WO2012060339A1 - 光学装置 - Google Patents

光学装置 Download PDF

Info

Publication number
WO2012060339A1
WO2012060339A1 PCT/JP2011/075100 JP2011075100W WO2012060339A1 WO 2012060339 A1 WO2012060339 A1 WO 2012060339A1 JP 2011075100 W JP2011075100 W JP 2011075100W WO 2012060339 A1 WO2012060339 A1 WO 2012060339A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
optical
diffraction grating
condensing
Prior art date
Application number
PCT/JP2011/075100
Other languages
English (en)
French (fr)
Inventor
塩▲崎▼ 学
英久 田澤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US13/883,537 priority Critical patent/US20130235459A1/en
Priority to CN201180053398.XA priority patent/CN103201667B/zh
Publication of WO2012060339A1 publication Critical patent/WO2012060339A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • G02B6/29314Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response by moving or modifying the diffractive element, e.g. deforming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links

Definitions

  • the present invention relates to an optical device.
  • Patent Document 1 discloses an optical device used as an optical multiplexer, an optical demultiplexer, a wavelength selective switch, or the like.
  • the light input to the input port is wavelength-divided by the reflection type diffraction grating, and light of each wavelength is output from the reflection type diffraction grating in the direction according to the wavelength.
  • the light of each wavelength output from the diffraction grating is condensed at different positions by the condensing optical system.
  • a plurality of mirrors whose reflection directions are variable are provided at the condensing position of the light of each wavelength by the condensing optical system, and the light reaching the mirror is reflected to pass through the condensing optical system and the reflective diffraction grating. Then, it is output from any output port.
  • the light input to such an optical device is, for example, multiplexed light of each wavelength of the ITU grid.
  • the arrangement pitch of the plurality of mirrors is designed in accordance with each wavelength of the ITU grid, the focal length of the condensing optical system, the grating period of the reflective diffraction grating, the incident angle of light on the reflective diffraction grating, and the like. By adjusting the reflection direction of light in each mirror, it is set which wavelength of light is output from which output port of the plurality of output ports.
  • Patent Document 1 discloses an invention intended to solve such a problem.
  • the optical device disclosed in Patent Document 1 has a plurality of lenses having different focal lengths as a condensing optical system, and at least one of them can be translated in the optical axis direction.
  • the arrangement pitch of the condensing positions of light of each wavelength by the condensing optical system can be equal to the arrangement pitch of the plurality of mirrors, and as a result, the transmission characteristics of the optical device It is said that deterioration can be suppressed.
  • the condensing optical system has two lenses, the distance between the two lenses is 20 mm, the combined focal length is 100 mm, and the mirror array side
  • the focal length of the lens is 10 times the focal length of the lens on the reflective diffraction grating side, and the lens on the mirror array side can be translated in the optical axis direction.
  • the lens on the mirror array side may be moved by about 12 mm.
  • the present invention has been made to solve the above-described problems, and provides an optical device capable of easily adjusting the arrangement pitch of light collection positions of light of each wavelength by a light collection optical system to a predetermined pitch. With the goal.
  • the optical device includes (1) a transmissive diffraction grating that can rotate around a predetermined axis, and wavelength-divides the light input to the input port so as to be perpendicular to the predetermined axis and according to the wavelength.
  • a wavelength branching unit that outputs light of each wavelength; (2) a condensing optical system that condenses the light of each wavelength output after being wavelength-branched by the wavelength branching unit; and (3) condensing optics.
  • an optical element array including a plurality of optical elements provided at the condensing position of light of each wavelength collected by the system.
  • the wavelength branching portion includes a plurality of transmission diffraction gratings, and the transmission diffraction grating located farthest from the condensing optical system among the plurality of transmission diffraction gratings is predetermined. You may make it rotate freely around an axis
  • the wavelength branching section includes a plurality of transmission type diffraction gratings, and the transmission type diffraction grating located closest to the condensing optical system in the optical path among the plurality of transmission type diffraction gratings. May be rotatable around a predetermined axis.
  • the predetermined axis may pass through a position where the light input to the input port reaches.
  • the optical element array may transmit or reflect the light reaching each optical element and output it from the output port.
  • the optical element array may include a mirror whose light reflection direction is variable as an optical element, reflect the light reaching the mirror, and output it from the output port via the condensing optical system and the wavelength branching unit. .
  • the optical device of the present invention can easily adjust the arrangement pitch of the light condensing positions of light of each wavelength by the condensing optical system to a predetermined pitch.
  • FIG. 1 is a configuration diagram of the optical device according to the first embodiment.
  • FIG. 1 shows an xyz orthogonal coordinate system for convenience of explanation.
  • the optical device 1 includes a light input / output unit 10, a transmissive diffraction grating 21, a lens 30, and a mirror array 40.
  • the light input / output unit 10 includes a plurality of ports arranged in the x-axis direction. Each of the plurality of ports may be used as an input port for inputting light, or may be used as an output port for outputting light. Each of the plurality of ports is connected to a corresponding optical fiber 12 and has a corresponding collimated lens.
  • the input port collimates the light transmitted from the optical fiber 12 with a collimating lens and outputs the collimated light to the transmissive diffraction grating 21.
  • the output port condenses the light that has arrived from the transmissive diffraction grating 21, causes the light to enter the end face of the optical fiber 12, and transmits the light through the optical fiber 12.
  • the optical paths between each of the plurality of ports included in the light input / output unit 10 and the transmissive diffraction grating 21 are on a common plane parallel to the xz plane and parallel to the z-axis direction.
  • the transmission type diffraction grating 21 serving as a wavelength branching unit is a grating in which the grating extending in the x-axis direction is formed with a constant period, and the light input to the input port is wavelength-branched and output.
  • the transmissive diffraction grating 21 is rotatable around a predetermined axis.
  • the rotation axis is parallel to the x-axis direction, but preferably passes through a position where light input to the input port reaches.
  • the transmissive diffraction grating 21 outputs light of each wavelength in the direction corresponding to the wavelength perpendicular to the rotation axis (parallel to the yz plane).
  • the lens 30 as a condensing optical system condenses the light of each wavelength output after being branched by the transmissive diffraction grating 21 at different positions.
  • the mirror array 40 as an optical element array includes a plurality of mirrors 41 1 to 41 n as a plurality of optical elements provided at the condensing positions of light of each wavelength collected by the lens 30.
  • the mirrors 41 1 to 41 n are arranged on a straight line parallel to the yz plane.
  • a mirror 41 1 is provided at the light collecting position of the light of wavelength ⁇ 1
  • a mirror 41 m is provided at the light collecting position of the light of wavelength ⁇ m
  • a mirror 41 n is provided at the light collecting position of the light of wavelength ⁇ n.
  • Each of the mirrors 41 1 to 41 n has a variable light reflection direction.
  • Each of the mirrors 41 1 to 41 n is preferably made by MEMS (Micro Electro Mechanical Systems) technology.
  • Each of the mirrors 41 1 to 41 n may be a DMD (Digital Micromirror Device) or a DLP (Digital Light Processing).
  • the light when light of multiple wavelengths ⁇ 1 to ⁇ n multiplexed to the input port of the light input / output unit 10 is input, the light is collimated from the input port and transmitted through the diffraction grating 21. To reach.
  • the light reaching the transmissive diffraction grating 21 is wavelength-branched by the transmissive diffraction grating 21, and the branched light beams having different wavelengths are output from the transmissive diffraction grating 21 in different directions.
  • the light of each wavelength outputted after being wavelength-branched by the transmissive diffraction grating 21 is condensed by the lens 30 at different positions.
  • a mirror 41 is disposed at the condensing position, and the light condensed on the mirror 41 by the lens 30 is reflected by the mirror 41.
  • the light reflected by the mirror 41 is output from any output port of the light input / output unit 10 via the lens 30 and the transmission diffraction grating 21.
  • the reflection direction of light at the mirror 41 is variable, it can be set which wavelength of light is output from which output port of the plurality of output ports.
  • the orientation of the reflecting surface of the lens 41 at the position where the light of that wavelength is collected by the lens 30 may be changed.
  • light may be output from an output port in the middle of the change process. Is preferable because no light is output from an output port in the course of the change.
  • the lens The arrangement pitch of the condensing positions of the light beams having the wavelengths ⁇ 1 to ⁇ n by 30 is different from the arrangement pitch of the mirrors 41 1 to 41 n .
  • the transmission diffraction grating 21 is rotated around a rotation axis parallel to the x-axis direction, whereby the light of each wavelength ⁇ 1 to ⁇ n is rotated by the lens 30.
  • the arrangement pitch of the condensing positions is made equal to the arrangement pitch of the mirrors 41 1 to 41 n . At this time, it is not necessary to move the lens 30 or the mirror array 40. Therefore, it is possible to easily adjust the arrangement pitch of the condensing positions of the light beams of the respective wavelengths by the lens 30 to a predetermined pitch.
  • the wavelength shift amount of the transmission diffraction grating at the Bragg wavelength is 1/150 of the wavelength shift amount of the reflection diffraction grating.
  • the light incident angle from the input port to the transmissive diffraction grating 21 is set so that the Bragg condition in the transmissive diffraction grating 21 is satisfied at a wavelength ⁇ m near the center of the input light wavelength range ⁇ 1 to ⁇ n . Even if the transmissive diffraction grating 21 is rotated, the output direction of the light with the wavelength ⁇ m from the transmissive diffraction grating 21 hardly changes, and the condensing position of the light with the wavelength ⁇ m by the lens 30 hardly changes. do not do. On the other hand, the arrangement pitch of the condensing positions of the light of each wavelength in the wavelength range ⁇ 1 to ⁇ n by the lens 30 changes.
  • FIG. 2 is a configuration diagram of the optical device according to the second embodiment.
  • FIG. 2 also shows an xyz rectangular coordinate system for convenience of explanation.
  • the optical device 2 includes a light input / output unit 10, a wavelength branching unit 20, a lens 30, and a mirror array 40.
  • the optical device 2 of the second embodiment shown in FIG. 2 includes a wavelength branching unit including two transmission type diffraction gratings 21 and 22. The difference is that 20 is provided.
  • Both or any one of the two transmissive diffraction gratings 21 and 22 are rotatable around a predetermined axis.
  • the rotation axis passes through the position where the light input to the input port reaches and is parallel to the x-axis direction.
  • the wavelength branching unit 20 including the two transmission diffraction gratings 21 and 22 outputs light of each wavelength in a direction corresponding to the wavelength perpendicular to the rotation axis (parallel to the yz plane).
  • the wavelength resolution is improved and the apparatus can be miniaturized.
  • the transmissive diffraction grating 21 located farthest in the optical path from the lens 30 among the transmissive diffraction gratings 21 and 22 is rotatable about a predetermined axis. In this case, it is possible to finely adjust the arrangement pitch of the condensing positions of the light beams having the wavelengths ⁇ 1 to ⁇ n by the lens 30.
  • the transmissive diffraction grating 22 located closest to the lens 30 in the optical path among the transmissive diffraction gratings 21 and 22 is rotatable around a predetermined axis, the wavelengths ⁇ 1 to ⁇ 1 of the lens 30 are changed. It is possible coarse adjustment arrangement pitch of the condensing positions of the light lambda n.
  • FIG. 3 is a configuration diagram of the optical device according to the third embodiment.
  • FIG. 3 also shows an xyz rectangular coordinate system for convenience of explanation.
  • the optical device 3 includes a light input / output unit 10, a transmissive diffraction grating 21, a lens 30, and a photodiode array 50.
  • the optical device 3 of the third embodiment shown in FIG. 3 is different in that it includes a photodiode array 50 instead of the mirror array 40. To do.
  • a photodiode array 50 as an optical element array includes a plurality of photodiodes 51 1 to 51 n as a plurality of optical elements provided at the condensing positions of light of each wavelength collected by the lens 30.
  • the photodiodes 51 1 to 51 n are arranged on a straight line parallel to the yz plane.
  • Photodiode 51 1 is provided in the condensing position of the wavelength lambda 1 of the light
  • the wavelength lambda photodiode 51 m is provided in the condensing position of the light m
  • the light when light of multiple wavelengths ⁇ 1 to ⁇ n multiplexed to the input port of the light input / output unit 10 is input, the light is collimated from the input port and transmitted through the diffraction grating 21. To reach.
  • the light reaching the transmissive diffraction grating 21 is wavelength-branched by the transmissive diffraction grating 21, and the branched light beams having different wavelengths are output from the transmissive diffraction grating 21 in different directions.
  • the light of each wavelength outputted after being wavelength-branched by the transmissive diffraction grating 21 is condensed by the lens 30 at different positions.
  • a photodiode 51 is disposed at the condensing position, and the light condensed on the photodiode 51 by the lens 30 is received by the photodiode 51.
  • An electric signal having a value corresponding to the received light intensity is output from the photodiode 51.
  • the lens 30 if any of the incident angle of light from the input port to the transmissive diffraction grating 21, the grating period of the transmissive diffraction grating 21, and the focal length of the lens 30 is different from the design value, the lens The arrangement pitch of the light condensing positions of the respective wavelengths ⁇ 1 to ⁇ n by 30 is different from the arrangement pitch of the photodiodes 51 1 to 51 n .
  • the transmission diffraction grating 21 is rotated around a rotation axis parallel to the x-axis direction, whereby the light of each wavelength ⁇ 1 to ⁇ n by the lens 30 is rotated.
  • the arrangement pitch of the condensing positions is made equal to the arrangement pitch of the photodiodes 51 1 to 51 n . At this time, it is not necessary to move the lens 30 or the photodiode array 50. Therefore, it is possible to easily adjust the arrangement pitch of the condensing positions of the light beams of the respective wavelengths by the lens 30 to a predetermined pitch.
  • the wavelength branching unit may include at least one rotatable transmission diffraction grating, and may further include a reflection diffraction grating.
  • an optical element array including a plurality of optical elements provided at the condensing position of light of each wavelength condensed by the lens 30 which is a condensing optical system
  • a mirror array in the case of the first and second embodiments
  • various modes can be adopted.
  • a transmissive or reflective liquid crystal element array may be used as the optical element array.
  • the reflective liquid crystal element array includes a liquid crystal element and a mirror provided at the rear as each of the plurality of optical elements, and the mirror has a condensing position.
  • the reflection direction is controlled by the phase pattern formed by the liquid crystal element array, and the optical path is switched by a birefringent crystal installed in the previous stage of the liquid crystal element array according to the polarization state of the light controlled by the liquid crystal element array.
  • the transmissive liquid crystal element array the liquid crystal element has a condensing position, and a lens and an output port are disposed behind the transmissive liquid crystal element array.
  • the light path direction is controlled by the phase pattern formed by the liquid crystal element array, or the optical path is switched by a birefringent crystal placed behind the liquid crystal element array according to the polarization state of the light controlled by the liquid crystal element array.
  • an optical fiber array or an optical waveguide array formed on a substrate may be used as the optical element array.
  • the plurality of optical elements included in the optical element array may have equal pitches or unequal pitches.
  • the diffraction grating may be slightly tilted around an axis parallel to the yz plane. In this case, the demultiplexed light is not completely perpendicular to the predetermined rotation axis.
  • the deviation angle of the light beam from the plane parallel to the yz plane is between the both wavelengths of the C band band (wavelengths 1530 to 1570 nm). Because it is about 4 minutes, there is virtually no problem.
  • the diffraction grating is rotated around a predetermined axis passing through the position where the light input to the input port reaches, the change of the demultiplexing position is small, but the rotation angle at the time of correcting the pitch deviation is small.
  • the position of the shaft may not be the above position.
  • the optical device of the present invention can be used as an optical device such as an optical multiplexer, an optical demultiplexer, and a wavelength selective switch.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 光学装置1は、光入出力部10、透過型回折格子21、レンズ30およびミラーアレイ40を備える。透過型回折格子21は、x軸方向に延在する格子が一定周期で形成されたものであり、入力ポートに入力された光を波長分岐して出力する。透過型回折格子21は、所定軸の周りに回動自在である。透過型回折格子21は、回動軸に垂直で波長に応じた方向に各波長の光を出力する。レンズ30は、透過型回折格子21により波長分岐されて出力された各波長の光を互いに異なる位置に集光する。

Description

光学装置
 本発明は、光学装置に関するものである。
 光合波器,光分波器および波長選択スイッチ等として用いられる光学装置が特許文献1に開示されている。この文献に記載された光学装置では、入力ポートに入力された光は反射型回折格子により波長分岐され、この反射型回折格子から波長に応じた方向に各波長の光が出力され、この反射型回折格子から出力された各波長の光が集光光学系により互いに異なる位置に集光される。集光光学系による各波長の光の集光位置には反射方向が可変の複数のミラーが設けられており、該ミラーに到達した光は、反射されて集光光学系および反射型回折格子を経て何れかの出力ポートから出力される。
 このような光学装置に入力される光は、例えばITUグリッドの各波長の光が多重化されたものである。ITUグリッドの各波長、集光光学系の焦点距離、反射型回折格子の格子周期および反射型回折格子への光の入射角などに応じて、複数のミラーの配列ピッチが設計される。各ミラーにおける光の反射方向が調整されることにより、複数の出力ポートのうちの何れの出力ポートから何れの波長の光が出力されるかが設定される。
 このような光学装置では、反射型回折格子への光の入射角、反射型回折格子の格子周期および集光光学系の焦点距離のうちの何れかが設計値と異なると、集光光学系による各波長の光の集光位置の配列ピッチが、複数のミラーの配列ピッチと異なることになる。その結果、光学装置の透過特性は劣化する。特許文献1には、このような問題を解消することを意図した発明が開示されている。
 特許文献1に開示された光学装置は、集光光学系として焦点距離が異なる複数枚のレンズを有し、そのうちの少なくとも1枚のレンズを光軸方向に平行移動可能とする。このレンズの位置が調整されることにより、集光光学系による各波長の光の集光位置の配列ピッチが、複数のミラーの配列ピッチと等しくなり得て、その結果、光学装置の透過特性の劣化が抑制され得るとされている。
特開2007-101670号公報
 特許文献1に開示された光学装置では、例えば、集光光学系が2枚のレンズを有し、これら2枚のレンズの間隔が20mmであり、合成焦点距離が100mmであり、ミラーアレイ側のレンズの焦点距離が反射型回折格子側のレンズの焦点距離の10倍であり、ミラーアレイ側のレンズが光軸方向に平行移動可能である。このとき、集光光学系による各波長の光の集光位置の配列ピッチに関し誤差1%分を補正するには、ミラーアレイ側のレンズを約12mm移動させればよい。
 しかしながら、このレンズの12mmの移動に伴い、集光位置がミラーアレイから光軸方向に約2mmずれて、その結果、ピンボケに因るロスが発生する。このロスを無くすには、レンズの移動と同時にミラーアレイも移動させるか、合成焦点距離が変化しても集光位置が変わらないような複雑な集光光学系を採用する必要がある。何れにしても、特許文献1に開示された光学装置は複雑な構成となる。
 本発明は、上記問題点を解消する為になされたものであり、集光光学系による各波長の光の集光位置の配列ピッチを所定ピッチに容易に調整することできる光学装置を提供することを目的とする。
 本発明の光学装置は、(1)所定軸の周りに回動自在な透過型回折格子を含み、入力ポートに入力された光を波長分岐して、所定軸に垂直で波長に応じた方向に各波長の光を出力する波長分岐部と、(2)波長分岐部により波長分岐されて出力された各波長の光を互いに異なる位置に集光する集光光学系と、(3)集光光学系により集光される各波長の光の集光位置に設けられた複数の光学素子を含む光学素子アレイと、を備える。
 本発明の光学装置は、波長分岐部が複数個の透過型回折格子を含み、これら複数個の透過型回折格子のうち集光光学系から光路的に最も遠い位置にある透過型回折格子が所定軸の周りに回動自在であるようにしてもよい。また、本発明の光学装置は、波長分岐部が複数個の透過型回折格子を含み、これら複数個の透過型回折格子のうち集光光学系から光路的に最も近い位置にある透過型回折格子が所定軸の周りに回動自在であるようにしてもよい。本発明の光学装置において、所定軸は、入力ポートに入力された光が到達する位置を通るようにしてもよい。光学素子アレイは、各光学素子に到達した光を透過または反射させて出力ポートから出力させてもよい。光学素子アレイは、光の反射方向が可変であるミラーを光学素子として含み、該ミラーに到達した光を反射させて集光光学系および波長分岐部を経て出力ポートから出力させるようにしてもよい。
 本発明の光学装置は、集光光学系による各波長の光の集光位置の配列ピッチを所定ピッチに容易に調整することができる。
第1実施形態の光学装置の構成図である。 第2実施形態の光学装置の構成図である。 第3実施形態の光学装置の構成図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、第1実施形態の光学装置の構成図である。図1には、説明の便宜のためにxyz直交座標系が示されている。光学装置1は、光入出力部10、透過型回折格子21、レンズ30およびミラーアレイ40を備える。
 光入出力部10は、x軸方向に配列された複数のポートを含む。複数のポートそれぞれは、光を入力する入力ポートとして用いられる場合があり、また、光を出力する出力ポートとして用いられる場合がある。複数のポートそれぞれは、対応する光ファイバ12と接続され、また、対応するコリメートレンズ(collimated lens)を有している。入力ポートは、光ファイバ12から伝送されてきた光をコリメートレンズによりコリメートして透過型回折格子21へ出力する。出力ポートは、透過型回折格子21から到達した光を集光して光ファイバ12の端面に入射させて、その光を光ファイバ12により伝送させる。光入出力部10に含まれる複数のポートそれぞれと透過型回折格子21との間の光路は、xz平面に平行な共通の平面上にあり、z軸方向に平行である。
 波長分岐部としての透過型回折格子21は、x軸方向に延在する格子が一定周期で形成されたものであり、入力ポートに入力された光を波長分岐して出力する。透過型回折格子21は、所定軸の周りに回動自在である。この回動軸は、x軸方向に平行であるが、入力ポートに入力された光が到達する位置を通るのが好適である。透過型回折格子21は、回動軸に垂直(yz平面に平行)で波長に応じた方向に各波長の光を出力する。集光光学系としてのレンズ30は、透過型回折格子21により波長分岐されて出力された各波長の光を、互いに異なる位置に集光する。
 光学素子アレイとしてのミラーアレイ40は、レンズ30により集光される各波長の光の集光位置に設けられた複数の光学素子として複数のミラー41~41を含む。ミラー41~41は、yz平面に平行な直線上に配列されている。波長λの光の集光位置にミラー41が設けられ、波長λの光の集光位置にミラー41が設けられ、波長λの光の集光位置にミラー41が設けられている。ミラー41~41それぞれは、光の反射方向が可変である。ミラー41~41それぞれは、MEMS(Micro Electro Mechanical Systems)技術により作成されたものであるのが好適である。ミラー41~41それぞれは、DMD(Digital Micromirror Device)であってもよいし、DLP(Digital Light Processing)であってもよい。
 このような光学装置1において、光入出力部10の入力ポートに多重化された多波長λ~λの光が入力されると、その光は入力ポートからコリメートされて透過型回折格子21に到達する。透過型回折格子21に到達した光は透過型回折格子21により波長分岐されて、その分岐された各波長の光は透過型回折格子21から互いに異なる方向へ出力される。透過型回折格子21により波長分岐されて出力された各波長の光は、レンズ30により互いに異なる位置に集光される。その集光位置にミラー41が配置されており、レンズ30によりミラー41に集光された光は、そのミラー41により反射される。ミラー41により反射された光は、レンズ30および透過型回折格子21を経て、光入出力部10の何れかの出力ポートから出力される。
 ミラー41における光の反射方向が可変であるので、複数の出力ポートのうちの何れの出力ポートから何れの波長の光が出力されるか設定され得る。或る波長の光について出力ポートを変更するには、その波長の光がレンズ30により集光される位置にあるレンズ41の反射面の方位を変更すればよい。レンズ41の反射面の方位を変更する際に、1軸のみで変更する場合には、その変更の過程で途中の出力ポートから光が出力される場合があるが、2軸で変更する場合には、その変更の過程で途中の出力ポートから光が出力されることはないので好ましい。
 このような光学装置1において、入力ポートから透過型回折格子21への光の入射角、透過型回折格子21の格子周期およびレンズ30の焦点距離のうちの何れかが設計値と異なると、レンズ30による各波長λ~λの光の集光位置の配列ピッチは、ミラー41~41の配列ピッチと異なることになる。この問題を解消するため、光学装置1においては、x軸方向に平行な回動軸の周りに透過型回折格子21を回動させることで、レンズ30による各波長λ~λの光の集光位置の配列ピッチをミラー41~41の配列ピッチと等しくする。この際、レンズ30やミラーアレイ40を移動させる必要はない。したがって、レンズ30による各波長の光の集光位置の配列ピッチを所定ピッチに容易に調整することができる。
 例えば、格子本数が1200本/mmであるとすると、ブラッグ波長(Bragg wavelength)での透過型回折格子の波長シフト量は、反射型回折格子の波長シフト量の1/150である。0.3度だけ透過型回折格子21を回動することで、分散や焦点距離の誤差1%分の補正をすることができ、その際の波長シフトは2.6GHzである。したがって、レンズ30やミラーアレイ40を移動させる必要はない。ミラーアレイ実装時に、ピッチのずれ量を測定し、回折格子回転に伴う波長シフト量の分、ミラーアレイ位置を予めずらしておくと、さらに好適である。
 入力光波長範囲λ~λの中心付近の波長λで透過型回折格子21でのブラッグ条件が満たされるように、入力ポートから透過型回折格子21への光入射角が設定されていると、透過型回折格子21が回動されても、透過型回折格子21からの波長λの光の出力方向は殆ど変化せず、レンズ30による波長λの光の集光位置は殆ど変化しない。その一方で、レンズ30による波長範囲λ~λの各波長の光の集光位置の配列ピッチは変化する。
 図2は、第2実施形態の光学装置の構成図である。図2にも、説明の便宜のためにxyz直交座標系が示されている。光学装置2は、光入出力部10、波長分岐部20、レンズ30およびミラーアレイ40を備える。図1に示された第1実施形態の光学装置1の構成と比較すると、図2に示される第2実施形態の光学装置2は、2個の透過型回折格子21,22を含む波長分岐部20が設けられている点で相違する。
 2個の透過型回折格子21,22の双方または何れか一方は、所定軸の周りに回動自在である。この回動軸は、入力ポートに入力された光が到達する位置を通り、x軸方向に平行である。2個の透過型回折格子21,22を含む波長分岐部20は、回動軸に垂直(yz平面に平行)で波長に応じた方向に各波長の光を出力する。1個の透過型回折格子を用いる場合と比較すると、2個の透過型回折格子21,22を用いる場合には、波長分解能が向上し、装置の小型化が可能となる。
 透過型回折格子21,22のうちレンズ30から光路的に最も遠い位置にある透過型回折格子21が所定軸の周りに回動自在であるのが好適である。この場合には、レンズ30による各波長λ~λの光の集光位置の配列ピッチの微調整が可能である。一方、透過型回折格子21,22のうちレンズ30から光路的に最も近い位置にある透過型回折格子22が所定軸の周りに回動自在である場合には、レンズ30による各波長λ~λの光の集光位置の配列ピッチの粗調整が可能である。
 図3は、第3実施形態の光学装置の構成図である。図3にも、説明の便宜のためにxyz直交座標系が示されている。光学装置3は、光入出力部10、透過型回折格子21、レンズ30およびフォトダイオードアレイ50を備える。図1に示された第1実施形態の光学装置1の構成と比較すると、図3に示される第3実施形態の光学装置3は、ミラーアレイ40に替えてフォトダイオードアレイ50を備える点で相違する。
 光学素子アレイとしてのフォトダイオードアレイ50は、レンズ30により集光される各波長の光の集光位置に設けられた複数の光学素子として複数のフォトダイオード51~51を含む。フォトダイオード51~51は、yz平面に平行な直線上に配列されている。波長λの光の集光位置にフォトダイオード51が設けられ、波長λの光の集光位置にフォトダイオード51が設けられ、波長λの光の集光位置にフォトダイオード51が設けられている。
 このような光学装置3において、光入出力部10の入力ポートに多重化された多波長λ~λの光が入力されると、その光は入力ポートからコリメートされて透過型回折格子21に到達する。透過型回折格子21に到達した光は透過型回折格子21により波長分岐されて、その分岐された各波長の光は透過型回折格子21から互いに異なる方向へ出力される。透過型回折格子21により波長分岐されて出力された各波長の光は、レンズ30により互いに異なる位置に集光される。その集光位置にフォトダイオード51が配置されており、レンズ30によりフォトダイオード51に集光された光は、そのフォトダイオード51により受光される。その受光強度に応じた値の電気信号がフォトダイオード51から出力される。
 このような光学装置3において、入力ポートから透過型回折格子21への光の入射角、透過型回折格子21の格子周期およびレンズ30の焦点距離のうちの何れかが設計値と異なると、レンズ30による各波長λ~λの光の集光位置の配列ピッチは、フォトダイオード51~51の配列ピッチと異なることになる。この問題を解消するため、光学装置3においては、x軸方向に平行な回動軸の周りに透過型回折格子21を回動させることで、レンズ30による各波長λ~λの光の集光位置の配列ピッチを、フォトダイオード51~51の配列ピッチと等しくする。この際、レンズ30やフォトダイオードアレイ50を移動させる必要はない。したがって、レンズ30による各波長の光の集光位置の配列ピッチを所定ピッチに容易に調整することができる。
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、波長分岐部は、少なくとも1個の回動自在な透過型回折格子を含み、これに加えて反射型回折格子を含んでいてもよい。
 集光光学系であるレンズ30により集光される各波長の光の集光位置に設けられた複数の光学素子を含む光学素子アレイとしては、第1および第2の実施形態の場合のミラーアレイ40や、第3実施形態の場合のフォトダイオードアレイ50の他に、様々な態様のものが採用され得る。
 例えば、光学素子アレイとして透過型または反射型の液晶素子アレイが用いられてもよい。反射型の液晶素子アレイは、複数の光学素子それぞれとして液晶素子および後方に設けられたミラーを含み、そのミラーに集光位置がある。液晶素子アレイによって形成された位相パターンにより反射方向を制御したり、液晶素子アレイにより制御された光の偏光状態によって液晶素子アレイの前段に設置された複屈折結晶により光路を切り替える。透過型の液晶素子アレイは、その液晶素子に集光位置があり、後方にレンズおよび出力ポートが配置される。液晶素子アレイによって形成された位相パターンにより光線方向を制御したり、液晶素子アレイにより制御された光の偏光状態によって液晶素子アレイの後方に設置された複屈折結晶により光路を切り替える。
 また、例えば、光学素子アレイとして、光ファイバアレイや、基板上に形成された光導波路アレイが用いられてもよい。光学素子アレイに含まれる複数の光学素子は、等ピッチであってもよいし、不等ピッチであってもよい。入力ポートへの反射戻り光防止のため、回折格子を、yz面に平行な軸周りに僅かに傾けても良い。この場合、分波した光は、所定の回動軸と完全に垂直ではない。しかし、例えば、格子本数が1200本/mmの回折格子を角度1度傾けた場合、yz平面と平行な面からの光線のずれ角は、Cバンド帯(波長1530~1570nm)の両端波長間でも4分ほどなので、実質的に問題ない。回折格子は、入力ポートに入力された光が到達する位置を通る所定軸の周りに回転させると、分波位置の変化が小さく好適であるが、ピッチのずれ補正時の回転角は小さいので、軸の位置は上記の位置でなくても良い。
 本発明の光学装置は、例えば、光合波器,光分波器および波長選択スイッチ等の光学装置として利用することができる。
 1~3…光学装置、10…光入出力部、20…波長分岐部、21,22…透過型回折格子、30…レンズ、40…ミラーアレイ、41…ミラー、50…フォトダイオードアレイ、51…フォトダイオード。

Claims (6)

  1.  所定軸の周りに回動自在な透過型回折格子を含み、入力ポートに入力された光を波長分岐して、前記所定軸に垂直で波長に応じた方向に各波長の光を出力する波長分岐部と、
     前記波長分岐部により波長分岐されて出力された各波長の光を互いに異なる位置に集光する集光光学系と、
     前記集光光学系により集光される各波長の光の集光位置に設けられた複数の光学素子を含む光学素子アレイと、
     を備える光学装置。
  2.  前記波長分岐部が複数個の透過型回折格子を含み、前記複数個の透過型回折格子のうち前記集光光学系から光路的に最も遠い位置にある透過型回折格子が前記所定軸の周りに回動自在である、請求項1に記載の光学装置。
  3.  前記波長分岐部が複数個の透過型回折格子を含み、前記複数個の透過型回折格子のうち前記集光光学系から光路的に最も近い位置にある透過型回折格子が前記所定軸の周りに回動自在である、請求項1又は2に記載の光学装置。
  4.  前記所定軸は、入力ポートに入力された光が到達する位置を通る、請求項1~3の何れか1項に記載の光学装置。
  5.  前記光学素子アレイが、各光学素子に到達した光を透過または反射させて出力ポートから出力させる、請求項1~4の何れか1項に記載の光学装置。
  6.  前記光学素子アレイが、光の反射方向が可変であるミラーを前記光学素子として含み、該ミラーに到達した光を反射させて前記集光光学系および前記波長分岐部を経て出力ポートから出力させる、請求項5に記載の光学装置。
PCT/JP2011/075100 2010-11-05 2011-10-31 光学装置 WO2012060339A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/883,537 US20130235459A1 (en) 2010-11-05 2011-10-31 Optical device
CN201180053398.XA CN103201667B (zh) 2010-11-05 2011-10-31 光学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-248254 2010-11-05
JP2010248254A JP5965099B2 (ja) 2010-11-05 2010-11-05 光学装置およびその調整方法

Publications (1)

Publication Number Publication Date
WO2012060339A1 true WO2012060339A1 (ja) 2012-05-10

Family

ID=46024453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075100 WO2012060339A1 (ja) 2010-11-05 2011-10-31 光学装置

Country Status (4)

Country Link
US (1) US20130235459A1 (ja)
JP (1) JP5965099B2 (ja)
CN (1) CN103201667B (ja)
WO (1) WO2012060339A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945400B2 (ja) * 2011-11-18 2016-07-05 オリンパス株式会社 検出光学系および走査型顕微鏡
JP6045354B2 (ja) * 2013-01-11 2016-12-14 アルパイン株式会社 案内システム、サーバ、端末装置、案内方法およびプログラム
JP6349980B2 (ja) * 2014-06-05 2018-07-04 住友電気工業株式会社 波長選択スイッチ
US9500827B2 (en) * 2014-06-27 2016-11-22 Intel Corporation Apparatus, method and system for spectrometry with a displaceable waveguide structure
KR102045476B1 (ko) * 2018-06-28 2019-11-15 옵티시스 주식회사 광 커넥터
CN110553730B (zh) 2019-09-09 2021-10-19 京东方科技集团股份有限公司 光谱仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276487A (ja) * 2005-03-29 2006-10-12 Fujitsu Ltd 光スイッチ
JP2008164630A (ja) * 2001-09-20 2008-07-17 Capella Photonics Inc 波長切り換え及びスペクトル監視用途のための自由空間光学系

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610850B (zh) * 2001-09-20 2010-04-28 卡佩拉光子学公司 用于波长交换和频谱监视应用的自由空间光***
WO2010077998A1 (en) * 2008-12-16 2010-07-08 Silicon Light Machines Corporation Method of fabricating an integrated device
KR20100070217A (ko) * 2008-12-17 2010-06-25 한국전자통신연구원 가변형 회절 격자 장치
CN101819323B (zh) * 2010-05-17 2011-07-20 中国科学院长春光学精密机械与物理研究所 一种调整洛艾镜装置中洛艾镜与光栅基底垂直度的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164630A (ja) * 2001-09-20 2008-07-17 Capella Photonics Inc 波長切り換え及びスペクトル監視用途のための自由空間光学系
JP2006276487A (ja) * 2005-03-29 2006-10-12 Fujitsu Ltd 光スイッチ

Also Published As

Publication number Publication date
JP5965099B2 (ja) 2016-08-03
CN103201667B (zh) 2016-01-13
CN103201667A (zh) 2013-07-10
US20130235459A1 (en) 2013-09-12
JP2012098651A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
USRE47906E1 (en) Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
JP6068478B2 (ja) 光信号処理装置
US7126740B2 (en) Multifunctional optical device having a spatial light modulator with an array of micromirrors
EP1798534B1 (en) Multiple-wavelength spectroscopic apparatus
JP5184637B2 (ja) 波長選択スイッチ
WO2012060339A1 (ja) 光学装置
US9326050B2 (en) Wavelength selective switch and method of manufacturing same
WO2012056987A1 (ja) 光操作装置
EP2605051B1 (en) Optical processing device employing a digital micromirror device (dmd) and having reduced wavelength dependent loss
JP4967847B2 (ja) 光スイッチおよびmemsパッケージ
JP2011179979A (ja) ダブルパスモノクロメータ、波長選択光スイッチ、および光チャンネルモニタ
JP5651904B2 (ja) N×n波長選択スイッチ
JP2008249751A (ja) ミラー装置および光装置
JP5759430B2 (ja) 波長選択スイッチ
JP2004013113A (ja) 光信号処理器
JP2010134027A (ja) 波長選択スイッチ
JP2006039304A (ja) 光スイッチ
WO2012053449A1 (ja) 波長選択スイッチおよびその組立方法
JP5899998B2 (ja) 波長選択光スイッチ
JP2005266093A (ja) 分散補償器
JP3951881B2 (ja) 光部品
JP4192767B2 (ja) 光信号処理器製造方法
WO2003065097A2 (en) Multifunctional optical device having a spatial light modulator with an array of micromirrors
JP2006133298A (ja) 波長選択スイッチ
JP2012002717A (ja) ダブルパスモノクロメータとこれを備えた波長選択デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13883537

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11837989

Country of ref document: EP

Kind code of ref document: A1