WO2012067242A1 - アンテナの取付構造 - Google Patents

アンテナの取付構造 Download PDF

Info

Publication number
WO2012067242A1
WO2012067242A1 PCT/JP2011/076713 JP2011076713W WO2012067242A1 WO 2012067242 A1 WO2012067242 A1 WO 2012067242A1 JP 2011076713 W JP2011076713 W JP 2011076713W WO 2012067242 A1 WO2012067242 A1 WO 2012067242A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiating element
mounting structure
short
conductive path
Prior art date
Application number
PCT/JP2011/076713
Other languages
English (en)
French (fr)
Inventor
佑一郎 山口
官 寧
広樹 新田
武 戸倉
雄紀 野口
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to DE112011103812T priority Critical patent/DE112011103812T5/de
Publication of WO2012067242A1 publication Critical patent/WO2012067242A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the present invention mainly belongs to the technical field of antennas corresponding to wireless devices mounted on mobile objects such as automobiles.
  • GPS Global Positioning System
  • VICS Vehicle Information and Communication System
  • ETC Electronic Toll Collection; non-stop automatic payment
  • ITS Intelligent Transport Systems
  • the use frequency band of the vehicle-mounted antenna includes the AM frequency from 526.5 kHz to 1606.5 kHz, the VHF frequency from 60 MHz band or 87.5 MHz to 108 MHz, or three large areas in recent years, Kanto, Kinki, and Chukyo.
  • the UHF frequency (470 MHz to 770 MHz) of terrestrial digital broadcasting whose service has been started in the service area is also included and covers a wide range.
  • Patent Document 1 shown below, as shown in FIG. 23, a seat 51 mounted on the inner side of a resin interior material constituting the indoor side of the front pillar of the vehicle body, and the vicinity of the outer peripheral portion of the seat 51 are arranged.
  • An antenna 53 having an antenna line 52 is disclosed.
  • the sheet 51 has a substantially rectangular shape and a film shape.
  • the antenna wire 52 is formed by embedding or sticking a metal wire along the vicinity of the outer peripheral portion of the sheet 51, or by printing and applying conductive ink.
  • Patent Document 1 describes that a distance of 5 mm or more and 50 mm or less is required as a separation distance between the antenna 53 and a metal plate on the outdoor side constituting the front pillar. This is because if the distance between the metal plate and the antenna 53 is smaller than 5 mm, the influence of the electrostatic capacitance is generated between the metal plate and the antenna 53, and the gain of the antenna 53 is reduced. If the distance between the antenna 53 and the antenna 53 is larger than 50 mm, the directivity becomes strong due to the influence of the metal plate, the thickness of the automobile interior material becomes large, the indoor space becomes narrow, and it becomes impractical. Is described in Patent Document 1.
  • JP-A-7-58535 Japanese Patent Publication “JP 2000-295017 A” (published on October 20, 2000) Japanese Patent Publication “JP-A-5-29821” (published on Feb. 05, 1993)
  • the antenna described in the above cited reference 1 requires a relatively large separation distance from the metal plate. For this reason, it is difficult to dispose the antenna in a relatively narrow space where the metal plate exists in the vicinity.
  • pillars that support the roof of a vehicle often have a hollow structure at least partially made of an exterior material made of a metal plate.
  • an antenna is provided in the hollow portion. It is possible to install it.
  • the antenna described in the above cited reference 1 requires a relatively large distance from the metal surface, depending on the thickness of the pillar and the size of the hollow portion, the distance from the metal plate may be reduced. It can be considered that it may be difficult to provide the space. Further, when it is predetermined that cables or harnesses of various electric devices are wired in the hollow portion, it is more difficult to dispose the antenna in the hollow portion, or It may be necessary to appropriately design the positional relationship between the cable or the like and the antenna.
  • the pillar is a place having an environment in which a certain antenna performance can be ensured due to the presence of the window glass in the vicinity thereof, and therefore, the pillar is a suitable place for installing the antenna. Since it is difficult to install the antenna on the pillar, an antenna having a higher degree of installation freedom has been required.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an antenna mounting structure having high antenna performance and high flexibility in installation.
  • an antenna mounting structure is composed of a flat radiating element in which a conductive path is formed two-dimensionally and a feeder line connected to the radiating element.
  • the radiating element includes a first root portion having a predetermined length from one end of the conductive path, a second root portion having a predetermined length from the other end of the conductive path, and the first root portion.
  • an intermediate portion that relays between the second root portion and a feeding portion connected to a feeding line is formed at the tip region of the first and second root portions, and a folding pattern is formed at the intermediate portion.
  • a meander-shaped conductive path having a shape is formed. It is a mounting structure of the antenna.
  • the flat plate shape is not limited to a two-dimensional plane, but also includes a flat plate shape having a three-dimensional shape formed by cutting a part of a curved surface such as a cylindrical surface, a spherical surface, a paraboloid, or a hyperboloid.
  • the antenna mounting structure of the present invention since the conductive path has the meander shape, the antenna can be disposed even in a relatively narrow space where the conductor surface exists in the vicinity.
  • the degree of freedom of the location of the antenna is significantly improved as compared with the conventional case. As a result, there is an effect of providing a high degree of freedom of installation while having high antenna performance.
  • FIG. 8 when the thickness of the dielectric layer is changed. It is a graph which shows the radiation pattern of the antenna shown in FIG. 8, (a) shows the radiation pattern in xy plane, (b) shows the radiation pattern in yz plane, (c) shows the radiation pattern in zz plane, respectively. Yes. It is a top view which shows schematic structure of the modification to which the attachment structure of the antenna which concerns on this invention is applied. It is a figure which shows the state by which the antenna to which the attachment structure of the antenna which concerns on this invention is applied was affixed and arrange
  • FIG. 17 It is an enlarged view of the pillar which supports a roof (roof) among the external appearance structures shown in FIG.
  • the antenna to which the antenna mounting structure according to the present invention is applied is mounted on, for example, a moving body.
  • the moving body include automobiles, orbital or non-orbital vehicles in general, manned or unmanned satellites, manned or unmanned submersibles, and the type thereof is not particularly limited.
  • An automobile is assumed as a moving body.
  • the moving body may be referred to as a mobile machine that requires power for movement.
  • the influence from the conductor member is inevitable.
  • the antenna when the antenna is mounted on the conductor member, it is necessary to design the antenna while considering the influence from the conductor member, unlike when the antenna alone is in a vacuum free space.
  • the antenna to which the antenna mounting structure according to the present invention is applied is configured in consideration of the influence from the conductor member when mounted on the conductor member.
  • FIG. 1 is a plan view showing a schematic configuration of an example of an antenna to which an antenna mounting structure according to the present invention is applied.
  • the antenna 201 includes a flat plate-like radiating element 215 in which a conductive path is two-dimensionally formed, and a feed line 221 connected to the radiating element 215.
  • the flat radiating element 215 includes a first root portion 225 having a predetermined length from one end of the conductive path, and a second root portion 226 having a predetermined length from the other end of the conductive path. And an intermediate portion that relays between the first root portion 225 and the second root portion 226, and is connected to a feeder line 221 at the tip region of the first and second root portions 225 and 226.
  • a power feeding unit 222 is formed.
  • a meander-shaped (meander line antenna shape, meander-shaped portion) conductive path having a folded pattern at least once, more preferably twice or more is formed.
  • the flat radiating element 215 of the antenna 201 is embedded and integrated in a moving body interior material made of an insulating material, or fixed along the surface shape of the interior material.
  • the antenna 201 having the above-described configuration has high antenna performance by including a conductive path having a meander shape.
  • the antenna 201 includes the flat plate-like radiating element 215.
  • the antenna 201 is embedded in a moving body interior material made of an insulating material and is integrated or fixed along the surface shape of the interior material. By adopting the mounting structure, the antenna 201 can be disposed even in a relatively narrow space in which the conductor surface is present in the vicinity, and has a high degree of freedom in installation.
  • the antenna 201 preferably has the following configuration.
  • the radiating element 215 is a single line. From the point of having a conductive path continuous from one end to the other, it can be said that it is formed in a loop shape. The loop shape can improve the gain of the antenna. And the radiation element 215 is arrange
  • a part of the intermediate part constitutes a radiation part 212, and the radiation part 212 has the meander shape (meander shape part).
  • the remaining part of the intermediate portion constitutes a first wide portion 213 and a second wide portion 214.
  • the two root parts 225 and 226 constitute a winding part 211.
  • the first wide portion 213 and the second wide portion 214 share a part of each other.
  • the conductive path starts from the first root portion 225 from one end to the other end of the radiating element 215, and includes the first wide portion 213, the second wide portion 214, and the radiating portion 212.
  • the second root part 226 continues in the order of the second root part 226, and the second root part 226 returns to a position adjacent to the first root part 225.
  • the direction of taking out the conductive path from one end to the other end is leftward in FIG. 1 (the negative direction of the X axis), and in the second root portion 226, one end from the other end to the other end.
  • the direction of taking out the conductive path toward the right is rightward in FIG. 1 (positive direction of the X axis). That is, the two directions of taking out are opposite to each other.
  • the direction of taking out the two root portions 225 and 226 is the same as the direction in which the power supply line 221 extends, that is, the left direction in FIG. 1 (the negative direction of the X axis).
  • the feeding line 221 is in a direction opposite to the direction extending from the feeding portion 222 described later to the power supply side.
  • the extending direction of the first root part 225 is upward from the one end of the radiating element 215 (positive direction of the Z axis), and then leftward.
  • the extending direction of the second root portion 226 is from the other end of the radiating element 215 downward (negative direction of the Z axis) and then rightward (positive direction of the X axis, direction of extraction). It has become. That is, the second root portion 226 includes a second straight portion 226o1 extending downward, and a second bent portion 226o2 (second rear end straight portion) extending rightward from an end portion of the second straight portion 226o1. have.
  • each of the two root parts 225 and 226 rotates 90 ° in the opposite directions so as to surround the power feeding part 222. .
  • a part of the intermediate portion of the radiating element 215 has a meander shape formed of a folding pattern of two or more times in the radiating portion 212.
  • the folding direction (positive direction or negative direction of the Z-axis) of this meander-shaped folding pattern is the direction of taking out the second root part 226 in the winding unit 211 (positive direction of the X-axis), that is, It is perpendicular to the direction of the second bent portion 226o2 (rear end straight portion).
  • the above-described feeding part 222 is formed in each of the two root parts 225 and 226.
  • Each of the two root portions 225 and 226 is supplied with power from a power supply line 221 connected to the power supply portion 222.
  • FIG. 21 shows details of the connection configuration between the power supply line 221 and the power supply unit 222.
  • the outer conductor 122 of the coaxial cable constituting the feeder line 221 supplies power to the first root portion 225
  • the inner conductor 123 of the coaxial cable supplies power to the second root portion 226.
  • a portion that is adjacent to a portion where the external conductor 122 is exposed and is covered with an insulating outer shell is disposed on the first wide portion 213.
  • a signal in a predetermined frequency band is applied to the second root unit 226 via the inner conductor 123 of the coaxial cable, and via the outer conductor 122.
  • the ground potential is applied to the first root portion 225.
  • the line width (length in the X-axis direction) of the first wide portion 213 that is positioned below the feeder line 221 and overlaps the feeder line 221 is the winding portion 211 of the radiating element 215 and the radiation. It is wider than the line width of the part constituting the part 212. As a result, impedance matching between the power supply unit 222 and the power supply line 221 can be realized.
  • the second wide portion 214 is also wider than the line width of the portions constituting the winding portion 211 and the radiating portion 212.
  • the second wide portion 214 serves as the first wide portion 213. . That is, in this case, the line width (the length in the Z-axis direction) of the second wide portion 214 that is positioned below the power supply line 221 and overlaps with the power supply line 221 constitutes the winding unit 211 and the radiation unit 212. It can be said that it is wider than the line width of the part.
  • the length in the left-right direction (X-axis direction) in FIG. 1 is 92 mm, and the length in the vertical direction (Z-axis direction) is 52 mm.
  • a short-circuit member 231 for partially short-circuiting the conductive path is disposed in the meander shape of the radiating portion 212.
  • the role of the short-circuit member 231 will be described below with reference to FIG.
  • FIG. 2 is a schematic view showing a state in which the short-circuit member 331 is arranged in the radiating element 315 having a meander shape and a plurality of conductive paths are generated in the radiating element 315.
  • the antenna 301 has a radiating element 315 that is a single line, and the radiating element 315 has a meander shape (meander structure). That is, the radiating element 315 is meandered.
  • a feed line is connected to the radiating element 315 at the feed unit 322.
  • the short-circuit member 331 short-circuits, for example, two or more different points (a plurality of points) of the meandering radiation element 315.
  • the two straight portions extending in the vertical direction located at both ends of the short-circuit member 331 are short-circuited.
  • the radiation element 315 includes a first path (first conductive path) indicated by a solid line corresponding to the first wavelength ⁇ 1 and a second path indicated by a broken line corresponding to the second wavelength ⁇ 2.
  • a path (second conductive path) is formed.
  • the short circuit member 331 is provided so as to short-circuit a plurality of different points in the meandering radiating element 315, and the number of conductive paths having different lengths is increased. Can be increased. Thereby, the VSWR characteristic of the antenna 301 in the use band can be improved.
  • the use band for example, 470 MHz to 770 MHz for a terrestrial digital broadcast antenna for Japan, terrestrial digital for North America
  • the VSWR characteristics at 470 MHz to 860 MHz for a broadcasting antenna and 470 to 890 MHz for a terrestrial digital broadcasting antenna for Europe may deteriorate (VSWR value increases).
  • a VSWR characteristic in the use band is obtained.
  • Deterioration increase in VSWR value
  • the position where the short-circuit member 331 short-circuits in the radiating element 315 is determined in the state where the dummy conductive member is disposed in the vicinity of the radiating element 315, and the short-circuit member 331 is disposed.
  • the number of conductive paths having different lengths increases and the resonance frequency of the antenna 301 increases.
  • the short-circuit member 231 is arranged in the meandering radiation portion 212 as the short-circuit member 331 as described above. Determination of the position and location which arrange
  • the arrangement of the short-circuit member 231 is smaller than that in the case where the short-circuit member 231 is not arranged in a state where the radiating element 215 is arranged on the metal plate via the dielectric, and at each frequency in the use band. Decide as follows. More preferably, the VSWR value at each frequency in the use band is determined to be 3.5 or less in a state where the radiating element 215 is disposed on the metal plate via the dielectric.
  • the short-circuit member 231 is moved while monitoring the VSWR value in the use band. . And when the position where VSWR value becomes smaller than the case where the short circuit member is not arrange
  • the short-circuit member 231 is for short-circuiting predetermined positions of the radiating element 215, and for example, a conductive material such as a metal material can be used.
  • a conductive material such as a metal material can be used.
  • the short-circuit member 231 directly contacts the radiating element 215 and short-circuits the radiating element 215.
  • an antenna 401 was mounted on a metal plate 403 as a conductor member of 350 mm ⁇ 250 mm through a dielectric layer 402.
  • the dielectric layer 402 will be described later.
  • the size of the antenna 401 is about 100 mm ⁇ 50 mm, when the antenna 401 is mounted on a conductor member such as an automobile bonnet, the characteristics are almost the same as when the antenna 401 is mounted on a conductor member of 350 mm ⁇ 250 mm. Can also be obtained.
  • the antenna 401 As the antenna 401, the antenna 201 shown in FIG. 1 and the antenna 501 shown in FIG. 4 were used, and the VSWR characteristics were measured for each of them. Note that the antenna 501 in FIG. 4 has the same configuration as the antenna 201 in FIG. 1 except that the short-circuit member 231 provided in the antenna 201 in FIG. 1 is not provided.
  • FIG. 5 is a graph showing measurement results of the VSWR characteristics of the antenna 201 and the antenna 501.
  • the graph of “with short circuit member” is the measurement result of the antenna 201
  • the graph of “without short circuit member” is the measurement result of the antenna 501.
  • the thickness d of the dielectric layer 402 was 5 mm
  • the relative dielectric constant ⁇ r was 1.
  • the short circuit member 231 is arranged in the antenna 201 to cause a short circuit, so that the VSWR is 3.5 or less in a band of 800 MHz or less with respect to the terrestrial digital television band (470 MHz to 770 MHz). It can be seen that
  • the VSWR is suppressed to 3.5 or less in the frequency band of about 650 MHz to 750 MHz, so that satisfactory transmission / reception can be performed in this frequency band. This is considered to be an effect of the antenna 501 including the radiating element 215 having a meander-shaped conductive path.
  • a good frequency band is about 650 MHz to 750 MHz, but this is merely an example. That is, depending on the meander shape design, the value and range of the frequency at which the VSWR is 3.5 or less can be changed variously. Therefore, depending on the frequency band used, the short-circuit member may not be provided.
  • a short-circuit member having a non-linear shape may be short-circuited, or a two-layer structure may be provided on a surface different from the antenna 201 to short-circuit two or more points separated by interlayer conduction.
  • the inventors provide a dielectric layer 402 between the antenna 401 and a metal plate 403 as a conductor member, whereby the distance between the antenna 401 and the conductor member (metal plate 403). It has been found that an antenna having a VSWR characteristic that can withstand practical use can be realized even if the value is reduced to about several millimeters.
  • the relative dielectric constant ⁇ r of the dielectric layer 402 is preferably set to 1 or more and 10 or less. This is because if the relative dielectric constant ⁇ r is greater than 10, the reduction in radiation efficiency cannot be ignored.
  • FIG. 6 shows the measurement results of the VSWR characteristics of the antenna 401 at each thickness d when the thickness d of the dielectric layer 402 is changed.
  • the antenna 201 in FIG. 1 is used as the antenna 401.
  • D infinity, that is, if the antenna 201 is not mounted on the metal plate 403, the antenna 201 is not affected by the metal plate 403. In other words, if the antenna 201 approaches the metal plate 403 gradually from infinity to the metal plate 403, the closer to the metal plate 403, the stronger the influence from the metal plate 403 should be.
  • FIG. 6 shows a case where an antenna base material having a relative dielectric constant ⁇ r of about 2 to 3 and a thickness of 1 mm or less is used, and a distance other than the base material, that is, the thickness d of the dielectric layer 402 is expressed as a relative dielectric constant.
  • the VSWR deteriorates in the vicinity of 670 MH.
  • the VSWR in the 670 MHz band does not necessarily deteriorate. This is because the characteristics shown in FIG. 11 can be adjusted by optimizing the short-circuit member or the meander shape, the relative permittivity ⁇ r and thickness of the antenna substrate, the relative permittivity ⁇ r of the dielectric layer 402, and the like. It is.
  • FIG. 7 is a graph showing a radiation pattern in the 550 MHz band of the antenna 201 shown in FIG. 3A shows a radiation pattern on the xy plane of the xyz coordinate system shown in FIG. 3, FIG. 3B shows a radiation pattern on the yz plane, and FIG. 3C shows a radiation pattern on the zx plane.
  • the thickness d of the dielectric layer 402 in this case is 5 mm, the relative dielectric constant epsilon r was 1.
  • E ⁇ shown in FIG. 7 represents the radiation power of the antenna with respect to the vertical polarization V
  • E ⁇ represents the radiation power of the antenna with respect to the horizontal polarization H
  • Etotal represents the total radiation power of the antenna.
  • the radiation omnidirectionality is realized in any of the radiation pattern on the xy plane, the radiation pattern on the yz plane, and the radiation pattern on the zz plane.
  • the antenna 201 is configured to include the flat radiating element 215 in which the conductive path is two-dimensionally formed, and the feed line 221 connected to the radiating element 215.
  • the radiating element 215 includes a first root portion 225 having a predetermined length from one end of the conductive path, a second root portion 226 having a predetermined length from the other end of the conductive path, and a first root.
  • a feed portion 222 connected to the feed line 221 is formed in the tip region of the first and second root portions 225 and 226.
  • the intermediate portion that relays the portion 225 and the second root portion 226 is formed. Yes.
  • a meander-shaped conductive path having a folded pattern at least once, more preferably twice or more is formed in the intermediate portion.
  • a flat radiating element 215 of the antenna 201 is embedded in a moving body interior material made of an insulating material and integrated, or is fixed along the surface shape of the interior material.
  • FIG. 8 shows an antenna 201 a which is a modification of the antenna 201.
  • FIG. 8 shows an antenna 201 a which is a modification of the antenna 201.
  • a detailed description will be given of portions different from the antenna 201 described above, and description of similar portions will be omitted.
  • the size of the antenna 201a is 83 mm in the left-right direction (X-axis direction) in FIG. 8 and 56 mm in the vertical direction (Z-axis direction).
  • a power feeding part 222a is formed on each of the two root parts 225a and 226a of the radiating element 215a.
  • Each of the two root portions 225a and 226a is supplied with power from a power supply line 221a connected to the power supply portion 222a.
  • the 1st root part 225a has the 1st linear part 225a1 and the 1st bending part 225a2 (1st back end linear part).
  • the first straight portion 225a1 and the first bent portion 225a2 correspond to the first straight portion 225o1 and the first bent portion 225o2 of the first root portion 225 shown in FIG.
  • the second root portion 226a has a second straight portion 226a1 and a second bent portion 226a2 (second rear end straight portion).
  • the second straight portion 226a1 and the second bent portion 226a2 correspond to the second straight portion 226o1 and the second bent portion 226o2 of the second root portion 226 shown in FIG.
  • the power supply line 221a extends in the negative direction of the Z axis shown in FIG. 8, unlike the power supply line 221 in the first embodiment.
  • the direction in which the two root portions 225a and 226a are taken out is orthogonal to the direction in which the power supply line 221 extends in FIG. 1 and is parallel to the direction in which the power supply line 221a extends. .
  • the first wide portion 213a is formed below the feeder line 221a, and the line width (the length in the X-axis direction) of the portion overlapping the feeder line 221a constitutes the winding portion 211a and the radiating portion 212a. It is wider than the line width of the part.
  • the power supply line 221a may be extended from the power supply line 222a in the negative direction of the X axis.
  • the short-circuit member 231a and the short-circuit member 232a are disposed in the meander shape of the radiation portion 212a.
  • the roles of the short-circuit member 231a and the short-circuit member 232a are the same as those of the short-circuit member 231 described above.
  • the inventors mounted the antenna 401 via a dielectric layer 402 on a 350 mm ⁇ 250 mm metal plate 403 as shown in FIG.
  • the antenna 401, the antenna 201a shown in FIG. 8, the antenna 502 shown in FIG. 9, and the antenna 503 shown in FIG. 10 were used, and the VSWR characteristics were measured for each of them.
  • the antenna 502 shown in FIG. 9 has the same configuration as the antenna 201a shown in FIG. 8 except that the short-circuit member 232a shown in FIG. 8 is not arranged in the meander shape portion of the radiating portion 212a.
  • the antenna 503 shown in FIG. 10 has the same configuration as the antenna 201a shown in FIG. 8 except that the short-circuit members 231a and 232a shown in FIG. 8 are not arranged in the meander shape portion of the radiating portion 212a. Yes.
  • FIG. 11 shows measurement results of the VSWR characteristics of the antenna 201a, the antenna 502, and the antenna 503.
  • the graph “with short circuit member” is the measurement result of the antenna 201 a
  • the graph “without short circuit member” is the measurement result of the antenna 503
  • the graph “without second short circuit member” is the antenna 502. It is a measurement result.
  • the thickness d of the dielectric layer 402 was 5 mm
  • the relative dielectric constant ⁇ r was 1.
  • the VSWR is suppressed to 3.5 or less even in the high frequency band of the terrestrial digital television band (470 MHz to 770 MHz).
  • the VSWR is suppressed to 3.5 or less in the frequency band of about 550 MHz to 620 MHz and the frequency band of about 680 MHz to 770 MHz. Good transmission and reception can be performed in this frequency band.
  • This is considered to be an effect of the antenna 503 including the radiating element 215a having a meander-shaped conductive path. Therefore, the number of short-circuit members installed, including zero, can be changed depending on the frequency band used.
  • FIG. 12 shows the measurement results of the VSWR characteristics of the antenna 401 at each thickness d when the thickness d of the dielectric layer 402 is changed.
  • the antenna 201 a in FIG. 8 is used as the antenna 401.
  • FIG. 12 shows a case where an antenna base material having a relative dielectric constant ⁇ r of about 2 to 3 and 1 mm or less is used, and a distance other than the base material, that is, the thickness d of the dielectric layer 402 is expressed as a relative dielectric constant.
  • the VSWR can be suppressed to 3.5 or less, and good transmission / reception can be performed.
  • the antenna provided with the meander-shaped radiating element of the present invention is made as close as possible while keeping the state insulated from the conductor surface. Can be installed.
  • FIG. 13 is a graph showing a radiation pattern in the 550 MHz band of the antenna 201a shown in FIG. 13A shows a radiation pattern on the xy plane of the xyz coordinate system shown in FIG. 3, FIG. 13B shows a radiation pattern on the yz plane, and FIG. 13C shows a radiation pattern on the zx plane.
  • the thickness d of the dielectric layer 402 in this case is 5 mm, the relative dielectric constant epsilon r was 1.
  • radiation omnidirectionality is realized in any of the radiation pattern on the xy plane, the radiation pattern on the yz plane, and the radiation pattern on the zz plane.
  • FIG. 14 shows an antenna 504 which is a modification of the antenna 201 shown in FIG.
  • FIG. 14 shows an antenna 504 which is a modification of the antenna 201 shown in FIG.
  • a detailed description will be given of portions different from the antenna 201 described above, and description of similar portions will be omitted.
  • the lengths of the first wide portion 213b and the winding portion 211b in the positive Z-axis direction are longer than those of the first wide portion 213 and the winding portion 211 of the antenna 201. Therefore, the upper ends on the Z-axis positive direction side of the first wide portion 213b and the winding portion 211b protrude from the position of the upper end portion on the Z-axis positive direction side of the radiating element 215 to the Z-axis positive direction side.
  • the short-circuit member 231 of the antenna 201 is provided as an independent member, in the antenna 504, the conductive material is made of the same material as that of the conductive path forming the radiating element 215b at the lower end portion on the Z-axis negative direction side.
  • a short-circuit portion 231c integrated with the path is formed.
  • two conductive paths that are folded back along the Z axis and run side by side are integrated into one, and the width in the X-axis direction is approximately three times the width of one conductive path.
  • the short-circuit part 231d thus formed is formed. Needless to say, the number of parallel conductive paths in the case of integration into one may be appropriately adjusted so as to obtain good VSWR characteristics. Similarly, the length of the short-circuit portion 231c in the X-axis direction can be adjusted as appropriate.
  • the short-circuit member instead of using the short-circuit member as an independent member, it is possible to form the conductive path and the short-circuit member at the same time by forming the short-circuit member integrally with the conductive path using the same material as the conductive path. As a result, the manufacturing process is simplified.
  • the flat radiating element 215 (215a, 215b) of each antenna is fixed by being embedded along the surface shape of the interior material or embedded in the interior material for a moving body made of an insulating material.
  • the numbering of each antenna is collectively expressed as “100”.
  • the interior material of the moving body in general is not necessarily formed by a dielectric (insulator) such as a resin.
  • insulator such as a resin
  • the interior material of the moving body is a dielectric (insulator). It is assumed that it is formed.
  • each antenna 100 is disposed along the shape of the surface 105a of the interior material 105, for example, as shown in FIG.
  • FIG. 1 There is a structure where is directly attached.
  • the antenna 100 it is possible to dispose the antenna 100 in a relatively narrow space, and the antenna 100 has a distance of 5 to 50 mm from the metal surface as compared with the related art.
  • the separation distance is small. That is, as shown in FIG. 15, when the interior material made of an insulating material and the exterior material made of a conductor face each other (when the radiating element 215 is disposed between the exterior material and the interior material). Further, the distance L between the antenna (radiating element) and the exterior material may be 2 mm or more. Therefore, the antenna 100 requires a small space for installation, and has a high degree of installation freedom.
  • FIG. 16 is a diagram showing an example of an external configuration on the front side in an automobile
  • FIG. 17 is an enlarged view of a pillar that supports a roof (roof) in the external configuration shown in FIG.
  • each antenna 100 can be installed in a pillar 106, for example. Since the pillar 106 is close to the window glass, it can be expected to receive strong radio waves as a result of radio waves coming from outside.
  • an example of a portion of the pillar 106 where the antenna 100 can be installed is indicated by a dotted line.
  • FIG. 18 is a diagram illustrating an example of a cut surface when the pillar 106 illustrated in FIG. 17 is cut at a predetermined position by a plane H that intersects the longitudinal direction thereof.
  • the 18 includes the exterior material (exterior body) 107 made of a conductor and the vehicle interior material 108 made of a synthetic resin. While the exterior material 107 has an arc shape in cross section, the interior material 108 has a cross section shape such as a straight cross section or a cross section arc shape (in FIG. 18, a short arc cross section is continuous at both ends of the straight cross section. It shows an interior material having a cross-sectional shape).
  • the pillar 106 is formed by connecting the exterior material 107 and the interior material 108 in a state where the end of the cross section of the exterior material 107 and the end of the cross section of the interior material 108 are in contact with each other. (Hollow structure).
  • the antennas 100 can be installed in the installation manner shown in FIG. 15 along the cavity-side surface 108a of the interior material 108 in the pillar 106. Note that. In the case of the configuration shown in FIG. 18, the shortest separation distance L between the antenna 100 and the exterior material 107 may be 2 mm or more.
  • the antenna 100 can be installed by sticking to the cavity side surface 108 a of the interior material 108.
  • 19A shows a state immediately before the antenna 100 is attached to the cavity-side surface 108a of the interior material 108
  • FIG. 19B shows the antenna 100 of the interior material 108. It is a figure which shows the state affixed on the cavity side surface 108a.
  • the antenna 100 since the antenna 100 has flexibility, it can be easily pasted while keeping the shape along the inner surface shape of the cavity-side surface 108a.
  • the antenna 100 can be attached along the shape of the inner surface of the cavity-side surface 108a and the shape of the rib.
  • FIG. 20 is a diagram showing the configuration of the air guide port portion 120 extended on the back side of the air outlet of the air conditioner and the surroundings thereof.
  • the antennas 100 are attached to the outer peripheral surface 120a (the upper surface in FIG. 20) of the air guide portion 120 as shown in FIG. Can be installed.
  • FIG. 20 shows the car feed through the upper plate of the car navigation housing through the feeder 109 connected to the antenna 100. It shows the state introduced in the navigation.
  • Each of the antennas 100 includes not only the inside of the pillar 106 and the outer peripheral surface 120a of the air guide port 120, but also, for example, a roof trim indicated by an arrow Q3, a door trim indicated by an arrow Q4, and an arrow Q5 as shown in FIG.
  • the sun visor indicated by the arrow, the dashboard indicated by the arrow Q6, the console box indicated by the arrow Q7, and the handle indicated by the arrow Q8 can also be the installation target parts of the antenna 100.
  • four corners near a window glass are preferable when making transmission / reception sensitivity favorable.
  • a tonneau cover, a seat belt, a seat, and a weather trim can also be installation target parts of the antenna 100.
  • the installation surface of the antenna 100 may be a flat surface or a curved surface. However, when the installation surface is a curved surface, the antenna can maintain good characteristics if the curved surface has a curvature radius of 3 mm or more, more preferably 5 mm or more.
  • the antenna 100 can be installed on the inner surface of the synthetic resin material constituting the door mirror.
  • the antenna 100 in addition to a mode in which the antenna 100 is attached along the surface shape of the interior material, it is also possible to embed the antenna 100 in an interior material made of an insulating material and to fix it integrally.
  • a method for embedding and integrating the antenna 100 in the interior material for example, a method of molding an insulator such as a synthetic resin including the antenna 100 when the interior material is manufactured is considered as an example. In this case, the molded product is attached when the vehicle is manufactured.
  • the radiating element 215 of the antenna 3 is normally connected to the tuner unit 4 (transmission / reception circuit) via the feeder line 222 as shown in FIG.
  • the tuner unit 4 are preferably attached to the interior material. Further, it is more preferable that the antenna 3 and the tuner unit 4 are provided on the same surface of the interior material and connected to each other. With this configuration, since the conductive path connecting the antenna 3 and the tuner unit 4 can be shortened, loss due to the conductive path can be suppressed, and the conductive path can be formed thin. . Further, the antenna 3 can be made thinner as compared with the configuration in which the antenna 3 and the tuner unit 4 are arranged on different surfaces, so that a high degree of installation freedom can be obtained. Further, since the tuner unit can be adjacent to the antenna, there is an effect that it is not necessary to consider the impedance of the transmission path between the antenna 3 and the tuner unit 4.
  • the antenna mounting structure according to the present invention is the above-described antenna composed of a flat radiating element in which a conductive path is two-dimensionally formed and a feeder line connected to the radiating element.
  • An antenna mounting structure in which a flat radiating element is embedded and integrated in an interior material for a moving body made of an insulating material, or fixed along the surface shape of the interior material, and the flat radiating element is A first root portion having a predetermined length from one end of the conductive path; a second root portion having a predetermined length from the other end of the conductive path; and the first root portion and the second root portion.
  • a conductive path having a shape is formed.
  • the antenna can be disposed close to the conductor (for example, the distance between the antenna and the conductor surface is set). It can be as close as 2mm). Accordingly, the antenna can be disposed even in a relatively narrow space where the conductor surface is present in the vicinity, and the degree of freedom of the location where the antenna is disposed is significantly improved as compared with the conventional case.
  • Patent Document 1 has a restriction that an antenna must be arranged avoiding a place where a wire harness in which a copper wire is bundled is stretched between a resin interior material and a body.
  • the antenna mounting structure according to the present invention does not have such a restriction.
  • the flat radiating element of the antenna is integrated by being embedded in a moving body interior material made of an insulating material, or fixed along the surface shape of the interior material. Therefore, it does not occupy a narrow space where this antenna is arranged.
  • the flat plate-like radiating element is preferably provided with a short-circuit portion for short-circuiting the meander-shaped conductive path.
  • the number of conductive paths having different lengths can be increased.
  • the resonance point of the antenna can be increased, so that the usable frequency band of the antenna can be further expanded.
  • the resonance point of the antenna is increased or the resonance point of the antenna is increased.
  • the position and location where the short-circuit portion is arranged can be determined so as to reduce the VSWR value in the use band.
  • the first and second root portions form a winding portion that surrounds the feeding portion, and further, the first and second portions.
  • a wide portion where the width of the conductive path at a position overlapping with the power supply line connected to the power supply section is wider than other positions may be formed on at least one of the root portions of the power supply section.
  • the usable frequency band of the radiating element can be further expanded.
  • the flat plate-like radiating element is preferably a single line that is continuous from one end to the other end.
  • the radiating element is disposed between the exterior material of the mobile body and the interior material, and is separated from the surface of the exterior material made of a conductor material. It is good to be arranged.
  • the antenna is disposed away from the surface of the exterior material, so that the antenna characteristics deteriorate due to the influence of the conductor. It will be easier to avoid that.
  • the separation distance of the flat plate-shaped radiation element with respect to the exterior material of the moving body is at least 2 mm.
  • a flat plate-shaped radiating element having flexibility may be fixed along the surface of the interior material.
  • the flat plate-shaped radiating element having flexibility is fixed along the surface of the interior material, so that the antenna can be easily installed.
  • the interior material for a moving body is generally formed of a dielectric material such as a resin
  • the surface of the interior material for the moving body is a place that is not easily affected by a conductor, and is also suitable as a place for installing an antenna. It is.
  • the flat radiating element may be mounted with a curvature radius of 5 mm or more along the surface shape of the interior material.
  • a transmission / reception circuit connected to the radiation element via the feeder is provided on the same plane as the plate-shaped radiation element, and the transmission / reception circuit is integrated with the radiation element. Alternatively, it may be attached to the interior material.
  • the conductive path connecting the antenna and the transmission / reception circuit can be shortened, loss due to the conductive path can be suppressed, and the conductive path can be formed thin.
  • the antenna and the transmission / reception circuit are arranged on the same plane, the antenna mounting structure can be made thinner as compared with a configuration in which the antenna and the transmission / reception circuit are arranged on different planes. Therefore, a high degree of installation freedom can be obtained.
  • the present invention can be applied to, for example, an antenna for receiving a broadcast wave mounted on a mobile body such as an automobile that can transmit and receive in both the VHF broadcast band and the UHF digital terrestrial broadcast band.

Landscapes

  • Details Of Aerials (AREA)

Abstract

 アンテナ(201)の平板状の放射素子(215)は、第1の根本部(225)と第2の根本部(226)とを中継する中間部を有し、該中間部には少なくとも1回の折り返しパターンを有するメアンダ形状の導電性経路が形成されている。放射素子(215)は、絶縁材料からなる移動体用内装材に埋設して一体化、または上記内装材の表面形状に沿って固定される。

Description

アンテナの取付構造
 本発明は、主として、自動車などの移動体に搭載される無線機器に対応したアンテナの技術分野に属するものである。
 例えば自動車に搭載される車載用アンテナの分野では、近年の通信網の発達により、多様な使用周波数帯域に適合した種々のアンテナが開発されている。
 その一例として、カーナビゲーションシステムには、GPS(Global Positioning System;衛星測位システム)、VICS(Vehicle Information and Communication System;道路交通情報通信システム:登録商標)およびETC(Electronic Toll Collection;ノンストップ自動料金支払いシステム)などのようなITS(Intelligent Transport Systems;高度道路交通システム)において使用される1GHz~10GHzのマイクロ波の送受信に対応可能な各種のアンテナが接続されている。
 また、カーナビゲーションシステムには、上記ITSのみならず、ラジオ放送および地上デジタル放送を受信するチューナーが一体的に搭載されることが一般的になっている。したがって、車載用アンテナの使用周波数帯域には、526.5kHz~1606.5kHzまでのAM周波数、60MHz帯または87.5MHz~108MHzのVHF周波数、あるいは近年になって関東・近畿・中京の3大広域圏でサービスが開始された地上デジタル放送のUHF周波数(470MHz~770MHz)なども含まれ、広範囲にわたっている。
 上記地上デジタル放送では、デジタル・ハイビジョンの高画質・高音質番組に加えて、双方向番組を提供することが可能となり、走行している電車やバスなどに設置したテレビでもチラツキがなくきれいに番組を視聴することが可能になる。また、携帯情報端末などで、動画、データ放送、または音声放送を受信・視聴するサービスも予定されている。
 このような種々のアンテナの一例としての車載用アンテナが、下記特許文献1に記載されている。
 下記特許文献1には、図23に示すように、車体のフロントピラーの室内側を構成する樹脂製内装材の内側に装着されるシート51と、このシート51の外周部近傍に沿って配されたアンテナ線52とを備えたアンテナ53が開示されている。上記シート51の形状は、略矩形状且つフィルム状である。上記アンテナ線52は、シート51の外周部近傍に沿って、金属線を埋設又は貼着することにより、或いは、導電性のインクを印刷塗布することにより形成されている。
 また、下記特許文献1には、上記アンテナ53と上記フロントピラーを構成する室外側の金属板との離間距離として5mm以上50mm以下の寸法が必要となる点が記載されている。これは、金属板とアンテナ53との間の間隔を5mmより小さくすると、金属板とアンテナ53との間に静電容量の影響が発生して、アンテナ53の利得が低下する一方、金属板とアンテナ53との間の間隔を50mmより大きくすると、金属板の影響により指向性が強くなるとともに、この自動車用内装材の厚さ寸法が大きくなり、室内空間が狭くなって、実用的ではなくなるからであると、特許文献1には記載されている。
日本国公開特許公報「特開平7-58535号公報」(1995年03月03日公開) 日本国公開特許公報「特開2000-295017号公報」(2000年10月20日公開) 日本国公開特許公報「特開平5-29821号公報」(1993年02月05日公開)
 このように、上記引用文献1に記載のアンテナは、金属板との間に比較的大きな離間距離を要する。そのため、金属板が近傍に存在する比較的狭い空間には上記アンテナを配設することが困難となる。
 例えば、車両の屋根を支持するピラーは、少なくとも一部が金属板からなる外装材で構成された中空の構造となっていることが多いが、スペースの有効利用のため、該中空部分にアンテナを設置することが考えられる。
 ところが、上記引用文献1に記載のアンテナは、金属面との間に比較的大きな離間距離を要するため、ピラーの太さや中空部分の大きさによっては、上記金属板との間に上記離間距離を設けることがスペース的に困難となる場合が生じ得ると考えられる。また、各種電気機器のケーブルまたはハーネスが上記中空部分に配線されることが予め決められている場合には、該中空部分に対して上記アンテナを配設することがより一層困難となったり、或いは、上記ケーブル等と該アンテナとの位置関係を適切に設計する必要性が生じたりすることが考えられる。
 ピラーは、近傍に窓ガラスが存在することから一定のアンテナ性能を確保することができる環境を有する場所であるため、アンテナの設置場所として好適な場所であるが、上記のように引用文献1のアンテナを該ピラーに設置することは困難となるため、より高い設置自由度を有するアンテナが要求されていた。
 本発明は、上記事情に鑑みてなされたものであり、高いアンテナ性能を有しつつ、高い設置自由度を備えたアンテナの取付構造を提供することを目的とする。
 上記目的を達成するために、本発明に係るアンテナの取付構造は、導電性経路が二次元的に形成された平板状の放射素子と、上記放射素子に接続される給電線とから構成されるアンテナの上記平板状の放射素子を、絶縁材料からなる移動体用内装材に埋設して一体化、若しくは上記内装材の表面形状に沿って固定するアンテナの取付構造であって、上記平板状の放射素子は、導電性経路の一端から所定の長さ部分の第1の根本部と、上記導電性経路の他端から所定の長さ部分の第2の根本部と、上記第1の根本部と第2の根本部とを中継する中間部とを有し、上記第1及び第2の根本部の先端領域には給電線に接続される給電部が形成され、上記中間部には折り返しパターンを有するメアンダ形状の導電性経路が形成されていることを特徴とするアンテナの取付構造である。
 なお、上記平板状とは、二次元平面に限定されず、円筒面、球面、放物面または双曲面のような曲面の一部を切り取ってなる三次元形状を持った平板状も含む。
 本発明に係るアンテナの取付構造によれば、上記メアンダ形状を有する導電性経路を有しているので、導体面が近傍に存在する比較的狭い空間でも当該アンテナを配設することが可能となり、該アンテナの配設場所の自由度が従来に比して格段に向上する。その結果、高いアンテナ性能を有しつつ、高い設置自由度を備えるという効果を奏する。
本発明に係るアンテナの取付構造が適用されるアンテナの第1の実施形態の概略構成を示す平面図である。 メアンダ形状を有する放射素子内に短絡部材を配置して、放射素子内に複数の導電性経路を生じさせた状態を示す模式図である。 アンテナの効果を示すための実験の測定状況を説明する模式図である。 図1に示すアンテナの比較例の概略構成を示す平面図である。 図1及び図4に示す各アンテナのVSWR特性を示すグラフである。 誘電体層の厚さを変化させたときにおける、図1に示すアンテナのVSWR特性を示すグラフである。 図1に示すアンテナの放射パターンを示すグラフであり、(a)は、xy面における放射パターン、(b)は、yz面における放射パターン、(c)は、zx面における放射パターンをそれぞれ示している。 本発明に係るアンテナの取付構造が適用されるアンテナの変形例の概略構成を示す平面図である。 図8に示すアンテナの変形例に対する比較例の概略構成を示す平面図である。 図8に示すアンテナの変形例に対する比較例の概略構成を示す平面図である。 図8、図9及び図10に示す各アンテナのVSWR特性を示すグラフである。 誘電体層の厚さを変化させたときにおける、図8に示すアンテナのVSWR特性を示すグラフである。 図8に示すアンテナの放射パターンを示すグラフであり、(a)は、xy面における放射パターン、(b)は、yz面における放射パターン、(c)は、zx面における放射パターンをそれぞれ示している。 本発明に係るアンテナの取付構造が適用される変形例の概略構成を示す平面図である。 本発明に係るアンテナの取付構造が適用されるアンテナが、内装材の表面に貼り付けられて配設された状態を示す図である。 自動車の車内のうち前方側の外観構成の一例を示す図である。 図16に示す外観構成のうち、ルーフ(屋根)を支持するピラーの拡大図である。 図17に示すピラーを所定位置で長手方向に交差する平面Hによって切断した場合の切断面の一例を示す図である。 本発明に係るアンテナの取付構造が適用されるアンテナを内装材の表面に貼付ける状態を示す図であり、(a)は、上記アンテナを上記表面に貼付ける直前の状態を示し、(b)は、上記アンテナを上記表面に貼付けた後の状態を示している。 本発明に係るアンテナが、センターコンソールにおけるエアコンの空気吹出し口の背面側において延設された導風口部の表面に設置された状態を示す図である。 図1に示すアンテナにおける給電線と給電部との接続構成を示す図である。 アンテナとチューナー部との配設例を示す断面図である。 従来技術の説明図である。
 以下、本発明に係るアンテナの取付構造の実施形態を、図面を用いて説明する。
 本発明に係るアンテナの取付構造が適用されるアンテナは、例えば移動体に搭載される。上記移動体には、自動車、軌道用または無軌道用の乗り物全般、有人または無人の人工衛星、有人または無人の潜水艇などが含まれ、その種類は特に限定されないが、以下の説明においては、上記移動体として自動車を想定するものとする。なお、移動体を、移動に動力を必要とする移動式機械と呼び換えてもよい。
 アンテナは、周囲の影響を強く受けるため、その搭載箇所にどのように実装するかということは重要な事柄になる。
 特に、アンテナが金属板等からなる導体部材上に搭載される場合、導体部材からの影響が避けられない。つまり、アンテナが導体部材に搭載される場合、アンテナ単体が真空の自由空間にある場合とは異なり、その導体部材からの影響を考慮しつつ、アンテナを設計することが必要となる。
 本発明に係るアンテナの取付構造が適用されるアンテナは、導体部材に搭載される場合において、導体部材から受ける影響を考慮した形態としている。
 図1は、本発明に係るアンテナの取付構造が適用されるアンテナの一例の概略構成を示す平面図である。
 図1に示すように、アンテナ201は、導電性経路が二次元的に形成された平板状の放射素子215と、上記放射素子215に接続される給電線221とを備えて構成されている。
 上記平板状の放射素子215は、導電性経路の一端から所定の長さ部分の第1の根本部225と、上記導電性経路の他端から所定の長さ部分の第2の根本部226と、上記第1の根本部225と第2の根本部226とを中継する中間部とを有し、上記第1及び第2の根本部225,226の先端領域には給電線221に接続される給電部222が形成されている。
 上記中間部には少なくとも1回、より好ましくは2回以上の折り返しパターンを有するメアンダ形状(メアンダラインアンテナ形状、メアンダ形状部)の導電性経路が形成されている。
 アンテナ201の上記平板状の放射素子215は、絶縁材料からなる移動体用内装材に埋設して一体化されている、若しくは上記内装材の表面形状に沿って固定されている。
 上記のような構成を有するアンテナ201は、メアンダ形状を有する導電性経路を備えることにより、高いアンテナ性能を有する。
 また、上記アンテナ201は上記平板状の放射素子215を備え、該アンテナ201を、絶縁材料からなる移動体用内装材に埋設して一体化、若しくは上記内装材の表面形状に沿って固定するという取付構造を採用することで、導体面が近傍に存在する比較的狭い空間に対しても該アンテナ201を配設することが可能となり、高い設置自由度を有している。
 上記アンテナ201は、好ましくは次のような構成を有する。
 上記放射素子215は、1本の線路である。一端から他端に連続する導電性経路を持っている点から、ループ形状に形成されているともいえる。ループ形状は、アンテナの利得を向上させることができる。そして、放射素子215は、同一平面上に配置されており、その部材としては、例えば、導体ワイヤーや導体フィルム、あるいはプリント配線を用いることができる。
 上記中間部の一部は、放射部212を構成し、この放射部212が上記メアンダ形状(メアンダ形状部)を有する。上記中間部の残りの一部は、第1の幅広部213及び第2の幅広部214を構成している。一方、上記2つの根本部225、226は、巻込部211を構成している。第1の幅広部213と第2の幅広部214とは、お互いに、各々の一部分を共有しあっている。
 以上の構成をまとめると、放射素子215の一端から他端に向かって、導電性経路は、第1の根本部225から始まり、第1の幅広部213、第2の幅広部214、放射部212、第2の根本部226の順に連続し、第2の根本部226は、第1の根本部225と隣接する位置に戻っている。
 第1の根本部225において、一端から他端へ向かう導電性経路の取り出しの向きは、図1における左向き(X軸の負の向き)であり、第2の根本部226において、他端から一端へ向かう導電性経路の取り出しの向きは、図1における右向き(X軸の正の向き)である。すなわち、これら2つの取り出しの向きは互いに反対向きとなっている。
 すなわち、2つの根本部225および226のいずれにおいても、それらの延びる向きが、給電部222を取り囲むようにして、180°回転している。
 このため、低周波帯域側の電波及び高周波帯域側の電波のいずれを送受信する場合であっても、それぞれの電波に関する高い放射利得を得ることができる。
 さらに、2つの根本部225、226の各取り出しの向きは、第1の根本部225の場合、給電線221が延在する向き、つまり、図1における左向き(X軸の負の向き)と同じ向きになり、第2の根本部226の場合、給電線221が後述する給電部222から電源側へ延在する向きと反対の向きとなっている。
 具体的には、巻込部211においては、図1において、第1の根本部225の延在する向きが、放射素子215の上記一端から、上向き(Z軸の正の向き)、その後、左向き(X軸の負の向き、取り出しの向き)となっている。すなわち、第1の根本部225は、上向きに延びる第1の直線部225o1、及びこの第1の直線部225o1の端部から左向きに延びる第1の屈曲部225o2(第1の後端直線部)を有している。
 また、第2の根本部226の延在する向きが、放射素子215の上記他端から、下向き(Z軸の負の向き)、その後、右向き(X軸の正の向き、取り出しの向き)となっている。すなわち、第2の根本部226は、下向きに延びる第2の直線部226o1、及びこの第2の直線部226o1の端部から右向きに延びる第2の屈曲部226o2(第2の後端直線部)を有している。
 このように、巻込部211においては、2つの根本部225、226のいずれにおいても、それらの延在する向きが、給電部222を取り囲むようにして、互いに反対回りに90°回転している。
 また、放射素子215の中間部の一部が、放射部212において、2回以上の折り返しパターンからなるメアンダ形状を有している。そして、このメアンダ形状の折り返しパターンの折り返し方向(Z軸の正の向き又は負の向き)は、巻込部211における第2の根本部226の取り出しの向き(X軸の正の向き)、すなわち第2の屈曲部226o2(後端直線部)の向きと垂直である。
 ところで、上記巻込部211において、2つの根本部225、226のそれぞれには、上述した給電部222が形成されている。2つの根本部225、226のそれぞれは、給電部222に接続された給電線221から給電されている。
 この給電線221と給電部222との接続構成の詳細を図21に示す。この接続構成においては、給電線221を構成する同軸ケーブルの外部導体122が上記第1の根本部225に給電し、その同軸ケーブルの内部導体123が上記第2の根本部226に給電する。また、外部導体122が露出した部分と隣り合う、絶縁性外皮にて覆われている部分(外部導体122が露出していない部分)は、第1の幅広部213上に配置されている。
 給電線221からの給電に関し、具体的には、給電部222において、同軸ケーブルの内部導体123を介して、所定の周波数帯の信号が第2の根本部226に印加され、外部導体122を介して、アース電位が第1の根本部225に印加される。 
 図1に戻り、給電線221の下方に位置し、給電線221と重畳する、第1の幅広部213の線幅(X軸方向の長さ)は、放射素子215の巻込部211及び放射部212を構成する部分の線幅よりも広くなっている。これにより、給電部222において、給電線221との間のインピーダンス整合を実現することができる。
 第2の幅広部214も、第1の幅広部213と同様、巻込部211及び放射部212を構成する部分の線幅よりも広くなっている。
 図1とは異なり、給電線221が給電部222からZ軸の負の向きに延在する場合であれば、この第2の幅広部214が第1の幅広部213の役割を果たすことになる。すなわち、この場合、給電線221の下方に位置し、給電線221と重畳する、第2の幅広部214の線幅(Z軸方向の長さ)が、巻込部211及び放射部212を構成する部分の線幅よりも広くなっている、といえる。
 なお、アンテナ201のサイズの一例は、図1における左右方向(X軸方向)の長さが92mm、上下方向(Z軸方向)の長さが52mmである。
 更に、放射部212が有するメアンダ形状内に、上記導電性経路を部分的に短絡させる短絡部材231が配置されるのが好ましい。ここで、図2を用いて、この短絡部材231の役割について、以下、説明する。
 (短絡部材231の役割)
 図2は、メアンダ形状を有する放射素子315内に短絡部材331を配置して、放射素子315内に複数の導電性経路を生じさせた状態を示す模式図である。
 図2に示すように、アンテナ301は1本の線路である放射素子315を有し、この放射素子315はメアンダ形状(メアンダ構造)を有する。すなわち、放射素子315はメアンダ化されている。放射素子315には給電部322において給電線が接続される。
 短絡部材331は、メアンダ化された放射素子315の例えば異なる2点以上を(複数の点を)短絡させる。図2の例では、短絡部材331の両端部に位置する上下方向に延びた2本の直線部間が短絡されている。これにより、放射素子315には、第1の波長λ1に対応した実線にて示す第1のパス(第1の導電性経路)と、第2の波長λ2に対応した破線にて示す第2のパス(第2の導電性経路)とが形成される。
 このように、アンテナ301では、メアンダ化された放射素子315において、複数の異なる点同士を短絡させるように短絡部材331を設けて、長さの異なる導電性経路の数を増やすことにより、アンテナ301の共振周波数を増加させることができる。これにより、使用帯域におけるアンテナ301のVSWR特性を向上させることができる。
 ここで、上述したように、アンテナでは、導体部材に搭載された場合、導体部材の影響を受けて、使用帯域(例えば、日本向け地上デジタル放送用アンテナであれば470MHz~770MHz、北米向け地上デジタル放送用アンテナであれば470MHz~860MH、欧州向け地上デジタル放送用アンテナであれば470~890MHz)におけるVSWR特性が悪化する(VSWR値が上昇する)場合がある。
 このような場合には、図2のアンテナ301において示したように、メアンダ化された放射素子315において、複数の異なる点同士を短絡させるように短絡部材331を設けることによって、使用帯域におけるVSWR特性の悪化(VSWR値の上昇)を抑制することができる。すなわち、導体部材からの影響を考慮し、放射素子315の近傍にダミーの導電部材を配置した状態で、放射素子315において短絡部材331により短絡させる位置を決定して短絡部材331を配置する。これにより、長さの異なる導電性経路の数が増加してアンテナ301の共振周波数が増加する。この結果、アンテナ301を導体部材に搭載した場合でも、導体部材の影響による使用帯域におけるVSWR特性の悪化(VSWR値の上昇)を抑制することができる。
 図1に示したアンテナ201では、上で述べたような短絡部材331として、短絡部材231が、メアンダ化された放射部212に配置されている。この短絡部材231を配置する位置及び箇所の決定は、例えば、次のようにして行われる。
 短絡部材231の配置は、放射素子215が誘電体を介して金属板上に配置された状態で、使用帯域内の各周波数におけるVSWR値が、短絡部材231を配置していない場合よりも小さくなるように決める。より好ましくは、放射素子215が誘電体を介して金属板上に配置された状態で、使用帯域内の各周波数におけるVSWR値が、3.5以下になるように決める。
 より具体的に言えば、ダミー金属板上に誘電体を介して配置された放射素子215上に短絡部材231を仮置きした上で、使用帯域におけるVSWR値をモニタしながら短絡部材231を移動する。そして、使用帯域内の各周波数においてVSWR値が短絡部材を配置していない場合よりも小さくなる位置が見出された場合、その短絡部材231をその位置に固定する。一方、使用帯域内の各周波数においてVSWR値が短絡部材を配置していない場合よりも小さくなる位置を見出せなかった場合、使用する短絡部材231を形状またはサイズの異なるものに取り替えながら、上記の試行を繰り返す。
 短絡部材231は、放射素子215の所定の位置同士を短絡させるものであり、例えば、金属材料などの導電材料を用いることができる。短絡部材231は、例えば放射素子215に直接接触し、放射素子215を短絡させる。
 ここで、短絡部材231の有無とVSWR特性との関係について調べた実験結果について、以下に説明する。
 (短絡部材の有無による効果)
 この実験においては、図3に示すように、350mm×250mmの導体部材としての金属板403上に、誘電体層402を介してアンテナ401を搭載した。誘電体層402については後述する。なお、アンテナ401のサイズが100mm×50mm程度であれば、アンテナ401を350mm×250mmの導体部材上に搭載したときと概ね同じ特性が、アンテナ401を自動車のボンネット等の導体部材上に搭載した場合にも得られる。
 アンテナ401には、図1に示したアンテナ201、及び図4に示すアンテナ501を使用し、それぞれについてVSWR特性を測定した。なお、図4のアンテナ501は、図1のアンテナ201に設けられている短絡部材231が設けられていない点を除き、図1のアンテナ201と同一の構成を有している。
 図5は、アンテナ201及びアンテナ501の各VSWR特性の測定結果を示すグラフである。図5において、「短絡部材有り」のグラフがアンテナ201の測定結果であり、「短絡部材無し」のグラフがアンテナ501の測定結果である。なお、この測定時においては、誘電体層402の厚さdは5mm、比誘電率εは1であった。
 図5に示す実験結果からは、アンテナ201において短絡部材231を配置し、短絡を生じさせることにより、地上波デジタルテレビ帯域(470MHz~770MHz)に対し、800MHz以下の帯域においてVSWRを3.5以下に抑えられることが分かる。
 ただし、アンテナ501においても、約650MHz~750MHzの周波数帯では、VSWRが3.5以下に抑えられているので、この周波数帯では良好な送受信を行うことができる。これは、アンテナ501がメアンダ形状の導電性経路を持つ放射素子215を備えていることによる効果であると考えられる。
 アンテナ501の場合には、良好な周波数帯が約650MHz~750MHzという結果になっているが、これは単なる一例に過ぎない。すなわち、メアンダ形状の設計によって、VSWRを3.5以下とする周波数の値と範囲とを様々に変えることができる。したがって、使用周波数帯によっては、短絡部材は無くてもよい。
 なお、本実施の形態では、同一平面上の隣合う複数の点を短絡することで説明したが、隣合っていない複数の点を短絡してもよい。例えば直線形状ではない短絡部材で短絡したり、2層構造として短絡部材をアンテナ201とは異なる面に配置して層間導通により離れた2点以上の点を短絡しても良い。
 このように、短絡部材231を配置する位置及び箇所を決定することによって、放射素子215の共振点を増加させ、VSWR値を低下させることが一層好ましいことを見出した。この短絡部材231の使用により、アンテナ201が導体部材に搭載される場合でも、使用可能帯域の拡大を図ることができる。
 (誘電体の厚さによる効果)
 発明者等は、図3に示すように、アンテナ401と導体部材としての金属板403との間に誘電体層402を設けることにより、アンテナ401と導体部材(金属板403)との間の距離を数mm程度に小さくしても実用に耐えるVSWR特性を有するアンテナを実現できることを見出した。この際、誘電体層402の比誘電率εは1以上10以下に設定することが望ましい。これは、比誘電率εを10よりも大きくすると、放射効率の低下が無視できなくなるためである。
 図6に、誘電体層402の厚さdを変化させ、各厚さdにおけるアンテナ401のVSWR特性の測定結果を示す。ここでは、図1のアンテナ201をアンテナ401として用いている。
 また、厚さdとして、d=無限大(∞)、d=5mm、d=2mm、d=0mm、の4条件を用意した。なお、d=無限大とは、アンテナ201と金属板403との距離が無限大、つまり、金属板403が存在しない状況を意味する条件である。また、d=0mmは、アンテナ201が金属板403に対して可能な限り薄い絶縁膜等の絶縁部材を介して接触するように搭載されている状況を意味する条件である。つまり、d=0mmは、アンテナ201の導体部分と金属板403とが直接接触しないで絶縁状態を保ち、可能な限りアンテナ201と金属板403とが接近している状態の距離を示している。
 図6に示すように、d=無限大、d=5mmの2つ条件において、470MHz~770MHzの帯域においてVSWRを3.5以下に抑えられることが分かる。また、d=2mmとした場合でも、670MHz近傍の帯域を除けば、470MHz~770MHzの帯域においてVSWRを3.5以下に抑えられることが分かる。このことから次のようなことがいえる。
 d=無限大、すなわち、アンテナ201が金属板403に搭載されていなければ、アンテナ201は金属板403からの影響を受けることは無い。言い換えると、アンテナ201が金属板403に無限遠から徐々に金属板403に近づくとすれば、金属板403に近づけば近づくほど、金属板403からの影響を強く受けるはずである。
 したがって、図6の結果からいえることは、アンテナ201と金属板403との間の誘電体層402の厚さd、すなわち、アンテナ201と金属板403との間の距離を5mm以上とすれば、470MHz~770MHzの帯域において、VSWRを3.5以下に抑えられることができるといえる。また、アンテナ201と金属板403との間の距離を2mm以上とすれば、一部の例外的な帯域を除けば、470MHz~770MHzの帯域においてVSWRを3.5以下に抑えられることができるといえる。
 ここで、図6は、比誘電率εrが約2~3の厚み1mm以下のアンテナ基材を使用した場合で、基材以外の離隔、すなわち誘電体層402の厚さdを、比誘電率εr=約1の材料(発泡スチロールなど)で設けた場合の特性を示している。
 従って、図6に示す特性では、厚さd=2mmのとき、670MH近傍でVSWRが劣化するが、本発明では必ずしも670MHz帯域のVSWRが劣化するわけではない。これは、図11に示す特性が、短絡部材やメアンダ形状、アンテナ基材の比誘電率εr及び厚さ、誘電体層402の比誘電率εr等を最適化することにより調整することが可能だからである。
 図7は、図1に示したアンテナ201の550MHz帯域における放射パターンを示すグラフである。(a)は、図3に示すxyz座標系のxy面における放射パターン、(b)は、yz面における放射パターン、(c)は、zx面における放射パターンをそれぞれ示している。このときの誘電体層402の厚さdは5mm、比誘電率εは1であった。また、図7中に示すEθは、垂直偏波Vに対するアンテナの放射パワーを表わし、Eφは、水平偏波Hに対するアンテナの放射パワーを表わし、Etotalはアンテナの全放射パワーを表している。
 図7によれば、xy面における放射パターン、yz面における放射パターン、zx面における放射パターンのいずれにおいても、放射無指向性が実現されていることが分かる。
 以上のように、アンテナ201は、導電性経路が二次元的に形成された平板状の放射素子215と、放射素子215に接続される給電線221とを備えて構成されている。放射素子215は、導電性経路の一端から所定の長さ部分の第1の根本部225と、導電性経路の他端から所定の長さ部分の第2の根本部226と、第1の根本部225と第2の根本部226とを中継する中間部とを有し、第1及び第2の根本部225,226の先端領域には給電線221に接続される給電部222が形成されている。中間部には少なくとも1回、より好ましくは2回以上の折り返しパターンを有するメアンダ形状の導電性経路が形成されている。アンテナ201の平板状の放射素子215を、絶縁材料からなる移動体用内装材に埋設して一体化、若しくは上記内装材の表面形状に沿って固定されている。
 これにより、高いアンテナ性能を有しつつ、高い設置自由度を備えたアンテナの取付構造を提供することができる。
 (変形例)
 図8は、アンテナ201の変形例であるアンテナ201aを示している。以下、上記のアンテナ201と異なる部分について、その詳細な説明を行うものとし、同様の部分については、説明を省略する。
 アンテナ201aのサイズは、図8における左右方向(X軸方向)の長さが83mm、上下方向(Z軸方向)の長さが56mmである。
 巻込部211aにおいて、放射素子215aの2つの根本部225a、226aのそれぞれに、給電部222aが形成されている。2つの根本部225a、226aのそれぞれは、給電部222aに接続された給電線221aから給電されている。
 なお、第1の根本部225aは、第1の直線部225a1及び第1の屈曲部225a2(第1の後端直線部)を有している。第1の直線部225a1および第1の屈曲部225a2は、図7に示した第1の根本部225の第1の直線部225o1および第1の屈曲部225o2に対応している。同様に、第2の根本部226aは、第2の直線部226a1及び第2の屈曲部226a2(第2の後端直線部)を有している。第2の直線部226a1および第2の屈曲部226a2は、図7に示した第2の根本部226の第2の直線部226o1および第2の屈曲部226o2に対応している。
 給電線221aは、給電部222aから延在する向きが、上記第1の実施形態における上記給電線221とは異なり、図8に示すZ軸の負の向きとなっている。
 このため、2つの根本部225a、226aの取り出しの向きは、いずれも、図1において給電線221が延在する向きとは直交し、給電線221aが延在する向きとは平行になっている。
 また、第1の幅広部213aは、給電線221aの下方において形成され、給電線221aと重畳する部分の線幅(X軸方向の長さ)が、巻込部211a及び放射部212aを構成する部分の線幅よりも広くなっている。
 図8に示す構成に代えて、上記給電線221aを上記給電線222aからX軸の負の向きに延在させてもよい。
 更に、放射部212aが有するメアンダ形状内に短絡部材231a及び短絡部材232aが配置されている。この短絡部材231a及び短絡部材232aの役割については、上述した短絡部材231と同様である。
 次に、上記短絡部材231a及び232aの有無により、VSWR特性がどの程度向上するかについて、発明者等が実験を行った。その実験結果について、以下に説明する。
 (短絡部材の有無による効果)
 発明者等は、上記アンテナ201と同様、図3に示すように、350mm×250mmの金属板403上に、誘電体層402を介してアンテナ401を搭載した。
 アンテナ401には、図8に示したアンテナ201a、図9に示すアンテナ502、及び、図10に示すアンテナ503を使用し、それぞれについてVSWR特性を測定した。図9に示すアンテナ502は、図8に示す短絡部材232aが放射部212aのメアンダ形状部内に配置されていないことを除き、図8に示すアンテナ201aと同一の構成を有している。また、図10に示すアンテナ503は、図8に示す短絡部材231a及び232aが放射部212aのメアンダ形状部内に配置されていないことを除き、図8に示すアンテナ201aと同一の構成を有している。
 図11に、アンテナ201a、アンテナ502及びアンテナ503の各VSWR特性の測定結果を示す。図11において、「短絡部材有り」のグラフがアンテナ201aの測定結果であり、「短絡部材無し」のグラフがアンテナ503の測定結果であり、「第2の短絡部材無し」のグラフがアンテナ502の測定結果である。なお、この測定時においては、誘電体層402の厚さdは5mm、比誘電率εは1であった。
 図11に示すように、先ず、「第2の短絡部材無し」のグラフから、短絡部材231aを配置し、短絡を生じさせることにより、地上波デジタルテレビ帯域(470MHz~770MHz)のうち、低周波帯域においてVSWRを3.5以下に抑えられることが分かる。
 更に、「短絡部材有り」のグラフから、短絡部材232aを配置し、短絡を生じさせることにより、地上波デジタルテレビ帯域(470MHz~770MHz)のうち、高周波帯域においてもVSWRを3.5以下に抑えられることが分かる。
 ただし、「短絡部材無し」のグラフから、前述したように、アンテナ503においても、約550MHz~620MHzの周波数帯および約680MHz~770MHzの周波数帯では、VSWRが3.5以下に抑えられているので、この周波数帯では良好な送受信を行うことができる。これは、アンテナ503がメアンダ形状の導電性経路を持つ放射素子215aを備えていることによる効果であると考えられる。したがって、使用周波数帯によって、短絡部材の設置数は0も含んで変更可能である。
 (誘電体の厚さによる効果)
 図12に、誘電体層402の厚さdを変化させ、各厚さdにおけるアンテナ401のVSWR特性の測定結果を示す。ここでは、図8のアンテナ201aをアンテナ401として用いている。
 また、厚さdとして、d=無限大(∞)、d=5mm、d=2mm、d=0mm、の4条件を用意した。
 図12に示すように、d=無限大、d=5mmの2つの条件において、420MHz~920MHzの帯域においてVSWRを3.1以下に抑えられることが分かる。
 また、d=無限大、d=5mm、d=2mmの3つの条件において、420MHz~870MHzの帯域においてVSWRを3.5以下に抑えられることが分かる。
 このことから、アンテナ201と金属板403との間の距離を2mm以上とすれば、420MHz~870MHzの帯域において、VSWRを3.5以下に抑えられることができるといえる。ここで、図12は、比誘電率εrが約2~3の1mm以下のアンテナ基材を使用した場合で、かつ、基材以外の離隔、すなわち誘電体層402の厚さdを、比誘電率εr=約1の材料(発泡スチロールなど)によって設けた場合の特性を示している。
 なお、d=0mmの場合でも、例えば、450MHz近傍の周波数帯、約520MHz~690MHzおよび約750MHz~830MHzなどの周波数帯では、VSWRを3.5以下に抑えられ、良好な送受信を行うことができる。したがって、使用周波数帯が特定の周波数帯に限定して構わない場合には、本発明のメアンダ形状の放射素子を備えたアンテナを、導体面とは絶縁した状態を保った状態で、できるだけ接近させて設置することができる。
 図13は、図8に示したアンテナ201aの550MHz帯域における放射パターンを示すグラフである。図13の(a)は、図3に示すxyz座標系のxy面における放射パターン、図13の(b)は、yz面における放射パターン、図13の(c)は、zx面における放射パターンをそれぞれ示している。このときの誘電体層402の厚さdは5mm、比誘電率εは1であった。
 図13によれば、xy面における放射パターン、yz面における放射パターン、zx面における放射パターンのいずれにおいても、放射無指向性が実現されていることが分かる。
 図14は、図1に示すアンテナ201の変形例であるアンテナ504を示している。以下、上記のアンテナ201と異なる部分について、その詳細な説明を行うものとし、同様の部分については、説明を省略する。
 アンテナ504では、第1の幅広部213bおよび巻込部211bのZ軸正方向における長さが、アンテナ201の第1の幅広部213および巻込部211より長くなっている。したがって、第1の幅広部213bおよび巻込部211bのZ軸正方向側の上端部は、放射素子215のZ軸正方向側の上端部の位置から、Z軸正方向側に張り出している。
 また、アンテナ201の短絡部材231は、独立した部材として設けられているが、アンテナ504では、Z軸負方向側の下端部において、放射素子215bを形成する導電性経路と同じ材料により、導電性経路と一体化された短絡部231cが形成されている。さらに、Z軸に沿って折り返され、隣り合って並走する2本の導電性経路を1本に一体化し、そのX軸方向の幅を、1本の導電性経路の幅のほぼ3倍とした短絡部231dが形成されている。1本に一体化する場合の並走する導電性経路の本数は、良好なVSWR特性が得られるように適宜調整すればよいことはいうまでもない。上記短絡部231cのX軸方向の長さについても、同様に適宜調整可能である。
 このように、短絡部材を、独立した部材とするのではなく、導電性経路と同じ材料により、導電性経路と一体化して形成する方が、導電性経路と短絡部材とを同時に形成することができるので、製造工程が簡便になる。
 (アンテナの配設例1)
 上記各アンテナの平板状の放射素子215(215a、215b)は、前述したように、上記内装材の表面形状に沿って、若しくは絶縁材料からなる移動体用内装材に埋設して一体化して固定されている。以下、上記各アンテナの具体的な取付構造について説明する。なお、以下の説明においては、説明の都合上、上記各アンテナの付番をまとめて「100」と表すものとする。
 また、移動体全般の内装材は、樹脂のような誘電体(絶縁体)によって形成されているとは限らないが、以下の説明では、移動体の内装材は、誘電体(絶縁体)によって形成されていることを前提とする。
 上記各アンテナ100が上記内装材105の表面105aの形状に沿って配設される取付構造の具体的な例として、例えば図15に示すように、上記内装材105の表面105aに上記各アンテナ100が直接貼着される構造がある。
 この態様では、比較的狭い空間に対し上記アンテナ100を配設することが可能となり、上記各アンテナ100は、金属面からの離間距離が5~50mm必要であった従来技術に比して、上記離間距離が少なくて済む。すなわち、図15に示すように、絶縁材からなる内装材と導体からなる外装材とが対向している場合(放射素子215が上記外装材と上記内装材との間に配設される場合)に、上記アンテナ(放射素子)と外装材との離間距離Lを2mm以上設ければよい。よって、アンテナ100は、その設置に要するスペースが少なくて済み、高い設置自由度を有する。
 (アンテナの配設例2)
 以上のような設置方法を用いて上記各アンテナ100が設置可能な設置場所の具体例について説明する。図16は、自動車内のうち前方側の外観構成の一例を示す図、図17は、図16に示す外観構成のうち、ルーフ(屋根)を支持するピラーの拡大図である。
 図16,図17に示すように、上記各アンテナ100は、例えばピラー106に設置し得る。ピラー106は、窓ガラスから近い位置にあるので、外から来た電波が回り込む結果、強い電波を受信できることが期待できる設置場所である。図16,図17には、上記ピラー106のうち上記各アンテナ100を設置し得る部位の一例を点線で示している。図18は、図17に示すピラー106を所定位置でその長手方向に交差する平面Hによって切断した場合の切断面の一例を示す図である。
 図18に示すピラー106は、導体で構成された上記外装材(外装ボディ)107と、合成樹脂で構成された上記車両用内装材108とを有する。上記外装材107は断面円弧状を呈する一方、上記内装材108は断面直線状や断面円弧状などの断面形状(図18には、直線状の断面の両端にそれぞれ短円弧状の断面が連続した断面形状を有する内装材を示している)を呈している。ピラー106は、上記外装材107の断面の端部と上記内装材108の断面の端部とが互いに当接した状態で、上記外装材107と上記内装材108とが連結されることにより、筒状(中空構造)を成している。
 このようなピラー106における上記内装材108の空洞側表面108aに沿って、図15に示す前述した設置態様で上記各アンテナ100を設置し得る。なお。図18に示す構成の場合、アンテナ100と上記外装材107との最短の離間距離Lが2mm以上設けられればよい。
 そして、例えば図19の(a),(b)に示すように、上記アンテナ100を上記内装材108の空洞側表面108aに貼付けることにより設置し得る。なお、図19の(a)は、上記アンテナ100を上記内装材108の空洞側表面108aに貼付ける直前の状態を示す図、図19の(b)は、上記アンテナ100を上記内装材108の空洞側表面108aに貼付けた状態を示す図である。
 図19の(b)に示すように、アンテナ100は可撓性を備えているので、空洞側表面108aの内面形状に沿った形状としながら、容易に貼付けることができる。
 また、アンテナ100を保持するシート状の基材として、例えば2(mm)以上の厚みを持つ柔軟性の高い粘着テープなどを用いると、空洞側表面108aの貼着箇所に、リブのような***物が存在していても、空洞側表面108aの内面形状およびリブの形状に沿わせて、アンテナ100を貼着することができる。
 (アンテナの配設例3)
 上記各アンテナ100は、上記ピラー106の他、例えば図16の矢印Q1で示されるセンターコンソールにおけるエアコンの空気吹出し口の背面側にも設置し得る。図20は、上記エアコンの空気吹出し口の背面側において延設された導風口部120及びその周辺の構成を示す図である。上記導風口部120が合成樹脂などの絶縁体で形成されている場合、図20に示すように、上記各アンテナ100は、上記導風口部120の外周面120a(図20では上面)に貼付けることで設置可能である。
 なお、図20の矢印Q2は、カーナビゲーションの筐体(ボックス)を示しており、図20は、アンテナ100に接続される上記給電線109を上記カーナビゲーションの筐体上板を貫通してカーナビゲーション内部に導入した状態を示している。
 (アンテナのその他の配設例)
 上記各アンテナ100は、上記ピラー106の内部や上記導風口部120の上記外周面120aだけでなく、図16に示すように、例えば、矢印Q3で示すルーフトリム、矢印Q4で示すドアトリム、矢印Q5で示すサンバイザー、矢印Q6で示すダッシュボード、矢印Q7で示すコンソールボックス、矢印Q8で示すハンドルも上記アンテナ100の設置対象部位となり得る。なお、上記アンテナ100をルーフトリムに設置する際には、窓ガラスに近い4隅が送受信感度を良好にする上で好ましい。さらに、図示していないが、トノカバー、シートベルト、シート、ウェザートリムも上記アンテナ100の設置対象部位となり得る。
 上記アンテナ100の設置面は、平面でもよいし曲面でもよい。ただし、上記設置面が曲面の場合には、3mm以上、より好ましくは5mm以上の曲率半径を有する曲面であれば、アンテナは良好な特性を維持することができる。
 また、上記アンテナ100は、ドアミラーを構成する合成樹脂材の内側表面にも設置し得る。
 また、アンテナ100を内装材の表面形状に沿って取り付ける形態の他、絶縁材料からなる内装材に埋設して一体化して固定することも可能である。アンテナ100を内装材に埋設して一体化する方法としては、例えば、内装材を製造する際に、上記アンテナ100を含めて合成樹脂などの絶縁物をモールド成型する方法が一例として考えられる。なお、この場合は、その成型物が車両の製造時に取り付けられる。
 上記記載の中では特に言及しなかったが、アンテナ3の放射素子215は、通常、図22に示すように、チューナー部4(送受信回路)に給電線222を介して接続されるが、アンテナ3とチューナー部4とを一体的に内装材に取り付けるとよい。さらに、上記アンテナ3とチューナー部4とを内装材の同一表面に併設して、両者を接続するのがより好ましい。このように構成することで、アンテナ3とチューナー部4とを接続する導電路を短くすることができるので、導電路による損失を抑制することができ、導電路を細く形成することも可能になる。また、上記アンテナ3と上記チューナー部4とをそれぞれ異なる面上に配置する構成に比して、アンテナ3を薄型化することができるため、高い設置自由度が得られる。また、チューナー部をアンテナに隣接させられるのでアンテナ3とチューナー部4間の伝送路のインピーダンスを考慮する必要がないという効果を奏する。
 〔まとめ〕
 本発明に係るアンテナの取付構造は、以上のように、導電性経路が二次元的に形成された平板状の放射素子と、上記放射素子に接続される給電線とから構成されるアンテナの上記平板状の放射素子を、絶縁材料からなる移動体用内装材に埋設して一体化、若しくは上記内装材の表面形状に沿って固定するアンテナの取付構造であって、上記平板状の放射素子は、導電性経路の一端から所定の長さ部分の第1の根本部と、上記導電性経路の他端から所定の長さ部分の第2の根本部と、上記第1の根本部と第2の根本部とを中継する中間部とを有し、上記第1及び第2の根本部の先端領域には給電線に接続される給電部が形成され、上記中間部には折り返しパターンを有するメアンダ形状の導電性経路が形成されていること、を特徴としている。
 本発明に係るアンテナの取付構造では、上記メアンダ形状を有する導電性経路を有しているので、アンテナを導体に近接させて配置することができる(例えば、アンテナと導体面との間の距離を2mm程度まで近づけることができる)。したがって、導体面が近傍に存在する比較的狭い空間でも上記アンテナを配設することが可能となり、該アンテナの配設場所の自由度が従来に比して格段に向上する。
 例えば、特許文献1には、樹脂製内装材とボディとの間に銅線を束ねたワイヤーハーネスが張り巡らされている箇所を避けてアンテナを配置せねばならないという制約がある。これに対して、本発明に係るアンテナの取付構造においては、このような制約がない。また、本発明に係るアンテナの取付構造は、アンテナの上記平板状の放射素子を、絶縁材料からなる移動体用内装材に埋設して一体化、若しくは上記内装材の表面形状に沿って固定するので、このアンテナが配置される狭い空間を占有してしまうことがない。
 また、上記各実施形態に係るアンテナの取付構造では、上記平板状の放射素子は、メアンダ形状の導電性経路を短絡させるための短絡部が設けられていることが好ましい。
 これにより、長さの異なる導電性経路の数が増える結果、アンテナの共振点を増加させることができるので、アンテナの使用可能な周波数帯域をより拡大することができる。
 この場合、メアンダ形状の導電性経路上において短絡箇所を発生させるための1つまたは複数の短絡部を配置する際に、アンテナの共振点が増加するように、あるいはアンテナの共振点を増加させるとともに、使用帯域内におけるVSWR値を低下させるように、短絡部を配置する位置及び箇所を決定することができる。
 上記各実施形態に係るアンテナの取付構造では、上記平板状の放射素子において、上記第1及び第2の根本部は、上記給電部を取り囲む巻込部を形成し、さらに上記第1及び第2の根本部の少なくとも一方に、上記給電部に接続される給電線と重畳する位置における導電性経路の幅が他の位置より広い幅広部が形成されていてもよい。
 この構成によれば、給電部における放射素子と給電線とのインピーダンス整合を実現し、そうすることにより、放射素子のVSWR値を低下させる、すなわち、VSWR特性を向上させることができる。
 このため、放射素子の高い放射利得を実現させながら、そのVSWR特性を向上させることができるので、放射素子の使用可能な周波数帯域をさらに拡大することができる。
 上記各実施形態に係るアンテナの取付構造では、上記平板状の放射素子は、一端から他端まで連続した一本の線路であるのが好ましい。
 この構成によれば、ループ形状を有するループアンテナの取付構造と同様、高い放射利得を実現することができる。
 上記各実施形態に係るアンテナの取付構造では、上記放射素子は、上記移動体の外装材と上記内装材との間に配置されているとともに、導体材料からなる上記外装材の表面から離間して配置されているとよい。
 この構成によれば、上記外装材が導体で構成されている場合であっても、その外装材の表面から離間してアンテナが配置されるので、導体の影響を受けてアンテナの特性が劣化することを回避しやすくなる。
 上記各実施形態に係るアンテナの取付構造では、上記移動体の外装材に対する上記平板状の放射素子の離間距離は、少なくとも2mmであることが好ましい。
 この構成によれば、アンテナを導体付近に搭載する場合でも、VSWR値を3.5以下に抑えた使用可能な周波数帯域を発現させることができる。
 上記各実施形態に係るアンテナの取付構造は、可撓性をもつ平板状の放射素子を、上記内装材の表面に沿わせて固定してもよい。
 この構成によれば、可撓性をもつ平板状の放射素子を、上記内装材の表面に沿わせて固定するので、アンテナを簡単に設置することができる。また、移動体用内装材は樹脂のような誘電体で形成されることが一般的なので、移動体用内装材の表面は、導体の影響を受けにくい場所であり、アンテナの設置場所としても好適である。
 上記各実施形態に係るアンテナの取付構造では、上記平板状の放射素子が、上記内装材の表面形状に沿って曲率半径5mm以上で湾曲して取り付けられていてもよい。
 この構成によれば、曲率半径が5mm以上の曲面に沿って取り付けることで、良好な特性を維持することができる。
 上記各実施形態に係るアンテナの取付構造では、上記平板状の放射素子と同一面上に、上記給電線を介して放射素子に接続される送受信回路を設け、上記送受信回路を上記放射素子と一体的に上記内装材に取り付けていてもよい。
 この構成によれば、アンテナと送受信回路とを接続する導電路を短くすることができるので、導電路による損失を抑制することができ、導電路を細く形成することも可能になる。また、上記アンテナと上記送受信回路とを同一面上に配したので、上記アンテナと上記送受信回路とをそれぞれ異なる面上に配する構成に比して、アンテナの取付構造を薄型化することができるため、高い設置自由度が得られる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、例えば、VHF放送帯域とUHF地上デジタル放送帯域の両帯域で送受信可能な、自動車などの移動体に搭載される放送波受信用のアンテナに適用できる。
3,100(201,201a,301,401,501,502,503,504) アンテナ
225,225a 第1の根本部
226,226a 第2の根本部
213,231b,214,214b 幅広部
222,222a,322 給電部
225o2,225a2 第1の屈曲部(後端直線部)
226o2,226a2 第2の屈曲部(後端直線部)
231,231a,231b,331,232a 短絡部材(短絡部)
105,108,120 内装材(移動体用内装材)
105a,108a 表面
120a 外周面(移動体用内装材の表面)
4 チューナー部(送受信回路)

Claims (9)

  1.  導電性経路が二次元的に形成された平板状の放射素子と、上記放射素子に接続される給電線とから構成されるアンテナの上記平板状の放射素子を、絶縁材料からなる移動体用内装材に埋設して一体化、若しくは上記内装材の表面形状に沿って固定するアンテナの取付構造であって、
     上記平板状の放射素子は、
     導電性経路の一端から所定の長さ部分の第1の根本部と、上記導電性経路の他端から所定の長さ部分の第2の根本部と、上記第1の根本部と第2の根本部とを中継する中間部とを有し、上記第1及び第2の根本部の先端領域には給電線に接続される給電部が形成され、上記中間部には折り返しパターンを有するメアンダ形状の導電性経路が形成されていることを特徴とするアンテナの取付構造。
  2.  上記平板状の放射素子は、メアンダ形状の導電性経路を短絡させるための短絡部が設けられていることを特徴とする請求項1に記載のアンテナの取付構造。
  3.  上記平板状の放射素子において、
     上記第1及び第2の根本部は、上記給電部を取り囲む巻込部を形成し、
     さらに上記第1及び第2の根本部の少なくとも一方に、上記給電部に接続される給電線と重畳する位置における導電性経路の幅が他の位置より広い幅広部が形成されていることを特徴とする請求項1または2に記載のアンテナの取付構造。
  4.  上記平板状の放射素子は、一端から他端まで連続した一本の線路であることを特徴とする請求項1~3の何れか1項に記載のアンテナの取付構造。
  5.  上記放射素子は、上記移動体の外装材と上記内装材との間に配置されているとともに、導体材料からなる上記外装材の表面から離間して配置されていることを特徴とする請求項1~4の何れか1項に記載のアンテナの取付構造。
  6.  上記移動体の外装材に対する上記平板状の放射素子の離間距離は、少なくとも2mmであることを特徴とする請求項1~5の何れか1項に記載のアンテナの取付構造。
  7.  可撓性をもつ平板状の放射素子を、上記内装材の表面に沿わせて固定することを特徴とする請求項1~6に何れか1項に記載のアンテナの取付構造。
  8.  上記平板状の放射素子が、上記内装材の表面形状に沿って曲率半径5mm以上で湾曲して取り付けられていることを特徴とする請求項1~6の何れか1項に記載のアンテナの取付構造。
  9.  上記平板状の放射素子と同一面上に、上記給電線を介して放射素子に接続される送受信回路を設け、
     上記送受信回路を上記放射素子と一体的に上記内装材に取り付けたことを特徴とする請求項1~8の何れか1項に記載のアンテナの取付構造。
PCT/JP2011/076713 2010-11-19 2011-11-18 アンテナの取付構造 WO2012067242A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112011103812T DE112011103812T5 (de) 2010-11-19 2011-11-18 Struktur zur Befestigung einer Antenne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010259587 2010-11-19
JP2010-259587 2010-11-19

Publications (1)

Publication Number Publication Date
WO2012067242A1 true WO2012067242A1 (ja) 2012-05-24

Family

ID=46084161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076713 WO2012067242A1 (ja) 2010-11-19 2011-11-18 アンテナの取付構造

Country Status (2)

Country Link
DE (1) DE112011103812T5 (ja)
WO (1) WO2012067242A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970132B2 (ja) * 2013-05-31 2016-08-17 株式会社フジクラ 窓フレーム
JP5970131B2 (ja) * 2013-05-31 2016-08-17 株式会社フジクラ 窓フレーム
JP2018007223A (ja) * 2015-09-04 2018-01-11 旭硝子株式会社 アンテナ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216999A (ja) * 2005-02-01 2006-08-17 Fujitsu Ltd メアンダラインアンテナ
JP2007230264A (ja) * 2006-02-27 2007-09-13 Toyota Motor Corp 車載アンテナ装置およびガレージドアオープナーシステム
JP2007288360A (ja) * 2006-04-13 2007-11-01 Toshiba Corp 移動通信端末
JP2009246844A (ja) * 2008-03-31 2009-10-22 Asahi Glass Co Ltd 自動車用高周波ガラスアンテナ及び自動車用の窓ガラス板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529821A (ja) 1990-06-15 1993-02-05 Yuhshin Co Ltd 自動車用アンテナ装置
JPH0758535A (ja) 1993-08-19 1995-03-03 Nippon Plast Co Ltd 自動車用内装材
JP4138998B2 (ja) 1999-04-05 2008-08-27 株式会社ヨコオ 自動車用アンテナ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216999A (ja) * 2005-02-01 2006-08-17 Fujitsu Ltd メアンダラインアンテナ
JP2007230264A (ja) * 2006-02-27 2007-09-13 Toyota Motor Corp 車載アンテナ装置およびガレージドアオープナーシステム
JP2007288360A (ja) * 2006-04-13 2007-11-01 Toshiba Corp 移動通信端末
JP2009246844A (ja) * 2008-03-31 2009-10-22 Asahi Glass Co Ltd 自動車用高周波ガラスアンテナ及び自動車用の窓ガラス板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970132B2 (ja) * 2013-05-31 2016-08-17 株式会社フジクラ 窓フレーム
JP5970131B2 (ja) * 2013-05-31 2016-08-17 株式会社フジクラ 窓フレーム
JP2018007223A (ja) * 2015-09-04 2018-01-11 旭硝子株式会社 アンテナ

Also Published As

Publication number Publication date
DE112011103812T5 (de) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5779189B2 (ja) アンテナ装置およびアンテナ装置を搭載した移動体
JP5690842B2 (ja) アンテナ一体型ハーネス
JP5033237B2 (ja) 自動車ミラーアンテナ組立体
US20160079661A1 (en) Vehicle-mounted antenna device
JP2008271551A (ja) 自動車用のマルチバンド・アンテナ装置
JP5115359B2 (ja) 車両用ガラスアンテナ及び車両用窓ガラス板
JP2009246844A (ja) 自動車用高周波ガラスアンテナ及び自動車用の窓ガラス板
JP2005236656A (ja) 円偏波用アンテナ
JP4114430B2 (ja) アンテナ
WO2012067242A1 (ja) アンテナの取付構造
JP2011091557A (ja) アンテナ装置
JP4948181B2 (ja) アンテナ、アンテナ装置、及びアンテナ装置を備える処理装置
JP5003627B2 (ja) 車両用ガラスアンテナ及び車両用窓ガラス
JP2008278481A (ja) 自動車用高周波ガラスアンテナ及び自動車用の窓ガラス板
JP5690843B2 (ja) アンテナ装置を搭載した移動体
JP4836737B2 (ja) 車載用アンテナ及び車載用アンテナシステム
WO2020230696A1 (ja) アンテナ装置
CN116686166A (zh) 车辆玻璃天线
WO2012067241A1 (ja) 無線装置および無線装置を備えた移動体
JP2006080999A (ja) テレビ電波用アンテナ
JP2008054032A (ja) アンテナ装置
JP2006295712A (ja) ドア内蔵車載アンテナ
US20230268659A1 (en) Slot antenna
JP5269393B2 (ja) 車両用アンテナ装置
JP4660365B2 (ja) ループアンテナ及びループアンテナの車両への設置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111038127

Country of ref document: DE

Ref document number: 112011103812

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP