WO2012098708A1 - 車両用電源システム - Google Patents

車両用電源システム Download PDF

Info

Publication number
WO2012098708A1
WO2012098708A1 PCT/JP2011/064912 JP2011064912W WO2012098708A1 WO 2012098708 A1 WO2012098708 A1 WO 2012098708A1 JP 2011064912 W JP2011064912 W JP 2011064912W WO 2012098708 A1 WO2012098708 A1 WO 2012098708A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
charge
current
control circuit
Prior art date
Application number
PCT/JP2011/064912
Other languages
English (en)
French (fr)
Inventor
優介 檜垣
優矢 田中
山田 正樹
吉澤 敏行
原田 茂樹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180065462.6A priority Critical patent/CN103314504B/zh
Priority to DE112011104751T priority patent/DE112011104751T5/de
Priority to JP2012553545A priority patent/JP5546649B2/ja
Priority to US13/995,254 priority patent/US9365175B2/en
Publication of WO2012098708A1 publication Critical patent/WO2012098708A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a vehicle power supply system, and more particularly to a vehicle power supply system capable of realizing regeneration of vehicle braking energy and improvement in vehicle fuel efficiency.
  • the power generation voltage of the generator driven by the engine and supplying power to the battery is set higher than when the vehicle is decelerating (when accelerating or traveling forward), so that the braking energy is reduced. While regeneratively being actively performed, a power generation voltage is set lower than when decelerating when the vehicle is not decelerating, thereby reducing the load on the engine and improving fuel consumption (for example, , See Patent Document 1).
  • the applicant of the present application provides a first DC / DC converter between a rectifier that rectifies the output of the generator and a battery that supplies power to the vehicle-mounted load, and the rectifier and the first rectifier
  • a power supply system for a vehicle was proposed in which a power storage device such as an electric double layer capacitor for power leveling and a second DC / DC converter for charge / discharge current control of the power storage device were provided between the DC / DC converter.
  • the first and second DC / DC converters are driven and controlled by the control circuit, so that the power generated by the generator is stored in the battery and the power storage device (Japanese Patent Application No. 2009-239380). ).
  • an electric storage device such as an electric double layer capacitor is naturally limited in a chargeable / dischargeable range, and repeated overcharge and overdischarge exceeding the limitation lead to a decrease in the life of the electric storage device and a decrease in utilization efficiency. Therefore, an upper and lower limit value that defines a chargeable / dischargeable voltage range of the electricity storage device is set in advance, and when the upper and lower limit values are exceeded, the charging operation or discharging operation to the electricity storage device by the second DC / DC converter is stopped.
  • the present invention has been made to solve such a problem.
  • a power storage device such as an electric double layer capacitor
  • an excess or deficiency of generated power occurs due to a response delay of the generator. It is possible to provide a vehicular power supply system capable of effectively suppressing the occurrence of a sudden voltage fluctuation even when a generator with a slow response is used.
  • a vehicle power supply system includes: A generator driven by an engine to generate AC power; A rectifier that rectifies the AC power generated by the generator into DC power and outputs it to the power generation bus; A battery for supplying electric power to the in-vehicle load via the battery bus; A first DC / DC converter that performs voltage conversion by connecting an input end to the power generation bus and an output end to the battery bus; An electricity storage device that accumulates the generated power from the generator and absorbs power fluctuations; A second DC / DC converter that performs voltage conversion by connecting an input end to the power generation bus and an output end to the power storage device; A control circuit for controlling the first and second DC / DC converters, The second DC / DC converter is of a current control type that maintains a current for the power storage device at a predetermined target current, The control circuit sets a target current, which is a control target of the second DC / DC converter, based on at least one of the voltage value of the power generation bus and the voltage value of the battery bus, and outputs a charge
  • the target current for the second DC / DC converter is gradually set based on the voltage value of the power storage device prior to that. Since the damping control is performed, it is possible to effectively suppress a sudden voltage fluctuation due to a response delay of the generator. Thereby, the lifetime of each part of the power supply system can be extended and the battery voltage can be stabilized.
  • FIG. 1 is a circuit block diagram showing a configuration of a vehicle power supply system according to Embodiment 1 of the present invention.
  • the vehicle power supply system includes a generator 1 that is driven by an engine (not shown) to generate AC power, and rectifies the AC power generated by the generator 1 into DC power to generate power.
  • a rectifier 2 that outputs to the bus A, a battery 4 that supplies power to the vehicle-mounted load 3 via the battery bus B, and an electric double layer as an electricity storage device that absorbs power generated by the generator 1 and power fluctuations of regenerative power
  • the input end of the capacitor 6 and the power generation bus A are connected to the first DC / DC converter 5 whose output end is connected to the battery bus B, and the input end of the power generation bus A is connected to the electric double layer capacitor.
  • a second DC / DC converter 7 whose output end is connected to 6, and a control circuit 8 that controls the generator 1, the first DC / DC converter 5, and the second DC / DC converter 7.
  • the regenerative electric power is electric power obtained by converting the kinetic energy of the vehicle into electric energy by the generator 1 and collecting it.
  • the relationship between the charging / discharging of the electric double layer capacitor 6 and the running of the vehicle is as follows.
  • the electric double layer capacitor 6 is charged when the vehicle is decelerated, and the electric double layer capacitor 6 is discharged when the vehicle is not decelerated (acceleration or forward travel).
  • the charge / discharge command signal is switched according to switching between the deceleration operation and the non-deceleration operation of the vehicle.
  • the generator 1 is, for example, a Landell type AC generator including a claw pole type rotor having a field winding, a stator having a three-phase AC winding, and a regulator circuit.
  • the rectifier 2 is constituted by a three-phase full-wave rectifier circuit, and rectifies AC power induced in the three-phase AC winding of the generator 1 into DC power.
  • the battery 4 is a secondary battery such as a lead storage battery or a nickel / cadmium storage battery, and the rated voltage is, for example, 14V.
  • the electric double layer capacitor 6 as an electricity storage device equalizes the power supplied to the battery 4 side by accumulating the generated power and regenerative power from the generator 1 or supplementing the power shortage of the battery 4. It plays the role of becoming.
  • the electric storage device is not limited to the electric double layer capacitor 6, and a lithium ion storage battery, a nickel hydride storage battery, or the like can also be used.
  • FIG. 2 shows the relationship between the generator rotational speed and the generated power Pa when the power generation bus voltage Va is 14 V (solid line), 28 V (one-dot chain line), and 42 V (dashed line).
  • AC power generated by the generator 1 is converted to DC power by the rectifier 2, converted to a voltage suitable for the battery 4 by the first DC / DC converter 5, and then supplied to the battery 4. Further, the second DC / DC converter 7 charges the electric double layer capacitor 6 using the DC power of the power generation bus A and uses the DC power stored in the electric double layer capacitor 6 to supply DC power to the power generation bus A. Both the supply operation and the operation are performed.
  • the first DC / DC converter 5 a constant input voltage type DC / DC converter that keeps the input terminal at a predetermined target voltage, or a constant buck-boost ratio type that keeps the input / output voltage ratio at a predetermined target voltage ratio.
  • a DC / DC converter is applied.
  • the first DC / DC converter 5 may be a bidirectional DC / DC converter.
  • the target voltage or target voltage ratio of the first DC / DC converter 5 is switched so that the power generation bus voltage Va is, for example, 14V, 28V, or 42V.
  • a constant input voltage type DC / DC converter is applied as the first DC / DC converter 5, for example, a general DC / DC converter such as a step-down chopper circuit that is feedback-controlled so as to keep the voltage at the input terminal at a target voltage.
  • a circuit can be used.
  • a constant buck-boost ratio type DC / DC converter is applied as the first DC / DC converter 5
  • a DC / DC converter controlled so as to keep the switching duty ratio of the step-down chopper circuit at a predetermined value, or an international publication number A converter as disclosed in WO2008 / 032424 is applied.
  • FIG. 3 is a circuit diagram showing a DC / DC converter described in International Publication No. WO2008 / 032424.
  • the DC / DC converter in FIG. 3 includes smoothing capacitors (Cs1) to (Cs4), switching elements (Mos1L, Mos1H) to (Mos4L, Mos4H), energy transfer capacitors (Cr12) to (Cr14), and a reactor (Lr12). (Lr14), and the switching elements (Mos1L, Mos1H) to (Mos4L, Mos4H) are turned on and off to transfer charges between the capacitors using the LC resonance of the series resonators (LC12) to (LC14).
  • V1: V2 the voltage ratio between the input and output terminals is maintained at a predetermined integer ratio.
  • this converter has a restriction that the voltage ratio between the input and output terminals is an integral multiple, it is small and very efficient since it does not require a large reactor compared to a general DC / DC converter such as a chopper type. There is a feature that it is obtained. The details of the operation of this converter are described in detail in International Publication No. WO2008 / 032424, and will not be described here.
  • the second DC / DC converter 7 a current control type DC / DC converter for controlling the input current or the output current so as to keep the battery bus voltage Vb at a predetermined voltage target value is applied.
  • the second DC / DC converter 7 is a bidirectional DC / DC converter in which the input / output directions can be reversed since it is necessary to perform both charging and discharging operations on the electric double layer capacitor 6. It is essential.
  • one of the input / output ends of the second DC / DC converter 7, that is, the side connected to the power generation bus A is called “input”, and the other side, ie, the side connected to the electric double layer capacitor 6 is called “output”.
  • Input the side connected to the power generation bus A
  • output the other side
  • the electric charge of the electric double layer capacitor 6 is discharged to the power generation bus A via the second DC / DC converter 7, the current flows in from the “output” side and flows out from the “input” side, and the electric power is “output”. Will move from the “input” side to the “input” side.
  • the control circuit 8 is configured to charge / discharge the power generation bus voltage Va applied to the power generation bus A, the battery bus voltage Vb applied to the battery bus B, the voltage V EDLC of the electric double layer capacitor 6, and the electric double layer capacitor 6 of the second DC / DC converter 7.
  • the current Ic at the time is detected and taken in, and a charge / discharge command signal 10 is input from a control unit (not shown).
  • the control circuit 8 Based on the detected value and the charge / discharge command signal, the control circuit 8 generates the generated power command 20 for the generator 1, the step-up / down ratio command value 30 for the first DC / DC converter 5, and the second DC / DC.
  • the current target value Iref is output to the DC converter 7.
  • a target current value Iref for charging / discharging the capacitor 6 is determined.
  • the battery bus voltage target value Vbref in this case is determined based on the rated voltage of the battery 4. For example, when the battery 4 is a lead storage battery having a rated voltage of 12.6V, the battery bus voltage target value Vbref is about 14V.
  • the control circuit 8 controls the generated power of the generator 1 so that the battery bus voltage Vb converges to the battery bus voltage target value Vbref * of the generator 1.
  • the battery bus voltage target value Vbref * of the generator 1 in this case is set higher than the battery bus voltage target value Vbref of the second DC / DC converter 7 when the electric double layer capacitor 6 is charged.
  • the battery bus voltage target value Vbref of the second DC / DC converter 7 is set lower.
  • the control circuit 8 monitors the change in the voltage V EDLC accompanying the charging / discharging of the electric double layer capacitor 6, and the voltage V EDLC is defined in advance in consideration of the rated capacity and the utilization efficiency.
  • the control circuit 8 gradually attenuates the aforementioned current target value Iref for the second DC / DC converter 7 based on the voltage value V EDLC of the electric double layer capacitor 6 prior to the stop process (hereinafter referred to as current It is programmed to perform target value attenuation processing.
  • the current target value attenuation process is performed in advance, and the electric current is gradually input / output to / from the electric double layer capacitor 6 by the second DC / DC converter 7.
  • the current Ic By suppressing the current Ic, it is possible to prevent the generated power from becoming excessive or insufficient due to the response delay of the generator 1.
  • the current target value attenuation process is a process of gradually reducing the current target value Iref by multiplying the current target value Iref of the second DC / DC converter 7 by a factor in the range of, for example, “0” to “1”.
  • the electric double layer upper limit V lower than the MAX threshold value Vth1 for the capacitor 6, and sets the lower limit value V MIN higher threshold Vth2 than the respective, first 2DC / DC converter 7 the boundary of each of these threshold values Vth1, Vth2 Current target value attenuation processing is performed. That is, when the electric double layer capacitor 6 is charged with the regenerative power from the generator 1 by the charge / discharge command signal, the current target value is attenuated when the voltage V EDLC becomes larger than the threshold value Vth1 (V EDLC ⁇ Vth1). Process. Further, when the electric double layer capacitor 6 is discharged by the charge / discharge command signal, the current target value attenuation process is performed when the voltage V EDLC becomes lower than the threshold value Vth2 (V EDLC ⁇ Vth2).
  • the current target value attenuation process during charging of the electric double layer capacitor 6 is performed based on the following equation (1).
  • Iref (k) ⁇ (V MAX -V EDLC) / (V MAX -Vth1) ⁇ ⁇ Iref (k-1) ... (1) (Dadashi, V MAX> V EDLC ⁇ Vth1 )
  • V MAX ⁇ Vth1 the maximum magnification of the current target value attenuation process is 1 and the stability of the control system is not disturbed.
  • the current target value attenuation process during discharging of the electric double layer capacitor 6 is performed based on the following equation (2).
  • Iref (k) ⁇ (V MIN ⁇ V EDLC ) / (V MIN ⁇ Vth 2) ⁇ ⁇ Iref (k ⁇ 1) (2) (However, V MIN ⁇ V EDLC ⁇ Vth2)
  • V MIN ⁇ V EDLC ⁇ Vth2 the maximum magnification of the current target value attenuation process is 1 and the stability of the control system is not disturbed.
  • Iref (k ⁇ 1) means data one sample before Iref (k).
  • the current control for the second DC / DC converter 7 by the control circuit 8 is a general feedback control, and the second DC / DC is controlled so that the current Ic input / output to / from the electric double layer capacitor 6 matches the current target value Iref.
  • the DC converter 7 is controlled.
  • the electric double layer capacitor 6 is charged or discharged. If the delay is delayed, the braking energy of the vehicle cannot be efficiently recovered.
  • the control circuit 8 in order to determine whether the current charge / discharge command signal is the charge command or the discharge command, and whether the charge / discharge command signal is switched from the charge command to the discharge command or from the discharge command to the charge command.
  • the control circuit 8 takes in the charge / discharge command signal 10 from an external control unit (not shown). Then, the control circuit 8 determines whether the current target value attenuation processing is based on the above equation (1) or the equation (2) based on the charge / discharge command signal 10 or turns on / off the current target value attenuation processing. decide. In this way, an appropriate current target value attenuation process can be performed, and the current target value attenuation process can be quickly turned on / off, so that the braking energy of the vehicle can be efficiently recovered.
  • the control circuit 8 takes in the charge / discharge command signal 10 and determines whether or not the charge / discharge command signal is a charge command (S2).
  • the charge / discharge command signal is determined to be a charge command
  • V EDLC ⁇ Vth1 the current target value based on the above equation (1) is determined.
  • Attenuation processing is executed (S5). If it is determined that the charge / discharge command signal is a discharge command, it is subsequently determined whether or not V EDLC ⁇ Vth 2 (S 4). If V EDLC ⁇ Vth 2, the current target value based on the above equation (2) is determined.
  • Attenuation processing is executed (S5). In each current target value attenuation process, feedback control is performed on the second DC / DC converter 7 so that the current Ic input / output to / from the electric double layer capacitor 6 matches the current target value Iref.
  • control circuit 8 is configured such that the voltage V EDLC of the electric double layer capacitor 6 is between the upper and lower thresholds Vth1 and Vth2 regardless of whether the charge / discharge command signal is a charge command or a discharge command (Vth1> V EDLC > In Vth2), the current target value attenuation process is not executed, and feedback control is performed on the second DC / DC converter 7 so that the current Ic input to and output from the electric double layer capacitor 6 matches the current target value Iref. (S6).
  • thresholds Vth1 and Vth2 are set in advance for voltage V EDLC of electric double layer capacitor 6 and charging or discharging of electric double layer capacitor 6 is stopped, Since the current target value attenuation process of the second DC / DC converter 7 is performed at the thresholds Vth1 and Vth2 in advance, it is possible to prevent the generated power from being excessive or insufficient due to the response delay of the generator 1. As a result, even when the generator 1 having a slow response is used, it is possible to effectively suppress the occurrence of sudden voltage fluctuations. Thereby, the lifetime of each part of the power supply system can be extended and the battery voltage can be stabilized.
  • Embodiment 2 The basic overall configuration of the vehicle power supply system according to the second embodiment is the same as that of the first embodiment shown in FIG.
  • the second embodiment is different from the first embodiment in that the current control of the second DC / DC converter 7 by the control circuit 8 is replaced with the processing based on the flowchart shown in FIG. 4 as shown in FIG.
  • the processing is based on a simple flowchart.
  • the charging process to the electric double layer capacitor 6 is performed when the charge / discharge command signal is the charge command, and the discharge process is performed when the discharge command is issued. Accordingly, the polarity of the current Ic input / output to / from the electric double layer capacitor 6 changes accordingly.
  • the charge command and the discharge command are referred to by referring to the positive / negative of the current Ic of the second DC / DC converter 7.
  • the discharge command is determined (S7 in FIG. 5). In this way, when the current control of the second DC / DC converter 7 is performed by the control circuit 8, it is not necessary to take in the charge / discharge command signal 10 from the outside, and the system can be simplified.
  • the other processing in the flowchart of FIG. 5 is the same as that of the flowchart shown in FIG.
  • Embodiment 3 The basic overall configuration of the vehicle power supply system according to the third embodiment is the same as that of the first embodiment shown in FIG.
  • the third embodiment is different from the first embodiment in that the current control of the second DC / DC converter 7 by the control circuit 8 is replaced with the processing based on the flowchart shown in FIG. 4 as shown in FIG.
  • the processing is based on a simple flowchart. That is, in the flowchart of FIG. 6, the determination process of S4 of the flowchart of FIG. 4 is omitted.
  • the current target value attenuation process is performed both when the electric double layer capacitor 6 is charged and discharged.
  • the current target value is attenuated during the discharge. The process is omitted, and the current target value attenuation process is executed only during charging.
  • the voltage V EDLC of the electric double layer capacitor 6 exceeds the threshold value Vth1 in order to suppress voltage fluctuation.
  • the significance of executing the current target value attenuation process is great.
  • the electric double layer capacitor 6 is in a discharged state because the electric power generated by the generator 1 is set to be small in order to reduce the load on the engine. If the voltage V EDLC approaches the predetermined lower limit value V MIN , even if the operation of the second DC / DC converter 7 is stopped, there is little possibility that a large voltage fluctuation occurs during charging.
  • the current target value attenuation process during discharging is omitted, and the current target value attenuation process is executed only during charging. Since the other processes in the flowchart of FIG. 6 are the same as those in the flowchart of FIG. 4, detailed description thereof is omitted here.
  • the control circuit 8 when charging of the electric double layer capacitor 6 is stopped at the time of charging, it is possible to prevent an excess or deficiency of generated power due to a response delay of the generator 1.
  • the control process by the control circuit 8 can be simplified.
  • Embodiment 4 The basic overall configuration of the vehicle power supply system according to the fourth embodiment is the same as that of the first embodiment shown in FIG.
  • the current target value attenuation process is performed only during charging.
  • the determination of the charge command and the discharge command is as follows. This is possible by determining the polarity of the current Ic input / output to / from the electric double layer capacitor 6 by the second DC / DC converter 7.
  • the fourth embodiment when determining the charging command in the current control of the second DC / DC converter 7 by the control circuit 8, it is determined whether or not the current Ic of the second DC / DC converter 7 is positive.
  • the current target value attenuation process is performed only when the current Ic of the second DC / DC converter 7 is positive. That is, instead of determining whether or not there is a charge command in S3 of the third embodiment (FIG. 6), in this fourth embodiment, whether or not the current Ic input / output to / from the electric double layer capacitor 6 in S7 is positive. I am trying to judge.
  • the battery bus voltage Vb It is also possible to determine whether the deviation ⁇ Vb from the voltage target value Vbo is positive or negative or the current target value Iref of the second DC / DC converter 7 is positive or negative.
  • Embodiment 5 The basic overall configuration of the vehicle power supply system according to the fifth embodiment is the same as that of the first embodiment shown in FIG.
  • the first DC / DC converter 5 is a constant input voltage type DC / DC converter that maintains the input terminal at a predetermined target voltage, or a constant rise that maintains the input / output voltage ratio at a predetermined target voltage ratio.
  • a step-down ratio type DC / DC converter is applied.
  • the second DC / DC converter 7 is a current mode type that controls the current Ic input / output to / from the electric double layer capacitor 6 so that the battery bus voltage Vb is maintained at a predetermined battery bus voltage target value Vbref.
  • a DC / DC converter is applied.
  • the first DC / DC converter 5 is a constant output voltage type DC / DC converter that maintains the output terminal at a predetermined target voltage, or an input / output voltage ratio.
  • a constant step-up / step-down ratio type DC / DC converter that maintains a predetermined target voltage ratio is applied, and as the second DC / DC converter 7, the power generation bus voltage Va is maintained at a predetermined power generation bus voltage target value Varef.
  • a current mode type DC / DC converter for controlling the current Ic input / output to / from the electric double layer capacitor 6 is applied.
  • a current target value Iref when charging / discharging 6 is determined.
  • the generator 1 controls the generated power so that the detected power generation bus voltage Va converges to the power generation bus voltage target value Varef of the power generator 1. Except for this point, the configuration is the same as that of the vehicle power supply system according to the first embodiment.
  • the generator 1 can control the power generation bus voltage Va, and can maintain the power generation bus voltage Va at a predetermined voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 エンジンで駆動される発電機(1)の出力を整流する整流器(2)と車載負荷(3)へ電力供給するバッテリ(4)との間に第1DC/DCコンバータ(5)を設け、整流器(2)と第1DC/DCコンバータ(5)との間に電気二重層コンデンサ(6)およびその充放電電流制御用の第2DC/DCコンバータ(7)を設け、制御回路(8)は第2DC/DCコンバータ(7)の制御目標となる目標電流をバッテリ母線(B)の電圧値に基づいて設定し、充放電指令信号に基づいて電気二重層コンデンサ(6)の充電を停止する場合には、それに先立ち電気二重層コンデンサ(6)の電圧値VEDLCに基づいて第2DC/DCコンバータ(7)に対する目標電流を次第に減衰させる制御を行う。

Description

車両用電源システム
 この発明は、車両用電源システムに関し、特に車両の制動エネルギーの回生と車両の燃費向上とを実現できる車両用電源システムに関するものである。
 従来の車両用電源システムでは、エンジンにより駆動されてバッテリに給電する発電機の発電電圧を、車両の減速時には非減速時(加速時や順行走行時)よりも高く設定することで制動エネルギーの回生を積極的に行う一方、車両の非減速時には減速時よりも発電電圧を低く設定することにより、エンジンへの負荷を低減させて燃費の向上を図るようにしたものが提案されている(例えば、特許文献1参照)。
 しかし、このような従来の車両用電源システムでは、発電機の発電電力をバッテリに直接供給して充電するように構成されているので、発電機の発電電力を大きく変化させると、バッテリの寿命を縮めることにつながる。したがって、発電機の発電電力を高くする幅を大きくすることができず、車両の減速時に制動エネルギーを積極的に回生できないという問題があった。
特開2008-67504号公報
 このような問題を解決するため、本願の出願人は、発電機の出力を整流する整流器と車載負荷に電力を供給するバッテリとの間に第1DC/DCコンバータを設け、また、上記整流器と第1DC/DCコンバータとの間に、電力平準化用の電気二重層コンデンサ等の蓄電デバイス及びこの蓄電デバイスの充放電電流制御用の第2DC/DCコンバータを設けた車両用電源システムを提案した。そして、この車両用電源システムでは、制御回路により上記第1及び第2DC/DCコンバータを駆動制御することにより発電機の発電電力をバッテリおよび蓄電デバイスに蓄電するようにした(特願2009-239380号)。
 特願2009-239380号の構成によれば、車両用電源システム各部の電圧を適正に保ちつつ、発電機の発電電力を高くする幅を大きくすることができ、車両の制動エネルギーを積極的に回生できるとともに、燃費の向上を図ることが可能となる。
 しかしながら、本願の発明者らは、上記車両用電源システムについてさらに鋭意検討した結果、次の課題が残されていることを見出した。
 すなわち、電気二重層コンデンサ等の蓄電デバイスは、充放電可能な範囲に自ずと制限があり、その制限を越えた過充電や過放電が繰り返されると蓄電デバイスの寿命低下や利用効率の低下につながる。したがって、蓄電デバイスの充放電可能な電圧範囲を規定する上下限値を予め設定し、上下限値を越える場合には、第2DC/DCコンバータによる蓄電デバイスへの充電動作または放電動作を停止する。
 一方、発電機はエンジンにより駆動されるので、その発電電力や回生電力の発生を急速に停止することが難しい。そのため、上記のように蓄電デバイスに対して予め設定された上下限値を越える場合に第2DC/DCコンバータによる蓄電デバイスへの充放電動作を停止しても、発電機の応答遅れによって発電電力の過不足が生じる。その結果、応答の遅い発電機を使用する場合には急激な電圧変動が発生し、ひいてはバッテリの寿命低下や第1及び第2DC/DCコンバータに対して過度の負担が加わるという課題があることが判明した。
 この発明は、このような課題を解決するためになされたもので、電気二重層コンデンサ等の蓄電デバイスの充電または放電を停止する場合に、発電機の応答遅れによって発電電力の過不足が生じるのを防止でき、応答の遅い発電機を使用する場合でも、急激な電圧変動の発生を有効に抑制することが可能な車両用電源システムを提供する。
 この発明による車両用電源システムは、
エンジンにより駆動されて交流電力を発電する発電機と、
上記発電機で発電された交流電力を直流電力に整流して発電母線に出力する整流器と、
車載負荷にバッテリ母線を介して電力を供給するバッテリと、
上記発電母線に入力端が、上記バッテリ母線に出力端がそれぞれ接続されて電圧変換を行う第1DC/DCコンバータと、
上記発電機からの発電電力を蓄積して電力変動を吸収する蓄電デバイスと、
上記発電母線に入力端が、上記蓄電デバイスに出力端がそれぞれ接続されて電圧変換を行う第2DC/DCコンバータと、
上記第1、第2DC/DCコンバータを制御する制御回路とを備え、
上記第2DC/DCコンバータは、上記蓄電デバイスに対する電流を所定の目標電流に保つ電流制御型のものであり、
上記制御回路は、上記第2DC/DCコンバータの制御目標となる目標電流を、上記発電母線の電圧値、および上記バッテリ母線の電圧値の少なくとも一つに基づいて設定するとともに、充放電指令信号に基づいて上記蓄電デバイスの充電を停止する場合には、それに先立って上記蓄電デバイスの電圧値に基づいて上記第2DC/DCコンバータに対する上記目標電流を次第に減衰させる制御を行うものである。
 この発明の車両電源システムによれば、充放電指令信号に基づいて蓄電デバイスの充電を終了する場合には、それに先立って上記蓄電デバイスの電圧値に基づいて第2DC/DCコンバータに対する目標電流を次第に減衰させる制御を行うようにしているので、発電機の応答遅れによって急激な電圧変動が発生するのを有効に抑制することが可能となる。これにより、電源システム各部の長寿命化とバッテリ電圧の安定化を図ることができる。
この発明の実施の形態1に係る車両用電源システムの構成を示す回路ブロック図である。 この発明の実施の形態1に係る車両用電源システムに用いる発電機の出力特性を示す図である。 この発明の実施の形態1に係る車両用電源システムに用いる第1DC/DCコンバータの構成の一例を示す回路図である。 この発明の実施の形態1に係る車両用電源システムにおいて、蓄電デバイスを充放電する際の制御回路による第2DC/DCコンバータに対する電流制御の具体的な処理内容を示すフローチャートである。 この発明の実施の形態2に係る車両用電源システムにおいて、蓄電デバイスを充放電する際の制御回路による第2DC/DCコンバータに対する電流制御の具体的な処理内容を示すフローチャートである。 この発明の実施の形態3に係る車両用電源システムにおいて、蓄電デバイスを充放電する際の制御回路による第2DC/DCコンバータに対する電流制御の具体的な処理内容を示すフローチャートである。 この発明の実施の形態4に係る車両用電源システムにおいて、蓄電デバイスを充放電する際の制御回路による第2DC/DCコンバータに対する電流制御の具体的な処理内容を示すフローチャートである。
実施の形態1.
 図1はこの発明の実施の形態1に係る車両用電源システムの構成を示す回路ブロック図である。
 この実施の形態1の車両用電源システムは、エンジン(図示せず)により駆動されて交流電力を発生する発電機1と、この発電機1で発生された交流電力を直流電力に整流して発電母線Aに出力する整流器2と、車載負荷3にバッテリ母線Bを介して電力を供給するバッテリ4と、発電機1からの発電電力や回生電力の電力変動を吸収する蓄電デバイスとしての電気二重層コンデンサ6と、発電母線Aに入力端が接続されるとともに、バッテリ母線Bに出力端が接続された第1DC/DCコンバータ5と、発電母線Aに入力端が接続されるとともに、電気二重層コンデンサ6に出力端が接続された第2DC/DCコンバータ7と、上記発電機1、第1DC/DCコンバータ5、及び第2DC/DCコンバータ7を制御する制御回路8と、を備えている。なお、回生電力は、車両の運動エネルギーを発電機1で電気エネルギーに変換し回収して得る電力である。
 電気二重層コンデンサ6への充放電と車両の走行との関係は次の通りである。電気二重層コンデンサ6への充電は、車両の減速時に行われ、電気二重層コンデンサ6からの放電は、車両の非減速時(加速時や順行走行時)に行われる。また、車両の減速運転と非減速運転の切り替えに応じて、充放電指令信号の切り替えが行われる。
 ここに、上記の発電機1は、例えば、界磁巻線を有するクローポール型回転子と、3相交流巻線を有する固定子と、レギュレータ回路とを備えたランデル型交流発電機である。また、整流器2は三相全波整流回路で構成され、発電機1の3相交流巻線に誘起される交流電力を直流電力に整流する。
 バッテリ4は、鉛蓄電池、ニッケル・カドミウム蓄電池等の二次電池であり、定格電圧は例えば14Vである。また、蓄電デバイスとしての電気二重層コンデンサ6は、発電機1からの発電電力や回生電力を蓄積したり、バッテリ4の電力不足分を補充するなどして、バッテリ4側への供給電力を平準化する役目を果たすものである。なお、蓄電デバイスとしては電気二重層コンデンサ6に限らず、リチウム・イオン蓄電池やニッケル水素蓄電池などを使用することもできる。
 図2に発電母線電圧Vaが14V(実線)、28V(一点鎖線)、42V(破線)のときの、発電機回転数と発電電力Paとの関係を示す。
 図2において、発電母線電圧Vaが一定の場合(Va=14V、28V、42V)、回転数が所定のミニマム値(Rs=R1、R2、R3)以下では発電電力Paはゼロであり、回転数が所定のミニマム値を超えて高くなるのに伴って次第に発電電力Paが増大して一定値に収束する特性を有する。そして、同じ回転数の場合は、発電母線電圧Vaが高いほど、発電電力Paの収束値はより高くなる。また、発電母線電圧Vaが高いほど、発電電力Paがゼロになる回転数のミニマム値は大きい。
 発電機1で発生した交流電力は、整流器2によって直流電力に変換され、第1DC/DCコンバータ5によってバッテリ4に適合した電圧に変換してからバッテリ4に供給される。また、第2DC/DCコンバータ7は、発電母線Aの直流電力を用いて電気二重層コンデンサ6を充電する動作と、電気二重層コンデンサ6に蓄電した直流電力を用いて発電母線Aに直流電力を供給する動作との双方を行う。
 ここで、第1DC/DCコンバータ5としては、入力端を所定の目標電圧に保つ定入力電圧型のDC/DCコンバータ、または、入出力電圧比を所定の目標電圧比に保つ定昇降圧比型のDC/DCコンバータが適用される。なお、この第1DC/DCコンバータ5は、双方向型のDC/DCコンバータを用いることもできる。そして、この第1DC/DCコンバータ5の目標電圧又は目標電圧比は、発電母線電圧Vaが例えば14V、28V、42Vいずれかになるように切り替えるものとする。
 第1DC/DCコンバータ5として定入力電圧型のDC/DCコンバータを適用する場合、例えば入力端の電圧を目標電圧に保つようにフィードバック制御される降圧チョッパ回路などの一般的なDC/DCコンバータ主回路を用いることができる。また、第1DC/DCコンバータ5として定昇降圧比型のDC/DCコンバータを適用する場合、降圧チョッパ回路のスイッチングデューティー比を所定の値に保つように制御したDC/DCコンバータ、あるいは、国際公開番号WO2008/032424号公報に開示されているようなコンバータが適用される。
 図3は国際公開番号WO2008/032424号公報に記載されているDC/DCコンバータを示す回路図である。図3のDC/DCコンバータは、平滑コンデンサ(Cs1)~(Cs4)、スイッチング素子(Mos1L、Mos1H)~(Mos4L、Mos4H)、エネルギー移行用コンデンサ(Cr12)~(Cr14)、およびリアクトル(Lr12)~(Lr14)を備え、上記スイッチング素子(Mos1L、Mos1H)~(Mos4L、Mos4H)のオンオフ動作により、直列共振体(LC12)~(LC14)のLC共振を利用して上記コンデンサ間で電荷を移行することにより、入出力端子間の電圧比(V1:V2)を所定の整数比倍に保つ方式のものである。このコンバータは入出力端子間の電圧比が整数倍であるという制約はあるが、チョッパ型など一般的なDC/DCコンバータと比べ、大型のリアクトルが不要であるので、小型で非常に高い効率が得られるという特徴がある。なお、このコンバータの動作の詳細については、国際公開番号WO2008/032424号公報に詳しく説明されているので、ここでは説明を省略する。
 一方、第2DC/DCコンバータ7としては、バッテリ母線電圧Vbを所定の電圧目標値に保つようにその入力電流または出力電流を制御する電流制御型のDC/DCコンバータが適用される。しかも、この第2DC/DCコンバータ7は、電気二重層コンデンサ6に対して充電と放電の両方向の動作を行う必要があるので、入出力方向が逆にし得る双方向型のDC/DCコンバータであることが必須である。
 なお、ここでは説明の便宜上、第2DC/DCコンバータ7の入出力端の一方、すなわち発電母線Aに繋がる側を「入力」と呼び、他方すなわち電気二重層コンデンサ6に繋がる側を「出力」と呼んでおり、必ずしも電力の移行方向を表していない。例えば、第2DC/DCコンバータ7を介して電気二重層コンデンサ6の電荷を発電母線Aに放電する場合には、電流は「出力」側から流れ込んで「入力」側から流れ出し、電力は「出力」側から「入力」側へ移行することになる。
 制御回路8は、発電母線Aに加わる発電母線電圧Va、バッテリ母線Bに加わるバッテリ母線電圧Vb、電気二重層コンデンサ6の電圧VEDLC、第2DC/DCコンバータ7の電気二重層コンデンサ6に対する充放電時の電流Icを検出して取り込むと共に、図示しないコントロールユニットから充放電指令信号10を入力する。そして、制御回路8は、上記検出値および上記充放電指令信号に基づいて、発電機1に対して発電電力指令20、第1DC/DCコンバータ5に対して昇降圧比指令値30、及び第2DC/DCコンバータ7に対して電流目標値Irefを出力する。
 その場合、制御回路8は、予め設定されているバッテリ母線電圧目標値Vbrefと検出されるバッテリ母線電圧Vbとの偏差ΔVb(=Vbref-Vb)に基づいて第2DC/DCコンバータ7が電気二重層コンデンサ6を充放電する際の電流目標値Irefを決定する。この場合の上記バッテリ母線電圧目標値Vbrefは、バッテリ4の定格電圧に基づいて決定される。例えば、バッテリ4が定格電圧12.6Vの鉛蓄電池では、バッテリ母線電圧目標値Vbrefは14V程度とする。
 また、制御回路8は、バッテリ母線電圧Vbを発電機1のバッテリ母線電圧目標値Vbref*に収束させるように発電機1の発電電力を制御する。この場合の発電機1のバッテリ母線電圧目標値Vbref*は、電気二重層コンデンサ6を充電する際には第2DC/DCコンバータ7の上記バッテリ母線電圧目標値Vbrefより高く設定し、電気二重層コンデンサ6から放電する際には第2DC/DCコンバータ7のバッテリ母線電圧目標値Vbrefよりも低く設定する。これにより、電気二重層コンデンサ6を充電する際には発電機1からの回生電力をバッテリ4および電気二重層コンデンサ6に効率良く蓄電することができ、また、電気二重層コンデンサ6から放電する際にはエンジン負荷を低減させつつ電気二重層コンデンサ6の蓄電電力をバッテリ4に蓄電することができる。
 また、この実施の形態1において、制御回路8は、電気二重層コンデンサ6の充放電に伴う電圧VEDLCの変化をモニタし、その電圧VEDLCが予め定格容量や利用効率を考慮して規定されている上限値VMAXあるいは下限値VMINに達したら、第2DC/DCコンバータ7の動作を停止する。その場合、制御回路8は、上記停止処理に先立って電気二重層コンデンサ6の電圧値VEDLCに基づいて第2DC/DCコンバータ7に対する前述の電流目標値Irefを次第に減衰させる制御処理(以下、電流目標値減衰処理という)を行うようにプログラムされている。このように、電気二重層コンデンサ6の充電または放電を停止する際には、事前に電流目標値減衰処理を行って徐々に第2DC/DCコンバータ7により電気二重層コンデンサ6に対して入出力される電流Icを抑制することで、発電機1の応答遅れによって発電電力の過不足が生じるのを防ぐことが可能となる。
 次に、上記の電流目標値減衰処理の具体的な処理内容について説明する。
 電流目標値減衰処理は、第2DC/DCコンバータ7の電流目標値Irefに対して、例えば“0”から“1”の範囲の倍率を掛けることで電流目標値Irefを次第に減らす処理である。
 そのために、電気二重層コンデンサ6に対する上限値VMAXよりも低い閾値Vth1、および下限値VMINよりも高い閾値Vth2をそれぞれ設定し、これらの各閾値Vth1,Vth2を境に第2DC/DCコンバータ7の電流目標値減衰処理を行う。すなわち、充放電指令信号により発電機1からの回生電力で電気二重層コンデンサ6が充電される際、その電圧VEDLCが閾値Vth1よりも大きくなったとき(VEDLC≧Vth1)に電流目標値減衰処理を行う。また、充放電指令信号により電気二重層コンデンサ6が放電される際、その電圧VEDLCが閾値Vth2より低くなったとき(VEDLC≦Vth2)に電流目標値減衰処理を行う。
 さらに具体的には、電気二重層コンデンサ6の充電時における電流目標値減衰処理は、次の式(1)に基づいて行う。
 Iref(k)={(VMAX-VEDLC)/(VMAX-Vth1)}・Iref(k-1) …(1)
(だだし、VMAX>VEDLC≧Vth1)
 式(1)において、分母に(VMAX-Vth1)を入れることで、電流目標値減衰処理の最大倍率が1倍となり、制御系の安定性を乱すことがなくなる。
 一方、電気二重層コンデンサ6の放電時における電流目標値減衰処理は、次の式(2)に基づいて行う。
 Iref(k)={(VMIN-VEDLC)/(VMIN-Vth2)}・Iref(k-1) …(2)
(ただし、VMIN<VEDLC≦Vth2)
 式(2)において、分母に(VMIN-Vth2)を入れることで、電流目標値減衰処理の最大倍率が1倍となり、制御系の安定性を乱すことがなくなる。
 なお、上記の式(1)および式(2)において、kは自然数であり、Iref(k-1)はIref(k)の1サンプル前のデータを意味する。
 制御回路8による第2DC/DCコンバータ7に対する電流制御は、一般的なフィードバック制御であり、電気二重層コンデンサ6に対して入出力される電流Icが電流目標値Irefに一致するように第2DC/DCコンバータ7を制御する。
 このようにして、電気二重層コンデンサ6の充電時には、VEDLC≧Vth1のときに電流目標値減衰処理を行い、電気二重層コンデンサ6の放電時には、VEDLC≦Vth2のときに電流目標値減衰処理を行うこととなる。
 しかし、充電時でVEDLC≧Vth1のときには、上記式(1)に基づく電流目標値減衰処理がオン(実行中)であるが、その状態で充放電指令信号が放電指令に切り替わった場合、速やかに電流目標値減衰処理をオフ(停止)にしなければ電気二重層コンデンサ6の放電が遅れることになる。
 また、放電時でVEDLC≦Vth2のときには、上記式(2)に基づく電流目標値減衰処理がオン(実行中)であるが、その状態で充放電指令信号が充電指令に切り替わった場合、速やかに電流目標値減衰処理をオフ(停止)にしなければ、電気二重層コンデンサ6の充電が遅れることになる。
 そして、このように充電時の電流目標値減衰処理途中に放電に切替わった場合、あるいは放電時の電流目標値減衰処理途中に充電に切替わった場合に、電気二重層コンデンサ6の充電または放電が遅れると、車両の制動エネルギーを効率的に回収することができない。
 そこで、この実施の形態1では、現在の充放電指令信号が充電指令か放電指令か、また、充放電指令信号が充電指令から放電指令あるいは放電指令から充電指令に切り替わったかどうかを判定するために、制御回路8は、充放電指令信号10を外部のコントロールユニット(図示せず)から取り込む。そして、制御回路8は、この充放電指令信号10に基づいて電流目標値減衰処理を上記式(1)によるか式(2)によるかを決定したり、電流目標値減衰処理のオン/オフを決定する。このようにすれば、適切な電流目標値減衰処理を行えるとともに、速やかに電流目標値減衰処理のオン/オフが可能となるから、車両の制動エネルギーを効率的に回収することができる。
 次に、上記説明に基づいて電気二重層コンデンサ6を充放電する際の、制御回路8による第2DC/DCコンバータ7の電流制御の具体的な処理内容について、図4に示すフローチャートを参照して説明する。なお、符号Sは各処理ステップを意味する。
 まず、制御回路8は、第2DC/DCコンバータ7の電流目標値Irefを、バッテリ母線電圧目標値Vbrefとバッテリ母線電圧Vbとの偏差ΔV(=Vbref-Vb)に基づいて決定する(S1)。なお、前述のごとく、この場合のバッテリ母線電圧目標値Vbrefはバッテリ4の定格電圧に基づき決定されたものであり、また、バッテリ母線電圧Vbは検出値である。
 次に、制御回路8は、充放電指令信号10を取り込み、充放電指令信号が充電指令か否かを判定する(S2)。そして、充放電指令信号が充電指令と判定した場合には、続いて、VEDLC≧Vth1か否かを判定し(S3)、VEDLC≧Vth1のときには、上記式(1)に基づく電流目標値減衰処理を実行する(S5)。また、充放電指令信号が放電指令と判定した場合には、続いて、VEDLC≦Vth2か否かを判定し(S4)、VEDLC≦Vth2のときには、上記式(2)に基づく電流目標値減衰処理を実行する(S5)。そして、これらの各電流目標値減衰処理では、電気二重層コンデンサ6に対して入出力される電流Icが電流目標値Irefに一致するように第2DC/DCコンバータ7に対してフィードバック制御を行う。
 なお、この電流目標値減衰処理でVEDLCがVMAXあるいはVMINに到達したときには式(1)あるいは式(2)でIref(k)が”0”になるので当該処理が停止される。また、電流目標値減衰処理の途中で例えば充放電指令信号が充電指令から放電指令に切り替わった場合、S2の判定でNOとなり、かつS4の判定でもNOとなるので、電流目標値減衰処理はオフ(停止)になる。また、電流目標値減衰処理の途中で例えば充放電指令信号が放電指令から充電指令に切り替わった場合、S2の判定でYESとなり、かつS3の判定ではNOとなるので、電流目標値減衰処理はオフ(停止)になる。
 また、制御回路8は、充放電指令信号が充電指令あるいは放電指令のいずれの場合も、電気二重層コンデンサ6の電圧VEDLCが上下の閾値Vth1,Vth2の間にあるとき(Vth1>VEDLC>Vth2)には、電流目標値減衰処理を実行せず、電気二重層コンデンサ6に対して入出力される電流Icが電流目標値Irefに一致するように第2DC/DCコンバータ7に対してフィードバック制御を行う(S6)。
 以上のように、この実施の形態1では、予め電気二重層コンデンサ6の電圧VEDLCに対して閾値Vth1,Vth2を設定し、電気二重層コンデンサ6の充電または放電を停止する場合には、それに先立って各閾値Vth1,Vth2を境に第2DC/DCコンバータ7の電流目標値減衰処理を行うようにしたので、発電機1の応答遅れによって発電電力の過不足が生じるのを防ぐことができる。その結果、応答の遅い発電機1を使用する場合でも、急激な電圧変動の発生を有効に抑制することが可能となる。これにより、電源システム各部の長寿命化とバッテリ電圧の安定化を図ることができる。
実施の形態2.
 この実施の形態2における車両用電源システムの基本的な全体構成は、図1に示した実施の形態1と同様である。
 この実施の形態2において実施の形態1の場合と異なる点は、制御回路8による第2DC/DCコンバータ7の電流制御を、図4に示したフローチャートに基づく処理に代えて、図5に示すようなフローチャートに基づく処理としていることである。
 すなわち、前述のように第2DC/DCコンバータ7の電流制御により、充放電指令信号が充電指令の際には電気二重層コンデンサ6への充電処理が、放電指令の際には放電処理が実施されるので、これに伴って電気二重層コンデンサ6に対して入出力される電流Icの正負の極性が変化する。
 そこで、この実施の形態2では、充電指令と放電指令を、充放電指令信号10を外部から取り込むことで判定する代わりに、第2DC/DCコンバータ7の電流Icの正負を参照して充電指令と放電指令とを判定する(図5のS7)ようにしたものである。このようにすれば、制御回路8により第2DC/DCコンバータ7の電流制御を行う際に、充放電指令信号10を外部から取り込むことが不要となり、システムを簡素化できる。
 なお、図5のフローチャートにおけるその他の処理は、図4に示したフローチャートの場合と同様であるからここでは詳しい説明は省略する。
 なお、前述のように、第2DC/DCコンバータ7の電流目標値Irefは、バッテリ母線電圧目標値Vbrefとバッテリ母線電圧Vbとの偏差ΔVb(=Vbref-Vb)に基づいて算出され、電気二重層コンデンサ6に対して入出力される電流Icが電流目標値Irefに一致するように第2DC/DCコンバータ7に対するフィードバック制御が行われる。したがって、電流目標値減衰処理を行う際に第2DC/DCコンバータ7の電流Icの正負を判定する代わりに、バッテリ母線電圧Vbと電圧目標値Vboとの偏差ΔVbの正負、あるいは第2DC/DCコンバータ7の電流目標値Irefの正負で判定することも可能である。
実施の形態3.
 この実施の形態3における車両用電源システムの基本的な全体構成は、図1に示した実施の形態1と同様である。
 この実施の形態3において実施の形態1の場合と異なる点は、制御回路8による第2DC/DCコンバータ7の電流制御を、図4に示したフローチャートに基づく処理に代えて、図6に示すようなフローチャートに基づく処理としていることである。つまり、図6のフローチャートでは図4のフローチャートのS4の判定処理を省略している。
 実施の形態1では、電気二重層コンデンサ6の充電時及び放電時のいずれの場合においても電流目標値減衰処理を行うようにしているが、この実施の形態3では、放電時における電流目標値減衰処理を省略し、充電時にのみ電流目標値減衰処理を実行するようにしたものである。
 充電時には、発電機1の発電電力が大きく設定されて電気二重層コンデンサ6が充電状態にあるので、電圧変動を抑える上で、電気二重層コンデンサ6の電圧VEDLCが閾値Vth1を越えたときに電流目標値減衰処理を実行することの意義は大きい。これに対して、放電時には、エンジンへの負荷を低減させる上で発電機1の発電電力が小さくなるように設定されていて電気二重層コンデンサ6が放電状態にあるので、電気二重層コンデンサ6の電圧VEDLCが予め規定されている下限値VMINに接近したら、第2DC/DCコンバータ7の動作を停止しても、充電時のような大きな電圧変動が発生する恐れは少ない。したがって、充電時にのみ電流目標値減衰処理を実行し、放電時には電流目標値減衰処理を省略しても、バッテリの寿命低下や第1、第2DC/DCコンバータ5,7の故障につながる可能性が小さい。このため、この実施の形態3では放電時における電流目標値減衰処理を省略し、充電時にのみ電流目標値減衰処理を実行するようにしたものである。
 なお、図6のフローチャートにおけるその他の処理は、図4に示したフローチャートの場合と同様であるからここでは詳しい説明は省略する。
 この実施の形態3によれば、充電時に電気二重層コンデンサ6の充電を停止する際に、発電機1の応答遅れによって発電電力の過不足が生じるのを防ぐことが可能であることに加えて、制御回路8による制御処理を簡易化することができる。
実施の形態4.
 この実施の形態4における車両用電源システムの基本的な全体構成は、図1に示した実施の形態1と同様である。
 先の実施の形態3(図6)では、充電時にのみ電流目標値減衰処理を行うようにしているが、その場合、実施の形態2で説明したように、充電指令と放電指令の判断は、第2DC/DCコンバータ7により電気二重層コンデンサ6に対して入出力される電流Icの正負の極性を判断することによって可能である。
 そこで、この実施の形態4では、制御回路8による第2DC/DCコンバータ7の電流制御において、充電指令を判定する際に、第2DC/DCコンバータ7の電流Icが正か否かを判断し、第2DC/DCコンバータ7の電流Icが正の時のみ電流目標値減衰処理を行うようにしたものである。つまり、実施の形態3(図6)のS3における充電指令の有無の判断に代えて、この実施の形態4ではS7で電気二重層コンデンサ6に対して入出力される電流Icが正か否かを判断するようしている。
 この構成によれば、充電時において、電気二重層コンデンサ6の充電を停止する際に、発電機1の応答遅れによって発電電力の過不足が生じることを防ぐことができるとともに、第2DC/DCコンバータ7の電流の正か否かによって充電時かどうかの判定を行うため、充放電指令信号を外部から取り込むことが不要となり、システムを簡素化できる。
 なお、図7のフローチャートにおけるその他の処理は、図6に示したフローチャートの場合と同様であるからここでは詳しい説明は省略する。
 なお、この実施の形態4においても、実施の形態2の場合と同様、電流目標値減衰処理を行う際に第2DC/DCコンバータ7の電流Icの正負を判定する代わりに、バッテリ母線電圧Vbと電圧目標値Vboとの偏差ΔVbの正負、あるいは第2DC/DCコンバータ7の電流目標値Irefの正負で判定することも可能である。
実施の形態5.
 この実施の形態5における車両用電源システムの基本的な全体構成は、図1に示した実施の形態1と同様である。
 上記の実施の形態1では、第1DC/DCコンバータ5として、入力端を所定の目標電圧に保つ定入力電圧型のDC/DCコンバータ、または、入出力電圧比を所定の目標電圧比に保つ定昇降圧比型のDC/DCコンバータが適用されている。また、第2DC/DCコンバータ7として、バッテリ母線電圧Vbが所定のバッテリ母線電圧目標値Vbrefに保たれるように電気二重層コンデンサ6に対して入出力される電流Icを制御する電流モード型のDC/DCコンバータが適用されている。
 これに対して、この実施の形態5の車両用電源システムでは、第1DC/DCコンバータ5として、出力端を所定の目標電圧に保つ定出力電圧型のDC/DCコンバータ、または、入出力電圧比を所定の目標電圧比に保つ定昇降圧比型のDC/DCコンバータを適用し、また、第2DC/DCコンバータ7としては、発電母線電圧Vaが所定の発電母線電圧目標値Varefに保たれるように電気二重層コンデンサ6に対して入出力される電流Icを制御する電流モード型のDC/DCコンバータが適用される。
 すなわち、制御回路8は、予め設定されている発電母線電圧目標値Varefと検出される発電母線電圧Vaとの偏差ΔVa(=Varef-Va)に基づいて第2DC/DCコンバータ7が電気二重層コンデンサ6を充放電する際の電流目標値Irefを決定する。また、発電機1は、検出される発電母線電圧Vaが発電機1の発電母線電圧目標値Varefに収束させるように、発電電力を制御する。この点を除いては、上記実施の形態1による車両用電源システムと同様に構成されている。
 この実施の形態5の構成によれば、発電機1は発電母線電圧Vaを制御することができ、発電母線電圧Vaを所定の電圧に維持することが可能となる。

Claims (6)

  1. エンジンにより駆動されて交流電力を発電する発電機と、
    上記発電機で発電された交流電力を直流電力に整流して発電母線に出力する整流器と、
    車載負荷にバッテリ母線を介して電力を供給するバッテリと、
    上記発電母線に入力端が、上記バッテリ母線に出力端がそれぞれ接続されて電圧変換を行う第1DC/DCコンバータと、
    上記発電機からの発電電力を蓄積して電力変動を吸収する蓄電デバイスと、
    上記発電母線に入力端が、上記蓄電デバイスに出力端がそれぞれ接続されて電圧変換を行う第2DC/DCコンバータと、
    上記第1及び第2DC/DCコンバータを制御する制御回路とを備え、
    上記第2DC/DCコンバータは、上記蓄電デバイスに対する電流を所定の目標電流に保つ電流制御型のものであり、
    上記制御回路は、上記第2DC/DCコンバータの制御目標となる目標電流を、上記発電母線の電圧値、および上記バッテリ母線の電圧値の少なくとも一つに基づいて設定するとともに、充放電指令信号に基づいて上記蓄電デバイスの充電を停止する場合には、それに先立って上記蓄電デバイスの電圧値に基づいて上記第2DC/DCコンバータに対する上記目標電流を次第に減衰させる制御を行うものである車両用電源システム。
  2. 上記制御回路は、上記充放電指令信号に基づいて上記蓄電デバイスの放電を停止する場合には、それに先立って上記蓄電デバイスの電圧値に基づいて上記第2DC/DCコンバータに対する上記目標電流を次第に減衰させる制御を行うものである請求項1に記載の車両用電源システム。
  3. 上記制御回路は、上記充放電指令信号が充電指令又は放電指令であるかの判定を、外部からの充放電指令信号に基づいて決定するものである請求項1または請求項2に記載の車両用電源システム。
  4. 上記制御回路は、上記充放電指令信号が充電指令又は放電指令であるかの判定を、第2DC/DCコンバータの電流の正負に基づいて決定するものである請求項1または請求項2に記載の車両用電源システム。
  5. 上記制御回路は、上記充放電指令信号が充電指令又は放電指令であるかの判定を、第2DC/DCコンバータに対する電流目標値の正負に基づいて決定するものである請求項1または請求項2に記載の車両用電源システム。
  6. 上記制御回路は、上記充放電指令信号が充電指令又は放電指令であるかの判定を、上記バッテリ母線の電圧値と上記バッテリ母線の電圧目標値との偏差の正負に基づいて決定するものである請求項1または請求項2に記載の車両用電源システム。
PCT/JP2011/064912 2011-01-21 2011-06-29 車両用電源システム WO2012098708A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180065462.6A CN103314504B (zh) 2011-01-21 2011-06-29 车辆用电源***
DE112011104751T DE112011104751T5 (de) 2011-01-21 2011-06-29 Stromversorgungssystem für Kraftfahrzeuge
JP2012553545A JP5546649B2 (ja) 2011-01-21 2011-06-29 車両用電源システム
US13/995,254 US9365175B2 (en) 2011-01-21 2011-06-29 Power supply system for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-010431 2011-01-21
JP2011010431 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012098708A1 true WO2012098708A1 (ja) 2012-07-26

Family

ID=46515355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064912 WO2012098708A1 (ja) 2011-01-21 2011-06-29 車両用電源システム

Country Status (5)

Country Link
US (1) US9365175B2 (ja)
JP (1) JP5546649B2 (ja)
CN (1) CN103314504B (ja)
DE (1) DE112011104751T5 (ja)
WO (1) WO2012098708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039770A (ja) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 電源装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011105135T5 (de) 2011-04-08 2014-01-02 Mitsubishi Electric Corporation Stromversorgungssystem für ein Fahrzeug
WO2015000017A1 (en) * 2013-06-28 2015-01-08 Cap-Xx Limited A current limit circuit for a supercapacitive device
GB201320375D0 (en) * 2013-11-19 2014-01-01 Shelton Christopher Charging bus
FR3031635B1 (fr) 2015-01-08 2018-05-04 Airbus Helicopters Giravion dote d'un equipement electrique regulant l'alimentation en energie electrique d'un turbomoteur en phase de demarrage
KR102334713B1 (ko) * 2015-03-05 2021-12-03 삼성중공업 주식회사 에너지 저장 시스템 및 그 운용 방법
CN104972912B (zh) * 2015-06-12 2017-05-10 奇瑞汽车股份有限公司 车载电源***
US10250058B2 (en) * 2016-09-15 2019-04-02 Raytheon Company Charge management system
US11482944B2 (en) * 2018-02-15 2022-10-25 Huawei Digital Power Technologies Co., Ltd. AC to DC converter with parallel converter
DE102018206991B3 (de) * 2018-05-04 2019-10-02 Prüfrex engineering e motion gmbh & co. kg Zündvorrichtung, Verbrennungsmotor und Verfahren zu dessen Betrieb
CN111923852B (zh) * 2020-07-02 2022-11-22 东风柳州汽车有限公司 一种车辆发电机控制方法及装置
CN112039319A (zh) * 2020-08-13 2020-12-04 矽力杰半导体技术(杭州)有限公司 驱动电路和驱动方法
FR3141918A1 (fr) * 2022-11-10 2024-05-17 Psa Automobiles Sa Alimentation sécurisée d’organes de direction assistée électrique pour véhicule automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185433U (ja) * 1986-05-13 1987-11-25
JP2006087163A (ja) * 2004-09-14 2006-03-30 Suzuki Motor Corp 車両用発電制御装置
JP2009130961A (ja) * 2007-11-20 2009-06-11 Denso Corp 車両用電源装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497145B2 (ja) 2006-09-07 2010-07-07 マツダ株式会社 車両用発電機の制御装置
EP2063519B1 (en) * 2006-09-15 2018-10-31 Mitsubishi Electric Corporation Dc/dc power converter
JP4894656B2 (ja) * 2007-07-13 2012-03-14 トヨタ自動車株式会社 車両
JP5260104B2 (ja) 2008-03-26 2013-08-14 大井電気株式会社 バッテリスイッチ装置およびバッテリスイッチ制御システム
CN102549876B (zh) * 2009-10-16 2014-12-31 三菱电机株式会社 车辆用电源***
US20110100735A1 (en) * 2009-11-05 2011-05-05 Ise Corporation Propulsion Energy Storage Control System and Method of Control
JP5318004B2 (ja) * 2010-03-01 2013-10-16 三菱電機株式会社 車両用電源システム
DE112011105135T5 (de) 2011-04-08 2014-01-02 Mitsubishi Electric Corporation Stromversorgungssystem für ein Fahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185433U (ja) * 1986-05-13 1987-11-25
JP2006087163A (ja) * 2004-09-14 2006-03-30 Suzuki Motor Corp 車両用発電制御装置
JP2009130961A (ja) * 2007-11-20 2009-06-11 Denso Corp 車両用電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016039770A (ja) * 2014-08-06 2016-03-22 トヨタ自動車株式会社 電源装置
US10155491B2 (en) 2014-08-06 2018-12-18 Toyota Jidosha Kabushiki Kaisha Electric power supply device

Also Published As

Publication number Publication date
DE112011104751T5 (de) 2013-10-10
CN103314504B (zh) 2015-11-25
US20130264868A1 (en) 2013-10-10
JP5546649B2 (ja) 2014-07-09
JPWO2012098708A1 (ja) 2014-06-09
CN103314504A (zh) 2013-09-18
US9365175B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
JP5546649B2 (ja) 車両用電源システム
JP5570655B2 (ja) 車両用電源システム
JP6236391B2 (ja) 電力用電池に対する充電量を平衡させるための装置
JP5318004B2 (ja) 車両用電源システム
KR101747581B1 (ko) 전원 제어 장치
WO2015190094A1 (ja) 電力貯蔵システムおよびその制御方法
JP5926336B2 (ja) 電源制御装置
Curti et al. A simplified power management strategy for a supercapacitor/battery Hybrid Energy Storage System using the Half-Controlled Converter
JP7189861B2 (ja) 充電装置及び充電方法
JP2010233419A (ja) モータ駆動装置及び電動車両
Joshi et al. Battery ultracapacitor based DC motor drive for electric vehicles
CN107592953B (zh) 充放电控制装置、移动体及电力分担量确定方法
JP5543018B2 (ja) 車両用電源システム
KR102659530B1 (ko) 차량 주행 시스템 및 차량
JP2017184406A (ja) 電力供給システム及び輸送機器、並びに、電力供給システムの制御方法
JP6034734B2 (ja) 電力システム
JP7112305B2 (ja) 電源システムの制御装置
WO2018190020A1 (ja) 複合蓄電システム
JP2016063724A (ja) 車両
JP2019110656A (ja) 電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553545

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13995254

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011104751

Country of ref document: DE

Ref document number: 1120111047517

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856277

Country of ref document: EP

Kind code of ref document: A1