WO2012098578A1 - 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置 - Google Patents

有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置 Download PDF

Info

Publication number
WO2012098578A1
WO2012098578A1 PCT/JP2011/000256 JP2011000256W WO2012098578A1 WO 2012098578 A1 WO2012098578 A1 WO 2012098578A1 JP 2011000256 W JP2011000256 W JP 2011000256W WO 2012098578 A1 WO2012098578 A1 WO 2012098578A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
organic light
light emitting
functional layer
emitting element
Prior art date
Application number
PCT/JP2011/000256
Other languages
English (en)
French (fr)
Inventor
裕隆 南野
真一郎 石野
知樹 桝田
悠子 川浪
哲征 松末
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012553456A priority Critical patent/JPWO2012098578A1/ja
Priority to PCT/JP2011/000256 priority patent/WO2012098578A1/ja
Priority to US13/996,132 priority patent/US8980678B2/en
Publication of WO2012098578A1 publication Critical patent/WO2012098578A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/09Ink jet technology used for manufacturing optical filters

Definitions

  • the present invention relates to a method for manufacturing an organic light emitting element, an organic display panel, an organic light emitting device, a method for forming a functional layer, an ink, a substrate, an organic light emitting element, an organic display device, and an ink jet device.
  • Organic light-emitting devices that have been researched and developed in recent years are light-emitting devices that utilize the electroluminescence phenomenon of functional materials, and an organic light-emitting layer composed of a functional material is interposed between an anode and a cathode. Has a structured.
  • a functional material including an organic light emitting layer is formed by vapor-depositing a functional material on a substrate by a vapor deposition method using a mask.
  • a coating method is proposed separately from the vapor deposition method (Patent Document 1).
  • a functional material is dissolved in a solvent to form an ink, and the ink is ejected from an ink ejection nozzle of an ink jet apparatus to apply the ink onto the substrate.
  • the process does not need to be performed in a vacuum vessel, and a mask is not required, which is preferable in terms of mass production.
  • an ink is accurately applied to a light emitting layer forming region on a substrate to form an organic light emitting layer having a uniform film thickness and shape.
  • the flying characteristics of the ink droplets ejected from the ink jet apparatus must be suitable, that is, the ink droplets must have a characteristic of reaching the target position without being split straight. .
  • the flying characteristics of ink droplets are easily affected by ink physical properties such as ink density, ink surface tension, ink viscosity, and ink droplet diameter, and the relationship between these ink physical properties is unknown. It is not easy to control the flight characteristics. In addition, the flight characteristics change depending on factors other than ink physical properties, such as the ink droplet diameter, which is mainly determined by the nozzle diameter of the ink discharge nozzle, and the discharge speed of the ink droplets discharged from the ink discharge nozzle. Is not easy.
  • the present invention can easily and accurately infer conditions that provide suitable flight characteristics. Therefore, an organic light-emitting element that can efficiently produce an organic light-emitting element having good light-emitting characteristics by a coating method.
  • the main purpose is to provide a manufacturing method.
  • a method for manufacturing an organic light-emitting device includes a functional material constituting a functional layer and having a weight average molecular weight of greater than 0 and 100000 or less, and the functional material.
  • a fourth step of drying the droplets to form the functional layer; and a fifth step of forming a second electrode above the functional layer, and the density of the ink in the first step (g / m 3), the surface tension ⁇ (mN ⁇ m) and the viscosity ⁇ (mPa ⁇ s), and nozzle diameter r of the ink ejection nozzle (mm) is, Z (Ohnesorge number Oh below Equation 1]
  • the ink droplet ejection speed V (m / s) in the third step satisfies the numerical range of the following [Equation 2], and the Z value and the ejection speed V ( m / s) is set so as to satisfy the following relational expression [Equation 3].
  • An organic light-emitting device manufacturing method includes an ink density ⁇ (g / m 3 ), a surface tension ⁇ (mN ⁇ m), a viscosity ⁇ (mPa ⁇ s), and a nozzle of an ink discharge nozzle.
  • the diameter r (mm) satisfies the numerical range of the Z value of the above [Equation 1] (the reciprocal of the Ohnesorge number Oh), and the ink droplet ejection speed V (m / s) is the numerical range of the above [Equation 2].
  • the Z value and the discharge speed V (m / s) are set so as to satisfy the relational expression [Formula 3].
  • the Z value and the discharge speed V (m Since only two of / s) are used, it is easy to guess the change in flight characteristics. Further, since the Z value and the discharge speed V (m / s) are highly correlated with the flight characteristics, accurate estimation is possible. Therefore, conditions for achieving suitable flight characteristics can be estimated easily and accurately, and an organic light-emitting element having good light-emitting characteristics can be efficiently manufactured by a coating method.
  • 1 is a diagram illustrating a schematic configuration of an ink jet apparatus according to an aspect of the present invention. It is process drawing for demonstrating the manufacturing method of the organic light emitting element which concerns on 1 aspect of this invention. It is process drawing for demonstrating the manufacturing method of the organic light emitting element which concerns on 1 aspect of this invention.
  • 1 is a perspective view illustrating an organic display device and the like according to one embodiment of the present invention.
  • 1 is a diagram illustrating an entire configuration of a display device according to one embodiment of the present invention. It is a figure which shows the organic light-emitting device which concerns on 1 aspect of this invention.
  • An organic light-emitting device manufacturing method includes a functional material that forms a functional layer and has a weight average molecular weight of greater than 0 and less than or equal to 100,000, and a solvent that dissolves the functional material.
  • a first step of filling the ink jet apparatus with an ink discharge nozzle with the ink, a second step of preparing a substrate on which a base layer including a first electrode is formed, and the ink jet device to the substrate A third step of disposing the ink droplets as ink droplets from the ink jet apparatus and landing the ink droplets on the base layer of the substrate; drying the ink droplets; A fourth step of forming a layer, a fifth step of forming a second electrode above the functional layer,
  • the density ⁇ (g / m 3 ), the surface tension ⁇ (mN ⁇ m) and the viscosity ⁇ (mPa ⁇ s) of the ink, and the nozzle diameter r (mm) of the ink discharge nozzle ) Satisfies the numerical range of Z in [Equation 1] (the reciprocal of Ohnesorge number Oh), and the ejection speed V (m / s) of the ink droplet in the third step is the numerical value in [
  • the value of Z is 2 or more and 10 or less, and the discharge speed V is 3 (m / s) or more and 5 (m / s).
  • the density ⁇ of the ink is greater than 827 (g / m 3 ) and 1190 (g / m 3 ) or less.
  • the surface tension ⁇ is greater than 27.3 (mN ⁇ m) and 41.9 (mN ⁇ m) or less, and the viscosity ⁇ of the ink is greater than 2.4 (mPa ⁇ s) and 35.0 (mPa ⁇ s). S) or less, and the nozzle diameter r of the ink jet apparatus is 0.02 (mm) or more and 0.03 (mm) or less.
  • the second step includes an opening corresponding to the pixel portion, and a plurality of partition walls that divide adjacent pixel portions above the base layer.
  • the ink droplets are landed on the base layer facing the opening between the partition walls of the substrate.
  • the organic display panel according to one embodiment of the present invention uses an organic light-emitting element manufactured by the method for manufacturing an organic light-emitting element.
  • An organic light-emitting device manufactured by the method for manufacturing an organic light-emitting element was used for the organic light-emitting device according to one embodiment of the present invention.
  • An organic display device uses an organic light-emitting element manufactured by the method for manufacturing an organic light-emitting element.
  • the method for forming a functional layer according to one embodiment of the present invention includes an ink that forms a functional layer and includes a functional material having a weight average molecular weight of greater than 0 and less than or equal to 100,000 and a solvent that dissolves the functional material.
  • the density ⁇ (g / m 3 ), the surface tension ⁇ (mN ⁇ m) and the viscosity ⁇ (mPa ⁇ s) of the ink, and the nozzle diameter r ( m m) satisfies the numerical range of Z in [Equation 1] (the reciprocal of the Ohnesorge number Oh), and the ejection speed V (m / s) of the ink droplet in the third step is as expressed in [Equation 2].
  • the numerical value range is satisfied, and the value of Z and the discharge speed V (m /
  • the value of Z is 2 or more and 10 or less, and the discharge speed V is 3 (m / s) or more and 5 (m / s). It is as follows.
  • the density ⁇ of the ink is greater than 827 (g / m 3 ) and equal to or less than 1190 (g / m 3 ), and the surface of the ink
  • the tension ⁇ is greater than 27.3 (mN ⁇ m) and 41.9 (mN ⁇ m) or less
  • the viscosity ⁇ of the ink is greater than 2.4 (mPa ⁇ s) and 35.0 (mPa ⁇ s). s) or less
  • the nozzle diameter r of the inkjet device is 0.02 (mm) or more and 0.03 (mm) or less.
  • An ink according to an aspect of the present invention is an ink for forming a functional layer that is ejected using an ink jet apparatus including an ink ejection nozzle and is landed on a substrate and dried to form the functional layer.
  • a functional material having a weight average molecular weight of greater than 0 and less than or equal to 100,000 and a solvent that dissolves the functional material, the density ⁇ (g / m 3 ), the surface tension ⁇ (mN ⁇ m ) And its viscosity ⁇ (mPa ⁇ s), and the nozzle diameter r (mm) of the ink discharge nozzle satisfy the numerical range of Z (the reciprocal number of the Ohnesorge number Oh) in the above [Equation 1].
  • the ink is discharged at a discharge speed V (m / s) that satisfies the numerical range of [Expression 2], and the value of Z satisfies the relational expression of [Expression 3] with respect to the discharge speed V (m / s). .
  • the organic light-emitting element substrate including the functional material constituting the functional layer of the organic light-emitting element and the solvent in the organic light-emitting element substrate including the functional material constituting the functional layer of the organic light-emitting element and the solvent, and the base layer including the first electrode is formed. And an ink for forming a functional layer of the organic light emitting element between the first electrode and the second electrode facing the base layer, which is landed on the base layer and dried.
  • the density ⁇ (g / m 3 ), the surface tension ⁇ (mN ⁇ m), and the viscosity ⁇ (mPa ⁇ s) are determined by the discharge speed V.
  • the Z value is set to satisfy 2 to 10 inclusive.
  • the density ⁇ is 827 (g / m 3).
  • the surface tension ⁇ is greater than 27.3 (mN ⁇ m) and 41.9 (mN ⁇ m) or less, and the viscosity ⁇ is 2. It is larger than 4 (mPa ⁇ s) and not more than 35.0 (mPa ⁇ s).
  • the substrate according to one embodiment of the present invention has a functional layer manufactured using the above ink.
  • the organic light emitting device has a functional layer manufactured using the above ink.
  • An organic display panel includes an organic light-emitting element having a functional layer manufactured using the above ink.
  • An organic light-emitting device includes an organic light-emitting element having a functional layer manufactured using the above ink.
  • An organic display device includes an organic light-emitting element having a functional layer manufactured using the above ink.
  • An ink jet device contains an ink including a functional material that constitutes a functional layer and has a weight average molecular weight of greater than 0 and less than or equal to 100,000, and a solvent that dissolves the functional material,
  • An ink jet apparatus for forming a functional layer by discharging the ink from an ink discharge nozzle and landing on a substrate, wherein the nozzle diameter r (mm) of the ink discharge nozzle is a density ⁇ (g / g of the ink).
  • the functional material of the ink is a functional material constituting a functional layer of an organic light emitting element, and the ink is ejected and the ink is used as the first electrode.
  • the functional layer of the organic light-emitting device is landed on the base layer of the organic light-emitting element substrate on which the base layer containing the organic light-emitting element is formed, and between the first electrode and the second electrode facing the base layer. Inkjet device for forming.
  • the substrate according to one embodiment of the present invention has a functional layer manufactured using the above-described inkjet device.
  • the organic light-emitting element according to one embodiment of the present invention includes a functional layer manufactured using the above-described inkjet device.
  • An organic display panel includes an organic light-emitting element that has a functional layer and is manufactured using the inkjet device.
  • An organic light-emitting device includes an organic light-emitting element that has a functional layer and is manufactured using the inkjet device.
  • An organic display device includes an organic light-emitting element having a functional layer, which is formed using the above-described inkjet device.
  • FIG. 1 is a diagram for explaining three forces that affect the flying characteristics of ink droplets. As shown in FIG. 1, the flying characteristics of ink droplets are determined by the balance of three forces: viscous resistance, inertial force, and surface tension.
  • the viscous resistance is determined by the ink viscosity ⁇ , the ink droplet diameter r ′, and the ejection speed V as shown in [Formula 1] below.
  • Viscous force ⁇ ⁇ r ⁇ v ... [Formula 1]
  • the inertial force is determined by the ink density ⁇ , the ink droplet diameter r ′, and the ejection speed V as shown in [Formula 2] below.
  • Inertia force ⁇ ⁇ r 2 ⁇ v 2 [Formula 2]
  • the surface tension is determined by the ink surface tension ⁇ and the ink droplet diameter r ′ as shown in [Formula 3] below.
  • ink density ⁇ ink density ⁇
  • ink surface tension ⁇ ink viscosity ⁇
  • ink droplet diameter r ′ the four factors of ink density ⁇ , ink surface tension ⁇ , ink viscosity ⁇ , and ink droplet diameter r ′ are factors related to ink physical properties, and only the discharge speed V is a factor other than ink physical properties. is there. If all of these factors are variables, there are as many as five variables, and their mutual relations are unknown, so it is very difficult to control the flight characteristics.
  • the Reynolds number Nre is a dimensionless number defined by the ratio of inertia force and viscous force, and is a value used for examining the property of “flow” in fluid mechanics. In the present application, it is considered to be mainly involved in the straightness of the ink droplet.
  • the Reynolds number Nre is expressed as a ratio of inertial force to viscous force as shown in [Expression 4] below.
  • Weber number Nwe is a dimensionless number that is important when dealing with two-phase flow. It is a value used for organizing deformation behavior when droplets flow in an air stream and stability problems at the interface of droplets. is there. In the present application, it is considered to be mainly involved in the splitting property of ink droplets.
  • the Weber number Nwe is represented by the ratio between the inertial force and the surface tension, as shown in [Formula 5] below.
  • the inventors have come up with the idea that the flight characteristics are controlled by two variables: the Z value, which is a factor related to ink physical properties, and the ejection speed V, which is a factor other than ink physical properties. Therefore, it was decided to confirm the correlation between the Z value and the flight characteristics and the correlation between the discharge speed V and the flight characteristics, respectively. Since the Z value and the discharge speed V are independent values, the correlation between the Z value and the flight characteristics, and the correlation between the discharge speed V and the flight characteristics, were intended to be determined separately.
  • the straightness of the ink droplets must be good. Good straightness means that the ink droplets ejected from the ink jet apparatus reach the target position straightly. Straightness can be evaluated by measuring the landing accuracy of ink droplets, for example.
  • FIG. 2 is a diagram for explaining the landing accuracy of ink droplets. The landing accuracy of ink droplets will be described with reference to FIG.
  • an ink jet head When applying ink by an application method using an ink jet apparatus, generally, an ink jet head is disposed above a substrate, and ink droplets are discharged downward from an ink discharge nozzle.
  • the distance between the substrate and the inkjet head at this time is, for example, about 500 ( ⁇ m).
  • the substrate has a plurality of banks (partition walls) partitioning the light emitting layer formation region (pixel portion) on the upper surface.
  • the light emitting layer forming region has a width of about 60 ( ⁇ m), for example, and the bank has a width of about 30 ( ⁇ m) and a thickness of about 1 ( ⁇ m), for example.
  • the ink ejection nozzle has, for example, a nozzle diameter r (diameter) of about 20 ( ⁇ m), and the ink droplet ejected therefrom has an ink droplet diameter r ′ of about 24 ( ⁇ m).
  • the ink droplet is ejected with an error of ⁇ 10 ( ⁇ m) or less. Is preferred. From the above, when the error is ⁇ 10 ( ⁇ m) or less, that is, when the landing accuracy is 20 ( ⁇ m) or less, it is determined that the straightness is good.
  • FIG. 3 is a diagram showing experimental results on the relationship between the Z value and the landing accuracy.
  • Functional materials and solvents constituting the ink ink concentration (concentration of the functional material with respect to ink), ink viscosity ⁇ , ink surface tension ⁇ and ink density ⁇ , and nozzle discharge nozzle diameter r as shown in the table
  • the Z value was controlled by changing, and ink droplets were ejected under the conditions described with reference to FIG. 2, and the landing accuracy was measured and evaluated with a standard deviation of 6 ⁇ . Since the ink droplet diameter r ′ depends on the nozzle diameter r of the ink discharge nozzle, the nozzle diameter r is used in place of the ink droplet diameter r ′.
  • the experiment was conducted in order to obtain an evaluation of an ink using a functional material having a weight average molecular weight of greater than 0 and less than 100000 (in the figure of the present application, abbreviated as “100k”). This was carried out with an ink using a functional material having an average molecular weight of 100,000. Furthermore, as an alternative to an ink composed of a functional material having a weight average molecular weight as close to 0 as possible, an ink composed of a functional material having a weight average molecular weight of 0, that is, an ink containing no functional material (solvent alone )
  • solvent A is 1-nonanol
  • solvent B is dimethyl phthalate
  • solvent K represents cyclohexylbenzene.
  • FIG. 4 is a diagram showing the relationship between the Z value and the landing accuracy.
  • the experimental data No. 1 shown in FIG. 3 is shown on the XY coordinates where the Z value is taken on the X axis and the landing accuracy is taken on the Y axis.
  • 1 to No. 20 are plotted, it can be seen that there is a correlation between the Z value and the satellite generation rate. It can also be seen that the smaller the Z value, the worse the landing accuracy, and when the Z value is less than 0.7, the landing accuracy exceeds 20 ( ⁇ m). From the above, the lower limit of the Z value was set to 0.7. Further, as apparent from the slope of the approximate curve shown in FIG. 4, it is considered that the Z value is preferably 2 or more from the viewpoint of good and stable landing accuracy.
  • the reason why the landing accuracy is deteriorated when the Z value is small is considered to be that, for example, when the ink viscosity ⁇ is high, the ink droplets from the ink discharge nozzles are poorly cut, so that the ligament becomes long and the landing accuracy deteriorates. It is done. On the other hand, when the ink viscosity ⁇ is low, the ink droplets are cut well, so the ligament is shortened and the landing accuracy is improved.
  • FIG. 5 is a diagram showing the relationship between the discharge speed V and the landing accuracy. As a result of the measurement, results as shown in FIG. 5 were obtained. Accordingly, it was found that there is a correlation between the discharge speed V and the landing accuracy, and the landing accuracy is good when the discharge speed V is equal to or higher than a predetermined speed. This is presumably because the ink droplets are more likely to flow into the air stream as the discharge speed V is lower, and it is difficult for the ink droplets to flow into the air stream when the discharge speed V is higher. It has been found that if the discharge speed V is 3 (m / s) or more, the landing accuracy will not exceed the allowable limit of 20 ( ⁇ m) even if some errors are taken into consideration. 3 (m / s).
  • FIG. 6 is a diagram showing the relationship between the discharge speed V and the discharge speed variation.
  • the discharge speed V is taken on the X axis, and the value obtained by dividing the standard deviation of the discharge speed by the average value of the discharge speed V is taken on the Y axis.
  • the discharge speed V is 3 (m / s) or more and 5 (m / s) or less
  • the value of the Y-axis is 2 (%) or less, and it is difficult to be affected by the airflow. Therefore, it can be said that the discharge speed V is more preferably 3 (m / s) or more and 5 (m / s) or less.
  • FIG. 7 is a diagram for explaining the mode of breakup of ink droplets.
  • One aspect of ink droplet splitting is when the ink droplet splits into a small number of droplets.
  • the droplet is split into two droplets A and B.
  • the ink droplets are split in this way, it is impossible to determine which of the small droplets is the main droplet, making it impossible to manage the discharge operation.
  • the ink droplet splitting there is a case where the ink droplet splits into a main droplet and a plurality of satellites (meaning small droplets split from the main droplet).
  • the main droplet C is divided into a plurality of satellites D.
  • FIG. 7C In order to make it easier to visually understand the mode of ink droplet splitting, the schematic diagram of the image shown in FIG. 7A is shown in FIG. 7C, and the schematic diagram of the image shown in FIG. This is shown in FIG.
  • Fissionability was evaluated by the following method.
  • the splitting property was evaluated by confirming the presence or absence of splitting by observing the flight of ink droplets.
  • the flight observation was performed by, for example, observing the droplet shape after ejection at a resolution of 1 (usec) using an inkjet evaluation apparatus Litrex 120L (manufactured by ULVAC, Inc.).
  • the upper limit of the discharge speed V was set to 6 (m / s).
  • a preferable range of the discharge speed V is 3 (m / s) or more and 6 (m / s) or less.
  • the satellite generation speed is a speed at which satellites are generated when the speed is higher than that speed, and is a speed that sets an upper limit for obtaining good flight characteristics determined with respect to the Z value of each ink droplet.
  • FIG. 8 is a diagram showing the relationship between the Z value and the satellite generation speed.
  • FIG. 9 is a diagram showing an aspect of ink droplets in region I in FIG.
  • FIG. 10 is a diagram showing an aspect of ink droplets in region II in FIG.
  • FIG. 11 is a diagram showing an aspect of ink droplets in region III in FIG.
  • the ink viscosity ⁇ was measured using a viscometer AR-G2 (TA Instruments).
  • the ink surface tension ⁇ was measured using a surface tension meter DSA100 (manufactured by KRUSS).
  • the ink density ⁇ was calculated from the specific gravity (assuming the specific gravity is 1 because the functional material has a low concentration).
  • the satellite has a satellite viscosity ⁇ of about 15 (mPa ⁇ s) and the ink viscosity ⁇ of about 1 (mPa ⁇ s).
  • the ink droplets were ejected one by one in a normal state.
  • region II in FIG. 8 as shown in FIG. 10A, when the ink viscosity ⁇ is about 15 (mPa ⁇ s), the ligament of the ink droplet (meaning the ink tailing phenomenon) becomes long.
  • the ink viscosity ⁇ was about 1 (mPa ⁇ s), it did not occur.
  • FIG. 9A the schematic diagram of the image shown in FIG. 9A is shown in FIG. 9B
  • FIG. 10B shows a schematic diagram of the image shown in FIG. 11A
  • FIG. 11A the schematic diagram of the image shown in FIG. 11A
  • the functional material and solvent constituting the ink, the ink concentration (ratio of the functional material in the ink), the ink viscosity ⁇ , the ink surface tension ⁇ , the ink density ⁇ , and the nozzle diameter r are changed at the levels shown in the table.
  • the Z value was controlled, ink droplets were ejected under the conditions described with reference to FIG. 2, and the ejection speed V at which satellites were generated was measured. Since the ink droplet diameter r ′ depends on the nozzle diameter r of the ink discharge nozzle, the nozzle diameter r is used in place of the ink droplet diameter r ′.
  • the experiment was conducted in order to obtain an evaluation of an ink using a functional material having a weight average molecular weight of greater than 0 and less than or equal to 100,000, and an ink using a functional material having a weight average molecular weight of 100,000 and a weight average molecular weight of 0. This was performed with an ink using the functional material (ink containing no functional material).
  • FIG. 12 is a diagram showing experimental results regarding the relationship between the Z value and the satellite generation speed.
  • the Z value of 21 was 15.0, satellites were generated when the discharge speed V was 2.7 (m / s) or higher.
  • No. When the Z value of 22 was 33.8, satellites were generated when the discharge speed V was 0.9 (m / s) or more.
  • the discharge speed V is 3.0 (m / s) or more.
  • the satellite generation rate is 2.7 (m / s). In No. 21, when the discharge speed V is set to 2.7 (m / s) or more, satellites are generated. That is, no. In 21, it is impossible to make both straightness and splitting good. Therefore, no. 21 determined the splitting ability to be “x”. Similarly, all of the satellites having a satellite generation rate of 3.0 (m / s) or less were determined to be “ ⁇ ”. On the other hand, if the satellite generation rate exceeds 3.0 (m / s), good splitting ability may be obtained.
  • solvent a is acetophenone
  • solvent b is xylene
  • solvent l is methoxytoluene
  • solvent m is cyclohexylbenzene.
  • FIG. 13 is a diagram showing the relationship between the Z value and the satellite generation speed.
  • the experimental data No As shown in FIG. 13, on the XY coordinates where the Z value is taken on the X axis and the satellite generation speed is taken on the Y axis, the experimental data No.
  • a regression equation as shown in [Equation 8] below was obtained, and it was found that there was a correlation between the Z value and the satellite generation rate. Therefore, it is possible to estimate the speed at which satellites are generated from the Z value.
  • the splitting property of the ink droplet does not depend only on the ejection velocity V but depends on both the ejection velocity V and the Z value. It has been found that it is important that the Z value and the discharge speed V satisfy a predetermined relationship in order to improve the quality.
  • the present invention was reached by investigating that there was an unexpected correlation between the Z value and the discharge speed V, which were assumed to be independently defined at the beginning of the study. I was able to.
  • FIG. 14 is a diagram summarizing the relationship between the Z value, the satellite generation speed (FIG. 13), and the landing accuracy (FIG. 4).
  • the area indicated by hatching in the graph shown in FIG. 14 is an area where the landing accuracy is good and no satellite is generated with respect to the Z value, that is, an area where good flight characteristics are obtained. If the Z value is increased by increasing the ink viscosity or the like, the splitting property is improved (meaning that it is difficult to split), but the straightness is deteriorated. On the other hand, if the Z value is decreased, the splitting property is deteriorated (meaning that it is easy to split), but the straightness is improved.
  • the inventors have demonstrated that the flying characteristics of ink droplets can be controlled by the Z value, and have demonstrated through experiments that there is a correlation between the flying characteristics of ink droplets and the Z value. That is, it is used by generalizing the relationship between the ink viscosity Z, the surface tension ⁇ and density ⁇ , and the Z value of the ink droplet determined by the nozzle diameter r of the ink ejection nozzle, and the flying characteristics of the ink droplet. According to the inkjet head to be used, it was possible to predict the ink physical properties that would give good flight characteristics, and succeeded in controlling the flight characteristics of the ink droplets. This makes it possible to reduce the burden of ink development and ejection evaluation.
  • the discharge speed V it is possible to more accurately grasp the relationship with the flight characteristics.
  • the inventors obtained an aspect that suitable flight characteristics can be obtained by controlling the Z value and the discharge speed V so as to satisfy the above [Equation 1] to [Equation 3].
  • the Z value is 2 or more and 10 or less, more suitable flight characteristics can be obtained.
  • An ink according to an embodiment of the present invention includes a functional material that forms a functional layer and a solvent that dissolves the functional material, and is suitable for an ink physical property suitable for an ink jet method (droplet discharge method) using an ink jet apparatus.
  • the ink density ⁇ is larger than 827 (g / m 3 ) and 1190 (g / m 3 ) or less, and the ink surface tension ⁇ is 27.3 (as shown in FIG. 3 and FIG.
  • the nozzle diameter r of the ink discharge nozzle of the ink jet apparatus is preferably 0.02 (mm) or more and 0.03 (mm) or less.
  • F8-F6 (a copolymer of F8 (polydioctylfluorene) and F6 (polydihexylfluorene)) is preferable as the functional material.
  • fluorene compounds other than F8-F6 such as F8 and F6, oxinoid compounds, perylene compounds, coumarin compounds, azacoumarin compounds, oxazole compounds, oxadiazole compounds, perinone compounds, pyrrolopyrrole compounds, naphthalene compounds, Anthracene compound, fluoranthene compound, tetracene compound, pyrene compound, coronene compound, quinolone compound and azaquinolone compound, pyrazoline derivative and pyrazolone derivative, rhodamine compound, chrysene compound, phenanthrene compound, cyclopentadiene compound, stilbene compound, diphenylquinone compound, styryl compound
  • the above-described experiment regarding the correlation between the Z value and the flight characteristics and the correlation between the ejection speed V and the flight characteristics is performed using a functional material having a weight average molecular weight of greater than 0 and less than or equal to 100,000.
  • a functional material having a weight average molecular weight of greater than 0 and less than or equal to 100,000 is suitable, for example, for an ink for forming a light emitting functional layer that emits red light or green light.
  • the thickness of the green light emitting functional layer is, for example, 60 to 100 (nm).
  • the weight average molecular weight is greater than 0 and less than or equal to 100,000. It is preferable to use the functional material.
  • a functional material having a weight average molecular weight of 80,000 or more and 100,000 or less is more preferable.
  • the functional material is F8-F6, the minimum value of the weight average molecular weight is theoretically 722.
  • FIG. 15 is a diagram showing the relationship between the Z value, ink density, and ink viscosity ⁇ .
  • the Z value, ink density, and ink viscosity ⁇ shown in FIG. 15 are values when F8-F6 is used as the functional material and a mixed solvent of cyclohexylbenzene and methoxytoluene (mixing ratio 8: 2) is used as the solvent. .
  • the ink concentration (wt / vol) is preferably in the range of 0.5 (%) to 3.0 (%), and the ink viscosity ⁇ is 4
  • the preferred range is from 0.5 (mPa ⁇ s) to 28.0 (mPa ⁇ s), and the Z value is from 0.9 to 6.0.
  • the solvent when the functional material is F8-F6, cyclohexylbenzene, methoxytoluene, methylnaphthalene, xylene and the like are suitable.
  • the solvent only needs to dissolve the functional material, and may be a single solvent or a mixture of a plurality of solvents.
  • FIG. 16 is a schematic diagram illustrating a stacked state of each layer of the organic display panel according to one embodiment of the present invention.
  • an organic display panel 110 according to one embodiment of the present invention has a structure in which a color filter substrate 113 is bonded to the organic light-emitting element 111 according to one embodiment of the present invention with a sealant 112 interposed therebetween. .
  • the organic light emitting element 111 is a top emission type organic light emitting element in which RGB pixels are arranged in a matrix or a line, and each pixel has a stacked structure in which each layer is stacked on the TFT substrate 1.
  • the first anode electrode 2 and the second anode electrode 3 constituting the first electrode are formed in a matrix shape or a line shape, and a hole injection layer 4 is laminated on the anode electrodes 2 and 3. Furthermore, a bank 5 for defining pixels is formed on the hole injection layer 4.
  • a substrate 11 according to one embodiment of the present invention includes a TFT substrate 1, anode electrodes 2 and 3, and a bank 5, and includes a plurality of banks 5 including openings 12 corresponding to the pixel portions and partitioning adjacent pixel portions. Is formed above the anode electrodes 2 and 3.
  • a hole transport layer 6 and an organic light emitting layer 7 are laminated in this order in the region defined by the bank 5. Further, on the organic light emitting layer 7, an electron transport layer 8, a cathode electrode 9 as a second electrode, and a sealing layer 10 are connected to the adjacent pixels beyond the area defined by the bank 5. It is formed to do.
  • the region defined by the bank 5 has a multilayer laminated structure in which a hole injection layer 4, a hole transport layer 6, an organic light emitting layer (functional layer) 7, and an electron transport layer 8 are laminated in that order.
  • Typical configurations of the multilayer structure are (1) hole injection layer / organic light emitting layer, (2) hole injection layer / hole transport layer / organic light emitting layer, and (3) hole injection layer / organic light emitting layer / electron injection.
  • Layer (4) hole injection layer / hole transport layer / organic light emitting layer / electron injection layer, (5) hole injection layer / organic light emitting layer / hole blocking layer / electron injection layer, (6) hole injection layer / hole transport layer / Organic light emitting layer / hole blocking layer / electron injection layer, (7) organic light emitting layer / hole blocking layer / electron injection layer, and (8) organic light emitting layer / electron injection layer.
  • the TFT substrate 1 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone type.
  • An amorphous TFT (EL element drive circuit) is formed on a base substrate made of an insulating material such as resin or alumina.
  • the first anode electrode 2 is made of, for example, Ag (silver), APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), or NiCr (nickel and nickel). Chrome alloy) or the like.
  • Ag silver
  • APC silver, palladium, copper alloy
  • ARA silver, rubidium, gold alloy
  • MoCr molybdenum and chromium alloy
  • NiCr nickel and nickel. Chrome alloy
  • the second anode electrode 3 is interposed between the first anode electrode 2 and the hole injection layer 4 and has a function of improving the bonding property between the respective layers.
  • the hole injection layer 4 is preferably formed of a metal compound such as a metal oxide, a metal nitride, or a metal oxynitride.
  • a metal compound such as a metal oxide, a metal nitride, or a metal oxynitride.
  • the metal oxide examples include Cr (chromium), Mo (molybdenum), W (tungsten), V (vanadium), Nb (niobium), Ta (tantalum), Ti (titanium), Zr (zirconium), and Hf ( Hafnium), Sc (scandium), Y (yttrium), Th (thorium), Mn (manganese), Fe (iron), Ru (ruthenium), Os (osmium), Co (cobalt), Ni (nickel), Cu ( Copper), Zn (zinc), Cd (cadmium), Al (aluminum), Ga (gallium), In (indium), Si (silicon), Ge (germanium), Sn (tin), Pb (lead), Sb ( Antimony), Bi (bismuth), and oxides such as so-called rare earth elements from La (lanthanum) to Lu (lutetium).
  • Al 2 O 3 (aluminum oxide), CuO (copper oxide), and SiO (silicon oxide) are particularly
  • the bank 5 is preferably formed of, for example, an organic material such as resin or an inorganic material such as glass.
  • organic materials include acrylic resins, polyimide resins, novolac type phenol resins, and examples of inorganic materials include SiO 2 (silicon oxide), Si 3 N 4 (silicon nitride), and the like. It is done.
  • the bank 5 preferably has resistance to organic solvents, preferably transmits visible light to a certain degree, and preferably has insulating properties.
  • an etching process or a baking process may be performed. It is suitable to form with the material with high tolerance with respect to those processes.
  • the bank 5 may be a pixel bank or a line bank.
  • the bank 5 is formed so as to surround the entire circumference of the organic light emitting layer 7 for each pixel.
  • the bank 5 is formed so as to divide a plurality of pixels into columns or rows, and the bank 5 exists only on both sides in the row direction or both sides in the column direction of the organic light emitting layer 7. Are in the same row or row.
  • the hole transport layer 6 has a function of transporting holes injected from the anode electrodes 2 and 3 to the organic light emitting layer 7.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • -PSS polystyrene sulfonic acid
  • a derivative thereof such as a copolymer
  • the organic light emitting layer 7 has a function of emitting light using an electroluminescence phenomenon, and is preferably made of, for example, a functional material included in the ink according to one embodiment of the present invention.
  • the electron transport layer 8 has a function of transporting electrons injected from the cathode electrode 9 to the organic light emitting layer 7 and is preferably formed of, for example, barium, phthalocyanine, lithium fluoride, or a mixture thereof. It is.
  • the cathode electrode 9 is made of, for example, ITO, IZO (indium zinc oxide) or the like. In the case of a top emission type organic light emitting device, it is preferably formed of a light transmissive material.
  • the sealing layer 10 has a function of preventing the organic light emitting layer 7 or the like from being exposed to moisture or air, for example, a material such as SiN (silicon nitride) or SiON (silicon oxynitride). Formed with.
  • a top emission type organic light emitting device it is preferably formed of a light transmissive material.
  • the organic light-emitting element 111 and the organic display panel 110 having the above-described configuration are manufactured using the method for manufacturing an organic light-emitting element according to one embodiment of the present invention, the light-emitting characteristics are favorable.
  • FIG. 17 is a diagram illustrating a schematic configuration of an ink jet apparatus according to an aspect of the present invention.
  • 18 and 19 are process diagrams for describing a method for manufacturing an organic light-emitting element according to one embodiment of the present invention.
  • the method for manufacturing an organic light emitting device includes first to fifth steps.
  • ink according to one embodiment of the present invention is prepared, and this ink is filled into the common ink chamber 21 of the ink jet apparatus 20 according to one embodiment of the present invention as shown in FIG.
  • the ink includes a functional material 22.
  • the ink in the common ink chamber 21 is transported to the pressure generating chamber 24 through the ink sharing path 23.
  • a part of the wall constituting the pressure generating chamber 24 is constituted by a diaphragm 25.
  • the pressure generating chamber 24 is Shrink / expand.
  • the ink is ejected as ink droplets 28 from the ink ejection nozzle 27 by the pressure generated by the contraction / expansion of the pressure generating chamber 24.
  • a substrate 11 for preparing the organic light emitting layer 7 on which the underlayer including the first electrodes 2 and 3 is formed is prepared.
  • a TFT substrate 1 whose upper surface is protected with a protective resist as shown in FIG.
  • the protective resist covering the TFT substrate 1 is peeled off, an organic resin is spin-coated on the TFT substrate 1, and patterning is performed by PR / PE (photoresist / photoetching).
  • PR / PE photoresist / photoetching
  • a planarizing film 1a (for example, 4 ⁇ m thick) is formed.
  • the first anode electrode 2 is formed on the planarizing film 1a.
  • the first anode electrode 2 is formed, for example, by forming a thin film by APC by sputtering and patterning the thin film in a matrix form by PR / PE (for example, a thickness of 150 nm).
  • the first anode electrode 2 may be formed by vacuum deposition or the like.
  • the second anode electrode 3 is formed in a matrix.
  • the second anode electrode 3 is formed, for example, by forming an ITO thin film by a plasma vapor deposition method and patterning the ITO thin film by PR / PE (for example, a thickness of 110 nm).
  • a hole injection layer 4 is formed on the second anode electrode 3.
  • the hole injection layer 4 is formed by sputtering a material that performs a hole injection function and patterning the material by PR / PE (for example, a thickness of 40 nm).
  • the hole injection layer 4 is formed not only on the anode electrode 3 but also over the entire upper surface of the TFT substrate 1.
  • a bank 5 is formed on the hole injection layer 4.
  • a region where the bank 5 is formed on the hole injection layer 4 is a region corresponding to a boundary between adjacent light emitting layer forming regions.
  • the bank 5 is formed by forming a bank material layer so as to cover the whole of the hole injection layer 4 and removing a part of the formed bank material layer by PR / PE (for example, a thickness of 1 ⁇ m).
  • the bank 5 may be a striped line bank that extends only in the vertical direction, or may be a pixel bank that extends in the vertical and horizontal directions and has a cross-sectional shape in the form of a cross.
  • the hole transport layer 6 is formed by filling the recesses between the banks 5 with ink containing the material of the hole transport layer and drying it (for example, a thickness of 20 nm). .
  • the ink jet device 20 is disposed above the substrate 11, the ink is ejected as ink droplets from the ink jet device 20, and the hole facing the opening 12 between the banks 5. Ink droplets are landed on the injection layer 4.
  • the filled ink droplets are dried under reduced pressure and baked to form the organic light emitting layer 7 (for example, a thickness of 60 nm to 90 nm).
  • an electron transport layer 8 is formed by ETL deposition so as to cover the bank 5 and the organic light emitting layer 7 (thickness 20 nm).
  • a second electrode having a polarity different from that of the first electrodes 2 and 3 is formed by plasma-depositing a light transmissive material on the organic light emitting layer 7, for example. 9 is formed (thickness 100 nm).
  • a sealing layer 10 is formed by CVD from above the cathode electrode 9 (thickness 1 ⁇ m).
  • FIG. 20 is a perspective view illustrating an organic display device or the like according to one embodiment of the present invention.
  • the display device 100 according to one embodiment of the present invention includes an organic pixel in which pixels that emit R, G, or B light are regularly arranged in a matrix in the row direction and the column direction.
  • each pixel is formed of the organic EL element according to one embodiment of the present invention.
  • FIG. 21 is a diagram illustrating an overall configuration of an organic display device according to one embodiment of the present invention.
  • the organic display device 100 includes an organic display panel 110 according to an aspect of the present invention, and a drive control unit 120 connected thereto.
  • the drive control unit 120 is composed of four drive circuits 121 to 124 and a control circuit 125.
  • the arrangement and connection relationship of the drive control unit 120 with respect to the organic display panel 110 are not limited thereto.
  • the organic display device 100 having the above configuration is excellent in image quality because it uses an organic light emitting element having good light emission characteristics.
  • FIG. 22A and 22B are diagrams illustrating an organic light-emitting device according to one embodiment of the present invention, in which FIG. 22A is a longitudinal sectional view, and FIG. 22B is a transverse sectional view.
  • the organic light emitting device 200 includes a plurality of organic light emitting elements 210 according to one embodiment of the present invention, a base 220 on which the organic light emitting elements 210 are mounted, and organic light emission on the base 220. And a pair of reflecting members 230 attached so as to sandwich the element 210 therebetween.
  • Each organic light emitting element 210 is electrically connected to a conductive pattern (not shown) formed on the base 220, and emits light by driving power supplied by the conductive pattern.
  • the light distribution of a part of the light emitted from each organic light emitting element 210 is controlled by the reflecting member 230.
  • the organic light emitting device 200 having the above configuration is excellent in image quality because it uses an organic light emitting element having good light emission characteristics.
  • the ink for an organic light emitting device is not limited to the ink for forming the organic light emitting layer, and other than the organic light emitting layer such as a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer.
  • Ink for forming the functional layer may be used.
  • the organic light emitting device is not limited to the top emission type, and may be a bottom emission type.
  • the organic light-emitting layer according to one embodiment of the present invention is not described with respect to the light emission color of the organic light-emitting layer.
  • the present invention can be applied not only to a single color display but also to a full color display.
  • the organic light emitting elements correspond to RGB sub-pixels, and adjacent RGB sub-pixels are combined to form one pixel, and the pixels are arranged in a matrix to form an image display area. Is formed.
  • the ink according to one embodiment of the present invention is not limited to an organic light emitting element, and may be an organic transistor element.
  • the ink for an organic light emitting device can be widely used in a manufacturing process of an organic light emitting device by a wet process. Further, the organic light-emitting element according to one embodiment of the present invention can be widely used, for example, in the general fields of passive matrix or active matrix organic display devices and organic light-emitting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 良好な発光特性を有する有機発光素子を塗布方式で効率良く製造することのできる有機発光素子の製造方法を提供するために、前記インクをインク吐出ノズルを備えたインクジェット装置に充填する第1工程と、第1電極を含む下地層が形成された基板を準備する第2工程と、前記インクジェット装置を前記基板の上方に配置し、前記インクジェット装置から前記インクをインク液滴として吐出させ、前記基板の前記下地層上に前記インク液滴を着弾させる第3工程とを有し、前記第1工程における前記インクの密度ρ(g/m)、表面張力γ(mN・m)および粘度η(mPa・s)、並びに前記インク吐出ノズルのノズル径r(mm)が、[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、前記第3工程における前記インク液滴の吐出速度V(m/s)が、[数2]の数値範囲を満たし、前記Zの値と前記吐出速度V(m/s)とが、[数3]の関係式を満たすように設定する構成とした。

Description

有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
 本発明は、有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置に関する。
 近年、研究・開発が進んでいる有機発光素子は、機能性材料の電界発光現象を利用した発光素子であって、陽極と陰極との間に機能性材料で構成された有機発光層が介挿された構造を有する。このような有機発光素子の製造プロセスでは、マスクを用いた蒸着方式により基板上に機能性材料を蒸着させて有機発光層を含む機能層を形成することが行われている。
 ここで、蒸着方式とは別に、塗布方式が提案されている(特許文献1)。塗布方式では、機能性材料を溶媒に溶かしてインクとし、そのインクをインクジェット装置のインク吐出ノズルから吐出させることで基板上にインクを塗布し、塗布後はインクから溶媒を揮発させて有機発光層を形成する。したがって、プロセスを真空容器中で行なう必要がなく、また、マスクも必要としないため、量産化の点で好ましいとされている。
特開2009-267299号公報
 ところで、良好な発光特性を有する有機発光素子を塗布方式によって製造するためには、基板上の発光層形成領域に正確にインクを塗布して、均一な膜厚および形状の有機発光層を形成しなければならない。そのためには、インクジェット装置から吐出されたインク液滴の飛翔特性が好適であること、すなわち、インク液滴が真っ直ぐに、***することなく、目的の位置まで到達する特性を有さなくてはならない。
 しかしながら、インク液滴の飛翔特性は、インク密度、インク表面張力、インク粘度およびインク液滴径などのインク物性に影響を受けて変化し易く、しかも、それらインク物性は相互関係が不明であるため、飛翔特性のコントロールすることは容易でない。さらに、飛翔特性は、インク吐出ノズルのノズル径によって主に定まるインク液滴径や、インク吐出ノズルから吐出されるインク液滴の吐出速度など、インク物性以外の要因によっても変化するため、さらにコントロールは容易でない。
 そのため、インクやインクジェットヘッドの変更が行なわれるたびに、それらインクやインクジェットヘッドを用いてインクを実際に吐出させて飛翔特性を評価し、飛翔特性に影響を与える各要因に種々変更を加えながら、好適な飛翔特性となる条件を探り当てなければならないのが実情であり、条件を定めるのに非常に時間がかかる。そこで、好適な飛翔特性となる条件を簡単かつ正確に推測できる技術が求められている。
 本発明は、上記の課題に鑑み、好適な飛翔特性となる条件を簡単かつ正確に推測できるため、良好な発光特性を有する有機発光素子を塗布方式によって効率良く製造することのできる有機発光素子の製造方法を提供することを主たる目的とする。
 上記目的を達成するため、本発明の一態様に係る有機発光素子の製造方法は、機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含むインクを準備し、前記インクを、インク吐出ノズルを備えたインクジェット装置に充填する第1工程と、第1電極を含む下地層が形成された基板を準備する第2工程と、前記インクジェット装置を前記基板の上方に配置し、前記インクジェット装置から前記インクをインク液滴として吐出させ、前記基板の前記下地層上に前記インク液滴を着弾させる第3工程と、前記インク液滴を乾燥させ、前記機能層を形成する第4工程と、前記機能層の上方に、第2電極を形成する第5工程と、を有し、前記第1工程における前記インクの密度ρ(g/m)、表面張力γ(mN・m)および粘度η(mPa・s)、並びに、前記インク吐出ノズルのノズル径r(mm)が、下記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、前記第3工程における前記インク液滴の吐出速度V(m/s)が、下記[数2]の数値範囲を満たし、前記Zの値と前記吐出速度V(m/s)とが、下記[数3]の関係式を満たすように設定する、ことを特徴とする。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 本発明の一態様に係る有機発光素子の製造方法は、インクの密度ρ(g/m)、表面張力γ(mN・m)および粘度η(mPa・s)、並びに、インク吐出ノズルのノズル径r(mm)が、上記[数1]のZ値(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、インク液滴の吐出速度V(m/s)が、上記[数2]の数値範囲を満たし、前記Z値と前記吐出速度V(m/s)とが、上記[数3]の関係式を満たすように設定するものであり、変数としては前記Z値と前記吐出速度V(m/s)の2つしか用いないため、飛翔特性の変化を推測し易い。また、Z値および吐出速度V(m/s)はそれぞれ飛翔特性との相関性が高いため、正確な推測が可能である。したがって、好適な飛翔特性となる条件を簡単かつ正確に推測でき、良好な発光特性を有する有機発光素子を塗布方式によって効率良く製造することができる。
インク液滴の飛翔特性に影響する3つの力を説明するための図である。 インク液滴の着弾精度を説明するための図である。 Z値と着弾精度との関係についての実験結果を示す図である。 Z値と着弾精度との関係を示す図である。 吐出速度Vと着弾精度との関係を示す図である。 吐出速度Vと吐出速度バラツキとの関係を示す図である。 インク液滴の***の態様を説明するための図である。 Z値とサテライト発生速度との関係を示す図である。 図8における領域Iでのインク液滴の態様を示す図である。 図8における領域IIでのインク液滴の態様を示す図である。 図8における領域IIIでのインク液滴の態様を示す図である。 Z値とサテライト発生速度との関係についての実験結果を示す図である。 Z値とサテライト発生速度との関係を示す図である。 Z値とサテライト発生速度および着弾精度との関係をまとめた図である。 Z値、インク濃度およびインク粘度ηの関係を示す図である。 本発明の一態様に係る有機表示パネルの各層の積層状態を示す模式図である。 本発明の一態様に係るインクジェット装置の概略構成を示す図である。 本発明の一態様に係る有機発光素子の製造方法を説明するための工程図である。 本発明の一態様に係る有機発光素子の製造方法を説明するための工程図である。 本発明の一態様に係る有機表示装置等を示す斜視図である。 本発明の一態様に係る表示装置の全体構成を示す図である。 本発明の一態様に係る有機発光装置を示す図である。
 以下、本発明の一態様に係る有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置および、インクジェット装置について、図面を参照しながら説明する。
 [本発明の一態様の概要]
 本発明の一態様に係る有機発光素子の製造方法は、機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含むインクを準備し、前記インクを、インク吐出ノズルを備えたインクジェット装置に充填する第1工程と、第1電極を含む下地層が形成された基板を準備する第2工程と、前記インクジェット装置を前記基板の上方に配置し、前記インクジェット装置から前記インクをインク液滴として吐出させ、前記基板の前記下地層上に前記インク液滴を着弾させる第3工程と、前記インク液滴を乾燥させ、前記機能層を形成する第4工程と、前記機能層の上方に、第2電極を形成する第5工程と、
を有し、前記第1工程における前記インクの密度ρ(g/m)、表面張力γ(mN・m)および粘度η(mPa・s)、並びに、前記インク吐出ノズルのノズル径r(mm)が、上記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、前記第3工程における前記インク液滴の吐出速度V(m/s)が、上記[数2]の数値範囲を満たし、前記Zの値と前記吐出速度V(m/s)とが、上記[数3]の関係式を満たすように設定する、ことを特徴とする。
 本発明の一態様に係る有機発光素子の製造方法の特定の局面では、前記Zの値は、2以上10以下であり、前記吐出速度Vは、3(m/s)以上5(m/s)以下である。
 本発明の一態様に係る有機発光素子の製造方法の特定の局面では、前記インクの密度ρは、827(g/m)よりも大きく1190(g/m)以下であり、前記インクの表面張力γは、27.3(mN・m)よりも大きく41.9(mN・m)以下であり、前記インクの粘度ηは2.4(mPa・s)よりも大きく35.0(mPa・s)以下であり、前記インクジェット装置のノズル径rは、0.02(mm)以上0.03(mm)以下である。
 本発明の一態様に係る有機発光素子の製造方法の特定の局面では、前記第2工程は、画素部に対応する開口を備え、隣り合う画素部を区画する複数の隔壁を前記下地層の上方に有する基板を準備し、前記第3工程は、前記基板の前記隔壁間の開口に面する下地層上に、前記インク液滴を着弾させる。
 本発明の一態様に係る有機表示パネルは、上記有機発光素子の製造方法により製造された有機発光素子を用いた。
 本発明の一態様に係る有機発光装置は、上記有機発光素子の製造方法により製造された有機発光素子を用いた。
 本発明の一態様に係る有機表示装置は、上記有機発光素子の製造方法により製造された有機発光素子を用いた。
 本発明の一態様に係る機能層の形成方法は、機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含むインクを準備し、前記インクを、インク吐出ノズルを備えたインクジェット装置に充填する第1工程と、前記機能層を形成するための基板を準備する第2工程と、前記インクジェット装置を前記基板の上方に配置し、前記インクジェット装置から前記インクをインク液滴として吐出させ、前記基板上に前記インク液滴を着弾させる第3工程と、前記インク液滴を乾燥させ、前記機能層を形成する第4工程と、を有し、前記第1工程における前記インクの密度ρ(g/m)、表面張力γ(mN・m)および粘度η(mPa・s)、並びに、前記インク吐出ノズルのノズル径r(mm)が、上記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、前記第3工程における前記インク液滴の吐出速度V(m/s)が、上記[数2]の数値範囲を満たし、前記Zの値と前記吐出速度V(m/s)とが、上記[数3]の関係式を満たすように設定する、ことを特徴とする。
 本発明の一態様に係る機能層の形成方法の特定の局面では、前記Zの値は、2以上10以下であり、前記吐出速度Vは、3(m/s)以上5(m/s)以下である。
 本発明の一態様に係る機能層の形成方法の特定の局面では、前記インクの密度ρは、827(g/m)よりも大きく1190(g/m)以下であり、前記インクの表面張力γは、27.3(mN・m)よりも大きく41.9(mN・m)以下であり、前記インクの粘度ηは2.4(mPa・s)よりも大きく35.0(mPa・s)以下であり、前記インクジェット装置のノズル径rは、0.02(mm)以上0.03(mm)以下である。
 本発明の一態様に係るインクは、インク吐出ノズルを備えたインクジェット装置を用いて吐出され、基板上に着弾して乾燥させられて機能層を構成するためのインクであって、前記機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含み、その密度ρ(g/m)、その表面張力γ(mN・m)およびその粘度η(mPa・s)、並びに、前記インク吐出ノズルのノズル径r(mm)が、上記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、前記インクジェット装置から上記[数2]の数値範囲を満たす吐出速度V(m/s)で吐出され、前記吐出速度V(m/s)に対して、前記Zの値が上記[数3]の関係式を満たす。
 本発明の一態様に係るインクの特定の局面では、有機発光素子の機能層を構成する機能性材料と、溶媒とを含み、第1電極を含む下地層が形成された有機発光素子用基板における、前記下地層上に着弾して乾燥され、前記第1電極と、前記下地層に対向する第2電極との間において有機発光素子の機能層を構成するためのインクである。
 本発明の一態様に係るインクの特定の局面では、前記密度ρ(g/m3)、前記表面張力γ(mN・m)、および、前記粘度η(mPa・s)は前記吐出速度Vが3(m/s)以上5(m/s)以下において、前記Zの値が2以上10以下を満たすように設定されている。
 本発明の一態様に係るインクの特定の局面では、前記インクジェット装置のノズル径rが、0.02(mm)以上0.03(mm)以下において、前記密度ρは、827(g/m)よりも大きく1190(g/m)以下であり、前記表面張力γは、27.3(mN・m)よりも大きく41.9(mN・m)以下であり、前記粘度ηは2.4(mPa・s)よりも大きく35.0(mPa・s)以下である。
 本発明の一態様に係る基板は、上記インクを用いて製造された、機能層を有する。
 本発明の一態様に係る有機発光素子は、上記インクを用いて製造された、機能層を有する。
 本発明の一態様に係る有機表示パネルは、上記インクを用いて製造された、機能層を有する有機発光素子を備える。
 本発明の一態様に係る有機発光装置は、上記インクを用いて製造された、機能層を有する有機発光素子を備える。
 本発明の一態様に係る有機表示装置は、上記インクを用いて製造された、機能層を有する有機発光素子を備える。
 本発明の一態様に係るインクジェット装置は、機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含むインクを収容し、前記インクをインク吐出ノズルから吐出し、基板上に着弾させて機能層を形成するためのインクジェット装置であって、前記インク吐出ノズルのノズル径r(mm)は、前記インクの密度ρ(g/m3)、表面張力γ(mN・m)、および、粘度η(mPa・s)に対して、上記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、前記インクを吐出する吐出速度V(m/s)は、上記[数2]の数値範囲を満たし、さらに、前記Zの値に対して、上記[数3]の関係式を満たす。
 本発明の一態様に係るインクジェット装置の特定の局面では、前記インクの機能性材料は、有機発光素子の機能層を構成する機能性材料であり、前記インクを吐出し、前記インクを第1電極を含む下地層が形成された有機発光素子用基板における前記下地層上に着弾させ、前記第1電極と、前記下地層に対向する第2電極との間において前記有機発光素子の前記機能層を形成するためのインクジェット装置である。
 本発明の一態様に係る基板は、上記インクジェット装置を用いて製造された、機能層を有する。
 本発明の一態様に係る有機発光素子は、上記インクジェット装置を用いて製造された、機能層を有する。
 本発明の一態様に係る有機表示パネルは、上記インクジェット装置を用いて製造された、機能層を有する有機発光素子を備える。
 本発明の一態様に係る有機発光装置は、上記インクジェット装置を用いて製造された、機能層を有する有機発光素子を備える。
 本発明の一態様に係る有機表示装置は、上記インクジェット装置を用いて形成された、機能層を有する有機発光素子を備える。
 [本発明に至った経緯]
 発明者は、好適な飛翔特性となる条件を簡単かつ正確に推測できる技術を、以下に説明する実験・考察を経て完成させた。
 (飛翔特性をコントロールするための変数の検討)
 まず、好適な飛翔特性となる条件を簡単かつ正確に推測するために、どのような変数で飛翔特性をコントロールすれば良いのかを検討するにあたって、インクの挙動に影響を与える3種類の物理的な力(粘性抵抗、慣性力、表面張力)に着眼して考察を行なった。
 図1は、インク液滴の飛翔特性に影響する3つの力を説明するための図である。図1に示すように、インク液滴の飛翔特性は、粘性抵抗、慣性力、表面張力の3つの力のバランスによって決まる。
 粘性抵抗は、下記[式1]に示すように、インク粘度η、インク液滴径r’および吐出速度Vにより決まる。
 粘性力=η・r・v  …[式1]
 慣性力は、下記[式2]に示すように、インク密度ρ、インク液滴径r’、吐出速度Vにより定まる。
 慣性力=ρ・r・v  …[式2]
 表面張力は、下記[式3]に示すように、インク表面張力γ、インク液滴径r’により定まる。
 表面張力=γ・r  …[式3]
 総括すると、インク液滴の飛翔特性に影響を与える要因としては、インク密度ρ、インク表面張力γ、インク粘度η、インク液滴径r’および吐出速度Vの5つが挙げられる。これら5つの要因のうち、インク密度ρ、インク表面張力γ、インク粘度ηおよびインク液滴径r’の4つの要因は、インク物性に関する要因であり、吐出速度Vだけがインク物性以外の要因である。これら要因の全てを変数とすると、変数が5つにもなり、しかもそれらは相互関係が不明であるため、飛翔特性のコントロールが非常に困難である。
 そこで、発明者は、飛翔特性をコントロールし易くするために、変数を減らすことを考え、レイノルズ数 (Reynolds number)Nre、ウェーバー数(Weber number)Nwe、および、オーネゾルゲ数Ohに着目した。
 レイノルズ数 Nreとは、慣性力と粘性力との比で定義される無次元数であり、流体力学において「流れ」の性質を調べるために利用される値である。本願ではインク液滴の直進性に主として関与すると考えられる。レイノルズ数Nreは、下記[式4]に示すように、慣性力と粘性力の比で表される。
 レイノルズ数Nre=慣性力/粘性力=v・r・ρ/η  …[式4]
 ウェーバー数Nweとは、二相流を扱う際に重要な無次元数であり、液滴が気流中を流れる場合の変形挙動や、液滴の界面の安定性問題の整理に利用される値である。本願ではインク液滴の***性に主として関与すると考えられる。ウェーバー数Nweは、下記[式5]に示すように、慣性力と表面張力との比で表される。
 ウェーバー数Nwe=慣性力/表面張力=v・r・ρ/γ  …[式5]
 オーネゾルゲ数(Ohnesorge number)Ohとは、粘性力と、慣性力および表面張力との関係を示す無次元数である。オーネゾルゲ数Ohは、下記[式6]に示すように、レイノルズ数Nreとウェーバー数Nweとの比で表される。
 オーネゾルゲ数Oh=(ウェーバー数Nwe)1/2/レイノルズ数Nre  …[式6]
 ここで、上記[式6]に[式4]および[式5]を代入すれば、下記[式7]に示すように、粘性抵抗、慣性力、表面張力の3つの力のバランスを、インク物性に関するインク密度ρ、インク表面張力γ、インク粘度ηおよびインク液滴径r’の4つの要因だけで表すことが可能になり、インク物性以外の要因である吐出速度Vを打ち消すことができる。さらに、インク物性に関する4つの要因は、オーネゾルゲ数Ohの逆数であるZ値でひとまとめに表すことができる。
 Z=1/オーネゾルゲ数Oh
  =レイノルズ数Nre/(ウェーバー数Nwe)1/2
  =(慣性力/粘性力)/(慣性力/表面張力)1/2
  =(v・r・ρ/η)/(v・r・ρ/γ)1/2
  =(r・ρ・γ)1/2/η                …[式7]
 このように、飛翔特性に影響を及ぼす要因を、インク物性に関する要因と、インク物性以外の要因とに分け、さらに、インク物性に関する要因をひとまとめにしたZ値を1つの変数として扱えば、飛翔特性のコントロールが非常に容易である。
 以上の考察により、インク物性に関する要因であるZ値、および、インク物性以外の要因である吐出速度Vの2つの変数によって、飛翔特性をコントロールするとの着想に至った。そこで、Z値と飛翔特性との相関性、および、吐出速度Vと飛翔特性との相関性を、それぞれ実験確認することにした。Z値および吐出速度Vはそれぞれ独立した値であるため、Z値と飛翔特性との相関性、および、吐出速度Vと飛翔特性との相関性は、別個に見極められるとの目論見であった。
 (Z値とインク液滴の直進性との相関性)
 飛翔特性が好適だと言えるためには、インク液滴の直進性が良好でなければならない。直進性が良好であるとは、インクジェット装置から吐出されたインク液滴が真っ直ぐに目的の位置まで到達することを意味する。直進性は、例えばインク液滴の着弾精度を測定して評価することができる。
 図2は、インク液滴の着弾精度を説明するための図である。図2を用いてインク液滴の着弾精度について説明する。
 インクジェット装置を用いて塗布法によりインクを塗布する場合、一般的には、基板の上方にインクジェットヘッドを配置し、インク吐出ノズルから下方に向けてインク液滴を吐出する。このときの基板とインクジェットヘッドとの距離は、例えば約500(μm)である。
 基板は、発光層形成領域(画素部)を区画する複数のバンク(隔壁)を上面に有する。発光層形成領域は例えば幅が約60(μm)、バンクは例えば幅が約30(μm)、厚みが約1(μm)である。一方、インク吐出ノズルは例えばノズル径r(直径)が約20(μm)であり、そこから吐出されるインク液滴はインク液滴径r’が約24(μm)である。インク吐出ノズルの位置精度は±約8(μm)であるため、発光層形成領域内にインク液滴全体を着弾させるためには、±10(μm)以下の誤差でインク液滴を吐出することが好ましい。以上のことから、誤差が±10(μm)以下の場合、すなわち着弾精度が20(μm)以下の場合に、直進性が良好であると判断することにした。
 図3は、Z値と着弾精度との関係についての実験結果を示す図である。インクを構成する機能性材料および溶媒、インクの濃度(インクに対する機能性材料の濃度)、インク粘度η、インク表面張力γおよびインク密度ρ、インク吐出ノズルのノズル径rを表に示すような水準で変化させてZ値を制御し、図2を用いて説明した条件でインク液滴を吐出させ、着弾精度を測定し、標準偏差6σで評価した。インク液滴径r’は、インク吐出ノズルのノズル径rに依存するので、インク液滴径r’の代わりとしてノズル径rを用いた。
 実験は、重量平均分子量が0よりも大きく100000(本願の図中においては、省略して「100k」と記載している)以下の機能性材料を用いたインクについての評価を得るために、重量平均分子量が100000の機能性材料を用いたインクで行なった。さらに、重量平均分子量が可能な限り0に近い機能性材料で構成されるインクの代わりとして、重量平均分子量が0の機能性材料で構成されるインク、すなわち機能性材料を含まないインク(溶媒単独)でも行なった。
 なお、図3の溶媒の欄において、溶媒Aは1-ノナノール、溶媒Bはジメチルフタレート、溶媒Cはキシレン/1-ノナノール=14/86、溶媒Dはジメチルフタレート/1-ノナノール=50/50、溶媒Eはアセトフェノン/ジメチルフタレート=17/83、溶媒Fはキシレン/ジメチルフタレート=25/75、溶媒Gはキシレン/1-ノナノール=35/65、溶媒Hはアセトフェノン/ジメチルフタレート=50/50、溶媒Iはキシレン/1-ノナノール=50/50、溶媒Jはキシレン/ジメチルフタレート=50/50、溶媒Kはシクロヘキシルベンゼンを意味する。
 例えば、No.1の条件の場合、着弾精度は11.3(μm)であり、20(μm)以下であったため、良好な直進性を得られる可能性があるとして「○」と判定した。他も全て着弾精度が20(μm)以下であったため、良好な直進性を得られる可能性があるとして「○」と判定した。
 図4は、Z値と着弾精度との関係を示す図である。図4に示すように、X軸にZ値をとり、Y軸に着弾精度をとったXY座標上に図3に示された実験データNo.1~No.20をプロットすると、Z値とサテライト発生速度とに相関関係があることがわかる。また、Z値が小さくなるほど着弾精度は悪化し、Z値が0.7未満の場合に着弾精度が20(μm)を超えることがわかる。以上のことから、Z値の下限を0.7と定めた。さらに、図4に示す近似曲線の傾きから明らかなように、良好かつ安定的な着弾精度の点から、Z値は2以上が好ましいと考えられる。
 なお、Z値が小さくなると着弾精度が悪化する原因として、例えば、インク粘度ηが高い場合は、インク吐出ノズルからのインク液滴の切れが悪いため、リガメントが長くなって着弾精度が悪化すると考えられる。逆にインク粘度ηが低いと、インク液滴の切れが良いためリガメントは短くなって着弾精度は良好になると考えられる。
 (吐出速度Vとインク液滴の直進性との相関性)
 吐出速度Vと飛翔特性との相関性の検討は、吐出速度Vとインク液滴の直進性(着弾精度)との関係を調べることにより行なった。測定用のインクは、機能性材料としてF8-F6を用い、溶媒としてシクロヘキシルベンゼン、メトキシトルエン、1-ノナノール、ジメチルフタレート、アセトフェノン、キシレンのいずれかを用いた。そして、各種インクをインク吐出ノズルから種々の吐出速度Vで吐出させ、それらの着弾精度を測定し、標準偏差6σで評価した。なお、吐出速度Vとして、インクジェット評価装置Litrex120L(株式会社アルバック製)を用いて、インクジェットヘッド先端から0.5mmの液滴の速度を測定した。
 図5は、吐出速度Vと着弾精度との関係を示す図である。測定の結果、図5に示すような結果が得られた。これにより、吐出速度Vと着弾精度との間には相関性があり、吐出速度Vが所定の速度以上であれば着弾精度が良好であることが分かった。これは、吐出速度Vが遅いほどインク液滴が気流に流され易く、吐出速度Vが速いと気流に流され難いからだと考えられる。吐出速度Vが3(m/s)以上であれば、多少の誤差を考慮にいれても着弾精度が許容限界の20(μm)を超えることがないことが分かったため、吐出速度Vの下限を3(m/s)と定めた。
 なお、溶媒の種類は、吐出速度Vと着弾精度との関係に大きく影響しないことも分かった。
 図6は、吐出速度Vと吐出速度バラツキとの関係を示す図である。図6に示すグラフでは、X軸に吐出速度Vをとり、Y軸に吐出速度の標準偏差を吐出速度Vの平均値で除した値をとっている。図6に示すように、吐出速度Vを3(m/s)以上、5(m/s)以下とすれば、Y軸の値は2(%)以下であり気流の影響を受け難いと考えられるため、吐出速度Vは3(m/s)以上、5(m/s)以下がより好適であると言える。
 (吐出速度Vとインク液滴の***性との相関性)
 ところで、上記実験において、吐出速度Vを大きくしていくと、インクが***してサテライトが発生し、飛翔特性を損なうことがわかった。インク液滴の飛翔特性が好適だと言えるためには、***性も良好でなければならない。インク液滴の***性が良好であるとは、インク液滴が***しないことを意味する。
 図7は、インク液滴の***の態様を説明するための図である。インク液滴の***の一態様として、インク液滴が少数の小滴に***する場合が挙がられる。図7(a)に示す例では、2つの小滴A,Bに***している。このようにインク液滴が***すると、いずれの小滴が主滴であるの判定できないため吐出作業の管理が不能になる。また、インク液滴の***の他の態様として、インク液滴が主滴と複数のサテライト(主滴から***した小滴を意味する)とに***する場合が挙げられる。図7(b)に示す例では、主滴Cと、複数のサテライトDとに***している。このようにインク液滴が***すると、サテライトが目的外の発光層形成領域に着弾するおそれがある。以上のようなことから、***が生じなかった場合に***性が良好だと判断した。
 なお、インク液滴の***の態様を視覚的に理解し易いように、図7(a)に示す画像の模式図を図7(c)に、図7(b)に示す画像の模式図を図7(d)に、それぞれ示している。
 ***性は次のような方法で評価した。***性は、インク液滴の飛翔観測を行い、***の有無を確認し評価した。飛翔観測は、例えば、インクジェット評価装置Litrex120L(株式会社アルバック製)を用いて、吐出後の液滴形状を分解能1(usec)で観察して行なった。
 吐出速度Vが6(m/s)を超えるとサテライトが発生して着弾精度を正確に測定できなかったため、吐出速度Vの上限を6(m/s)と定めた。
 吐出速度Vと飛翔特性との相関性についてまとめると、吐出速度Vが遅いと、***性は良好である(***しづらいという意味である)が直進性は良好でない。一方、吐出速度Vが速いと、直進性は良好であるが***性は良好でない(***しやすいという意味である)。吐出速度Vの好適な範囲は、3(m/s)以上、6(m/s)以下である。このように、飛翔特性に関し、直進性と共に、***性(サテライト防止)が重要であるとの知見を得た。
 (Z値とインク液滴の***性との相関性)
 当初の考察からすれば、Z値および吐出速度Vのそれぞれの変数について実験確認をおこない、相関性を示す関係式が得られれば、飛翔特性をコントロールするのに十分だと思われた。しかしながら、インク液滴の***性の点から、吐出速度Vに上限値が存在することが判明したことより、Z値とインク液滴の***性との間にも何らかの相関性が存在すると推測し、さらに検討を進めた。
 先ずは、重量平均分子量を問わずに、Z値とサテライト発生速度との相関性について大まかに検討した。サテライト発生速度とは、その速度以上の速度にするとサテライトが発生してしまう速度であり、各インク液滴のZ値に対して定まる良好な飛翔特性を得るための上限を定める速度である。
 図8は、Z値とサテライト発生速度との関係を示す図である。図9は、図8における領域Iでのインク液滴の態様を示す図である。図10は、図8における領域IIでのインク液滴の態様を示す図である。図11は、図8における領域IIIでのインク液滴の態様を示す図である。
 なお、インク粘度ηは、粘度計AR-G2(TA Instruments)を使用して測定した。インク表面張力γは、表面張力計DSA100(KRUSS製)を使用して測定した。インク密度ρは、比重より計算した(機能性材料は濃度が低いため比重は1と仮定)。
 図8に示すように、Z値とサテライト発生速度との間には相関性がみられた。なお、図8における領域Iでは、図9(a)に示すように、インク粘度ηが約15(mPa・s)の場合も、インク粘度ηが約1(mPa・s)の場合も、サテライトが発生せず、インク液滴が1滴ずつ吐出される正常な状態であった。図8における領域IIでは、図10(a)に示すように、インク粘度ηが約15(mPa・s)の場合は,インク液滴のリガメント(インクの尾曳き現象を意味する)が長くなって***が生じたが、インク粘度ηが約1(mPa・s)の場合は生じなかった。図8における領域IIIでは、図11(a)に示すように、インク粘度ηが約15(mPa・s)の場合も、インク粘度ηが約1(mPa・s)の場合も、サテライトが発生した。
 なお、インク液滴の***の態様を視覚的に理解し易いように、図9(a)に示す画像の模式図を図9(b)に、図10(a)に示す画像の模式図を図10(b)に、図11(a)に示す画像の模式図を図11(b)に、それぞれ示している。
 次に、Z値とサテライト発生速度との相関性について詳細に検討した。インクを構成する機能性材料および溶媒、インク濃度(インク中の機能性材料の割合)、インク粘度η、インク表面張力γ、インク密度ρ、ノズル径rを表に示すような水準で変化させてZ値を制御し、図2を用いて説明した条件でインク液滴を吐出させ、サテライトが発生する吐出速度Vを測定した。インク液滴径r’は、インク吐出ノズルのノズル径rに依存するので、インク液滴径r’の代わりとしてノズル径rを用いた。
 実験は、重量平均分子量が0よりも大きく100000以下の機能性材料を用いたインクについての評価を得るために、重量平均分子量が100000の機能性材料を用いたインク、および、重量平均分子量が0の機能性材料を用いたインク(機能性材料を含まないインク)で行なった。 
 図12は、Z値とサテライト発生速度との関係についての実験結果を示す図である。図12において、例えば、No.21のZ値が15.0の場合は、吐出速度Vが2.7(m/s)以上になるとサテライトが発生した。また、例えば、No.22のZ値が33.8の場合は、吐出速度Vが0.9(m/s)以上になるとサテライトが発生した。
 ところで、前述したように、着弾精度を20(μm)以下にするためには吐出速度Vが3.0(m/s)以上であることが好ましい。ところが、サテライト発生速度が2.7(m/s)であるNo.21は、吐出速度Vを2.7(m/s)以上にすると、サテライトが発生してしまう。すなわち、No.21では、直進性と***性の両方を良好にすることは不可能である。したがって、No.21は、***性を「×」と判定をした。同様に、サテライト発生速度が3.0(m/s)以下のものは全て***性を「×」と判定した。一方、サテライト発生速度が3.0(m/s)を超えるものは良好な***性が得られる可能性があるとして***性を「○」と判定した。
 なお、図12の溶媒の欄において、溶媒aはアセトフェノン、溶媒bはキシレン、溶媒cはキシレン/1-ノナノール=14/86、溶媒dはジメチルフタレート/1-ノナノール=50/50、溶媒eはアセトフェノン/ジメチルフタレート=17/83、溶媒fはキシレン/ジメチルフタレート=25/75、溶媒gはキシレン/1-ノナノール=35/65、溶媒hはアセトフェノン/ジメチルフタレート=50/50、溶媒iはアセトフェノン/ジメチルフタレート=78/22、溶媒jはキシレン/ジメチルフタレート=50/50、溶媒kはキシレン/ジメチルフタレート=85/15、溶媒lはメトキシトルエン、溶媒mはシクロヘキシルベンゼンである。
 図13は、Z値とサテライト発生速度との関係を示す図である。図13に示すように、X軸にZ値をとり、Y軸にサテライト発生速度をとったXY座標上に、図12に示した実験データNo.21~No.40をプロットし、回帰分析すると、下記の[式8]に示すような回帰式が得られ、Z値とサテライト発生速度とに相関関係があることがわかった。したがって、Z値よりサテライトが発生する速度を見積もることが可能である。
 y=-2.17Ln(x)+8.47  …[式8]
 図13のグラフにおいて回帰線よりも下側の領域がサテライトの発生しない領域である。そして、Z値が13を超えた場合にサテライト発生速度が3.0(m/s)未満になることが分かる。したがって、Z値の上限を13と定めた。
 (まとめ)
 以上のように、インク液滴の***性は、吐出速度Vのみに依存する訳ではなく、吐出速度VとZ値の両方の変数に依存しており、それ故、インク液滴の***性を良好にするためには、Z値と吐出速度Vとが所定の関係を満たすことが重要であることが判明した。
 このように、検討当初は独立的に規定できると想定していたZ値と吐出速度Vとの間に、想定外であった相関関係が存在することを究明できたことにより、本発明に到達し得た。
 図14は、Z値とサテライト発生速度(図13)および着弾精度(図4)との関係をまとめた図である。図14に示すグラフにおいてハッチングで示す領域が、Z値に関して、着弾精度が良好かつサテライトが発生しない領域、すなわち良好な飛翔特性が得られる領域である。インク粘度を高くするなどしてZ値を大きくすると***性は良好になる(***しづらいという意味である)が直進性は悪くなる。一方、Z値を小さくすると***性は悪くなる(***し易いという意味である)が直進性は良好になる。
 以上のように、発明者は、インク液滴の飛翔特性をZ値で制御できることを実証し、インク液滴の飛翔特性とZ値との間に相関が見られることを実験により実証した。すなわち、インクの粘度η、表面張力γおよび密度ρ、並びに、インク吐出ノズルのノズル径rで定まるインク液滴のZ値と、インク液滴の飛翔特性との関係を一般化することで、使用するインクジェットヘッドに応じて良好な飛翔特性が得られるインク物性を予想可能にし、インク液滴の飛翔特性をコントロールすることに成功した。これにより、インク開発や吐出評価の負担を低減させることが可能になった。
 さらに、吐出速度Vを規定することにより飛翔特性との関係をより正確に捉えることが可能となった。そのため、インクジェット装置のインク吐出ノズルに合わせた最適なインク設計が可能となった。そして、Z値および吐出速度Vを上記[数1]~[数3]を満たすようにコントロールすれば好適な飛翔特性が得られるとの見地を得た。なお、Z値が2以上10以下である場合は、より好適な飛翔特性が得られる。
 [インク]
 本発明の一態様に係るインクは、機能層を構成する機能性材料と、当該機能性材料を溶解する溶媒とを含み、インクジェット装置を用いたインクジェット法(液滴吐出法)に適したインク物性を有する。そのようなインク物性としては、図3および図12から分かるように、インク密度ρは827(g/m)よりも大きく1190(g/m)以下、インク表面張力γは27.3(mN・m)よりも大きく41.9(mN・m)以下、インク粘度ηは2.4(mPa・s)よりも大きく35.0(mPa・s)以下であることが好適である。その場合、インクジェット装置のインク吐出ノズルのノズル径rは、0.02(mm)以上0.03(mm)以下であることが好適である。
 機能性材料としては、具体的には、F8-F6(F8(ポリジオクチルフルオレン)とF6(ポリジヘキシルフルオレン)との共重合体)が好適である。F8-F6以外には、F8、F6等のF8-F6以外のフルオレン化合物、オキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との鎖体、オキシン金属錯体、希土類錯体等が挙げられる(特開平5-163488号公報参照)。これら化合物や錯体は、単独で用いても良いし、複数を混合して用いても良い。
 本願では、Z値と飛翔特性との相関性、および、吐出速度Vと飛翔特性との相関性に関する上記実験を、重量平均分子量が0よりも大きく100000以下の機能性材料を用いて行なっている。重量平均分子量が0よりも大きく100000以下である機能性材料は、例えば、赤色発光または緑色発光の発光機能層を形成するためのインク用として好適である。緑色の発光機能層の膜厚は、例えば60~100(nm)であるが、そのような膜厚設計に適したインク濃度のインクを得るためには、重量平均分子量が0よりも大きく100000以下の機能性材料を用いることが好ましい。さらに、重量平均分子量が80000以上100000以下の機能性材料がより好ましい。なお、機能性材料がF8-F6の場合、重量平均分子量の最小値は理論上722である。
 図15は、Z値、インク濃度およびインク粘度ηの関係を示す図である。図15に示すZ値、インク濃度およびインク粘度ηは、機能性材料としてF8-F6を用い、溶媒としてシクロヘキシルベンゼンとメトキシトルエンの混合溶媒(混合比8:2)を用いた場合の値である。機能性材料の重量平均分子量が0よりも大きく100000以下の場合、インク濃度(wt/vol)は0.5(%)以上3.0(%)以下が好適範囲であり、インク粘度ηは4.5(mPa・s)以上28.0(mPa・s)以下が好適範囲であり、Z値は0.9以上6.0以下が好適範囲である。
 溶媒は、機能性材料がF8-F6である場合には、シクロヘキシルベンゼン、メトキシトルエン、メチルナフタレン、キシレン等が好適である。なお、溶媒は、機能性材料を溶解可能であればよく、単独の溶媒でも、複数の溶媒を混合したものでも良い。
 [有機表示パネル、有機発光素子および基板]
 図16は、本発明の一態様に係る有機表示パネルの各層の積層状態を示す模式図である。図16に示すように、本発明の一態様に係る有機表示パネル110は、本発明の一態様に係る有機発光素子111上にシール材112を介してカラーフィルター基板113を貼り合わせた構成を有する。
 有機発光素子111は、RGBの各ピクセルがマトリックス状またはライン状に配置されてなるトップエミッション型の有機発光素子であり、各ピクセルはTFT基板1上に各層を積層した積層構造となっている。
 TFT基板1上には、第1電極を構成する第1アノード電極2および第2アノード電極3がマトリックス状またはライン状に形成されており、それらアノード電極2,3上にホール注入層4が積層されており、さらにホール注入層4上にはピクセルを規定するバンク5が形成されている。
 本発明の一態様に係る基板11は、TFT基板1、アノード電極2,3、および、バンク5で構成され、画素部に対応する開口12を備え、隣り合う画素部を区画する複数のバンク5はアノード電極2,3の上方に形成されている。
 バンク5で規定された領域内にホール輸送層6および有機発光層7がこの順で積層されている。さらに、有機発光層7の上には、電子輸送層8、第2電極であるカソード電極9、および封止層10が、それぞれバンク5で規定された領域を超えて隣のピクセルのものと連続するように形成されている。
 バンク5で規定された領域は、ホール注入層4、ホール輸送層6、有機発光層(機能層)7および電子輸送層8がその順で積層された多層積層構造となっている。
 なお、多層積層構造には電子注入層等の他の層が含まれていても良い。多層積層構造の代表的な構成としては、(1)ホール注入層/有機発光層、(2)ホール注入層/ホール輸送層/有機発光層、(3)ホール注入層/有機発光層/電子注入層、(4)ホール注入層/ホール輸送層/有機発光層/電子注入層、(5)ホール注入層/有機発光層/ホール阻止層/電子注入層、(6)ホール注入層/ホール輸送層/有機発光層/ホール阻止層/電子注入層、(7)有機発光層/ホール阻止層/電子注入層、(8)有機発光層/電子注入層等の素子構成が挙げられる。
 TFT基板1は、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、又はアルミナ等の絶縁性材料からなるベース基板上に、アモルファスTFT(EL素子ドライブ回路)が形成されたものである。
 第1アノード電極2は、例えば、Ag(銀)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、またはNiCr(ニッケルとクロムの合金)等で形成されている。トップエミッション型の有機発光素子の場合は、光反射性の材料で形成されていることが好適である。
 第2アノード電極3は、第1アノード電極2およびホール注入層4の間に介在し、各層間の接合性を良好にする機能を有する。
 ホール注入層4は、例えば、金属酸化物、金属窒化物、または金属酸窒化物等の金属化合物で形成されていることが好適である。ホール注入層4が金属酸化物で形成されている場合は、ホールの注入が容易になるため、有機発光層7内で電子が有効に発光に寄与し良好な発光特性を得ることができる。金属酸化物としては、例えば、Cr(クロム)、Mo(モリブデン)、W(タングステン)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)、Sc(スカンジウム)、Y(イットリウム)、Th(トリウム)、Mn(マンガン)、Fe(鉄)、Ru(ルテニウム)、Os(オスミウム)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Cd(カドミウム)、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Si(シリコン)、Ge(ゲルマニウム)、Sn(錫)、Pb(鉛)、Sb(アンチモン)、Bi(ビスマス)、およびLa(ランタン)からLu(ルテチウム)までのいわゆる希土類元素等の酸化物が挙げられる。なかでも、Al(酸化アルミニウム)、CuO(酸化銅)、およびSiO(酸化シリコン)は、特に長寿命化に有効である。
 バンク5は、例えば、樹脂等の有機材料またはガラス等の無機材料で形成されていることが好適である。有機材料の例には、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等が挙げられ、無機材料の例には、SiO(シリコンオキサイド)、Si(シリコンナイトライド)等が挙げられる。バンク5は、有機溶剤耐性を有することが好ましく、また可視光をある適度透過させることが好ましく、さらに絶縁性を有することが好ましく、加えてエッチング処理やベーク処理等がされることがあるので、それらの処理に対する耐性の高い材料で形成されることが好適である。
 なお、バンク5は、ピクセルバンクであっても、ラインバンクであっても良い。ピクセルバンクの場合、ピクセルごと有機発光層7の全周を囲繞するようにバンク5が形成される。一方、ラインバンクの場合、複数のピクセルを列ごとまたは行ごとに区切るようにバンク5が形成され、バンク5は有機発光層7の行方向両側または列方向両側だけに存在し、有機発光層7は同列または同行のものが連続した構成となる。
 ホール輸送層6は、アノード電極2,3から注入されたホールを有機発光層7へ輸送する機能を有し、例えば、ポリスチレンスルホン酸をドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT-PSS)や、その誘導体(共重合体など)で形成されていることが好適である。
 有機発光層7は、電界発光現象を利用して発光する機能を有し、例えば、本発明の一態様に係るインクに含まれる機能性材料で構成されていることが好適である。
 電子輸送層8は、カソード電極9から注入された電子を有機発光層7へ輸送する機能を有し、例えば、バリウム、フタロシアニン、フッ化リチウム、またはこれらの混合物等で形成されていることが好適である。
 カソード電極9は、例えば、ITO、IZO(酸化インジウム亜鉛)等で形成される。トップエミッション型の有機発光素子の場合は、光透過性の材料で形成されることが好適である。
 封止層10は、有機発光層7等が水分に晒されたり、空気に晒されたりすることを抑制する機能を有し、例えば、SiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成される。トップエミッション型の有機発光素子の場合は、光透過性の材料で形成されることが好適である。
 以上の構成からなる有機発光素子111および有機表示パネル110は、本発明の一態様に係る有機発光素子の製造方法を利用して製造されているため、発光特性が良好である。
 [インクジェット装置および有機発光素子の製造方法]
 図17~図19に基づいて、本発明の一態様に係るインクジェット装置および有機発光素子の製造方法を説明する。図17は、本発明の一態様に係るインクジェット装置の概略構成を示す図である。図18および図19は、本発明の一態様に係る有機発光素子の製造方法を説明するための工程図である。
 本発明の一態様に係る有機発光素子の製造方法は第1~第5の工程を有する。
 第1工程では、本発明の一態様に係るインクを準備し、このインクを、図17に示すように、本発明の一態様に係るインクジェット装置20の共通インク室21に充填する。なお、インクには機能性材料22が含まれている。
 共通インク室21内のインクは、インク共有路23を経て圧力発生室24に輸送される。圧力発生室24を構成する壁体の一部は振動板25によって構成されており、振動板25をヒーター26で加熱し、当該振動板25を矢印の方向に振動させると、圧力発生室24が収縮・膨張する。インクは、圧力発生室24の収縮・膨張により発生する圧力によって、インク吐出ノズル27からインク液滴28として吐出される。
 第2工程では、第1電極2,3を含む下地層が形成された、有機発光層7を形成するための基板11を準備する。
 具体的には、まず、図18(a)に示すような上面が保護レジストで保護されたTFT基板1を準備する。
 次に、図18(b)に示すように、TFT基板1を覆っている保護レジストを剥離し、TFT基板1上に、有機樹脂をスピンコートし、PR/PE(フォトレジスト/フォトエッチングでパターニングすることによって、図18(c)に示すように、平坦化膜1a(例えば厚さ4μm)を形成する。
 次に、図18(d)に示すように、平坦化膜1a上に第1アノード電極2を形成する。第1アノード電極2は、例えば、スパッタリングによりAPCで薄膜を形成し、当該薄膜をPR/PEでマトリックス状にパターニングすることによって形成する(例えば厚さ150nm)。なお、第1アノード電極2は真空蒸着等で形成しても良い。
 次に、図18(e)に示すように、第2アノード電極3をマトリックス状に形成する。第2アノード電極3は、例えばプラズマ蒸着法でITO薄膜を形成し、当該ITO薄膜をPR/PEによりパターニングすることにより形成する(例えば厚さ110nm)。
 次に、図18(f)に示すように、第2アノード電極3の上からホール注入層4を形成する。ホール注入層4は、ホール注入機能を果たす材料をスパッタリングし、PR/PEによりパターニングすることで形成する(例えば厚さ40nm)。なお、ホール注入層4は、アノード電極3上だけでなく、TFT基板1の上面全体に亘って形成する。
 次に、図18(g)に示すように、ホール注入層4上にバンク5を形成する。ホール注入層4上においてバンク5を形成する領域は、隣り合う発光層形成領域どうしの境界に相当する領域である。バンク5は、ホール注入層4上の全体を覆うようにバンク材料層を形成し、形成したバンク材料層の一部をPR/PEで除去することによって形成する(例えば厚さ1μm)。なお、バンク5は、縦方向にだけ伸長するストライプ状のラインバンクであっても良いし、縦と横に伸長し平面形状が井桁状のピクセルバンクであっても良い。
 次に、図19(a)に示すように、バンク5間の凹部に、ホール輸送層の材料を含むインクを充填し、乾燥させることによって、ホール輸送層6を形成する(例えば厚さ20nm)。
 第3工程では、図19(b)に示すように、インクジェット装置20を基板11の上方に配置し、インクジェット装置20からインクをインク液滴として吐出させ、バンク5間の開口12に面するホール注入層4上にインク液滴を着弾させる。
 第4工程では、充填したインク液滴を減圧下で乾燥させ、ベークすることによって、有機発光層7を形成する(例えば厚さ60nm~90nm)。
 次に、図19(c)に示すように、バンク5および有機発光層7を覆うように、ETL蒸着で電子輸送層8を形成する(厚さ20nm)。
 第5工程では、図19(d)に示すように、有機発光層7の上方に、例えば光透過性の材料をプラズマ蒸着することによって、第1電極2,3と異なる極性を有する第2電極9を形成する(厚さ100nm)。
 次に、図19(e)に示すように、カソード電極9の上からCVDで封止層10を形成する(厚さ1μm)。
 以上で、トップエミッション型の有機発光素子が作製される。
 [有機表示装置]
 図20は、本発明の一態様に係る有機表示装置等を示す斜視図である。図20に示すように、本発明の一態様に係る表示装置100は、R、G、又はBの光を出射する各ピクセルが行方向及び列方向にマトリックス状に規則的に配置されてなる有機ELディスプレイであって、各ピクセルが本発明の一態様に係る有機EL素子で構成されている。
 図21は、本発明の一態様に係る有機表示装置の全体構成を示す図である。図21に示すように、有機表示装置100は、本発明の一態様に係る有機表示パネル110と、これに接続された駆動制御部120とを備える。駆動制御部120は、4つの駆動回路121~124と制御回路125とから構成されている。なお、実際の有機表示装置100では、有機表示パネル110に対する駆動制御部120の配置や接続関係については、これに限られない。
 以上の構成からなる有機表示装置100は、発光特性が良好な有機発光素子を用いているため画質が優れている。
 [有機発光装置]
 図22は、本発明の一態様に係る有機発光装置を示す図であって、(a)は縦断面図、(b)は横断面図である。図22に示すように、有機発光装置200は、本発明の一態様に係る複数の有機発光素子210と、それら有機発光素子210が上面に実装されたベース220と、当該ベース220にそれら有機発光素子210を挟むようにして取り付けられた一対の反射部材230と、から構成されている。各有機発光素子210は、ベース220上に形成された導電パターン(不図示)に電気的に接続されており、前記導電パターンにより供給された駆動電力によって発光する。各有機発光素子210から出射された光の一部は、反射部材230によって配光が制御される。
 以上の構成からなる有機発光装置200は、発光特性が良好な有機発光素子を用いているため画質が優れている。
 [変形例]
 以上、本発明の一態様に係る有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置および、インクジェット装置を具体的に説明してきたが、上記実施の形態は、本発明の構成および作用・効果を分かり易く説明するために用いた例であって、本発明の内容は、上記の実施の形態に限定されない。
 例えば、本発明の一態様に係る有機発光素子用インクは、有機発光層を形成するためのインクに限定されず、ホール輸送層、電子輸送層、ホール注入層、電子注入層など有機発光層以外の機能層を形成するためのインクであっても良い。
 また、本発明の一態様に係る有機発光素子は、トップエミッション型に限定されず、ボトムエミッション型であっても良い。
 また、本発明の一態様に係る有機表示パネルについて、上記実施の形態では、有機発光層の発光色については言及しなかったが、単色表示に限らず、フルカラー表示にも適用できる。フルカラー表示の有機表示パネルにおいては、有機発光素子が、RGB各色のサブピクセルに相当し、隣り合うRGBのサブピクセルが合わさって一画素が形成され、この画素がマトリックス状に配列されて画像表示領域が形成される。
 また、本発明の一態様に係るインクは、有機発光素子用に限定されず、有機トランジスタ素子用であっても良い。
 本発明の一態様に係る有機発光素子用インクは、ウエットプロセスによる有機発光素子の製造プロセスに広く利用できる。また、本発明の一態様に係る有機発光素子は、例えばパッシブマトリクス型或いはアクティブマトリクス型の有機表示装置および有機発光装置の分野全般などで広く利用できる。
2,3 第1電極
5 隔壁
6 機能層
9 第2電極
11 基板
12 開口
20 インクジェット装置
22 機能性材料
27 インク吐出ノズル
100 有機発光装置
110 有機表示パネル
111 有機発光素子
200 有機表示装置

Claims (26)

  1. 機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含むインクを準備し、前記インクを、インク吐出ノズルを備えたインクジェット装置に充填する第1工程と、
    第1電極を含む下地層が形成された基板を準備する第2工程と、
    前記インクジェット装置を前記基板の上方に配置し、前記インクジェット装置から前記インクをインク液滴として吐出させ、前記基板の前記下地層上に前記インク液滴を着弾させる第3工程と、
    前記インク液滴を乾燥させ、前記機能層を形成する第4工程と、
    前記機能層の上方に、第2電極を形成する第5工程と、
    を有し、
    前記第1工程における前記インクの密度ρ(g/m)、表面張力γ(mN・m)および粘度η(mPa・s)、並びに、前記インク吐出ノズルのノズル径r(mm)が、下記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、
    前記第3工程における前記インク液滴の吐出速度V(m/s)が、下記[数2]の数値範囲を満たし、
    前記Zの値と前記吐出速度V(m/s)とが、下記[数3]の関係式を満たすように設定する、
    ことを特徴とする有機発光素子の製造方法。
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
  2. 前記Zの値は、2以上10以下であり、
    前記吐出速度Vは、3(m/s)以上5(m/s)以下である、請求項1記載の有機発光素子の製造方法。
  3. 前記インクの密度ρは、827(g/m)よりも大きく1190(g/m)以下であり、
    前記インクの表面張力γは、27.3(mN・m)よりも大きく41.9(mN・m)以下であり、
    前記インクの粘度ηは2.4(mPa・s)よりも大きく35.0(mPa・s)以下であり、
    前記インクジェット装置のノズル径rは、0.02(mm)以上0.03(mm)以下である、
    請求項1記載の有機発光素子の製造方法。
  4. 前記第2工程は、画素部に対応する開口を備え、隣り合う画素部を区画する複数の隔壁を前記下地層の上方に有する基板を準備し、
    前記第3工程は、前記基板の前記隔壁間の開口に面する下地層上に、前記インク液滴を着弾させる、
    請求項1記載の有機発光素子の製造方法。
  5. 請求項1記載の有機発光素子の製造方法により製造された有機発光素子を用いた有機表示パネル。
  6. 請求項1記載の有機発光素子の製造方法により製造された有機発光素子を用いた有機発光装置。
  7. 請求項1記載の有機発光素子の製造方法により製造された有機発光素子を用いた有機表示装置。
  8. 機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含むインクを準備し、前記インクを、インク吐出ノズルを備えたインクジェット装置に充填する第1工程と、
    前記機能層を形成するための基板を準備する第2工程と、
    前記インクジェット装置を前記基板の上方に配置し、前記インクジェット装置から前記インクをインク液滴として吐出させ、前記基板上に前記インク液滴を着弾させる第3工程と、
    前記インク液滴を乾燥させ、前記機能層を形成する第4工程と、
    を有し、
    前記第1工程における前記インクの密度ρ(g/m)、表面張力γ(mN・m)および粘度η(mPa・s)、並びに、前記インク吐出ノズルのノズル径r(mm)が、下記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、
    前記第3工程における前記インク液滴の吐出速度V(m/s)が、下記[数2]の数値範囲を満たし、
    前記Zの値と前記吐出速度V(m/s)とが、下記[数3]の関係式を満たすように設定する、
    ことを特徴とする機能層の形成方法。
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    Figure JPOXMLDOC01-appb-M000009
  9. 前記Zの値は、2以上10以下であり、
    前記吐出速度Vは、3(m/s)以上5(m/s)以下である、
    請求項8記載の機能層の形成方法。
  10. 前記インクの密度ρは、827(g/m)よりも大きく1190(g/m)以下であり、
    前記インクの表面張力γは、27.3(mN・m)よりも大きく41.9(mN・m)以下であり、
    前記インクの粘度ηは2.4(mPa・s)よりも大きく35.0(mPa・s)以下であり、
    前記インクジェット装置のノズル径rは、0.02(mm)以上0.03(mm)以下である、請求項8記載の機能層の形成方法。
  11. インク吐出ノズルを備えたインクジェット装置を用いて吐出され、基板上に着弾して乾燥させられて機能層を構成するためのインクであって、
    前記機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含み、
    その密度ρ(g/m)、その表面張力γ(mN・m)およびその粘度η(mPa・s)、並びに、前記インク吐出ノズルのノズル径r(mm)が、下記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、
    前記インクジェット装置から下記[数2]の数値範囲を満たす吐出速度V(m/s)で吐出され、
    前記吐出速度V(m/s)に対して、前記Zの値が下記[数3]の関係式を満たす、
    ことを特徴とするインク。
    Figure JPOXMLDOC01-appb-M000010
    Figure JPOXMLDOC01-appb-M000011
    Figure JPOXMLDOC01-appb-M000012
  12. 有機発光素子の機能層を構成する機能性材料と、溶媒とを含み、
    第1電極を含む下地層が形成された有機発光素子用基板における、前記下地層上に着弾して乾燥され、前記第1電極と、前記下地層に対向する第2電極との間において有機発光素子の機能層を構成するためのインクである、請求項11記載のインク。
  13. 前記密度ρ(g/m3)、前記表面張力γ(mN・m)、および、前記粘度η(mPa・s)は前記吐出速度Vが3(m/s)以上5(m/s)以下において、前記Zの値が2以上10以下を満たすように設定されている、請求項11記載のインク。
  14. 前記インクジェット装置のノズル径rが、0.02(mm)以上0.03(mm)以下において、
    前記密度ρは、827(g/m)よりも大きく1190(g/m)以下であり、
    前記表面張力γは、27.3(mN・m)よりも大きく41.9(mN・m)以下であり、
    前記粘度ηは2.4(mPa・s)よりも大きく35.0(mPa・s)以下である、
    請求項11記載のインク。
  15. 前記請求項11記載のインクを用いて製造された、機能層を有する基板。
  16. 前記請求項12記載のインクを用いて製造された、機能層を有する有機発光素子。
  17. 請求項12記載のインクを用いて製造された、機能層を有する有機発光素子を備える有機表示パネル。
  18. 請求項12記載のインクを用いて製造された、機能層を有する有機発光素子を備える有機発光装置。
  19. 請求項12記載のインクを用いて製造された、機能層を有する有機発光素子を備える有機表示装置。
  20. 機能層を構成し、重量平均分子量が0よりも大きく100000以下である機能性材料と、前記機能性材料を溶解する溶媒とを含むインクを収容し、
    前記インクをインク吐出ノズルから吐出し、基板上に着弾させて機能層を形成するためのインクジェット装置であって、
    前記インク吐出ノズルのノズル径r(mm)は、
    前記インクの密度ρ(g/m3)、表面張力γ(mN・m)、および、粘度η(mPa・s)に対して、下記[数1]のZ(オーネゾルゲ数Ohの逆数)の数値範囲を満たし、
    前記インクを吐出する吐出速度V(m/s)は、
    下記[数2]の数値範囲を満たし、さらに、前記Zの値に対して、下記[数3]の関係式を満たす、
    ことを特徴とする、インクジェット装置。
    Figure JPOXMLDOC01-appb-M000013
    Figure JPOXMLDOC01-appb-M000014
    Figure JPOXMLDOC01-appb-M000015
  21. 前記インクの機能性材料は、有機発光素子の機能層を構成する機能性材料であり、
    前記インクを吐出し、前記インクを第1電極を含む下地層が形成された有機発光素子用基板における前記下地層上に着弾させ、前記第1電極と、前記下地層に対向する第2電極との間において前記有機発光素子の前記機能層を形成するためのインクジェット装置である、請求項20記載のインクジェット装置。
  22. 前記請求項20記載のインクジェット装置を用いて製造された、機能層を有する基板。
  23. 前記請求項21記載のインクジェット装置を用いて製造された、機能層を有する有機発光素子。
  24. 請求項21記載のインクジェット装置を用いて製造された、機能層を有する有機発光素子を備える有機表示パネル。
  25. 請求項21記載のインクジェット装置を用いて製造された、機能層を有する有機発光素子を備える有機発光装置。
  26. 請求項21記載のインクジェット装置を用いて形成された、機能層を有する有機発光素子を備える有機表示装置。
PCT/JP2011/000256 2011-01-19 2011-01-19 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置 WO2012098578A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012553456A JPWO2012098578A1 (ja) 2011-01-19 2011-01-19 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
PCT/JP2011/000256 WO2012098578A1 (ja) 2011-01-19 2011-01-19 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
US13/996,132 US8980678B2 (en) 2011-01-19 2011-01-19 Method for producing organic light-emitting element, organic display panel, organic light-emitting device, method for forming functional layer, ink, substrate, organic light-emitting element, organic display device, and inkjet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000256 WO2012098578A1 (ja) 2011-01-19 2011-01-19 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置

Publications (1)

Publication Number Publication Date
WO2012098578A1 true WO2012098578A1 (ja) 2012-07-26

Family

ID=46515234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000256 WO2012098578A1 (ja) 2011-01-19 2011-01-19 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置

Country Status (3)

Country Link
US (1) US8980678B2 (ja)
JP (1) JPWO2012098578A1 (ja)
WO (1) WO2012098578A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183201A (ja) * 2016-03-31 2017-10-05 株式会社Joled 表示パネル及びその製造方法
CN113801518A (zh) * 2020-06-11 2021-12-17 三星显示有限公司 包括有机材料的墨、使用墨的显示装置及其制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098577A1 (ja) * 2011-01-19 2012-07-26 パナソニック株式会社 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
US9082732B2 (en) 2011-12-28 2015-07-14 Joled Inc. Organic EL display panel and method for manufacturing same
JPWO2013183280A1 (ja) 2012-06-06 2016-01-28 パナソニック株式会社 インクジェット装置および有機elデバイスの製造方法
US9266324B2 (en) 2012-07-05 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Inkjet apparatus and method for manufacturing organic EL device
US11220737B2 (en) * 2014-06-25 2022-01-11 Universal Display Corporation Systems and methods of modulating flow during vapor jet deposition of organic materials
US11267012B2 (en) 2014-06-25 2022-03-08 Universal Display Corporation Spatial control of vapor condensation using convection
EP2960059B1 (en) 2014-06-25 2018-10-24 Universal Display Corporation Systems and methods of modulating flow during vapor jet deposition of organic materials
US10566534B2 (en) 2015-10-12 2020-02-18 Universal Display Corporation Apparatus and method to deliver organic material via organic vapor-jet printing (OVJP)
WO2017132489A1 (en) * 2016-01-28 2017-08-03 Corning Incorporated Methods for dispensing quantum dot materials

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055520A (ja) * 2002-05-17 2004-02-19 Seiko Epson Corp ディスプレー製造装置、及び、ディスプレー製造方法
JP2004148788A (ja) * 2002-11-01 2004-05-27 Seiko Epson Corp 液滴吐出装置及び方法、製膜装置及び方法、デバイス製造方法並びに電子機器
JP2004335351A (ja) * 2003-05-09 2004-11-25 Seiko Epson Corp 電気光学パネルの製造方法、電気光学パネルの製造プログラム及び電気光学パネルの製造装置、並びに電気光学装置の製造方法及び電子機器の製造方法
JP2007126650A (ja) * 2005-10-07 2007-05-24 Sumitomo Chemical Co Ltd フルオレン重合体及びそれを用いた高分子発光素子
JP2007273483A (ja) * 2002-03-13 2007-10-18 Ricoh Co Ltd 有機el表示装置
JP2008108570A (ja) * 2006-10-25 2008-05-08 Sharp Corp 表示装置用基板の製造方法、表示装置の製造方法、及び、吐出装置
JP2008135401A (ja) * 2001-09-10 2008-06-12 Seiko Epson Corp 可溶性材料の堆積方法、表示装置の製造方法、及び電子装置、電子光学装置、光学装置、又はセンサー装置の製造方法
JP2009123742A (ja) * 2007-11-12 2009-06-04 Chisso Corp 偏光有機電界発光素子
JP2010107622A (ja) * 2008-10-29 2010-05-13 Seiko Epson Corp カラーフィルターの製造方法、カラーフィルター、画像表示装置、および、電子機器
JP2010253884A (ja) * 2009-04-28 2010-11-11 Panasonic Corp インクジェットによる液体の吐出方法およびインクジェット装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JP3807621B2 (ja) 1997-09-02 2006-08-09 セイコーエプソン株式会社 有機el素子の製造方法
JP4477726B2 (ja) * 1999-12-09 2010-06-09 シャープ株式会社 有機led素子の製造方法
JP3838964B2 (ja) 2002-03-13 2006-10-25 株式会社リコー 機能性素子基板の製造装置
EP1537612B1 (en) 2002-09-03 2010-05-19 Cambridge Display Technology Limited Method of forming an optical device
JP2005056614A (ja) 2003-08-07 2005-03-03 Sharp Corp 有機エレクトロルミネッセンス素子の製造装置及びその製造方法
US20100301310A1 (en) 2005-10-07 2010-12-02 Sumitomo Chemical Company, Limited Polymer and polymeric luminescent element employing the same
CN101541919B (zh) 2007-06-08 2013-03-20 松下电器产业株式会社 蓝色荧光体、发光装置及等离子显示面板
US8186790B2 (en) 2008-03-14 2012-05-29 Purdue Research Foundation Method for producing ultra-small drops
JP5053165B2 (ja) 2008-04-30 2012-10-17 日本放送協会 インク組成物、有機el素子の作製方法
KR101314704B1 (ko) * 2008-05-15 2013-10-07 가부시키가이샤 덴소 유기 발광 소자 및 이의 제조 방법
EP2296442B1 (en) 2008-05-29 2016-08-31 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing an organic electroluminescent display
JP5212095B2 (ja) 2008-12-26 2013-06-19 大日本印刷株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP5624047B2 (ja) 2010-06-30 2014-11-12 パナソニック株式会社 有機el表示パネルとその製造方法
KR101751552B1 (ko) 2011-06-03 2017-06-27 가부시키가이샤 제이올레드 유기 el 표시 패널의 제조 방법, 및 유기 el 표시 패널의 제조 장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135401A (ja) * 2001-09-10 2008-06-12 Seiko Epson Corp 可溶性材料の堆積方法、表示装置の製造方法、及び電子装置、電子光学装置、光学装置、又はセンサー装置の製造方法
JP2007273483A (ja) * 2002-03-13 2007-10-18 Ricoh Co Ltd 有機el表示装置
JP2004055520A (ja) * 2002-05-17 2004-02-19 Seiko Epson Corp ディスプレー製造装置、及び、ディスプレー製造方法
JP2004148788A (ja) * 2002-11-01 2004-05-27 Seiko Epson Corp 液滴吐出装置及び方法、製膜装置及び方法、デバイス製造方法並びに電子機器
JP2004335351A (ja) * 2003-05-09 2004-11-25 Seiko Epson Corp 電気光学パネルの製造方法、電気光学パネルの製造プログラム及び電気光学パネルの製造装置、並びに電気光学装置の製造方法及び電子機器の製造方法
JP2007126650A (ja) * 2005-10-07 2007-05-24 Sumitomo Chemical Co Ltd フルオレン重合体及びそれを用いた高分子発光素子
JP2008108570A (ja) * 2006-10-25 2008-05-08 Sharp Corp 表示装置用基板の製造方法、表示装置の製造方法、及び、吐出装置
JP2009123742A (ja) * 2007-11-12 2009-06-04 Chisso Corp 偏光有機電界発光素子
JP2010107622A (ja) * 2008-10-29 2010-05-13 Seiko Epson Corp カラーフィルターの製造方法、カラーフィルター、画像表示装置、および、電子機器
JP2010253884A (ja) * 2009-04-28 2010-11-11 Panasonic Corp インクジェットによる液体の吐出方法およびインクジェット装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183201A (ja) * 2016-03-31 2017-10-05 株式会社Joled 表示パネル及びその製造方法
CN113801518A (zh) * 2020-06-11 2021-12-17 三星显示有限公司 包括有机材料的墨、使用墨的显示装置及其制造方法
CN113801518B (zh) * 2020-06-11 2024-04-02 三星显示有限公司 包括有机材料的墨、使用墨的显示装置及其制造方法

Also Published As

Publication number Publication date
JPWO2012098578A1 (ja) 2014-06-09
US8980678B2 (en) 2015-03-17
US20130292667A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
WO2012098576A1 (ja) 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
WO2012098580A1 (ja) 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
WO2012098578A1 (ja) 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
JP5543440B2 (ja) 有機発光素子用インク、有機発光素子の製造方法、有機表示パネル、有機表示装置、有機発光装置、インク、機能層の形成方法、および有機発光素子
JP5938669B2 (ja) 有機発光素子の製造方法、有機発光素子、有機表示装置、有機発光装置、機能層の形成方法、機能性部材、表示装置および発光装置
JP6387580B2 (ja) 有機el表示パネルの製造方法
US11228005B2 (en) Organic el display panel having dummy light emitting layers and method for manufacturing organic el display panel having dummy light emitting layers
KR101661366B1 (ko) 유기 el 표시 패널과 그 제조 방법
JP5934961B2 (ja) 有機発光素子用インク、および当該インクの製造方法
JP5785935B2 (ja) 有機el表示パネルの製造方法、および有機el表示パネルの製造装置
WO2014020914A1 (ja) 有機el表示パネルとその製造方法
WO2012098577A1 (ja) 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
JP6336044B2 (ja) 有機el表示パネルの製造方法
JP6057052B2 (ja) 表示素子、及び表示素子の製造方法
JP6083589B2 (ja) インクジェット装置および有機el表示パネルの製造方法
JP2018092788A (ja) 有機el表示パネルの製造方法、有機el表示パネル製造用基板、及び有機el表示パネルの製造におけるノズルの検査方法
JP2019197617A (ja) 有機el表示パネルの製造方法及び有機el表示パネル形成用インク
JP2018125092A (ja) 機能層の形成方法、及び機能層形成用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13996132

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012553456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856094

Country of ref document: EP

Kind code of ref document: A1