WO2012069016A1 - 预制保温复合板及其组件、包括其的模板、混凝土板、其预制方法、模具型材 - Google Patents

预制保温复合板及其组件、包括其的模板、混凝土板、其预制方法、模具型材 Download PDF

Info

Publication number
WO2012069016A1
WO2012069016A1 PCT/CN2011/082972 CN2011082972W WO2012069016A1 WO 2012069016 A1 WO2012069016 A1 WO 2012069016A1 CN 2011082972 W CN2011082972 W CN 2011082972W WO 2012069016 A1 WO2012069016 A1 WO 2012069016A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal insulation
concrete
frame
concrete formwork
prefabricated
Prior art date
Application number
PCT/CN2011/082972
Other languages
English (en)
French (fr)
Inventor
尹义青
徐正林
蔡志红
Original Assignee
欧文斯科宁知识产权资产有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧文斯科宁知识产权资产有限公司 filed Critical 欧文斯科宁知识产权资产有限公司
Priority to US13/989,122 priority Critical patent/US9175470B2/en
Publication of WO2012069016A1 publication Critical patent/WO2012069016A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8647Walls made by casting, pouring, or tamping in situ made in permanent forms with ties going through the forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/003Machines or methods for applying the material to surfaces to form a permanent layer thereon to insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/0046Machines or methods for applying the material to surfaces to form a permanent layer thereon to plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/161Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with vertical and horizontal slabs, both being partially cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8635Walls made by casting, pouring, or tamping in situ made in permanent forms with ties attached to the inner faces of the forms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8652Walls made by casting, pouring, or tamping in situ made in permanent forms with ties located in the joints of the forms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • E04C2/384Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels with a metal frame
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0801Separate fastening elements
    • E04F13/0803Separate fastening elements with load-supporting elongated furring elements between wall and covering elements
    • E04F13/081Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements
    • E04F13/0821Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements the additional fastening elements located in-between two adjacent covering elements
    • E04F13/0826Separate fastening elements with load-supporting elongated furring elements between wall and covering elements with additional fastening elements between furring elements and covering elements the additional fastening elements located in-between two adjacent covering elements engaging side grooves running along the whole length of the covering elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0875Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements having a basic insulating layer and at least one covering layer
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • E04G17/065Tying means, the tensional elements of which are threaded to enable their fastening or tensioning
    • E04G17/0655Tying means, the tensional elements of which are threaded to enable their fastening or tensioning the element consisting of several parts
    • E04G17/0658Tying means, the tensional elements of which are threaded to enable their fastening or tensioning the element consisting of several parts remaining completely or partially embedded in the cast material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2002/867Corner details
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/08Wrecking of buildings
    • E04G2023/085Wrecking of buildings crowbars specially adapted for wrecking wooden buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G9/00Forming or shuttering elements for general use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/19Sheets or webs edge spliced or joined
    • Y10T428/192Sheets or webs coplanar
    • Y10T428/195Beveled, stepped, or skived in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing

Definitions

  • Prefabricated thermal insulation composite board and its components including the same, concrete board, prefabrication method thereof, mold profile
  • the invention belongs to the field of building structural members, a manufacturing method thereof and a construction method, in particular to a prefabricated thermal insulation composite board, a prefabrication method and a prefabricated mold profile, and also relates to the prefabricated composite thermal insulation board as a permanent template of concrete, including the prefabrication
  • the splicing component of the composite thermal insulation board, the structural component and the construction method formed by the combination of the prefabricated composite thermal insulation board and the concrete, the structural component with the thermal insulation property and the construction of the prefabricated composite thermal insulation board added to the existing structural substrate method.
  • One object of the present invention is to provide a novel prefabricated composite thermal insulation panel.
  • the inorganic non-combustible material is compounded on the outer side of the combustible thermal insulation material, and the core of the combustible thermal insulation material is covered to solve the problem of placing, transporting or installing the thermal insulation board on the construction site or other places.
  • the flammable material is exposed, it is easy to cause a fire.
  • a first basic aspect of the invention relates to a prefabricated thermal insulation composite panel (1) having an inner main plane (101), an outer main plane (102) and four side end faces (103, 104, 105, 106), including a core portion (9) composed of a heat insulating sheet, the prefabricated heat insulating composite sheet further comprising:
  • a reinforcing protective layer (7) composed of a cement-based or gypsum-based polymer-modified dope; the core (9) being between the two-layer reinforcing protective layers (7), the two layers The reinforcing protective layer is bonded to the core (9);
  • the reinforcing protective layer covers the frame such that the frame is exposed only on the four side end faces (103, 104, 105, 106) of the prefabricated heat insulating composite board, the frame ( 2) including two frame connecting portions (11) outside the frame and respectively at the upper and lower portions of the frame and at the outer side of the frame and at a mounting groove (13) between the two frame connecting portions (11), the mounting groove extending along a length of the entire frame.
  • the beneficial effects of the present invention are as follows: According to the prefabricated thermal insulation composite sheet proposed by the present invention, the core portion (9) composed of the heat insulating sheet material is placed on two layers of a reinforcing protective layer composed of a cement-based or gypsum-based polymer-modified cement. Between (7). Thus, the core (9) of the combustible organic material has been covered with an inorganic non-combustible reinforcing protective layer (7) on the products manufactured by the manufacturer of the prefabricated thermal insulation composite panel, which brings about an effect of being less ignitable. This kind of fire prevention effect is good whether it is in transit or on the construction site, especially for the construction site, it is safer to stack or store than the insulation board in the prior art.
  • the reinforcing protective layer covers the frame (2).
  • the existing insulation materials are all lightweight and low-strength materials, which are quite different from the strength of the concrete formwork.
  • the prefabricated thermal insulation composite board of the invention can achieve the strength of the concrete concrete form by the outer composite reinforcing protective layer, so that the composite composite plate can not only have the function of the thermal insulation material, but also can be used as a non-removable concrete template (ie, Permanent concrete formwork), so that the installation of insulation materials and concrete formwork construction is combined. Eliminating the removal of subsequent concrete formwork and the construction of additional insulation layers saves both process and material, especially on large quantities of wood.
  • the new prefabricated thermal insulation composite board increases the strength of the prefabricated thermal insulation composite board by adding a reinforcing protective layer on both sides of the core of the thermal insulation material and adding a frame with a mounting groove around the core.
  • the prefabricated thermal insulation composite panel can be assembled by means of the installation groove and the inserting strip and/or the drawing piece which can be matched with the mounting groove, ensuring the flatness of the outer surface, realizing the assembling work on the construction site, and improving the efficiency of the construction operation.
  • the material constituting the heat insulating sheet may be either an organic combustible insulating material or an inorganic non-combustible insulating material.
  • the construction industry has become the largest user of wood consumption in China's industrial sector, accounting for more than 70% of the wood consumption in the industrial sector.
  • the construction area of real estate development enterprises nationwide reached 3.084 billion square meters.
  • the 3.084 billion square meters of houses should use 308.4 million square meters of building concrete. template. If these concrete formwork 2/3 is a wood concrete formwork, then about 3.08 million cubic meters of wood (calculated with an average concrete formwork thickness of 15 mm) is consumed.
  • the frame in the prefabricated composite thermal insulation board proposed by the present invention, there is a frame surrounding the periphery of the core portion (9) and fastened with the core portion (9), and the frame is included outside the frame and respectively at the upper portion of the frame and a lower frame connecting portion (11) and a mounting groove (13) located outside the frame and between the two frame connecting portions (11),
  • the mounting slot extends along the length of the entire bezel.
  • the frame on the one hand helps to provide the integrity of the prefabricated composite insulation board and further provides its strength.
  • the bezel is provided with a mounting groove extending along its length.
  • the cooperation of the prefabricated composite thermal insulation board can be greatly facilitated by the cooperation of the seamed joint and/or the seamless joint and the installation groove, and the construction efficiency can be improved.
  • this can provide a new and efficient method of construction. If such a prefabricated composite panel with high structural strength, good thermal insulation performance and fireproofing function is used as a permanent concrete formwork, and its dimensions are designed to be modularized, and then by industrialized cold-formed thin-walled steel frame as
  • the concrete-bonded reinforcement (that is, the skeleton of the entire concrete structure) can form an efficient and rapid integrated new building system and construction method mainly through composite panel splicing, composite panel splicing connection and concrete pouring.
  • the precast insulating composite panel of the present invention may be provided without a facing layer or with a facing layer. If the exterior layer of the prefabricated composite panel is added with a finishing layer (15), the on-site construction operation can be reduced, labor intensity can be reduced, thereby further improving efficiency, shortening the construction period, and saving costs.
  • the prefabricated composite panel of the present invention can be used in combination with the unique structure of the cold-formed thin-walled steel frame proposed by the present invention.
  • each longitudinal steel keel comprises two longitudinally cold-formed thin-walled steels (951, 952; 851, 852), a main plane of the longitudinal cold-formed thin-walled steel, a main plane of the concrete slab structural member, and a prefabricated thermal insulation composite board or a inner side main body of the prefabricated thermal insulation composite panel including the corner insulation composite structural component
  • the plane and the outer main plane are parallel to each other, and the two longitudinally cold-formed thin-walled steels are opposed to each other and spaced apart in a direction perpendicular to a main plane of the concrete slab structural member, so that the two longitudinally cold-formed thin walls A space (200) is left between the sections so that the concrete can easily flow from the space left between the two longitudinally cold-formed thin-walled steels when the concrete is poured.
  • the concrete slab structural member according to the present invention solves two problems in the prior art by adopting a novel cold-formed thin-walled steel frame structure: 1) For the above first problem, the cold bending of the present invention The thin-walled steel stretches in a direction parallel to the main plane of the concrete structural member, so that the concrete is not obstructed as much as the prior art in the lateral extension of the concrete slab along the transverse direction of the concrete slab, so that the concrete can Smoothly flows in the direction of the main plane of the thin-walled steel.
  • the cold-formed thin-walled steel of the present invention is parallel to The direction of the main plane of the concrete structural member (perpendicular to the direction from the room to the outside) is extended to avoid the formation of a cold bridge between the interior and exterior.
  • a Complete construction industry system This system covers both architectural design, building structure and construction, and has a wide range of applications. The system has the following advantages:
  • This series of products are industrialized and standardized products. It can improve the utilization efficiency of resources through large-scale industrial production, ensure the quality of products, and turn cumbersome on-site construction to the factory. This is in line with the development direction of the country's residential industrialization.
  • reinforcing material for example, a reinforcing mesh composed of alkali-resistant glass fiber, carbon fiber or steel fiber and/or an alkali-resistant chopped strand uniformly dispersed in the reinforcing protective layer
  • glass fiber, alkali-short carbon fiber or alkali-resistant chopped steel fiber the bending strength of the composite plate is significantly better than that of the concrete concrete formwork plywood, and can directly replace the wooden concrete formwork on the outer side requiring the heat preservation surface.
  • the temporary structure is greatly improved without increasing the total amount of steel.
  • the stability and dimensional accuracy make the construction process more convenient, fast and reliable, and also effectively reduce the use of temporary support.
  • the steel-reinforced concrete structure is currently recognized as one of the most excellent structural forms for earthquake resistance, durability and fire resistance. Its seismic performance is much better than that of masonry structure, fire resistance and durability are much better than steel structure, and its seismic performance and structural ductility are also better than those of reinforced concrete structures in the prior art.
  • the structure formed by combining the prefabricated composite panel of the present invention and its components with the cold-formed thin-walled steel frame structure of the prior art can be used to construct a low-rise light steel building or a temporary quick fight.
  • the galvanized steel sheet with good weather resistance should be used as the cold-formed thin-walled steel, and the waterproof structure should be made.
  • the composite board of the invention can be used as an integral product of the heat preservation finish, and the finish layer can be made into a stone, wood, metal texture and the like.
  • the fine stone concrete can be poured into the cavity to improve the structural strength and waterproof ability of the existing wall, which has a very special significance for the renovation of the old house.
  • Preferred embodiments of the first basic solution of the present invention and other basic solutions are respectively described below: Preferred embodiment of the first basic solution
  • each layer The reinforcing layer (7) is provided with reinforcing materials embedded therein.
  • the dimensions of the prefabricated thermal insulation composite panels are in accordance with the modularized dimensions of the building standardization.
  • the prefabricated thermal insulation composite board of the preferred embodiment further enhances the strength of the prefabricated panel by embedding the reinforcing material in the reinforcing protective layer, and is more convenient for prefabricating the panel by setting the size of the prefabricated panel to conform to the modularized size of the building standardization. Standardized production, standardized construction operations, and more help to improve construction efficiency.
  • the reinforcing material comprises a reinforcing mesh (8) composed of alkali-resistant glass fiber, carbon fiber or steel fiber or comprises uniformly dispersed in the Reinforced alkali-resistant chopped glass fibers, chopped carbon fibers or chopped steel fibers in the protective layer.
  • the reinforcing material proposed by the preferred embodiment has a better effect in further improving the strength of the reinforcing protective layer and thereby increasing the strength of the entire prefabricated panel.
  • the cement is Portland cement or magnesium oxychloride cement
  • the thermal insulation panel is composed of a combustible organic thermal insulation material.
  • the Portland cement or magnesium oxychloride cement is combined with a heat insulating sheet composed of a combustible organic heat insulating material to further improve the fireproof effect.
  • the frame (2) comprises four frame profiles, and the two end faces of each frame profile are beveled so that the four frame profiles are two The two ends are butt jointed to form a complete frame (2), each of which is integrally formed, and each frame profile includes:
  • each of the two frame connecting portions (11) is provided with a frame connecting hole (4); each of the edges of the four sides of the core portion (9) of the prefabricated heat insulating composite plate Inserted into the core fixing groove (3) of a section of the frame profile, respectively, and the two fixed wings (10) of each frame profile are clamped and fixed in the four edges of the core (9)
  • a frame connecting hole (4) each of the edges of the four sides of the core portion (9) of the prefabricated heat insulating composite plate Inserted into the core fixing groove (3) of a section of the frame profile, respectively, and the two fixed wings (10) of each frame profile are clamped and fixed in the four edges of the core (9)
  • the prefabricated thermal insulation composite board further includes:
  • the frame profile reinforcement (5) has one or two frame profile reinforcements (5) between the two end-to-end frame profiles, the frame profile reinforcement (5) comprising two insertion connections (51)
  • the two insertion connecting portions (51) are respectively inserted into the adjacent frame connecting holes (4) of each two adjacent frame profiles and fixed in the frame connecting holes (4) to connect the four-segment frame profiles Together form a whole.
  • the frame is assembled in segments, and is assembled by means of the frame reinforcement and the frame connection hole on the frame, and is fixed to the core by the core fixing wing and the core fixing groove of the frame. connection.
  • This forms a new and unique way of assembling, which is very convenient for the manufacture of building materials factories.
  • the overall strength and overall stiffness of the manufactured prefabricated composite panels are further improved.
  • the mounting groove (13) is centrally disposed with respect to the two frame connecting portions (11), and the core fixing groove (3) ) is disposed centrally with respect to the two fixed wings on the inside of the frame.
  • the mounting groove and the core fixing groove are respectively disposed centrally, and the frame is symmetrical in the left and right.
  • the prefabricated thermal insulation composite board is also symmetrical along its central main plane.
  • the prefabricated thermal insulation composite panel of the sixth preferred embodiment further comprising a facing layer (15), the facing layer (15) being located on the outer side of the prefabricated thermal insulation composite panel
  • the outer side of (7) is bonded to the reinforcing protective layer (7).
  • the prefabricated panel of the preferred solution comprises a veneer layer, so that the assembly work can complete the tasks that can be completed in at least three processes (supporting concrete formwork, insulation layer construction, veneer layer construction) in the prior art, and further improving Construction efficiency.
  • the thermal insulation panel is a thermal insulation panel composed of a combustible organic thermal insulation material.
  • the heat insulating sheet is made of a combustible organic heat insulating material, so that not only the effect of improving the strength of the prefabricated heat insulating composite sheet and the efficiency of on-site assembly work but also the fireproof effect is further improved.
  • the cost of the organic thermal insulation material that achieves the same thermal resistance is lower than the cost of the inorganic thermal insulation material, and the cost advantage of the entire prefabricated thermal insulation board is more obvious.
  • the prefabricated thermal insulation composite panel of the eighth preferred embodiment based on the first basic scheme the prefabricated thermal insulation composite panel is square or rectangular, and is sized and weighted to facilitate manual handling and handling by a construction worker.
  • the assembling operation is more convenient and more convenient for standardized design and construction; and the size and weight are set to facilitate manual handing and operation of construction workers, which can be reduced in construction.
  • On-site reliance on hoisting equipment reduces construction costs while improving construction efficiency.
  • the ease of assembly is even more pronounced, which means that the four sides of the panel are identical in structure and do not need to be distinguished when assembled in the field.
  • the eighth preferred embodiment is combined with the fifth preferred embodiment to form a prefabricated thermal insulation composite panel, standardization of the manufacture of the panel, standardization and convenience of field assembly are further improved, and not only the inner and outer sides need to be distinguished when the prefabricated panel is assembled.
  • the second basic scheme relates to a prefabricated thermal insulation composite panel (20) comprising two insulated composite panel portions, each of the two insulated composite panel portions having an inner side a main plane (101), an outer main plane (102) and four side end faces, one of the four side end faces being formed with respect to an inner main plane (101) and an outer main plane of the heat insulating composite panel portion ( 102) inclined inclined faces (108, 109), the two inclined faces (108, 109) are the same in the same inclination angle so as to cooperate with each other, and the two insulating composite plate portions are butted together at the inclined faces, so that the two insulating composite plate portions are Separately in two different planes, the two different planes intersect each other, and each of the insulated composite panel sections includes:
  • a frame (2) the frame (2) being on the three side end faces (103, 104, 106) of the core portion (9) except for the side end faces formed as the slope faces of the heat insulating composite plate portion
  • the three sides are fastened together with the core (9), in each of the inner main plane and the outer main plane of the corner prefabricated thermal insulation composite panel, the reinforcing protective layer will
  • the frame is covered such that the frame is exposed only on the three side end faces (103, 104, 106) of the insulated composite panel portion of the cornered prefabricated composite panel, the bezel (2) being included
  • the mounting slot extends along the length of the entire bezel.
  • each of the reinforcing protective layers (7) is provided with a reinforcing material embedded therein, the cornered
  • the dimensions of the prefabricated thermal insulation composite panels are in accordance with the modularized dimensions of the building standardization.
  • the reinforcing material comprises a reinforcing mesh composed of alkali-resistant glass fiber, carbon fiber or steel fiber. (8) or comprising alkali-resistant chopped glass fibers, carbon fibers or steel fibers uniformly dispersed in the reinforcing protective layer.
  • each of the frame (2) included in each of the thermal insulation composite panel portions comprises a three-segment frame profile, and each segment of the frame profile Both end faces are beveled so that the two end portions of the six-segment frame are butted together to form a complete frame (2).
  • Each frame profile is integrally formed, and each frame profile includes: Two fixed wings (10) on the inner side of the frame profile and respectively on the upper and lower sides of the frame;
  • a core fixing groove (3) located inside the frame profile and between the two fixed wings (10);
  • each of the two frame connecting portions (11) is provided with a frame connecting hole (4), and the core portion (9) of the heat insulating composite plate portion is formed by the The edges of the three sides on the three side end faces (103, 104, 106) other than the side end faces of the bevel are respectively inserted into the core fixing grooves (3) of a frame profile, and the two of each frame profile are Fixed wings (10) are clamped and fixed on the edge of one of the three sides of the core (9);
  • the prefabricated thermal insulation composite panel with a corner also includes:
  • the frame profile reinforcement (5) in addition to the bevel, has one or two frame profile reinforcements between the two adjacent end frame profiles at the end of each adjacent two side profile profiles (5), the frame profile reinforcement (5) comprises two insertion joints (51), and the two insertion joints (51) are respectively inserted into adjacent two sections of the frame profile in each of the insulated composite panel sections
  • the frame connecting holes (4) adjacent to each other are fixed in the frame connecting holes (4) to connect adjacent frame profiles together to form a whole;
  • the prefabricated thermal insulation composite panel with a corner also includes:
  • the frame profile reinforcement (6) includes a corner insertion connection portion (61), and the corner insertion connection portion (61) is inserted into the frame connection hole (4) of the adjacent two frames at the inclined surface, thereby Fixing two adjacent frame profiles at the inclined faces of the two insulated composite plate portions, thereby fixing the six-segment frame profiles of two adjacent insulating composite plate portions together to form a complete The frame and the two insulation composite plate portions are fixedly combined to form a whole.
  • the mounting groove (13) is opposite to the two frame connecting portions (11) Centered, the core securing slot (3) is centrally disposed relative to the two fixed wings (10).
  • a finishing layer (15) is further included, and the facing layer (15) is at a prefabricated thermal composite at the corner of the belt.
  • the outer side of the reinforcing protective layer (7) on the outside of the board is bonded to the reinforcing protective layer (7).
  • the thermal insulation panel is a thermal insulation panel composed of a combustible organic thermal insulation material.
  • the insulating composite panel of the cornered prefabricated thermal composite panel is square or rectangular. It is sized to facilitate manual handling and handling by construction workers. Further advantageous effects of the first basic scheme of the prefabricated thermal insulation composite panel according to the present invention and the preferred embodiment thereof, which are also applicable to the substrate scheme of the cornered prefabricated thermal insulation composite panel of the present invention and its preferred embodiment, This will not be repeated here.
  • the third basic scheme of the present invention relates to an insulated composite panel structural assembly comprising a plurality of prefabricated thermal insulation composite panels as described in any one of the first basic scheme and its preferred embodiment ( 1), the plurality of prefabricated thermal insulation composite panels are spliced and combined in a side end butt joint manner, and the structural component formed by the prefabricated thermal insulation composite panel further comprises: a plurality of pull joints, each of the plurality of pull joints Each includes a mounting slot embedding section (162, 163, 171, 172) and a protruding portion (164, 173), the mounting groove embedding portion is embedded in a mounting groove of the prefabricated thermal insulation composite panel, and the protruding portion protrudes beyond the mounting slot And extending toward the inner main plane (101) beyond the inner main plane (101), and the plurality of prefabricated thermal composite panels are spliced and combined by the connection of the plurality of pull members and the mounting groove together.
  • the plurality of prefabricated thermal insulation composite panels with a corner according to any one of the second basic scheme and the preferred embodiment thereof are further included (20)
  • the height and thickness of the prefabricated composite thermal insulation board with the corners are respectively equal to the height and thickness of the prefabricated thermal insulation composite panel, and the installation slot of the prefabricated composite thermal insulation panel with the corner and the installation of the prefabricated thermal insulation composite panel
  • the groove (13) has the same size, and the two-side end faces of the prefabricated heat-insulating composite plate with the corner and the pre-formed insulation composite plate are butted, and the plurality of pull-members (16, 17) and the mounting groove (13)
  • the connection fit, the adjacent butt jointed prefabricated thermal insulation composite panel is combined with the prefabricated thermal insulation composite panel, and adjacent two prefabricated thermal insulation composite panels with corners are passed through the connecting member and
  • the connection of the mounting slots is combined and spliced together.
  • the pull tab is generally T-shaped, and the mounting groove embedding portion is formed at An upper portion of the T-shape, the protruding portion is formed at a lower portion of the T-shape, a cross-sectional shape of the mounting groove embedding portion (162, 163, 171, 172) of the pull member and the mounting groove ( 13)
  • the cross-sectional shape is uniform so that the mounting groove inserts (162, 163, 171, 172) and the mounting groove (13) are fitted to each other.
  • the pull member comprises a seamed puller (16) and a seamless puller (17), the seamed puller having a body portion (161), the extension of the seamed puller Out
  • the mounting groove embedding portion (162, 163) of the slotted pull tab is perpendicular to the a direction in which the protruding portion of the slit puller and the plane in which the main body portion is located protrudes beyond a plane in which the protruding portion of the slit puller and the main body portion are located,
  • the slotted pull member is placed in a horizontal seam formed by docking each adjacent two prefabricated heat insulating composite panels, the seamed puller and the seamless puller
  • the width (W, W pull 2 ) of the cross section of the mounting groove embedding portion is equal to the width (W groove) of the mounting groove of the prefabricated thermal insulation composite plate, and the cross section of the mounting groove embedding portion of the slotted pull tab Height (h pull is equal to or less than the depth of the mounting groove (d-slot); the cross-sectional height (h pull 2 ) of the mounting groove embedding portion of the seamless puller is
  • the tensile member comprises a seamed pull member (16) and a seamless pull member (17), the seamed pull
  • the connector has a main body portion (161), and the protruding portion (164) of the slotted pull tab is in the same plane as the main body portion (161) of the slotted pull tab, the seam a mounting groove inserting portion (162, 163) of the pull member protrudes in a direction perpendicular to a plane in which the protruding portion of the slotted pull piece and the main body portion are located a level formed by the docking of each of the two prefabricated thermal insulation composite panels in the structural assembly, beyond the plane in which the projecting portion of the seamed member and the body portion are located.
  • the seamed joint is placed in a horizontal seam formed by docking each adjacent two prefabricated thermal insulation composite panels with corners, the seamed puller and the seamless pull joint
  • the width of the cross section of the mounting groove of the piece (W pull 1 ⁇ W Ladu ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Pre-made: :Insulation complex two-in-board: :An:Pack; Groove:: and belt: Turn ' ⁇ : Pre-fabrication:
  • the width (W-slot) of the mounting groove of the composite panel is equal, and the height of the cross-section of the mounting groove of the slotted connector is equal to or less than the mounting slot Depth (d-slot);
  • the cross-sectional height (h pull 2 ) of the mounting groove embedding portion of the seamless puller is equal to the sum of the depths (d-slots) of the two mounting grooves, the seamless pull-up having a neck portion (178), the neck portion is between the mounting groove inserting portion (171) and the protruding portion (17
  • a fifth basic scheme and a preferred embodiment thereof The fifth basic scheme of the present invention relates to a concrete slab structural member, comprising: a reinforcing rib;
  • first concrete formwork and the second concrete formwork are permanent concrete formwork, the concrete being combined with the reinforcement and the permanent concrete formwork as a whole;
  • the permanent concrete formwork includes: the heat insulating composite board structural component according to any one of the third basic scheme and the preferred aspect thereof, wherein the heat insulating composite board structural component and the reinforcing reinforcement pass through the pull joint ( 16, 17, 165) is fixedly connected by the extension.
  • the reinforcement is a steel or cold-formed thin-walled steel frame; and the cold-formed thin-walled steel frame comprises:
  • each longitudinal steel keel comprising two longitudinally cold-formed thin-walled steels (951, 952) 851, 852), the main plane of the longitudinal cold-formed thin-walled steel and the prefabricated thermal insulation composite panel or the prefabricated thermal insulation composite panel with the corners of the insulating composite panel structural component are parallel to each other in the inner main plane and the outer main plane , the two longitudinally cold-formed thin-walled steels along the concrete slab structure
  • the main planes of the members are perpendicular to each other and spaced apart such that a space (200) is left between the two longitudinally cold-formed thin-walled steels so that the concrete can easily pass from the two when pouring concrete
  • the space left between the longitudinally cold-formed thin-walled steel flows, and the space left between the two longitudinally-formed thin-walled steels is filled with concrete, and the first concrete formwork and the second concrete formwork are both
  • the main planes of the members are perpendicular to each other and spaced apart such that a space (200) is left between
  • the two longitudinally cold-formed thin-walled steels are fixedly connected by a steel connecting member (96, 87).
  • the first concrete formwork and the second concrete formwork are spaced apart from the longitudinally cold-formed thin-walled steel, and the concrete between the first concrete formwork and the second concrete formwork will be the cold-formed thin-walled wall
  • the steel frame is covered.
  • each of the longitudinal steel keels (95) includes a longitudinally cold-formed thin-walled steel (951, 952) with along along Through a plurality of keel through holes (953, 954) extending in the longitudinal direction, the keel through holes (953, 954) on the two longitudinally cold-formed thin-walled steels are opposite each other, at least a part of the keel through holes (953 a protrusion extending through the pull piece (16, 17, 165) such that a through direction of the keel through hole and a main plane of the concrete slab structural member and the thermal insulation composite structural component
  • the inner main plane and the outer main plane of the prefabricated thermal insulation composite panel or the prefabricated thermal insulation composite panel including the corner are vertical; one of the first concrete formwork and the second concrete formwork is a common concrete formwork, the permanent concrete
  • the template is an outer concrete formwork, and the ordinary concrete formwork is an inner concrete formwork (92), the concrete
  • the slab structural member further includes:
  • a limit sleeve (80) is disposed between the outer concrete formwork and the longitudinally cold-formed thin-walled steel of the outer side of the two longitudinally cold-formed thin-walled steels included in each of the longitudinal steel keels.
  • each of the longitudinal cold-formed thin-walled steels included in each of the longitudinal steel keels is a C-shaped steel
  • the cold The curved thin-walled steel frame also includes:
  • transversely connected steel keel comprising transversely cold-formed thin-walled steel (981, 982, 881, 882);
  • An obliquely connected steel keel comprising obliquely cold-formed thin-walled steel (891, 892), the longitudinal steel keel being disposed vertically, and a plurality of parallel-arranged longitudinal steel keels being connected by the transversely connected steel keel
  • the oblique steel connecting keel is coupled to the longitudinal steel keel, and the longitudinal steel keel, the transversely connected steel keel and the oblique connecting keel are joined to form a stable overall rigid structure.
  • the pull member (165) and the tension sleeve (90) There is a threaded connection between the tensioning bolt (91) and the tensioning sleeve (90).
  • the concrete slab structural member is a concrete wall slab structural member, and further includes: a starting platform (30) at the bottom, the starting platform A starting strip (31) is fixed thereon, the starting strip (31) has an upwardly protruding protruding insert (310), and the permanent concrete formwork comprises a bottom prefabricated composite insulating board and a corner
  • the lowermost mounting groove (13) of the prefabricated composite thermal insulation panel cooperates with the protruding insert portion (310) of the starting strip, and the protruding insert portion is embedded in the lowermost mounting groove.
  • the sixth basic scheme relates to a concrete wall panel structural member, comprising: a reinforcement; a first concrete formwork on one side of the reinforcement; a second concrete formwork, where On the other side of the reinforcement; a concrete formwork support, the first concrete formwork and the second concrete formwork are fixedly coupled to the concrete formwork support; concrete, in the first concrete formwork and the Between the second concrete formwork; wherein one or both of the first concrete formwork and the second concrete formwork are permanent concrete formwork, the concrete is combined with the reinforcement and the permanent concrete formwork
  • the permanent concrete formwork includes the insulated composite board structural component of any one of the third basic schemes and the preferred embodiment thereof, wherein the thermal insulation composite structural component and the concrete formwork support are pulled by the The extension of the connector (16, 17, 165) is fixedly connected.
  • the first concrete formwork is an outer concrete formwork, and the outer side is coagulated
  • the soil formwork is a permanent concrete formwork
  • the second concrete formwork is an inner concrete formwork (92)
  • the concrete formwork support of the concrete formwork structural member comprises: a concrete formwork vertical keel (922) and a concrete formwork transverse keel (921);
  • the concrete wall panel structural member further includes a tensioning bolt (91) and a tensioning sleeve (90), the tensioning sleeve (90) being outside the inner concrete formwork (92) and with the inner concrete formwork Adjacent, the concrete formwork vertical keel (922) is located inside the inner concrete formwork (92) and is adjacent to the inner concrete formwork, and the concrete formwork transverse keel is located inside the concrete formwork vertical keel and The concrete formwork is adjacent to the transverse keel, and the tension bolt (91) starts from the inner side of the transverse keel of the concrete formwork, and sequentially passes through the concrete formwork transverse keel (921), the concrete formwork vertical keel (922), The inner concrete formwork (92) is coupled to the tensioning sleeve (90) to securely connect the inner concrete formwork, the concrete formwork transverse keel and the concrete formwork vertical keel; a protrusion of (165) extending from the outer concrete form and passing through
  • the pull member (165) is threadedly connected to the tension sleeve (90)
  • the tensioning bolt (91) is threadedly connected to the tensioning sleeve (90).
  • the method further includes: a starting platform (30) at the bottom, and the starting platform (31) is fixed on the starting platform,
  • the starting strip (31) has an upwardly protruding protruding insert (310), and the permanent concrete formwork includes a prefabricated composite at the bottom
  • the lowermost mounting groove (13) of the warm plate and the cornered prefabricated composite thermal insulation panel cooperates with the protruding insert portion (310) of the starting strip, and the protruding insert portion is embedded in the lowermost mounting groove.
  • the seventh basic scheme of the present invention relates to a wall structural member, comprising: a wall main body structural portion (100) and a heat insulating layer portion, the heat insulating layer portion and the wall main body structure A portion (100) fixed connection, characterized in that: the insulating layer portion is the thermal insulation composite panel structural component according to any one of claims 19-23, and the extension of the tensile member (16, 165) The portion is fixedly coupled to the wall body structural portion (100) to securely connect the insulated composite panel structural component to the wall body structural portion.
  • the protruding portion of the pulling member (16) is provided with a fastening hole, and the support portion of the wall body structure portion is fixed (202), the pull member is fixedly coupled to the support member (202) through a fastening hole on the protruding portion and a fastener.
  • the method further comprises: a starting platform (30) at the bottom, and the starting platform (31) is fixed on the starting platform,
  • the starting strip (31) has an upwardly protruding protruding insert (310), and the permanent concrete formwork comprises a lowermost prefabricated composite thermal insulation board and a cornered prefabricated composite thermal insulation board at the bottom
  • the mounting groove (13) cooperates with the protruding insert (310) of the starting strip, and the protruding insert is embedded in the lowermost mounting groove.
  • the eighth basic scheme of the present invention relates to a prefabricated thermal insulation composite panel or a second basic scheme and one of the preferred embodiments thereof for manufacturing the first basic scheme and its preferred embodiment a mold profile (50) of a precast insulated composite panel with a corner, comprising: a profile body (501), the profile body comprising a prefabricated thermal insulation composite panel for manufacturing the prefabricated insulation or the corner An inner abutting portion (507) abutting against the two connecting portions (11) of the frame (2), the surface of the inner abutting portion projecting in the mounting groove (13) to face the core (9) a positioning protrusion (504) for positioning, the thickness of the positioning protrusion is equal to a width (W groove) of the mounting groove, and the inner abutting portion is provided on a prefabricated thermal insulation composite board or the belt corner
  • the pre-formed thermal insulation composite panel is used to determine an upper alignment projection (503) that reinforces the thickness of the protective layer (7), from the upper surface of the positioning projection (504) to
  • the distance from the lower surface of the positioning protrusion (504) to the bottom surface of the lower alignment protrusion (502) is greater than a thickness of the bezel connection portion (11), the upper alignment protrusion (503) protruding upward from the upper surface of the positioning protrusion (504) by a distance equal to the lower alignment protrusion (502) protruding from the positioning
  • the lower surface of the portion (504) is extended downward. Modulus of the second preferred embodiment based on the first preferred embodiment of the eighth basic scheme In the profile, the upper alignment projection projects above the upper surface of the profile body (501), and the lower alignment projection (502) projects below the lower surface of the profile body.
  • the profile body is a hollow profile body
  • the die profile is composed of an aluminum alloy profile.
  • Ninth Basic Scheme and Preferred Embodiment The ninth basic scheme relates to a construction method of a cast-in-place concrete wall, which comprises the following steps:
  • an outer concrete formwork wherein the outer concrete formwork is installed to be fixedly connected to the cold-formed thin-walled steel frame, and a permanent concrete formwork comprising the thermal insulation composite plate structural component according to one of the third basic scheme and its preferred embodiment is used as
  • the outer concrete formwork inserts the pull-on piece (16, 17, 165) into the adjacent two prefabricated thermal insulation composite panels or adjacent two sides of the temperature-increasing composite panel (16, 17, 165)
  • the fixed connection of the concrete formwork to the cold-formed thin-walled steel frame is achieved by fixing the extension of the pull-member (16, 17, 165) to the cold-formed thin-walled steel frame; the step of installing the inner concrete formwork, wherein Install the inner concrete formwork to securely attach it to the cold-formed thin-walled steel frame.
  • the planar dimension of the main plane of the prefabricated composite thermal insulation board or the prefabricated composite thermal insulation board with corners included in the outer concrete formwork For the modularized size, the step of installing the outer concrete formwork is repeated to assemble multiple layers by assembly.
  • the size is the modular outer concrete formwork and reaches the height of one floor.
  • a plane dimension of a principal plane of the inner concrete formwork and a principal plane of the outer concrete formwork are the same, the step of installing the inner concrete formwork is repeated to achieve the height of one floor by assembling and assembling the multi-layered inner concrete formwork, assembling the outer concrete formwork with modular dimensions and assembling and outer side.
  • the opposite inner concrete formwork with the modularized dimensions of the concrete formwork is alternated.
  • the bottom outer concrete formwork and the inner concrete formwork are installed, including the start of installation on the starting platform (30) a step of the strip, wherein the starting strip (31) is fixed on the starting platform (30), the starting strip has a protruding embedding portion (310), and the permanent concrete template includes the bottom prefabricated composite thermal insulation
  • the lowermost mounting groove (13) of the plate or cornered prefabricated composite thermal insulation panel cooperates with the protruding insertion portion (310) of the starting strip so that the protruding insertion portion fits into the lowermost mounting groove.
  • the step of installing the cold-formed thin-walled steel frame includes: installing a plurality of main planes along the concrete wall Longitudinal steel keels (95, 85) arranged parallel to each other in the direction of extension, each longitudinal steel keel comprising two longitudinally cold-formed thin-walled steels (951, 952; 851, 852), which are cold-formed longitudinally
  • the main plane of the wall steel is disposed parallel to the main plane of the concrete wall and the main plane and the outer main plane of the insulating composite panel, so that the two longitudinally cold-formed thin-walled steels are along the concrete wall
  • the main planes of the body are perpendicular to each other and spaced apart from each other.
  • the method comprises the following: Insert the vertical mounting strip (177) and the pull-on piece (16, 17, 165) into the vertical mounting groove (13) on the side of the prefabricated thermal insulation composite panel, between the vertically adjacent prefabricated thermal insulation composite panels A horizontal mounting strip ( 166) and a pull-on piece ( 16, 17, 165) are placed in the horizontal mounting groove ( 13 ), wherein the fixed connection between the outer concrete formwork and the cold-formed thin-walled steel frame is through the pull piece ( 16, 17, 165)
  • the extension passes through the keel through hole (953, 954) on the longitudinal steel keel (95) included in the
  • a step of installing an outer concrete formwork wherein a permanent concrete formwork comprising an insulated composite panel structural component according to one of the third basic scheme and its preferred embodiment is used as an outer concrete formwork, adjacent two prefabricated thermal insulation composite boards or phases Inserting a pull piece (16, 17, 165) into the side groove (13) of the adjacent two prefabricated heat insulating composite sheets, and extending the extension of the pull piece (16, 17, 165) with the concrete formwork
  • the support structure is connected such that the outer concrete formwork is fixedly coupled to the concrete formwork support structure.
  • the start strip (31) is installed on the starting platform (30) a step of fixing a starting strip (31) on the starting platform (30), the starting strip having a protruding embedding portion (310), and the prefabricated composite thermal insulation included in the permanent concrete template
  • the lowermost horizontal mounting groove (13) of the plate or cornered prefabricated composite thermal insulation panel cooperates with the protruding insert (310) of the starting strip such that the protruding insert is embedded in the lowermost mounting groove.
  • the inner concrete formwork (92) and the concrete formwork support structure are The fixed connection is achieved by a fixed connection of the tensioning sleeve (90) from the outside through the concrete formwork support structure to the tension sleeve (90) inside the concrete formwork support structure, in the step of installing the outer concrete formwork, Pulling the end of the extension of the pull member (165) and tightening Set (90) connected.
  • the tensioning bolt (91) is screwed with the tensioning sleeve (90), and the connection point of the pulling member (165) and the tensioning sleeve (90) is The outer portion of the sleeve (90) is tensioned, and the connection point of the tension bolt (91) and the tension sleeve (90) is at an inner portion of the tension sleeve (90).
  • the eleventh basic scheme relates to a construction method of a concrete wall, comprising the steps of: installing a portion of the heat insulating layer outside the main body structural portion (100) of the wall, wherein The thermal insulation layer portion is fixedly connected to the wall main body structural portion (100), wherein: the thermal insulation layer portion comprises the thermal insulation composite plate structural component according to one of the third basic scheme and a preferred embodiment thereof, and the thermal insulation layer is installed
  • the protruding portion of the pull member (16, 165) included in the thermal insulation composite structural component assembly is fixedly connected with the wall main body structural portion (100) to The structural component is fixedly attached to the wall body structure portion.
  • the pull member (16) is a pull member (16) with a fastening hole at the extension portion, in the installation
  • the support member (202) is first fixed to the outer side of the wall body structural portion, and then through the fastening hole and the fastener on the protruding portion of the pull member (203)
  • the connecting member (16) is fixedly connected to the supporting member (202), so as to comprise the prefabricated thermal insulation composite board (1) or the prefabricated thermal insulation composite board with the corners included in the thermal insulation composite structural component assembly (20) ) connected to the wall main structure Part (100).
  • the step of installing the thermal insulation layer further comprises: fixing the starting strip on the starting platform (30) at the bottom (31)
  • the starting strip (31) has an upwardly protruding protruding embedding portion (310), and the bottom prefabricated composite thermal insulation board and the cornered prefabricated composite thermal insulation board included in the thermal insulation composite structural component assembly
  • the lowermost mounting groove (13) cooperates with the protruding insert portion (310) of the starting strip to embed the protruding insert portion into the lowermost mounting groove.
  • the expansion bolt is used when the support member (202) is fixed to the wall main structure portion (100) ( 201) Fixing the support member to the wall body structure portion (100) in a lateral or vertical direction.
  • Twelfth basic scheme and its preferred embodiment relate to a prefabricated thermal insulation composite panel or a second basic scheme and one of the preferred embodiments thereof for manufacturing the first basic scheme and its preferred embodiment
  • a prefabricated method of a prefabricated thermal insulation composite panel with a corner characterized in that: the mold profile (50) according to one of the eighth basic scheme and its preferred embodiment, including the following Steps:
  • a reinforcing protective layer (7) composed of a cement-based or gypsum-based polymer-modified cement is applied, and a cement-based or gypsum-based polymer-modified cement is applied.
  • the height of the alignment protrusion (503, 502) on the cross section of the mold profile (50) is the control point of the thickness of the reinforced protective layer (7) of the composite board to ensure the composite The thickness and size of the board are uniform;
  • the protective layer (7) is to be demoulded after initial setting, and the mold profile (50) is removed;
  • a reinforcing protective layer composed of a cement-based or gypsum-based polymer-modified dope is applied to each side of the core (9)
  • the reinforcing protective layer (7) is applied in two layers (71), wherein the first layer is laid with a reinforcing protective layer (71) composed of a cement-based or gypsum-based polymer-modified cement.
  • the reinforcing material (8) is laid, and then a second layer of a reinforcing protective layer (71) composed of a cement-based or gypsum-based polymer-modified cement is laid.
  • a reinforcing protective layer (71) composed of a cement-based or gypsum-based polymer-modified cement
  • the reinforcing layer (71) material is a composite plate with a high point of the alignment protrusion (503, 502) on the cross section of the mold profile (50). The control point of the thickness of the enhanced protective layer (7).
  • FIG. 1 is a schematic perspective structural view of a preferred embodiment of a prefabricated thermal insulation composite panel of the present invention
  • FIG. 2 is a perspective exploded view of a preferred embodiment of the precast insulation composite panel of the present invention
  • Figure 3 is an enlarged view of a portion A of Figure 2;
  • Figure 4 is an enlarged view of a portion B of Figure 2;
  • Figure 5 is a schematic structural view showing a cross section of a preferred embodiment of a prefabricated thermal insulation composite panel of the present invention and a preferred embodiment of a prefabricated thermal insulation composite panel having a corner;
  • Figure 6 is a schematic cross-sectional view showing the mold profile of the prefabricated thermal insulation composite panel or the prefabricated thermal insulation composite panel of the present invention, which is combined with the prefabricated thermal insulation composite panel or the insulated composite panel with corners;
  • Figure 7 is a perspective view showing the construction of a prefabricated thermal insulation composite panel or a prefabricated thermal insulation composite panel having a corner according to the present invention, and a prefabricated thermal insulation composite panel or a thermal insulation composite panel with a corner;
  • Figure 8 is a perspective exploded view of a preferred embodiment of a precast insulated composite panel with a corner according to the present invention.
  • Figure 9 is an enlarged view of a portion C of Figure 8;
  • Figure 10 is an enlarged view of a portion D of Figure 8;
  • Figure 11 is an enlarged view of a portion E of Figure 8.
  • Figure 12 is an enlarged view of a portion F of Figure 8.
  • Figure 13 is a perspective view showing a preferred embodiment of a thermal insulation composite panel structural assembly of the present invention.
  • Figure 14 is an enlarged view of a portion G of Figure 13;
  • Figure 15 is an enlarged view of a portion H of Figure 13;
  • Figure 16 is an enlarged view of a portion J of Figure 13;
  • Figure 17 is a cross-sectional, cross-sectional structural view showing a preferred embodiment of the concrete slab structural member of the present invention.
  • Figure 18 is a schematic exploded perspective view of the preferred embodiment of the concrete slab structural member of the present invention.
  • Figure 19 is a perspective view showing a three-dimensional structure of a tension bolt 91 according to a preferred embodiment
  • Figure 20 is a perspective view showing a perspective structure of a tension member 165 according to a preferred embodiment
  • Figure 21 is a perspective view showing the structure of the preferred embodiment of the concrete slab structural member of the present invention, the figure schematically showing the structure from the inner side of the structural member;
  • Figure 22 is a schematic view showing the structure of the preferred embodiment of the concrete slab structural member of the present invention, in which the structure is schematically shown from the outside of the structural member;
  • Figure 23 is a cross-sectional structural view showing a preferred embodiment of another concrete slab structural member (i.e., wall panel) of the present invention.
  • Figure 24 is a perspective exploded view of a preferred embodiment of the other concrete slab structural member of the present invention.
  • Figure 25 is a schematic cross-sectional view showing a preferred embodiment of a wall structural member of the present invention.
  • the same components have the same names, and the same reference numerals are used. Corresponding parts have corresponding names, with corresponding reference numerals.
  • Figures 7-14 illustrate a prefabricated thermal insulation composite panel 1 in accordance with a preferred embodiment of the present invention.
  • the prefabricated thermal insulation composite panel 1 has an inner main plane 101, an outer main plane 102 and four side end faces 103, 104, 105, 106, as shown in particular in Figures 1 and 2. In particular, as shown in FIG.
  • the prefabricated thermal insulation composite panel 1 comprises, in addition to the core portion 9 composed of a heat insulating sheet material, a two-layer reinforcing protective layer composed of a cement-based or gypsum-based polymer modified cement. 7 and border 2.
  • the core 9 is a high-efficiency organic thermal insulation board such as polystyrene, polyurethane, phenolic, etc., or an inorganic thermal insulation material such as mineral wool board, foam glass, foam ceramics, or a super insulation material such as a vacuum insulation board. According to the design of the thermal work, different thickness of the plate can be used to provide the corresponding thermal resistance. Generally, the organic thermal insulation material has better insulation performance and wider application than the inorganic thermal insulation material.
  • the material of the reinforcing protective layer 7 is a cement-based or gypsum-based polymer-modified cement, which is an inorganic non-combustible material, and can provide good protection for the core 9.
  • the core 9 is between the two layers of reinforcing protective layer 7, and the two layers of reinforcing protective layer are bonded to the core 9.
  • the bezel 2 surrounds the periphery of the core 9 and is fastened with the core 9.
  • the reinforcing protective layer covers the frame 2 so that the frame 2 is only on the four side end faces 103, 104, 105, 106 of the prefabricated thermal insulation composite panel. Exposed.
  • the frame 2 includes two frame connecting portions 11 outside the frame 2 and respectively located at the upper and lower portions of the frame, and a mounting groove 13 located outside the frame and between the two frame connecting portions 11, the mounting groove being along the entire frame Length extension.
  • the inner side of the bezel 2 is pointed to the core 9 The side that is in contact (ie, the lower side in FIG. 5, and the right side in FIG. 6), while the outer side of the bezel is in contact with the mold profile 50 during the manufacturing process and the panels are mated to each other when assembling a plurality of prefabricated composite thermal insulation panels. That side (ie, the upper side in Figure 5, and the left side in Figure 6).
  • the upper and lower portions of the frame are relative to the upper and lower portions in FIG. 6.
  • the upper portion in FIG. 6 corresponds to the right portion in FIG.
  • the lower portion of 6 corresponds to the left portion in Fig. 5.
  • the insulating sheet constituting the core 9 may also be composed of an inorganic insulating material.
  • the prefabricated thermal insulation composite board of the invention still has the beneficial effects of improving strength, integrity, facilitating assembly and assembly, and improving construction work efficiency.
  • Each of the reinforcing protective layers 7 may be provided with a reinforcing material embedded therein.
  • the reinforcing material may include a reinforcing mesh 8 composed of alkali-resistant glass fibers, carbon fibers or steel fibers, and may also include alkali-resistant chopped glass fibers, carbon fibers or steel fibers uniformly dispersed in the reinforcing protective layer.
  • the reinforcing material may include both the reinforcing mesh 8 and the alkali-resistant chopped glass fibers, carbon fibers or steel fibers dispersed in the reinforcing protective layer.
  • the reinforcing material can effectively improve the bending resistance and impact resistance of the composite board.
  • the bezel 2 comprises a four-segment bezel profile.
  • the frame profile is a squeezing profile.
  • the frame 2 can also play the role of size positioning and controlling the thickness of the surface layer during the production process of the composite board, and protects the corners of the prefabricated thermal insulation composite board during transportation and storage.
  • the frame profile is also reliably connected to the main structure by a tension bolt.
  • the two end faces of each frame of the frame are beveled so that the two ends of the four-section frame are butted together to form a complete frame. 2.
  • Each section of the frame profile is integrally formed.
  • Each of the frame profiles includes two fixed wings 10 and a core fixing groove 3. The two fixed wings 10 are inside the frame profile and are respectively located at the upper and lower portions of the frame profile (relative to Figure 6).
  • the core fixing groove 3 is located inside the frame profile and between the upper and lower fixed wings 10 (relative to Fig. 6). As shown in FIG. 3-6, each of the two frame connecting portions 11 is provided with a frame connecting hole 4. Each of the four side edges of the core portion 9 of the prefabricated heat insulating composite panel is inserted into the core fixing groove 3 of a section of the frame profile, and the two fixed wings 10 of each frame profile are clamped and fixed to the core. On one of the four edges of 9. As shown in Fig. 2 - 4, the frame profile reinforcement 5 is connected between the frame profiles of the two end portions which are butted at the ends by two frame profile reinforcements 5.
  • the frame profile reinforcement 5 includes two insertion joints 51.
  • the two insertion joints 51 are respectively inserted into the adjacent frame connection holes 4 of each two adjacent frame profiles and fixed in the frame connection holes 4 to The segment frame profiles are joined together to form a unitary body.
  • the frame profile reinforcement is a flat plate in the embodiment and a cornered prefabricated plate as will be described below to provide a reliable connection and a smooth transition at the corner, and the frame profile reinforcement is inserted into the reserved slot of the frame.
  • the mounting groove 13 is centrally disposed relative to the two frame connecting portions 11, and the core fixing groove 3 is centrally disposed with respect to the two fixed wings at the inside of the frame.
  • the finish layer 15 is included in the prefabricated thermal insulation composite board of the preferred embodiment.
  • the facing layer 15 is on the outside of the reinforcing protective layer 7 on the outside of the prefabricated insulating composite panel and is bonded to the reinforcing protective layer 7.
  • the prefabricated thermal insulation composite panel of this embodiment is sized to conform to the modularized dimensions of the building, so as to facilitate assembly and standardization during factory manufacturing and construction. Standardized composite panels are determined by building modulus, but due to the diversity of actual engineering, non-standard composite panels will appear.
  • the standard flat panel can be counted by computer-aided design program, and the standard corners are prefabricated as described below. The number and specific dimensions of composite panels, non-standard flat panels and pre-fabricated panels with non-standard corners are convenient for engineering applications.
  • the prefabricated thermal insulation composite panels in this preferred embodiment are square or rectangular in size and weight set to facilitate manual handling and handling by construction workers.
  • the performance indexes of the prefabricated thermal insulation composite panel according to the preferred embodiment are as follows: Strength comparison table of different materials
  • FIG. 8-12 illustrates a cornered prefabricated thermal insulation composite panel 20 in accordance with another preferred embodiment of the present invention. It can be understood that the structure of the prefabricated thermal insulation composite panel with corners is very similar to that of the prefabricated thermal insulation composite panel 1 shown in Figs. 1-7, and is identical in many respects. However, the cornered prefabricated thermal insulation composite panel includes two insulated composite panel portions to form a corner. Each of the two insulating composite panel portions has an inner major plane 101, an outer major plane 102, and four side end faces.
  • One of the four side end faces is formed as a slope 108, 109 inclined with respect to the inner main plane 101 and the outer main plane 102 of the heat insulating composite panel portion.
  • the two inclined faces 108, 109 are the same in the same inclination angle so as to cooperate with each other, and the two insulating composite plate portions are butted together at the inclined surface, so that the two insulating composite plate portions are respectively in two different planes, two different The planes intersect each other as shown in FIG.
  • Each of the insulated composite panel portions includes a core portion 9 composed of a heat insulating sheet material, and two reinforcing protective layers 7 and a frame 2 composed of a cement-based or gypsum-based polymer-modified cement.
  • the core 9 is between the two layers of reinforcing protective layer 7, and the two layers of reinforcing protective layer 7 are bonded to the core 9.
  • the bezel 2 is at the three sides of the three side end faces 103, 104, 106 of the core portion 9 other than the side end faces formed as bevels in the portion of the insulating composite panel and is fastened to the core portion 9.
  • the protective layer is covered to cover the frame so that the frame is only in the thermal insulation composite panel portion of the prefabricated thermal insulation composite panel with the corner
  • the three side end faces 103, 104, 106 are exposed.
  • the frame 2 includes two frame connecting portions 11 on the outer side of the frame and respectively located at the upper and lower portions of the frame, and a mounting groove 13 at the outer side of the frame and between the two frame connecting portions 11, the mounting groove along the length of the entire frame extend.
  • the outer and inner sides of the frame here can be understood with reference to FIG. 6.
  • the angle of the corner of the prefabricated thermal insulation composite panel with corners can be adjusted according to the design requirements of the building facade. Theoretically, it can be adjusted from 0 to 180 degrees. This panel can be applied to corners, door and window openings, and cornices.
  • a preferred embodiment of the reinforcing material of the reinforcing protective layer 7 of a preferred embodiment of the prefabricated thermal insulation composite panel according to the present invention is equally applicable to the cornered prefabricated thermal insulation composite panel. See Figure 8 - 12 below.
  • the structure of the cornered prefabricated thermal insulation composite panel according to the preferred embodiment is identical in many respects to the construction of the prefabricated thermal insulation composite panel without corners.
  • the frame 2 included in each of the thermal insulation composite panel sections comprises three sections of frame profiles, and the two end faces of each section of the frame profile are beveled so that the two ends of the six-segment frame profile are butted. Assembled together to form a complete border 2.
  • Each section of the frame profile is integrally formed.
  • Each of the frame profiles includes two fixed wings 10 on the inside of the frame profile and respectively on the upper and lower sides of the frame and a core fixing groove 3 on the inside of the frame profile and between the two fixed wings 10 (about The inside and outside of the frame profile, the upper and lower parts of the frame, as well as the prefabricated insulation composite board without corners, can be understood in conjunction with Figure 6.
  • Each of the two frame connecting portions 11 is provided with a frame connecting hole 4, and three sides of the three side end faces 103, 104, 106 of the core portion 9 of the heat insulating composite plate portion except the side end faces on which the slope is formed.
  • the edges are respectively inserted into the core fixing grooves 3 of a frame shape, and the two fixed wings 10 of each of the frame profiles are clamped and fixed to the edges of one of the above three sides of the core 9.
  • the cornered prefabricated thermal insulation composite panel also includes a bezel profile reinforcement 5 . Deviation Outside the noodle, there are two (or one) frame trim reinforcements between the adjacent side frame profiles at the end of each of the two adjacent frame profiles.
  • the frame insert reinforcement 5 includes two insertion joints 51 which are respectively inserted into adjacent frame connecting holes of adjacent two-segment frame profiles in each of the heat insulating composite panel portions.
  • the cornered prefabricated thermal insulation composite panel further includes a corner frame profile reinforcement 6 due to the corners of the composite panel.
  • the corner frame trim reinforcement 6 includes a corner insertion connecting portion 61, and the corner insertion connecting portion 61 is inserted into the frame connecting hole 4 of the adjacent two frames at the inclined surface, thereby inclining the inclined faces of the two insulating composite plate portions.
  • a preferred embodiment of the prefabricated thermal insulation composite panel according to the present invention has a mounting groove 13, a core fixing groove 3, a facing layer 15, a material selection for reinforcing the protective layer, a selection of reinforcing material, and a core 9 More preferred embodiments of the construction of the heat insulating sheet, the size and shape of the composite sheet, and further advantageous effects thereof are equally applicable to the cornered prefabricated heat insulating composite sheet. I will not repeat them here.
  • thermal insulation composite panel structural assembly of the present invention is shown in Figures 13-16 below.
  • An insulating composite panel structural assembly in accordance with a preferred embodiment of the present invention is schematically illustrated in these figures.
  • the thermal insulation composite board structure Components can be used to build building walls or slabs (eg roofs).
  • the insulated composite panel structural assembly includes a plurality of prefabricated thermal insulation composite panels 1 as previously described and a plurality of prefabricated thermal insulation composite panels 20 having been described above.
  • the thermal insulation composite structural component may not include the prefabricated thermal insulation composite panel 20 with a corner. As shown in FIG.
  • a plurality of prefabricated thermal insulation composite panels 1 are spliced and joined together in a side end joint manner.
  • the structural assembly of the pre-formed insulation composite panel further includes a plurality of pull members 16 and 17.
  • the pull member 16 includes a mounting groove insertion portion 162, 163 and a projecting portion 164
  • the pull member 17 includes a mounting groove inserting portion 171, 172 and a projecting portion 173.
  • the mounting groove embedding portions 162, 163, 171, 172 are embedded in the mounting groove 13 of the prefabricated thermal insulation composite panel, and the projecting portions 164, 173 extend out of the mounting groove 13 and extend beyond the inner side toward the inner main plane 101 ( That is, the inner side of the wall of the wall) the main plane 101, through the connection of the plurality of pull members 16, 17 and the mounting groove 13, a plurality of prefabricated thermal insulation composite panels are spliced and combined.
  • Both the pull tab and the mounting strip can be injection molded parts made of plastic.
  • the function of the pull member is to position the composite plates 1 and 20 adjacent to each other by the cooperation of the mounting grooves of the composite plates 1 and 20 with the mounting grooves adjacent to each other, so that the composite plates 1 and 20 are spliced and combined with each other.
  • the spliced composite panels 1, 20 can be joined to other structures such as concrete formwork support structures, building body load-bearing structures, and the like.
  • the function of the inlaid strip is to position the composite plates 1 and 20 adjacent to each other by the cooperation of the mounting grooves of the composite plates 1 and 20 with the mounting grooves adjacent to each other, so that the composite plates 1 and 20 are spliced and combined with each other. together.
  • the use of the pull tab and/or the stud in combination with the prefabricated composite panel of the invention makes it possible to assemble a plurality of blocks (depending on the area of the wall or the area of the floor as required) of the prefabricated composite panel of the invention. Together, it can provide a brand new building structure and construction method.
  • the building structure and construction method are characterized by assembly and assembly, which obviously saves the work on the construction site. Order and working hours. If the size of the composite panel is set to facilitate manual handling by workers, the need for large hoisting equipment can be reduced.
  • the height and thickness of the prefabricated composite thermal insulation board 20 with corners are equal to the height and thickness of the prefabricated thermal insulation composite panel 1, respectively, and the mounting groove 13 of the prefabricated composite thermal insulation panel 20 with corners and the prefabricated thermal insulation composite panel
  • the mounting slots 13 of 1 are the same size so that standard assembly can be performed.
  • the prefabricated thermal insulation composite panel 20 with the corner and the prefabricated thermal insulation composite panel 1 are butted at the two end faces, and the connection of the plurality of the connecting members 16, 17 and the installation groove 13 is matched, and the adjacent butt jointed prefabricated thermal insulation composite panel 20 and the prefabricated thermal insulation composite panel 1 are spliced and combined by the connecting member 17, and the adjacent two prefabricated thermal insulation composite panels 20 with the corners are joined together by the connection of the connecting member 16 and the mounting groove 13 .
  • the pull members 16, 17 of the insulated composite panel structural assembly are generally T-shaped, and the mounting groove inserts 162, 163, 171, 172 are formed in a T-shaped vertical position.
  • the pull tab 16 is a slotted pull tab 16 and the pull tab 17 is a seamless pull tab 17.
  • the slotted pull tab has a body portion 161 with the projecting portion 164 of the slotted pull tab in the same plane as the body portion 161 of the slotted pull tab.
  • the slotted insertion portion 162, 163 of the slotted tab extends to the extension of the slotted puller in a direction perpendicular to the plane in which the projection 164 of the slotted puller and the body portion 161 are located and The flat part of the main body Beyond the surface, it can be inserted into the mounting groove 13 during assembly.
  • the slotted pull tab is placed in a horizontal seam formed by the docking of each of the two prefabricated thermal insulation composite panels adjacent thereto.
  • the width of the cross section of the mounting groove insert of the slotted pull tab and the seamless puller is 1 1 W W 2 is equal to the width W tt of the mounting groove of the prefabricated heat insulating composite panel, the mounting of the seamed puller
  • the height of the cross section of the groove embedding portion is equal to or smaller than the depth d groove of the mounting groove so as to fit each other. Illustrated in FIG. 16, the mounting groove portion fitted seamless tension connection element cross-section 171, 172 is equal to the height h pull two butted together two prefabricated mounting groove depth d of the groove 13 of thermal insulating composite panel and, In order to cooperate with each other.
  • the seamless pull member has a necked portion 178 between the mounting groove insertion portion 171 and the protruding portion 173.
  • the width of the cross section of the neck portion is smaller than the width of the cross section of the protrusion.
  • the entire seamless puller is the same thickness.
  • Each of the two prefabricated thermal insulation composite panels 1 or the laterally adjacent prefabricated thermal insulation composite panels 1 and the cornered prefabricated thermal insulation composite panels 20 are vertically adjacent to each other in the vertical two frame connecting portions 11
  • One of the cards is provided with a card slot 179.
  • the adjacent two card slots 179 are opposite to each other, the width of the card slot is equal to the width of the neck portion, and the sum of the depths of the two card slots is equal to the thickness of the neck portion so as to fit each other.
  • a slotted inlay 166 is placed in the horizontal seam between adjacent pre-formed composite panels 1 and/or between the prefabricated insulative composite panels 20 with corners.
  • a seamless inlay 177 is placed between the adjacent prefabricated thermal insulation composite panels 1 and/or between the adjacent prefabricated thermal insulation composite panels 1 and the cornered prefabricated thermal insulation composite panels 20, 178, so that the mating fit between the composite panels is better.
  • each of the inlaid strips can also function to connect adjacent composite panels, and also helps to prevent the positional displacement of adjacent composite panels from each other, so that the integrity between the opposing composite panels is better.
  • Prefabricated thermal insulation composite board or prefabricated thermal insulation composite panel with corners of the invention Construction site splicing can be carried out according to different needs of the project.
  • the following is a preferred implementation of the process:
  • the starting strip 31 When the starting strip 31 is fixed, it can be at the starting platform (eg horizontal basis or existing foundation)
  • the platform formed after the treatment or the platform added on the basis of 30) is continuously extended to fix the starting strip 31, which is required to be reliable and accurate in size;
  • the first composite plate 1 and 20 are installed, and the first prefabricated thermal insulation composite panel 20 with a corner is installed from the corner, and the horizontal mounting groove 13 at the lower end of the composite panel 20 is stuck in the protruding insertion portion of the starting strip 31. 310;
  • the second composite panel to be installed is the composite panel 1, and the composite panel 1 is placed against the first composite panel 20, assuming that the vertical direction is seamlessly stitched, and the transverse direction is seamed, as shown in Fig. 13, between the two composite panels Inserting the seamless mosaic strips 177, 178, and inserting the slitted mosaic strips 166, 169 into the upper end slot;
  • the pull-member 16, 165 is placed in the upper end mounting groove 13, or the pull-member 17 is placed in the side mounting groove 13;
  • the second composite panel 1, 20 is also installed from the corner, and the lower end mounting groove 13 of the cornered prefabricated thermal composite panel 20 is caught on the inlaid strips 169, 166 of the lower composite panel 30, and then the second layer is installed.
  • Two composite panels 1. Preferred Embodiments of the Permanent Concrete Formwork of the Present Invention
  • the present invention also proposes a permanent concrete formwork.
  • a permanent concrete form according to a preferred embodiment of the present invention may comprise a prefabricated thermal insulation composite panel and/or a cornered prefabricated thermal insulation composite panel as previously described, which may include the previously disclosed thermal insulation composite structural component.
  • the permanent concrete formwork can be used to construct permanent concrete formwork for buildings, structures, etc., and after the concrete is finally set, it is firmly integrated with the concrete structure to form a reliable insulation layer of the same life as the building.
  • a preferred embodiment of the concrete slab structural member of the present invention is described below with reference to Figures 17-22.
  • a concrete slab structural member in accordance with a preferred embodiment of the present invention is schematically illustrated in these figures.
  • the concrete slab structural member is a wall panel structural member.
  • the concrete slab structural member includes a reinforcement, a first concrete form on one side of the reinforcement, a second concrete form on the other side of the reinforcement, and between the first concrete form and the second concrete form Concrete (not shown).
  • the first concrete formwork is an outer concrete formwork
  • the outer concrete formwork is a permanent concrete formwork, including the heat insulating composite plate structural component previously described, the thermal insulation composite plate structural component and the reinforcement extending through the pullout members 16, 17, 165 And fixed connection.
  • the second concrete formwork is a plain concrete formwork and is an inner concrete formwork 92. The concrete is integrated with the reinforcement and permanent concrete formwork and the inner concrete formwork 92.
  • the permanent concrete form of the present invention may be employed on the inside or both sides if desired, such as in the case of cold storage.
  • the reinforcement is a cold-formed thin-walled steel keel.
  • the reinforcing bars can also use the reinforcing bars of the prior art.
  • a cold-formed thin-walled steel frame is employed as the reinforcement.
  • the cold-formed thin-walled steel frame includes a plurality of longitudinal directions (in this embodiment, a lateral direction, that is, a horizontal direction) along a principal plane of the concrete slab structural member, and spaced apart from each other in a longitudinal direction (in this embodiment, vertical) To) steel keel 95, 85.
  • a lateral direction that is, a horizontal direction
  • the profile steel keel consists of two longitudinally cold-formed thin-walled steels 951, 952, 851, 852.
  • the main plane of the longitudinally cold-formed thin-walled steel ie, the center of the longitudinally cold-formed thin-walled steel in Figure 17, the plane perpendicular to the paper surface and extending along the vertical direction
  • the prefabricated thermal insulation composite included in the thermal insulation composite structural component The inner main plane and the outer main plane of the panel 1 or the prefabricated thermal insulation composite panel 20 with the corners are parallel to each other.
  • Two longitudinally cold-formed thin-walled steels 951, 952, 851, 852 follow the main plane of the structural member of the concrete slab (ie, through the center of the concrete slab structural member in Figure 17, perpendicular to the paper and extending vertically)
  • the planes are perpendicular to each other and spaced apart such that there is a space 200 between the two longitudinally cold-formed thin-walled steels so that concrete can easily be retained between the two longitudinally cold-formed thin-walled steels when concrete is poured
  • the space flows through.
  • the space left between the two longitudinally cold-formed thin-walled steels is filled with concrete (not shown). Both the first concrete formwork and the second concrete formwork are fixedly connected to the cold-formed thin-walled steel frame.
  • the two longitudinally cold-formed thin-walled steels are fixedly connected by the steel connecting members 96, 87, between the first concrete formwork and the second concrete formwork and the longitudinal cold-formed thin-walled steel All are spaced apart, and concrete (not shown) between the first concrete formwork and the second concrete formwork covers the cold-formed thin-walled steel frame.
  • the profiled steel connectors 96, 87 may be spaced apart along the length of the longitudinally cold-formed thin-walled steel 951, 952.
  • two pairs of steel connecting members 96 may be disposed between every two longitudinally cold-formed thin-walled steels 951, 952.
  • the profiled steel connectors 96, 87 are provided with profiled steel connector through holes 961 to reduce the effect on the flow of the concrete.
  • each two adjacent longitudinal steel keels are joined by a longitudinal connecting keel 97.
  • the two cold-formed thin-walled steels constituting the upper longitudinal steel keel and the two cold-formed thin-walled steels forming the lower longitudinal steel keel are sleeved to form a longitudinal connection.
  • the longitudinal connection of the keel 97 is on the steel plates 971, 972 and is fixed thereto. Fixing can be done with screws (as shown in Figure 17) or soldered.
  • the longitudinal connecting keel 97 as the keel abutting piece should be inserted into the lower main keel, ie, the longitudinal steel keel 95.
  • the two are connected by a self-tapping screw, and the upper main keel, that is, the longitudinal steel keel 95, is placed on the keel butt joint, and the two are connected by a self-tapping screw.
  • each longitudinal steel keel 95 includes longitudinally cold-formed thin-walled steels 951, 952 having a plurality of keel through holes 953, 954 extending therethrough along its length.
  • the keel through holes 953, 954 on the two longitudinally cold-formed thin-walled steels face each other, and the extensions of the pull members 16, 17, 165 are penetrated in at least a portion of the keel through holes 953, 954.
  • the through direction of the keel through hole is perpendicular to the main plane of the concrete slab structural member and the side main plane included in the thermal insulation composite structural component.
  • the concrete slab structural member further includes a tension bolt 91, a tension sleeve 90, and a limit sleeve 80.
  • the tensioning sleeve 90 is between the inner concrete formwork 92 and the longitudinally cold-formed thin-walled steel in the inner side of the two longitudinally cold-formed thin-walled steels included in each of the longitudinal steel keels.
  • the limit sleeve 80 is longitudinally cold-formed on the outer side (ie, the outdoor side with respect to the wall) of the outer longitudinal concrete formwork and the two longitudinal cold-formed thin-walled steels included in each longitudinal steel keel. Between wall steels.
  • the tensioning sleeve is an injection molded part.
  • the tension bolt is a detachable bolt steel piece, and the modular concrete formwork is fixed on the main keel. When the concrete curing is due, the tension bolts and the modular concrete formwork are removed. Bolt holes in concrete components can be used as a fixed point for dry veneer construction.
  • the extensions of the pull members 16, 17, 165 extend from the outer concrete formwork and are threadedly connected to the tension sleeve through the keel through hole, and the outer concrete formwork is fixedly connected with the longitudinal steel keel, and the tension pin 91 is passed through the inner side.
  • the concrete formwork 92 is threadedly connected to the tensioning sleeve, and the inner concrete formwork is fixedly connected to the longitudinal steel keel.
  • the external thread at the end of the extension of the pull tab 165 and the external thread on the tension pin 91 are shown. These external threads are used to engage the internal threads in the bore of the tension sleeve 90.
  • each of the longitudinally cold-formed thin-walled steels included in each of the longitudinal steel keels is a C-shaped steel.
  • the longitudinal steel keel is arranged vertically, and a plurality of parallel longitudinal steel keels are connected by a transversely connected steel keel, the oblique steel connecting keel is connected with the longitudinal steel keel, the longitudinal steel keel, the transversely connected steel keel and the oblique connecting keel are connected.
  • the transversely connected steel keels include transversely cold-formed thin-walled steels 981, 982, 881, 882.
  • the obliquely connected steel keel includes obliquely cold-formed thin-walled steel 891, 892.
  • the concrete slab structural members are concrete wall slab structural members. It may also include a starting platform 30 at the bottom.
  • the starting platform can be the foundation of the building, or other suitable platform based on the foundation.
  • a starting strip 31 is fixed to the starting platform, and the starting strip 31 has a protruding embedding portion 310 that protrudes upward.
  • the lowermost mounting groove 13 of the lowermost prefabricated composite thermal insulation board and the cornered prefabricated composite thermal insulation board included in the permanent concrete formwork cooperates with the protruding insertion portion 310 of the starting strip, and the protruding embedding portion is embedded in the most Inside the installation slot.
  • the starting strip 31 is a squeezing member.
  • the lowermost longitudinally cold-formed thin-walled steel members 951, 952 are fixed to the starting platform 30 by the starting plate 93.
  • An initial keel 94 is fixed to the starting plate 93.
  • the starting plate 93 is fixed to the starting platform 30 by expansion bolts.
  • the lowermost longitudinally cold-formed thin-walled steel 951, 952 is placed over the starting keel 94 and is fixedly coupled to the starting keel 94 (e.g., by fasteners (e.g., screws, self-tapping screws) or splicing).
  • the vertical main keel i.e., the longitudinal steel keel 95
  • the longitudinal steel keel 95 is formed by splicing two opposing C-shaped cold-formed thin-walled steels 951, 952, 851, and 852 with the joining steel plate 96.
  • Both the main keel and the connecting steel plate are punched with round holes and crimped to increase the rigidity, and the concrete is freely flowing and compacted, which can significantly improve the steel and concrete gripping force.
  • the transverse auxiliary keel ie the transversely connected steel keel 98, consists of two C-shaped cold-formed thin-walled steels 981, 982, 81, 882.
  • the two sides of the vertical main keel are welded to the transversely connected steel keel 98 or connected by a self-tapping screw, so that the entire steel skeleton structure is stable and the dimensions are accurate.
  • the inner concrete formwork can be a modular concrete formwork, which is made of metal and polymer materials. It can be reused hundreds of times and has sufficient rigidity to resist the side pressure of fresh concrete.
  • the appearance configuration, size and the like of the inner concrete formwork can be identical to the prefabricated heat insulating composite board of the present invention, and the corner of the plate is reserved for the tension bolt to pass through.
  • Preferred Embodiments of the Concrete Wall Panel Structural Member of the Present Invention See Figures 23 and 24 below.
  • the concrete wall panel structural member includes a first concrete form on one side of the reinforcement, a second concrete form on the other side of the reinforcement, and concrete between the first concrete form and the second concrete formwork ( Not shown in the drawings in order to clearly show the structure of the wall structural member).
  • the first concrete formwork is an outer concrete formwork that is a permanent concrete formwork.
  • the permanent concrete formwork includes the previously described insulated composite panel structural assembly, and the insulated composite panel structural assembly and the concrete formwork support are fixedly coupled by the extensions of the pull members 16, 17, 165.
  • the second concrete formwork is the inner concrete formwork 92, which is a common detachable concrete formwork, and the concrete is integrated with the reinforcement and the permanent concrete formwork.
  • the concrete formwork support of the concrete wall panel structural member includes a concrete formwork vertical keel 922 and a concrete formwork transverse keel 921.
  • the concrete wall panel structural member further includes a tension bolt 91 and a tension sleeve 90.
  • the tensioning sleeve 90 is outside the inner concrete form 92 and abuts the inner concrete form.
  • the concrete formwork vertical keel 922 is inside the inner concrete form 92 and is adjacent to the inner concrete formwork.
  • the transverse keel of the concrete formwork is placed inside the vertical keel of the concrete formwork and adjoins the transverse keel of the concrete formwork.
  • the tensioning bolt 91 starts from the inner side of the transverse keel of the concrete formwork, passes through the concrete formwork transverse keel 921, the concrete formwork vertical keel 922, the inner concrete formwork 92 and the tensioning sleeve 90, thereby connecting the inner concrete formwork and the concrete formwork transversely.
  • the keel and concrete formwork are fixedly connected to the vertical keel.
  • the tension bolt 91 is used in conjunction with the tension bolt washer 911.
  • the extension of the pull tab 165 extends from the outer concrete form and is threadedly coupled to the tension sleeve to securely attach the outer concrete form to the inner concrete formwork, the concrete formwork vertical keel, and the concrete formwork transverse keel.
  • the concrete wall panel structural members illustrated in Figures 23 and 24 also include a starting platform 30 at the bottom.
  • a starting strip 31 is fixed to the starting platform, and the starting strip 31 has a protruding embedding portion 310 that protrudes upward.
  • FIG. 25 shows a wall structural member in accordance with yet another preferred embodiment of the present invention. It includes a wall body structure portion 100 and an insulation layer portion. The insulation layer portion is fixedly coupled to the wall body structure portion 100. The insulation layer portion adopts the thermal insulation composite panel structural assembly which has been described above.
  • the extension of the pull members 16, 165 is fixedly coupled to the wall body structure portion 100 to securely attach the insulated composite panel structural component to the wall body structure portion.
  • the extension of the pull tab 16 is provided with a fastening hole.
  • a support member 202 is fixed to the main body structure portion of the wall, and the pull member is fixedly coupled to the support member 202 through a fastening hole on the extension portion and a fastener such as a tapping screw 203.
  • the wall structural member according to the preferred embodiment further includes an initial platform 30 at the bottom.
  • a starting strip 31 is fixed to the starting platform.
  • the starting strip 31 has a protruding embedding portion 310 that protrudes upward.
  • the lowermost mounting groove 13 of the lowermost prefabricated composite thermal insulation board and the cornered prefabricated composite thermal insulation board included in the permanent concrete formwork cooperates with the protruding insertion portion 310 of the starting strip, and the protruding embedding portion is embedded in the most Inside the installation slot.
  • a preferred embodiment of a mold profile for making a prefabricated thermal insulation composite panel or a prefabricated thermal insulation composite panel having a corner as described above is seen below in Figures 6 and 7.
  • a mold profile 50 for making a prefabricated thermal insulation composite panel or a cornered pre-formed thermal insulation composite panel as already described above is illustrated in Figures 6 and 7 in accordance with a preferred embodiment of the present invention.
  • the mould profile 50 comprises a profile body 501 (preferably hollow and preferably composed of an aluminium alloy profile).
  • the profile body abuts against the inner abutment portion 507 of the prefabricated thermal insulation composite panel or the two connecting portions 11 of the frame 2 of the prefabricated thermal insulation composite panel with a corner.
  • a positioning protrusion 504 that protrudes from the inside of the mounting groove 13 to position the core 9 from the surface of the inner abutting portion 507.
  • the thickness of the positioning projection (i.e., the dimension in the vertical direction in Fig. 6) is equal to the width W of the mounting groove.
  • the inner abutting portion 507 is provided with an upper alignment projection 503 and a lower alignment projection 52 for determining the thickness of the reinforcing protective layer 7 when manufacturing a prefabricated thermal insulation composite panel or a prefabricated thermal insulation composite panel having a corner.
  • the upper alignment tab projects above the upper surface of the profile body 501 and the lower alignment projection 502 projects below the lower surface of the profile body.
  • the distance from the upper surface of the positioning protrusion 504 to the top surface of the upper alignment protrusion 503 is greater than the thickness of the bezel connection portion 11 (i.e., the dimension along the vertical direction shown in Fig. 6).
  • the distance from the lower surface of the positioning protrusion 504 to the bottom surface of the lower alignment protrusion 502 is greater than the thickness of the bezel connection portion 11.
  • the distance in which the upper alignment protrusion 503 protrudes upward from the upper surface of the positioning protrusion 504 is equal to the distance in which the lower alignment protrusion 502 protrudes downward from the lower surface of the positioning protrusion 504.
  • a preferred embodiment of the construction method involves replacing the prior art permanent concrete formwork with the prefabricated thermal insulation composite panel and/or the precast insulated composite panel with corners and the cold-formed thin-walled steel frame.
  • Combined cast-in-place concrete solution This will be explained below with reference to Figs. 13-16 and 17-22. It will be understood by those skilled in the art that in the construction method, the assembly method shown in Figs.
  • the method for constructing a cast-in-place concrete wall comprises the steps of: installing a cold-formed thin-walled steel frame; and installing a lateral concrete formwork, wherein installing the outer concrete formwork and the cold-formed thin-walled steel frame Fixed connection, using a permanent concrete formwork comprising the insulated composite panel structural components previously described as the outer concrete formwork, adjacent two prefabricated thermal insulation composite panels 1 or adjacent two cornered prefabricated thermal insulation composite panels 20 or Inserting a pull tab into the side of the adjacent prefabricated thermal insulation composite panel 1 and the cornered prefabricated thermal insulation composite panel 20 (in the preferred embodiment, the pull tab 165 is inserted into the horizontal mounting slot 13
  • the pull-tabs 165, 16, 17, or the horizontal mounting slots 13 and the vertical mounting slots 13 can be inserted into the vertical mounting slots 13 according to engineering requirements, and the pull-tabs 16 are inserted into 17, 17, 165 It is also possible to insert slit inlays 166, 169 and
  • the fixed connection is achieved by fixing the extension of the pull members 16, 17, 165 to the cold-formed thin-walled steel frame; the step of installing the inner concrete form 92, wherein the inner concrete formwork is installed to be cold-bent Thin wall
  • the steel frame is fixedly connected.
  • the plane dimension of the main plane of 20 is the modular size, and the step of installing the outer concrete formwork is repeated to achieve the height of one floor by assembling and assembling the outer concrete form of the multi-layer size to be modular.
  • the plane dimension of the main plane of the inner concrete form 92 is the same as the plane size of the main plane of the outer concrete form, as shown in Fig. 18, the inner concrete form 92 is installed.
  • the steps are repeated to achieve the height of one floor by assembling and assembling the inner concrete form of the multi-layered size, and assembling the outer concrete form having the modular size and the modularized size opposite to the outer concrete form.
  • the inner concrete form 92 is alternated.
  • the step of installing the start strip 31 on the starting platform 30 is included, wherein A starting strip 31 is fixed on the platform 30, and the starting strip has a protruding embedding portion 310, and the permanent concrete formwork is included at the bottom of the lowermost prefabricated composite thermal insulation board 1 or the cornered prefabricated composite thermal insulation board 20
  • the mounting groove 13 cooperates with the protruding insert portion 310 of the starting strip to embed the protruding insert portion 310 into the lowermost mounting groove 13, thereby securing the lowermost pre-insulated composite panel or the cornered pre-insulated composite panel in place.
  • the cold-formed thin-walled steel frame structure proposed by the present invention is used as a reinforcement and supported as a concrete formwork.
  • the step of installing the cold-formed thin-walled steel frame includes: installing a plurality of mutually extending directions along the principal plane of the concrete wall (as understood in conjunction with FIG. 17, which is a direction perpendicular to the paper direction of FIG.
  • each longitudinal steel keel comprising two longitudinally cold-formed thin-walled steels 951, 952; 851, 852, the main plane of the longitudinally cold-formed thin-walled steel 951, 952 is set with a concrete wall
  • the inner main plane of the body and the prefabricated thermal insulation composite panel 1 or the prefabricated thermal insulation composite panel 20 with the corners of the insulating composite panel structure are parallel to each other, so that the two longitudinally cold-formed thin-walled steels are along
  • the vertical planes of the concrete walls are perpendicular to each other and spaced apart so that space between the two longitudinally cold-formed thin-walled steels is left 200, so that concrete can easily be bent from two longitudinally cold-formed thin-walled steels when concrete is poured The space left between flows through.
  • the method comprises: vertically arranging the sides of the prefabricated heat insulating composite board 1 adjacent to each other in the lateral direction Vertical mounting strips 177, 178 (not shown in Fig. 17, which can be understood in conjunction with Figs. 13 and 16) and pull members 16, 17, 165 (not shown in Fig. 17) can be inserted into the mounting groove 13 And 16 to understand), the horizontal mounting strips 166, 169 are placed in the horizontal mounting slots 13 between the vertically adjacent prefabricated thermal insulation composite panels 1 and the vertically adjacent prefabricated thermal insulation composite panels 20 (not shown in Figure 17).
  • the inside of the concrete formwork 92 is threadedly connected to the tension sleeve 90 through the keel through holes between the adjacent inner concrete formwork to securely connect the inner concrete formwork to the cold-formed thin-walled steel frame.
  • the threads on the extensions are not shown on the pull members 16, 17 shown in the figures, but it will be understood that external threads may be provided thereon as desired. If a threaded connection is not used, a connection hole or other connection structure can also be provided.
  • the seam formed by the horizontal mounting C is a seamed seam, and the horizontal mounting groove is provided with a seamed puller 16, a seamed strip 166, 169, and a vertical
  • the seam formed by the mounting C is a seamless seam
  • the vertical mounting groove is provided with a seamless puller 17, a seamless mosaic strip 177, 178.
  • the vertical seams may be seamless seams, while the horizontal seams are seam seams, or the vertical seams and the horizontal seams are seamless seams or both seam seams.
  • the limiting member 80 and the pulling member 16 and 17 are utilized.
  • 165 and pull tab 91 form a reliable equal width cavity.
  • the cold-formed thin-walled steel frame structure proposed by the present invention can also be used for casting of floor slabs. It is only necessary to cast the slab without using the permanent concrete formwork proposed by the present invention, and to attach the ordinary detachable concrete form to the underside of the cold-formed thin-walled steel frame, and then pouring the concrete from above.
  • the permanent concrete formwork proposed by the present invention can be fixedly attached under the cold-formed thin-walled steel frame, and then concrete can be poured from above. After casting, the permanent concrete form forms a layer of insulation to increase the insulation properties of the building.
  • the composite board (permanent concrete formwork) of the invention replaces the specific embodiment of the outer concrete formwork, and those skilled in the art can adopt various specific work processes according to the needs of engineering practice, and carry out various changes and adjustments.
  • the process that can be adopted in a specific engineering practice proposed in this application is as follows:
  • Fixing and installing the inner concrete formwork is the same as the composite board of the invention, and installing the outer composite board, and inserting the lower end mounting groove of the composite board of the invention into the starting strip or the horizontal inserting strip;
  • the cold-formed thin-walled steel frame is intersected with the concrete formwork (including the composite plate and the inner concrete formwork of the present invention).
  • the vertical keel is 90 cm out of the floor and used as a temporary guardrail until the thin-walled steel of the floor is installed. Carry out the concrete pouring of the lower wall and the floor, pay attention to the pouring, about 0.5 m high at a time;
  • the permanent concrete formwork replaces the cast-in-place concrete solution of the ordinary detachable concrete concrete formwork.
  • the cold-formed thin-walled steel frame proposed by the present invention may be omitted, and the ordinary steel bar of the prior art is used as the reinforcement. This will be explained below with reference to Figs. 13-16 and 23-24. It will be understood by those skilled in the art that in the construction method, the assembly method shown in Figs.
  • the construction method of the cast-in-place concrete wall of the preferred embodiment includes the following steps Step: installing a concrete formwork support structure; installing the inner concrete formwork 92, wherein the inner concrete formwork 92 is fixedly connected to the concrete formwork support structure; and the step of installing the outer concrete formwork, wherein the present invention is provided, including the previously described
  • the permanent concrete formwork of the thermal insulation composite panel structural component is used as the outer concrete formwork, in the adjacent two prefabricated thermal insulation composite panels 1 or two adjacent corner prefabricated thermal insulation composite panels 20 or adjacent prefabricated thermal insulation composite panels 1 and Inserting the connecting members 16, 17, 165 into the mounting grooves 13 of the side of the corner prefabricated thermal insulation composite panel 20, connecting the extensions of the pulling members 16, 17, 165 with the concrete formwork supporting structure, thereby making the outer concrete formwork It is fixedly connected to the concrete formwork support structure.
  • the step of installing the start strip 31 on the starting platform 30 is included, wherein the initial platform 30 is fixed.
  • the starting strip 31, the starting strip has a protruding embedding portion 310, and the lowermost horizontal mounting groove 13 is included in the lowermost prefabricated composite thermal insulation board or the cornered prefabricated composite thermal insulation board included in the permanent concrete formwork 13
  • the protruding insert is embedded in the lowermost mounting groove so that the lowermost composite panel is in place.
  • the inner concrete formwork 92 is fixedly coupled to the concrete formwork support structure by passing the concrete from the outside through the tension bolt 91.
  • the template support structure is fixedly connected to the tension sleeve 90 on the inner side of the concrete formwork support structure.
  • the end of the extension part of the pull piece 165 is connected with the tension sleeve 90. .
  • the pull joint 165 and the tension sleeve 90 are screwed together, and the tension bolt 91 and the tension sleeve 90 are screwed together.
  • connection of the pull tab 165 and the tension sleeve 90 is at the outer portion of the tension sleeve 90, and the connection point of the tension bolt 91 and the tension sleeve 90 is at the inner portion of the tension sleeve 90.
  • the fixed and installed inner concrete formwork is the same height as the composite plate.
  • the composite board is installed, and the lower end mounting groove is stuck on the protruding insert or the horizontal inlaid strip of the starting strip;
  • the P-position sleeve and the inner tensioning jaw form a reliable equal-width cavity
  • the inner concrete formwork forms a stable temporary structure through the inner tensioning concrete and the concrete formwork vertical keel, the concrete formwork transverse keel and the lateral support to conform to the traditional concrete formwork construction to ensure the verticality of the wall;
  • the inner concrete formwork intersects the bottom concrete formwork of the floor (optional composite plate or ordinary concrete formwork) and is reliably supported.
  • the outer composite plate continues to be installed upwards and is temporarily fixed. Support
  • the construction method involves applying the present invention to an existing base wall Composite panels, for retrofitting, thermal insulation or other modifications.
  • the permanent concrete formwork of the present invention comprising the insulated composite panel structural component or the prefabricated thermal insulation composite panel and/or the cornered precast insulation composite panel as described above is to be used as the outer insulation layer and/or finish.
  • the required filling material can be filled between the permanent concrete formwork and the existing base wall. For example, if the insulation material is filled, the insulation property of the wall body can be further provided.
  • the strength and durability of the existing wall body can be further provided, and if the fine stone concrete is filled, the waterproof property of the wall body can be provided. It is also possible to leave no space between the permanent concrete formwork and the existing several walls, and to fix the permanent concrete formwork against the existing base wall or to leave only a small space due to the construction needs, so that it is permanent There is no filling material between the concrete formwork and the existing base wall. This will be explained below with reference to Figs. 13-16 and 25. It will be understood by those skilled in the art that in the construction method, the assembly method shown in Figs. 13-16 is basically applied to Fig. 25.
  • the method of constructing a concrete wall includes the steps of: installing a portion of the insulation layer outside the existing wall body structure portion 100, Wherein, the insulating layer portion is fixedly connected to the wall main body structural portion 100, wherein the insulating layer portion comprises the heat insulating composite board structural component according to any one of claims 19-23, in the step of installing the insulating layer portion,
  • the extension of the pull members 16, 165 included in the thermal insulation composite structural component assembly is fixedly coupled to the wall main structural portion 100 to securely attach the thermal insulation composite structural component to the wall main structural portion.
  • the pulling member 16 is a pulling member 16 having a fastening hole at the protruding portion
  • the supporting member in the step of installing the insulating layer portion, the supporting member is first
  • the fixing member 202 is fixed to the outer side of the main body structural part of the wall, and then the connecting member 16 is fixedly connected to the supporting member 202 through the fastening hole on the protruding portion of the connecting member and the fastener 203, thereby absorbing the composite composite plate structure.
  • the prefabricated thermal insulation composite panel 1 or the cornered prefabricated thermal insulation composite panel 20 included in the assembly is attached to the wall main structural portion 100.
  • the method further comprises: fixing the starting strip 31 on the starting platform 30 of the bottom, the starting strip 31 having an upward protruding
  • the protruding embedding portion 310 is a protruding embedded portion of the lowermost mounting groove 13 and the starting strip of the lowermost prefabricated composite thermal insulation board and the cornered prefabricated composite thermal insulation board included in the thermal insulation composite structural component. With the 310 fit, the protruding insert is embedded in the lowermost mounting groove.
  • a space for pouring concrete is left between the heat insulating layer portion and the wall main body structural portion 100, and is installed.
  • the self-compacting fine aggregate concrete is poured into the space to improve the structural strength and waterproof ability of the existing wall substrate.
  • the support member is fixed to the wall laterally or vertically by the expansion bolt 201 when the support member 202 is fixed to the wall main body structural portion 100. On the main structure portion 100.
  • the standard and non-standard composite boards are arranged on the wall drawing by computer aided design program or manual design as the design layout drawing, accurately marking the position of the standard board and the non-standard composite board, and the non-standard size products are separately arranged and designed. ;
  • the present invention also proposes a production process of the prefabricated thermal insulation composite panel or the prefabricated thermal insulation composite panel with corners described above.
  • the following description will be made with reference to Figs. 1-8, particularly Fig. 6-7.
  • the production process of the prefabricated thermal insulation composite panel or the prefabricated thermal insulation composite panel with a corner according to a preferred embodiment relates to a prefabricated thermal insulation composite panel or a prefabricated thermal insulation composite panel with a corner for manufacturing the invention.
  • a frame made of aluminum alloy mold profiles 50 is a mold
  • the layer 71 is applied to apply the reinforcing protective layer 7, wherein after the first layer of the reinforcing protective layer 71 composed of the cement-based or gypsum-based polymer-modified cement is laid on the core 9, the reinforcing material 8 is laid, and then , laying a second layer of reinforcing protective layer 71 composed of cement-based or gypsum-based polymer-modified cement, and laying a second layer of reinforcing protective layer composed of cement-based or gypsum-based polymer-modified cement.
  • the high point of the alignment projections 503, 502 on the cross section of the mold profile 50 is the control point of the thickness of the reinforcing protective layer 7 of the composite panel.
  • the reinforcing layer 7 composed of a cement-based or gypsum-based polymer-modified cement is applied to one side of the core 9, or a cement-based or gypsum-based layer is applied to the other side of the core 9.
  • a facing layer 15 is provided on the reinforcing protective layer 7 of the one side or the other side to bond the reinforcing protective layer 7 before the demolding step.
  • the mold that is formed by molding the mold profile is placed on the substrate 508 for work.
  • the mold can also be placed on other types of work platforms during prefabrication.
  • all "including" have both the meaning of "including” and “consisting of”.
  • the mold profile for manufacturing a composite panel proposed by the present application can be used for manufacturing various prefabricated thermal insulation composite panels or prefabricated thermal insulation composite panels with corners as claimed in the present invention. It is also possible to manufacture a composite sheet comprising a core and a reinforcing protective layer covering the core on both sides of the core and having a mounting groove at the side end faces.
  • the method for manufacturing a composite panel by using a mold profile proposed in the present application can be used for manufacturing a composite panel, or a reinforcing protective layer including a core portion and a core portion on both sides of the core portion and having a mounting groove at the side end surface can be manufactured.
  • Other forms of composite panels The description of various structural members and methods in the specification of the present application is mainly for explaining the aspects related to the present invention, and those skilled in the art may, according to actual engineering design and construction requirements, various types disclosed in the specification. The steps included in the method are supplemented, modified, added or deleted, and the methods of addition, modification or addition and deletion do not depart from the scope of the invention without departing from the principles of the invention. Parts and reference list prefabricated insulation composite board 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Building Environments (AREA)

Description

预制保温复合板及其组件、 包括 其的模板、 混凝土板、 其预制方法、 模具型材 技术领域
本发明属于建筑结构构件及其制造方法和施工方法领域, 特 别是涉及预制保温复合板、 预制方法及预制用模具型材, 还涉及 将所述预制复合保温板作为混凝土的永久模板、 包括所述预制复 合保温板的拼接组件、 所述预制复合保温板与混凝土结合形成的 具有保温性能的结构构件及施工方法、 在已有结构基体上增设所 述预制复合保温板的具有保温性能的结构构件及施工方法。 背景技术
随着全球能源供应日趋紧张, 各国在大力开发新能源技术的 同时积极发展可以立竿见影的节能减排技术。 建筑能耗约占社会 总能耗 40%以上, 这还不包括建筑材料在生产、 运输和施工过程 中消耗的能源。 以降低建筑相关能耗为目标的技术开发也成为业 界主攻方向。
建筑节能最有效、 最实用的技术是外墙外保温技术, 也是目 前我国大力推广和实施的技术。每年约有 40亿平方米的新建建筑 需要进行保温施工, 还有约超过 400亿平方米的既有建筑有待进 行保温改造。 国家及地方有关部门也相应地制定了具体的实施标 准与操作规范。
目前现有技术遇到一大难题, 即大部分外墙外保温应用方案 中都采用有机类高效发泡材料, 属于可燃类材料, 若遇明火轰击 会被引燃, 且一旦引燃较难朴灭。 无机保温材料虽然防火性能优 异, 但保温隔热性能较难满足现有的节能标准要求。 目前的外墙 外保温施工技术多为分层施工, 避免不了在特定时间段有机可燃 材料棵露于外部, 一旦遇明火轰击 (如电焊等操作)还是存在火 灾隐患。 发明内容 本发明的一个目的在于提供一种新型的预制复合保温板。 该 预制复合保温板在工厂里预制好之后就已经将无机不燃材料复合 于可燃保温材料的外侧, 将可燃保温材料的芯部覆盖起来, 从而 解决在施工现场或其他场所放置、 运输或安装保温板时由于可燃 材料外露而易引起火灾的问题。 本发明的技术方案如下: 第一基本方案
本发明的第一基本方案涉及一种预制保温复合板( 1 ), 其具 有内侧主平面( 101)、 外侧主平面( 102)以及四个侧端面( 103, 104, 105, 106), 包括由保温板材构成的芯部 (9), 该预制保温 复合板还包括:
两层由水泥基或石膏基的聚合物改性胶浆构成的加强保护层 (7); 所述芯部 (9)处在所述两层加强保护层(7)之间, 所述 两层加强保护层与所述芯部 (9) 粘结在一起;
边框(2), 所述边框(2) 围绕着芯部 (9) 的周边并与芯部 (9)紧固在一起, 在所述该预制保温复合板的内侧主平面( 101) 和外侧主平面( 102) 内, 所述加强保护层将所述边框盖住, 使得 所述边框仅在该预制保温复合板的四个侧端面 ( 103, 104, 105, 106)上露出, 所述边框 (2) 包括在所述边框外侧并分别处在边 框上部和下部的两个边框连接部 ( 11) 以及处在边框外侧并处在 所述两个边框连接部( 11 )之间的安装槽 ( 13 ), 所述安装槽沿着 整个边框的长度延伸。 本发明的有益效果如下: 根据本发明提出的预制保温复合板, 由保温板材构成的芯部 ( 9 )处在两层由水泥基或石膏基的聚合物改性胶浆构成的加强保 护层之间(7 )。 这样, 在预制保温复合板的制造厂出厂的产品上, 已经用无机不燃的加强保护层 (7 )将可燃有机材料的芯部 (9 ) 覆盖起来, 带来了不易被引燃的效果。 不论是在运输途中还是在 施工现场, 这种防火灾的效果都很好, 特别是对于施工现场, 堆 放或存储时都比现有技术中的保温板更安全。 另外, 在所述该预 制保温复合板的内侧主平面 ( 101 )和外侧主平面 ( 102 ) 内, 所 述加强保护层将边框( 2 )盖住。 这使得在利用边框提供复合板的 整体性和强度以及利用边框上的安装槽提供组装的便利的情况 下, 同时, 所述边框仅在该预制保温复合板的四个侧端面 ( 103, 104, 105, 106 )上露出, 这样, 以无机不燃材料包裹可燃有机材 料形成封闭的复合结构, 则可以达到不被引燃的效果。 另一方面, 现有的保温材料均为轻质低强度材料, 与混凝土 模板的强度相比差距很大。 而本发明的预制保温复合板通过外侧 复合增强保护层使其强度达到建筑混凝土模板相当的程度, 则可 使这种复合板不仅具有保温材料功能 , 同时还可以用作免拆的混 凝土模板(即永久混凝土模板) , 从而实现安装保温材料和混凝 土模板施工合二为一。 免除了后续混凝土模板的拆卸以及另外的 保温层的施工作业, 既节省工序, 也节省材料, 尤其是节省大量 木材。 这样, 本发明的另一方面的目的在于, 提供了一种新型的 预制保温复合板, 该新型的预制保温复合板通过在保温材料的芯 部两侧增设加强保护层以及在芯部的周围增设带有安装槽的边 框, 一方面提高了预制保温复合板的强度, 另一方面使得预制保 温复合板可以借助于安装槽以及可以与安装槽配合的镶嵌条和 / 或拉接件进行拼装, 确保外侧表面的平整, 实现施工现场拼装式 作业, 提高施工作业的效率。 对于此目的而言, 构成保温板材的 材料既可以是有机可燃保温材料, 也可以是无机不燃保温材料。 据统计,建筑业已成为我国工业部门木材消耗的第一大用户, 占工业部门木材消耗量的 70% 以上。 例如, 2010 年上半年全 国房地产开发企业房屋施工面积达 30.84亿平方米, 按照施工面 积与混凝土模板面积之比为 10: 1 计算,这 30. 84 亿平方米房屋 要使用 3.084 亿平方米建筑混凝土模板。如果这些混凝土模板 2/3 为木混凝土模板, 那么要消耗约 308 万立方米木材(以混凝土模 板平均厚度 15mm计算) 。 也就是说, 我们为了制造这些混凝土 模板需要欲伐约 5130 万棵树, 相当于约 73万亩森林。 而用本发 明的预制复合保温板作为永久混凝土模板使用之后, 可以节约对 木材的消耗, 避免对森林的破坏, 加强对环境的保护。 根据相关 资料推算, 森林植被每公顷每年约可吸收 16 吨二氧化碳, 产生 12吨氧气, 则 73万亩森林每年可以吸收 78万吨二氧化碳, 产生 氧气 58万吨, 这还只是 10年上半年如采用此技术所可能产生的 环境效益。 此外,在本发明提出的预制复合保温板上具有围绕着芯部( 9 ) 的周边并与芯部(9 )紧固在一起的边框, 边框包括在所述边框外 侧并分别处在边框上部和下部的两个边框连接部 ( 11 ) 以及处在 边框外侧并处在所述两个边框连接部 ( 11 )之间的安装槽 ( 13 ), 所述安装槽沿着整个边框的长度延伸。 边框一方面有助于提供了 预制复合保温板的整体性, 并进一步提供其强度。 另一方面, 边 框上设置沿着其长度延伸的安装槽。 这样, 可以借助于有缝连接 件和 /或无缝连接件与安装槽的配合, 非常便于预制复合保温板的 拼装施工, 可以提高施工效率。 对于建筑工业而言, 这可以提供 一种高效快速的新的施工方法。 如果将这种结构强度高、 保温性能好、 具备防火功能的预制 复合板用作永久混凝土模板, 并将其尺寸设计制作成模数化的尺 寸, 再借助于工业化冷弯薄壁型钢框架作为与混凝土结合的配筋 (即整个混凝土结构的骨架), 就可以形成主要通过复合板拼接、 复合板拉接连接和混凝土浇注而进行的高效、 快速的一体化新型 建筑体系和建造方式。 当采用硅酸盐水泥或氯氧镁水泥的水泥基的聚合物改性胶浆 做加强保护层, 而使用有机保温材料做芯部时, 将使提高防火性 能的效果更加突出。 本发明的预制保温复合板可以不带饰面层, 也可以带有饰面 层。 如果将预制复合板外侧加上饰面层( 15 ) , 可以减少现场施 工操作, 降低劳动强度, 从而进一步提高效率、 缩短工期、 节约 成本。 另外, 可以将本发明的预制复合板与本发明提出的冷弯薄壁 型钢框架的独特结构结合使用。 这种结合将形成根据本发明提供 的混凝土板结构构件及其施工方法。 在该混凝土板结构构件中, 每个纵向型钢龙骨包括两根纵向冷弯薄壁型钢 ( 951 , 952; 851 , 852 ), 所述纵向冷弯薄壁型钢的主平面、 所述混凝土板结构构件 的主平面以及所述保温复合板结构组件所包括的预制保温复合板 或带拐角的预制保温复合板的内侧主平面和外侧主平面互相平 行, 所述两根纵向冷弯薄壁型钢沿着与所述混凝土板结构构件的 主平面垂直的方向彼此对置并间隔开, 以致所述两根纵向冷弯薄 壁型钢之间留有空间 ( 200 ), 从而在浇注混凝土时所述混凝土能 容易地从所述两根纵向冷弯薄壁型钢之间留有的空间流过。 这避 免了现有技术中的冷弯薄壁型钢的主平面与所述混凝土板结构构 件的主平面垂直而造成的问题: 1 )在外侧混凝土模板和内侧混凝 土模板之间浇注混凝土时, 混凝土的流动受到冷弯薄壁型钢的阻 碍, 混凝土浇注效率低, 浇注后的混凝土的密实性和均质性受影 响; 2 )冷弯薄壁型钢的主平面垂直于混凝土板结构构件的主平面, 使得冷弯薄壁型钢沿着从室内到室外的方向伸展从而在室内外之 间形成冷桥, 影响保温板的隔热效果。 而根据本发明的混凝土板 结构构件, 由于采用了新型的冷弯薄壁型钢框架结构, 解决了现 有技术中的两个问题: 1 )对于上面的第 1 )个问题, 本发明的冷 弯薄壁型钢在平行于混凝土结构构件的主平面的方向伸展, 不会 对浇注的混凝土沿着混凝土板的横向伸展方向、 沿着混凝土模板 的流动造成像现有技术那么大的阻碍, 使得混凝土可以顺着薄壁 型钢的主平面的方向顺畅地流动。 这可以提高浇注效率, 并确保 浇注到内侧和外侧混凝土模板之间的空间内之后混凝土的密实性 和均质性; 对于上面的第 2 ) 个问题, 本发明的冷弯薄壁型钢在 平行于混凝土结构构件的主平面的方向 (与从室内到室外的方向 垂直)伸展, 避免了在室内外之间形成冷桥。 另外, 当将本发明的预制保温复合板产品、 带拐角的预制保 温复合板产品与冷弯薄壁型钢框架结构产品结合时, 将形成一个 完整的建筑工业体系。 这个体系既涉及建筑设计、 建筑结构, 又 涉及建筑施工, 应用范围广泛。 该体系有如下优势:
1. 本系列产品均为工业化、 标准化产品, 可以通过大规模工 厂化生产提高资源利用效率, 保证产品的品质, 将繁瑣的现场施 工转向工厂, 这完全符合国家的住宅产业化发展方向。
2. 由于保温复合板外侧复合无机不燃材料,本产品在出厂后 的运输、 存放和施工过程中可以有效消除火灾隐患。
3.当在外侧不燃无机加强材料的加强保护层中设置增强材料 例如由耐碱玻璃纤维、碳纤维或钢纤维构成的增强网和 /或均匀地 分散在所述加强保护层中的耐碱短切玻璃纤维、 耐碱短切碳纤维 或耐碱短切钢纤维时, 复合板的弯曲强度显著优于混凝土混凝土 模板用胶合板的弯曲强度, 可以直接替代外侧需要保温面的木混 凝土模板。采用此免拆模技术, 不仅使保温层与结构层连接牢固, 而且省去了费工费时的保温施工, 也减少了传统施工方式中对混 凝土模板的拆卸、 保养、 搬运以及最终处理等操作。
4.当将本发明的预制复合板与本发明的冷弯薄壁型钢框架结 构结合起来, 以冷弯薄壁型钢代替螺紋钢时, 在总用钢量不增加 的情况下, 大大提高临时结构的稳定性、 尺寸的精确性, 使施工 过程更方便、 快捷、 可靠, 还有效减少临时性支撑的使用。
5. 由于建造方式的转变, 现场施工的作业量大大减少, 从而 节省劳动力, 降低劳动强度, 缩短施工工期。 据推算采用本发明 的复合板及本发明的冷弯薄壁型钢框架结构的组合形成的新式的 建筑工业的装配技术, 可节省劳动力 35% ~50%, 缩短工期 40% 以上。
6.当在本发明的永久混凝土模板与普通混凝土模板之间浇注 混凝土使混凝土与冷弯薄壁型钢框架粘结结合之后就可以形成型 钢劲性混凝土结构。 型钢劲性混凝土结构是目前公认的抗震、 耐 久、 防火性能最优异的结构形式之一。 其抗震性能远好于砌体结 构, 耐火性能和耐久性能远好于钢结构, 抗震性能和结构延性也 好于现有技术中的钢筋混凝土结构。
7. 当不浇注混凝土时,将本发明的预制复合板及其组件与现 有技术中的冷弯薄壁型钢框架结构结合起来而形成的结构, 可以 用来建造低层轻钢建筑或临时快拼建筑, 此时应选用耐候性好的 镀锌钢板做冷弯薄壁型钢, 并做好防水构造。
8. 在已有基层墙体的应用方案中,本发明的复合板可作为保 温饰面一体化产品, 饰面层可以制作成石材、 木材、 金属质感等 饰面。 空腔内可以浇注细石混凝土以提高已有墙体的结构强度和 防水能力, 对旧房改造有非常特别的意义。 下面对本发明的第一基本方案的优选方案以及其他的基本方 案分别进行说明: 第一基本方案的优选方案 在以第一基本方案为基础的第一优选方案的预制保温复合板 中, 每一层加强保护层(7 )中都设有埋置在其内的增强材料, 所 述预制保温复合板的尺寸为符合建筑标准化的模数化尺寸。 该优 选方案的预制保温复合板通过在加强保护层中埋置增强材料, 进 一步提高了预制板的强度, 通过将预制板的尺寸设定成符合建筑 标准化的模数化尺寸, 更便于预制板的标准化生产、 标准化施工 作业、 更有助于提高施工效率。 在以第一优选方案为基础的第二优选方案的预制保温复合板 中, 所述增强材料包括由耐碱玻璃纤维、 碳纤维或钢纤维构成的 增强网( 8 )或包括均匀地分散在所述加强保护层中的耐碱的短切 玻璃纤维、 短切碳纤维或短切钢纤维。 该优选方案提出的增强材 料对于进一步提高加强保护层的强度从而提高整个预制板的强 度, 尤其有更好的效果。 在以第一优选方案为基础的第三优选方案的预制保温复合板 中, 所述水泥为硅酸盐水泥或氯氧镁水泥, 所述保温板材由可燃 有机保温材料构成。 在该优选方案中, 将硅酸盐水泥或氯氧镁水 泥与由可燃有机保温材料构成的保温板材结合起来, 防火效果得 以进一步提高。 在以第一基本方案为基础的第四优选方案的预制保温复合板 中, 所述边框(2 )包括四段边框型材, 每段边框型材的两个端面 都是斜面, 以便四段边框型材两两端部对接而拼装在一起形成一 个完整的边框(2 ), 每一段边框型材均是一体成形的, 并且每一 段边框型材均包括:
在所述边框型材内侧并分别处在边框型材上部和下部的两个 固定翼部 ( 10 ); 以及
处在边框型材内侧并处在所述两个固定翼部 ( 10 )之间的芯 部固定槽 ( 3 );
其中, 所述两个边框连接部 ( 11 ) 中的每一个都设有边框连 接孔( 4 ); 所述预制保温复合板的所述芯部( 9 )的四个侧边的边 缘中的每个分别***到一段边框型材的芯部固定槽(3 )中,而且, 每段边框型材的所述两个固定翼部( 10 )夹持固定在所述芯部( 9 ) 的四个边缘中的一个上;
该预制保温复合板还包括:
边框型材加固件 (5 ), 每两段端部对接的边框型材之间有一 个或两个边框型材加固件(5 ), 所述边框型材加固件(5 )包括两 个***连接部( 51 ), 所述两个***连接部( 51 )分别***到每两 段相邻的边框型材的彼此相邻的边框连接孔( 4 )中并固定在边框 连接孔(4 ) 中, 以将四段边框型材连接在一起形成一个整体。
在该优选方案中, 边框采用分段拼装而成, 并借助于边框加 固件和边框上的边框连接孔进行拼装组合, 并利用边框的芯部固 定翼部和芯部固定槽而与芯部固定连接。 这形成了一种新型独特 的拼装方式, 非常便于建材厂的制造。 而且, 制造出来的预制复 合板的整体强度和整体刚度得到更进一步提高。 在以第四优选方案为基础的第五优选方案的预制保温复合板 中, 所述安装槽( 13 )相对于所述两个边框连接部 ( 11 )居中设 置, 所述芯部固定槽( 3 )在所述边框内侧相对于所述两个固定翼 部居中设置。 在该优选方案中, 将安装槽和芯部固定槽分别居中 设置, 边框的左右对称, 在芯部上安装边框时不需要区分左右, 便于在建材厂在芯部上装设边框的作业; 同时, 预制保温复合板 沿着其中心主平面也左右对称, 在施工现场装配预制板时也不需 要区分预制板的内外侧, 便于在建筑物施工现场的预制保温复合 板的拼装装配作业。 在以第五优选方案为基础的第六优选方案的预制保温复合板 中, 还包括饰面层( 15 ) , 所述饰面层( 15 )处在位于该预制保温 复合板外侧的加强保护层 (7 ) 的外侧并与该加强保护层(7 ) 粘 结在一起。 该优选方案的预制板包括了饰面层, 这样一次装配施 工, 将可以完成现有技术中至少三道工序 (支混凝土模板、 保温 层施工、饰面层施工)才能完成的任务, 进一步提高了施工效率。 在以第一基本方案为基础的第七优选方案的预制保温复合板 中, 所述保温板材为由可燃有机保温材料构成的保温板材。 在该 优选方案中, 保温板材为可燃有机保温材料构成, 这样, 不仅提 高预制保温复合板的强度和现场装配作业的效率等方面的效果得 以体现, 防火效果也进一步得以提高。 同时, 可让达到同样热阻 的有机保温材料的成本要低于无机保温材料的成本, 整个预制保 温板的成本优势更明显。 在以第一基本方案为基础的第八优选方案的预制保温复合板 中, 所述预制保温复合板为正方形或长方形, 其尺寸和重量设定 成便于建筑工人的手工搬运和操作。 根据该优选方案, 当将预制 板制成正方形或长方形时, 拼装作业更加方便, 也更便于标准化 设计和施工; 而尺寸和重量设定成便于建筑工人的手工便运和操 作, 可以降低在施工现场对吊装设备的依赖性, 在提高施工效率 的同时, 降低施工成本。 对于正方形的预制板, 其拼装的便利性 更进一步凸显, 这意味着, 板四个边的结构完全一样, 在现场装 配时, 无需区分。 当该第八优选方案与第五优选方案结合起来而 形成预制保温复合板时, 则板的制造的标准化、 现场装配的标准 化和便利性进一步提高, 预制板装配时, 不仅内外侧无需区分, 山下左右均无需区分, 装配极为灵活便利, 是一种不易出错的施 工方式。 第二基本方案及其优选方案 第二基本方案涉及一种带拐角的预制保温复合板(20),其包 括两个保温复合板部分, 所述两个保温复合板部分中的每个都具 有内侧主平面( 101)、 外侧主平面( 102)和四个侧端面, 所述四 个侧端面中的一个侧端面形成为相对于该保温复合板部分的内侧 主平面 ( 101 )和外侧主平面( 102 )倾斜的斜面( 108, 109 ), 两 个斜面 ( 108, 109) 的尺寸相同倾斜角度相同, 以便彼此配合, 两个保温复合板部分在斜面处对接在一起, 使得两个保温复合板 部分分别处在两个不同的平面中,所述两个不同的平面彼此相交, 每个保温复合板部分都包括:
由保温板材构成的芯部 (9);
两层由水泥基或石膏基的聚合物改性胶浆构成的加强保护层 (7), 所述芯部 (9)处在所述两层加强保护层(7)之间, 所述 两层加强保护层与所述芯部 (9) 粘结在一起;
边框(2), 所述边框(2)处在芯部 (9) 的在所述保温复合 板部分的除形成为所述斜面的侧端面以外的三个侧端面 ( 103, 104, 106)上的三个边并与芯部 (9) 紧固在一起, 在所述该带 拐角的预制保温复合板的内侧主平面和外侧主平面中的每个平面 内, 所述加强保护层将所述边框盖住, 使得所述边框仅在该带拐 角的预制保温复合板的所述保温复合板部分的所述三个侧端面 ( 103, 104, 106)上露出, 所述边框( 2 ) 包括在所述边框外侧 并分别处在边框上部和下部的两个边框连接部 ( 11)和处在边框 外侧并处在所述两个边框连接部( 11 )之间的安装槽 ( 13 ), 所述 安装槽沿着整个边框的长度延伸。 在以第二基本方案为基础的第一优选方案的带拐角的预制保 温复合板中, 每一层加强保护层(7 )中都设有埋置在其内的增强 材料, 所述带拐角的预制保温复合板的尺寸为符合建筑标准化的 模数化尺寸。 在以第一优选方案的带拐角的预制保温复合板为基础的第二 优选方案的带拐角的预制保温复合板中, 所述增强材料包括由耐 碱玻璃纤维、碳纤维或钢纤维构成的增强网(8 )或包括均匀地分 散在所述加强保护层中的耐碱短切玻璃纤维、 碳纤维或钢纤维。 在以第一优选方案的带拐角的预制保温复合板为基础的第三 优选方案的带拐角的预制保温复合板中, 所述水泥为硅酸盐水泥 或氯氧镁水泥, 所述保温板材由可燃有机保温材料构成。 在以第二基本方案为基础的第四优选方案的带拐角的预制保 温复合板中, 每个所述保温复合板部分包括的所述边框( 2 )都包 括三段边框型材, 每段边框型材的两个端面都是斜面, 以便六段 边框型材两两端部对接而拼装在一起形成一个完整的边框(2 ), 每一段边框型材均是一体成形的, 并且每一段边框型材均包括: 在所述边框型材内侧并分别处在边框上部和下部的两个固定 翼部 ( 10 ); 以及
处在边框型材内侧并处在所述两个固定翼部 ( 10 )之间的芯 部固定槽 ( 3 );
其中, 所述两个边框连接部 ( 11 ) 中的每一个都设有边框连 接孔( 4 ), 所述保温复合板部分的所述芯部( 9 )的除形成有所述 斜面的侧端面以外的三个侧端面 ( 103, 104, 106)上的三个边 的边缘分别***到一段边框型材的芯部固定槽(3)中, 而且, 每 段边框型材的所述两个固定翼部 ( 10) 夹持固定在所述芯部 (9) 的上述三个边中的一个边的边缘上;
所述带拐角的预制保温复合板还包括:
边框型材加固件 (5), 除所述斜面处以外, 在相邻的每两段 边框型材侧端面对接处, 在每两段端部对接的边框型材之间有一 个或两个边框型材加固件(5), 所述边框型材加固件(5)包括两 个***连接部( 51 ), 所述两个***连接部( 51 )分别***到每个 保温复合板部分中的相邻两段边框型材的彼此相邻的边框连接孔 (4) 中并固定在边框连接孔(4) 中, 以将相邻的边框型材连接 在一起形成一个整体;
所述带拐角的预制保温复合板还包括:
拐角部边框型材加固件 (6), 在所述斜面处在两个边框型材 的端面对接处在两个边框型材之间有一个或两个拐角部边框型材 加固件(6), 所述拐角部边框型材加固件(6)包括拐角***连接 部( 61 ), 所述拐角***连接部( 61 )在所述斜面处***到所述相 邻的两个边框的边框连接孔(4)中, 从而将在所述两个保温复合 板部分相对接的斜面处的相邻的两段边框型材固定在一起, 从而 将两个相邻的保温复合板部分的六段边框型材固定连接在一起形 成一个完整边框并将所述两个保温复合板部分固定结合在一起形 成一个整体。 在以第四优选方案的带拐角的预制保温复合板为基础的第五 优选方案的带拐角的预制保温复合板中, 所述安装槽 ( 13)相对 于所述两个边框连接部( 11)居中设置, 所述芯部固定槽(3)相 对于所述两个固定翼部 ( 10)居中设置。 在以第二基本方案为基础的第六优选方案的带拐角的预制保 温复合板中, 还包括饰面层( 15 ) , 所述饰面层( 15 )处在位于该 带拐角的预制保温复合板外侧的加强保护层( 7 )的外侧并与该加 强保护层( 7 ) 粘结在一起。 在以第二基本方案为基础的第七优选方案的带拐角的预制保 温复合板中, 所述保温板材为由可燃有机保温材料构成的保温板 材。 在以第七优选方案的带拐角的预制保温复合板为基础的第八 优选方案的带拐角的预制保温复合板中, 所述带拐角的预制保温 复合板的保温复合板部分为正方形或长方形的, 其尺寸设定成便 于建筑工人的手工搬运和操作。 前面已经说明过的根据本发明的预制保温复合板的第一基本 方案及其优选方案的进一步的有益效果, 同样可以适用于本发明 带拐角的预制保温复合板的基板方案及其优选方案, 在此不再赘 述。 第三基本方案及其优选方案 本发明的第三基本方案涉及一种保温复合板结构组件, 其包 括多个如第一基本方案及其优选方案中的任何一个方案所述的预 制保温复合板( 1 ), 所述多个预制保温复合板以侧端面对接的方 式拼接组合在一起, 该预制保温复合板构成的结构组件还包括: 多个拉接件,所述多个拉接件中的每个都包括安装槽嵌入部( 162, 163, 171, 172)和伸出部 ( 164, 173 ), 所述安装槽嵌入部被嵌 在所述预制保温复合板的安装槽内, 所述伸出部伸出到所述安装 槽之外, 并朝向所述内侧主平面( 101 )延伸得超过所述内侧主平 面 ( 101), 通过所述多个拉接件与所述安装槽的连接配合, 所述 多个预制保温复合板拼接组合在一起。 在以第三基本方案为基础的第一优选方案的保温复合板结构 组件中, 还包括多个如第二基本方案及其优选方案中任意一个方 案所述的带拐角的预制保温复合板 ( 20 ),所述带拐角的预制复合 保温板的高度和厚度分别与所述预制保温复合板的高度和厚度相 等, 所述带拐角的预制复合保温板的安装槽与所述预制保温复合 板的安装槽( 13) 的尺寸相同, 所述带拐角的预制保温复合板与 所述预制保温复合板之间两两侧端面对接,通过多个拉接件( 16, 17) 与所述安装槽 ( 13) 的连接配合, 相邻对接的所述带拐角的 预制保温复合板与所述预制保温复合板拼接组合在一起, 相邻的 每两个带拐角的预制保温复合板之间通过拉接件与所述安装槽的 连接配合而拼接组合在一起。 在以第三基本方案或第三基本方案的第一优选方案为基础的 第二优选方案的保温复合板结构组件中, 所述拉接件总体上呈 T 形, 所述安装槽嵌入部形成在所述 T形的上部, 所述伸出部形成 在所述 T形的下部,所述拉接件的安装槽嵌入部( 162, 163, 171, 172)的横截面形状与所述安装槽 ( 13)的横截面形状一致以便安 装槽嵌入部 ( 162, 163, 171, 172) 与所述安装槽 ( 13)彼此配 合。 在以第三基本方案为基础的第三优选方案的保温复合板结构 组件中, 所述拉接件包括有缝拉接件( 16)和无缝拉接件( 17), 所述有缝拉接件具有主体部 ( 161 ), 所述有缝拉接件的伸出部
( 164) 与所述有缝拉接件的所述主体部 ( 161)处在同一个平面 内, 所述有缝拉接件的安装槽嵌入部 ( 162, 163 ) 沿着垂直于所 述有缝拉接件的所述伸出部和所述主体部所处的平面的方向伸出 到所述有缝拉接件的所述伸出部和所述主体部所处的平面之外, 在所述结构组件中, 所述有缝拉接件放置在由相邻的每两个预制 保温复合板对接而形成的水平接缝中, 所述有缝拉接件和所述无 缝拉接件的安装槽嵌入部的横截面的宽度(W , W拉 2)都与预 制保温复合板的安装槽的宽度(W 槽 )相等, 所述有缝拉接件的 安装槽嵌入部的横截面的高度(h拉 等于或小于所述安装槽的 深度( d槽); 所述无缝拉接件的安装槽嵌入部的横截面高度( h拉 2)等于两个对接在一起的预制保温复合板的两个安装槽的深度(d 槽 )的和, 所述无缝拉接件具有颈缩部( 178), 所述颈缩部处在所 述安装槽嵌入部 ( 171) 与所述伸出部 ( 173)之间, 整个所述无 缝拉接件的厚度都相同, 所述颈缩部的横截面的宽度小于所述伸 出部的横截面的宽度, 横向上相邻的每两个预制保温复合板中的 每个的沿着竖向的两个边框连接部 ( 11) 中的一个上设有卡槽
( 179), 相邻的两个卡槽彼此正对, 所述卡槽的宽度与所述颈缩 部的宽度相等, 两个卡槽的深度的和与所述颈缩部的厚度相等。 在以第三基本方案的第一优选方案为基础的保温复合板结构 组件中, 所述拉接件包括有缝拉接件( 16)和无缝拉接件( 17), 所述有缝拉接件具有主体部 ( 161 ), 所述有缝拉接件的伸出部 ( 164) 与所述有缝拉接件的所述主体部 ( 161)处在同一个平面 内, 所述有缝拉接件的安装槽嵌入部 ( 162, 163 )沿着垂直于所 述有缝拉接件的所述伸出部和所述主体部所处的平面的方向伸出 到所述有缝拉接件的所述伸出部和所述主体部所处的平面之外, 在所述结构组件中, 在由相邻的每两个预制保温复合板对接而形 成的水平接缝以及由相邻的每两个带拐角的预制保温复合板对接 而形成的水平接缝中都放置有所述有缝拉接件, 所述有缝拉接件 和所述无缝拉接件的安装槽嵌入部的横截面的宽度( W 拉 1 } W 拉 都 · ·与 · ·预―制: :保温复二合 ' 板: 的:安:装;槽::及带:拐 ' .角的:预―制: :保 复合板的安 装槽的宽度(W 槽 )相等, 所述有缝拉接件的安装槽嵌入部的横 截面的高度(h 拉 等于或小于所述安装槽的深度(d 槽 ); 所述 无缝拉接件的安装槽嵌入部的横截面高度(h 拉 2 )等于两个安装 槽的深度(d 槽 )的和, 所述无缝拉接件具有颈缩部( 178 ), 所述 颈缩部处在所述安装槽嵌入部( 171 )与所述伸出部( 173 )之间, 整个所述无缝拉接件的厚度都相同, 所述颈缩部的横截面的宽度 小于所述伸出部的横截面的宽度, 横向上相邻的每两个预制保温 复合板中的每个的沿着竖向的两个边框连接部 ( 11 ) 中的一个上 的每个的沿着竖向的两个边框连接部 ( 11 ) 中的一个上设有卡槽 ( 179 ), 相邻的两个卡槽彼此正对, 所述卡槽的宽度与所述颈缩 部的宽度相等, 两个卡槽的深度的和与所述颈缩部的厚度相等。 第四基本方案 本发明的第四基本方案涉及一种永久混凝土模板, 该永久混 凝土模板包括:
如第一基本方案及其优选方案中的任意一个方案所述的预制 保温复合板和 /或如第二基本方案及其优选方案中的任意一个方 案所述的带拐角的预制保温复合板;
或包括: 如第三基本方案及其优选方案中的任意一个方案所 述的保温复合板结构组件。 第五基本方案及其优选方案 本发明的第五基本方案涉及一种混凝土板结构构件,其包括: 配筋;
第一混凝土模板, 其处在所述配筋的一侧;
第二混凝土模板, 其处在所述配筋的另一侧;
混凝土, 其处在所述第一混凝土模板与所述第二混凝土模板 之间;
其中, 所述第一混凝土模板和所述第二混凝土模板中之一或 二者都是永久混凝土模板, 所述混凝土与所述配筋和所述永久混 凝土模板结合成一个整体;
其中, 所述永久混凝土模板包括: 第三基本方案及其优选方 案中的任意一个方案所述的保温复合板结构组件, 所述保温复合 板结构组件与所述配筋通过所述拉接件( 16, 17, 165 )的伸出部 而固定连接。 在以第五基本方案为基础的第一优选方案的混凝土板结构构 件中, 所述配筋为钢筋或冷弯薄壁型钢框架; 所述冷弯薄壁型钢 框架包括:
多个沿着所述混凝土板结构构件的主平面的伸展方向间隔开 的互相平行排列的纵向型钢龙骨( 95 , 85 ), 每个纵向型钢龙骨包 括两根纵向冷弯薄壁型钢( 951 , 952; 851, 852 ), 所述纵向冷弯 薄壁型钢的主平面以及所述保温复合板结构组件所包括的预制保 温复合板或带拐角的预制保温复合板的内侧主平面和外侧主平面 互相平行, 所述两根纵向冷弯薄壁型钢沿着与所述混凝土板结构 构件的主平面垂直的方向彼此对置并间隔开, 以致所述两根纵向 冷弯薄壁型钢之间留有空间 ( 200 ), 从而在浇注混凝土时所述混 凝土能容易地从所述两根纵向冷弯薄壁型钢之间留有的空间流 过, 所述两根纵向冷弯薄壁型钢之间留有的空间里充满混凝土, 所述第一混凝土模板和所述第二混凝土模板都与所述弯薄壁型钢 框架固定连接。 在以第五基本方案的第一优选方案为基础的第二优选方案的 混凝土板结构构件中, 所述两根纵向冷弯薄壁型钢之间通过型钢 连接件( 96, 87 ) 固定连接, 所述第一混凝土模板和所述第二混 凝土模板与所述纵向冷弯薄壁型钢之间都间隔开, 在所述第一混 凝土模板与第二混凝土模板之间的混凝土将所述冷弯薄壁型钢框 架覆盖起来。 在以第五基本方案的第一优选方案为基础的第三优选方案的 混凝土板结构构件中, 每个纵向型钢龙骨 (95 ) 包括的纵向冷弯 薄壁型钢 ( 951 , 952 )上带有沿着其长度方向分布的贯穿的多个 龙骨通孔 ( 953 , 954 ), 在两根纵向冷弯薄壁型钢上的龙骨通孔 ( 953 , 954 )彼此正对, 在至少一部分龙骨通孔( 953 , 954 ) 中 贯穿有所述拉接件( 16, 17, 165 )的伸出部, 使得所述龙骨通孔 的贯穿方向与所述混凝土板结构构件的主平面以及所述保温复合 板结构组件所包括的预制保温复合板或带拐角的预制保温复合板 的内侧主平面和外侧主平面垂直; 所述第一混凝土模板和所述第 二混凝土模板中的一个为普通混凝土模板, 所述永久混凝土模板 为外侧混凝土模板,所述普通混凝土模板为内侧混凝土模板( 92 ), 所述混凝土板结构构件还包括拉紧栓( 91 )和拉紧套管( 90 ), 所述拉紧套管 (90 )处在所述内侧混凝土模板(92 ) 与每个纵向 型钢龙骨所包括的两根纵向冷弯薄壁型钢中的处在内侧的纵向冷 弯薄壁型钢之间;
所述拉接件( 16, 17, 165 )的伸出部从所述外侧混凝土模板 伸出并穿过所述龙骨通孔与所述拉紧套管连接, 将所述外侧混凝 土模板与所述纵向型钢龙骨固定连接, 所述拉紧栓(91 ) 穿过所 述内侧混凝土模板 ( 92 ) 与所述拉紧套管连接, 将所述内侧混凝 土模板与所述纵向型钢龙骨固定连接。 在以第五基本方案的第三优选方案为基础的第四优选方案的 混凝土板结构构件中, 所述混凝土板结构构件还包括:
限位套管( 80 ),其处在所述外侧混凝土模板与所述每个纵向 型钢龙骨所包括的两根纵向冷弯薄壁型钢中的处在外侧的纵向冷 弯薄壁型钢之间。 在以第五基本方案的第二优选方案为基础的第五优选方案的 混凝土板结构构件中, 每个纵向型钢龙骨所包括的两根纵向冷弯 薄壁型钢都为 C形型钢, 所述冷弯薄壁型钢框架还包括:
横向连接型钢龙骨, 其包括横向冷弯薄壁型钢 ( 981 , 982, 881, 882 );
斜向连接型钢龙骨, 其包括斜向冷弯薄壁型钢 ( 891 , 892 ), 所述纵向型钢龙骨沿着竖向设置, 多个平行排列的纵向型钢龙骨 通过所述横向连接型钢龙骨而连接, 所述斜向型钢连接龙骨与所 述纵向型钢龙骨连接, 所述纵向型钢龙骨、 所述横向连接型钢龙 骨和所述斜向连接龙骨连接以形成一个稳定的整体刚性结构。 在以第五基本方案的第三优选方案为基础的第六优选方案的 混凝土板结构构件中, 所述拉接件 ( 165 ) 与所述拉紧套管 (90 ) 之间为螺纹连接, 所述拉紧栓(91 ) 与所述拉紧套管 (90 )之间 为螺纹连接。 在以第五基本方案的第七优选方案的混凝土板结构构件中, 所述混凝土板结构构件为混凝土墙板结构构件, 还包括: 处在底 部的起始平台 (30 ), 所述起始平台上固定有起始条(31 ), 所述 起始条(31 )具有向上突出的突出嵌入部 (310 ), 所述永久混凝 土模板所包括的处在最下面的预制复合保温板和带拐角的预制复 合保温板上的处在最下面的安装槽( 13 ) 与起始条的突出嵌入部 ( 310 ) 配合, 突出嵌入部嵌到所述最下面的安装槽内。 第六基本方案及其优选方案 第六基本方案涉及一种混凝土墙板结构构件,其包括: 配筋; 第一混凝土模板, 其处在所述配筋的一侧; 第二混凝土模板, 其 处在所述配筋的另一侧; 混凝土模板支撑, 所述第一混凝土模板 和所述第二混凝土模板与所述混凝土模板支撑固定连接;混凝土, 其处在所述第一混凝土模板与所述第二混凝土模板之间; 其中, 所述第一混凝土模板和所述第二混凝土模板中之一或二者都是永 久混凝土模板, 所述混凝土与所述配筋和所述永久混凝土模板结 合成一个整体; 其中, 所述永久混凝土模板包括第三基本方案及 其优选方案中的任意一个方案所述的保温复合板结构组件, 所述 保温复合板结构组件与所述混凝土模板支撑通过所述拉接件( 16, 17, 165 ) 的伸出部而固定连接。 在以第六基本方案为基础的第一优选方案的混凝土墙板结构 构件中, 所述第一混凝土模板为外侧混凝土模板, 所述外侧混凝 土模板为永久混凝土模板, 所述第二混凝土模板为内侧混凝土模 板(92 ), 该混凝土墙板结构构件的混凝土模板支撑包括: 混凝土 模板竖向龙骨 (922 )和混凝土模板横向龙骨 (921 );
该混凝土墙板结构构件还包括拉紧栓( 91 )和拉紧套管( 90 ), 所述拉紧套管 (90 )处在所述内侧混凝土模板(92 )外侧并与所 述内侧混凝土模板邻接, 所述混凝土模板竖向龙骨( 922 )处在所 述内侧混凝土模板(92 ) 内侧并与所述内侧混凝土模板邻接, 所 述混凝土模板横向龙骨处在所述混凝土模板竖向龙骨内侧并与所 述混凝土模板横向龙骨邻接, 所述拉紧栓(91 )从所述混凝土模 板横向龙骨内侧开始,依次穿过所述混凝土模板横向龙骨( 921 )、 所述混凝土模板竖向龙骨 (922 )、 所述内侧混凝土模板 ( 92 ) 与 所述拉紧套管 (90 )连接, 从而将所述内侧混凝土模板、 所述混 凝土模板横向龙骨和所述混凝土模板竖向龙骨固定连接; 所述拉 接件 ( 165 )的伸出部从所述外侧混凝土模板伸出并穿过与所述拉 紧套管连接,从而将所述外侧混凝土模板与所述内侧混凝土模板、 所述混凝土模板竖向龙骨和所述混凝土模板横向龙骨固定连接起 来。 在以第六基本方案的第一优选方案为基础的第二优选方案的 混凝土墙板结构构件中,所述拉接件 ( 165 )与所述拉紧套管( 90 ) 之间为螺纹连接, 所述拉紧栓(91 ) 与所述拉紧套管 (90 )之间 为螺纹连接。 在以第六基本方案为基础的第三优选方案的混凝土墙板结构 构件中, 还包括: 处在底部的起始平台 (30 ), 所述起始平台上固 定有起始条( 31 ), 所述起始条( 31 )具有向上突出的突出嵌入部 ( 310 ), 所述永久混凝土模板所包括的处在最下面的预制复合保 温板和带拐角的预制复合保温板上的处在最下面的安装槽 ( 13) 与起始条的突出嵌入部(310)配合, 突出嵌入部嵌到所述最下面 的安装槽内。 第七基本方案及其优选方案 本发明的第七基本方案涉及一种墙体结构构件, 包括: 墙体 主体结构部分( 100)和保温层部分, 所述保温层部分与所述墙体 主体结构部分( 100) 固定连接, 其特征在于: 所述保温层部分为 权利要求 19-23 中的任意一个权利要求所述的保温复合板结构 组件, 所述拉接件( 16, 165)的伸出部与所述墙体主体结构部分 ( 100)固定连接, 以将所述保温复合板结构组件固定连接在所述 墙体主体结构部分上。 在以第七基本方案为基础的第一优选方案的墙体结构构件 中, 所述拉接件( 16) 的伸出部带有紧固孔, 所述墙体主体结构 部分上固定有支撑件 (202), 所述拉接件通过所述伸出部上的紧 固孔以及紧固件而固定连接在所述支撑件(202)上。 在以第七基本方案为基础的第二优选方案的墙体结构构件 中, 还包括: 处在底部的起始平台 (30), 所述起始平台上固定有 起始条( 31 ),所述起始条( 31 )具有向上突出的突出嵌入部( 310 ), 所述永久混凝土模板所包括的处在最下面的预制复合保温板和带 拐角的预制复合保温板上的处在最下面的安装槽 ( 13) 与起始条 的突出嵌入部(310)配合, 突出嵌入部嵌到所述最下面的安装槽 内。 第八基本方案及其优选方案 本发明的第八基本方案涉及一种用于制造第一基本方案及其 优选方案之一所述的预制保温复合板或第二基本方案及其优选方 案之一所述的带拐角的预制保温复合板的模具型材( 50 ),其包括: 型材本体 ( 501 ), 所述型材本体包括用于在制造该所述预制保温 或所述带拐角的预制保温复合板的边框(2) 的两个连接部 ( 11) 抵靠的内侧抵靠部 ( 507 ), 所述内侧抵靠部的表面上伸出用于在 到安装槽( 13 )内从而对芯部( 9 )进行定位的定位突出部( 504 ), 所述定位突出部的厚度等于所述安装槽的宽度(W槽), 所述内侧 抵靠部上设有在制造预制保温复合板或所述带拐角的预制保温复 合板时用于决定加强保护层(7) 的厚度的上对齐突出部 ( 503 ), 从所述定位突出部 ( 504) 的上表面至所述上对齐突出部 ( 503 ) 的顶表面的距离大于所述边框连接部 ( 11)厚度。 在以第八基本方案为基础的第一优选方案的模具型材中, 还 包栝用于在制造预制保温复合板或所迷带拐角的预
Figure imgf000027_0001
时决定一层加强保护层(7)的厚度的下对齐突出部( 502), 从所 述定位突出部 ( 504) 的下表面至所述下对齐突出部 ( 502) 的底 表面的距离大于所述边框连接部 ( 11)厚度, 所述上对齐突出部 ( 503 )从所述定位突出部 ( 504) 的上表面向上伸出的距离等于 所述下对齐突出部 ( 502)从所述定位突出部 ( 504) 的下表面向 下伸出的距离。 在以第八基本方案第一优选方案为基础的第二优选方案的模 具型材中, 所述上对齐突出部伸出到所述型材本体(501 )的上表 面之上, 所述下对齐突出部( 502 )伸出到所述型材本体的下表面 之下。 在以第八基本方案为基础的第三优选方案的模具型材中, 所 述型材本体是空心的型材本体,所述模具型材由铝合金型材构成。 第九基本方案及其优选方案 第九基本方案涉及一种现浇混凝土墙体的施工方法, 其包括 如下步骤:
安装冷弯薄壁型钢框架的步骤;
安装外侧混凝土模板的步骤, 其中, 安装外侧混凝土模板将 其与冷弯薄壁型钢框架固定连接, 采用包括第三基本方案及其优 选方案之一所述的保温复合板结构组件的永久混凝土模板作为外 侧混凝土模板, 在相邻的两个预制保温复合板或相邻的两个带拐 温复合板的侧边的安 ^槽 ( 13 ) 中***拉接件一 ( 16, 17, 165 ), 外侧混凝土模板与冷弯薄壁型钢框架的固定连接是通过将拉接件 ( 16, 17, 165 )的伸出部与冷弯薄壁型钢框架固定连接而实现的; 安装内侧混凝土模板的步骤, 其中, 安装内侧混凝土模板将 其与冷弯薄壁型钢框架固定连接。
在以第九基本方案为基础的第一优选方案的现浇混凝土墙体 的施工方法中, 所述外侧混凝土模板所包括的预制复合保温板或 带拐角的预制复合保温板的主平面的平面尺寸为模数化的尺寸, 安装外侧混凝土模板的步骤是重复进行的以便通过拼装组合多层 尺寸为模数化的外侧混凝土模板而达到一个楼层的高度。 在以第九基本方案的第一优选方案为基础的第二优选方案的 现浇混凝土墙体的施工方法中, 所述内侧混凝土模板的主平面的 平面尺寸与所述外侧混凝土模板的主平面的平面尺寸相同, 安装 内侧混凝土模板的步骤是重复进行的以便通过拼装组合多层尺寸 为模数化的内侧混凝土模板而达到一个楼层的高度, 拼装具有模 数化尺寸的外侧混凝土模板与拼装与外侧混凝土模板相对的具有 模数化尺寸的内侧混凝土模板是交替进行的。 在以第九基本方案为基础的第三优选方案的现浇混凝土墙体 的施工方法中, 在安装最底层的外侧混凝土模板和内侧混凝土模 板时, 包括在起始平台 (30 )上安装起始条的步骤, 其中, 在起 始平台(30 )上固定起始条(31 ),起始条带有突出嵌入部(310 ), 所述永久混凝土模板所包括的处在最下面的预制复合保温板或带 拐角的预制复合保温板上的最下面的安装槽( 13 ) 与起始条的突 出嵌入部(310 )配合,使突出嵌入部嵌到所述最下面的安装槽内。 在以第九基本方案为基础的第四优选方案的现浇混凝土墙体 的施工方法中, 在安装冷弯薄壁型钢框架的步骤中包括: 安装多 个沿着所述混凝土墙体的主平面的伸展方向间隔开的互相平行排 列的纵向型钢龙骨( 95, 85 ), 每个纵向型钢龙骨包括两根纵向冷 弯薄壁型钢(951, 952; 851 , 852 ), 将所述纵向冷弯薄壁型钢的 主平面设置成与所述混凝土墙体的主平面以及所述保温复合板结 侧主平面和外侧主平面互相平行, 使所述两根纵向冷弯薄壁型钢 沿着与所述混凝土墙体的主平面垂直的方向彼此对置并间隔开, 以致所述两根纵向冷弯薄壁型钢之间留有空间 ( 200), 从而在浇 注混凝土时所述混凝土能容易地从所述两根纵向冷弯薄壁型钢之 间留有的空间流过。 在以第九基本方案的第四优选方案为基础的第五优选方案的 现浇混凝土墙体的施工方法中, 在安装外侧混凝土模板和内侧混 凝土模板的步骤中, 包括: 在横向上左右相邻的预制保温复合板 的侧边的竖向的安装槽 ( 13)中***竖向镶嵌条( 177)和拉接件 ( 16, 17, 165), 竖向上相邻的预制保温复合板之间的水平的安 装槽( 13) 中放入横向镶嵌条( 166)和拉接件( 16, 17, 165), 其中, 外侧混凝土模板与冷弯薄壁型钢框架的固定连接是通过将 拉接件( 16, 17, 165)的伸出部穿过包括型钢框架所包括的纵向 型钢龙骨 (95)上的龙骨通孔( 953, 954) 与处在竖向龙骨内侧 的拉紧套管 (90) 螺纹连接, 以将预制保温复合板或带拐角的预 制保温复合板与冷弯薄壁型钢框架固定连接而实现的, 将带有垫 片的拉紧栓(91)从内侧混凝土模板 (92) 的内侧穿过相邻的内 侧混凝土模板之间的龙骨通孔而与所述拉紧套管( 90 )螺纹连接, 以将各内侧混凝土模板与冷弯薄壁型钢框架固定连接。 在以第九基本方案为基础的第六优选方案的现浇混凝土墙体 的施工方法中, 拼装永久外侧混凝土模板与内侧混凝土模板将其 与冷弯薄壁型钢框架固定连接时利用限位件 (80)、 拉接件( 16, 17, 165) 与拉接拴(91)形成可靠等宽空腔。 第十基本方案及其优选方案 第十基本方案涉及一种现浇混凝土保温墙体的施工方法, 其 包括如下步骤:
安装混凝土模板支撑结构;
安装内侧混凝土模板(92) 的步骤, 其中, 将内侧混凝土模 板(92) 与所述混凝土模板支撑结构固定连接;
安装外侧混凝土模板的步骤, 其中, 采用包括第三基本方案 及其优选方案之一所述的保温复合板结构组件的永久混凝土模板 作为外侧混凝土模板, 在相邻的两个预制保温复合板或相邻的两 预制保温复合板的侧边的安 槽( 13) 中***拉接件一 ( 16, 17, 165), 将拉接件( 16, 17, 165)的伸出部与所述混凝土模板支撑 结构连接, 从而使外侧混凝土模板与混凝土模板支撑结构固定连 接起来。 在以第十基本方案为基础的第一优选方案的现浇混凝土墙体 的施工方法中, 在安装最底层的外侧混凝土模板时, 包括在起始 平台 (30)上安装起始条(31)的步骤, 其中, 在起始平台 (30) 上固定起始条(31), 起始条带有突出嵌入部(310), 将所述永久 混凝土模板所包括的处在最下面的预制复合保温板或带拐角的预 制复合保温板上的处在最下面的水平安装槽( 13) 与起始条的突 出嵌入部(310)配合,使突出嵌入部嵌到所述最下面的安装槽内。 在以第十基本方案为基础的第二优选方案的现浇混凝土墙体 的施工方法中, 在安装内侧混凝土模板(92) 的步骤中, 将内侧 混凝土模板 (92) 与所述混凝土模板支撑结构固定连接是通过利 用拉紧栓(91)从外侧穿过混凝土模板支撑结构而与处在混凝土 模板支撑结构内侧的拉紧套(90) 固定连接而实现的, 在安装外 侧混凝土模板的步骤中, 将拉接件 ( 165)的伸出部的端部与拉紧 套( 90 )连接。 在以第十基本方案的第二优选方案为基础的第三优选方案的 现浇混凝土墙体的施工方法中, 所述拉接件( 165 )与所述拉紧套 管( 90 )之间为螺纹连接,所述拉紧栓( 91 )与所述拉紧套管( 90 ) 之间为螺纹连接, 所述拉接件 ( 165 )与所述拉紧套( 90 )的连接 点在所述拉紧套(90 ) 的外侧部分, 所述拉紧栓(91 ) 与所述拉 紧套(90 ) 的连接点在所述拉紧套(90 ) 的内侧部分。 第十一基本方案及其优选方案 第十一基本方案涉及一种混凝土墙体的施工方法, 包括如下 步骤: 在墙体主体结构部分( 100 )外侧安装保温层部分的步骤, 其中, 将所述保温层部分与所述墙体主体结构部分( 100 )固定连 接, 其特征在于: 所述保温层部分包括第三基本方案及其优选方 案之一所述的保温复合板结构组件,在安装保温层部分的步骤中, 将所述的保温复合板结构组件所包括的拉接件( 16, 165 )的伸出 部与所述墙体主体结构部分( 100 )固定连接, 以将所述保温复合 板结构组件固定连接在所述墙体主体结构部分上。 在以第十一基本方案为基础的第一优选方案的混凝土墙体的 施工方法中,所述拉接件( 16 )为伸出部带有紧固孔的拉接件( 16 ), 在安装保温层部分的步骤中, 先将支撑件(202 )固定到所述墙体 主体结构部分的外侧, 然后通过所述拉接件的所述伸出部上的紧 固孔以及紧固件( 203 )而将所述拉接件 ( 16 ) 固定连接在所述支 撑件( 202 )上, 从而将保温复合板结构组件所包括的预制保温复 合板( 1 )或带拐角的预制保温复合板 ( 20 )连接到墙体主体结构 部分( 100 )上。 在以第十一基本方案为基础的第二优选方案的混凝土墙体的 施工方法中, 在安装保温层部分的步骤中还包括: 在底部的起始 平台 (30 )上固定起始条(31 ), 所述起始条(31 )具有向上突出 的突出嵌入部 (310 ), 将所述保温复合板结构组件所包括的处在 最下面的预制复合保温板和带拐角的预制复合保温板上的处在最 下面的安装槽 ( 13 )与起始条的突出嵌入部(310 )配合, 将突出 嵌入部嵌到所述最下面的安装槽内。 在以第十一基本方案为基础的第三优选方案的混凝土墙体的 施工方法中, 在安装保温层部分的步骤中, 在所述保温层部分与 所述墙体主体结构部分( 100 )之间留有浇注混凝土的空间, 在安 装好保温层部分之后, 在所述空间中浇注自密实细骨料混凝土以 提高已有墙体基体的结构强度和防水能力。 在以第十一基本方案第一优选方案为基础的第四优选方案的 混凝土墙体的施工方法中, 在将支撑件(202 )固定在墙体主体结 构部分( 100 )上时利用膨胀螺栓(201 )将支撑件沿着横向或竖 向固定在墙体主体结构部分( 100 )上。 第十二基本方案及其优选方案 第十二基本方案涉及一种用于制造第一基本方案及其优选方 案之一所述的预制保温复合板或第二基本方案及其优选方案之一 所述的带拐角的预制保温复合板的预制方法, 其特征在于: 使用 第八基本方案及其优选方案之一所述的模具型材(50 ), 包括如下 步骤:
1) 以所述的模具型材(50)拼接而成的框架为模具;
2)将带边框(2) 的芯部 (9) 置于模具内, 使边框(2) 的 安装槽 ( 13) 与所述的模具型材(50) 内侧的定位突出部 ( 504) 紧密结合以定位芯部 (9);
3)在芯部 (9) 的一面, 施加由水泥基或石膏基的聚合物改 性胶浆构成的加强保护层 (7), 在铺设由水泥基或石膏基的聚合 物改性胶浆构成的加强保护层(7)时, 以所述模具型材(50)横 断面上的对齐突出部( 503, 502 )高点为复合板的增强保护层( 7 ) 的厚度的控制点, 以保证复合板的厚度及尺寸统一;
4)翻转模具, 重复步骤 3, 以在芯部 (9) 的另一面施加由 水泥基或石膏基的聚合物改性胶浆构成的加强保护层 (7);
5)待加强保护层(7)初凝后脱模, 将所述模具型材(50) 去除;
6)对保温复合板或带拐角的预制保温复合板进行养护。 在以第十二基本方案为基础的第一优选方案的预制方法中, 在芯部( 9 )的每一面施加由水泥基或石膏基的聚合物改性胶浆构 成的加强保护层( 7:)时均分两层( 71 )来施加所述加强保护层( 7 ), 其中, 先将第一层由水泥基或石膏基的聚合物改性胶浆构成的加 强保护层( 71 )材料铺设于芯部( 9 )上之后, 铺设增强材料( 8 ), 然后, 再铺设第二层由水泥基或石膏基的聚合物改性胶浆构成的 加强保护层(71)材料, 在铺设第二层由水泥基或石膏基的聚合 物改性胶浆构成的加强保护层( 71 )材料时,以所述模具型材( 50 ) 横断面上的对齐突出部 ( 503, 502) 高点为复合板的增强保护层 (7) 的厚度的控制点。 在以第十二基本方案为基础的第二优选方案的预制方法中, 在芯部( 9 )一面施加由水泥基或石膏基的聚合物改性胶浆构成的 加强保护层(7 )之后或在芯部 (9 ) 另一面施加由水泥基或石膏 基的聚合物改性胶浆构成的加强保护层( 7 )之后, 在脱模步骤以 前, 在该一面或该另一面的加强保护层(7 )上设置饰面层( 15 ), 使其与加强保护层(7 ) 粘合。 附图说明 图 1为本发明的预制保温复合板的一个优选实施方式的立体 结构示意图;
图 2为本发明的预制保温复合板的一个优选实施方式的立体 分解示意图;
图 3为图 2的 A部放大图;
图 4为图 2的 B部放大图;
图 5为本发明的预制保温复合板的一个优选实施方式以及带 拐角的预制保温复合板的一个优选实施方式的横截面的结构示意 图;
图 6为用于制造本发明的预制保温复合板或带拐角的预制保 温复合板的模具型材与所预制的保温复合板或带拐角的保温复合 板配合在一起的断面结构示意图;
图 7为表示制造本发明的预制保温复合板或带拐角的预制保 温复合板的模具型材与所预制的保温复合板或带拐角的保温复合 板配合在一起的立体结构示意图;
图 8为本发明的带拐角的预制保温复合板的一个优选实施方 式的立体分解示意图;
图 9为图 8的 C部放大图; 图 10为图 8的 D部放大图;
图 11为图 8的 E部放大图;
图 12为图 8的 F部放大图;
图 13 为本发明的保温复合板结构组件的一个优选实施方式 的立体结构示意图;
图 14为图 13的 G部放大图;
图 15为图 13的 H部放大图;
图 16为图 13的 J部放大图;
图 17 为本发明的混凝土板结构构件的一个优选实施方式的 横断面断面结构示意图;
图 18 为本发明的混凝土板结构构件的该优选实施方式的立 体分解结构示意图;
图 19为根据优选的实施方式的拉紧栓 91的立体结构示意图; 图 20为根据优选的实施方式的拉接件 165 的立体结构示意 图;
图 21 为本发明的混凝土板结构构件的该优选实施方式的立 体结构示意图, 该图从结构构件的内侧示意显示了结构;
图 22 为本发明的混凝土板结构构件的该优选实施方式的立 体结构示意图, 该图中从结构构件的外侧示意显示了结构;
图 23为本发明的另一种混凝土板结构构件(即墙板)的一个 优选实施方式的横断面结构示意图;
图 24 为本发明的该另一种混凝土板结构构件的优选实施方 式的立体分解示意图;
图 25 为本发明的一种墙体结构构件的一个优选实施方式的 横断面结构示意图。 具体实施方式 在下面的说明书以及说明书附图中, 相同的部件具有相同的 名称,采用了相同的附图标记。相对应的部件具有相对应的名称, 采用了相对应的附图标记。 预制保温复合板的优选实施方式 图 1 - 7 示出了根据本发明的一个优选实施方式的预制保温 复合板 1。 根据个优选实施方式, 该预制保温复合板 1具有内侧 主平面 101、外侧主平面 102以及四个侧端面 103, 104, 105 , 106, 特别如图 1和 2所示。 特别如图 1 - 6所示, 该预制保温复合板 1 除包括由保温板材构成的芯部 9以外, 还包括: 两层由水泥基或 石膏基的聚合物改性胶浆构成的加强保护层 7和边框 2。 芯部 9 为高效有机保温板材如聚苯乙烯、 聚氨酯、 酚醛等、 或为矿物棉 板、 泡沫玻璃、 泡沫陶瓷等无机保温材料, 也可以为超级保温材 料如真空保温板等。 根据设计热工需要可采用不同的厚度的板以 提供相应的热阻, 通常有机保温材料比无机保温材料保温性能更 优异, 应用也更广。 加强保护层 7的材料为水泥基或石膏基聚合 物改性胶浆, 为无机不燃材料, 可以为芯部 9提供良好的保护。 芯部 9处在两层加强保护层 7之间, 两层加强保护层与芯部 9粘 结在一起。 边框 2围绕着芯部 9的周边并与芯部 9紧固在一起。 在该预制保温复合板的内侧主平面 101和外侧主平面 102内, 加 强保护层将边框 2盖住, 使得边框 2仅在该预制保温复合板的四 个侧端面 103, 104, 105, 106上露出。 边框 2包括在边框 2外侧 并分别处在边框上部和下部的两个边框连接部 11 以及处在边框 外侧并处在两个边框连接部 11之间的安装槽 13, 安装槽沿着整 个边框的长度延伸。 如图 5和 6所示, 边框 2的内侧指与芯部 9 接触的那侧(即图 5中的下侧, 以及图 6中的右侧), 而边框的外 侧指在制造过程中与模具型材 50接触而在拼装多个预制复合保 温板时这些板彼此对接的那侧 (即图 5中的上侧, 以及图 6中的 左侧)。如图 5和 6所示, 边框的上部和下部是相对于图 6中的上 部和下部而言的, 对于图 5而言, 图 6中的上部就对应于图 5中 的右部, 而图 6中的下部就对应于图 5中的左部。
对于另一个发明目的而言, 构成芯部 9的保温板材也可以由 无机保温材料构成。 对于这种情况, 本发明的预制保温复合板仍 然具有提高强度、 整体性、 便于拼装组合装配施工、 提高施工作 业效率的有益效果。 每一层加强保护层 7中都可以设有埋置在其内的增强材料。 增强材料可以包括由耐碱玻璃纤维、 碳纤维或钢纤维构成的增强 网 8, 也可以包括均匀地分散在加强保护层中的耐碱短切玻璃纤 维、 碳纤维或钢纤维。 或者, 增强材料可以既包括增强网 8又包 括分散在加强保护层中的耐碱短切玻璃纤维、 碳纤维或钢纤维。 增强材料可以有效提高复合板的抗弯折、 抗冲击等性能。 如图 2 - 3 所示, 在根据该优选实施方式的预制保温复合板 中, 边框 2包括四段边框型材。 边框型材为挤拉型材。 边框 2在 复合板生产过程中还可以起到尺寸定位、 控制面层厚度的作用, 在运输、 存放过程中起到保护预制保温复合板的边角的作用。 在 施工过程中,板与板之间的拼接通过在边框 2的安装槽 13中*** 镶嵌条 166, 169, 177, 178使其定位准确、 并确保其拼接后良好 的平整度。 在实际应用中也是此边框型材通过拉紧栓将预制复合 板与主结构可靠相连。 每段边框型材的两个端面都是斜面, 以便 四段边框型材两两端部对接而拼装在一起形成一个完整的边框 2。每一段边框型材均是一体成形的。每一段边框型材均包括两个 固定翼部 10和芯部固定槽 3。 两个固定翼部 10在边框型材内侧 并分别处在边框型材上部和下部(相对于图 6而言)。 芯部固定槽 3处在边框型材内侧并处在上下两个固定翼部 10之间(相对于图 6而言)。 如图 3 - 6所示, 两个边框连接部 11 中的每一个都设 有边框连接孔 4。 预制保温复合板的芯部 9的四个侧边的边缘中 的每个分别***到一段边框型材的芯部固定槽 3中, 每段边框型 材的两个固定翼部 10夹持固定在芯部 9的四个边缘中的一个上。 如图 2 - 4所示, 边框型材加固件 5 , 每两段端部对接的边框 型材之间通过两个边框型材加固件 5连接起来。 在实际使用中, 对于将四段边框型材组装起来而形成的一个完整边框, 每两段的 连接端之间设有至少一个边框型材加固件 5将两段连接起来。 当 然, 本领域技术人员可以设想, 对于仅由一根边框型材形成的完 整的边框, 只需在该根边框型材的首尾两端之间设置边框型材加 固件 5即可。 边框型材加固件 5包括两个***连接部 51, 两个插 入连接部 51 分别***到每两段相邻的边框型材的彼此相邻的边 框连接孔 4中并固定在边框连接孔 4中, 以将四段边框型材连接 在一起形成一个整体。 边框型材加固件为本实施方式中的平板以 及下面将要说明书的带拐角的预制板在转角处提供可靠的连接和 平滑过渡, 将边框型材加固件***边框预留的槽孔内即可。 在该优选的实施方式中, 安装槽 13 相对于两个边框连接部 11居中设置, 芯部固定槽 3在边框内侧相对于两个固定翼部居中 设置。 如图 2所示, 在该优选实施方式的预制保温复合板上, 还包 括饰面层 15。 饰面层 15处在位于该预制保温复合板外侧的加强 保护层 7的外侧并与该加强保护层 7粘结在一起。 在图 2中的加强保护层 7显示为两个加强保护层 71。 这是便 于说明结构组成和制造方法的方便而进行的示意性图示。 该实施 例的预制保温复合板的尺寸为符合建筑标准化的模数化尺寸, 以 便于工厂制造和施工时拼装的方便以及进行标准化施工。 标准化 复合板依建筑模数进制而定, 但由于实际工程的多样性, 会出现 非标尺寸的复合板, 通过计算机辅助设计程序可以统计出标准平 板、 以及下面将要说明的标准带拐角的预制复合板、 非标平板及 非标带拐角的预制板的数量及具体尺寸, 便于工程应用。 在该优选的实施方式中的预制保温复合板, 为正方形或长方 形, 其尺寸和重量设定成便于建筑工人的手工搬运和操作。 根据本优选实施方式的预制保温复合板的性能指标如下: 不同材料的强度对比表
Figure imgf000040_0001
注: 测试方法 试件宽度统一为 100mm, 跨 ii巨为 300mm。 带拐角的预制保温复合板的优选实施方式 图 8 - 12示出了根据本发明的另一个优选实施方式的一种带 拐角的预制保温复合板 20。 可以理解, 该带拐角的预制保温复合 板的结构与图 1 - 7所示的不带拐角的预制保温复合板 1的结构非 常相似, 许多方面相同。 但是, 该带拐角的预制保温复合板包括 两个保温复合板部分, 以便形成拐角。 两个保温复合板部分中的 每个都具有内侧主平面 101、 外侧主平面 102和四个侧端面。 四 个侧端面中的一个侧端面形成为相对于该保温复合板部分的内侧 主平面 101和外侧主平面 102倾斜的斜面 108, 109。两个斜面 108, 109 的尺寸相同倾斜角度相同, 以便彼此配合, 两个保温复合板 部分在斜面处对接在一起, 使得两个保温复合板部分分别处在两 个不同的平面中, 两个不同的平面彼此相交, 如图 8所示。 每个 保温复合板部分都包括由保温板材构成的芯部 9、 两层由水泥基 或石膏基的聚合物改性胶浆构成的加强保护层 7和边框 2。芯部 9 处在两层加强保护层 7之间, 两层加强保护层 7与芯部 9粘结在 一起。 边框 2处在芯部 9的在保温复合板部分的除形成为斜面的 侧端面以外的三个侧端面 103, 104, 106上的三个边并与芯部 9 紧固在一起。在该带拐角的预制保温复合板 20的内侧主平面和外 侧主平面中的每个平面内, 加强保护层将边框盖住, 使得边框仅 在该带拐角的预制保温复合板的保温复合板部分的三个侧端面 103 , 104, 106上露出。 边框 2包括在边框外侧并分别处在边框 上部和下部的两个边框连接部 11 和处在边框外侧并处在两个边 框连接部 11之间的安装槽 13 , 安装槽沿着整个边框的长度延伸。 这里的边框的外侧和内侧可以参照图 6理解。 带拐角的预制保温复合板的拐角的角度可以根据建筑立面设 计需要而定, 理论上可以从 0度到 180度调整, 此板可应用于墙 角、 门窗洞口边以及檐口等处。 前面已经说明过的根据本发明的预制保温复合板一个优选实 施方式的加强保护层 7的增强材料的优选实施方式同样可以适用 于该带拐角的预制保温复合板。 下面参见图 8 - 12。 如这些图所示, 根据该优选实施方式的 带拐角的预制保温复合板的结构在很多方面与不带拐角的预制保 温复合板的结构是相同的。 在带拐角的预制保温复合板中, 每个 保温复合板部分包括的边框 2都包括三段边框型材, 每段边框型 材的两个端面都是斜面, 以便六段边框型材两两端部对接而拼装 在一起形成一个完整的边框 2。每一段边框型材均是一体成形的。 每一段边框型材均包括在边框型材内侧并分别处在边框上部和下 部的两个固定翼部 10 和处在边框型材内侧并处在两个固定翼部 10之间的芯部固定槽 3 (关于边框型材的内侧、 外侧、 边框上部 和下部, 与不带拐角的预制保温复合板一样, 都可以结合图 6来 理解)。 两个边框连接部 11中的每一个都设有边框连接孔 4, 保温复 合板部分的芯部 9 的除形成有斜面的侧端面以外的三个侧端面 103 , 104, 106上的三个边的边缘分别***到一段边框型材的芯 部固定槽 3中,每段边框型材的两个固定翼部 10夹持固定在芯部 9的上述三个边中的一个边的边缘上。 该带拐角的预制保温复合板也包括边框型材加固件 5。 除斜 面处以外, 在相邻的每两段边框型材侧端面对接处, 在每两段端 部对接的边框型材之间有两个(也可以是一个) 边框型材加固件
5。 边框型材加固件 5包括的两个***连接部 51分别***到每个 保温复合板部分中的相邻两段边框型材的彼此相邻的边框连接孔
4中并固定在边框连接孔 4中, 以将相邻的边框型材连接在一起 形成一个整体。 在该优选实施方式中, 由于复合板带有拐角, 带拐角的预制 保温复合板还包括拐角部边框型材加固件 6。 在斜面处在两个边 框型材的端面对接处在两个边框型材之间有两个(可以是一个) 拐角部边框型材加固件 6。 拐角部边框型材加固件 6包括拐角插 入连接部 61 , 拐角***连接部 61在斜面处***到相邻的两个边 框的边框连接孔 4中, 从而将在两个保温复合板部分相对接的斜 面处的相邻的两段边框型材固定在一起, 并将两个相邻的保温复 合板部分的六段边框型材固定连接在一起形成一个完整边框并将 两个保温复合板部分固定结合在一起形成一个整体。 前面已经说明过的根据本发明的预制保温复合板一个优选实 施方式的安装槽 13、 芯部固定槽 3、 饰面层 15、 加强保护层的材 料选择、 增强材料的选择、 构成芯部 9的保温板材的构成、 复合 板的尺寸和形状等各方面的更优选实施方式及其进一步的有益效 果, 同样可以适用于该带拐角的预制保温复合板。在此不再赘述。 本发明保温复合板结构组件的优选实施方式 下面看图 13 - 16。这些图中示意性示出了根据本发明的一个 优选的实施方式的一种保温复合板结构组件。 该保温复合板结构 组件可以用于建造建筑物墙体或楼板(例如屋顶)。该保温复合板 结构组件包括多个前面已经说明过的预制保温复合板 1和多个前 面已经说明过的带拐角的预制保温复合板 20。 当然, 可以理解, 如果所建造的墙体的拐角部分不采用本发明的带拐角的预制保温 复合板, 该保温复合板结构组件也可以不包括带拐角的预制保温 复合板 20。 如图 13所示, 多个预制保温复合板 1以侧端面对接 的方式拼接组合在一起。 该预制保温复合板构成的结构组件还包 括多个拉接件 16和 17。 如图 14和 16所示, 拉接件 16包括安装 槽嵌入部 162, 163和伸出部 164, 而拉接件 17包括安装槽嵌入 部 171 , 172和伸出部 173。 安装槽嵌入部 162, 163, 171 , 172 被嵌在预制保温复合板的安装槽 13内, 伸出部伸 164, 173出到 安装槽 13之外, 并朝向内侧主平面 101延伸得超过内侧(即墙体 的室内那侧)主平面 101, 通过多个拉接件 16, 17与安装槽 13 的连接配合, 多个预制保温复合板拼接组合在一起。 拉接件和镶嵌条都可以为由塑料制成的注塑件。 拉接件的作 用在于通过与彼此相邻的带有安装槽的复合板 1 , 20的安装槽的 配合而对彼此相邻的复合板 1 , 20进行定位, 使复合板 1 , 20相 互拼接组合在一起, 同时可以将拼接的在一起的复合板 1 , 20与 其他结构例如混凝土模板支撑结构、 建筑物主体承重结构等连接 起来。 镶嵌条的作用在于通过与彼此相邻的带有安装槽的复合板 1, 20的安装槽的配合而对彼此相邻的复合板 1 , 20进行定位, 使复合板 1 , 20相互拼接组合在一起。 通过拉接件和 /或镶嵌条与 本发明的预制复合板的组合使用, 使得可以将多块(数量根据需 要例如墙体面积或楼板的面积而定)本发明的预制复合板的拼装 装配在一起, 使得可以提供一种全新的建筑结构和施工方法, 该 建筑结构和施工方法以拼装组合为特点, 明显节约施工现场的工 序和工时。 如果将复合板的尺寸设定成便于工人手工搬运操作, 更可以降低对大型吊装设备的需要。 在该优选的实施方式中,带拐角的预制复合保温板 20的高度 和厚度分别与预制保温复合板 1的高度和厚度相等, 带拐角的预 制复合保温板 20的安装槽 13与预制保温复合板 1 的安装槽 13 的尺寸相同, 以便于能进行标准化组装。 带拐角的预制保温复合 板 20与预制保温复合板 1之间两两侧端面对接,通过多个拉接件 16, 17与安装槽 13的连接配合, 相邻对接的带拐角的预制保温 复合板 20与预制保温复合板 1通过拉接件 17拼接组合在一起, 相邻的每两个带拐角的预制保温复合板 20之间通过拉接件 16与 安装槽 13的连接配合而拼接组合在一起。 如图 14和 16所示, 在该实施方式中, 保温复合板结构组件 的拉接件 16, 17总体上呈 T形, 安装槽嵌入部 162, 163, 171 , 172形成在 T形竖起来放置时的上部, 伸出部形成在 T形竖起来 放置时的下部, 拉接件 16的安装槽嵌入部 162, 163和拉接件 17 的安装槽嵌入部 171 , 172的横截面形状与安装槽 13的横截面形 状一致以便安装槽嵌入部 162, 163, 171, 172与安装槽 13彼此 配合。 如图 14和 16所示, 在该优选实施方式的保温复合板结构组 件中,拉接件 16为有缝拉接件 16,而拉接件 17为无缝拉接件 17。 有缝拉接件具有主体部 161 , 有缝拉接件的伸出部 164与有缝拉 接件的主体部 161处在同一个平面内。 有缝拉接件的安装槽嵌入 部 162, 163 沿着垂直于有缝拉接件的伸出部 164和主体部 161 所处的平面的方向伸出到有缝拉接件的伸出部和主体部所处的平 面之外, 以便在拼装时, 能伸入到安装槽 13中。 如图 14所示, 在结构组件中, 有缝拉接件放置在由相邻的每两个预制保温复合 板对接而形成的水平接缝中。 有缝拉接件和无缝拉接件的安装槽 嵌入部的横截面的宽度 W 拉 1 } W 拉 2都与预制保温复合板的安装 槽的宽度 W tt相等, 有缝拉接件的安装槽嵌入部的横截面的高度 等于或小于安装槽的深度 d 槽, 以便彼此配合。如图 16所示, 无缝拉接件的安装槽嵌入部 171 , 172的横截面高度 h 拉 2等于两 个对接在一起的预制保温复合板的两个安装槽 13 的深度 d 槽的 和, 以便彼此配合。 无缝拉接件具有颈缩部 178, 颈缩部处在安 装槽嵌入部 171与伸出部 173之间。 颈缩部的横截面的宽度小于 伸出部的横截面的宽度。 整个无缝拉接件的厚度都相同。 横向上 相邻的每两个预制保温复合板 1或横向上相邻的预制保温复合板 1与带拐角的预制保温复合板 20中的每个的沿着竖向的两个边框 连接部 11中的一个上设有卡槽 179。 相邻的两个卡槽 179彼此正 对, 卡槽的宽度与颈缩部的宽度相等, 两个卡槽的深度的和与颈 缩部的厚度相等, 以便彼此配合。 在该优选实施方式的保温复合板结构组件中, 在相邻的预制 保温复合板 1之间和 /或带拐角的预制保温复合板 20之间的水平 接缝中, 放置有有缝镶嵌条 166, 169, 在相邻的预制保温复合板 1之间和 /或相邻的预制保温复合板 1与带拐角的预制保温复合板 20之间的竖向接缝中放置有无缝镶嵌条 177, 178, 以便各复合板 之间的对接配合更好。 同时, 各个镶嵌条也可以起到将相邻的复 合板连接起来的作用, 也有助于防止相邻的复合板彼此发生位置 的偏移, 使相对接的复合板之间的整体性更好。 关于本发明的预制保温复合板或带拐角的预制保温复合板的 施工现场拼接, 可以根据工程需要按照不同的流程进行, 下面给 出的是一种优选的流程的实施方式: 固定起始条 31时,可以在起始平台(例如水平的基础或对现 有基础进行处理之后形成的平台或在基础上增设的平台) 30上连 续延周圏固定起始条 31, 要求与基础锚固可靠, 尺寸准确;
先安装第一层复合板 1, 20, 从转角处开始安装第一块带拐 角的预制保温复合板 20, 将该复合板 20的下端的水平安装槽 13 卡在起始条 31的突出嵌入部 310上;
要安装的第二块复合板是复合板 1, 将复合板 1靠紧第一块 复合板 20, 假设竖向为无缝拼接, 横向为有缝拼接, 见图 13, 两 块复合板之间***无缝镶嵌条 177, 178, 将有缝镶嵌条 166, 169 放入上端槽口内;
当需要与主体结构连接时, 将拉接件 16, 165放入上端安装 槽 13内, 或将拉接件 17放入侧边安装槽 13内;
第二层复合板 1 , 20安装也是从转角处开始, 将带拐角的预 制保温复合板 20的下端安装槽 13卡在下层复合板 30的镶嵌条 169, 166上, 然后安装第二层的第二块复合板 1。 本发明永久混凝土模板的优选实施方式 本发明还提出了一种永久混凝土模板。 根据本发明的一个优 选实施方式的一种永久混凝土模板可以包括前面说明过的预制保 温复合板和 /或的带拐角的预制保温复合板,可以包括前面说明过 的保温复合板结构组件。该永久混凝土模板可以用于建造建筑物、 构筑物等的永久混凝土模板, 混凝土终凝后与混凝土结构牢固地 结合成一体, 形成与建筑物同寿命的、 可靠的保温层。 本发明混凝土板结构构件的优选实施方式 下面参见图 17 - 22。这些图中示意性示出了根据本发明的一 个优选实施方式的一种混凝土板结构构件。 在该优选的实施方式 中, 该混凝土板结构构件为墙板结构构件。 但是, 本领域技术人 员在看过说明书之后可以理解, 其也可以用于带有保温要求的屋 面板、 楼板等。 该混凝土板结构构件包括配筋、 处在配筋的一侧 的第一混凝土模板、 处在配筋的另一侧的第二混凝土模板和处在 第一混凝土模板与第二混凝土模板之间的混凝土 (图中未示出)。 第一混凝土模板为外侧混凝土模板, 外侧混凝土模板为永久混凝 土模板, 包括前面已经说明过的保温复合板结构组件, 保温复合 板结构组件与配筋通过拉接件 16, 17, 165的伸出部而固定连接。 第二混凝土模板为普通混凝土模板, 为内侧混凝土模板 92。 混凝 土与配筋和永久混凝土模板和内侧混凝土模板 92 结合成一个整 体。 当然, 本领域技术人员可以理解, 如果需要, 可以内侧或两 侧都采用本发明的永久混凝土模板,如冷库就多用内侧保温方式。 在该优选实施方式的混凝土板结构构件中, 配筋为冷弯薄壁 型钢龙骨。 但是, 本领域技术人员可以理解, 配筋也可以采用现 有技术中的钢筋。 在该优选实施方式中, 为了突出本发明的永久混凝土模板的 标准化组装的有益效果, 采用了冷弯薄壁型钢框架作为配筋。 该 冷弯薄壁型钢框架包括多个沿着混凝土板结构构件的主平面的伸 展方向 (在该实施方式中是横向即水平方向) 间隔开的互相平行 排列的纵向 (在该实施方式中是竖向)型钢龙骨 95, 85。 每个纵 向型钢龙骨包括两根纵向冷弯薄壁型钢 951 , 952, 851 , 852。 纵 向冷弯薄壁型钢的主平面(即在图 17中通过纵向冷弯薄壁型钢的 中心、 与纸面垂直且沿着竖向延伸的平面) 以及保温复合板结构 组件所包括的预制保温复合板 1 或带拐角的预制保温复合板 20 的内侧主平面和外侧主平面互相平行。 两根纵向冷弯薄壁型钢 951 , 952, 851, 852沿着与混凝土板结构构件的主平面 (即在图 17中通过混凝土板结构构件的中心、 与纸面垂直且沿着竖向延伸 的平面)垂直的方向彼此对置并间隔开, 以致两根纵向冷弯薄壁 型钢之间留有空间 200, 从而在浇注混凝土时混凝土能容易地从 两根纵向冷弯薄壁型钢之间留有的空间流过。 两根纵向冷弯薄壁 型钢之间留有的空间里充满混凝土(图中未示出)。第一混凝土模 板和第二混凝土模板都与冷弯薄壁型钢框架固定连接。 在该优选实施方式的混凝土板结构构件中, 两根纵向冷弯薄 壁型钢之间通过型钢连接件 96, 87固定连接, 第一混凝土模板和 第二混凝土模板与纵向冷弯薄壁型钢之间都间隔开, 在第一混凝 土模板与第二混凝土模板之间的混凝土 (图中未示出)将冷弯薄 壁型钢框架覆盖起来。型钢连接件 96, 87可以沿着纵向冷弯薄壁 型钢 951, 952的长度方向间隔开。 如图 18所示, 可以在每两根 纵向冷弯薄壁型钢 951 , 952之间设置两对型钢连接件 96。 型钢 连接件 96, 87上带有型钢连接件通孔 961 , 以便减小对混凝土的 流动的影响。 在纵向 (本优选实施方式中的竖向)上, 每两个相 邻的纵向型钢龙骨之间通过纵向连接龙骨 97连接起来。在上下相 邻的纵向型钢龙骨中, 构成上面的纵向型钢龙骨的两个冷弯薄壁 型钢与构成下面的纵向型钢龙骨的两个冷弯薄壁型钢的对接的端 部都套在构成纵向连接龙骨 97的纵向连接型钢 971 , 972上, 并 与其固定在一起。 固定可以采用螺钉(如图 17所示)或焊接。 上 层两根纵向冷弯薄壁型钢 951, 952与下层两根纵向冷弯薄壁型钢 951, 952对接时, 应先将作为龙骨对接件的纵向连接龙骨 97插 入下层主龙骨即纵向型钢龙骨 95, 通过自攻螺丝将二者连接, 再 将上层主龙骨即纵向型钢龙骨 95套在龙骨对接件上,通过自攻螺 丝将二者连接。 在该优选实施方式的混凝土板结构构件中, 每个纵向型钢龙 骨 95包括的纵向冷弯薄壁型钢 951 , 952上带有沿着其长度方向 分布的贯穿的多个龙骨通孔 953, 954。 在两根纵向冷弯薄壁型钢 上的龙骨通孔 953 , 954彼此正对, 在至少一部分龙骨通孔 953, 954中贯穿有拉接件 16, 17, 165的伸出部。 龙骨通孔的贯穿方 向与混凝土板结构构件的主平面以及保温复合板结构组件所包括 侧主平面垂直。 如图所示, 混凝土板结构构件还包括拉紧栓 91、拉紧套管 90 和限位套管 80。拉紧套管 90处在内侧混凝土模板 92与每个纵向 型钢龙骨所包括的两根纵向冷弯薄壁型钢中的处在内侧的纵向冷 弯薄壁型钢之间。限位套管 80处在外侧混凝土模板与每个纵向型 钢龙骨所包括的两根纵向冷弯薄壁型钢中的处在外侧 (即相对于 墙体而言的室外那侧) 的纵向冷弯薄壁型钢之间。 拉紧套管为注 塑件。 其可以将混凝土侧压力传递给两侧的混凝土模板。 同时也 可起到限位作用, 确保混凝土保护层的有效厚度。 限位套管为注 塑件,确保混凝土保护层的有效厚度。拉紧栓为可拆卸螺栓钢件, 将模数化混凝土模板固定在主龙骨上。 当混凝土养护到期后, 拆 卸拉紧栓和模数化混凝土模板。 混凝土构件上的螺栓孔可作为干 法饰面施工的固定点。 拉接件 16, 17, 165的伸出部从外侧混凝土模板伸出并穿过 龙骨通孔与拉紧套管螺纹连接, 将外侧混凝土模板与纵向型钢龙 骨固定连接, 拉紧栓 91穿过内侧混凝土模板 92与拉紧套管螺紋 连接, 将内侧混凝土模板与纵向型钢龙骨固定连接。 参见图 19 和图 20所示意性示出的拉接件 165的伸出部的端部处的外螺紋和 拉紧栓 91上的外螺纹。 这些外螺纹用于与拉紧套 90的孔中的内 螺紋接合。 在该优选实施方式中, 每个纵向型钢龙骨所包括的两根纵向 冷弯薄壁型钢都为 C形型钢。 纵向型钢龙骨沿着竖向设置, 多个 平行排列的纵向型钢龙骨通过横向连接型钢龙骨而连接, 斜向型 钢连接龙骨与纵向型钢龙骨连接, 纵向型钢龙骨、 横向连接型钢 龙骨和斜向连接龙骨连接以形成一个稳定的整体刚性结构。 横向 连接型钢龙骨包括横向冷弯薄壁型钢 981 , 982, 881 , 882。 斜向 连接型钢龙骨包括斜向冷弯薄壁型钢 891 , 892。 在该优选实施方式中, 混凝土板结构构件为混凝土墙板结构 构件。 其还可以包括处在底部的起始平台 30。 起始平台可以是建 筑物的基础, 或在基础之上的其他适当的平台。 起始平台上固定 有起始条 31 ,起始条 31具有向上突出的突出嵌入部 310。永久混 凝土模板所包括的处在最下面的预制复合保温板和带拐角的预制 复合保温板上的处在最下面的安装槽 13 与起始条的突出嵌入部 310 配合, 突出嵌入部嵌到最下面的安装槽内。 这样有助于永久 混凝土模板中的最下面的预制保温复合板在起始平台 30 上固定 就位。 起始条 31为挤拉件。 如图 17 - 21所示, 最下面的纵向冷弯薄壁型钢 951 , 952通 过起始板 93固定在起始平台 30上。起始板 93上固定有起始龙骨 94。 起始板 93通过膨胀螺栓而固定在起始平台 30上。 最下面的 纵向冷弯薄壁型钢 951 , 952套在所述起始龙骨 94上并(例如通 过紧固件(例如螺钉、 自攻螺丝)或烊接)与起始龙骨 94固定连 接。 在本优选实施方式中,竖向主龙骨即纵向型钢龙骨 95以两个 对向的 C型冷弯薄壁型钢 951 , 952, 851 , 852与连接钢板 96烊 接而成。主龙骨与连接钢板上均冲压长圆孔并卷边以增加其刚度, 并有利于混凝土自由流动和密实, 可显著改善型钢与混凝土握裹 力。 横向辅龙骨即横向连接型钢龙骨 98由两个 C型冷弯薄壁型 钢 981, 982, 81, 882构成。 在竖向主龙骨两侧与横向连接型钢 龙骨 98焊接或通过自攻螺丝与之连接, 使整个钢骨架结构稳定, 尺寸精确。 内侧的混凝土模板可以为模数化混凝土模板, 由金属与高分 子材料复合而成, 可上百次地重复使用, 有足够的刚度抵抗新拌 混凝土的侧压力。 内侧的混凝土模板的外观构形、 尺寸等可以与 本发明的预制保温复合板一致,其板角预留缺口以便拉紧栓穿过。 本发明混凝土墙板结构构件的优选实施方式 下面看图 23和 24。 图 23和 24示出了根据本发明的一个优 选实施方式的一种混凝土墙板结构构件的横断面结构。 该混凝土 墙板结构构件与上面的优选实施方式的混凝土板结构构件的主要 区别在于, 没有采用本发明前面的实施方式所提出的冷弯薄壁型 钢框架做配筋, 而可以采用现有的普通钢筋或普通型钢框架做配 筋, 同时, 采用现有的普通的混凝土模板支撑对内外侧混凝土模 板进行支撑。 该混凝土墙板结构构件包括处在配筋的一侧的第一 混凝土模板、 处在配筋的另一侧的第二混凝土模板以及处在第一 混凝土模板与第二混凝土模板之间的混凝土 (图中未示出, 以便 清楚地显示墙板结构构件的结构)。在该实施方式中, 第一混凝土 模板是外侧混凝土模板, 为永久混凝土模板。 该永久混凝土模板 包括前面说明过的保温复合板结构组件, 保温复合板结构组件与 混凝土模板支撑通过拉接件 16, 17, 165的伸出部而固定连接。 第二混凝土模板是内侧混凝土模板 92, 为普通可拆卸混凝土模 板, 混凝土与配筋和永久混凝土模板结合成一个整体。 在该优选实施方式中, 该混凝土墙板结构构件的混凝土模板 支撑包括混凝土模板竖向龙骨 922和混凝土模板横向龙骨 921。 该混凝土墙板结构构件还包括拉紧栓 91和拉紧套管 90。 拉紧套 管 90处在内侧混凝土模板 92外侧并与内侧混凝土模板邻接。 混 凝土模板竖向龙骨 922处在内侧混凝土模板 92内侧并与内侧混凝 土模板邻接。 混凝土模板横向龙骨处在混凝土模板竖向龙骨内侧 并与混凝土模板横向龙骨邻接。拉紧栓 91从混凝土模板横向龙骨 内侧开始, 依次穿过混凝土模板横向龙骨 921、 混凝土模板竖向 龙骨 922、 内侧混凝土模板 92与拉紧套管 90螺纹连接, 从而将 内侧混凝土模板、 混凝土模板横向龙骨和混凝土模板竖向龙骨固 定连接。拉紧栓 91与拉紧栓垫片 911配合使用。拉接件 165的伸 出部从外侧混凝土模板伸出并穿过与拉紧套管螺纹连接, 从而将 外侧混凝土模板与内侧混凝土模板、 混凝土模板竖向龙骨和混凝 土模板横向龙骨固定连接起来。 与前面的图 17 - 22所示的优选实施方式类似, 图 23和 24 中所示的混凝土墙板结构构件也包括处在底部的起始平台 30。起 始平台上固定有起始条 31 , 起始条 31具有向上突出的突出嵌入 部 310。 永久混凝土模板所包括的处在最下面的预制复合保温板 和带拐角的预制复合保温板上的处在最下面的安装槽 13 与起始 条的突出嵌入部 310配合, 突出嵌入部嵌到最下面的安装槽内。 本发明墙体结构构件的优选实施方式 图 25 显示了根据本发明的又一个优选实施方式的一种墙体 结构构件。 其包括墙体主体结构部分 100和保温层部分。 保温层 部分与墙体主体结构部分 100固定连接。 保温层部分采用前面已 经说明过的保温复合板结构组件。 拉接件 16, 165的伸出部与墙 体主体结构部分 100固定连接, 以将保温复合板结构组件固定连 接在墙体主体结构部分上。 在该优选实施方式中,拉接件 16的伸出部带有紧固孔。墙体 主体结构部分上固定有支撑件 202, 拉接件通过伸出部上的紧固 孔以及紧固件例如自攻螺钉 203而固定连接在支撑件 202上。 与前面的关于混凝土墙板结构构件的实施方式的情况类似, 根据该优选的实施方式的墙体结构构件还包括处在底部的起始平 台 30。 起始平台上固定有起始条 31。 起始条 31具有向上突出的 突出嵌入部 310。 永久混凝土模板所包括的处在最下面的预制复 合保温板和带拐角的预制复合保温板上的处在最下面的安装槽 13与起始条的突出嵌入部 310配合, 突出嵌入部嵌到最下面的安 装槽内。 用于制造前面已经说明过的预制保温复合板或带拐角的预制 保温复合板的模具型材的优选实施方式 下面看图 6和 7。 在图 6和 7中示出了根据本发明的一个优 选实施方式的一种用于制造前面已经说明过的预制保温复合板或 带拐角的预制保温复合板的模具型材 50。该模具型材 50包括(优 选空心的且优选由铝合金型材构成的)型材本体 501。 型材本体 与预制保温复合板或带拐角的预制保温复合板的边框 2的两个连 接部 11抵靠的内侧抵靠部 507。 从内侧抵靠部 507的表面上伸出 安装槽 13内从而对芯部 9进行定位的定位突出部 504。 定位突出 部的厚度(即图 6中的沿着竖向上的尺寸)等于安装槽的宽度 W 槽。内侧抵靠部 507上设有在制造预制保温复合板或带拐角的预制 保温复合板时用于决定加强保护层 7的厚度的上对齐突出部 503 和下对齐突出部 52。上对齐突出部伸出到型材本体 501的上表面 之上, 下对齐突出部 502伸出到型材本体的下表面之下。 从定位 突出部 504的上表面至上对齐突出部 503的顶表面的距离大于边 框连接部 11厚度(即图 6中所示的沿着竖向的尺寸)。 从定位突 出部 504的下表面至下对齐突出部 502的底表面的距离大于边框 连接部 11厚度。上对齐突出部 503从定位突出部 504的上表面向 上伸出的距离等于下对齐突出部 502从定位突出部 504的下表面 向下伸出的距离。 下面对利用本发明的各种施工方法的优选实施方式进行说 明。 以本发明的冷弯薄壁型钢框架代替钢筋以本发明的 (带和 / 或不带拐角的)预制保温复合板代替外侧混凝土模板的方案 -本 发明混凝土板结构构件的优选实施方式的施工方案 一个优选实施方式的施工方法涉及的是将本发明的包括预制 保温复合板和 /或带拐角的预制保温复合板的永久混凝土模板代 替现有技术中的外侧混凝土模板并与冷弯薄壁型钢框架结合的现 浇混凝土方案方案。 下面结合图 13 - 16和 17 - 22来说明。 本领 域技术人员可以理解, 在该施工方法中, 基本上要将图 13 - 16 所示的装配方法应用到图 17 - 22中。 根据该优选实施方式的现浇混凝土墙体的施工方法包括如下 步骤: 安装冷弯薄壁型钢框架的步骤; 安装外侧混凝土模板的步 骤, 其中, 安装外侧混凝土模板将其与冷弯薄壁型钢框架固定连 接, 采用包括前面已经说明过的保温复合板结构组件的永久混凝 土模板作为外侧混凝土模板, 在相邻的两个预制保温复合板 1或 相邻的两个带拐角的预制保温复合板 20 或相邻的预制保温复合 板 1与带拐角的预制保温复合板 20的侧边的安装槽 13中***拉 接件 (在该优选实施方式中是在水平的安装槽 13 中***拉接件 165, 但是, 实际中, 可以根据工程需要在竖向安装槽 13中*** 拉接件 165, 16, 17, 或水平的安装槽 13和竖向的安装槽 13中 都***拉接件 16, 17, 165。 还可以在竖向和水平的安装槽中插 入有缝镶嵌条 166, 169和 /或无缝镶嵌条 177, 178 ), 外侧混凝土 模板与冷弯薄壁型钢框架的固定连接是通过将拉接件 16, 17, 165 的伸出部与冷弯薄壁型钢框架固定连接而实现的; 安装内侧混凝 土模板 92的步骤,其中,安装内侧混凝土模板将其与冷弯薄壁型 钢框架固定连接。 在该优选实施方式的现浇混凝土墙体的施工方法中, 外侧混 凝土模板所包括的预制复合保温板 1或带拐角的预制复合保温板
20的主平面的平面尺寸为模数化的尺寸, 安装外侧混凝土模板的 步骤是重复进行的以便通过拼装组合多层尺寸为模数化的外侧混 凝土模板而达到一个楼层的高度。 在该优选实施方式的现浇混凝土墙体的施工方法中, 内侧混 凝土模板 92 的主平面的平面尺寸与外侧混凝土模板的主平面的 平面尺寸相同, 如图 18所示, 安装内侧混凝土模板 92的步骤是 重复进行的以便通过拼装组合多层尺寸为模数化的内侧混凝土模 板而达到一个楼层的高度, 拼装具有模数化尺寸的外侧混凝土模 板与拼装与外侧混凝土模板相对的具有模数化尺寸的内侧混凝土 模板 92是交替进行的。 在该优选实施方式的现浇混凝土墙体的施工方法中, 在安装 最底层的外侧混凝土模板和内侧混凝土模板时, 包括在起始平台 30上安装起始条 31的步骤, 其中, 在起始平台 30上固定起始条 31 , 起始条带有突出嵌入部 310, 将永久混凝土模板所包括的处 在最下面的预制复合保温板 1或带拐角的预制复合保温板 20上的 最下面的安装槽 13与起始条的突出嵌入部 310配合,使突出嵌入 部 310嵌到最下面的安装槽 13内,从而使最下面的预制保温复合 板或带拐角的预制保温复合板固定就位。 在该优选实施方式的现浇混凝土墙体的施工方法中, 不仅采 用了本发明提出的永久混凝土模板作为外侧混凝土模板, 而且采 用了本发明提出的冷弯薄壁型钢框架结构作为配筋并作为混凝土 模板支撑。 在安装冷弯薄壁型钢框架的步骤中包括: 安装多个沿 着混凝土墙体的主平面的伸展方向(如果结合图 17理解,就是与 图 17的纸面方向垂直的方向)间隔开的互相平行排列的纵向型钢 龙骨 95, 85 ,每个纵向型钢龙骨包括两根纵向冷弯薄壁型钢 951 , 952; 851 , 852, 将纵向冷弯薄壁型钢 951 , 952的主平面设置成 与混凝土墙体的主平面以及保温复合板结构组件所包括的预制保 温复合板 1或带拐角的预制保温复合板 20的内侧主平面和外侧主 平面互相平行, 使两根纵向冷弯薄壁型钢沿着与混凝土墙体的主 平面垂直的方向彼此对置并间隔开, 以致两根纵向冷弯薄壁型钢 之间留有空间 200, 从而在浇注混凝土时混凝土能容易地从两根 纵向冷弯薄壁型钢之间留有的空间流过。 在该优选实施方式的现浇混凝土墙体的施工方法中, 在安装 外侧混凝土模板和内侧混凝土模板的步骤中, 包括: 在横向上左 右相邻的预制保温复合板 1的侧边的竖向的安装槽 13中***竖向 镶嵌条 177, 178 (图 17中未示出, 可以结合图 13和 16来理解) 和拉接件 16, 17, 165 (图 17中未示出, 可以结合图 13和 16来 理解),竖向上相邻的预制保温复合板 1及竖向上相邻的预制保温 复合板 20之间的水平的安装槽 13中放入横向镶嵌条 166,169(图 17中未示出,可以结合图 13和 14来理解)和拉接件 16, 17, 165 (图 17中未完全示出, 可以结合图 13和 14来理解), 其中, 外 侧混凝土模板与冷弯薄壁型钢框架的固定连接是通过将拉接件 16, 17, 165 的伸出部穿过包括型钢框架所包括的纵向型钢龙骨 95上的龙骨通孔 953, 954与处在竖向龙骨内侧的拉紧套管 90螺 纹连接, 以将预制保温复合板或带拐角的预制保温复合板与冷弯 薄壁型钢框架固定连接而实现的,将带有垫片的拉紧栓 91从内侧 混凝土模板 92 的内侧穿过相邻的内侧混凝土模板之间的龙骨通 孔而与拉紧套管 90螺纹连接,以将各内侧混凝土模板与冷弯薄壁 型钢框架固定连接。在图中所示的拉接件 16, 17上没有画出伸出 部上的螺纹, 但是, 可以理解, 根据需要, 上面可以设置外螺纹。 如果不采用螺纹连接, 也可以设置连接孔或其他的连接结构。 在 图 13 - 16中, 水平方向的安装 C形成的接缝为有缝接缝, 水平 的安装槽中放入的是有缝拉接件 16、有缝镶嵌条 166, 169, 而竖 向的安装 C形成的接缝为无缝接缝, 竖向的安装槽中放入的是无 缝拉接件 17、 无缝镶嵌条 177, 178。 但是, 可以理解, 也可以竖 向接缝为无缝接缝, 而水平接缝为有缝接缝, 或者竖向接缝和水 平接缝都为无缝接缝或都为有缝接缝。 在该优选实施方式的现浇混凝土墙体的施工方法中, 拼装永 久外侧混凝土模板与内侧混凝土模板 92 将其与冷弯薄壁型钢框 架固定连接时利用限位件 80、 拉接件 16, 17, 165与拉接拴 91 形成可靠等宽空腔。 另外, 根据图 17中所示, 本领域技术人员可以理解, 本发明 提出的冷弯薄壁型钢框架结构同样可以用于楼板的浇注。 只不过 浇注楼板时可以不使用本发明提出的永久混凝土模板, 而将普通 可拆卸混凝土模板固定连接在冷弯薄壁型钢框架的下面, 然后从 上面浇注混凝土即可。 当到达建筑物屋顶楼板的施工时, 可以将 本发明提出的永久混凝土模板固定连接在冷弯薄壁型钢框架的下 面, 然后从上面浇注混凝土即可。 浇注之后, 永久混凝土模板形 成一层保温层, 以增加建筑物的保温性能。 对于上面所述的以本发明的冷弯薄壁型钢框架代替钢筋以本 发明的复合板(永久混凝土模板)代替外侧混凝土模板的具体实 施方案, 本领域技术人员可以根据工程实践的需要, 采用具体的 工作流程, 进行各种变化和调整。 本申请提出的一种具体工程实 践中可以采用的流程如下:
1.通过计算机辅助设计程序或手工设计将冷弯薄壁型钢框架 结构布置图设计出来, 准确标注各薄壁型钢构件的位置;
2.通过计算机辅助设计程序或手工设计将复合板的布置图设 计出来, 准确标注标准复合板与非标复合板的位置;
3. 基础施工完毕后进行起始平台的施工, 要求尺寸准确, 整 个周圏须保持在同一标高上, 根据设计要求开始连续固定起始条 和起始龙骨;
4. 进行竖向龙骨的施工,将竖向龙骨套入起始龙骨并进行螺 栓连接, 再将横向型钢龙骨栓接在竖向龙骨上, 使其成为稳定的 结构;
5. 固定、 安装内侧混凝土模板与本发明复合板高度一致, 安 装外侧复合板, 将本发明的复合板下端安装槽内卡入起始条或横 向镶嵌条;
6. 一层一层安装本发明的复合板,板与板侧边***竖向镶嵌 条, 上端放入横向镶嵌条, 模数化内侧混凝土模板与外侧的复合 板通过限位件(套)、 拉接件、 拉紧件(套)与内侧拉紧拴形成可 靠等宽空腔; 7. 重复 5、 6步骤至楼板处, 模数化内侧混凝土模板与楼板 的底混凝土模板 (可选用本发明的有保温性能复合板或可拆卸的 模数化混凝土模板)处相交, 并做好可靠支撑, 本发明的复合板 继续向上安装一至二块复合板并与升上去的竖向龙骨进行连接;
8. 冷弯薄壁型钢框架与混凝土模板(包括本发明的复合板和 内侧混凝土模板)施工交叉进行, 通常竖向龙骨出楼面 90公分, 并作为临时护栏, 待楼板薄壁型钢安装完成后进行下层墙体和楼 面的混凝土浇注, 注意兜圏浇注, 一次约 0.5米高;
9. 重复步骤 5~8至屋顶。 以本发明提出的复合板作为永久混凝土模板代替外侧混凝土 模板的现浇混凝土方案 -本发明混凝土墙板结构构件的优选实施 方式的施工方案 另一个优选实施方式的施工方法涉及的是以本发明提出的永 久混凝土模板代替普通可拆卸外侧混凝土混凝土模板的现浇混凝 土方案, 该方案中可以不采用本发明提出的冷弯薄壁型钢框架, 而采用现有技术中的普通钢筋作为配筋。 下面结合图 13 - 16和 23 - 24来说明。 本领域技术人员可以 理解,在该施工方法中,基本上要将图 13 - 16所示的装配方法应 用到图 23 - 24中。 该优选实施方式的现浇混凝土墙体的施工方法包括如下步 骤: 安装混凝土模板支撑结构; 安装内侧混凝土模板 92的步骤, 其中,将内侧混凝土模板 92与混凝土模板支撑结构固定连接; 安 装外侧混凝土模板的步骤, 其中, 采用本发明提出的包括前面说 明过的保温复合板结构组件的永久混凝土模板作为外侧混凝土模 板, 在相邻的两个预制保温复合板 1或相邻的两个带拐角的预制 保温复合板 20或相邻的预制保温复合板 1与带拐角的预制保温复 合板 20的侧边的安装槽 13中***拉接件 16, 17, 165, 将拉接 件 16, 17, 165的伸出部与混凝土模板支撑结构连接, 从而使外 侧混凝土模板与混凝土模板支撑结构固定连接起来。 在该优选实施方式的现浇混凝土墙体的施工方法中, 在安装 最底层的外侧混凝土模板时, 包括在起始平台 30 上安装起始条 31的步骤, 其中, 在起始平台 30上固定起始条 31 , 起始条带有 突出嵌入部 310, 将永久混凝土模板所包括的处在最下面的预制 复合保温板或带拐角的预制复合保温板上的处在最下面的水平安 装槽 13与起始条的突出嵌入部 310配合,使突出嵌入部嵌到最下 面的安装槽内, 从而使最下面的复合板就位。 在该优选实施方式的现浇混凝土墙体的施工方法中, 在安装 内侧混凝土模板 92的步驟中, 将内侧混凝土模板 92与混凝土模 板支撑结构固定连接是通过利用拉紧栓 91 从外侧穿过混凝土模 板支撑结构而与处在混凝土模板支撑结构内侧的拉紧套 90 固定 连接而实现的, 在安装外侧混凝土模板的步骤中, 将拉接件 165 的伸出部的端部与拉紧套 90连接。 在该优选实施方式的混凝土墙体施工方法中, 拉接件 165与 拉紧套管 90之间为螺纹连接,拉紧栓 91与拉紧套管 90之间为螺 纹连接, 拉接件 165与拉紧套 90的连接点在拉紧套 90的外侧部 分, 拉紧栓 91与拉紧套 90的连接点在拉紧套 90的内侧部分。 对于上面所述的以本发明的复合板作永久混凝土模板代替可 拆卸的外侧混凝土混凝土模板的具体实施方案, 根据上面公开的 该优选实施方式的施工方法的内容, 本领域技术人员可以根据工 程实践的需要, 采用具体的工作流程, 进行各种变化和调整。 本 申请提出的一种具体工程实践中可以采用的流程如下:
1. 通过计算机辅助设计程序或手工设计将复合板(平的复 合板和 /或带拐角的复合板)的布置图设计出来, 准确标注标准复 合板板与非标复合板的位置;
2. 基础施工完毕后进行第一层复合板起始平台施工, 要求 尺寸准确, 整个外周圏须保持在同一标高上, 开始连续固定起始 条;
3. 固定、 安装内侧混凝土模板与复合板高度一致, 安装复 合板, 下端的安装槽卡在起始条的突出嵌入部或横向镶嵌条上;
4. 一层一层安装复合板, 板与板侧边***竖向镶嵌条, 上 端放入横向镶嵌条, 内侧混凝土模板与外侧复合板通过拉接件、
P艮位套管与内侧拉紧拴形成可靠等宽空腔;
5. 内侧混凝土模板通过内侧拉紧拴与混凝土模板竖向龙 骨、 混凝土模板横向龙骨及侧向支撑形成稳定的临时结构与传统 混凝土模板施工一致以保证墙体的垂直度;
6. 重复 4、 5步骤至楼板处, 内侧混凝土模板与楼板的底混 凝土模板(可选用复合板或普通混凝土模板)处相交, 并做好可 靠支撑, 外侧复合板继续向上安装一块并做好临时支撑;
7. 绑扎钢筋与混凝土模板施工交叉进行, 通常钢筋与混凝 土模板施工至楼面处停止, 待楼板钢筋绑扎完成后进行混凝土浇 注, 注意兜圏浇注, 一次约 0.5米高;
8. 重复步骤 3~7至屋顶。 在已有基层墙体的基础上的施工方案-本发明墙体结构构件 的优选实施方式的施工方案 根据另一种优选实施方式的施工方法涉及的是在已有基层墙 体上施加本发明的复合板, 以对其进行装修改造、 保温改造或其 他改造的方案。 在该方案中, 要将本发明提出的包括前面说明过 的保温复合板结构组件或预制保温复合板和 /或带拐角的预制保 温复合板的永久混凝土模板作为外侧的保温层和 /或饰面层。在安 装永久混凝土模板后, 在永久混凝土模板与已有基层墙体之间可 以填充所需要的填充材料。 例如, 如果填充保温材料, 可以进一 步提供墙体的保温性能, 如果充填混凝土, 可以进一步提供已有 墙体的强度和耐久性, 如果充填细石混凝土, 可以提供墙体的防 水性能。也可以在永久混凝土模板与已有几层墙体之间不留空间, 而将永久混凝土模板紧靠着已有基层墙体安装固定或由于施工的 需要而只留很小的空间, 这样在永久混凝土模板与已有的基层墙 体之间不充填任何填充材料。 下面结合图 13 - 16和 25来说明。本领域技术人员可以理解, 在该施工方法中,基本上要将图 13 - 16所示的装配方法应用到图 25中。 根据另一种优选实施方式混凝土墙体的施工方法包括如下步 骤:在现有的墙体主体结构部分 100外侧安装保温层部分的步骤, 其中, 将保温层部分与墙体主体结构部分 100固定连接, 其中, 保温层部分包括权利要求 19 - 23 中的任意一个权利要求的保温 复合板结构组件, 在安装保温层部分的步骤中, 将的保温复合板 结构组件所包括的拉接件 16, 165的伸出部与墙体主体结构部分 100 固定连接, 以将保温复合板结构组件固定连接在墙体主体结 构部分上。 在根据该另一种优选实施方式的混凝土墙体的施工方法中, 拉接件 16为伸出部带有紧固孔的拉接件 16, 在安装保温层部分 的步骤中, 先将支撑件 202固定到墙体主体结构部分的外侧, 然 后通过拉接件的伸出部上的紧固孔以及紧固件 203而将拉接件 16 固定连接在支撑件 202上, 从而将保温复合板结构组件所包括的 预制保温复合板 1或带拐角的预制保温复合板 20连接到墙体主体 结构部分 100上。 在根据该另一种优选实施方式的混凝土墙体的施工方法中, 在安装保温层部分的步骤中还包括:在底部的起始平台 30上固定 起始条 31 ,起始条 31具有向上突出的突出嵌入部 310,将保温复 合板结构组件所包括的处在最下面的预制复合保温板和带拐角的 预制复合保温板上的处在最下面的安装槽 13 与起始条的突出嵌 入部 310配合, 将突出嵌入部嵌到最下面的安装槽内。 在根据该另一种优选实施方式的混凝土墙体的施工方法中, 在安装保温层部分的步骤中, 在保温层部分与墙体主体结构部分 100 之间留有浇注混凝土的空间, 在安装好保温层部分之后, 在 空间中浇注自密实细骨料混凝土以提高已有墙体基体的结构强度 和防水能力。 在根据该另一种优选实施方式的混凝土墙体的施工方法中, 在将支撑件 202固定在墙体主体结构部分 100上时利用膨胀螺栓 201将支撑件沿着横向或竖向固定在墙体主体结构部分 100上。 对于上面所述的在已有基层墙体的基础上施加本发明的复合 板的具体实施方案, 根据上面公开的该优选实施方式的施工方法 的内容, 本领域技术人员可以根据工程实践的需要, 采用具体的 工作流程, 进行各种变化和调整。 本申请提出的一种具体工程实 践中可以采用的流程如下:
1. 测绘已有基层墙体的图, 包括门窗洞口、 转角等;
2. 通过计算机辅助设计程序或手工设计将标准及非标复合 板布置在墙体测绘图上作为设计布置图, 准确标注标准板与非标 复合板的位置, 非标尺寸的产品另行安排设计制作;
3. 根据设计布置图在基层墙体上进行定位划线;
4. 施工第一层复合板起始平台, 要求尺寸准确, 整个外周 圏须保持在同一标高上, 开始连续固定起始条;
5. 按照定位放线点将单点或连续角钢用膨胀螺丝固定在基 层墙体上, 横向、 竖向布置均可;
6. 将复合板从第一层开始安装, 一层一层安装, 下端的安 装槽卡在起始条或横向镶嵌条的突出嵌入部上, 板与板侧边*** 竖向镶嵌条,上端通过拉接件与角钢连接,上端放入横向镶嵌条;
7. 重复步骤 6至顶部;
8. 安装好两层复合板可浇注一次自密实细骨料混凝土以提 高已有墙体的结构强度和防水能力。 预制保温复合板或带拐角的预制保温复合板的预制生产方法 本发明还提出了前面说明过的预制保温复合板或带拐角的预 制保温复合板的生产工艺。 下面结合图 1-8, 特别是图 6- 7进 行说明。 如图 6- 7所示,根据一个优选实施方式的预制保温复合板或 带拐角的预制保温复合板的生产工艺涉及一种用于制造本发明的 预制保温复合板或带拐角的预制保温复合板的预制方法, 在该预 制方法中, 使用前面已经说明过的本发明提出的模具型材 50, 包 括如下步骤:
( 1) 以铝合金的模具型材 50拼接而成的框架为模具;
(2)将带边框 2的芯部 9置于模具内, 使边框 2的安装槽 13与的模具型材 50内侧的定位突出部 504紧密结合以定位芯部 9;
(3)在芯部 9的一面,施加由水泥基或石膏基的聚合物改性 胶浆构成的加强保护层 7, 在铺设由水泥基或石膏基的聚合物改 性胶浆构成的加强保护层 7时,以模具型材 50横断面上的对齐突 出部 503, 502高点为复合板的增强保护层 7的厚度的控制点, 以 保证复合板的厚度及尺寸统一;
(4)翻转模具, 重复步骤 3, 以在芯部 9另一面施加由水泥 基或石膏基的聚合物改性胶浆构成的加强保护层 7;
(5)脱模, 将模具型材 50去除;
(6)对保温复合板或带拐角的预制保温复合板进行养护。 在该优选实施方式的预制方法中, 在芯部 9的每一面施加由 水泥基或石膏基的聚合物改性胶浆构成的加强保护层 7时均分两 层 71来施加加强保护层 7, 其中, 先将第一层由水泥基或石膏基 的聚合物改性胶浆构成的加强保护层 71材料铺设于芯部 9上之 后, 铺设增强材料 8, 然后, 再铺设第二层由水泥基或石膏基的 聚合物改性胶浆构成的加强保护层 71材料,在铺设第二层由水泥 基或石膏基的聚合物改性胶浆构成的加强保护层 71材料时,以模 具型材 50横断面上的对齐突出部 503 , 502高点为复合板的增强 保护层 7的厚度的控制点。 在该优选实施方式的预制方法中, 在芯部 9一面施加由水泥 基或石膏基的聚合物改性胶浆构成的加强保护层 7之后或在芯部 9 另一面施加由水泥基或石膏基的聚合物改性胶浆构成的加强保 护层 7之后, 在脱模步骤以前, 在该一面或该另一面的加强保护 层 7上设置饰面层 15 , 使其与加强保护层 7粘合。 对利用根据该优选实施方式的预制方法制造的复合板进行养 护之后,复合板的加强保护层 7硬化并与芯部 9结合成一个整体, 在工厂进行检验、 包装, 然后即可出厂。 在该优选实施方式中, 预制时是将模具型材拼成的模具放置 在衬底 508上进行作业。 本领域普通技术人员可以理解, 预制时 也可以将模具放置在其他类型的工作平台上进行。 在本申请的文件中, 所有的 "包括…"都既有"包括… "又有 "由…构成"的意思。 本申请提出的制造复合板的模具型材, 可以用于制造本发明 要求保护的各种预制保温复合板或带有拐角的预制保温复合板, 也可以制造包括芯部和处在芯部两侧将芯部覆盖起来的加强保护 层而且在侧端面具有安装槽的其他形式的复合板。 本申请提出的利用模具型材制造复合板的方法, 可以用于制 复合板, 也可以制造包括芯部和处在芯部两侧将芯部覆盖起来的 加强保护层而且在侧端面具有安装槽的其他形式的复合板。 本申请的说明书中对各种结构构件和方法的说明, 以对与本 发明相关的方面进行说明为主, 本领域技术人员根据实际的工程 设计、 施工的需要, 可以对说明书中公开的各种方法所包括的步 骤进行补充、 修改或增删, 在不脱离本发明的原理的情况下, 这 些补充、 修改或增删后的方法都不会脱离本发明的范围。 部件和附图标记清单 预制保温复合板 1
芯部 9
边框 2
芯部固定槽 3
边框连接孔 4
边框型材加固件 5
***连接部 51
拐角部边框型材加固件 6
拐角***连接部 61
加强保护层 7
内侧主平面 101 外侧主平面、 102
侧端面 103、 104、 105、 106 边框连接部 11
安装槽 13
增强网 8
固定翼部 10
***连接部 51
饰面层 15
斜面 108、 109
带拐角的预制保温复合板 20 模具型材 50
模具型材本体 501
下对齐突出部 502
上对齐突出部 503
定位突出部 504
内侧抵靠部 507
衬板 508 有缝拉接件 16
安装槽嵌入部 162、 163 主体部 161
伸出部 164
有缝镶嵌条 166、 169 无缝拉接件 17
安装槽嵌入部 171、 172 伸出部 173 颈缩部 178
无缝镶嵌条 177、 178
卡槽 179 起始平台 30
起始条 31
突出嵌入部 310
膨胀螺栓 32、 201 限位套管 80
拉紧套管 90
拉紧栓 91
拉接件 165
起始板 93
混凝土模板 92
起始龙骨 94
纵向型钢龙骨 95、 85
龙骨通孔 953、 954
纵向冷弯薄壁型钢 951、 952、 851、 852 型钢连接件 96、 87
型钢连接件通孔 961
纵向连接龙骨 97
纵向连接型钢 971、 972
横向连接型钢龙骨 98
横向冷弯薄壁型钢 981、 982、 881、 882 斜向连接型钢龙骨 89
斜向冷弯薄壁型钢 891、 892 自攻螺钉 81、 93、 203 空间 200 混凝土模板横向龙骨 921 混凝土模板竖向龙骨 922 拉紧栓垫片 911 墙体主体结构部分 100 支撑件 202

Claims

1. 一种预制保温复合板( 1 ), 其具有内侧主平面 ( 101 )、 外 侧主平面 ( 102) 以及四个侧端面 ( 103, 104, 105, 106), 包括 由保温板材构成的芯部 (9), 其特征在于: 还包括:
两层由水泥基或石膏基的聚合物改性胶浆构成的加强保护层 (7); 所述芯部 (9)处在所述两层加强保护层(7)之间, 所述 两层加强保护层与所述芯部 (9) 粘结在一起;
边框(2), 所述边框(2) 围绕着芯部 (9) 的周边并与芯部 (9)紧固在一起, 在所述该预制保温复合板的内侧主平面( 101) 和外侧主平面( 102) 内, 所述加强保护层将所述边框盖住, 使得 所述边框仅在该预制保温复合板的四个侧端面 ( 103, 104, 105, 106)上露出, 所述边框 (2) 包括在所述边框外侧并分别处在边 框上部和下部的两个边框连接部 ( 11) 以及处在边框外侧并处在 所述两个边框连接部( 11 )之间的安装槽 ( 13 ), 所述安装槽沿着 整个边框的长度延伸。
2. 如权利要求 1所述的预制保温复合板, 其特征在于: 每一 层加强保护层(7)中都设有埋置在其内的增强材料, 所述预制保 温复合板的尺寸为符合建筑标准化的模数化尺寸。
3. 如权利要求 2所述的预制保温复合板, 其特征在于: 所述 增强材料包括由耐碱玻璃纤维、碳纤维或钢纤维构成的增强网(8) 或包括均匀地分散在所述加强保护层中的耐碱短切玻璃纤维、 碳 纤维或钢纤维。
4. 如权利要求 1所述的预制保温复合板, 其特征在于: 所述 水泥为硅酸盐水泥或氯氧镁水泥, 所述保温板材由有机或无机保 温材料构成。
5. 如权利要求 1所述的预制保温复合板, 其特征在于: 所述 边框 ( 2 )包括四段边框型材,每段边框型材的两个端面都是斜面, 以便四段边框型材两两端部对接而拼装在一起形成一个完整的边 框(2), 每一段边框型材均是一体成形的, 并且每一段边框型材 均包括:
在所述边框型材内侧并分别处在边框型材上部和下部的两个 固定翼部 ( 10); 以及
处在边框型材内侧并处在所述两个固定翼部 ( 10)之间的芯 部固定槽 (3);
其中, 所述两个边框连接部 ( 11) 中的每一个都设有边框连 接孔( 4 ); 所述预制保温复合板的所述芯部( 9 )的四个侧边的边 缘中的每个分别***到一段边框型材的芯部固定槽(3)中,而且, 每段边框型材的所述两个固定翼部( 10 )夹持固定在所述芯部( 9 ) 的四个边缘中的一个上;
该预制保温复合板还包括:
边框型材加固件 (5), 每两段端部对接的边框型材之间有一 个或两个边框型材加固件(5), 所述边框型材加固件(5)包括两 个***连接部( 51 ), 所述两个***连接部( 51 )分别***到每两 段相邻的边框型材的彼此相邻的边框连接孔( 4 )中并固定在边框 连接孔(4) 中, 以将四段边框型材连接在一起形成一个整体。
6. 如权利要求 5所述的预制保温复合板, 其特征在于: 所述 安装槽( 13)相对于所述两个边框连接部 ( 11)居中设置, 所述 芯部固定槽( 3 )在所述边框内侧相对于所述两个固定翼部居中设 置。
7. 如权利要求 6所述的预制保温复合板, 其特征在于: 还包 括饰面层( 15 ), 所述饰面层( 15 )处在位于该预制保温复合板外 侧的加强保护层( 7 )的外侧并与该加强保护层( 7 )粘结在一起。
8. 如权利要求 1所述的预制保温复合板, 其特征在于: 所述 保温板材是由有机或无机保温材料构成的保温板材。
9. 如权利要求 1所述的预制保温复合板, 其特征在于: 所述 预制保温复合板为正方形或长方形, 其尺寸和重量设定成便于建 筑工人的手工搬运和操作。
10. 一种带拐角的预制保温复合板(20 ), 其特征在于: 包括 两个保温复合板部分, 所述两个保温复合板部分中的每个都具有 内侧主平面( 101 )、 外侧主平面( 102 )和四个侧端面, 所述四个 侧端面中的一个侧端面形成为相对于该保温复合板部分的内侧主 平面( 101 )和外侧主平面( 102 )倾斜的斜面( 108, 109 ), 两个 斜面 ( 108, 109 ) 的尺寸相同倾斜角度相同, 以便彼此配合, 两 个保温复合板部分在斜面处对接在一起, 使得两个保温复合板部 分分别处在两个不同的平面中, 所述两个不同的平面彼此相交, 每个保温复合板部分都包括:
由保温板材构成的芯部 (9 );
两层由水泥基或石膏基的聚合物改性胶浆构成的加强保护层 ( 7 ), 所述芯部 (9 )处在所述两层加强保护层(7 )之间, 所述 两层加强保护层与所述芯部 (9 ) 粘结在一起;
边框(2 ), 所述边框(2 )处在芯部 (9 ) 的在所述保温复合 板部分的除形成为所述斜面的侧端面以外的三个侧端面 ( 103 ,
104, 106 )上的三个边并与芯部 (9 ) 紧固在一起, 在所述该带 拐角的预制保温复合板的内侧主平面和外侧主平面中的每个平面 内, 所述加强保护层将所述边框盖住, 使得所述边框仅在该带拐 角的预制保温复合板的所述保温复合板部分的所述三个侧端面 ( 103, 104, 106 )上露出, 所述边框( 2 ) 包括在所述边框外侧 并分别处在边框上部和下部的两个边框连接部 ( 11 )和处在边框 外侧并处在所述两个边框连接部( 11 )之间的安装槽 ( 13 ), 所述 安装槽沿着整个边框的长度延伸。
11. 如权利要求 10所述的带拐角的预制保温复合板, 其特征 在于: 每一层加强保护层 (7 ) 中都设有埋置在其内的增强材料, 所述带拐角的预制保温复合板的尺寸为符合建筑标准化的模数化 尺寸。
12. 如权利要求 11所述的带拐角的预制保温复合板, 其特征 在于: 所述增强材料包括由耐碱玻璃纤维、 碳纤维或钢纤维构成 的增强网( 8 )或包括均匀地分散在所述加强保护层中的耐碱短切 玻璃纤维、 碳纤维或钢纤维。
13. 如权利要求 11所述的带拐角的预制保温复合板, 其特征 在于: 所述水泥为硅酸盐水泥或氯氧镁水泥, 所述保温板材由有 机或无机保温材料构成。
14. 如权利要求 10所述的带拐角的预制保温复合板, 其特征 在于: 每个所述保温复合板部分包括的所述边框( 2 )都包括三段 边框型材, 每段边框型材的两个端面都是斜面, 以便六段边框型 材两两端部对接而拼装在一起形成一个完整的边框(2), 每一段 边框型材均是一体成形的, 并且每一段边框型材均包括:
在所述边框型材内侧并分别处在边框上部和下部的两个固定 翼部 ( 10); 以及
处在边框型材内侧并处在所述两个固定翼部 ( 10)之间的芯 部固定槽 (3);
其中, 所述两个边框连接部 ( 11) 中的每一个都设有边框连 接孔( 4 ), 所述保温复合板部分的所述芯部( 9 )的除形成有所述 斜面的侧端面以外的三个侧端面 ( 103, 104, 106)上的三个边 的边缘分别***到一段边框型材的芯部固定槽(3)中, 而且, 每 段边框型材的所述两个固定翼部 ( 10) 夹持固定在所述芯部 (9) 的上述三个边中的一个边的边缘上;
所述带拐角的预制保温复合板还包括:
边框型材加固件 (5), 除所述斜面处以外, 在相邻的每两段 边框型材侧端面对接处, 在每两段端部对接的边框型材之间有一 个或两个边框型材加固件(5), 所述边框型材加固件(5)包括两 个***连接部( 51 ), 所述两个***连接部( 51 )分别***到每个 保温复合板部分中的相邻两段边框型材的彼此相邻的边框连接孔 (4) 中并固定在边框连接孔(4) 中, 以将相邻的边框型材连接 在一起形成一个整体;
所述带拐角的预制保温复合板还包括:
拐角部边框型材加固件 (6), 在所述斜面处在两个边框型材 的端面对接处在两个边框型材之间有一个或两个拐角部边框型材 加固件(6), 所述拐角部边框型材加固件(6)包括拐角***连接 部( 61 ), 所述拐角***连接部( 61 )在所述斜面处***到所述相 邻的两个边框的边框连接孔(4)中, 从而将在所述两个保温复合 板部分相对接的斜面处的相邻的两段边框型材固定在一起, 从而 将两个相邻的保温复合板部分的六段边框型材固定连接在一起形 成一个完整边框并将所述两个保温复合板部分固定结合在一起形 成一个整体。
15. 如权利要求 14所述的带拐角的预制保温复合板, 其特征 在于: 所述安装槽 ( 13 )相对于所述两个边框连接部 ( 11 )居中 设置, 所述芯部固定槽(3 )相对于所述两个固定翼部( 10 )居中 设置。
16. 如权利要求 10所述的带拐角的预制保温复合板, 其特征 在于: 还包括饰面层( 15 ), 所述饰面层( 15 )处在位于该带拐角 的预制保温复合板外侧的加强保护层( 7 )的外侧并与该加强保护 层( 7 ) 粘结在一起。
17. 如权利要求 10所述的带拐角的预制保温复合板, 其特征 在于: 所述保温板材为由有机或无机保温材料构成的保温板材。
18. 如权利要求 17所述的带拐角的预制保温复合板, 其特征 在于: 所述带拐角的预制保温复合板的保温复合板部分为正方形 或长方形的, 其尺寸和重量设定成便于建筑工人的手工搬运和操 作。
19. 一种保温复合板结构组件, 其特征在于: 包括多个如权利 要求 1 - 9中任意一个权利要求所述的预制保温复合板( 1 ), 所述 多个预制保温复合板以侧端面对接的方式拼接组合在一起, 该预 制保温复合板构成的结构组件还包括: 多个拉接件, 所述多个拉 接件中的每个都包括安装槽嵌入部 ( 162, 163, 171 , 172 )和伸 出部( 164, 173 ), 所述安装槽嵌入部被嵌在所述预制保温复合板 的安装槽内, 所述伸出部伸出到所述安装槽之外, 并朝向所述内 侧主平面( 101 )延伸得超过所述内侧主平面( 101 ), 通过所述多 个拉接件与所述安装槽的连接配合, 所述多个预制保温复合板拼 接组合在一起。
20. 如权利要求 19所述的保温复合板结构组件,其特征在于: 还包括多个如权利要求 10- 18 中任意一个权利要求所述的带拐 角的预制保温复合板 ( 20 ),所述带拐角的预制复合保温板的高度 和厚度分别与所述预制保温复合板的高度和厚度相等, 所述带拐 角的预制复合保温板的安装槽与所述预制保温复合板的安装槽
( 13) 的尺寸相同, 所述带拐角的预制保温复合板与所述预制保 温复合板之间两两侧端面对接, 通过多个拉接件 ( 16, 17) 与所 述安装槽 ( 13) 的连接配合, 相邻对接的所述带拐角的预制保温 复合板与所述预制保温复合板拼接组合在一起, 相邻的每两个带 拐角的预制保温复合板之间通过拉接件与所述安装槽的连接配合 而拼接组合在一起。
21. 如权利要求 19或 20所述的保温复合板结构组件,其特征 在于: 所述拉接件总体上呈 T形, 所述安装槽嵌入部形成在所述 T形的上部, 所述伸出部形成在所述 T形的下部, 所述拉接件的 安装槽嵌入部 ( 162, 163, 171, 172) 的横截面形状与所述安装 槽( 13) 的横截面形状一致以便安装槽嵌入部 ( 162, 163, 171, 172) 与所述安装槽 ( 13)彼此配合。
22. 如权利要求 19所述的保温复合板结构组件,其特征在于: 所述拉接件包括有缝拉接件( 16 )和无缝拉接件( 17 ), 所述有缝 拉接件具有主体部( 161 ), 所述有缝拉接件的伸出部( 164 )与所 述有缝拉接件的所述主体部( 161 )处在同一个平面内, 所述有缝 拉接件的安装槽嵌入部 ( 162, 163 ) 沿着垂直于所述有缝拉接件 的所述伸出部和所述主体部所处的平面的方向伸出到所述有缝拉 接件的所述伸出部和所述主体部所处的平面之外, 在所述结构组 件中, 所述有缝拉接件放置在由相邻的每两个预制保温复合板对 接而形成的水平接缝中, 所述有缝拉接件和所述无缝拉接件的安 装槽嵌入部的横截面的宽度( W 拉 , W 拉 2 )都与预制保温复合板 的安装槽的宽度(W 槽 )相等, 所述有缝拉接件的安装槽嵌入部 的横截面的高度 ( h 拉 ^等于或小于所述安装槽的深度(d 槽 ); 所述无缝拉接件的安装槽嵌入部的横截面高度 ( h 拉 2 )等于两个 对接在一起的预制保温复合板的两个安装槽的深度(d 槽 ) 的和, 所述无缝拉接件具有颈缩部 ( 178 ), 所述颈缩部处在所述安装槽 嵌入部 ( 171 ) 与所述伸出部 ( 173 )之间, 整个所述无缝拉接件 的厚度都相同, 所述颈缩部的横截面的宽度小于所述伸出部的横 截面的宽度, 横向上相邻的每两个预制保温复合板中的每个的沿 着竖向的两个边框连接部 ( 11 ) 中的一个上设有卡槽( 179 ), 相 邻的两个卡槽彼此正对, 所述卡槽的宽度与所述颈缩部的宽度相 等, 两个卡槽的深度的和与所述颈缩部的厚度相等。
23. 如权利要求 20所述的保温复合板结构组件,其特征在于: 所述拉接件包括有缝拉接件( 16 )和无缝拉接件( 17 ), 所述有缝 拉接件具有主体部( 161 ), 所述有缝拉接件的伸出部( 164 )与所 述有缝拉接件的所述主体部( 161 )处在同一个平面内, 所述有缝 拉接件的安装槽嵌入部 ( 162, 163 ) 沿着垂直于所述有缝拉接件 的所述伸出部和所述主体部所处的平面的方向伸出到所述有缝拉 接件的所述伸出部和所述主体部所处的平面之外, 在所述结构组 件中, 在由相邻的每两个预制保温复合板对接而形成的水平接缝 接缝中都放置有所述有缝拉接件, 所述有缝拉接件和所述无缝拉 接件的安装槽嵌入部的横截面的宽度(W , W拉 2)都与预制保 温复合板的安装槽及带拐角的预制保温复合板的安装槽的宽度 (W 槽 )相等, 所述有缝拉接件的安装槽嵌入部的横截面的高度 (h拉 )等于或小于所述安装槽的深度(d槽 ); 所述无缝拉接件 的安装槽嵌入部的横截面高度( h拉 2)等于两个安装槽的深度 ( d 槽 )的和, 所述无缝拉接件具有颈缩部( 178), 所述颈缩部处在所 述安装槽嵌入部 ( 171) 与所述伸出部 ( 173)之间, 整个所述无 缝拉接件的厚度都相同, 所述颈缩部的横截面的宽度小于所述伸 出部的横截面的宽度, 横向上相邻的每两个预制保温复合板中的 每个的沿着竖向的两个边框连接部 ( n) 中的一个上以及横向上 着竖向的两个边框连接部 ( 11) 中的一个上设有卡槽( 179), 相 邻的两个卡槽彼此正对, 所述卡槽的宽度与所述颈缩部的宽度相 等, 两个卡槽的深度的和与所述颈缩部的厚度相等。
24. 一种永久混凝土模板, 其特征在于: 该永久混凝土模板包 括:
如权利要求 1-9 中的任意一个权利要求所述的预制保温复 合板和 /或如权利要求 10- 18 中的任意一个权利要求所述的带拐 角的预制保温复合板;
或包括:如权利要求 19 - 23中的任意一个权利要求所述的保 温复合板结构组件。
25. 一种混凝土板结构构件, 包括: 配筋;
第一混凝土模板, 其处在所述配筋的一侧;
第二混凝土模板, 其处在所述配筋的另一侧;
混凝土, 其处在所述第一混凝土模板与所述第二混凝土模板 之间;
其中, 所述第一混凝土模板和所述第二混凝土模板中之一或 二者都是永久混凝土模板, 所述混凝土与所述配筋和所述永久混 凝土模板结合成一个整体;
其特征在于: 所述永久混凝土模板包括: 权利要求 19 - 23 中的任意一个权利要求所述的保温复合板结构组件, 所述保温复 合板结构组件与所述配筋通过所述拉接件( 16, 17, 165 )的伸出 部而固定连接。
26. 如权利要求 25所述的混凝土板结构构件, 其特征在于: 所述配筋为钢筋或冷弯薄壁型钢框架;
所述冷弯薄壁型钢框架包括:
多个沿着所述混凝土板结构构件的主平面的伸展方向间隔开 的互相平行排列的纵向型钢龙骨( 95 , 85 ), 每个纵向型钢龙骨包 括两根纵向冷弯薄壁型钢( 951 , 952; 851, 852 ), 所述纵向冷弯 薄壁型钢的主平面以及所述保温复合板结构组件所包括的预制保 温复合板或带拐角的预制保温复合板的内侧主平面和外侧主平面 互相平行, 所述两根纵向冷弯薄壁型钢沿着与所述混凝土板结构 构件的主平面垂直的方向彼此对置并间隔开, 以致所述两根纵向 冷弯薄壁型钢之间留有空间 ( 200 ), 从而在浇注混凝土时所述混 凝土能容易地从所述两根纵向冷弯薄壁型钢之间留有的空间流 过, 所述两根纵向冷弯薄壁型钢之间留有的空间里充满混凝土, 所述第一混凝土模板和所述第二混凝土模板都与所述冷弯薄壁型 钢框架固定连接。
27. 如权利要求 26所述的混凝土板结构构件, 其特征在于: 所述两根纵向冷弯薄壁型钢之间通过型钢连接件 (96, 87) 固定 连接 , 所述第一混凝土模板和所述第二混凝土模板与所述纵向冷 弯薄壁型钢之间都间隔开, 在所述第一混凝土模板与第二混凝土 模板之间的混凝土将所述冷弯薄壁型钢框架覆盖起来。
28. 如权利要求 26所述的混凝土板结构构件, 其特征在于: 每个纵向型钢龙骨 (95) 包括的纵向冷弯薄壁型钢 ( 951, 952) 上带有沿着其长度方向分布的贯穿的多个龙骨通孔( 953, 954), 在两根纵向冷弯薄壁型钢上的龙骨通孔( 953, 954)彼此正对, 在至少一部分龙骨通孔( 953, 954) 中贯穿有所述拉接件( 16, 17, 165)的伸出部, 使得所述龙骨通孔的贯穿方向与所述混凝土 板结构构件的主平面以及所述保温复合板结构组件所包括的预制 保温复合板或带拐角的预制保温复合板的内侧主平面和外侧主平 面垂直; 所述第一混凝土模板和所述第二混凝土模板中的一个为 普通混凝土模板, 所述永久混凝土模板为外侧混凝土模板, 所述 普通混凝土模板为内侧混凝土模板 ( 92 ),
所述混凝土板结构构件还包括拉紧栓( 91 )和拉紧套管( 90 ), 所述拉紧套管 (90)处在所述内侧混凝土模板 (92) 与每个纵向 型钢龙骨所包括的两根纵向冷弯薄壁型钢中的处在内侧的纵向冷 弯薄壁型钢之间;
所述拉接件( 16, 17, 165)的伸出部从所述外侧混凝土模板 伸出并穿过所述龙骨通孔与所述拉紧套管连接, 将所述外侧混凝 土模板与所述纵向型钢龙骨固定连接, 所述拉紧栓(91) 穿过所 述内侧混凝土模板 (92) 与所述拉紧套管连接, 将所述内侧混凝 土模板与所述纵向型钢龙骨固定连接。
29. 如权利要求 28所述的混凝土板结构构件, 其特征在于: 所述混凝土板结构构件还包括:
限位套管( 80 ),其处在所述外侧混凝土模板与所述每个纵向 型钢龙骨所包括的两根纵向冷弯薄壁型钢中的处在外侧的纵向冷 弯薄壁型钢之间。
30. 如权利要求 27所述的混凝土板结构构件, 其特征在于: 每个纵向型钢龙骨所包括的两根纵向冷弯薄壁型钢都为 C 形型 钢, 所述冷弯薄壁型钢框架还包括:
横向连接型钢龙骨, 其包括横向冷弯薄壁型钢 ( 981 , 982, 881, 882 );
斜向连接型钢龙骨, 其包括斜向冷弯薄壁型钢 ( 891 , 892 ), 所述纵向型钢龙骨沿着竖向设置, 多个平行排列的纵向型钢龙骨 通过所述横向连接型钢龙骨而连接, 所述斜向型钢连接龙骨与所 述纵向型钢龙骨连接, 所述纵向型钢龙骨、 所述横向连接型钢龙 骨和所述斜向连接龙骨连接以形成一个稳定的整体刚性结构。
31. 如权利要求 28所述的混凝土板结构构件, 其特征在于: 所述拉接件 ( 165 )与所述拉紧套管( 90 )之间为螺纹连接, 所述 拉紧栓(91 ) 与所述拉紧套管 (90 )之间为螺纹连接。
32. 如权利要求 25所述的混凝土板结构构件, 其特征在于: 所述混凝土板结构构件为混凝土墙板结构构件, 还包括: 处在底 部的起始平台 (30 ), 所述起始平台上固定有起始条(31 ), 所述 起始条(31 )具有向上突出的突出嵌入部 (310 ), 所述永久混凝 土模板所包括的处在最下面的预制复合保温板和带拐角的预制复 合保温板上的处在最下面的安装槽( 13 ) 与起始条的突出嵌入部 ( 310 ) 配合, 突出嵌入部嵌到所述最下面的安装槽内。
33. 一种混凝土墙板结构构件, 包括:
配筋;
第一混凝土模板, 其处在所述配筋的一侧;
第二混凝土模板, 其处在所述配筋的另一侧;
混凝土模板支撑, 所述第一混凝土模板和所述第二混凝土模 板与所述混凝土模板支撑固定连接;
混凝土, 其处在所述第一混凝土模板与所述第二混凝土模板 之间;
其中, 所述第一混凝土模板和所述第二混凝土模板中之一或 二者都是永久混凝土模板, 所述混凝土与所述配筋和所述永久混 凝土模板结合成一个整体;
其特征在于: 所述永久混凝土模板包括: 权利要求 19 - 23 中的任意一个权利要求所述的保温复合板结构组件, 所述保温复 合板结构组件与所述混凝土模板支撑通过所述拉接件 ( 16, 17, 165 ) 的伸出部而固定连接。
34. 如权利要求 33所述的混凝土墙板结构构件,其特征在于: 所述第一混凝土模板为外侧混凝土模板, 所述外侧混凝土模板为 永久混凝土模板, 所述第二混凝土模板为内侧混凝土模板 ( 92 ), 该混凝土墙板结构构件的混凝土模板支撑包括: 混凝土模板竖向 龙骨 (922 )和混凝土模板横向龙骨 (921 );
该混凝土墙板结构构件还包括拉紧栓( 91 )和拉紧套管( 90 ), 所述拉紧套管 (90 )处在所述内侧混凝土模板(92 )外侧并与所 述内侧混凝土模板邻接, 所述混凝土模板竖向龙骨( 922)处在所 述内侧混凝土模板(92) 内侧并与所述内侧混凝土模板邻接, 所 述混凝土模板横向龙骨处在所述混凝土模板竖向龙骨内侧并与所 述混凝土模板横向龙骨邻接, 所述拉紧栓(91)从所述混凝土模 板横向龙骨内侧开始,依次穿过所述混凝土模板横向龙骨( 921 )、 所述混凝土模板竖向龙骨 (922)、 所述内侧混凝土模板 (92) 与 所述拉紧套管 (90)连接, 从而将所述内侧混凝土模板、 所述混 凝土模板横向龙骨和所述混凝土模板竖向龙骨固定连接; 所述拉 接件 ( 165 )的伸出部从所述外侧混凝土模板伸出并穿过与所述拉 紧套管连接,从而将所述外侧混凝土模板与所述内侧混凝土模板、 所述混凝土模板竖向龙骨和所述混凝土模板横向龙骨固定连接起 来。
35. 如权利要求 34所述的混凝土墙板结构构件,其特征在于: 所述拉接件 ( 165)与所述拉紧套管( 90 )之间为螺纹连接, 所述 拉紧栓(91) 与所述拉紧套管 (90)之间为螺纹连接。
36. 如权利要求 33所述的混凝土墙板结构构件,其特征在于: 还包括: 处在底部的起始平台(30), 所述起始平台上固定有起始 条(31), 所述起始条(31)具有向上突出的突出嵌入部 (310), 所述永久混凝土模板所包括的处在最下面的预制复合保温板和带 拐角的预制复合保温板上的处在最下面的安装槽 ( 13) 与起始条 的突出嵌入部(310)配合, 突出嵌入部嵌到所述最下面的安装槽 内。
37. 一种墙体结构构件, 包括: 墙体主体结构部分( 100) 和 保温层部分, 所述保温层部分与所述墙体主体结构部分( 100)固 定连接,其特征在于: 所述保温层部分为权利要求 19-23中的任 意一个权利要求所述的保温复合板结构组件, 所述拉接件 ( 16, 165) 的伸出部与所述墙体主体结构部分( 100) 固定连接, 以将 所述保温复合板结构组件固定连接在所述墙体主体结构部分上。
38. 如权利要求 37所述的墙体结构构件, 其特征在于: 所述 拉接件( 16) 的伸出部带有紧固孔, 所述墙体主体结构部分上固 定有支撑件(202), 所述拉接件通过所述伸出部上的紧固孔以及 紧固件而固定连接在所述支撑件(202)上。
39. 如权利要求 37所述的墙体结构构件, 其特征在于: 还包 括: 处在底部的起始平台 (30), 所述起始平台上固定有起始条
(31), 所述起始条(31)具有向上突出的突出嵌入部(310), 所 述永久混凝土模板所包括的处在最下面的预制复合保温板和带拐 角的预制复合保温板上的处在最下面的安装槽 ( 13) 与起始条的 突出嵌入部(310)配合,突出嵌入部嵌到所述最下面的安装槽内。
40. 一种用于制造权利要求 1 - 9之一所述的预制保温复合板 或权利要求 10- 18 之一所述的带拐角的预制保温复合板的模具 型材(50), 其特征在于包括:
型材本体(501), 所述型材本体包括用于在制造该所述预制 合板或所述带拐角的预制保温复合板的边框 (2) 的两个连接部 ( 11)抵靠的内侧抵靠部 ( 507), 所述内侧抵靠部的表面上伸出 时***到安装槽 ( 13) 内从而对芯部(9)进行定位的定位突出部 ( 504), 所述定位突出部的厚度等于所述安装槽的宽度(W槽), 所述内侧抵靠部上设有在制造预制保温复合板或所述带拐角的预 制保温复合板时用于决定加强保护层( 7 )的厚度的上对齐突出部
( 503 ), 从所述定位突出部( 504)的上表面至所述上对齐突出部 ( 503 )的顶表面的距离大于所述边框连接部 ( 11)厚度。
41. 如权利要求 40所述的模具型材, 其特征在于: 还包括用 于:在. ' 制::造:预:一制::保一温复二合' 板: 或 V所:迷—带:'拐: ..角'.的:预一::
Figure imgf000088_0001
复合板时决定 一层加强保护层(7)的厚度的下对齐突出部( 502), 从所述定位 突出部 ( 504) 的下表面至所述下对齐突出部 ( 502) 的底表面的 距离大于所述边框连接部 ( 11)厚度, 所述上对齐突出部 ( 503 ) 从所述定位突出部( 504 )的上表面向上伸出的距离等于所述下对 齐突出部 ( 502)从所述定位突出部 ( 504) 的下表面向下伸出的 距离。
42. 如权利要求 41所述的模具型材, 其特征在于: 所述上对 齐突出部伸出到所述型材本体(501)的上表面之上, 所述下对齐 突出部 ( 502)伸出到所述型材本体的下表面之下。
43. 如权利要求 40所述的模具型材, 其特征在于: 所述型材 本体是空心的型材本体, 所述模具型材由铝合金型材构成。
44. 一种现浇混凝土墙体的施工方法, 其特征在于: 包括如下 安装薄壁型钢框架的步骤;
安装外侧混凝土模板的步骤, 其中, 安装外侧混凝土模板将 其与冷弯薄壁型钢框架固定连接, 采用包括权利要求 19-23之一 所述的保温复合板结构组件的永久混凝土模板作为外侧混凝土模 温复合板或相邻的预制保温复合板与带拐角的预制保 侧边的安装槽( 13 ) 中***拉接件( 16, 17, 165 ), 外侧混凝土 模板与冷弯薄壁型钢框架的固定连接是通过将拉接件 ( 16, 17, 165 ) 的伸出部与冷弯薄壁型钢框架固定连接而实现的;
安装内侧混凝土模板的步骤, 其中, 安装内侧混凝土模板将 其与冷弯薄壁型钢框架固定连接。
45. 如权利要求 44所述的现浇混凝土墙体的施工方法, 其特 征在于: 所述外侧混凝土模板所包括的预制复合保温板或带拐角 的预制复合保温板的主平面的平面尺寸为模数化的尺寸, 安装外 侧混凝土模板的步骤是重复进行的以便通过拼装组合多层尺寸为 模数化的外侧混凝土模板而达到一个楼层的高度。
46. 如权利要求 45所述的现浇混凝土墙体的施工方法, 其特 征在于: 所述内侧混凝土模板的主平面的平面尺寸与所述外侧混 凝土模板的主平面的平面尺寸相同, 安装内侧混凝土模板的步骤 是重复进行的以便通过拼装组合多层尺寸为模数化的内侧混凝土 模板而达到一个楼层的高度, 拼装具有模数化尺寸的外侧混凝土 模板与拼装与外侧混凝土模板相对的具有模数化尺寸的内侧混凝 土模板是交替进行的。
47. 如权利要求 44所述的现浇混凝土墙体的施工方法, 其特 征在于: 在安装最底层的外侧混凝土模板和内侧混凝土模板时, 包括在起始平台 (30 )上安装起始条的步骤, 其中, 在起始平台 ( 30 )上固定起始条(31 ), 起始条带有突出嵌入部(310 ), 所述 永久混凝土模板所包括的处在最下面的预制复合保温板或带拐角 的预制复合保温板上的最下面的安装槽( 13) 与起始条的突出嵌 入部 (310) 配合, 使突出嵌入部嵌到所述最下面的安装槽内。
48. 如权利要求 44所述的现浇混凝土墙体的施工方法, 其特 征在于: 在安装冷弯薄壁型钢框架的步骤中包括: 安装多个沿着 所述混凝土墙体的主平面的伸展方向间隔开的互相平行排列的纵 向型钢龙骨( 95, 85 ), 每个纵向型钢龙骨包括两根纵向冷弯薄壁 型钢( 951, 952; 851, 852), 将所述纵向冷弯薄壁型钢的主平面 设置成与所述混凝土墙体的主平面以及所述保温复合板结构组件 面和外侧主平面互相平行, 使所述两根纵向冷弯薄壁型钢沿着与 所述混凝土墙体的主平面垂直的方向彼此对置并间隔开, 以致所 述两根纵向冷弯薄壁型钢之间留有空间 ( 200), 从而在浇注混凝 土时所述混凝土能容易地从所述两根纵向冷弯薄壁型钢之间留有 的空间流过。
49. 如权利要求 48所述的现浇混凝土墙体的施工方法, 其特 征在于: 在安装外侧混凝土模板和内侧混凝土模板的步骤中, 包 括: 在横向上左右相邻的预制保温复合板的侧边的竖向的安装槽
( 13) 中***竖向镶嵌条( 177)和拉接件( 16, 17, 165), 竖向 上相邻的预制保温复合板之间的水平的安装槽 ( 13) 中放入横向 镶嵌条( 166)和拉接件( 16, 17, 165), 其中, 外侧混凝土模板 与冷弯薄壁型钢框架的固定连接是通过将拉接件( 16, 17, 165) 的伸出部穿过包括型钢框架所包括的纵向型钢龙骨 (95)上的龙 骨通孔( 953, 954) 与处在竖向龙骨内侧的拉紧套管 (90) 螺纹 连接 , 以将预制保温复合板或带拐角的预制保温复合板与冷弯薄 壁型钢框架固定连接而实现的, 将带有垫片的拉紧栓(91)从内 侧混凝土模板 (92) 的内侧穿过相邻的内侧混凝土模板之间的龙 骨通孔而与所述拉紧套管 (90) 螺纹连接, 以将各内侧混凝土模 板与冷弯薄壁型钢框架固定连接。
50. 如权利要求 44所述的现浇混凝土墙体的施工方法, 其特 征在于: 拼装永久外侧混凝土模板与内侧混凝土模板将其与冷弯 薄壁型钢框架固定连接时利用限位件(80)、拉接件( 16, 17, 165) 与拉接拴(91)形成可靠等宽空腔。
51. 一种现浇混凝土墙体的施工方法, 其特征在于: 包括如下 安装混凝土模板支撑结构;
安装内侧混凝土模板(92) 的步骤, 其中, 将内侧混凝土模 板(92) 与所述混凝土模板支撑结构固定连接;
安装外侧混凝土模板的步驟,其中,采用包括权利要求 19-23 之一所述的保温复合板结构组件的永久混凝土模板作为外侧混凝 土模板, 在相邻的两个预制保温复合板或相邻的两个带拐角的预 ::保":温复二合 '板: 或相: 邻 .的:预―一制:保:温复二合 '板: 与 '―带:拐:二角的:预 -制:保 复合 板的侧边的安装槽 ( 13) 中***拉接件( 16, 17, 165), 将拉接 件( 16, 17, 165)的伸出部与所述混凝土模板支撑结构连接, 从 而使外侧混凝土模板与混凝土模板支撑结构固定连接起来。
52. 如权利要求 51所述的现浇混凝土墙体的施工方法, 其特 征在于:在安装最底层的外侧混凝土模板时,包括在起始平台( 30) 上安装起始条(31) 的步骤, 其中, 在起始平台 (30)上固定起 始条(31), 起始条带有突出嵌入部(310), 将所述永久混凝土模 板所包括的处在最下面的预制复合保温板或带拐角的预制复合保 温板上的处在最下面的水平安装槽( 13) 与起始条的突出嵌入部 (310) 配合, 使突出嵌入部嵌到所述最下面的安装槽内。
53. 如权利要求 51所述的现浇混凝土墙体的施工方法, 其特 征在于: 在安装内侧混凝土模板(92) 的步骤中, 将内侧混凝土 模板 (92) 与所述混凝土模板支撑结构固定连接是通过利用拉紧 栓(91)从外侧穿过混凝土模板支撑结构而与处在混凝土模板支 撑结构内侧的拉紧套(90) 固定连接而实现的, 在安装外侧混凝 土模板的步骤中,将拉接件( 165 )的伸出部的端部与拉紧套( 90 ) 连接。
54. 如权利要求 53所述的混凝土墙体的施工方法, 其特征在 于: 所述拉接件 ( 165) 与所述拉紧套管 (90)之间为螺纹连接, 所述拉紧栓(91) 与所述拉紧套管 (90)之间为螺纹连接, 所述 拉接件 ( 165) 与所述拉紧套(90) 的连接点在所述拉紧套(90) 的外侧部分, 所述拉紧栓(91) 与所述拉紧套(90) 的连接点在 所述拉紧套(90) 的内侧部分。
55. 一种混凝土墙体的施工方法, 包括如下步骤: 在墙体主体 结构部分( 100)外侧安装保温层部分的步骤, 其中, 将所述保温 层部分与所述墙体主体结构部分( 100) 固定连接, 其特征在于: 所述保温层部分包括权利要求 19-23 中的任意一个权利要求所 述的保温复合板结构组件, 在安装保温层部分的步骤中, 将所述 的保温复合板结构组件所包括的拉接件 ( 16, 165)的伸出部与所 述墙体主体结构部分( 100)固定连接, 以将所述保温复合板结构 组件固定连接在所述墙体主体结构部分上。
56. 如权利要求 55所述的混凝土墙体的施工方法, 其特征在 于: 所述拉接件( 16)为伸出部带有紧固孔的拉接件( 16), 在安 装保温层部分的步骤中, 先将支撑件(202)固定到所述墙体主体 结构部分的外侧, 然后通过所述拉接件的所述伸出部上的紧固孔 以及紧固件( 203 )而将所述拉接件( 16)固定连接在所述支撑件
( 202)上,从而将保温复合板结构组件所包括的预制保温复合板 ( 1 )或带拐角的预制保温复合板( 20 )连接到墙体主体结构部分 ( 100)上。
57. 如权利要求 55所述的混凝土墙体的施工方法, 其特征在 于: 在安装保温层部分的步骤中还包括: 在底部的起始平台(30) 上固定起始条( 31 ), 所述起始条( 31 )具有向上突出的突出嵌入 部 (310), 将所述保温复合板结构组件所包括的处在最下面的预 制复合保温板和带拐角的预制复合保温板上的处在最下面的安装 槽( 13)与起始条的突出嵌入部(310)配合, 将突出嵌入部嵌到 所述最下面的安装槽内。
58. 如权利要求 55所述的混凝土墙体的施工方法, 其特征在 于: 在安装保温层部分的步骤中, 在所述保温层部分与所述墙体 主体结构部分( 100)之间留有浇注混凝土的空间, 在安装好保温 层部分之后, 在所述空间中浇注自密实细骨料混凝土以提高已有 墙体基体的结构强度和防水能力。
59. 如权利要求 56所述的混凝土墙体的施工方法, 其特征在 于: 在将支撑件(202) 固定在墙体主体结构部分( 100)上时利 用膨胀螺栓( 201 )将支撑件沿着横向或竖向固定在墙体主体结构 部分( 100)上。
60. 一种用于制造权利要求 1 - 9之一所述的预制保温复合板 或权利要求 10- 18 之一所述的带拐角的预制保温复合板的预制 方法, 其特征在于: 使用权利要求 40-43 之一所述的模具型材
(50), 包括如下步骤:
1) 以所述的模具型材(50)拼接而成的框架为模具;
2)将带边框(2) 的芯部 (9) 置于模具内, 使边框(2) 的 安装槽 ( 13) 与所述的模具型材(50) 内侧的定位突出部 ( 504) 紧密结合以定位芯部 (9);
3)在芯部 (9) 的一面, 施加由水泥基或石膏基的聚合物改 性胶浆构成的加强保护层 (7), 在铺设由水泥基或石膏基的聚合 物改性胶浆构成的加强保护层(7)时, 以所述模具型材(50)横 断面上的对齐突出部( 503, 502 )高点为复合板的增强保护层( 7 ) 的厚度的控制点, 以保证复合板的厚度及尺寸统一;
4)翻转模具, 重复步骤 3, 以在芯部 (9) 的另一面施加由 水泥基或石膏基的聚合物改性胶浆构成的加强保护层 (7);
5)待加强保护层(7)初凝后脱模, 将所述模具型材(50) 去除;
6)对保温复合板或带拐角的预制保温复合板进行养护。
61. 如权利要求 60所述的预制方法,其特征在于:在芯部( 9 ) 的每一面施加由水泥基或石膏基的聚合物改性胶浆构成的加强保 护层(7) 时均分两层 (71) 来施加所述加强保护层 (7), 其中, 先将第一层由水泥基或石膏基的聚合物改性胶浆构成的加强保护 层(71)材料铺设于芯部(9)上之后, 铺设增强材料(8), 然后, 再铺设第二层由水泥基或石膏基的聚合物改性胶浆构成的加强保 护层 (71)材料, 在铺设第二层由水泥基或石膏基的聚合物改性 胶浆构成的加强保护层(71)材料时, 以所述模具型材(50)横 断面上的对齐突出部( 503, 502 )高点为复合板的增强保护层( 7 ) 的厚度的控制点。
62. 如权利要求 60所述的预制方法,其特征在于:在芯部( 9 ) 一面施加由水泥基或石膏基的聚合物改性胶浆构成的加强保护层 (7)之后或在芯部 (9) 另一面施加由水泥基或石膏基的聚合物 改性胶浆构成的加强保护层(7)之后, 在脱模步骤以前, 在该一 面或该另一面的加强保护层(7)上设置饰面层( 15), 使其与加 强保护层( 7 ) 粘合。
PCT/CN2011/082972 2010-11-25 2011-11-25 预制保温复合板及其组件、包括其的模板、混凝土板、其预制方法、模具型材 WO2012069016A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/989,122 US9175470B2 (en) 2010-11-25 2011-11-25 Prefabricated thermal insulating composite panel, assembly thereof, moulded panel and concrete slab comprising same, method and mould profile for prefabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010574735.7A CN102477778B (zh) 2010-11-25 2010-11-25 预制保温复合板及其组件、包括其的模板、混凝土板、其预制方法、模具型材
CN201010574735.7 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012069016A1 true WO2012069016A1 (zh) 2012-05-31

Family

ID=46090549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082972 WO2012069016A1 (zh) 2010-11-25 2011-11-25 预制保温复合板及其组件、包括其的模板、混凝土板、其预制方法、模具型材

Country Status (3)

Country Link
US (1) US9175470B2 (zh)
CN (1) CN102477778B (zh)
WO (1) WO2012069016A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362313A (zh) * 2013-06-25 2013-10-23 谭力 模块化组合式保温幕墙板的组装方法
CN103821271A (zh) * 2014-02-28 2014-05-28 长春工程学院 一种轻质保温隔音免支撑楼板
CN106088459A (zh) * 2016-06-14 2016-11-09 杨九龙 一种预制装配式复合保温外墙墙体及其制作方法、设计方法以及包含该墙体的钢结构建筑
CN106121160A (zh) * 2016-08-02 2016-11-16 浙江树华新型建材有限公司 保温装饰板
CN108104327A (zh) * 2017-12-14 2018-06-01 苏州美瑞德建筑装饰有限公司 定制精装空间室内吸音无机龙骨组合式隔墙结构
CN110093976A (zh) * 2019-06-04 2019-08-06 唐山市丰润区玥泰金属制品有限公司 一种龙骨支撑架、龙骨及其制备方法
CN110258854A (zh) * 2019-07-11 2019-09-20 佛山市南海雄业铝型材有限公司 一种方便安装的铝屋墙体及墙体安装方法
CN113756566A (zh) * 2021-09-27 2021-12-07 中建七局第六建筑有限公司 一种隔离式纳塑外模板安装结构及其安装方法
CN113931352A (zh) * 2021-11-05 2022-01-14 哈尔滨工业大学 一种含高延性固废基免拆模板的复合保温墙体及其制备方法
CN114319614A (zh) * 2021-12-07 2022-04-12 湖南中富杭萧建筑科技股份有限公司 一种便于安装的装配式建筑保温墙及其施工方法
CN114412115A (zh) * 2022-03-08 2022-04-29 华北电力大学(保定) 一种低能耗建筑外墙
CN114991341A (zh) * 2022-07-13 2022-09-02 山西澳斯特建材有限公司 一种装配式零碳建筑结构与保温装饰一体化墙体
CN115126271A (zh) * 2022-07-07 2022-09-30 中国建筑第二工程局有限公司 一种预制构件装配式混凝土结构

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2774386A1 (en) * 2011-04-15 2012-10-15 Tac-Fast Systems Canada Limited Methods and systems for engagement of decorative covering
CN103290963B (zh) * 2013-06-25 2015-12-02 四川华泰科创建材有限公司 模块化组合式保温幕墙板
US20150314564A1 (en) * 2014-05-05 2015-11-05 Chicago Flameproof & Wood Specialties Corp. Laminated magnesium cement wood fiber construction materials
DK178478B1 (da) * 2014-11-14 2016-04-11 Supply Holding Aps System til konstruktion af en bygning
US10266292B2 (en) 2015-01-22 2019-04-23 Neptune Research, Llc Carriers for composite reinforcement systems and methods of use
RU2020106174A (ru) * 2015-03-27 2020-04-24 Голконда Холдингз Ллк Система и способ для магнитных покрытий поверхностей
USD782075S1 (en) * 2015-08-31 2017-03-21 United Construction Products, Inc. Flooring tile
CN105604287A (zh) * 2015-12-26 2016-05-25 奥卡迪科(北京)建材商贸有限公司 一种预制复合墙板的铺贴方法
CN105421707A (zh) * 2015-12-26 2016-03-23 奥卡迪科(北京)建材商贸有限公司 一种预制复合墙板
GB2547026A (en) * 2016-02-05 2017-08-09 Bd Fire And Blast Ltd A blast-retaining panel wall and connectors therefor
US20170268218A1 (en) * 2016-03-18 2017-09-21 Hilton Engineering Inc Modular, transportable, insulated building, with water, and fire resistant floor, wall, and roof panel, pre-manufactured assemblies
CN106121296B (zh) * 2016-06-29 2018-03-27 展宏(福建)板业发展有限公司 一种低温冷库的施工方法
CN106812280B (zh) * 2016-12-29 2022-08-16 佛山市盛画世纪建材有限公司 一种适用于砖板间拼接安装的u型构件
USD788948S1 (en) * 2017-01-04 2017-06-06 United Construction Products, Inc. Flooring tile
CN107052876B (zh) * 2017-06-19 2023-04-07 沈阳飞机工业(集团)有限公司 一种可卸组合式切口模板及其使用方法
EA202090263A1 (ru) * 2017-09-21 2020-07-07 Хё Маджести Зе Куин Ин Райт Оф Канада Эз Репрезентед Бай Зе Министер Оф Нейчерал Резорсиз Модульная строительная система быстрого развертывания
US11225802B2 (en) * 2017-10-12 2022-01-18 George CHARITOU Prop head assembly
CN108316589A (zh) * 2018-01-16 2018-07-24 浙江臻鼎建筑装饰设计有限公司 建筑物外墙装饰保温装置
EP3517701A1 (en) 2018-01-30 2019-07-31 William H. Bigelow Improved building module with pourable foam and cable
US10683661B2 (en) 2018-01-30 2020-06-16 William H. Bigelow Building module with pourable foam and cable
CN108331347B (zh) * 2018-04-28 2023-09-19 浙江全能建模板技术有限公司 一种型材
WO2019213794A1 (zh) * 2018-05-11 2019-11-14 江苏源美竹木业有限责任公司 便于加工的复合防火板材及其制备方法
CN109159280B (zh) * 2018-08-17 2023-12-05 中国人民解放军63926部队 一种发射工位导流槽用即装式抗高温烧蚀预制件及耐火防护层施工方法
CN108797848A (zh) * 2018-08-31 2018-11-13 江苏达实久信医疗科技有限公司 模块化手术室的龙骨***
CN109184026A (zh) * 2018-10-30 2019-01-11 江苏华实装配式建筑技术有限公司 一种预制装配式混凝土可呼吸外墙大板套件
CN109339447A (zh) * 2018-11-06 2019-02-15 辽宁福瑞达建筑科技有限公司 轻钢结构装配建筑墙面与底盘的节点连接工法
CN109339448A (zh) * 2018-11-06 2019-02-15 辽宁福瑞达建筑科技有限公司 低层建筑轻钢结构墙面与墙面节点连接工法
AU2018271283B2 (en) * 2018-11-27 2020-09-17 Gibs Building Tech Pty Ltd A prefabricated building system, a prefabricated wall panel and a prefabricated floor panel thereof
CN109454753A (zh) * 2018-11-30 2019-03-12 湖北宇辉智能科技有限公司 模块化移动式预制构件生产***及安装生产方法
CN109577585A (zh) * 2018-12-18 2019-04-05 江苏顺星耐火科技有限公司 一种耐火墙板
CN109518837A (zh) * 2018-12-19 2019-03-26 哈尔滨鸿盛房屋节能体系研发中心 钢结构复合墙体
CN109577524B (zh) * 2019-01-02 2024-02-13 常州市米尼特机械有限公司 一种现浇泡沫混凝土墙体
CN109577588B (zh) * 2019-01-30 2024-04-30 扬州市康宇实业有限公司 一种高强度保温装饰面一体化的匀质外墙建筑模块
CN109707098B (zh) * 2019-01-30 2024-04-30 扬州市康宇实业有限公司 一种高强保温内嵌挂件的匀质被动房建筑模块
WO2020165339A1 (en) 2019-02-14 2020-08-20 Kingdom Building Systems Engineering Vgmbh Reinforcement module for an insulated concrete wall and construction method
LU101287B1 (en) 2019-07-03 2021-01-20 Kingdom Building Systems Eng Vgmbh Reinforcement module for an insulated concrete wall and construction method
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
NO345690B1 (en) * 2019-06-12 2021-06-14 Frank Cato Lahti Wall-building element system and prefabricated basic wall-building element.
US11214964B2 (en) * 2019-06-14 2022-01-04 Nexii Building Solutions Inc. Reinforced structural insulation panel with corner blocks
EP3990271A4 (en) 2019-06-28 2022-12-28 Advanced Composite Structures, LLC HEAT INSULATED AIR CARGO CONTAINER
CN110360642B (zh) * 2019-08-08 2024-06-18 佛山市丰晴科技有限公司 一种电热组件及包括电热组件的电热装置及其制作方法
CN112982750A (zh) * 2019-12-16 2021-06-18 南京法宁格节能科技股份有限公司 一种外墙保温免拆模板与铝框模板组合体系及其施工方法
IL272515A (en) * 2020-02-06 2021-08-31 Modular stone panel system
CN111593879A (zh) * 2020-03-25 2020-08-28 湖南盛安鑫高科技股份有限公司 一种自稳定可种植免拆保温模板
BR112022020008A2 (pt) * 2020-04-10 2022-11-22 Owens Corning Intellectual Capital Llc Borda não combustível para painéis de parede sanduíche de concreto isolados
CN111535480A (zh) * 2020-05-14 2020-08-14 山东斯蒙特节能技术有限公司 一种装配式墙板
CN111997227B (zh) * 2020-09-03 2021-06-15 广州凯杰环保新材料科技有限公司 一种装配式建筑节能保温墙体及其安装装配装置
CA3194799A1 (en) * 2020-09-21 2022-03-24 Nexii Building Solutions Inc. Encapsulated prefabricated panel
CN112252577A (zh) * 2020-10-30 2021-01-22 苏州金月建筑材料有限公司 一种蒸压加气混凝土复合保温墙板结构
US11965330B2 (en) * 2020-11-18 2024-04-23 Arthur H. Bond Building system
CN112814184B (zh) * 2021-02-06 2022-06-10 洛阳理工学院 一种适用于绿色建筑的节能墙体结构
CN113006480A (zh) * 2021-03-01 2021-06-22 中建二局第三建筑工程有限公司 一种采用连接器连接的组合式模板结构
CN112854771B (zh) * 2021-03-08 2022-06-07 浙江普天集成房屋有限公司 一种建筑部件制造工艺
CN113178184B (zh) * 2021-05-24 2022-07-29 中国船舶重工集团公司第七一一研究所 一种隔声模块及隔声装置
CN113293929B (zh) * 2021-06-07 2023-01-31 河北北方绿野建筑设计有限公司 箱型钢柱全装配式模块化复合防火结构及其安装方法
CN113478895B (zh) * 2021-06-15 2022-06-21 湖南诺方斯新材料有限公司 一种有耐承压阻热性能好的工程模具隔热板
CN113696555B (zh) * 2021-07-27 2022-03-04 深圳市建筑装饰(集团)有限公司 一种便于安装的轻质增强装饰复合保温板
CN113719047B (zh) * 2021-09-07 2023-09-22 河北金铎建设工程有限公司 一种建筑外墙防护装饰结构及应用、施工工艺
CN114434592B (zh) * 2021-09-26 2022-09-23 山东国茂冶金材料有限公司 回转窑预制件成型装置及方法
EP4194635A4 (en) * 2021-11-01 2023-11-08 Bao, Chengji THERMAL INSULATION AND THERMAL CONSERVATION WALL, ITS MANUFACTURING METHOD AND ITS INSTALLATION METHOD
CN114135027B (zh) * 2021-11-30 2023-05-12 金相培 新复合隔热层建筑模板组
CN114541738A (zh) * 2021-12-21 2022-05-27 重庆顺业建设有限公司 一种木质环保建筑膜板
CN114250966A (zh) * 2021-12-28 2022-03-29 中建二局第一建筑工程有限公司 一种新型模块组合式浇筑模板
CN114263309B (zh) * 2022-01-07 2024-06-07 易建网科技有限公司 一种装配式超低能耗组合结构
CN114541582B (zh) * 2022-03-31 2022-10-14 中国十七冶集团有限公司 一种装配式轻钢龙骨结构及快速安装对接方法
CN115217237B (zh) * 2022-04-12 2023-10-27 中冶建工集团有限公司 用于装配式钢结构建筑的外墙***
US20240200795A1 (en) * 2022-12-15 2024-06-20 Aris Hydronics Inc Customizable modular hydronic system
CN116277433B (zh) * 2023-03-01 2024-04-30 临沂烁桓建材有限公司 一种水泥预制构件生产用养护设备
CN117266479B (zh) * 2023-08-08 2024-05-10 上海隆振节能科技股份有限公司 一种防形变抗扭曲岩棉板
CN117905222B (zh) * 2024-03-04 2024-06-21 山东省建筑设计研究院有限公司 轻质复合内隔墙条板及其制作方法和安装工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2423582A1 (de) * 1974-05-15 1975-11-27 Esb Inc Feuerbestaendige, schallschluckende laminierte wandtafel und verfahren zu deren herstellung
CN2090320U (zh) * 1991-01-03 1991-12-11 李天湖 镁纤泡沫塑料复合板
CN2447083Y (zh) * 2000-09-04 2001-09-12 富金精密工业(深圳)有限公司 模具滑块机构
JP2003003587A (ja) * 2001-06-25 2003-01-08 Comany Inc 断熱コーナーパネル及びその製造方法
CN101858114A (zh) * 2009-04-07 2010-10-13 段风雷 现场浇筑整体式轻体隔墙施工方法
CN202073197U (zh) * 2010-11-25 2011-12-14 欧文斯科宁知识产权资产有限公司 复合板及其组件、包括其的模板、混凝土板、模具型材

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2298989A (en) 1940-05-20 1942-10-13 Ernest J Underwood Building construction
US4050213A (en) 1970-01-12 1977-09-27 Thomas J. Dillon & Co., Inc. Method of erecting a multi-story building
US3782054A (en) * 1971-09-15 1974-01-01 Capitol Prod Corp Corner angle for windows
DE3880900T2 (de) 1987-07-01 1993-12-23 Baena Juan Antonio Martinez Bauelement mit vorgefertigten Wänden.
US5048257A (en) 1987-10-06 1991-09-17 Luedtke Charles W Construction system for detention structures and multiple story buildings
CA1296501C (en) 1988-01-14 1992-03-03 Herbert K. Schilger Composite column or beam for building construction
US4987719A (en) 1988-12-29 1991-01-29 Goodson Jr Albert A Reinforced concrete building construction and method of forming same
US20030233801A1 (en) 2002-06-22 2003-12-25 Pace Malcolm J. Apparatus and method for composite concrete and steel floor construction
CN100353015C (zh) * 2003-01-28 2007-12-05 郑志伟 复合夹芯墙板
CN1587560A (zh) 2004-07-12 2005-03-02 大连爱特钢建筑产业有限公司 冷弯薄壁格构型钢与混凝土复合的建筑构件及其生产工艺
CN100336988C (zh) 2005-01-21 2007-09-12 朱宏宇 组合型钢网架与混凝土复合构件及制造方法
DE202005005924U1 (de) 2005-04-12 2005-06-30 Glatthaar-Fertigkeller Gmbh Kerngedämmte Fertigteilwand mit Verbundnadeln
WO2007012345A1 (de) 2005-07-28 2007-02-01 Vst Verbundschalungstechnik Gmbh Verfahren zum herstellen einer wand-decken-konstruktion in stahlbetonausführung
US7401442B2 (en) * 2006-11-28 2008-07-22 Roger A Clark Portable panel construction and method for making the same
CN101260723A (zh) 2007-03-09 2008-09-10 刘文博 一种轻钢龙骨
US8056291B1 (en) 2007-10-12 2011-11-15 The Steel Networks, Inc. Concrete and light gauge cold formed steel building structure with beam and floor extending over a load bearing stud wall and method of forming
CN101492936A (zh) 2008-11-19 2009-07-29 李登满 越层主承重梁建筑体系
US9388561B2 (en) 2009-07-15 2016-07-12 Frank Johnson Modular construction mold apparatus and method for constructing concrete buildings and structures
CN101851986A (zh) 2010-05-17 2010-10-06 大连理工大学 具有组合结构的保温屋面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2423582A1 (de) * 1974-05-15 1975-11-27 Esb Inc Feuerbestaendige, schallschluckende laminierte wandtafel und verfahren zu deren herstellung
CN2090320U (zh) * 1991-01-03 1991-12-11 李天湖 镁纤泡沫塑料复合板
CN2447083Y (zh) * 2000-09-04 2001-09-12 富金精密工业(深圳)有限公司 模具滑块机构
JP2003003587A (ja) * 2001-06-25 2003-01-08 Comany Inc 断熱コーナーパネル及びその製造方法
CN101858114A (zh) * 2009-04-07 2010-10-13 段风雷 现场浇筑整体式轻体隔墙施工方法
CN202073197U (zh) * 2010-11-25 2011-12-14 欧文斯科宁知识产权资产有限公司 复合板及其组件、包括其的模板、混凝土板、模具型材

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362313B (zh) * 2013-06-25 2015-12-09 谭力 模块化组合式保温幕墙板的组装方法
CN103362313A (zh) * 2013-06-25 2013-10-23 谭力 模块化组合式保温幕墙板的组装方法
CN103821271A (zh) * 2014-02-28 2014-05-28 长春工程学院 一种轻质保温隔音免支撑楼板
CN106088459A (zh) * 2016-06-14 2016-11-09 杨九龙 一种预制装配式复合保温外墙墙体及其制作方法、设计方法以及包含该墙体的钢结构建筑
CN106121160A (zh) * 2016-08-02 2016-11-16 浙江树华新型建材有限公司 保温装饰板
CN108104327B (zh) * 2017-12-14 2023-05-23 苏州美瑞德建筑装饰有限公司 定制精装空间室内吸音无机龙骨组合式隔墙结构
CN108104327A (zh) * 2017-12-14 2018-06-01 苏州美瑞德建筑装饰有限公司 定制精装空间室内吸音无机龙骨组合式隔墙结构
CN110093976A (zh) * 2019-06-04 2019-08-06 唐山市丰润区玥泰金属制品有限公司 一种龙骨支撑架、龙骨及其制备方法
CN110258854A (zh) * 2019-07-11 2019-09-20 佛山市南海雄业铝型材有限公司 一种方便安装的铝屋墙体及墙体安装方法
CN110258854B (zh) * 2019-07-11 2024-05-28 佛山市南海雄业铝型材有限公司 一种方便安装的铝屋墙体及墙体安装方法
CN113756566A (zh) * 2021-09-27 2021-12-07 中建七局第六建筑有限公司 一种隔离式纳塑外模板安装结构及其安装方法
CN113931352A (zh) * 2021-11-05 2022-01-14 哈尔滨工业大学 一种含高延性固废基免拆模板的复合保温墙体及其制备方法
CN114319614A (zh) * 2021-12-07 2022-04-12 湖南中富杭萧建筑科技股份有限公司 一种便于安装的装配式建筑保温墙及其施工方法
CN114412115A (zh) * 2022-03-08 2022-04-29 华北电力大学(保定) 一种低能耗建筑外墙
CN115126271A (zh) * 2022-07-07 2022-09-30 中国建筑第二工程局有限公司 一种预制构件装配式混凝土结构
CN114991341A (zh) * 2022-07-13 2022-09-02 山西澳斯特建材有限公司 一种装配式零碳建筑结构与保温装饰一体化墙体

Also Published As

Publication number Publication date
US20140059961A1 (en) 2014-03-06
CN102477778B (zh) 2014-07-09
CN102477778A (zh) 2012-05-30
US9175470B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
WO2012069016A1 (zh) 预制保温复合板及其组件、包括其的模板、混凝土板、其预制方法、模具型材
US6729094B1 (en) Pre-fabricated building panels and method of manufacturing
CN202073197U (zh) 复合板及其组件、包括其的模板、混凝土板、模具型材
CN101265723B (zh) 由复合建筑板材组装而成的建筑结构体系及建造方法
WO2007134517A1 (fr) Mur de béton composite travaillant en cisaillement pour isolation thermique
US20080313991A1 (en) Process for making insulated concrete tilt-up walls and resultant product
US20070144093A1 (en) Method and apparatus for fabricating a low density wall panel with interior surface finished
TWM522974U (zh) 雙向連續雙樑構成的三維輕鋼構架
CN105696817A (zh) 一种多层冷成型钢整体预制装配房屋及其拼接方法
WO2007134518A1 (fr) Système de structure de bâtiment en béton pour isolation autochauffante
CN101831963A (zh) 新型多用复合保温板及其施工方法和加工装置
WO2012069015A1 (zh) 混凝土板结构构件以及其浇注施工方法
US20200232205A1 (en) System, method and apparatus for integrated portable building foundation platform with modular components
CN215889072U (zh) 一种装配式管线预制隔墙条板
CN115162505A (zh) 一种键槽连接的全装配整体式建筑体系及施工方法
CN204491984U (zh) 石材饰面预制外墙板及外墙体系
CN110670748A (zh) 钢丝骨架保温预制板、装配式叠合楼板及其制备方法
CN114687600B (zh) 一种装配式复合墙板与外挑复合屋盖自攻钉集块连接构造及作法
CN217602256U (zh) 装配式l形复合墙板自攻钉集块与后浇条带组合连接构造
CN114658141A (zh) 一种装配式复合墙板t形构造柱与独立基础连接构造及作法
CN114687459A (zh) 装配式复合墙板与楼板自攻钉集块与后浇带组合连接构造及作法
CN113653278A (zh) 一种装配式管线预制隔墙条板及其制造方法
CN111549812A (zh) 现浇筑装配式免拆模板保温一体化房屋
CN111519813A (zh) 一种mf保温隔音装配式混凝土叠合板
CN113389297A (zh) 一种维护、保温、结构一体化的钢混结构建筑体系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13989122

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11843048

Country of ref document: EP

Kind code of ref document: A1