WO2012090594A1 - 半導体モジュール、モールド装置及びモールド成形方法 - Google Patents

半導体モジュール、モールド装置及びモールド成形方法 Download PDF

Info

Publication number
WO2012090594A1
WO2012090594A1 PCT/JP2011/075909 JP2011075909W WO2012090594A1 WO 2012090594 A1 WO2012090594 A1 WO 2012090594A1 JP 2011075909 W JP2011075909 W JP 2011075909W WO 2012090594 A1 WO2012090594 A1 WO 2012090594A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
electrode
semiconductor device
projection
molding
Prior art date
Application number
PCT/JP2011/075909
Other languages
English (en)
French (fr)
Inventor
修二 足立
文行 小見山
周司 小林
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201180040629.3A priority Critical patent/CN103069556B/zh
Priority to JP2012550769A priority patent/JP5445695B2/ja
Priority to US13/822,265 priority patent/US8900933B2/en
Priority to EP11852808.2A priority patent/EP2660858A4/en
Publication of WO2012090594A1 publication Critical patent/WO2012090594A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • B29C45/14418Sealing means between mould and article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor module capable of preventing leakage of a molding material, a molding apparatus for molding a molding object such as a semiconductor device with a molding member, and a molding method.
  • a slide member (30) moving in a direction (vertical direction) in which the mold object comes in contact with or separates from the mold object has a back member (31) and a swivel member (32), and the lower surface of the back member (31)
  • a device in which one convex portion (33) is provided substantially at the center of and the spring (34) is disposed around the convex portion (33) see JP2007-320102A.
  • the swivel member (32) can be tilted in any direction within a certain angle range with respect to the horizontal surface, with the convex portion (33) as a center. Therefore, even if the upper surface of the mold object is not horizontal but inclined, the swivel member (32) can be inclined following the upper surface of the mold object and can contact the mold object without any gap.
  • An object of the present invention is to provide a technique capable of preventing resin leakage even when there is inclination variation between both surfaces of a molding object.
  • the molding apparatus comprises a plurality of semiconductor devices, a first plate-like electrode coupled to one surface of the plurality of semiconductor devices, and a second plate-like electrode coupled to the other surface of the plurality of semiconductor devices. And a molding material for sealing the plurality of semiconductor elements between the first electrode and the second electrode.
  • a protrusion which extends toward the second electrode is provided at a peripheral portion of the first electrode, and the protrusion surrounds the molding material.
  • FIG. 1 is a schematic vertical sectional view of the semiconductor device of the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line Z-Z 'of the semiconductor device shown in FIG.
  • FIG. 3 is a schematic sectional view of the molding apparatus of the first embodiment before and after molding.
  • FIG. 4 is a process chart showing a mold forming method of the semiconductor device having the inclination variation of the first embodiment.
  • FIG. 5 is a schematic cross-sectional view of the molding apparatus of the second embodiment before and after molding.
  • FIG. 6 is a process chart showing a method of molding a semiconductor device with thickness variations according to the second embodiment.
  • FIG. 7 is a schematic vertical sectional view of the semiconductor device of the third embodiment.
  • FIG. 8 is a cross-sectional view taken along the line Z-Z 'of FIG.
  • FIG. 9 is a schematic sectional view of the molding apparatus of the third embodiment before and after molding.
  • the present invention is applied to a molding apparatus that manufactures a semiconductor device (semiconductor module) by molding an electronic circuit including a power element and a semiconductor device having electrodes disposed on both sides thereof with a resin. is there.
  • FIG. 1 is a schematic vertical cross-sectional view of a semiconductor device 1 (semiconductor module) which is a molding object
  • FIG. 2 is a cross-sectional view of the semiconductor device 1 shown in FIG.
  • the enlarged view of YY part enclosed with the dashed-dotted line is shown below.
  • the electrodes 2 and 3 are disposed on the upper and lower surfaces of a power element 4 or 5 of a double-sided cooling structure, such as a transistor or PTO.
  • a power element 4 or 5 of a double-sided cooling structure such as a transistor or PTO.
  • the power elements 4 and 5 are sandwiched between the two electrodes 2 and 3.
  • the power elements 4 and 5 are provided with, for example, a plus terminal vertically upward and a minus terminal vertically downward.
  • the positive terminals of the power elements 4 and 5 are connected to electrodes (hereinafter referred to as “upper electrodes”) 2 located vertically above by solders 6 and 8.
  • the negative terminals of the power elements 4 and 5 are connected to electrodes (hereinafter referred to as “lower electrodes”) 3 that are vertically below by solders 7 and 9.
  • the upper electrode 2 is in the horizontal position, whereas the lower electrode 3 is lifted vertically upward on the left side.
  • the vertical thickness of the vertical upper surface 2a of the upper electrode 2 and the vertical lower surface 3a of the lower electrode 3 Is larger. That is, inclination variations occur on the upper and lower surfaces of the semiconductor device 1.
  • the two electrodes 2 and 3 are formed in a square flat plate shape having a predetermined area, as shown in FIG.
  • the entire semiconductor device 1 can be cooled via the electrodes 2 and 3.
  • the gap between the upper and lower two electrodes 2 and 3 is a narrow pitch of several hundred ⁇ m and may cause discharge between the side surfaces of the power elements 4 and 5 or between the upper and lower electrodes 2 and 3. It is necessary to interpose an insulator in the space (space) between the upper and lower two electrodes 2 and 3. Further, in the semiconductor device 1, the thickness in the vertical direction of the plurality of power elements 4 and 5 sandwiched between the two electrodes 2 and 3 is different. For this reason, in addition to the inclination variation due to the poor parallelism of the upper and lower two electrodes 2 and 3, the thickness variation in the upper and lower direction in the semiconductor device 1 total including the upper and lower two electrodes 2 and 3 occurs. There is a feature.
  • the gap (space) between the upper and lower two electrodes 2 and 3 is molded with a resin as an insulator, so that the present embodiment
  • the plastically deformable lining member 11 is provided to surround the periphery of the upper electrode 2.
  • the lining member 11 is mainly comprised from the frame part 12, the groove
  • a horizontal groove 14 is provided on the inner circumferential side surface 13 of the frame 12.
  • a notch 2a is provided on the upper side of the outer periphery of the upper electrode 2 to form a horizontally outwardly projecting portion 2b.
  • the frame 12 is supported by the peripheral edge of the upper electrode 2 by fitting the protrusion 2 b of the upper electrode 2 and the groove 14 of the frame 12.
  • the entire semiconductor device 1 including the upper electrode 2 is supported by the frame 12.
  • the lower surface 15 of the frame portion 12 is provided with a projection 16 which protrudes (extends) vertically downward.
  • the protrusions 16 also surround the periphery of the upper electrode 2 as shown in FIG.
  • any material may be used as the material of the lining member 11 including the projections 16 as long as it can be plastically deformed without cracking.
  • a thermosetting resin such as polyphenylene sulfide (PPS) may be employed. In the case of PPS resin, heating is not necessary for plastic deformation.
  • PPS resin polyphenylene sulfide
  • the projection 16 can be plastically deformed by applying a force in the clamping direction to the projection 16 of the lining member 11.
  • the entire lining member 11 does not have to be a material that can be plastically deformed, and it may be a material that can plastically deform at least the protrusion 16.
  • a material that can be elastically deformed can not be used for the protrusion 16. Even if the resin is injected into the gap of the semiconductor device 1 in a state where the projection 16 is elastically deformed, after the resin is cured, the projection 16 returns to the original state before the elastic deformation and the resin becomes a semiconductor It is because it peels from the apparatus 1.
  • FIG. 3 is a schematic cross-sectional view of the molding apparatus 21.
  • the left side shows the state before molding with resin for the semiconductor device 1 and the right side shows the state after molding with resin for the semiconductor device 1. There is.
  • FIG. 3 as well, an enlarged view of a Y portion surrounded by an alternate long and short dash line is shown below.
  • the molding apparatus 21 is comprised by the same rectangular parallelepiped lower mold 31 (2nd mold) and the upper mold 41 (1st mold).
  • a recess 33 is formed on the vertical upper surface 32 of the lower mold 31 provided vertically downward.
  • a recess 43 is also formed on the vertical lower surface 42 of the upper mold 41 provided vertically above.
  • the mold chamber 51 is configured by the two concave portions 33 and 43 facing each other.
  • the concave bottom surface 34 of the lower mold 31 and the concave top surface 44 of the upper mold 41 are formed in a horizontal plane.
  • the semiconductor device 1 is housed in the mold chamber 51 and the tip end of the projection 16 of the lining member 11 is in contact with the vertical upper surface 32 of the lower mold 31, the semiconductor device is made by the lining member 11.
  • the whole of 1 is suspended in the recess 33 of the lower mold 31. That is, the semiconductor device 1 is suspended in the recess 33 of the lower mold 31 by the lining member 11, in addition to the vertical length and the position of the protrusion 16 and the horizontal length of the recess 33 of the lower mold 31.
  • the length and depth, and the horizontal length and depth of the recess 43 of the upper mold 41 are determined. At this time, substantially no gap is formed between the lower end of the projection 16 and the vertical upper surface 32 of the lower mold 31.
  • the vertical direction length of the projection 16 is the same on the entire circumference, when the semiconductor device 1 having the inclination variation is stored in the recess 33 of the lower mold 31 in a suspended state, the left side of the lower electrode 3 is the right It lifts vertically upward than it does. Thus, the distance between the left side of the lower electrode 3 and the bottom surface 34 is larger than the distance between the right side of the lower electrode 3 and the bottom surface 34 in the vertical direction. As described above, the vertical length of the projection 16 and the lower mold 31 so that the lower electrode 3 does not abut on the bottom surface 34 of the recessed portion even if the semiconductor element 1 in which the inclination variation occurs is suspended. The depth of the recess 33 of the
  • the recess 43 of the upper die 41 In order to press the semiconductor device 1 stored in the recess 33 of the lower die 31 in the mold clamping direction (vertically downward in FIG. 3) by the upper die 41, the recess 43 of the upper die 41
  • the same rectangular flat copying plate 61 (plate material) and a spring 65 (elastic member) are disposed, and the copying plate 61 is suspended by the spring 65 so as to be substantially horizontal. That is, the upper end of the spring 65 is fixed to the recess upper surface 44 of the upper mold 41, and the lower end of the spring 65 is fixed to the vertical upper surface 62 of the copying plate 61.
  • a plurality of springs 65 are provided such that when the semiconductor device 1 is clamped, a clamping force from the upper mold 41 is applied to the copying plate 61 via the spring 65 so that an even force is applied.
  • the upper mold 41 is moved in a direction (upper and lower direction in FIG. 3) in which the upper mold 41 contacts and separates from the lower mold 31.
  • the copying plate 61 is disposed vertically above the semiconductor device 1 suspended by the lining member 11.
  • the semiconductor device 1 is clamped by moving the upper mold 41 vertically downward until the vertical lower surface 42 of the upper mold 41 abuts on the vertical upper surface 32 of the lower mold 31.
  • the projection 16 which receives the clamping force of the upper mold 41 is plastically deformed.
  • the projection 16 is contracted in the vertical direction and expanded in the horizontal direction to be in a state (after molding) shown on the right side of FIG.
  • the entire lower surface 3a of the lower electrode 3 abuts on the concave bottom surface 34 of the lower mold 31, and the lower electrode 3 settles in a parallel state. Since the lower electrode 3 is in a parallel state, the right side of the upper electrode 2 is lifted vertically upward from the left side, and the lower surface 63 of the copying plate 61 is in contact with the entire upper surface 2a of the upper electrode 2 in this state.
  • the first space 52 partitioned in this manner is provided with a mold resin supply passage (not shown) opened to the first space from the front side or the back side of the paper surface of FIG.
  • a mold resin supply passage (not shown) opened to the first space from the front side or the back side of the paper surface of FIG.
  • the resin 67 is formed in the gap between the lower surface 3a of the lower electrode 3 and the recessed bottom surface 34 of the lower mold 31. There is no leak.
  • the upper mold 41 is , A copying plate 61 (plate material) moving in the mold clamping direction and in contact with the vertical upper surface 2a (one surface of the object to be molded) of the upper electrode 2 of the semiconductor device 1, and a spring 65 pressing the copying plate 61 to the semiconductor device 1.
  • the semiconductor device 1 is provided with a protrusion 16 extending to the lower mold 31 at the peripheral edge of the vertical upper surface 2a (one surface of the object to be molded) of the upper electrode 2 of the semiconductor device 1. At the time of clamping, the projection 16 is made to plastically deform after coming into contact with the lower mold 31.
  • the inclination variation of the semiconductor device 1 is absorbed by plastic deformation of the protrusion 16 due to a load when clamping the semiconductor device 1 (mold object) having a space molded by resin. It is possible to block the path through which the resin 67 leaks. Thereby, the leakage of the resin 67 to the second space 53 located outside the first space 52 can be prevented.
  • the object to be molded is the semiconductor device 1 in which the flat electrodes 2 and 3 are provided on both sides of the power elements 4 and 5.
  • the peripheral portion of one surface of the mold object is the peripheral portion of the upper electrode 2 (one electrode), and when the clamping of the semiconductor device 1 is completed, the lower electrode 3 (the other electrode) and the lower mold 31 (the The second mold abuts. Thereby, it is possible to prevent the resin 67 from leaking into the gap between the lower surface 3 a of the lower electrode 3 and the concave bottom surface 34 of the lower die 31.
  • the line member 11 after plastic deformation does not affect the performance of the semiconductor device 1 even if it is left as it is in the semiconductor device 1, so the step of separating the lining member 11 after molding is unnecessary. As a result, the number of man-hours can be reduced compared to the conventional device.
  • FIG. 4 is a process chart showing a mold forming method of the semiconductor device 1 having inclination variation divided into five steps of work setting, mold clamping, resin injection / hardening, mold clamping release, and mold release.
  • the semiconductor device 1 as a work is housed in the mold chamber, and the protrusion 16 is set so as to abut on the vertical upper surface 32 of the lower mold 31. In the recess 33 of the lower mold 31, it is suspended. At this time, the protrusions 16 extend toward the lower mold 31.
  • the copying plate 61 is set vertically above the upper electrode 2.
  • the upper mold 41 is moved in the mold clamping direction (vertically downward in FIG. 4) until the vertical lower surface 42 of the upper mold 41 abuts on the vertical upper surface 32 of the lower mold 31.
  • the copying plate 61 pushes down the upper electrode 2 by this clamping and the entire lower surface of the copying plate 61 abuts on the vertical upper surface 2 a of the upper electrode 2, the right end of the lower electrode 3 is in the concave bottom surface 34 of the lower mold 31. Abut.
  • a uniform downward load is applied to the projection 16 via the copying plate 61. Under this load, the lower end of the projection 16 is lowered.
  • a vertically upward reaction force from the mold 31 is generated.
  • the magnitude of this reaction force is the same as the magnitude of the mold clamping force.
  • the projection 16 is plastically deformed in response to the reaction force. That is, the load distribution (reaction force distribution) biased to the protrusion 16 acts plastically by an amount corresponding to the inclination of the upper and lower electrodes 2 and 3.
  • the entire vertical lower surface 3a of the lower electrode 3 abuts on the concave bottom surface 34 of the lower mold 31, and the lower mold 31 and the upper electrode 2 of the semiconductor device 1 and
  • a first space 52 is defined in the mold chamber 51 by the lining member 11.
  • the resin 67 is injected and filled in the first space 52, and the resin 67 filled thereafter is thermally cured.
  • the upper mold 41 is moved in the mold clamping release direction (vertically upward in FIG. 4) in order to release the mold clamping of the semiconductor device 1.
  • FIG. 5 is a schematic cross-sectional view of the molding apparatus 21 of the second embodiment, in which the left side of the semiconductor device 1 is molded with resin and the right side is molded with resin of the semiconductor device 1. Indicates the state of Also in FIG. 5, an enlarged view of a Y portion surrounded by an alternate long and short dash line is shown below. The same parts as in FIG. 3 of the first embodiment are given the same reference numerals.
  • the second embodiment is directed to the semiconductor device 1 having the thickness variation.
  • “with thickness variation” means that the thickness in the vertical direction of the entire semiconductor device 1 including the upper electrode 2 and the lower electrode 3 varies among the semiconductor devices 1.
  • the vertical thickness between the vertical upper surface 2a left end of the upper electrode 2 and the vertical lower surface 3a left end of the lower electrode 3 and the vertical upper surface 2a right end of the upper electrode 2 and the vertical lower surface of the lower electrode 3 The vertical thickness between the right end and the right end 3a is the same. That is, since the vertical thickness between the upper surface of the upper electrode 2 and the lower surface of the lower electrode 3 is the same, the semiconductor device 1 shown in FIG. 5 has no inclination variation. However, the thickness in the vertical direction between the upper surface of the upper electrode 2 and the lower surface of the lower electrode 3 may vary depending on the individual semiconductor devices 1 (a thickness variation may occur).
  • the semiconductor device 1 is housed in the mold chamber 51 and the lower end of the protrusion 16 of the lining member 11 is the lower mold 31
  • the entire upper surface of the semiconductor device 1 is suspended in the recess 33 of the lower mold 31 by the lining member 11. That is, in addition to the vertical length and position of the protrusion 16 and the horizontal length of the recess 33 of the lower mold 31 so that the semiconductor device 1 is suspended by the lining member 11 in the recess 33 of the lower mold 31.
  • the depth, the horizontal length and the depth of the recess 43 of the upper mold 41 are determined. At this time, the gap between the lower end of the projection 16 and the vertical upper surface 32 of the lower mold 31 is substantially prevented.
  • the mold chamber 51 is divided into two because a gap does not substantially occur. That is, it is divided into two, a first space 52 surrounded by the lower mold 31, the upper electrode 2 of the semiconductor device 1 and the lining member 11, and a second space 53 outside the first space 52.
  • the thickness of the semiconductor device 1 is plastically deformed by the load at the time of clamping the semiconductor device 1 (molded object) having a space molded by resin. It is possible to shut off the path through which the resin 67 leaks while absorbing the thickness variation. Thereby, the leakage of the resin 67 to the second space 53 located outside the first space 52 can be prevented.
  • FIG. 6 is a process diagram showing the resin mold molding method of the semiconductor device 1 with thickness variation divided into five steps of work setting, mold clamping, resin injection / hardening, mold clamping release, and mold release. The same parts as in FIG. 4 are given the same reference numerals.
  • the semiconductor device 1 as a work is housed in the mold chamber, and the protrusion 16 is set so as to abut on the vertical upper surface 32 of the lower mold 31. In the recess 33 of the lower mold 31, it is suspended. At this time, the protrusions 16 extend toward the lower mold 31.
  • the copying plate 61 is set vertically above the upper electrode 2.
  • the upper mold 41 is moved in the mold clamping direction (vertically downward in FIG. 6) until the vertical lower surface 42 of the upper mold 41 abuts on the vertical front surface 32 of the lower mold 31.
  • the copying plate 61 pushes down the upper electrode 2 and the entire lower surface of the copying plate 61 abuts on the vertical upper surface 2a of the upper electrode 2 by this mold clamping, in the middle of the mold clamping process, the vertical lower surface 3a of the lower electrode 3 and the lower surface There is still a space between the mold 31 and the recess bottom 34. Further, when the upper mold 41 is moved in the mold clamping direction, a uniform downward load is applied to the projection 16 via the copying plate 61.
  • the resin 67 is injected and filled in the first space 52, and the resin 67 filled thereafter is thermally cured.
  • the upper mold 41 is moved in the mold clamping release direction (vertically upward in FIG. 6) in order to release the mold clamping of the semiconductor device 1.
  • FIG. 7 is a schematic vertical sectional view of the semiconductor device 1 according to the third embodiment
  • FIG. 8 is a sectional view taken along the line ZZ ′ of the semiconductor device 1 shown in FIG.
  • the enlarged view of Y part enclosed with the dashed-dotted line is shown below.
  • the same reference numerals as in FIGS. 1 and 2 of the first embodiment denote the same parts.
  • the semiconductor device 1 having the inclination variation is targeted.
  • 3rd Embodiment is not limited to the semiconductor device with inclination variation, it replaces with the semiconductor device with inclination variation in FIG. 9, and shows the semiconductor device 1 with thickness variation. ing.
  • the lower surface 15 of the frame portion of the lining member 11 is provided with a groove 17 adjacent to the inner peripheral side of the protrusion 16 and opening vertically downward.
  • the groove 17 also surrounds the periphery of the upper electrode 2 as also shown in FIG.
  • FIG. 9 is a schematic cross-sectional view of the molding apparatus 21 of the third embodiment.
  • the left side shows the semiconductor device 1 before molding with resin, and the right side shows the semiconductor device 1 with resin. Shows the state after the Also in FIG. 9, an enlarged view of a Y portion surrounded by an alternate long and short dash line is shown below.
  • the same parts as those in FIG. 3 of the first embodiment are given the same reference numerals.
  • the method of plastic deformation of the projection 16 is different from that of the first embodiment when the semiconductor device 1 is molded. That is, since the groove 17 is provided adjacent to the inner circumferential side of the protrusion 16, when the semiconductor device 1 is clamped, as shown on the right side of FIG. It plastically deforms so as to stick out. Therefore, by filling the groove 17 with the resin 67 and curing it, the portion of the resin 67 filled in the groove 17 acts as an anchor. In general, the anchor obtains adhesion to the fixing member by striking the fixing member such as the ground vertically downward.
  • the portion of the resin 67 filled in the groove 17 corresponds to an anchor that is vertically pressed upward.
  • the groove 17 is provided adjacent to the inner peripheral side of the protrusion 16, a wedge (anchor) effect is generated in the resin 67 which is filled and hardened in the groove 17.
  • the adhesion between the resin 67 in the vertical direction (longitudinal direction) and the horizontal direction (horizontal direction) is improved.
  • the adhesion effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 半導体モジュールは、複数の半導体素子と、複数の半導体素子の一面側に結合する平板状の第1電極と、複数の半導体素子の他面側に結合する平板状の第2電極と、第1電極と第2電極の間に複数の半導体素子を封止するモールド材とを備える。第1電極の周縁部に、第2電極に向かって延伸する突起部を設け、突起部は、モールド材を囲む。

Description

半導体モジュール、モールド装置及びモールド成形方法
 この発明は、モールド材の漏れを防止することができる半導体モジュール、半導体装置などのモールド対象物をモールド部材によってモールド成形するモールド装置及びモールド成形方法に関する。
 モールド室内で、モールド対象物に対して接離する方向(上下方向)に移動するスライド部材(30)がバック部材(31)とスイベル部材(32)とを有し、バック部材(31)の下面のほぼ中央に1つの凸部(33)を設け、この凸部(33)の周囲にバネ(34)を配置している装置がある(JP2007-320102A参照)。この装置では、スイベル部材(32)が凸部(33)を中心として、水平面に対しある程度の角度範囲内でいずれの方向へも傾くことができる。このため、モールド対象物の上面が水平面でなく、傾いていても、スイベル部材(32)は、モールド対象物の上面に倣って傾き、モールド対象物と隙間なく接触することができる。
 しかしながら、JP2007-320102Aの技術では、バック部材(31)とスイベル部材(32)の間にスイベル部材(32)が傾くことを許容する隙間が存在するため、この隙間に樹脂が漏れるという問題点がある。
 本発明は、モールド対象物の両面の間に傾きバラツキがある場合でも、樹脂漏れを防止し得る技術を提供することを目的とする。
 本発明のモールド装置は、複数の半導体素子と、前記複数の半導体素子の一面側に結合する平板状の第1電極と、前記複数の半導体素子の他面側に結合する平板状の第2電極と、前記第1電極と前記第2電極の間に前記複数の半導体素子を封止するモールド材とを備える。記第1電極の周縁部に、前記第2電極に向かって延伸する突起部を設け、前記突起部は、前記モールド材を囲む。
 本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。
図1は、第1実施形態の半導体装置の概略縦断面図である。 図2は、図1に示す半導体装置のZ-Z’線断面図である。 図3は、第1実施形態のモールド装置のモールド成型前とモールド成型後の各概略断面図である。 図4は、第1実施形態の傾きバラツキのある半導体装置のモールド成形方法を示す工程図である。 図5は、第2実施形態のモールド装置のモールド成型前とモールド成型後の各概略断面図である。 図6は、第2実施形態の厚さバラツキのある半導体装置のモールド成形方法を示す工程図である。 図7は、第3実施形態の半導体装置の概略縦断面図である。 図8は、図7のZ-Z’線断面図である。 図9は、第3実施形態のモールド装置のモールド成型前とモールド成型後の各概略断面図である。
 以下、本発明の実施形態について、図面を参照して説明する。本実施形態は、パワー素子を含む電子回路と、その両面に電極が配置された半導体装置を樹脂によってモールド成形して、半導体装置(半導体モジュール)を製造するモールド装置に本発明を適用するものである。
 (第1実施形態)
 図1は、モールド対象物である半導体装置1(半導体モジュール)の概略縦断面図、図2は、図1に示す半導体装置1のZ-Z’線断面図である。なお、図1では、一点鎖線で囲ったYY部の拡大図を下方に示している。
 図1に示すように、半導体装置1では、トランジスタやPTO等、両面冷却構造のパワー素子4、5の上下両面に、各電極2、3が配置されている。言い換えると、2つの電極2、3の間に、パワー素子4、5が挟まった構造になっている。
 パワー素子4、5には、鉛直上方に例えばプラス端子が、鉛直下方にマイナス端子が設けられている。パワー素子4、5のプラス端子は、鉛直上方にある電極(以下「上方電極」という。)2と、半田6、8で接続されている。また、パワー素子4、5のマイナス端子は、鉛直下方にある電極(以下「下方電極」という。)3と半田7、9で接続されている。
 図1において、半導体装置1では、上方電極2が水平位置にあるのに対して、下方電極3は、左側の方が鉛直上方に持ち上がっている。言い換えると、上方電極2の鉛直上面2a左端と下方電極3の鉛直下面3a左端との上下方向厚さより、上方電極2の鉛直上面2a右端と下方電極3の鉛直下面3a右端との上下方向厚さのほうが大きくなっている。つまり、半導体装置1の上下の両面には、傾きバラツキが生じている。
 パワー素子4、5を冷却するため、2つの電極2、3は、図2に示すように、所定の面積を有する四角の平板状に形成されている。この2つの電極2、3に、上下から冷却装置を接触させることで、電極2、3を介して、半導体装置1の全体を冷却することができる。
 上下2つの電極2、3の隙間(上下方向幅)は、数百μmという狭いピッチであり、パワー素子4、5の側面もしくは上下の電極2、3間で放電を引き起こす可能性があるため、上下2つの電極2、3の隙間(空間)に絶縁物を介在させる必要がある。また、半導体装置1では、2つの電極2、3間に挟まれる複数のパワー素子4、5の上下方向の厚さが異なる。このため、上下2つの電極2、3の平行度が悪いことに起因する傾きバラツキの他、上下2つの電極2、3を含めた半導体装置1トータルでの上下方向の厚さバラツキが発生するという特徴がある。
 このように、傾きバラツキや厚さバラツキを有している半導体装置1であっても、上下2つの電極2、3の隙間(空間)に絶縁物としての樹脂によってモールド成形するため、本実施形態では、塑性変形し得るライニング部材11を上方電極2の周縁を取り巻くように設けている。
 ライニング部材11は、図1下方の拡大図に示すように、主に枠部12、溝14、突起部16から構成されている。枠部12の内周側面13には、水平方向の溝14を設けている。一方、上方電極2の外周上側には、切り欠き2aを設けることによって、水平方向外側への突出部2bを形成している。このため、上方電極2の突出部2bと、枠部12の溝14とを嵌合することで、枠部12が上方電極2の周縁に支持される。逆に言うと、枠部12によって上方電極2を含めた半導体装置1の全体が支持されることとなる。
 枠部12の下面15には、鉛直下方に向けて突出(延伸)する突起部16が設けられている。この突起部16も、図2に示すように、上方電極2の周縁を取り囲んでいる。
 突起部16を含めたライニング部材11の材質としては、割れたりせずに、塑性変形し得るものであれば、どんな物質でも構わない。例えば、ポリフェニレンスルファイド(PPS)等の熱硬化性樹脂を採用すればよい。PPS樹脂の場合、塑性変形させるためには加熱を必要としない。モールド装置のモールド室に半導体装置1を収納して型締めする際に、ライニング部材11の突起部16に型締め方向の力を加えることで、突起部16を塑性変形させることができる。なお、ライニング部材11の全体が塑性変形し得る物質である必要はなく、少なくとも突起部16が塑性変形し得る物質であればよい。
 一方、突起部16に弾性変形し得る物質を用いることはできない。突起部16が弾性変形している状態で、半導体装置1の隙間に樹脂注入を行ったとしても、樹脂が硬化したあとに突起部16が弾性変形する前の元の状態に戻り、樹脂が半導体装置1から剥離してしまうためである。
 図3は、モールド装置21の概略断面図で、左側には半導体装置1に対し樹脂によってモールド成形する前の状態を、右側には半導体装置1に対し樹脂によってモールド成形した後の状態を示している。なお、図3でも、一点鎖線で囲ったY部の拡大図を下方に示している。
 モールド装置21は、同じ直方体状の下金型31(第2金型)と上金型41(第1金型)とで構成される。鉛直下方に位置して設けられる下金型31の鉛直上面32には、凹部33が形成されている。一方、鉛直上方に位置して設けられる上金型41の鉛直下面42にも凹部43が形成されている。対向する2つの凹部33、43によって、モールド室51が構成されている。下金型31の凹部底面34と上金型41の凹部上面44とは水平な平面で形成されている。
 図3の左側に示すように、モールド室51に半導体装置1を収納し、ライニング部材11の突起部16先端を下金型31の鉛直上面32と当接させたとき、ライニング部材11によって半導体装置1の全体が下金型31の凹部33内に宙づり状態となるようにする。つまり、半導体装置1がライニング部材11によって、下金型31の凹部33内に宙吊り状態となるように、突起部16の鉛直方向長さや位置のほか、下金型31の凹部33の水平方向長さ及び深さ、上金型41の凹部43の水平方向長さ及び深さを定めておく。このとき、突起部16の下端と下金型31の鉛直上面32との間にほぼ隙間が生じないようにする。
 突起部16の鉛直方向長さは全周で同じであるため、傾きバラツキが生じている半導体装置1を下金型31の凹部33内に宙づり状態で収納したとき、下方電極3の左側が右側よりも鉛直上方に持ち上がる。これによって、下方電極3の右側と凹部底面34との上下方向の間隔より、下方電極3の左側と凹部底面34との上下方向の間隔のほうが大きくなっている。このように、傾きバラツキが生じている半導体素子1が宙づり状態となっても、下方電極3が凹部底面34に当接することがないように、突起部16の鉛直方向長さ及び下金型31の凹部33の深さを定めておく。
 半導体装置1がライニング部材11によって宙づり状態となっているとき、突起部16の下端と下金型31の鉛直上面32との間に隙間がほぼ生じないようにしているので、モールド室51が2つに区画される。すなわち、下金型31、上方電極2及びライニング部材11によって囲まれる空間52と、その外側(図3では上側)の空間53との2つに区画される。
 一方、下金型31の凹部33に収納した半導体装置1を上金型41によって型締め方向(図3で鉛直下方)に押圧するため、上金型41の凹部43には、上方電極2と同じ四角の平板状の倣い板61(板材)とバネ65(弾性部材)とを配置し、バネ65によって倣い板61がほぼ水平となるように吊している。すなわち、バネ65の上端は、上金型41の凹部上面44に固定され、バネ65の下端は、倣い板61の鉛直上面62に固定されている。バネ65は、半導体装置1を型締めする際に、上金型41からの型締め力がバネ65を介して倣い板61に均等な力が加わるように、複数設けている。
 上金型41は、下金型31に対して接離する方向(図3で上下方向)に移動する。モールド成形時には、図3の左側に示すように、まずライニング部材11によって宙づり状態となっている半導体装置1の鉛直上方に倣い板61を配置する。次に、上金型41の鉛直下面42が下金型31の鉛直上面32に当接するまで上金型41を鉛直下方に向けて移動することにより半導体装置1を型締めする。このとき、上金型41の型締め力を受ける突起部16は塑性変形する。このときの塑性変形によって、突起部16は鉛直方向に縮まるとともに水平方向に拡大し、図3の右側に示す状態(成形後)となる。すなわち、下方電極3の下面3a全てが下金型31の凹部底面34に当接し、下方電極3が平行状態に落ち着いている。なお、下方電極3が平行状態となるため、上方電極2の右側が左側よりも鉛直上方に持ち上がり、この状態の上方電極2の上面2a全てに倣い板61の下面63が当接している。
 突起部16が塑性変形した後も、突起部16の下端と下金型31の鉛直上面32との間に隙間は生じていない。つまり、図3の右側に示す半導体装置1の型締め完了状態となっても、下金型31、上方電極2及びライニング部材11によって囲まれる空間(この空間を「第1空間」とする。)52と、その外側の空間(この空間を「第2空間」とする。)53との2つにモールド室51が区画されている。なお、型締め前の宙づり状態では、突起部16の下端と下金型31の鉛直上面32との間に隙間が多少あってもかまわないが、型締め完了時には、後述する理由により、突起部16の下端と下金型31の鉛直上面32との間に隙間が生じないようにする必要がある。
 このようにして区画される第1空間52には、図3の紙面手前あるいは紙面奥よりこの第1空間に開口する図示しないモールド樹脂供給通路を設けている。図3の右側に示す半導体装置1の型締め完了状態で、このモールド樹脂供給通路を介して第1空間52内に圧力注入可能な樹脂(モールド樹脂)67を供給すると、第1空間内、つまり2つの電極2、3の隙間(空間)に樹脂67が充填される。この場合に、突起部16の下端と下金型31の鉛直上面32との間に隙間があれば、その隙間が、樹脂67が漏れる経路となり得る。しかし、本実施形態では、突起部16が塑性変形した後も、突起部16の下端と下金型31の鉛直上面32との間に隙間は生じていない。このため、第1空間52内を水平方向外側に向かう樹脂67は、塑性変形後の突起部16によって阻止されるため、樹脂67が第1空間52の外側に位置する第2空間53へと漏れることはない。
 また、下方電極3の下面3aと下金型31の凹部底面34とは全体的に当接しているので、下方電極3の下面3aと下金型31の凹部底面34との隙間に樹脂67が漏れることはない。
 ここで、本実施形態の作用効果について説明する。
 本実施形態では、上金型41(第1金型)と、下金型31(第1金型と共にモールド室を構成する第2金型)とを備えるモールド装置21において、上金型41は、型締め方向に移動すると共に、半導体装置1の上方電極2の鉛直上面2a(モールド対象物の一面)に接触する倣い板61(板材)と、倣い板61を半導体装置1に押圧するバネ65(弾性部材)とを有し、半導体装置1の上方電極2の鉛直上面2a(モールド対象物の一面)の周縁部に下金型31に対して延伸する突起部16を設け、半導体装置1を型締めする際、突起部16が下金型31に当接した後に塑性変形するようにしている。本実施形態によれば、樹脂によってモールド成形される空間を有する半導体装置1(モールド対象物)を型締めする際の荷重により突起部16が塑性変形することで、半導体装置1の傾きバラツキを吸収しつつ、樹脂67が漏れる経路を遮断することができる。これによって、第1空間52の外側にある第2空間53への樹脂67の漏れを防止することができる。
 本実施形態によれば、モールド対象物は、パワー素子4、5の両側に平板状の電極2、3を設けた半導体装置1である。モールド対象物の一面の周縁部は、上方電極2(一方の電極)の周縁部であり、半導体装置1の型締めが完了したときに、下方電極3(他方の電極)と下金型31(第2金型)とが当接している。これにより、下方電極3の下面3aと下金型31の凹部底面34との隙間に樹脂67が漏れることを防ぐことができる。
 樹脂漏れ防止と搬送の利便性のため、モールド対象物の周囲にリードフレームが設けられる従来装置(JP2007-320102Aの図1のW4参照)では、最後にリードフレームを切り離す必要がある。一方、本実施形態では、塑性変形後のラインニング部材11は、半導体装置1にそのまま残しても半導体装置1の性能に影響しないので、モールド成形後に、ライニング部材11を切り離す工程は不要である。これによって、従来装置より工数を減らすことができる。
 図4は、傾きバラツキのある半導体装置1のモールド成形方法を、ワークセット、型締め、樹脂注入・硬化、型締め開放、離型の5つの工程に分けて示す工程図である。
 まず、(1)に示すワークセット工程で、ワークとしての半導体装置1をモールド室内に収納し、突起部16が下金型31の鉛直上面32と当接するようにセットして、半導体装置1が下金型31の凹部33内で宙づり状態となるようにする。このとき、突起部16は、下金型31に向かって延伸している。上方電極2の鉛直上方には、倣い板61をセットする。
 (2)に示す型締め工程では、上金型41の鉛直下面42が下金型31の鉛直上面32に当接するまで上金型41を型締め方向(図4で鉛直下方)に移動させる。この型締めにより、倣い板61が上方電極2を押し下げ、倣い板61の下面全体が上方電極2の鉛直上面2aに当接した後に、下方電極3の右端が下金型31の凹部底面34に当接する。さらに、上金型41を型締め方向に移動させると、突起部16には、倣い板61を介して鉛直下向きの均一な荷重がかかり、この荷重を受けて突起部16の下端には、下金型31からの鉛直上向きの反力が生じる。この反力の大きさは、型締め力の大きさと同じである。この反力を受けて突起部16は、塑性変形してゆく。すなわち、上下電極2、3の傾きの分だけ、突起部16に偏った荷重分布(反力分布)が作用して塑性変形する。これにより、(3)に示す型締め工程の完了時には、下方電極3の鉛直下面3a全体が下金型31の凹部底面34と当接する共に、下金型31、半導体装置1の上方電極2及びライニング部材11によって、モールド室51内に第1空間52が区画形成される。
 (4)に示す樹脂注入・硬化工程では、第1空間52に樹脂67を注入して充填し、その後に充填した樹脂67を熱硬化させる。
 (5)に示す型締め開放工程では、樹脂67の硬化後、半導体装置1の型締めを開放するため、上金型41を型締め開放方向(図4で鉛直上方)に移動させる。
 (6)示す離型工程では、半導体装置1をモールド装置21から取り出し(離型し)、モールド成形を終了する。
 (第2実施形態)
 図5は、第2実施形態のモールド装置21の概略断面図で、左側には半導体装置1に対し樹脂によってモールド成形する前の状態を、右側には半導体装置1に対し樹脂によってモールド成形した後の状態を示している。なお、図5においても、一点鎖線で囲ったY部の拡大図を下方に示している。第1実施形態の図3と同一部分には同一番号を付している。
 第1実施形態では、傾きバラツキのある半導体装置1を対象としたのに対して、第2実施形態では、厚さバラツキのある半導体装置1を対象とする。ここで、「厚さバラツキのある」とは、上方電極2と下方電極3とを含めた半導体装置1全体の上下方向厚さが個々の半導体装置1によってバラツクことをいう。例えば、図5に示すように、上方電極2の鉛直上面2a左端と下方電極3の鉛直下面3a左端との間の上下方向厚さと、上方電極2の鉛直上面2a右端と下方電極3の鉛直下面3a右端との間の上下方向厚さとは同じである。つまり、上方電極2上面と下方電極3下面との間の上下方向厚さは同じであるので、図5に示す半導体装置1には、傾きバラツキは生じていない。しかしながら、上方電極2の上面と下方電極3の下面との間の上下方向厚さは、個々の半導体装置1によって大きかったり小さかったりとバラツク(厚さバラツキが生じる)ことがある。
 こうした厚さバラツキのある半導体装置1を対象とする場合にも、図5の左側に示すように、モールド室51に半導体装置1を収納し、ライニング部材11の突起部16下端を下金型31の鉛直上面32と当接させて、ライニング部材11によって半導体装置1の全体が下金型31の凹部33内で宙づり状態となるようにする。つまり、半導体装置1がライニング部材11によって下金型31の凹部33内で宙づり状態となるように、突起部16の鉛直方向長さや位置のほか、下金型31の凹部33の水平方向長さ及び深さ、上金型41の凹部43の水平方向長さ及び深さを定めておく。このとき、突起部16の下端と下金型31の鉛直上面32との間に隙間がほぼ生じないようにする。
 厚さバラツキのある半導体装置1を対象とする場合にも、半導体装置1が突起部16によって宙づり状態となっているとき、突起部16の下端と下金型31の鉛直上面32との間に隙間がほぼ生じないようにしているので、モールド室51が2つに区画される。すなわち、下金型31、半導体装置1の上方電極2及びライニング部材11によって囲まれる第1空間52と、その外側の第2空間53との2つに区画される。
 第2実施形態の作用効果は、第1実施形態と同様である。すなわち、第2実施形態によれば、樹脂によってモールド成形される空間を有する半導体装置1(モールド対象物)を型締めする際の荷重により突起部16が塑性変形することで、半導体装置1の厚さバラツキを吸収しつつ、樹脂67が漏れる経路を遮断することできる。これによって、第1空間52の外側にある第2空間53への樹脂67の漏れを防止することができる。
 図6は、厚さバラツキのある半導体装置1の樹脂モールド成形方法を、ワークセット、型締め、樹脂注入・硬化、型締め開放、離型の5つの工程に分けて示す工程図である。図4と同一部分には同一番号を付している。
 まず、(1)に示すワークセット工程で、ワークとしての半導体装置1をモールド室内に収納し、突起部16が下金型31の鉛直上面32と当接するようにセットして、半導体装置1が下金型31の凹部33内で宙づり状態となるようにする。このとき、突起部16は、下金型31に向かって延伸している。上方電極2の鉛直上方には、倣い板61をセットする。
 (2)に示す型締め工程では、上金型41の鉛直下面42が下金型31の鉛直正面32に当接するまで上金型41を型締め方向(図6で鉛直下方)に移動させる。この型締めにより、倣い板61が上方電極2押し下げ、倣い板61の下面全体が上方電極2の鉛直上面2aに当接した後に、型締め工程の途中では、下方電極3の鉛直下面3aと下金型31の凹部底面34との間にまだ空間が生じている。さらに、上金型41を型締め方向に移動させると、突起部16には、倣い板61を介して鉛直下向きの均一な荷重がかかり、この荷重を受けて突起部16の下端には、下金型31からの鉛直上向きの反力が生じる。この反力の大きさは、型締め力の大きさと同じである。この反力を受けて突起部16は、塑性変形してゆく。すなわち、突起部16に均一な荷重分布(反力分布)が作用して塑性変形する。これにより、(3)に示す型締め工程の完了時には、下方電極3の鉛直下面3a全体が下金型31の凹部底面34と当接する共に、下金型31、半導体装置1の上方電極2及びライニング部材11によって、モールド室51内に第1空間52が区画形成される。
 (4)に示す樹脂注入・硬化工程では、第1空間52に樹脂67を注入して充填し、その後に充填した樹脂67を熱硬化させる。
 (5)に示す型締め開放工程では、樹脂67の硬化後、半導体装置1の型締めを開放するため、上金型41を型締め開放方向(図6で鉛直上方)に移動させる。
 (6)示す離型工程では、半導体装置1をモールド装置21から取り出し(離型し)、モールド成形を終了する。
 (第3実施形態)
 図7は、第3実施形態の半導体装置1の概略縦断面図、図8は、図7に示す半導体装置1のZ-Z’線断面図である。なお、図7では、一点鎖線で囲ったY部の拡大図を下方に示している。第1実施形態の図1、図2と同一部分には同一番号を付している。第3実施形態でも、第1実施形態と同様に、傾きバラツキのある半導体装置1を対象とする。なお、第3実施形態は、傾きバラツキのある半導体装置に限定されるものでないことを示すため、図9には、傾きバラツキのある半導体装置に代えて、厚さバラツキのある半導体装置1を示している。
 図7に示すように、第3実施形態では、ライニング部材11の枠部下面15に、突起部16の内周側に隣接して鉛直下方に開口する溝17が設けられている。この溝17も、図8にも示すように、上方電極2の周縁を取り巻いている。
 図9は、第3実施形態のモールド装置21の概略断面図で、左側には、半導体装置1に対し樹脂によってモールド成形する前の状態を、右側には、半導体装置1に対し樹脂によってモールド成形した後の状態を示している。なお、図9においても、一点鎖線で囲ったY部の拡大図を下方に示している。第1実施形態の図3と同一部分には、同一番号を付している。
 半導体装置1のモールド成形時に、突起部16の塑性変形の仕方が第1実施形態とは相違する。すなわち、突起部16の内周側に隣接して溝17を設けているため、半導体装置1の型締め時には、図9の右側に示すように、突起部16の溝17のある側が溝17内にせり出すようにして塑性変形する。このため、溝17に樹脂67を充填して硬化させることで、溝17に充填された樹脂67の部分がアンカーの働きをする。アンカーは、一般的には地面等の固定部材に鉛直下方に打ち付けることによって、固定部材との密着力を得るものである。ここでは、溝17に充填された樹脂67の部分が鉛直上方に向けて打ち付けているアンカーに相当する。
 このように、第3実施形態によれば、突起部16の内周側に隣接して溝17を設けているので、溝17に充填されて硬化した樹脂67にくさび(アンカー)効果が生じ、樹脂67の鉛直方向(縦方向)および水平方向(横方向)の密着力が向上する。また、突起部16を構成している材質と樹脂67の接合が悪くても密着効果を出すことができる。
 以上、本発明を添付の図面を参照して詳細に説明したが、本発明はこのような具体的構成に限定されるものではなく、添付した請求の範囲の趣旨内における様々な変更及び同等の構成を含むものである。例えば、図3、図5、図9の天地をひっくり返した構成としてもかまわない。
 本願は、2010年12月27日に日本国特許庁に出願された特願2010-290295に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  複数の半導体素子(4,5)と、
     前記複数の半導体素子(4,5)の一面側に結合する平板状の第1電極(2)と、
     前記複数の半導体素子(4,5)の他面側に結合する平板状の第2電極(3)と、
     前記第1電極(2)と前記第2電極(3)の間に前記複数の半導体素子を封止するモールド材(67)とを備える半導体モジュールにおいて、
     前記第1電極(2)の周縁部に、前記第2電極(3)に向かって延伸する突起部(16)を設け、
     前記突起部(16)は、前記モールド材(67)を囲む半導体モジュール。
  2.  請求項1に記載の半導体モジュールにおいて、
     前記突起部(16)の内周側に隣接して溝(17)を設けた半導体モジュール。
  3.  複数の半導体素子(4,5)と、
     前記複数の半導体素子(4,5)の一面側に結合する平板状の第1電極(2)と、
     前記複数の半導体素子(4,5)の他面側に結合する平板状の第2電極(3)と、
     前記第1電極(2)の周縁部に、前記第2電極(3)に向かって延伸する突起部(16)と、
    をモールド成形することによって半導体モジュールを形成するモールド装置において、
     第1開口部を有する第1金型(41)と、
     第2開口部を有し、前記第1金型(41)の第1開口部とともにモールド室を構成する第2金型(31)とを備え、
     前記第1金型(41)は、型締め方向に移動すると共に、前記第1電極(2)に接触する部材と、該部材を前記第1電極に押圧する弾性部材とを有し、
     前記第2開口部は、前記突起部を当接させる当接部を有するモールド装置。
  4.  請求項3に記載のモールド装置において、
     前記突起部(16)の内周側に隣接して溝(17)を設けたモールド装置。
  5.  複数の半導体素子(4,5)と、
     前記複数の半導体素子(4,5)の一面側に結合する平板状の第1電極(2)と、
     前記複数の半導体素子(4,5)の他面側に結合する平板状の第2電極(3)と、
     前記第1電極(2)の周縁部に、前記第2電極(3)に向かって延伸する突起部(16)と、
    からなるモールド対象物をモールド成形するモールド成形方法において、
     前記モールド対象物を第1金型の開口部および第2金型の開口部によって構成されたモールド室に配置する工程と、
     前記第1金型を型締め方向に移動させることにより、前記突起物を塑性変形させつつ、前記モールド対象物を型締めする工程と、
     型締め完了後に、前記第2金型と前記第1電極と前記第2電極と前記突起部とにより仕切られた空間に樹脂を注入する工程と、
     前記注入した樹脂を硬化させる工程と、
     樹脂が硬化した後に前記型締めを開放して前記モールド対象物を離型する工程と、
    を含むモールド成形方法。
PCT/JP2011/075909 2010-12-27 2011-11-10 半導体モジュール、モールド装置及びモールド成形方法 WO2012090594A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180040629.3A CN103069556B (zh) 2010-12-27 2011-11-10 半导体模块、模制装置及模制成形方法
JP2012550769A JP5445695B2 (ja) 2010-12-27 2011-11-10 半導体モジュール、モールド装置及びモールド成形方法
US13/822,265 US8900933B2 (en) 2010-12-27 2011-11-10 Semiconductor module, molding apparatus, and molding method
EP11852808.2A EP2660858A4 (en) 2010-12-27 2011-11-10 SEMICONDUCTOR MODULE, MOLDING DEVICE AND MOLDING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010290295 2010-12-27
JP2010-290295 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090594A1 true WO2012090594A1 (ja) 2012-07-05

Family

ID=46382715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075909 WO2012090594A1 (ja) 2010-12-27 2011-11-10 半導体モジュール、モールド装置及びモールド成形方法

Country Status (5)

Country Link
US (1) US8900933B2 (ja)
EP (1) EP2660858A4 (ja)
JP (1) JP5445695B2 (ja)
CN (1) CN103069556B (ja)
WO (1) WO2012090594A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823101A (zh) * 2012-11-29 2015-08-05 夏普株式会社 液晶显示装置
JP7391819B2 (ja) 2020-02-04 2023-12-05 東海興業株式会社 射出成形品及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315028B2 (ja) * 2008-12-04 2013-10-16 ルネサスエレクトロニクス株式会社 電子装置および電子装置の製造方法
JP5445695B2 (ja) * 2010-12-27 2014-03-19 日産自動車株式会社 半導体モジュール、モールド装置及びモールド成形方法
CN106575645B (zh) * 2014-08-25 2019-12-24 瑞萨电子株式会社 半导体器件及电子装置
US10403601B2 (en) 2016-06-17 2019-09-03 Fairchild Semiconductor Corporation Semiconductor package and related methods
US11955347B2 (en) * 2021-12-02 2024-04-09 Asmpt Singapore Pte. Ltd. Encapsulation process for double-sided cooled packages
CN116666310B (zh) * 2023-08-02 2023-10-27 烟台台芯电子科技有限公司 一种igbt封装结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294727A (ja) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd 半導体装置
JP2004096004A (ja) * 2002-09-03 2004-03-25 Toshiba Corp マルチチップ圧接型パッケージ
JP2004303900A (ja) * 2003-03-31 2004-10-28 Denso Corp 半導体装置
JP2005136332A (ja) * 2003-10-31 2005-05-26 Toyota Motor Corp 半導体装置
JP2006086499A (ja) * 2004-08-19 2006-03-30 Toyota Motor Corp 樹脂封止装置および樹脂封止方法
JP2007320102A (ja) 2006-05-31 2007-12-13 Toyota Motor Corp モールド装置およびモールド品の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970002295B1 (ko) * 1993-02-23 1997-02-27 미쯔비시 덴끼 가부시끼가이샤 성형방법
US5955021A (en) * 1997-05-19 1999-09-21 Cardxx, Llc Method of making smart cards
EP1220309A1 (en) * 2000-12-28 2002-07-03 STMicroelectronics S.r.l. Manufacturing method of an electronic device package
JP3896274B2 (ja) * 2001-10-30 2007-03-22 住友重機械工業株式会社 半導体樹脂封止装置
TW200519925A (en) * 2003-08-05 2005-06-16 Matsushita Electric Ind Co Ltd Optical disc and the manufacturing method thereof
JP4426880B2 (ja) * 2004-03-12 2010-03-03 Towa株式会社 樹脂封止装置及び樹脂封止方法
JP4407489B2 (ja) * 2004-11-19 2010-02-03 株式会社デンソー 半導体装置の製造方法ならびに半導体装置の製造装置
JP5064078B2 (ja) * 2007-03-30 2012-10-31 株式会社日立産機システム 微細パターン転写用金型およびそれを用いた樹脂製転写物の製造方法
WO2008142784A1 (ja) * 2007-05-23 2008-11-27 Pioneer Corporation インプリント装置
JP4894783B2 (ja) * 2008-02-25 2012-03-14 三菱電機株式会社 半導体装置および半導体装置の製造方法
WO2009157197A1 (ja) * 2008-06-25 2009-12-30 キョーラク株式会社 樹脂成形品の成形方法および成形装置、並びに熱可塑性樹脂製シートの厚みの調整装置
JP5445695B2 (ja) * 2010-12-27 2014-03-19 日産自動車株式会社 半導体モジュール、モールド装置及びモールド成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294727A (ja) * 1999-04-02 2000-10-20 Fuji Electric Co Ltd 半導体装置
JP2004096004A (ja) * 2002-09-03 2004-03-25 Toshiba Corp マルチチップ圧接型パッケージ
JP2004303900A (ja) * 2003-03-31 2004-10-28 Denso Corp 半導体装置
JP2005136332A (ja) * 2003-10-31 2005-05-26 Toyota Motor Corp 半導体装置
JP2006086499A (ja) * 2004-08-19 2006-03-30 Toyota Motor Corp 樹脂封止装置および樹脂封止方法
JP2007320102A (ja) 2006-05-31 2007-12-13 Toyota Motor Corp モールド装置およびモールド品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660858A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823101A (zh) * 2012-11-29 2015-08-05 夏普株式会社 液晶显示装置
JP7391819B2 (ja) 2020-02-04 2023-12-05 東海興業株式会社 射出成形品及びその製造方法

Also Published As

Publication number Publication date
JP5445695B2 (ja) 2014-03-19
US20130178018A1 (en) 2013-07-11
CN103069556B (zh) 2015-09-16
JPWO2012090594A1 (ja) 2014-06-05
CN103069556A (zh) 2013-04-24
US8900933B2 (en) 2014-12-02
EP2660858A1 (en) 2013-11-06
EP2660858A4 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2012090594A1 (ja) 半導体モジュール、モールド装置及びモールド成形方法
US10566760B2 (en) Light emitting device
US6897428B2 (en) Solid-state imaging device and method for manufacturing the same
EP2193911B1 (en) Micro lens, method and apparatus for manufacturing micro lens, and camera module including micro lens
JP7189990B2 (ja) 撮像モジュールのモールド回路基板の製造装置およびその製造方法
WO2010146860A1 (ja) 樹脂モールド型電子部品の製造方法
JP2012049414A (ja) 基板露出面を備えた樹脂封止成形品の製造方法及び装置
KR20180082318A (ko) 반도체 장치와 반도체 장치의 제조 방법
KR101913896B1 (ko) 액체 토출 헤드 및 지지 부재
TWI698940B (zh) 基於模製技術的半導體封裝方法、影像處理元件、攝像裝置及電子設備
US11728368B2 (en) Semiconductor packaging method and semiconductor device based on molding process
US9832872B2 (en) Method for manufacturing electronic device, and electronic device
JP2009166415A (ja) 圧縮成形用樹脂、樹脂封止装置、及び樹脂封止方法
JP2004247611A (ja) 半導体素子実装基板、半導体素子実装基板の製造方法
US20030145461A1 (en) Semiconductor device and method of manufacturing the same
CN110154293B (zh) 凝胶状部件的制造方法
JP2013089607A (ja) モールド装置およびモールド方法
CN112352474B (zh) 树脂密封型车载电子控制装置
JP2018006413A (ja) 電子装置、及び、電子装置の製造方法
JP7113291B2 (ja) 電子部品モジュールの外装樹脂成形方法
KR100901435B1 (ko) Led 렌즈 성형몰드
KR101602534B1 (ko) 웨이퍼 레벨 몰딩 장치
JP2016131197A (ja) 半導体装置の製造方法
TWI808036B (zh) 雙面冷卻組件的封裝製程
JPH06151487A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040629.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011852808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13822265

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE