WO2012084570A1 - Kohlenstoff-silizium-mehrschichtsysteme - Google Patents

Kohlenstoff-silizium-mehrschichtsysteme Download PDF

Info

Publication number
WO2012084570A1
WO2012084570A1 PCT/EP2011/072439 EP2011072439W WO2012084570A1 WO 2012084570 A1 WO2012084570 A1 WO 2012084570A1 EP 2011072439 W EP2011072439 W EP 2011072439W WO 2012084570 A1 WO2012084570 A1 WO 2012084570A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
silicon
multilayer system
individual layers
layers
Prior art date
Application number
PCT/EP2011/072439
Other languages
English (en)
French (fr)
Inventor
Thomas KÖCK
Stefan Klein
Original Assignee
Sgl Carbon Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sgl Carbon Se filed Critical Sgl Carbon Se
Publication of WO2012084570A1 publication Critical patent/WO2012084570A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to carbon-silicon multilayer systems, processes and their preparation and the use thereof.
  • Silicon has the "right" electrochemical activity with lithium, which has long been regarded as an interesting starting material, but its performance was actually too great, silicon absorbs enough ions to make the anode swell up to four times its original size that the material can break, and after only a few charges, silicon anodes are no longer usable ("silicon for more capacity", Technology Review,
  • J. Yang et al. (“HIGH ENERGY ANODE MATERIALS AND NOVEL ELECTRODE ARCHITECTURE FOR LITHIUM ION BATTERIES” Conference Proceedings: Annual World Conference on Carbon, (2010)) describes a Si-CNT material. rial, which is suitable as an anode material. The Si-CNTs are obtained by vapor deposition of CNTs with silicon and then processed further to the anode material.
  • the object of the present invention is therefore to provide a carbon-silicon multi-layer system which overcomes the disadvantages of the prior art and enables the production of graphite / silicon anodes.
  • the present invention is a carbon-silicon multilayer system consisting of a substrate and alternating layers of carbon and silicon, wherein the individual layers each consist of substantially amorphous carbon or of substantially amorphous silicon.
  • the substrate is selected from metallic substrates or from non-metallic metallic substrates. It is particularly preferred that the metallic substrate is selected from the group consisting of copper and copper alloys.
  • the individual layers have a thickness between 3 nm and 400 nm.
  • the individual layers have approximately the same thickness.
  • the invention is also an inventive carbon-silicon multilayer system, wherein at least one layer is doped with other elements.
  • the doping elements are selected from Sn, Pb, Al, Au, Pt, Zn, Cd, Ag, Mg, P, Ga, Ge, As.
  • An essential feature of the present invention is that the individual layers each consist of substantially amorphous carbon or substantially amorphous silicon. Amorphous structures are characterized by having no XRD diffraction peaks.
  • the measure of the amorphous state would thus be the existence of diffraction peaks or their absence. As soon as peaks are visible in an XRD diffraction pattern, the layer or the layer system is no longer amorphous.
  • XRD x-ray diffraction
  • the X-ray diffraction method makes use of the fact that X-rays interact with the crystal lattice of a solid, resulting in X-ray interference and hence diffraction patterns (Sp card, L., et al., Modern X-Ray Diffraction, BG Teubner Verlag, Wiesbaden, 2005).
  • diffraction patterns which are unique to each crystalline element, it is possible to draw conclusions about the atomic arrangement of the crystal and to bombard the samples to be examined with X-rays are limited.
  • the incident rays are diffracted by atoms in the crystal lattice and interfere with each other.
  • the carbon-silicon multilayer systems of the present invention show no diffraction peaks which would indicate a crystalline structure of silicon. Silicon is almost completely amorphous in the multilayer systems according to the invention.
  • Another object of the invention is a method for producing a carbon-silicon multi-layer system according to the invention, wherein the individual layers successively applied to the substrate by means of magnetron sputtering.
  • these layers are doped simultaneously with another element.
  • these layers are doped with another element in a further working step.
  • the doping is likewise carried out by means of magnetron sputtering
  • the present invention also relates to the use of the carbon-silicon multi-layer system according to the invention as a constituent of the anode material in Li-ion batteries or rechargeable batteries.
  • the carbon-silicon multi-layer system according to the invention has the advantage of having substantially amorphous structures.
  • the incorporation of Li-ions does not destroy the crystal lattice of the silicon. Exactly this destruction of the crystal lattice is the cause of the low cycle stability of previously known anodes for silicon-based Li-ion batteries.
  • the production of the carbon-silicon multi-layer system according to the invention takes place for example by means of magnetron sputtering. This mechanism of the sputtering effect by particle bombardment (magnetron sputtering) will be explained in more detail below.
  • the incident ion releases its energy to the solid atoms through elastic and inelastic collisions.
  • the impact cascade extends, for example, for an ion with an energy of 1 keV, to a range of 5-10 nm below the target surface.
  • the partly resulting recoil atoms are important for the sputtering process, since they can lead to a reversal of the shot impulse by further impacts. Due to the outward momentum, atoms from a depth of about 1 nm can leave the solid state (RA Haefer, surface and thin-film technology, Springer-Verlag, Berlin, Heidelberg, 1987, G. Kienel, vacuum coating 3 - plant automation, measuring and Analysis Technology; VDI-Verlag, Dusseldorf, 1994).
  • the simplest sputtering setup consists of a planar target that can be operated with both DC and AC power. In DC mode, an anomalous glow discharge is maintained between the cathode (target) and the anode (grounded substrate plate).
  • a capacitive high-frequency discharge is ignited at operating frequencies in the range from a few MHz to a few 10 MHz between two electrodes (G. Kienel and K. Röll).
  • a so-called bias voltage can additionally be applied to the substrate plate during the coating.
  • the substrates are at a negative potential, which exposes the substrates to ion bombardment (RA Haefer).
  • the method of magnetron sputtering can also be used for doping the individual layers with a wide variety of doping elements such as Sn, Pb, Al, Au, Pt, Zn, Cd, Ag, Mg, P, Ga, Ge, As and the like.
  • the method is known to the person skilled in the art and can be adapted in a simple manner to the respective requirements.
  • Figure 1 is an electron micrograph of a carbon-silicon multi-layer system according to the invention.
  • FIG. 2 shows the result of the X-ray diffraction of the carbon-silicon multi-layer system according to the invention
  • FIG. 3 shows the schematic structure of a test T cell for determining the cycle stability of the carbon-silicon multi-layer system according to the invention.
  • Figure 4 shows the result of measuring the cycle life of the carbon-silicon multi-layer system according to the invention.
  • a sputtering system from Denton Vacuum, LLC (Discovery 18) is used.
  • As sputtering targets pure silicon (purity 99.999%) and pure carbon (purity 99.999%) are used. Before coating, these targets are made by so-called ion etching cleaned to deposit very pure layers. The uniformity of the layer thickness is ensured by a rotating sample tray.
  • the substrate used is a copper foil from Schlenk (ETP copper strip E-Cu58 LTA, grade W8), which is likewise cleaned by an ion etching process before being coated on the surface.
  • the deposition parameters may vary depending on the target, i. Sputter rate of the element and desired layer thickness can be selected independently.
  • the applied powers were 600 W in the case of the carbon target and 300 W in the case of the silicon target.
  • FIG. 1 shows an example of a carbon-silicon multi-layer system.
  • FIG. 1 is an electron micrograph of the carbon-silicon multilayer system.
  • FIG. 1 shows a carbon-silicon multilayer system produced in this way.
  • the darker stripes represent the silicon layers and the lighter stripes reflect the carbon layers.
  • the substrate layer can be seen, on which a first carbon layer is applied.
  • the thickness of the respective layers is about 30 nm.
  • the lower third of Figure 1 is also a slightly narrower silicon layer can be seen. This shows that, depending on the equipment conditions, the layer thickness can be freely selected within wide limits.
  • the X-ray diffraction tests are carried out on a Siemens AG (Siemens D500) system.
  • the measuring setup of the apparatus works according to the Bragg-Brentano principle.
  • As an X-ray source the CuK alpha line was used (about 1.54 A).
  • the acceleration voltage was 40 kV. 2 shows the result of the X-ray diffraction of the carbon-silicon multi-layer system according to the invention according to Example 1.
  • the peaks shown originate from the substrate material copper. The positions where the peaks of the silicon crystal lattice are to be expected are marked. However, the superimposed spectrum does not have these peaks.
  • test T cells were constructed.
  • a schematic representation of the structure of such a T cell is shown in FIG.
  • a spring was installed for a constant contact pressure between anode and cathode.
  • the area of the cathodes (metallic lithium), the three separators and the anode (coated copper foil) is filled with an electrolyte.
  • LiPF 6 EC-DEC was used for unloading and charging cycles.
  • these cells were installed in a Maccor 4000 Series apparatus.
  • FIG. 4 shows the high cycle stability of the inventive carbon-silicon multilayer system according to Example 1.
  • the carbon-silicon multi-layer systems according to the invention can be produced in a simple manner by means of sputtering methods.
  • the carbon-silicon multi-layer systems according to the invention can be used in a simple manner with methods known in the prior art as anodes for Li-ion batteries.
  • the carbon-silicon multi-layer systems according to the invention have various advantages.
  • the carbon-silicon multi-layer systems according to the invention can be produced in virtually any desired layer thicknesses, with the respective carbon or silicon layers each having the same thickness or in each case may have different strengths.
  • the layer density can be controlled in a simple manner via the parameters of the sputtering method.
  • the substrates can be chosen almost freely. Any substrates that are known and suitable as substrates for sputtering are suitable. Substrates can be metal foils. However, glass surfaces or other non-metallic surfaces are also suitable.
  • the individual layer can also be doped in a simple manner with the desired elements. This doping can also be accomplished in a simple manner by means of the control of the sputtering method.

Abstract

Es werden Kohlenstoff-Silizium-Mehrschichtsysteme beschrieben, bestehend aus einen Substrat und alternierenden Schichten aus Kohlenstoff und Silizium, wobei die einzelnen Schichten jeweils aus im wesentlichen amorphem Kohlenstoff oder aus im wesentlichen amorphem Silizium bestehen. Beschrieben wird ferner ein Verfahren zur Herstellung eines Kohlenstoff-Silizium- Mehrschichtsystems, wobei man die einzelnen Schichten nacheinander auf das Substrat mittels Magnetron-Sputtering aufträgt. Die einzelnen Schichte können in nahezu beliebiger Dicke erzeugt werden und können gegebenenfalls dotiert sein. Die erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsysteme sind als Anodenmaterial in Li-Ionen-Akkus verwendbar und weisen dabei eine hohe Zyklenbeständigkeit auf.

Description

Kohlenstoff-Silizium-Mehrschichtsysteme
Die Erfindung betrifft Kohlenstoff-Silizium-Mehrschichtsysteme, Verfahren und deren Herstellung sowie die Verwendung derselben.
Silicium besitzt die„richtige" elektrochemische Aktivität zu Lithium, so dass es schon lange als interessantes Ausgangsmaterial gilt. Doch seine Leistungsfähigkeit war eigentlich zu groß. Silizium absorbiert so viele Ionen, dass die Anode bis auf das Vierfache ihrer Originalgröße anschwillt. Dies hat zur Folge, dass das Material brechen kann. Nach nur wenigen Ladevorgängen sind Siliziumanoden bislang nicht mehr zu gebrauchen („Silicium für mehr Kapazität", Technology Review,
18.1 .2008).
Eine Lösung des Problem wird von K. Evanoff et al. („Silicon-Decorated Carbon Nanotubes as High Capacity Anodes for Lithium Ion Batteries" Conference Pro- ceedings: Annual World Conference on Carbon, (2010)) beschrieben. Hierbei werden vertikal ausgerichtete Carbon-Nanotubes (VACNTs) verwendet, welche an der Innenseite mit Nanobeschichtungen aus Silizium versehen sind. Aber auch diese Systeme weisen Nachteile bei zunehmenden Entladungsraten auf.
J. Y. Howe et al. ("Microstructural Characterization of Silicon/Carbon Nanofiber Composites for Use in Li-ion Batteries" Conference Proceedings: Annual World Conference on Carbon, (2010)) beschreiben die Mikrostruktur von Li-Ionenbat- terien-Anoden, die aus Silizium/Carbon-Nanofaser- (CNF) Kompositen in Sub- Nanometer-Bereich hergestellt sind. Hierbei treten jedoch wegen der unterschiedlichen Leitfähigkeit von Silizium und Kohlenstoff Probleme auf.
Weiterhin beschreiben J. Yang et al. ("HIGH ENERGY ANODE MATERIALS AND NOVEL ELECTRODE ARCHITECTURE FOR LITHIUM ION BATTERIES" Conference Proceedings: Annual World Conference on Carbon, (2010)) ein Si-CNT-Mate- rial, welches als Anodenmaterial geeignet ist. Die Si-CNTs werden durch Bedampfen von CNTs mit Silizium erhalten und dann zum Anodenmaterial weiterberarbei- tet.
Schließlich beschreiben T.-H. Park et al. („ADDITION OF SPECIALLY DESIGNED SIO-CNF AND SI-CNF COMPOSITES TO IMPROVE CAP ACITY AND RATE PERFORMANCES OF ANODIC GRAPHITE FOR LI-ION BATTERIES" Conference Proceedings: Annual World Conference on Carbon, (2010)) die Herstellung und Verwendung von SiO-CNF- und Si-CNF-Kompositen als Anodenmaterial.
Bisher ist es aber nicht gelungen, geeignete Anodenmaterialien auf der Basis von CNTs oder Carbonnanofasern herzustellen. Es besteht daher weiterhin ein großer Bedarf an geeigneten Anodenmaterialien auf Siliziumbasis.
Aufgabe der vorliegenden Erfindung ist es daher, die Nachteile des Standes der Technik zu überwinden und ein geeignetes Anodenmaterial, welches Silizium enthält zur Verfügung zu stellen. Aufgabe der vorliegenden Erfindung ist es daher, ein Kohlenstoff-Silizium-Mehrschichtsystem zur Verfügung zu stellen, welches die Nachteile des Standes der Technik überwindet und die Herstellung von Graphit/Silizium-Anoden ermöglicht.
Die Aufgabe wird durch die Merkmale des Hauptanspruch gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen gekennzeichnet.
Gegenstand der vorliegenden Erfindung ist ein Kohlenstoff-Silizium-Mehrschichtsystem, bestehend aus einen Substrat und alternierenden Schichten aus Kohlenstoff und Silizium, wobei die einzelnen Schichten jeweils aus im wesentlichen amorphem Kohlenstoff oder aus im wesentlichen amorphem Silizium bestehen.
Erfindungsgemäß bevorzugt ist ein Kohlenstoff-Silizium-Mehrschichtsystem, bei dem das Substrat ausgewählt ist aus metallischen Substraten oder aus nichtmetal- lischen Substraten. Besonders bevorzugt ist es, dass das metallische Substrat ausgewählt ist aus der Gruppe bestehend aus Kupfer und Kupferlegierungen.
Erfindungsgemäß bevorzugt ist es dabei, dass die einzelnen Schichten eine Dicke zwischen 3 nm und 400 nm aufweisen.
Besonders bevorzugt ist es dabei, dass die einzelnen Schichten die annährend gleiche Dicke aufweisen.
Erfindungsgemäß ist auch ein erfindungsgemäßes Kohlenstoff-Silizium-Mehrschichtsystem, wobei mindestens eine Schicht mit anderen Elementen dotiert ist. Dabei ist es besonders bevorzugt, dass die Dotierungselemente ausgewählt sind aus Sn, Pb, AI, Au, Pt, Zn, Cd, Ag, Mg, P, Ga, Ge, As.
Ein wesentliches Merkmal der vorliegenden Erfindung ist es, dass die einzelnen Schichten jeweils aus im wesentlichen amorphem Kohlenstoff oder aus im wesentlichen amorphem Silizium bestehen. Amorphe Strukturen sind dadurch gekennzeichnet, dass diese keine XRD-Beugungspeaks aufweisen.
Die Maßzahl für den amorphen Zustand wäre somit die Existenz von Beu- gungspeaks bzw. deren Abwesenheit. Sobald in einem XRD-Beugungsbild Peaks zu erkennen sind ist die Schicht bzw. das Schichtsystem nicht mehr amorph.
XRD (x-ray diffraction) ist ein Röntgenbeugungsverfahren. Bei dem Verfahren der Röntgenbeugung nutzt man die Tatsache, dass Röntgenstrahlen mit dem Kristallgitter eines Festkörpers wechselwirken und es hierbei zu Interferenzen der Röntgenstrahlung und somit zu Beugungsbildern kommt (L. Spieß et al.„Moderne Röntgenbeugung"; B.G. Teubner Verlag, Wiesbaden, 2005). Wertet man diese Beugungsdiagramme, die für jedes kristalline Element einzigartig sind, aus, so lassen sich Rückschlüsse auf die atomare Anordnung des Kristalls ziehen. Die zu untersuchenden Proben werden mit Röntgenstrahlen beschossen, die durch Blenden begrenzt sind. Die einfallenden Strahlen werden an Atomen im Kristallgitter gebeugt und interferieren miteinander.
Die erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsysteme zeigen keine Beugungspeaks, welche eine kristalline Struktur von Silizium anzeigen würden. Silizium liegt in den erfindungsgemäßen Mehrschichtsystemen nahezu vollständig amorph vor.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsystems, wobei man die einzelnen Schichten nacheinander auf das Substrat mittels Magnetron-Sputtering aufträgt.
Erfindungsgemäß bevorzugt ist dabei, dass man während des Auftragens der einzelnen Schichten diese Schichten gleichzeitig mit einem anderen Element dotiert.
Bevorzugt ist ferner, dass man nach dem Auftragen der einzelnen Schichten diese Schichten in einem weiteren Arbeitsschritt mit einem anderen Element dotiert.
Besonders bevorzugt ist dabei jeweils, dass man die Dotierung gleichfalls mittels Magnetron-Sputtering durchführt
Gegenstand der der vorliegenden Verwendung ist ferner die Verwendung des erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsystem als Bestandteil des A- nodenmaterials in Li-Ionen-Batterien bzw. Akkus.
Das erfindungsgemäße Kohlenstoff-Silizium-Mehrschichtsystem weist den Vorteil auf, im Wesentlichen amorphe Strukturen zu besitzen. Bei der Einlagerung von Li- lonen kommt es somit nicht zu einer Zerstörung des Kristallgitters des Siliziums. Genau diese Zerstörung des Kristallgitters ist aber die Ursache für die geringe Zyklenstabilität von bisher bekannten Anoden für Li-Ionen-Akkus auf Siliziumbasis. Die Herstellung des erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsystems erfolgt beispielsweise mittels Magnetron-Sputtering. Dieser Mechanismus des Zerstäubungseffekts durch Teilchenbeschuss (Magnetron-Sputtering) wird nachfolgend näher erläutert.
Das einfallende Ion gibt seine Energie durch elastische und inelastische Stöße an die Festkörperatome ab. Die Stoßkaskade erstreckt sich dabei, beispielsweise für ein Ion mit einer Energie von 1 keV, auf einen Bereich von 5-10 nm unterhalb der Targetoberfläche. Die dabei zum Teil entstehenden Rückstoßatome sind für den Zerstäubungsprozess wichtig, da sie durch weitere Stöße zu einer Umkehr des Be- schussimpulses führen können. Durch den nach außen gerichteten Impuls können Atome aus einer Tiefe von etwa 1 nm den Festkörper verlassen (R.A. Haefer; Oberflächen- und Dünnschicht-Technologie; Springer-Verlag, Berlin, Heidelberg, 1987; G. Kienel; Vakuumbeschichtung 3 - Anlagenautomatisierung, Meß- und Analysetechnik; VDI-Verlag, Düsseldorf, 1994). Während des Zerstäubungsprozesses entstehen nahezu ausschließlich neutrale Teilchen (G. Kienel und K. Röll; Vakuumbeschichtung 2 - Verfahren und Anlagen; VDI-Verlag, Düsseldorf, 1995). Nur ein geringer Anteil liegt als positiv oder negativ geladene Ionen sowie Atomcluster vor. Die Energie der zerstäubten Atome liegt, je nach Targetelement, zwischen 10 und 40 eV (R.A. Haefer). Der einfachste Sputteraufbau besteht aus einem planaren Target, das sowohl mit Gleich- (DC) als auch mit Wechselspannung (RF) betrieben werden kann. Im DC-Modus wird eine anomale Glimmentladung zwischen der Kathode (Target) und der Anode (geerdeter Substratteller) aufrechterhalten. Im RF- Modus wird zwischen zwei Elektroden eine kapazitive Hochfrequenzentladung bei Arbeitsfrequenzen im Bereich von einigen MHz bis einigen 10 MHz gezündet (G. Kienel und K. Röll). Um lose Verunreinigungen zu entfernen oder auch die Schichtstruktur positiv zu beeinflussen, kann zusätzlich während der Beschichtung eine sogenannte Bias-Spannung an den Substratteller angelegt werden. Dadurch liegen die Substrate auf einem negativen Potenzial, wodurch die Substrate einem lonen- bombardement ausgesetzt werden (R.A. Haefer ). Das Verfahren des Magnetron-Sputtering kann auch zur Dotierung der einzelnen Schichten mit unterschiedlichsten Dotierungselementen wie Sn, Pb, AI, Au, Pt, Zn, Cd, Ag, Mg, P, Ga, Ge, As und dergleichen verwendet werden. Das Verfahren ist dem Fachmann bekannt und kann in einfacher Weise an die jeweiligen Anforderungen angepasst werden.
Die folgenden Beispiele erläutern die Erfindung.
Zur Erläuterung der Beispiele sind die Figuren 1 bis 4 angefügt. Es zeigt:
Figur 1 eine elektronenmikroskopische Darstellung eines erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsystems;
Figur 2 das Ergebnis der Röntgenbeugung des erfindungsgemäßen Kohlenstoff- Silizium-Mehrschichtsystems;
Figur 3 den schematischen Aufbau einer Test-T-Zelle zur Bestimmung er Zyklenbeständigkeit des erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsystems; und
Figur 4 das Ergebnis der Messung der Zyklenbeständigkeit des erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsystem.
Beispiel 1
Herstellung eines Kohlenstoff-Silizium-Mehrschichtsystems
Für die Herstellung des Mehrschichtsystems wird eine Zerstäubungsanlage von Denton Vacuum, LLC (Discovery 18) verwendet. Als Sputtertargets werden reines Silizium (Reinheit 99.999%) sowie reiner Kohlenstoff (Reinheit 99.999%) verwendet. Vor der Beschichtung werden diese Targets durch ein sogenanntes lonenätzen gereinigt, um sehr reine Schichten abzuscheiden. Die Gleichmäßigkeit der Schichtdicke wird durch einen rotierenden Probenteller sichergestellt.
Als Substrat wird eine Kupferfolie der Firma Schlenk (ETP Kupferband E-Cu58 LTA, Qualität W8) verwendet, das ebenfalls vor der Beschichtung an der Oberfläche durch einen lonenätzprozess gereinigt wird.
Die Abscheidungsparameter können je nach Target, d.h. Zerstäubungsrate des Elements und erwünschter Schichtdicke unabhängig voneinander gewählt werden. Für das beschriebene Mehrschichtsystem lagen die angelegten Leistungen im Falle des Kohlenstofftargets bei 600 W und im Falle des Siliziumtargets bei 300 W.
In der Figur 1 ist ein Beispiel für ein Kohlenstoff-Silizium-Mehrschichtsystem gezeigt. Figur 1 ist eine elektronenmikroskopische Darstellung des Kohlenstoff-Silizium-Mehrschichtsystems.
Figur 1 zeigt ein derart hergestelltes Kohlenstoff-Silizium-Mehrschichtsystem. In der Figur 1 geben die dunkleren Streifen die Silizium-Schichten und die helleren Streifen die Kohlenstoffschichten wieder. Im unteren Teil der Figur 1 ist die Substratschicht zu erkennen, auf welcher zunächst eine Kohlenstoffschicht aufgetragen ist. Die Dicke der jeweiligen Schichten liegt bei ca. 30 nm. In unteren Drittel der Figur 1 ist ferner eine etwas schmalere Silizium-Schicht zu erkennen. Dies zeigt, dass je nach apparativen Bedingungen die Schichtdicke in weiten Grenzen frei wählbar ist.
Beispiel 2
XRD-Messung
Die Röntgenbeugungsversuche werden an einer Anlage der Siemens AG (Siemens D500) durchgeführt. Der Messaufbau der Apparatur arbeitet nach dem Bragg- Brentano Prinzip. Als Röntgenquelle wurde die CuK alpha Linie verwendet (etwa 1 ,54 A). Die Beschleunigungsspannung betrug 40 kV. In der Figur 2 ist das Ergebnis der Röntgenbeugung des erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsystems gemäß dem Beispiel 1 dargestellt. Die dargestellten Peaks stammen vom Substratmaterial Kupfer. Die Positionen, an denen die Peaks des Siliziumkristallgitters zu erwarten sind, sind markiert. Das darüber gelegte Spektrum weist diese Peaks jedoch nicht auf.
Beispiel 3
Zyklenbeständigkeit
Zur Überprüfung der Zyklenbeständigkeit wurden einige Test-T-Zellen gebaut. Eine schematische Darstellung des Aufbaus einer derartigen T-Zelle ist in der Figur 3 wiedergegeben. Für einen konstanten Anpressdruck zwischen Anode und Kathode wurde eine Feder verbaut. Der Bereich der Kathoden (metallisches Lithium), der drei Separatoren und der Anode (beschichtete Kupferfolie) ist mit einem Elektrolyt gefüllt. In diesem Fall wurde LiPF6 EC-DEC verwendet. Für die Entlade- und Ladezyklen wurden diese Zellen in eine Maccor 4000 Series Apparatur verbaut.
Die Figur 4 zeigt die hohe Zyklenbeständigkeit des erfindungsgemäßen Kohlenstoff- Silizium-Mehrschichtsystem gemäß dem Beispiel 1 .
Es konnte gezeigt werden, dass die erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsysteme in einfacher weise mittels Sputterverfahren herstellbar sind. Die erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsysteme lassen sich in einfacher Weise mit im Stand der Technik bekannten Verfahren als Anoden für Li-Ionen- Akkus verwenden.
Die erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsysteme weisen verschiedene Vorteile auf. So sind die erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsysteme in nahezu beliebigen Schichtdicken herstellbar, wobei die jeweiligen Kohlenstoff- oder Siliziumschichten jeweils die gleiche Stärke oder jeweils unter- schiedliche Stärken aufweisen können. Die Schichtdichte ist in einfacher Weise über die Parameter des Sputterverfahrens steuerbar.
Ein weiterer Vorteil der erfindungsgemäßen Kohlenstoff-Silizium-Mehrschichtsysteme ist es, dass die Substrate nahezu frei gewählt werden können. Jedwede Substrate sind geeignet, die als Substrate für Sputterverfahren bekannt und geeignet sind. Substrate können Metallfolien sein. Geeignet sind aber auch Glasoberflächen oder andere nichtmetallische Oberflächen.
Ferner lassen sich die einzelnen Schicht in ebenfalls einfacher Weise mit den gewünschten Elementen dotieren. Auch diese Dotierung kann mittels der Steuerung des Sputterverfahrens in einfacher Weise bewerkstelligt werden.

Claims

Patentansprüche
1 . Kohlenstoff-Silizium-Mehrschichtsystem, bestehend aus einen Substrat und alternierenden Schichten aus Kohlenstoff und Silizium, wobei die einzelnen Schichten jeweils aus im wesentlichen amorphem Kohlenstoff oder aus im wesentlichen amorphem Silizium bestehen.
2. Kohlenstoff-Silizium-Mehrschichtsystem, gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Substrat ausgewählt ist aus metallischen Substraten oder aus nichtmetallischen Substraten.
3. Kohlenstoff-Silizium-Mehrschichtsystem, gemäß Anspruch 2, dadurch gekennzeichnet, dass das metallischen Substrat ausgewählt ist aus der Gruppe bestehend aus Kupfer und Kupferlegierungen.
4. Kohlenstoff-Silizium-Mehrschichtsystem, gemäß Anspruch 1 , dadurch gekennzeichnet, dass die einzelnen Schichten eine Dicke zwischen 3 nm und 400 nm aufweisen.
5. Kohlenstoff-Silizium-Mehrschichtsystem, gemäß Anspruch 1 , dadurch gekennzeichnet, dass die einzelnen Schichten die annährend gleiche Dicke aufweisen.
6. Kohlenstoff-Silizium-Mehrschichtsystem, gemäß Anspruch 1 , dadurch gekennzeichnet, dass mindestens eine Schicht mit anderen Elementen dotiert ist.
7. Kohlenstoff-Silizium-Mehrschichtsystem, gemäß Anspruch 6, dadurch gekennzeichnet, dass die Dotierungselemente ausgewählt sind aus Sn, Pb, AI, Au, Pt, Zn, Cd, Ag, Mg, P, Ga, Ge, As.
8. Verfahren zur Herstellung eines Kohlenstoff-Silizium-Mehrschichtsystems, gemäß Anspruch 1 , wobei man die einzelnen Schichten nacheinander auf das Substrat mittels Magnetron-Sputtering aufträgt.
9. Verfahren, gemäß Anspruch 8, dadurch gekennzeichnet, dass man während des Auftragens der einzelnen Schichten diese Schichten gleichzeitig mit einem anderen Element dotiert.
10. Verfahren, gemäß Anspruch 8, dadurch gekennzeichnet, dass man nach dem Auftragen der einzelnen Schichten diese Schichten in einem weiteren Arbeitsschritt mit einem anderen Element dotiert.
1 1 . Verfahren, gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, dass man die Dotierung gleichfalls mittels Magnetron-Sputtering durchführt
12. Verwendung von Kohlenstoff-Silizium-Mehrschichtsystem, gemäß Anspruch 1 , als Bestandteil des Anodenmaterials in Li-Ionen-Batterien.
PCT/EP2011/072439 2010-12-21 2011-12-12 Kohlenstoff-silizium-mehrschichtsysteme WO2012084570A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010063815A DE102010063815A1 (de) 2010-12-21 2010-12-21 Kohlenstoff-Silizium-Mehrschichtsysteme
DE102010063815.3 2010-12-21

Publications (1)

Publication Number Publication Date
WO2012084570A1 true WO2012084570A1 (de) 2012-06-28

Family

ID=45349503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/072439 WO2012084570A1 (de) 2010-12-21 2011-12-12 Kohlenstoff-silizium-mehrschichtsysteme

Country Status (2)

Country Link
DE (1) DE102010063815A1 (de)
WO (1) WO2012084570A1 (de)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652683B2 (en) 2008-02-25 2014-02-18 Catalyst Power Technologies, Inc. High capacity electrodes
WO2014068318A1 (en) * 2012-11-02 2014-05-08 Nexeon Limited Device and method of forming a device
CN104218213A (zh) * 2014-08-15 2014-12-17 中山大学 一种多层膜电极及其制备方法和应用
CN104993115A (zh) * 2015-08-03 2015-10-21 温州大学 一种锂电池SiCO-Si梯度薄膜电极体系及制备方法
RU2579357C1 (ru) * 2014-10-31 2016-04-10 Общество с ограниченной ответственностью "Литион" Анодный материал с покрытием и аккумулятор с металлическим анодом
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US9705136B2 (en) 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
CN109244377A (zh) * 2017-07-10 2019-01-18 力信(江苏)能源科技有限责任公司 一种锂离子电池负极硅碳复合材料的制备方法
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10665858B2 (en) 2009-02-25 2020-05-26 Cf Traverse Llc Energy storage devices
US20210116799A1 (en) * 2019-10-18 2021-04-22 Applied Materials, Inc. Multilayer Reflector And Methods Of Manufacture And Patterning
US11075378B2 (en) 2008-02-25 2021-07-27 Cf Traverse Llc Energy storage devices including stabilized silicon
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
CN114050233A (zh) * 2021-11-25 2022-02-15 珠海冠宇电池股份有限公司 一种负极极片及电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076389A2 (en) * 2003-12-23 2005-08-18 Carnegie Mellon University Self-contained, alloy type, thin film anodes for lithium-ion batteries
US20060134516A1 (en) * 2004-12-18 2006-06-22 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US20070077490A1 (en) * 2005-09-23 2007-04-05 Kim Han-Su Anode active material, method of manufacturing the same, and lithium battery using the same
US20080261116A1 (en) * 2007-04-23 2008-10-23 Burton David J Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
US20090061319A1 (en) * 2007-08-28 2009-03-05 Hyung-Sun Kim Silicon thin film anode for lithium secondary battery and preparation method thereof
WO2010138617A2 (en) * 2009-05-27 2010-12-02 Amprius Inc. Core-shell high capacity nanowires for battery electrodes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3717727A1 (de) * 1987-05-26 1988-12-08 Licentia Gmbh Elektrofotografisches aufzeichnungsmaterial und verfahren zu seiner herstellung
US6930835B2 (en) * 2000-05-25 2005-08-16 Atomic Telecom Atomic layer controlled optical filter design for next generation dense wavelength division multiplexer
DE102008022039A1 (de) * 2008-04-30 2009-11-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleißschutzbeschichtung für auf Reibung beanspruchte Oberflächen von Bauteilen sowie Verfahren zur Ausbildung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076389A2 (en) * 2003-12-23 2005-08-18 Carnegie Mellon University Self-contained, alloy type, thin film anodes for lithium-ion batteries
US20060134516A1 (en) * 2004-12-18 2006-06-22 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US20070077490A1 (en) * 2005-09-23 2007-04-05 Kim Han-Su Anode active material, method of manufacturing the same, and lithium battery using the same
US20080261116A1 (en) * 2007-04-23 2008-10-23 Burton David J Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
US20090061319A1 (en) * 2007-08-28 2009-03-05 Hyung-Sun Kim Silicon thin film anode for lithium secondary battery and preparation method thereof
WO2010138617A2 (en) * 2009-05-27 2010-12-02 Amprius Inc. Core-shell high capacity nanowires for battery electrodes

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Silicium für mehr Kapazität", TECHNOLOGY REVIEW, 18 January 2008 (2008-01-18)
G. KIENEL: "Vakuumbeschichtung 3 - Anlagenautomatisierung, Meß- und Analysetechnik", 1994, VDI-VERLAG
G. KIENEL; K. RÖLL: "Vakuumbeschichtung 2 - Verfahren und Anlagen", 1995, VDI-VERLAG
J. Y. HOWE ET AL.: "Microstructural Characterization of Silicon/Carbon Nanofiber Composites for Use in Li-ion Batteries", CONFERENCE PROCEEDINGS: ANNUAL WORLD CONFERENCE ON CARBON, 2010
J. YANG ET AL.: "HIGH ENERGY ANODE MATERIALS AND NOVEL ELECTRODE ARCHITECTURE FOR LITHIUM ION BATTERIES", CONFERENCE PROCEEDINGS: ANNUAL WORLD CONFERENCE ON CARBON, 2010
L. SPIESS; B.G. TEUBNER ET AL.: "Moderne Röntgenbeugung", 2005, VERLAG
R.A. HAEFER: "Oberflächen- und Dünnschicht-Technologie", 1987, SPRINGER-VERLAG
T.-H. PARK ET AL.: "ADDITION OF SPECIALLY DESIGNED SIO-CNF AND SI-CNF COMPOSITES TO IMPROVE CAPACITY AND RATE PERFORMANCES OF ANODIC GRAPHITE FOR LI-ION BATTERIES", CONFERENCE PROCEEDINGS: ANNUAL WORLD CONFERENCE ON CARBON, 2010

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652683B2 (en) 2008-02-25 2014-02-18 Catalyst Power Technologies, Inc. High capacity electrodes
US8658310B2 (en) 2008-02-25 2014-02-25 Catalyst Power Technologies, Inc. High capacity electrodes
US11502292B2 (en) 2008-02-25 2022-11-15 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US11152612B2 (en) 2008-02-25 2021-10-19 Cf Traverse Llc Energy storage devices
US11127948B2 (en) 2008-02-25 2021-09-21 Cf Traverse Llc Energy storage devices
US11075378B2 (en) 2008-02-25 2021-07-27 Cf Traverse Llc Energy storage devices including stabilized silicon
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10964938B2 (en) 2008-02-25 2021-03-30 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10978702B2 (en) 2008-02-25 2021-04-13 Cf Traverse Llc Energy storage devices
US9705136B2 (en) 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US10727482B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10622622B2 (en) 2009-02-25 2020-04-14 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US10665858B2 (en) 2009-02-25 2020-05-26 Cf Traverse Llc Energy storage devices
US10714267B2 (en) 2009-02-25 2020-07-14 Cf Traverse Llc Energy storage devices including support filaments
US10461324B2 (en) 2009-02-25 2019-10-29 Cf Traverse Llc Energy storage devices
US10741825B2 (en) 2009-02-25 2020-08-11 Cf Traverse Llc Hybrid energy storage device production
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
CN104885262A (zh) * 2012-11-02 2015-09-02 奈克松有限公司 装置和形成装置的方法
WO2014068318A1 (en) * 2012-11-02 2014-05-08 Nexeon Limited Device and method of forming a device
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
CN104218213A (zh) * 2014-08-15 2014-12-17 中山大学 一种多层膜电极及其制备方法和应用
RU2579357C1 (ru) * 2014-10-31 2016-04-10 Общество с ограниченной ответственностью "Литион" Анодный материал с покрытием и аккумулятор с металлическим анодом
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
CN104993115A (zh) * 2015-08-03 2015-10-21 温州大学 一种锂电池SiCO-Si梯度薄膜电极体系及制备方法
CN109244377A (zh) * 2017-07-10 2019-01-18 力信(江苏)能源科技有限责任公司 一种锂离子电池负极硅碳复合材料的制备方法
US20210116799A1 (en) * 2019-10-18 2021-04-22 Applied Materials, Inc. Multilayer Reflector And Methods Of Manufacture And Patterning
CN114050233A (zh) * 2021-11-25 2022-02-15 珠海冠宇电池股份有限公司 一种负极极片及电池
CN114050233B (zh) * 2021-11-25 2023-03-10 珠海冠宇电池股份有限公司 一种负极极片及电池

Also Published As

Publication number Publication date
DE102010063815A1 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2012084570A1 (de) Kohlenstoff-silizium-mehrschichtsysteme
DE102015122968A1 (de) Physikalisch-Chemische Vorbehandlung für Batteriestromsammler
DE112012002904T5 (de) Aktives Material für eine wiederaufladbare Batterie
DE112009001242T5 (de) Interkalationselektrode auf Grundlage geordneter Graphenebenen
EP3375027B1 (de) Verfahren zur herstellung einer anode für eine lithium-sekundärbatterie, hergestellte anode, lithium-sekundärbatterie enthaltend die anode und verwendungen hiervon
DE102020112612A1 (de) Anodenlose festkörperbatterie
DE102015120879A1 (de) Verfahren zum Herstellen einer Silizium-basierten porösen Elektrode für eine Batterie, insbesondere Lithium-Ionen-Batterie
DE102015211935B4 (de) Verfahren zum Steuern eines Regenerationsvorganges einer Lithiumionenbatteriezelle, welche eine Anode, eine Kathode und eine Regenerationselektrode umfasst
DE102020131337A1 (de) Festkörperbatterie aufweisend eine elektrolytschicht mit aussparungsmuster
WO2018113807A1 (de) Lithium-ionen-festkörperakkumulator sowie verfahren zur herstellung desselben
DE102015007291A1 (de) Verfahren zur Herstellung nanostrukturierter Schichten
DE102012205931A1 (de) Elektrochemischer Energiespeicher und Verfahren zum Herstellen desselben
EP2166598A2 (de) Elektrode und Separatormaterial für Lithium-Ionen-Zellen sowie Verfahren zu deren Herstellung
DE102015008345A1 (de) Elektrochemischer Energiespeicher
DE102012224324B4 (de) Batteriezelle, Elektrodenmaterialschichtstapel und Verwendung eines Elektrodenmaterialschichtstapel in einer Batteriezelle
DE102013220383A1 (de) Metall-Trennelement für eine Brennstoffzelle und Herstellungsverfahren dafür
DE102015115120A1 (de) Sekundärbatterie mit nichtwässrigem elektrolyt
DE102014105531A1 (de) LiPON oder LiPSON Festelektrolyt-Schichten und Verfahren zur Herstellung solcher Schichten
DE102011114613A1 (de) Anordnung für eine elektrochemische Zelle, Verfahren zu ihrer Herstellung, elektrochemische Zelle und Batterie
DE102013201853A1 (de) Elektrode für ein galvanisches Element und Verfahren zur Herstellung der Elektrode
DE102015214577A1 (de) Verfahren zur Herstellung einer Elektrode eines Lithiumionenakkumulators
DE112019007013T5 (de) Positive Elektrode für Lithium-Ionen-Batterie sowie Lithium-Ionen-Batterie
DE102022207329B3 (de) Verfahren zur Herstellung einer Elektrode einer Batteriezelle
DE102011088960A1 (de) Zusammensetzungen und Verfahren zur Herstellung einer Kathode für einen Akkumulator
WO2006018288A1 (de) Galvanisches element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11796989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11796989

Country of ref document: EP

Kind code of ref document: A1