系焼結磁石体の表面にRH拡散源としてRHを含有する箔または粉末を接触させた状態で熱処理を行うことにより、前記箔または粉末からRHをR-T-B系焼結磁石体の内部に拡散させる方法を提案した。特許文献2の方法によれば、RH供給源が箔の場合は厚さ1~50μmのものを用い、RH拡散源が粉末の場合は粒径が1~50μmの粉末によって磁石表面上に厚さ1~50μmの粉末層を形成する。こうして、少ない量のRHを効率よく活用し、R-T-B系焼結磁石体の内部に拡散させることが可能となる。実施例においては、RH拡散源として純Dyを使用している。
 一方、特許文献3には、RH拡散源として平均粒径が100nm~50μmであるRH-Fe化合物の微粉末を用い、これを溶媒に分散させたスラリーをR-T-B系焼結磁石体の表面に塗布して熱処理する方法が開示されている。特許文献3の方法によれば、RH拡散源として鉄化合物を用いることにより、HcJを大きく向上させることができる。さらに、共晶点付近で融点が低下するため、熱処理温度を低くすることができ、熱処理時の温度ばらつきの影響を受けにくくなる。また、平均粒径が100nm~50μmのRH化合物の微粉末が溶媒に分散されたスラリーを用いることにより、R-T-B系焼結磁石体に対して均一にRH化合物を付着させることができ、熱処理によるRHの拡散をより均一に生じさせることが可能となる。
 特許文献4には、希土類と希土類以外の元素の合金であるRH拡散源の粉末をR-T-B系焼結磁石体の表面に存在させた状態で熱処理を施す方法が記載されている。前記粉末中には、希土類、Fe、Co以外の元素である種々のM元素が必須で含有される。特許文献4においても、RH拡散源の粉末は有機溶媒または水中に分散させてR-T-B系焼結磁石体の表面に塗布される。粉末の平均粒径は小さいほど拡散効率が高くなるとされている。
 特許文献5には、RH拡散源として粒径10μm以下のRHと鉄族遷移元素を含有する合金の粉末を用い、バレルペインティング法などによってR-T-B系焼結磁石体の表面に塗布して熱処理する方法が開示されている。
 特許文献6には、熱処理用容器内面にRH酸化物の層を形成し、この熱処理容器内にR-T-B系焼結磁石体を配置して熱処理することにより、熱処理容器内面と焼結磁石体が接触していても両者は融着、付着することがなく、さらに、RH酸化物層のRHが還元されて焼結磁石内部に拡散侵入するためHcJの増加が得られることが記載されている。
国際公開第2007/102391号 特開2007-258455号公報 特開2009-289994号公報 特開2008-263179号公報 国際公開第2008/032426号 特開昭63-219548号公報
 特許文献1および特許文献2に記載の方法は、どちらも有機溶媒、粘着剤などを使用することなく、RHを効率的に拡散させることができる。また、スパッタ法などに比べ、熱処理炉内壁に付着するなどのRHの無駄な消費がない。特許文献1および特許文献2に記載の方法は、RHが磁石表層部分の主相内部に拡散しにくいため、Brの低下が極力抑制できる優れた方法である。
 しかしながら、特許文献1に記載の方法では、R-T-B系焼結磁石体とRHバルク体を離間配置する必要があり、配置の為の工程に非常に手間がかかるという問題があった。
 また、特許文献2に記載の方法においては、RH拡散源として純Dyの箔や粉末を使用しているため、熱処理によって磁石表面に溶着しやすい。このため、RH拡散源は、熱処理後の分離が困難であるので再利用できず、完全に磁石内部に拡散させてしまう必要がある。
 特許文献3~5に記載の方法においては、いずれも有機溶媒、粘着剤などの有機成分を使用してR-T-B系焼結磁石体の表面にRH拡散源の粉末を塗布している。粉末の塗布方法はいずれも簡易なものであるが、湿式の塗布工程が別途必要となり、生産効率がその分どうしても低くなってしまう。また、RH拡散源として粒径10μm以下の微粉末を用いている為、RH拡散源はR-T-B系焼結磁石体と反応して変質、および/または、R-T-B系焼結磁石体に溶着しやすく、熱処理後の分離が困難であるので再利用できず、完全に磁石内部に拡散させてしまう必要がある。
 特許文献6の方法は、R-T-B系焼結磁石体と融着、付着させないために、RH拡散源として、RHの酸化物を用いているため、拡散効率が悪く、HcJの増加はわずかである。
 本発明は、上記事情に鑑みてなされたものであり、その目的は、Brを低下させることなくDyやTbの重希土類元素RHをR-T-B系焼結磁石素材の表面から内部に拡散させることで高いHcJを得るR-T-B系焼結磁石の製造方法において、R-T-B系焼結磁石素材とRH拡散源を、煩雑な配置工程や、溶媒、粘着剤などを使用した塗布工程を経ることなく簡易な方法で接触配置させ、また、R-T-B系焼結磁石素材とRH拡散源が溶着することなくRH拡散源を繰り返し使用でき、かつ効果的にR-T-B系焼結磁石素材内部に拡散させることで、高いHcJを有するR-T-B系焼結磁石を高い生産効率で製造する方法を提供することである。
 本発明のR-T-B系焼結磁石の製造方法は、少なくとも1つのR-T-B系焼結磁石素材(Rは希土類元素、TはFeまたはFeとCo)を準備する工程と、重希土類元素RH(Dyおよび/またはTb)および30質量%以上80質量%以下のFeを含有し、各々の粒径が53μm超5600μm以下の複数のRH拡散源を準備する工程と、前記R-T-B系焼結磁石素材、および、前記複数のRH拡散源を処理容器内に配置する配置工程であって、前記複数のRH拡散源の幾つかを前記R-T-B系焼結磁石素材に接触させる配置工程と、前記処理容器内において、前記複数のRH拡散源の幾つかが接触した状態の前記R-T-B系焼結磁石素材、ならびに、前記R-T-B系焼結磁石素材に接触するRH拡散源および前記R-T-B系焼結磁石素材に接触していないRH拡散源に対して、圧力5000Pa以下の不活性雰囲気下、800℃以上1000℃以下の温度で熱処理を行うRH拡散工程と、前記RH拡散工程後に、前記R-T-B系焼結磁石素材から前記複数のRH拡散源を離間させる分離工程とを含む。
 ある実施形態において、前記配置工程は、前記複数のRH拡散源の集合体の内部に前記R-T-B系焼結磁石素材の少なくとも一部を埋設するように配置する工程である。
 ある実施形態において、前記配置工程は、前記複数のRH拡散源の集合体の内部に前記R-T-B系焼結磁石素材の全体を埋設するように配置する工程である。
 ある実施形態において、前記配置工程は、前記複数のRH拡散源の集合体の内部に複数の前記R-T-B系焼結磁石素材の少なくとも一部を埋設するように配置する工程である。
 ある実施形態において、前記配置工程は、複数の前記R-T-B系焼結磁石素材を配置した後、前記複数のR-T-B系焼結磁石素材の間隙を埋めるように前記複数のRH拡散源を配置させる工程を含む。
 ある実施形態において、前記配置工程は、前記複数のRH拡散源および前記R-T-B系焼結磁石素材を配置するための治具を用いて前記複数のRH拡散源および前記R-T-B系焼結磁石素材を配置した後、前記複数のRH拡散源および前記R-T-B系焼結磁石素材を前記治具とともに前記処理室内に移動させる工程を含む。
 ある実施形態において、前記RH拡散工程の雰囲気圧力は0.1Pa以上である。
 ある実施形態において、前記分離工程は、前記RH拡散工程で使用した前記複数のRH拡散源を回収する工程を含む。
 ある実施形態において、前記R-T-B系焼結磁石素材のうち、前記RH拡散工程で使用されなかったR-T-B系焼結磁石素材と、前記分離工程で回収された前記複数のRH拡散源を前記処理容器または他の処理容器内に配置する配置工程であって、前記複数のRH拡散源の幾つかを前記R-T-B系焼結磁石素材に接触させる第2の配置工程と、前記処理容器または前記他の処理容器内において、前記複数のRH拡散源の幾つかが接触した状態の前記R-T-B系焼結磁石素材、ならびに、前記R-T-B系焼結磁石素材に接触するRH拡散源および前記R-T-B系焼結磁石素材に接触していないRH拡散源に対して、圧力5000Pa以下の不活性雰囲気下、800℃以上1000℃以下の温度で熱処理を行う第2のRH拡散工程と、前記RH拡散工程後に、前記R-T-B系焼結磁石素材から前記複数のRH拡散源を離間させる第2の分離工程とを含む。
 本発明によれば、粒径が53μm超と比較的大きく、かつ、DyおよびTbの少なくとも一方からなる重希土類元素RHと30質量%以上80質量%以下のFeとを含有する複数のRH拡散源を用いるため、R-T-B系焼結磁石素材とRH拡散源を、煩雑な配置工程や、溶媒、粘着剤などを使用した塗布工程を経ることなく簡易な方法で接触配置させることができる。このため、配置の手間や余分な工程がかからず、生産効率が高い。
 また、上述したRH拡散源は、R-T-B系焼結磁石素材と溶着しにくい。このため、RH拡散工程後に、RH拡散源をR-T-B系焼結磁石体から容易に分離して回収できる。また、個々のRH拡散源のサイズが53μmを超える大きさを有しているため、1回のRH拡散工程によってRH拡散源の全てが消費されることを避けられる。このため、RH拡散源を繰り返して使用することができる。
 さらに、上記のRH拡散源を用いたRH拡散工程を、圧力5000Pa以下の不活性雰囲気下、800℃以上1000℃以下の熱処理条件で行うことにより、R-T-B系焼結磁石体とRH拡散源の接触点からの拡散(接触拡散)と、R-T-B系焼結磁石体に接触していないRH拡散源からのRHの気化・昇華による拡散(非接触拡散)の両方を同時に行うことができる。この結果、RHの供給不足および過剰を避けて、重希土類元素RHを磁石内に適切に導入しやすくなる。
本発明の好ましい実施形態におけるR-T-B系焼結磁石素材とRH拡散源の配置例を示す図である。 本発明の好ましい実施形態におけるR-T-B系焼結磁石素材とRH拡散源の他の配置例を示す図である。 本発明の好ましい実施形態におけるR-T-B系焼結磁石素材とRH拡散源の更に他の配置例を示す図である。 本発明の好ましい実施形態におけるR-T-B系焼結磁石素材とRH拡散源の更に他の配置例を示す図である。 本発明の好ましい実施形態におけるR-T-B系焼結磁石素材とRH拡散源の更に他の配置例を示す図である。 本発明の好ましい実施形態で使用可能な治具の構成例を示す図である。 本発明の好ましい実施形態における治具とR-T-B系焼結磁石体とRH拡散源の配置例を示す図である。 サンプル3~5,6,8,10,14~16において、RH拡散源の大きさ、RH拡散処理の温度とHcJの変化量との関係を示すグラフである。 サンプル7~9において、雰囲気ガスの圧力とHcJの変化量との関係を示すグラフである。 RH拡散処理の繰り返し回数とHcJの変化量との関係を示すグラフである。
 本発明のR-T-B系焼結磁石の製造方法は、少なくとも1つのR-T-B系焼結磁石素材(Rは希土類元素、TはFe、またはFeとCo)を準備する工程と、重希土類元素RH(Dyおよび/またはTB)および30質量%以上80質量%以下のFeを含有し、各々の粒径が53μm超5600μm以下の複数のRH拡散源を準備する工程とを行う。そして、R-T-B系焼結磁石素材、および、複数のRH拡散源を処理容器内に配置する配置工程を行う。この配置工程では、複数のRH拡散源の幾つかをR-T-B系焼結磁石素材に接触させる。
 次に、処理容器内において、複数のRH拡散源の幾つかが接触した状態のR-T-B系焼結磁石素材、ならびに、R-T-B系焼結磁石素材に接触するRH拡散源およびR-T-B系焼結磁石素材に接触していないRH拡散源に対して熱処理を行い、RH拡散源からR-T-B系焼結磁石素材に重希土類元素RHを拡散させる(RH拡散工程)。このRH拡散工程は、圧力5000Pa以下の不活性雰囲気下、800℃以上1000℃以下の温度で熱処理を行う。
 上記のRH拡散工程後に、R-T-B系焼結磁石素材から複数のRH拡散源を離間させる分離工程を行う。離間された複数のRH拡散源は、再利用が可能であるため、好ましい実施形態では、回収され、次のRH拡散工程に使用され得る。
 本発明によれば、複数のRH拡散源のうちの幾つかがR-T-B系焼結磁石素材に接触し、複数のRH拡散源の残りは、R-T-B系焼結磁石素材に接触していない状態でRH拡散源からRHがR-T-B系焼結磁石素材の表面に供給されるとともに、磁石素材内部に拡散される。ここでの「接触」とは、RH拡散源の微粉末を磁石素材の表面に塗布した状態とは異なり、磁石素材からRH拡散源を容易に分離できるように一時的に接している状態である。従来の塗布によれば、粉末が素材表面に付着または固着しており、分離は容易ではない。
 上記の配置工程は、複数のRH拡散源の集合体の内部に1つまたは複数のR-T-B系焼結磁石素材の少なくとも一部を埋設するように配置する工程であってもよい。また、この配置工程は、複数の前記R-T-B系焼結磁石素材を配置した後、複数のR-T-B系焼結磁石素材の間隙を埋めるように複数のRH拡散源を配置させる工程であってもよい。更に、この配置工程は、複数のRH拡散源およびR-T-B系焼結磁石素材を配置するための治具を用いて複数のRH拡散源およびR-T-B系焼結磁石素材を配置した後、この治具とともに処理室内に移動させるようにしてもよい。
 R-T-B系焼結磁石素材と前記組成および大きさのRH拡散源をこのような関係に配置して上記熱処理条件で加熱することにより、重希土類元素RHが、R-T-B系焼結磁石素材とRH拡散源の接触点から直接、および、R-T-B系焼結磁石素材と接触していない部分のRH拡散源から気化・昇華して、R-T-B系焼結磁石素材の表面に供給される。また、重希土類元素RHはRH拡散源からR-T-B系焼結磁石素材の表面に供給されると同時にR-T-B系焼結磁石素材内部への拡散が実行される(RH拡散工程)。
 なお、本明細書においては、RH拡散工程を行う前の磁石体をR-T-B系焼結磁石素材、RH拡散工程を行った後の磁石体をR-T-B系焼結磁石と呼ぶこととする。
 本発明によれば、R-T-B系焼結磁石素材表面にRH粉末が分散した溶媒や粘着剤をR-T-B系焼結磁石素材表面に塗布するような手間のかかる工程が不要になる。したがって、従来技術に比べて簡易な方法でR-T-B系焼結磁石素材とRH拡散源を配置してRH拡散工程を行うことができる。このため、工程が短縮できる。また、R-T-B系焼結磁石素材とRH拡散源を所定位置に並べる必要もないので生産性が高い。
 本発明における複数のRH拡散源は、各々が比較的大きな粒径を有し、かつ、RHと30質量%以上80質量%以下のFeを含有する希土類鉄合金であるので、RH拡散工程においてR-T-B系焼結磁石と溶着しにくく、また、繰り返し再利用が可能である。
 また、本発明のRH拡散源は重希土類元素RHと鉄との化合物を多く含むことから、R-T-B系焼結磁石素材と反応しにくい。R-T-B系焼結磁石素材とRH拡散源との接触点も少ないため、800℃以上1000℃以下の温度でRH拡散処理を行っても、R-T-B系焼結磁石の表面に供給される重希土類元素RH(DyまたはTbの少なくとも一方)が供給過多とならない。これにより、RH拡散後のBrの低下を抑えながら、充分に高いHcJを得ることができる。
 以下、本発明の製造方法の実施形態をさらに詳細に説明する。
 [R-T-B系焼結磁石素材]
 まず、本発明では、重希土類元素RHの拡散の対象とするR-T-B系焼結磁石素材を準備する。このR-T-B系焼結磁石素材は公知のものが使用でき、例えば以下の組成からなる。
 希土類元素R:12~17原子%
 B(Bの一部はCで置換されていてもよい):5~8原子%
 添加元素M(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0~2原子%
 T(Feを主とする遷移金属であって、Coを含んでもよい)および不可避不純物:残部
 ここで、希土類元素Rは、主として軽希土類元素RL(Nd、Pr)から選択される少なくとも1種の元素であるが、重希土類元素を含有していてもよい。なお、重希土類元素を含有する場合は、DyおよびTbの少なくとも一方を含むことが好ましい。
 上記組成のR-T-B系焼結磁石素材は、任意の製造方法によって製造される。
 [RH拡散源]
 本発明のRH拡散源は、重希土類元素RH(Dy及びTbの少なくとも1種)と30質量%以上80質量%以下のFeを含有する希土類鉄合金である。この組成範囲であれば、RH拡散源はRHFe2などの重希土類元素RHと鉄との化合物を主に含有する。
 RH拡散源のFeの含有量が30質量%未満であると、R-T-B系焼結磁石素材に溶着しやすくなり、RHの供給量が安定しなくなったり、RH拡散源が再利用しにくくなったりする恐れがある。
 また、RH拡散源のFeの含有量が80質量%を超えるとRHの含有量が20質量%よりも少なくなるため、RH拡散源からの重希土類元素RHの供給量が小さくなり、所望の保磁力向上効果を得るためには処理時間が非常に長くなる為、量産には適しない。
 本発明のRH拡散源に含まれるFeの質量比率は、変質しにくい組成範囲であるという観点から、好ましくは40質量%以上60質量%以下である。好ましい範囲では、RH拡散源中に含まれるDyFe2等のRHFe2化合物および/またはDyFe3等のRHFe3化合物の体積比率が両者の合計で90%以上となる。これらの化合物の体積比率が合計で90%以上になると、R-T-B系焼結磁石体とほとんど反応しなくなるため、より溶着が発生しにくくなる。
 RH拡散源は、Dy、Tb、Fe以外に、本発明の効果を損なわない限りにおいて、Nd、Pr、La、Ce、およびCoからなる群から選択された少なくとも1種を含有してもよい。また、不可避不純物などとして、例えば、5質量%以下の、Al、Ti、V、Cr、Mn、Ni、Cu、Ga、Nb、Mo、Zn、Zr、Sn、Ag、In、Hf、Ta、W、Pb、SiおよびBiからなる群から選択された少なくとも1種を含んでいてもよい。
 本発明のRH拡散源は粒径が大きいので、一回のRH拡散工程を経てもその組成、粒径はほとんど変わらない。RH拡散源を繰り返し再利用する場合は、それらは、各々の粒径が53μm超5600μm以下の範囲に管理されていることが好ましい。
 本発明におけるRH拡散源の形態は、例えば、球状、線状、リン片状、塊状、粉末など任意であるが、その大きさは、粒径が53μm超5600μm以下である。RH拡散源の粒径は、JIS Z 2510記載の方法によって、JIS Z 8801-1に規定のふるいを用いて分級して所望の粒径に調整する。分級時にふるいきれなかったり、53μm超5600μm以下の粒子に付着するなどの不可避の理由で少量(例えば10mass%以下)の微粉が含まれていても良い。RH拡散源の作製方法は任意であるが、例えば、所定組成のRH-Fe合金のインゴット、鋳片、ワイヤーなどを切断したり、粉砕したりすることによって得ることができる。
 RH拡散源の粒径が53μm以下であると、本発明のRH拡散源の組成であってもR-T-B系焼結磁石素材との溶着が起こりやすく、RH拡散源再利用の面から好ましくない。RH拡散源の粒径が5600μm超であると、R-T-B系焼結磁石体表面に均一に接触しにくくなる。RH拡散源の粒径は100μm超4750μm以下であることが好ましく、500μm超4000μm以下であることがより好ましい。
 [配置工程]
 好ましい実施形態では、以上に説明したR-T-B系焼結磁石素材とRH拡散源とを、R-T-B系焼結磁石素材の少なくとも一部に複数のRH拡散源の幾つかが接触するように配置する。このとき、RH拡散源同士間、およびRH拡散源とR-T-B系焼結磁石素材との間に、有機溶媒や粘着剤などの有機物質が存在することのないように配置することが好ましい。その後、所定の雰囲気圧力および温度で熱処理してRH拡散工程を行う。
 ここで、図1を参照しながら、R-T-B系焼結磁石素材およびRH拡散源の配置方法を説明する。
 図1に示す容器100は、上部に開口部を有する容器本体10と蓋体20とを備える耐熱性容器である。この容器100の内部は、本体10と蓋体20との間隙を介して外部と通気可能である。図1の例では、容器100の底部に、容器100とR-T-B系焼結磁石素材30が接しない程度の厚さになるように多数のRH拡散源40を入れている。複数のRH拡散源40の集合体の上に、間隔をあけて複数のR-T-B系焼結磁石素材30を並べている。さらにR-T-B系焼結磁石素材30が隠れる程度にRH拡散源40を入れることによって、R-T-B系焼結磁石素材30の全体をRH拡散源40の集合体中に埋設させている。
 R-T-B系焼結磁石素材30の全表面からRHを拡散させてHcJを向上させる場合に、図1に示すように、R-T-B系焼結磁石素材30の全体が多数のRH拡散源40の集合体によって覆われていることが好ましい。R-T-B系焼結磁石素材30の少なくとも一部(例えば、R-T-B系焼結磁石素材の表面積の50%以上)がRH拡散源40の集合体によって覆われていれば、本発明の効果を得ることが可能である。具体的には、処理容器100の内壁とR-T-B系焼結磁石素材30が接していたり、R-T-B系焼結磁石素材30同士が接触したりして、R-T-B系焼結磁石素材30の一部領域がRH拡散源40と直接接していなくとも本発明の効果は発揮される。
 本発明におけるR-T-B系焼結磁石素材30とRH拡散源40の配置形態は、図1の例に限定されない。図2に示すように、処理容器100内にRH拡散源40を配置し、その上にR-T-B系焼結磁石素材30を乗せていてもよい。
 図3に示すように、処理容器100の中にR-T-B系焼結磁石素材30を配列した後、その隙間を埋めるように多数のRH拡散源40を流し込んでもよい。
 図4に示すように、処理容器100の底面にR-T-B系焼結磁石素材30を配列した後、それらをRH拡散源40の集合体で覆ってもよい。
 図5に示すように、R-T-B系焼結磁石素材30の上部にRH拡散源40を配置してから、その上にさらにR-T-B系焼結磁石素材30とRH拡散源40を配置するなどして、R-T-B系焼結磁石素材30を上下方向に重なり合うように配置してもよい。
 R-T-B系焼結磁石素材30の配置方向は任意であり、例えば板状磁石の場合、横方向に並べても、縦方向に並べてもよいし、R-T-B系焼結磁石素材30が小型の場合にはランダムに配置しても良い。
 R-T-B系焼結磁石素材30を所定の間隔に並べる場合には、処理容器100内に、R-T-B系焼結磁石素材30とRH拡散源40のほか、配置作業を補助する治具が存在していてもよい。例えば、補助治具を使用してR-T-B系焼結磁石素材30を好適な間隔に並べてからRH拡散源40を入れてもよい。図6Aは、治具50によってR-T-B系焼結磁石素材30を好適な間隔に並べた状態を模式的に示す図である。治具は、耐熱性を有していれば、図示される構成を有するものに限定されず、種々の構成を採用し得る。図6Bは、治具50およびR-T-B系焼結磁石素材30が置かれた処理容器100内に多数のRH拡散源40を投入した状態を示す図である。
 本発明によれば、R-T-B系焼結磁石素材30の表面に粘着剤等を存在させることなくRH拡散源40を安定して接触させることができる。
 処理容器100はSUS材、Ti、Mo、Nb、FeCrAl合金、FeCoCr合金などの耐熱性金属または合金によって形成され得る。処理容器100の形状は、任意であり、箱型、筒型などであってもよい。熱処理炉全体をそのまま処理容器100として用いてもよい。作業効率を考えると、熱処理装置の外部でR-T-B系焼結磁石素材30とRH拡散源40とを配置した処理容器100を熱処理炉内に挿入することが好ましい。処理容器100は、その内部の雰囲気制御が可能なように、内部と外部と通気可能にする構成を有している。
 本発明の好ましい実施形態では、RH拡散源40を溶媒に分散させたり溶解させたりすることなくそのまま使用する。溶媒や粘着剤を使用しないので、RH拡散源40同士間、およびRH拡散源40とR-T-B系焼結磁石素材30との間には、常にRH拡散源40と雰囲気ガス以外の物質が存在しない。このため、R-T-B系焼結磁石素材30と接触していないRH拡散源40から気化・昇華したRHが、阻害されることなく、R-T-B系焼結磁石素材30の表面に供給される。
 ここで、R-T-B系焼結磁石素材30に接触するRH拡散源40の集合体の厚さは、500μm以上、さらには1000μm以上であることが好ましい。複数のR-T-B系焼結磁石素材を配置する場合は、R-T-B系焼結磁石素材が対向する面における前記RH拡散源40の集合体の厚さは、R-T-B系焼結磁石素材間の距離によって定義され得る。
 このように、有機物質を使用せずに、厚いRH拡散源40の集合体でR-T-B系焼結磁石素材30を覆うことにより、R-T-B系焼結磁石素材30と接触するRH拡散源40の接触点からの拡散とR-T-B系焼結磁石素材30に接触していないRH拡散源40からの拡散の両方の効果を得やすくなる。また、配置作業が容易で効率的であり、生産性が高い。
 [雰囲気]
 RH拡散工程時の雰囲気は不活性ガス雰囲気が好ましく、雰囲気ガスの圧力は5000Pa以下とする。本発明ではRH拡散源の大きさを比較的大きくしてR-T-B系焼結磁石素材との接触点を少なくしたことから、RH拡散源の接触点から直接R-T-B系焼結磁石素材内部に拡散するRHの量は比較的少ないが、RH拡散工程における雰囲気ガスの圧力を5000Pa以下とすることにより、R-T-B系焼結磁石素材と接触していない部分のRH拡散源からRHが気化・昇華して、R-T-B系焼結磁石素材の表面に供給されR-T-B系焼結磁石素材内部に拡散し、接触点からの拡散との両方の効果により、効率の高いRH拡散処理を行うことが可能となる。雰囲気ガス圧力の下限は、例えば10-3Pa程度でRH拡散処理を行うことができるが、雰囲気ガス圧力が低いとRH拡散源とR-T-B系焼結磁石素材が溶着しやすくなることがあるため、雰囲気ガス圧力の下限は0.1Paであることが好ましく、5Paであることがより好ましい。
 [熱処理温度]
 RH拡散工程時の熱処理温度は800℃以上1000℃以下とする。この温度範囲は、重希土類元素RHがR-T-B系焼結磁石素材の粒界相を伝って内部へ拡散するのに好ましい温度領域である。
 RH拡散源は重希土類元素RHと30質量%以上80質量%以下のFeとからなり、800℃以上1000℃以下でRH金属が供給過多にならない。
 熱処理温度が800℃未満では、気化・昇華するRH元素が少ないため拡散が起こりにくく、所望の保磁力向上効果を得ることができないか、もしくは所望の保磁力向上効果を得るためのRH拡散処理に長時間を要し、好ましくない。また、1000℃を超えるとR-T-B系焼結磁石素材とRH拡散源が溶着してしまう問題が生じやすくなる。
 熱処理の時間は、RH拡散処理をする際のR-T-B系焼結磁石素材およびRH拡散源の投入量の比率、R-T-B系焼結磁石素材の形状、RH拡散源の形状、および、RH拡散処理によってR-T-B系焼結磁石素材に拡散されるべき重希土類元素RHの量(拡散量)などを考慮して決められ、例えば10分から72時間である。好ましくは1時間から12時間である。
 [第1熱処理]
 RH拡散工程後に、拡散された重希土類元素RHをより均質化する目的でR-T-B系焼結磁石素材に対する第1熱処理を行っても良い。第1熱処理は、例えばRH拡散源を回収した後、重希土類元素RHが実質的に拡散し得る700℃以上1000℃以下の範囲で行い、より好ましくは850℃以上950℃以下の温度で実行される。この第1熱処理では、R-T-B系焼結磁石素材内部において重希土類元素RHの拡散が生じ、焼結磁石の表面付近に拡散導入された重希土類元素RHがさらに奥深くに拡散し、磁石全体としてHcJを高めることが可能になる。第1熱処理の時間は、例えば10分から72時間である。好ましくは1時間から12時間である。
 ここで、第1熱処理を行なう熱処理炉の雰囲気は真空または不活性ガス雰囲気中で、雰囲気ガス圧力は、大気圧以下が好ましい。
 [第2熱処理]
 また、必要に応じてさらに第2熱処理(400℃以上700℃以下)を行うが、第1熱処理と第2熱処理(400℃以上700℃以下)の両方を行う場合は、第2熱処理は第1熱処理(700℃以上1000℃以下)の後に行うことが好ましい。RH拡散処理、第1熱処理(700℃以上1000℃以下)および第2熱処理(400℃以上700℃以下)は、同じ処理室内で行っても良い。第2熱処理の時間は、例えば10分から72時間である。好ましくは1時間から12時間である。なお、第1熱処理を行わず、第2熱処理のみを行ってもよい。
 ここで、第2熱処理を行なう熱処理炉の雰囲気は真空または不活性ガス雰囲気中で、雰囲気ガス圧力は、大気圧以下が好ましい。
 このように、RH拡散源の組成、大きさ、RH拡散工程時の雰囲気ガスの圧力、熱処理温度を適正な範囲とし、上述のようなR-T-B系焼結磁石素材とRH拡散源の配置でRH拡散工程を行うことにより、RHが、R-T-B系焼結磁石素材とRH拡散源の接触点から直接、および、R-T-B系焼結磁石素材と接触していない部分のRH拡散源から気化・昇華して、R-T-B系焼結磁石素材の表面に供給と拡散を高い効率で行うことができる。
 [RH拡散源の再利用]
 本発明におけるRH拡散源は、比較的大きな粒径を有し、かつ、RHと30質量%以上80質量%以下のFeを含有する希土類鉄合金であるので、RH拡散工程においてR-T-B系焼結磁石素材と溶着しにくく、容易に分離して回収可能である。また、RH拡散工程を経てもRH拡散源の組成、粒径はほとんど変わらないので、例えば、RH拡散工程で使用されていない、すなわち、RH拡散処理が施されていないR-T-B焼結磁石素材に対して、繰り返し再利用が可能である。RH拡散源は特別な処理を施すことなくそのまま再利用することができるので、希少なRHを無駄なく利用することができる。なお、RH拡散工程で使用したことのない新たなRH拡散源を混合して用いてもよい。
(実験例1)
 まず、組成比Nd=30.0、Dy=0.5、B=1.0、Co=0.9、Al=0.1、Cu=0.1、残部=Fe(質量%)のR-T-B系焼結磁石素材を作製した。これを機械加工することにより、30mm×30mm×3mmの板状のR-T-B系焼結磁石素材を得た。作製したR-T-B系焼結磁石素材の磁気特性をB-Hトレーサによって測定したところ、HcJは1050kA/m、Brは1.40Tであった。なお、磁気特性の測定は、後述の第2熱処理に相当する500℃、3時間の熱処理を行った後測定した。
 次に、表1に示す組成、大きさのRH拡散源を用意した。RH拡散源は、急冷法によって作製したRH-Fe合金の鋳片をピンミルで粉砕した後、分級により、表1に示す粒径を有するものを選別した。分級は、自動ふるい振とう機を用い、JIS Z 2510記載の方法によって行った。具体的には、JIS Z 8801-1に規定の目開きがそれぞれ53μm、300μm、500μm、850μm、2000μm、5600μmのふるいを用いて分級した。
Figure JPOXMLDOC01-appb-T000001
 上記のR-T-B系焼結磁石素材およびRH拡散源を用意した後、図1の例に示すようにR-T-B系焼結磁石素材とRH拡散源とを処理容器内に配置した。具体的には、大きさ300mm×150mm×100mmのSUS製箱型処理容器の底部に1~5mmの厚さにRH拡散源を入れ、その上に間隔をあけてR-T-B系焼結磁石素材を10個並べ、さらにR-T-B系焼結磁石素材が隠れる程度にRH拡散源を入れてから蓋をした。R-T-B系焼結磁石素材とRH拡散源を配置した処理容器を熱処理炉に収容し、Ar雰囲気中、表1に示す雰囲気圧力、拡散温度、拡散時間で熱処理を行った。
 熱処理は、室温から真空排気しながら昇温し、雰囲気圧力および温度が、表1に示す圧力、拡散温度に達してから、表1に示す拡散時間および拡散温度の条件でRH拡散処理を行った。その後、いったん室温まで降温してから処理容器を取り出してR-T-B系焼結磁石素材とRH拡散源を分離して回収した。ここで、サンプル1~23、28においては、R-T-B系焼結磁石素材とRH拡散源は容易に分離できたが、サンプル24~27、29はR-T-B系焼結磁石素材表面にRH拡散源が溶着しており、分離できなかった。
 回収したR-T-B系焼結磁石素材を処理容器内に戻し、再び熱処理炉に収容した。その後、RH拡散処理を行う場合と同様に真空排気しながら昇温し、第1熱処理温度に達してから所定時間その温度に保持して第1熱処理を行った。続いて、いったん室温まで降温してから第2熱処理温度まで昇温し、第2熱処理温度に達してから所定時間その温度に保持して第2熱処理を行った。なお、第1熱処理条件は900℃、3時間とし、第2熱処理条件は500℃、3時間とした。サンプル23は第1熱処理を行わずに第2熱処理のみを行った。なお、第1熱処理条件および第2熱処理条件は、これらの例に限定されない。
 R-T-B系焼結磁石素材とRH拡散源が分離回収できたサンプル1~23、28について、磁気特性をB-Hトレーサによって測定し、HcJおよびBrの変化量を求めた。結果を表1に示す。
 サンプル1~19およびサンプル21~23より、RH拡散源のFe含有量が30質量%以上80質量%以下、RH拡散処理の温度が800℃以上1000℃以下の場合において、Brが大きく低下することなく、HcJは50kA/m以上増加しているのが確認された。
 図7は、サンプル3~5,6,8,10,14~16において、RH拡散源の大きさ、RH拡散処理の温度とHcJの変化量との関係を示したものである。いずれの場合においても、Brが大きく低下することなく、HcJは50kA/m以上増加しているのが確認された。
 図8は、サンプル7~9において、雰囲気ガスの圧力とHcJの変化量との関係を示したものである。いずれの場合においても、Brが大きく低下することなく、HcJは50kA/m以上増加しているのが確認された。
 (実験例2)
 実験例1のサンプル1~23と同様にしてRH拡散処理を行った後、処理容器からR-T-B系焼結磁石素材を取り出してR-T-B系焼結磁石素材とRH拡散源を分離して回収した。実験例1で最初に用意したものと同じR-T-B系焼結磁石素材と、回収したRH拡散源を用い、実験例1と同じ方法でRH拡散処理を行った後、実験例1と同じ方法で磁気特性を測定したところ、全てのサンプルにおいて、Brが大きく低下することなく、HcJは実験例1と同程度増加しているのが確認された。
(実験例3)
 実験例1のサンプル10と同様にしてRH拡散処理を行った後、処理容器からR-T-B系焼結磁石素材を取り出してR-T-B系焼結磁石素材とRH拡散源を分離して回収した。実験例1で最初に用意したものと同じR-T-B系焼結磁石素材と、回収したRH拡散源とを用い、実験例1と同じ方法でRH拡散処理を行った。同様に11回RH拡散処理を繰り返し、合計13回RH拡散処理を行った。図9はRH拡散処理の繰り返し回数とHcJの変化量との関係を示すグラフである。RH拡散源を回収して繰り返し使用しても、HcJは実験例1と同程度増加しているのが確認された。
 本発明は、希少な重希土類元素を効率的に利用するため、磁石特性に優れたR-T-B系焼結磁石の量産に好適に使用され得る。
 10   処理容器
 20   蓋体
 30   R-T-B系焼結磁石素材
 40   RH拡散源
100   処理容器

Claims (9)

  1.  少なくとも1つのR-T-B系焼結磁石素材(Rは希土類元素、TはFeまたはFeとCo)を準備する工程と、
     重希土類元素RH(Dyおよび/またはTb)および30質量%以上80質量%以下のFeを含有し、各々の粒径が53μm超5600μm以下の複数のRH拡散源を準備する工程と、
     前記R-T-B系焼結磁石素材、および、前記複数のRH拡散源を処理容器内に配置する配置工程であって、前記複数のRH拡散源の幾つかを前記R-T-B系焼結磁石素材に接触させる配置工程と、
     前記処理容器内において、前記複数のRH拡散源の幾つかが接触した状態の前記R-T-B系焼結磁石素材、ならびに、前記R-T-B系焼結磁石素材に接触するRH拡散源および前記R-T-B系焼結磁石素材に接触していないRH拡散源に対して、圧力5000Pa以下の不活性雰囲気下、800℃以上1000℃以下の温度で熱処理を行うRH拡散工程と、
     前記RH拡散工程後に、前記R-T-B系焼結磁石素材から前記複数のRH拡散源を離間させる分離工程と、
    を含む、R-T-B系焼結磁石の製造方法。
  2.  前記配置工程は、前記複数のRH拡散源の集合体の内部に前記R-T-B系焼結磁石素材の少なくとも一部を埋設するように配置する工程である、請求項1に記載のR-T-B系焼結磁石の製造方法。
  3.  前記配置工程は、前記複数のRH拡散源の集合体の内部に前記R-T-B系焼結磁石素材の全体を埋設するように配置する工程である、請求項2に記載のR-T-B系焼結磁石の製造方法。
  4.  前記配置工程は、前記複数のRH拡散源の集合体の内部に複数の前記R-T-B系焼結磁石素材の少なくとも一部を埋設するように配置する工程である、請求項1に記載のR-T-B系焼結磁石の製造方法。
  5.  前記配置工程は、複数の前記R-T-B系焼結磁石素材を配置した後、前記複数のR-T-B系焼結磁石素材の間隙を埋めるように前記複数のRH拡散源を配置させる工程を含む、請求項1に記載のR-T-B系焼結磁石の製造方法。
  6.  前記配置工程は、前記複数のRH拡散源および前記R-T-B系焼結磁石素材を配置するための治具を用いて前記複数のRH拡散源および前記R-T-B系焼結磁石素材を配置した後、前記複数のRH拡散源および前記R-T-B系焼結磁石素材を前記治具とともに前記処理室内に移動させる工程を含む、請求項1から4のいずれかに記載のR-T-B系焼結磁石の製造方法。
  7.  前記RH拡散工程の雰囲気圧力は0.1Pa以上である請求項1から6のいずれかに記載のR-T-B系焼結磁石の製造方法。
  8.  前記分離工程は、前記RH拡散工程で使用した前記複数のRH拡散源を回収する工程を含む、請求項1から7のいずれかに記載のR-T-B系焼結磁石の製造方法。
  9.  前記R-T-B系焼結磁石素材のうち、前記RH拡散工程で使用されなかったR-T-B系焼結磁石素材と、前記分離工程で回収された前記複数のRH拡散源を前記処理容器または他の処理容器内に配置する配置工程であって、前記複数のRH拡散源の幾つかを前記R-T-B系焼結磁石素材に接触させる第2の配置工程と、
     前記処理容器または前記他の処理容器内において、前記複数のRH拡散源の幾つかが接触した状態の前記R-T-B系焼結磁石素材、ならびに、前記R-T-B系焼結磁石素材に接触するRH拡散源および前記R-T-B系焼結磁石素材に接触していないRH拡散源に対して、圧力5000Pa以下の不活性雰囲気下、800℃以上1000℃以下の温度で熱処理を行う第2のRH拡散工程と、
     前記RH拡散工程後に、前記R-T-B系焼結磁石素材から前記複数のRH拡散源を離間させる第2の分離工程と、
    を含む、請求項1から8のいずれかに記載のR-T-B系焼結磁石の製造方法。
PCT/JP2012/051032 2011-01-19 2012-01-19 R-t-b系焼結磁石の製造方法 WO2012099186A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/977,125 US9484151B2 (en) 2011-01-19 2012-01-19 Method of producing R-T-B sintered magnet
EP12736976.7A EP2667391B1 (en) 2011-01-19 2012-01-19 Method of producing r-t-b sintered magnet
CN201280005903.8A CN103329224B (zh) 2011-01-19 2012-01-19 R-t-b系烧结磁体的制造方法
JP2012553761A JP5880448B2 (ja) 2011-01-19 2012-01-19 R−t−b系焼結磁石の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009186 2011-01-19
JP2011009186 2011-01-19

Publications (1)

Publication Number Publication Date
WO2012099186A1 true WO2012099186A1 (ja) 2012-07-26

Family

ID=46515808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051032 WO2012099186A1 (ja) 2011-01-19 2012-01-19 R-t-b系焼結磁石の製造方法

Country Status (5)

Country Link
US (1) US9484151B2 (ja)
EP (1) EP2667391B1 (ja)
JP (1) JP5880448B2 (ja)
CN (1) CN103329224B (ja)
WO (1) WO2012099186A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234971A (ja) * 2011-05-02 2012-11-29 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
CN103646772A (zh) * 2013-11-21 2014-03-19 烟台正海磁性材料股份有限公司 一种R-Fe-B系烧结磁体的制备方法
JP2016122861A (ja) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド 希土類永久磁石材料の製造方法
JP2017183348A (ja) * 2016-03-28 2017-10-05 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2018029108A (ja) * 2016-08-17 2018-02-22 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2018060930A (ja) * 2016-10-06 2018-04-12 日立金属株式会社 R−t−b系磁石の製造方法
JP2018060931A (ja) * 2016-10-06 2018-04-12 日立金属株式会社 R−t−b系磁石の製造方法
JP7439609B2 (ja) 2020-03-26 2024-02-28 株式会社プロテリアル R-t-b系焼結磁石の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040654B (zh) * 2012-01-19 2016-09-28 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN103985535A (zh) * 2014-05-31 2014-08-13 厦门钨业股份有限公司 一种对RTB系磁体进行Dy扩散的方法、磁体和扩散源
CN104388951B (zh) * 2014-11-24 2017-06-06 上海交通大学 一种提高烧结钕铁硼磁性能的晶界扩散方法
US10418171B2 (en) * 2014-12-12 2019-09-17 Hitachi Metals, Ltd. Production method for R—T—B-based sintered magnet
JP6733398B2 (ja) * 2016-07-27 2020-07-29 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN109983553B (zh) * 2017-01-31 2020-05-01 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN111033653B (zh) 2017-07-05 2022-03-29 Abb瑞士股份有限公司 具有晶间重稀土元素的永磁体及其生产方法
CN109585108B (zh) * 2017-09-28 2021-05-14 日立金属株式会社 R-t-b系烧结磁体的制造方法和扩散源
WO2019243136A1 (en) 2018-06-18 2019-12-26 Abb Schweiz Ag Method for producing a magnetic powder
CN110136909B (zh) * 2019-05-22 2020-10-30 包头稀土研究院 烧结钕铁硼永磁体的晶界扩散方法
CN111613402B (zh) * 2020-05-18 2021-07-20 安徽吉华新材料有限公司 一种利用钕铁硼废旧磁钢再制造高性能永磁体的工艺
CN114974778A (zh) * 2022-07-06 2022-08-30 烟台正海磁性材料股份有限公司 一种稀土永磁体及其制造方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219548A (ja) 1987-03-10 1988-09-13 Namiki Precision Jewel Co Ltd 永久磁石の製造方法
WO2006064848A1 (ja) * 2004-12-16 2006-06-22 Japan Science And Technology Agency 粒界改質したNd-Fe-B系磁石及びその製造方法
JP2006303197A (ja) * 2005-04-20 2006-11-02 Neomax Co Ltd R−t−b系焼結磁石の製造方法
WO2007102391A1 (ja) 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP2007258455A (ja) 2006-03-23 2007-10-04 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
WO2008032426A1 (en) 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
JP2008263179A (ja) 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd 希土類永久磁石及びその製造方法
JP2009289994A (ja) 2008-05-29 2009-12-10 Tdk Corp 磁石の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787132B2 (ja) * 1987-02-04 1995-09-20 三菱マテリアル株式会社 Sm−Co系磁石の焼結方法
JP2004296973A (ja) * 2003-03-28 2004-10-21 Kenichi Machida 金属蒸気収着による高性能希土類磁石の製造
CN101651038B (zh) * 2006-03-03 2012-06-06 日立金属株式会社 扩散处理装置
MY149353A (en) 2007-03-16 2013-08-30 Shinetsu Chemical Co Rare earth permanent magnet and its preparations
JP2009194262A (ja) * 2008-02-17 2009-08-27 Osaka Univ 希土類磁石の製造方法
WO2012008426A1 (ja) * 2010-07-12 2012-01-19 日立金属株式会社 R-t-b系焼結磁石の製造方法
CN103646772B (zh) * 2013-11-21 2017-01-04 烟台正海磁性材料股份有限公司 一种R-Fe-B系烧结磁体的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219548A (ja) 1987-03-10 1988-09-13 Namiki Precision Jewel Co Ltd 永久磁石の製造方法
WO2006064848A1 (ja) * 2004-12-16 2006-06-22 Japan Science And Technology Agency 粒界改質したNd-Fe-B系磁石及びその製造方法
JP2006303197A (ja) * 2005-04-20 2006-11-02 Neomax Co Ltd R−t−b系焼結磁石の製造方法
WO2007102391A1 (ja) 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP2007258455A (ja) 2006-03-23 2007-10-04 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石およびその製造方法
WO2008032426A1 (en) 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
JP2008263179A (ja) 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd 希土類永久磁石及びその製造方法
JP2009289994A (ja) 2008-05-29 2009-12-10 Tdk Corp 磁石の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667391A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234971A (ja) * 2011-05-02 2012-11-29 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
CN103646772A (zh) * 2013-11-21 2014-03-19 烟台正海磁性材料股份有限公司 一种R-Fe-B系烧结磁体的制备方法
JP2015103799A (ja) * 2013-11-21 2015-06-04 ▲煙▼台正海磁性材料股▲ふん▼有限公司 R−Fe−B系焼結磁石の調製方法
JP2016122861A (ja) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド 希土類永久磁石材料の製造方法
JP2017183348A (ja) * 2016-03-28 2017-10-05 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2018029108A (ja) * 2016-08-17 2018-02-22 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2018060930A (ja) * 2016-10-06 2018-04-12 日立金属株式会社 R−t−b系磁石の製造方法
JP2018060931A (ja) * 2016-10-06 2018-04-12 日立金属株式会社 R−t−b系磁石の製造方法
JP7439609B2 (ja) 2020-03-26 2024-02-28 株式会社プロテリアル R-t-b系焼結磁石の製造方法

Also Published As

Publication number Publication date
JPWO2012099186A1 (ja) 2014-06-30
CN103329224B (zh) 2016-01-13
CN103329224A (zh) 2013-09-25
EP2667391B1 (en) 2019-03-13
EP2667391A4 (en) 2017-11-01
EP2667391A1 (en) 2013-11-27
US20130299050A1 (en) 2013-11-14
JP5880448B2 (ja) 2016-03-09
US9484151B2 (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP5880448B2 (ja) R−t−b系焼結磁石の製造方法
JP5929766B2 (ja) R−t−b系焼結磁石
JP5510457B2 (ja) R−t−b系焼結磁石の製造方法
JP4748163B2 (ja) 希土類焼結磁石とその製造方法
JP5477282B2 (ja) R−t−b系焼結磁石およびその製造方法
JP5328161B2 (ja) NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP5363314B2 (ja) NdFeB系焼結磁石製造方法
JP5831451B2 (ja) R−t−b系焼結磁石の製造方法
JP6488976B2 (ja) R−t−b系焼結磁石
JP4811143B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP5874951B2 (ja) R−t−b系焼結磁石の製造方法
WO2007102391A1 (ja) R-Fe-B系希土類焼結磁石およびその製造方法
US8317937B2 (en) Alloy for sintered R-T-B-M magnet and method for producing same
JP5348124B2 (ja) R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石
WO2013108830A1 (ja) R-t-b系焼結磁石の製造方法
JP4788690B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP2007273815A (ja) R−Fe−B系希土類焼結磁石の製造方法
JP5643355B2 (ja) NdFeB焼結磁石の製造方法
JP2012079726A (ja) R−t−b−m系焼結磁石用合金の製造方法およびr−t−b−m系焼結磁石の製造方法
JP5209349B2 (ja) NdFeB焼結磁石の製造方法
WO2013002170A1 (ja) Rh拡散源およびそれを用いたr-t-b系焼結磁石の製造方法
JP2011101043A (ja) R−Fe−B系希土類焼結磁石およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553761

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13977125

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012736976

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE