WO2012060283A1 - 高分子化合物及びそれを用いた有機光電変換素子 - Google Patents

高分子化合物及びそれを用いた有機光電変換素子 Download PDF

Info

Publication number
WO2012060283A1
WO2012060283A1 PCT/JP2011/074888 JP2011074888W WO2012060283A1 WO 2012060283 A1 WO2012060283 A1 WO 2012060283A1 JP 2011074888 W JP2011074888 W JP 2011074888W WO 2012060283 A1 WO2012060283 A1 WO 2012060283A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
formula
fluorine
compound
Prior art date
Application number
PCT/JP2011/074888
Other languages
English (en)
French (fr)
Inventor
上谷 保則
吉村 研
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012060283A1 publication Critical patent/WO2012060283A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a polymer compound and an organic photoelectric conversion element using the same.
  • Organic semiconductor materials are expected to be applied to organic photoelectric conversion elements such as organic solar cells and optical sensors.
  • the functional layer can be manufactured by an inexpensive coating method.
  • organic semiconductor materials that are various polymer compounds for the organic photoelectric conversion element has been studied.
  • an organic semiconductor material for example, 9,9-dioctylfluorene-2,7-diboronic acid ester and 5,5 ′′ ′′-dibromo-3 ′′, 4 ′′ -dihexyl- ⁇ -pentathiophene are polymerized.
  • a polymer compound has been proposed (WO2005 / 092947). However, the polymer compound does not sufficiently absorb light having a long wavelength.
  • the present invention provides a polymer compound having a large absorbance of light having a long wavelength. That is, the present invention provides a polymer compound containing a repeating unit represented by the following formula (1).
  • the present invention also includes a polymer compound having a pair of electrodes and a functional layer provided between the electrodes, wherein the functional layer includes an electron-accepting compound and a repeating unit represented by the formula (1):
  • the organic photoelectric conversion element containing is provided.
  • FIG. 1 is a diagram showing an absorption spectrum of a polymer compound 1 described later.
  • FIG. 2 is a graph showing an absorption spectrum of polymer compound 2 described later.
  • the polymer compound of the present invention includes a repeating unit represented by the formula (1).
  • Q and R are the same or different and are a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with fluorine, an alkoxy group which may be substituted with fluorine, an aryl group which may be substituted, substituted Optionally substituted heteroaryl group or formula (2)
  • m1 represents an integer of 0 to 6
  • m2 represents an integer of 0 to 6.
  • R ′ represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted, or a substituted group.
  • a hydrogen atom in the formula represented by (CH 2 ) m1 or (CH 2 ) m2 may be fluorine-substituted).
  • Two Qs may be the same or different.
  • the 12 Rs may be the same or different.
  • Examples of the alkyl group represented by Q or R include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, and octyl group.
  • a hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • Examples of the alkyl group in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • Examples of the alkoxy group represented by Q or R include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyloxy group. Cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, and 3,7-dimethyloctyloxy group.
  • a hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • alkoxy group in which a hydrogen atom is substituted with a fluorine atom examples include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • Q or R is an alkyl group or an alkoxy group
  • the alkyl group or alkoxy group preferably has 1 to 20 carbon atoms from the viewpoint of solubility of the polymer compound in a solvent, and preferably 2 to 18 More preferably, it is more preferably 3-12.
  • the aryl group represented by Q or R has a structure in which a group containing a benzene ring, a group containing a condensed ring having aromaticity, two or more benzene rings, or a condensed ring having aromaticity are directly bonded.
  • the number of carbon atoms of the aryl group is preferably 6 to 60, and more preferably 6 to 30.
  • a phenyl group, 1-naphthyl group, and 2-naphthyl group are mentioned, for example.
  • the aryl group may have a substituent.
  • Examples of the substituent that the aryl group may have include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • Examples of the heteroaryl group represented by Q or R include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • Examples of the substituent that the heteroaryl group may have include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • m1 represents an integer of 0 to 6
  • m2 represents an integer of 0 to 6.
  • R ′ represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted or a heteroaryl group which may be substituted.
  • the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R ′ are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R.
  • the hydrogen atom in the formula represented by (CH 2 ) m1 or (CH 2 ) m2 may be substituted with fluorine. That is, CH 2 may be replaced with a group represented by CHF or CF 2 .
  • Examples of the repeating unit represented by the formula (1) include the following repeating units.
  • the amount of the repeating unit represented by the formula (1) contained in the polymer compound of the present invention is the polymer compound from the viewpoint of increasing the photoelectric conversion efficiency of the organic photoelectric conversion device having a functional layer containing the polymer compound. Is preferably from 20 to 100 mol%, more preferably from 30 to 100 mol%, based on the total amount of repeating units contained in.
  • the polystyrene equivalent weight average molecular weight of the polymer compound of the present invention is preferably 10 3 to 10 8 , more preferably 10 3 to 10 7 , and still more preferably 10 3 to 10 6 .
  • the polymer compound of the present invention is preferably a conjugated polymer compound.
  • the conjugated polymer compound means a compound in which atoms constituting the main chain of the polymer compound are substantially conjugated.
  • the polymer compound of the present invention may have a repeating unit other than the repeating unit represented by the formula (1).
  • the repeating unit other than the repeating unit represented by the formula (1) include an optionally substituted arylene group and an optionally substituted heteroarylene group.
  • the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group.
  • the substituent that the arylene group may have include a halogen atom, an alkyl group, and an alkoxy group.
  • heteroarylene group examples include a flangyl group, a pyrrole diyl group, a pyridinediyl group, and the like.
  • substituent that the heteroarylene group may have include a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • the polymer compound of the present invention may be produced by any method. For example, after synthesizing a monomer having a functional group suitable for the polymerization reaction to be used, the monomer is dissolved in an organic solvent, if necessary, , And can be synthesized by polymerization using a known aryl coupling reaction using a catalyst, a ligand and the like.
  • the synthesis of the monomer can be performed with reference to, for example, the methods disclosed in US2008 / 0145571, JP-A-2006-335933, and the like.
  • Examples of the polymerization by the aryl coupling reaction include polymerization by Stille coupling reaction, polymerization by Suzuki coupling reaction, polymerization by Yamamoto coupling reaction, and polymerization by Kumada-Tamao coupling reaction.
  • palladium complexes such as palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, bis (triphenylphosphine) palladium dichloride as catalysts.
  • ligands such as triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine
  • a polymerization reaction of a monomer having a group The details of the polymerization by the Stille coupling reaction are described in, for example, Angewante Chemie International Edition, 2005, Vol. 44, p. 4442-4489.
  • Polymerization by Suzuki coupling reaction uses a palladium complex or nickel complex as a catalyst in the presence of an inorganic base or an organic base, and a ligand is added as necessary to have a boronic acid residue or a boric acid ester residue.
  • a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom, or a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
  • a monomer having a halogen atom such as a bromine atom, an iodine atom or a chlorine atom
  • a monomer having a sulfonate group such as a trifluoromethanesulfonate group or a p-toluenesulfonate group.
  • the inorganic base include sodium carbonate, potassium carbonate, cesium carbonate, tripotassium phosphate, and potassium fluoride.
  • Examples of the organic base include tetrabutylammonium fluoride, tetrabutylammonium chloride, tetrabutylammonium bromide, and tetraethylammonium hydroxide.
  • Examples of the palladium complex include palladium [tetrakis (triphenylphosphine)], [tris (dibenzylideneacetone)] dipalladium, palladium acetate, and bis (triphenylphosphine) palladium dichloride.
  • Examples of the nickel complex include bis (cyclooctadiene) nickel.
  • Examples of the ligand include triphenylphosphine, tri (2-methylphenyl) phosphine, tri (2-methoxyphenyl) phosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, and tri (tert-butyl) phosphine. It is done. Details of the polymerization by the Suzuki coupling reaction are described in, for example, Journal of Polymer Science: Part A: Polymer Chemistry (Part A: Polymer Chemistry), 2001, Vol. 39, p. 1533-1556.
  • Polymerization by Yamamoto coupling reaction uses a catalyst and a reducing agent to react monomers having halogen atoms, monomers having sulfonate groups such as trifluoromethanesulfonate groups, or monomers having halogen atoms and monomers having sulfonate groups.
  • Catalysts include nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel.
  • a catalyst comprising a nickel complex other than a nickel zero-valent complex such as dichloride and a ligand such as triphenylphosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, tri (tert-butyl) phosphine, if necessary.
  • the reducing agent include zinc and magnesium.
  • Polymerization by the Yamamoto coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system. Details of the polymerization by Yamamoto coupling are described in, for example, Macromolecules, 1992, Vol. 25, p. 1214-1223.
  • Polymerization by Kumada-Tamao coupling reaction uses a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel dichloride, a compound having a magnesium halide group and a halogen atom.
  • a dehydrated solvent may be used for the reaction, the reaction may be performed in an inert atmosphere, or a dehydrating agent may be added to the reaction system.
  • a solvent is usually used. The solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like.
  • organic solvents such as tetrahydrofuran, toluene, 1,4-dioxane, 1,2-dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and a mixed solvent obtained by mixing two or more of these solvents.
  • examples thereof include a solvent, a solvent having two phases of an organic solvent phase and an aqueous phase.
  • the solvent used in the Stille coupling reaction is preferably an organic solvent such as tetrahydrofuran, toluene, N, N-dimethylformamide, a mixed solvent obtained by mixing two or more of these solvents, or a solvent having two phases of an organic solvent phase and an aqueous phase.
  • the solvent used for the Stille coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • the solvent used for the Suzuki coupling reaction is tetrahydrofuran, toluene, 1,4-dioxane, 1,2-dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, a mixture of two or more of these solvents.
  • An organic solvent such as a solvent and a solvent having two phases of an organic solvent phase and an aqueous phase are preferred.
  • the solvent used for the Suzuki coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • the solvent used for the Yamamoto coupling reaction is tetrahydrofuran, toluene, 1,4-dioxane, 1,2-dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and a mixture of two or more of these solvents.
  • Organic solvents such as solvents are preferred.
  • the solvent used for the Yamamoto coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • a method of polymerizing by a Stille coupling reaction a method of polymerizing by a Suzuki coupling reaction, a method of polymerizing by a Yamamoto coupling reaction are preferable, and a Stille coupling reaction More preferred are a method of polymerizing, a method of polymerizing by a Suzuki coupling reaction, and a method of polymerizing by a Yamamoto coupling reaction using a nickel zero-valent complex.
  • the lower limit of the reaction temperature of the aryl coupling reaction is preferably ⁇ 100 ° C., more preferably ⁇ 20 ° C., and particularly preferably 0 ° C. from the viewpoint of reactivity.
  • the upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and particularly preferably 120 ° C. from the viewpoint of the stability of the monomer and the polymer compound.
  • a known method can be used as a method for removing the polymer compound of the present invention from the reaction solution after completion of the reaction.
  • the polymer compound of the present invention can be obtained by adding a reaction solution to a lower alcohol such as methanol, collecting the deposited precipitate, and drying. When the purity of the obtained polymer compound is low, it can be purified by recrystallization, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
  • the polymer compound of the present invention When the polymer compound of the present invention is used for the production of an organic photoelectric conversion element, if a polymerization active group remains at the terminal of the polymer compound, characteristics such as durability of the organic photoelectric conversion element may be deteriorated. It is preferable to protect the terminal of the polymer compound with a stable group.
  • the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group.
  • the arylamino group include a phenylamino group and a diphenylamino group.
  • the monovalent heterocyclic group examples include thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, and isoquinolyl group.
  • the polymerization active group remaining at the terminal of the polymer compound may be replaced with a hydrogen atom instead of a stable group.
  • the stable group for protecting the terminal is a group imparting electron donating properties such as an arylamino group.
  • the polymer compound of the present invention is produced using Suzuki coupling, for example, the polymer compound is produced by polymerizing the compound represented by the formula (3) and the compound represented by the formula (4). be able to.
  • R represents the same meaning as described above. Eight Rs may be the same or different.
  • T represents a boric acid ester residue. Two Ts may be the same or different. Good.
  • Q and R represent the same meaning as described above. Two Qs may be the same or different.
  • Z represents a bromine atom.
  • the boric acid ester residue represented by T means a group obtained by removing a hydroxyl group from a boric acid diester, and specific examples thereof include a group represented by the following formula.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • a compound represented by Formula (3) the following compound is mentioned, for example.
  • a compound represented by Formula (4) the following compound is mentioned, for example.
  • the organic photoelectric conversion device of the present invention includes a pair of electrodes, a functional layer between the electrodes, and the functional layer containing a polymer compound containing an electron-accepting compound and a repeating unit represented by the formula (1) To do.
  • an electron-accepting compound fullerene and a fullerene derivative are preferable.
  • the organic photoelectric conversion element 1.
  • An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by the formula (1); 2.
  • An organic photoelectric conversion element having a pair of electrodes and a functional layer between the electrodes, the functional layer containing an electron-accepting compound and a polymer compound containing a repeating unit represented by formula (1)
  • An organic photoelectric conversion element in which the electron-accepting compound is a fullerene derivative; Is mentioned.
  • at least one of the pair of electrodes is transparent or translucent. Hereinafter, this case will be described as an example. 1 above.
  • the amount of the electron accepting compound in the functional layer containing the electron accepting compound and the polymer compound is 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. It is preferably 20 to 500 parts by weight. In addition, 2.
  • the amount of the fullerene derivative in the functional layer containing the fullerene derivative and the polymer compound is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound. More preferably, it is ⁇ 500 parts by weight. From the viewpoint of increasing the photoelectric conversion efficiency, the amount of the fullerene derivative in the functional layer is preferably 20 to 400 parts by weight, and preferably 40 to 250 parts by weight with respect to 100 parts by weight of the polymer compound.
  • the amount of the fullerene derivative in the functional layer is preferably 20 to 250 parts by weight, and preferably 40 to 120 parts by weight with respect to 100 parts by weight of the polymer compound. More preferred.
  • the electron-accepting compound and the polymer compound have an absorption region that can efficiently absorb a spectrum of desired incident light, In order that the heterojunction interface between the electron-accepting compound and the polymer compound efficiently separates excitons, the heterojunction interface is often included in the functional layer, and the charge generated by the heterojunction interface can be quickly absorbed.
  • the organic photoelectric conversion element it is important that the electron-accepting compound and the polymer compound have a charge transporting property for transporting to the electrode. From such a viewpoint, as the organic photoelectric conversion element, the above 1. , 2. From the standpoint of including a large number of heterojunction interfaces, the organic photoelectric conversion element is preferable. The organic photoelectric conversion element is more preferable. Further, in the organic photoelectric conversion element of the present invention, an additional layer may be provided between at least one electrode and the functional layer in the element. Examples of the additional layer include a charge transport layer that transports holes or electrons, and a buffer layer.
  • the organic photoelectric conversion element of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when an electrode is formed and an organic layer is formed.
  • the material for the substrate examples include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate
  • the opposite electrode is preferably transparent or translucent.
  • a material for the pair of electrodes a metal, a conductive polymer, or the like can be used.
  • the material of one of the pair of electrodes is preferably a material having a low work function.
  • Examples of the material include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like, And an alloy of two or more of these metals, or one or more of those metals and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin And alloys with one or more metals, graphite, and graphite intercalation compounds.
  • the alloy examples include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the material of the transparent or translucent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, a film manufactured using a conductive material made of indium oxide, zinc oxide, tin oxide, and a composite thereof such as indium tin oxide (ITO), indium zinc oxide, NESA, NESA , Gold, platinum, silver, and copper, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • organic transparent conductive films such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material.
  • a material used for the charge transport layer as the additional layer that is, the hole transport layer or the electron transport layer
  • an electron donating compound and an electron accepting compound described later can be used, respectively.
  • As a material used for the buffer layer as an additional layer halides or oxides of alkali metals or alkaline earth metals such as lithium fluoride can be used.
  • fine particles of an inorganic semiconductor such as titanium oxide can be used.
  • an organic thin film containing the polymer compound of the present invention and an electron-accepting compound can be used as the functional layer in the organic photoelectric conversion element of the present invention.
  • the organic thin film generally has a thickness of 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • the organic thin film may contain the polymer compound alone or in combination of two or more.
  • a low molecular compound and / or a high molecular compound other than the high molecular compound can be mixed and used as the electron donating compound in the organic thin film.
  • Examples of the electron-donating compound that the organic thin film may contain in addition to the polymer compound having the repeating unit represented by the formula (1) include, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligos. Thiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof Derivatives, polythienylene vinylene and its derivatives.
  • Examples of the electron accepting compound include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone derivatives.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds. Examples of fullerene, C 60 fullerene, C 70 fullerene include C 84 fullerene.
  • a fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
  • R a represents an alkyl group which may be fluorine-substituted, an aryl group which may be substituted, a heteroaryl group which may be substituted, or a group having an ester structure.
  • R a is, R b good .R b be different from each be the same with.
  • plurality represents an alkyl group or an aryl group each may be respectively or mutually different and the same .
  • Definitions and specific examples of the optionally substituted fluorine-substituted alkyl group, the optionally substituted aryl group and the optionally substituted heteroaryl group represented by R a and R b are fluorine represented by R.
  • the definition and specific examples of the alkyl group which may be substituted, the aryl group which may be substituted and the heteroaryl group which may be substituted are the same.
  • Examples of the group having an ester structure represented by Ra include a group represented by the formula (V).
  • R c represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted, or a substituted group. Represents an optionally substituted heteroaryl group.
  • R c represents an alkyl group which may be substituted with fluorine, an aryl group which may be substituted, or a substituted group. Represents an optionally substituted heteroaryl group.
  • C 70 fullerene derivatives include the following compounds.
  • the organic thin film may be produced by any method.
  • the organic thin film may be produced by a film formation method from a solution containing the polymer compound of the present invention, or an organic thin film may be formed by a vacuum deposition method. Good.
  • Examples of the method for producing an organic thin film by film formation from a solution include a method of producing an organic thin film by applying the solution on one electrode and then evaporating the solvent.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the polymer compound of the present invention.
  • the solvent examples include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, Halogenated saturated hydrocarbon solvents such as chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydro Examples include ether solvents such as pyran.
  • unsaturated hydrocarbon solvents such as toluene, xylene,
  • the polymer compound of the present invention can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
  • a coating method such as a printing method, an offset printing method, an inkjet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an inkjet printing method, and a dispenser printing method are preferable.
  • the organic photoelectric conversion element By irradiating light such as sunlight from a transparent or translucent electrode, the organic photoelectric conversion element generates a photovoltaic force between the electrodes and can be operated as an organic thin film solar cell. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells. In addition, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the ratio of the weight of chloroform to the weight of trifluoroacetic acid in the mixed solvent was 1.
  • Sodium perborate monohydrate was added to the resulting solution and stirred for 20 hours.
  • the reaction solution was filtered through celite, and the residue was washed with toluene.
  • the filtrate was washed with water, sodium bisulfite, and saturated saline in this order, and then dried with sodium sulfate. Thereafter, the solvent was distilled off to obtain 6.11 g of a crude product.
  • the crude product was recrystallized using toluene to obtain a product. Further, the product was recrystallized using chloroform to obtain 1.19 g of compound (A-1).
  • the reaction solution before adding hydrochloric acid was a suspension, but the reaction solution after adding hydrochloric acid was a two-phase solution. After separating the reaction solution, the organic phase was washed in this order with water and saturated brine. The organic phase thus obtained was dried over sodium sulfate and the solvent was distilled off to obtain 1.65 g of a crude product.
  • the crude product was purified by silica gel column chromatography where the developing solvent was a mixed solvent of hexane and ethyl acetate to obtain 1.30 g of compound (A-2). The ratio of the volume of hexane to the volume of ethyl acetate in the developing solvent was 20.
  • Example 1 Synthesis of polymer compound 1
  • 0.140 g (0.213 mmol) of the compound (C) 0.120 g (0.192 mmol) of the compound (D) (produced by Luminescence Technology Corporation)
  • 65.0 mg of octylmethylammonium chloride (trade name Aliquat 336 (registered trademark), manufactured by Sigma-Aldrich Japan) was added and dissolved in 13 mL of toluene, and the resulting toluene solution was bubbled with argon for 30 minutes.
  • the reaction solution was cooled to around room temperature (25 ° C.), and then the obtained reaction solution was allowed to stand and a separated toluene layer was recovered.
  • the toluene layer was washed twice with 10 mL of water, twice with 10 mL of 3% aqueous acetic acid and twice with 10 mL of water, and the obtained toluene layer was poured into methanol, and the deposited precipitate was collected. The precipitate was dried under reduced pressure and then dissolved in toluene. Next, after the obtained chloroform solution was filtered to remove insoluble matters, the filtrate was passed through a silica gel / alumina column for purification.
  • the obtained chloroform solution was concentrated under reduced pressure, poured into methanol, and the generated precipitate was recovered. The precipitate was washed with methanol and dried under reduced pressure to obtain 55 mg of a polymer.
  • this polymer is referred to as polymer compound 1.
  • the polymer compound 1 had a polystyrene-equivalent weight average molecular weight (Mw) of 11200 and a polystyrene-equivalent number average molecular weight (Mn) of 4800.
  • Synthesis Example 2 (Synthesis of polymer compound 2) In a 2 L four-necked flask in which the gas in the flask was replaced with argon, 7.928 g (16.72 mmol) of compound (E), 13.00 g (17.60 mmol) of compound (F), trioctylmethylammonium chloride ( 4.979 g of trade name Aliquat 336 (registered trademark), manufactured by Sigma Aldrich Japan, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.), and 405 ml of toluene, The reaction system was bubbled with argon for 30 minutes while stirring.
  • the column was washed with 800 ml of hot toluene, and the washed toluene solution was added to the eluate. After concentrating the obtained solution to 700 ml, the concentrated solution was added to 2 L of methanol to precipitate a polymer.
  • the polymer was isolated by filtration and washed with 500 ml methanol, 500 ml acetone, 500 ml methanol. The polymer was vacuum-dried at 50 ° C. overnight to obtain 12.21 g of a pentathienyl-fluorene copolymer (polymer compound 2).
  • the polymer compound 2 had a weight average molecular weight in terms of polystyrene of 1.1 ⁇ 10 5 .
  • Measurement Example 1 (Measurement of absorbance of organic thin film) Polymer compound 1 was dissolved in chloroform at a concentration of 0.5% by weight to prepare a coating solution. The obtained coating solution was applied onto a glass substrate by spin coating. The coating operation was performed at 23 ° C. Then, it baked for 5 minutes on 120 degreeC conditions in air
  • Comparative Example 1 Measurement of absorbance of organic thin film
  • An organic thin film was prepared in the same manner as in Measurement Example 1 except that the high molecular compound 2 was used instead of the high molecular compound 1 and o-dichlorobenzene was used as the solvent, and the absorption spectrum of the organic thin film was measured. The measured spectrum is shown in FIG. Table 1 shows the absorbance at 600 nm, 700 nm, and 800 nm.
  • Example 2 (Production and Evaluation of Organic Thin Film Solar Cell) Fullerene derivative C60PCBM (phenyl C61-butyric acid methyl ester, product name: E100), which is an electron-accepting compound, and polymer compound 1, which is an electron-donating compound, at a weight ratio of 3: 1.
  • the obtained solution was filtered through a Teflon (registered trademark) filter having a pore size of 1.0 ⁇ m to prepare a coating solution 1.
  • a glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment.
  • a PEDOT: PSS solution (CleviosP VP AI4083 manufactured by HC Starck Co., Ltd.) is applied onto the ITO film by spin coating, and heated at 120 ° C.
  • the coating solution 1 was applied onto the hole injection layer by spin coating to obtain a functional layer of an organic thin film solar cell.
  • the film thickness of the functional layer was 100 nm.
  • the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm.
  • the degree of vacuum at the time of vapor deposition was 1 ⁇ 10 ⁇ 3 to 9 ⁇ 10 ⁇ 3 Pa.
  • the shape of the organic thin film solar cell thus obtained was a square of 2 mm ⁇ 2 mm.
  • the obtained organic thin film solar cell is irradiated with constant light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.), and the generated current and voltage are measured. did.
  • the photoelectric conversion efficiency is 1.1%
  • Jsc short circuit current density
  • Voc open circuit voltage
  • FF fill factor
  • the polymer compound of the present invention has a large absorbance for light having a long wavelength and is useful for an organic photoelectric conversion device.

Abstract

式(1)で表される繰り返し単位を含む高分子化合物は長波長の光の吸光度が大きく、有機光電変換素子に有用である。〔式中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は式(2)(式中、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R'は、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいヘテロアリール基を表す。(CHm1又は(CHm2で示される式中の水素原子はフッ素置換されていてもよい。)で表される基を表す。〕

Description

高分子化合物及びそれを用いた有機光電変換素子
 本発明は、高分子化合物及びそれを用いた有機光電変換素子に関する。
 有機半導体材料は、有機太陽電池、光センサー等の有機光電変換素子への適用が期待されている。中でも、有機半導体材料として高分子化合物を用いれば、安価な塗布法で機能層を作製することができる。有機光電変換素子の諸特性を向上させるために、様々な高分子化合物である有機半導体材料を有機光電変換素子に用いることが検討されている。有機半導体材料として、例えば、9,9−ジオクチルフルオレン−2,7−ジボロン酸エステルと5,5’’’’−ジブロモ−3’’,4’’−ジヘキシル−α−ペンタチオフェンとを重合した高分子化合物が提案されている(WO2005/092947)。
 しかしながら、上記高分子化合物は、長波長の光の吸収が十分ではない。
 本発明は長波長の光の吸光度が大きい高分子化合物を提供する。
 即ち、本発明は後述の式(1)で表される繰り返し単位を含む高分子化合物を提供する。
 また、本発明は、一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と式(1)で表される繰り返し単位を含む高分子化合物とを含む有機光電変換素子を提供する。
 図1は後述の高分子化合物1の吸収スペクトルを示す図である。
 図2は後述の高分子化合物2の吸収スペクトルを示す図である。
 以下、本発明を詳細に説明する。
 本発明の高分子化合物は、式(1)で表される繰り返し単位を含む。
Figure JPOXMLDOC01-appb-I000003
〔式中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は式(2)
Figure JPOXMLDOC01-appb-I000004
(式中、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいヘテロアリール基を表す。(CHm1又は(CHm2で示される式中の水素原子はフッ素置換されていてもよい。)で表される基を表す。2個あるQは、同一でも相異なってもよい。12個あるRは、それぞれ同一でも相異なってもよい。〕
 Q又はRで表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基、ペンタデシル基及びオクタデシル基が挙げられる。アルキル基中の水素原子は、フッ素原子で置換されていてもよい。フッ素原子で水素原子が置換されたアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基及びパーフルオロオクチル基が挙げられる。
 Q又はRで表されるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基及び3,7−ジメチルオクチルオキシ基が挙げられる。アルコキシ基中の水素原子は、フッ素原子で置換されていてもよい。フッ素原子で水素原子が置換されたアルコキシ基としては、例えば、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基及びパーフルオロオクチルオキシ基が挙げられる。
 Q又はRが、アルキル基又はアルコキシ基である場合、高分子化合物の溶媒への溶解性の観点から、アルキル基又はアルコキシ基の炭素数が1~20であることが好ましく、2~18であることがより好ましく、3~12であることがさらに好ましい。
 Q又はRで表されるアリール基には、ベンゼン環を含む基、芳香族性を有する縮合環を含む基、2個以上のベンゼン環又は芳香族性を有する縮合環が直接結合した構造を有する基、2個以上のベンゼン環又は芳香族性を有する縮合環がビニレン等の基を介して結合した構造を有する基などが含まれる。アリール基の炭素数は、6~60であることが好ましく、6~30であることがより好ましい。アリール基としては、例えば、フェニル基、1−ナフチル基及び2−ナフチル基が挙げられる。アリール基は、置換基を有していてもよい。アリール基が有していてもよい置換基としては、例えば、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基が挙げられる。
 Q又はRで表されるヘテロアリール基としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基が挙げられる。ヘテロアリール基が有していてもよい置換基としては、例えば、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基が挙げられる。
 式(2)で表される基において、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいヘテロアリール基を表す。R’で表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。(CHm1又は(CHm2で示される式中の水素原子はフッ素置換されていてもよい。即ち、CHがCHF又はCFで示される基で置き換えられていてもよい。
 式(1)で表される繰り返し単位としては、例えば、以下の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 本発明の高分子化合物に含まれる式(1)で表される繰り返し単位の量は、該高分子化合物を含む機能層を有する有機光電変換素子の光電変換効率を高める観点から、該高分子化合物が含有する繰り返し単位の合計量に対して、20~100モル%であることが好ましく、30~100モル%であることがより好ましい。
 本発明の高分子化合物のポリスチレン換算の重量平均分子量は、好ましくは10~10であり、より好ましくは10~10であり、さらに好ましくは10~10である。
 本発明の高分子化合物は、共役系高分子化合物であることが好ましい。ここで、共役系高分子化合物とは、高分子化合物の主鎖を構成する原子が実質的に共役している化合物を意味する。
 本発明の高分子化合物は、式(1)で表される繰り返し単位以外の繰り返し単位を有していてもよい。式(1)で表される繰り返し単位以外の繰り返し単位としては、置換されていてもよいアリーレン基、置換されていてもよいヘテロアリーレン基等が挙げられる。アリーレン基としては、フェニレン基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基、フルオレンジイル基等が挙げられる。アリーレン基が有していてもよい置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基が挙げられる。ヘテロアリーレン基としては、フランジイル基、ピロールジイル基、ピリジンジイル基等が挙げられる。ヘテロアリーレン基が有していてもよい置換基としては、例えば、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基が挙げられる。
 本発明の高分子化合物は、如何なる方法で製造してもよいが、例えば、用いる重合反応に適した官能基を有するモノマーを合成した後に、必要に応じて該モノマーを有機溶媒に溶解し、アルカリ、触媒、配位子等を用いた公知のアリールカップリング反応を用いて重合することにより合成することができる。前記モノマーの合成は、例えば、US2008/0145571、特開2006−335933号公報等に示された方法を参考にして行うことができる。
 アリールカップリング反応による重合は、例えば、Stilleカップリング反応による重合、Suzukiカップリング反応による重合、Yamamotoカップリング反応による重合、Kumada−Tamaoカップリング反応による重合が挙げられる。
 Stilleカップリング反応による重合は、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ビス(トリフェニルホスフィン)パラジウムジクロライドなどのパラジウム錯体を触媒として用い、必要に応じて、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子を添加し、有機スズ残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマー、又は、トリフルオロメタンスルホネート基、p−トルエンスルホネート基等のスルホネート基を有するモノマーとを反応させる重合である。Stilleカップリング反応による重合の詳細は、例えば、アンゲヴァンテ ケミー インターナショナル エディション(Angewandte Chemie International Edition),2005年,第44巻,p.4442−4489に記載されている。
 Suzukiカップリング反応による重合は、無機塩基又は有機塩基の存在下、パラジウム錯体又はニッケル錯体を触媒として用い、必要に応じて配位子を添加し、ボロン酸残基又はホウ酸エステル残基を有するモノマーと、臭素原子、ヨウ素原子、塩素原子等のハロゲン原子を有するモノマー、又は、トリフルオロメタンスルホネート基、p−トルエンスルホネート基等のスルホネート基を有するモノマーとを反応させる重合である。
 無機塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、リン酸三カリウム、フッ化カリウムが挙げられる。有機塩基としては、例えば、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウムが挙げられる。パラジウム錯体としては、例えば、パラジウム[テトラキス(トリフェニルホスフィン)]、[トリス(ジベンジリデンアセトン)]ジパラジウム、パラジウムアセテート、ビス(トリフェニルホスフィン)パラジウムジクロライドが挙げられる。ニッケル錯体としては、例えば、ビス(シクロオクタジエン)ニッケルが挙げられる。配位子としては、例えば、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィンが挙げられる。
 Suzukiカップリング反応による重合の詳細は、例えば、ジャーナル オブ ポリマー サイエンス:パート エー:ポリマー ケミストリー(Journal of Polymer Science:Part A:Polymer Chemistry),2001年,第39巻,p.1533−1556に記載されている。
 Yamamotoカップリング反応による重合は、触媒と還元剤とを用い、ハロゲン原子を有するモノマー同士、トリフルオロメタンスルホネート基等のスルホネート基を有するモノマー同士又はハロゲン原子を有するモノマーとスルホネート基を有するモノマーとを反応させる重合である。
 触媒としては、ビス(シクロオクタジエン)ニッケル等のニッケルゼロ価錯体とビピリジル等の配位子からなる触媒、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケルゼロ価錯体以外のニッケル錯体と、必要に応じ、トリフェニルホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィン、トリ(tert−ブチル)ホスフィン等の配位子からなる触媒が挙げられる。還元剤としては、例えば、亜鉛、マグネシウムが挙げられる。Yamamotoカップリング反応による重合は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
 Yamamotoカップリングによる重合の詳細は、例えば、マクロモルキュルズ(Macromolecules),1992年,第25巻,p.1214−1223に記載されている。
 Kumada−Tamaoカップリング反応による重合は、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケル触媒を用い、ハロゲン化マグネシウム基を有する化合物とハロゲン原子を有する化合物とを反応させる重合するである。反応は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
 前記アリールカップリング反応による重合では、通常、溶媒が用いられる。該溶媒は、用いる重合反応、モノマー及びポリマーの溶解性等を考慮して選択すればよい。具体的には、テトラヒドロフラン、トルエン、1,4−ジオキサン、1,2−ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が挙げられる。Stilleカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が好ましい。Stilleカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。Suzukiカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、1,2−ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が好ましい。Suzukiカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。Yamamotoカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4−ジオキサン、1,2−ジメトキシエタン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒が好ましい。Yamamotoカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。
 前記アリールカップリング反応による重合の中でも、反応性の観点からは、Stilleカップリング反応により重合する方法、Suzukiカップリング反応により重合する方法、Yamamotoカップリング反応により重合する方法が好ましく、Stilleカップリング反応により重合する方法、Suzukiカップリング反応による重合する方法、ニッケルゼロ価錯体を用いたYamamotoカップリング反応による重合する方法がより好ましい。
 前記アリールカップリング反応の反応温度の下限は、反応性の観点からは、好ましくは−100℃であり、より好ましくは−20℃であり、特に好ましくは0℃である。反応温度の上限は、モノマー及び高分子化合物の安定性の観点からは、好ましくは200℃であり、より好ましくは150℃であり、特に好ましくは120℃である。
 前記アリールカップリング反応による重合において、反応終了後の反応溶液からの本発明の高分子化合物を取り出す方法としては、公知の方法が挙げられる。例えば、メタノール等の低級アルコールに反応溶液を加え、析出した沈殿を濾取し、乾燥することにより、本発明の高分子化合物を得ることができる。得られた高分子化合物の純度が低い場合は、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等により精製することができる。
 本発明の高分子化合物を有機光電変換素子の製造に用いる場合、高分子化合物の末端に重合活性基が残っていると、有機光電変換素子の耐久性等の特性が低下することがあるため、高分子化合物の末端を安定な基で保護することが好ましい。
 末端を保護する安定な基としては、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基、アリールアミノ基、1価の複素環基等が挙げられる。アリールアミノ基としては、フェニルアミノ基、ジフェニルアミノ基等が挙げられる。1価の複素環基としては、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基、イソキノリル基等が挙げられる。また、高分子化合物の末端に残っている重合活性基を、安定な基に代えて、水素原子で置換してもよい。ホール輸送性を高める観点からは、末端を保護する安定な基がアリールアミノ基などの電子供与性を付与する基であることが好ましい。高分子化合物が共役高分子化合物である場合、高分子化合物の主鎖の共役構造と末端を保護する安定な基の共役構造とが連続するような共役結合を有している基も末端を保護する安定な基として好ましく用いることができる。該基としては、例えば、アリール基、芳香族性を有する1価の複素環基が挙げられる。
 Suzukiカップリングを用いて本発明の高分子化合物を製造する場合、例えば、式(3)で表される化合物と式(4)で表される化合物とを重合して該高分子化合物を製造することができる。
Figure JPOXMLDOC01-appb-I000007
(式中、Rは前述と同じ意味を表す。8個あるRは、同一でも相異なってもよい。Tは、ホウ酸エステル残基を表す。2個あるTは、同一でも相異なってもよい。)
Figure JPOXMLDOC01-appb-I000008
(式中、Q及びRは、前述と同じ意味を表す。2個あるQは、同一でも相異なってもよい。4個あるRは、それぞれ同一でも相異なってもよい。Zは、臭素原子、ヨウ素原子又は塩素原子を表す。2個あるZは、同一でも相異なってもよい。)
 式(3)において、Tで表されるホウ酸エステル残基とは、ホウ酸ジエステルから水酸基を除いた基を意味し、その具体例としては、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000009
(式中、Meはメチル基を表し、Etはエチル基を表す。)
 式(3)で表される化合物としては、例えば、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000010
 式(4)で表される化合物としては、例えば、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000011
 本発明の高分子化合物は、600nmの光等の長波長の光の吸光度が高く、太陽光を効率的に吸収するため、本発明の高分子化合物を用いて製造した有機光電変換素子は短絡電流密度が大きくなる。
 本発明の有機光電変換素子は、一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と式(1)で表される繰り返し単位を含む高分子化合物を含有する。電子受容性化合物としては、フラーレン、フラーレン誘導体が好ましい。有機光電変換素子の具体例としては、
1.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、式(1)で表される繰り返し単位を含む高分子化合物とを含有する有機光電変換素子;
2.一対の電極と、該電極間に機能層を有し、該機能層が電子受容性化合物と、式(1)で表される繰り返し単位を含む高分子化合物とを含有する有機光電変換素子であって、該電子受容性化合物がフラーレン誘導体である有機光電変換素子;
が挙げられる。前記一対の電極は、通常、少なくとも一方が透明又は半透明であり、以下、その場合を一例として説明する。
 前記1.の有機光電変換素子では、電子受容性化合物及び前記高分子化合物を含有する機能層における該電子受容性化合物の量が、前記高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。また、前記2.の有機光電変換素子では、フラーレン誘導体及び前記高分子化合物を含有する機能層における該フラーレン誘導体の量が、前記高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。光電変換効率を高める観点からは、機能層における該フラーレン誘導体の量が、前記高分子化合物100重量部に対して、20~400重量部であることが好ましく、40~250重量部であることがより好ましく、80~120重量部であることがさらに好ましい。短絡電流密度を高める観点からは、機能層における該フラーレン誘導体の量が、該高分子化合物100重量部に対して、20~250重量部であることが好ましく、40~120重量部であることがより好ましい。
 有機光電変換素子が高い光電変換効率を有するためには、前記電子受容性化合物及び前記高分子化合物が、所望の入射光のスペクトルを効率よく吸収することができる吸収域を有すること、機能層中の前記電子受容性化合物と前記高分子化合物とのヘテロ接合界面が励起子を効率よく分離するために、ヘテロ接合界面が機能層中に多く含まれること、ヘテロ接合界面が生成した電荷を速やかに電極へ輸送する電荷輸送性を前記電子受容性化合物及び前記高分子化合物が有することが重要である。
 このような観点から、有機光電変換素子としては、前記1.、前記2.の有機光電変換素子が好ましく、ヘテロ接合界面を多く含むという観点からは、前記2.の有機光電変換素子がより好ましい。また、本発明の有機光電変換素子には、少なくとも一方の電極と該素子中の機能層との間に付加的な層を設けてもよい。付加的な層としては、ホール又は電子を輸送する電荷輸送層、バッファ層等が挙げられる。
 本発明の有機光電変換素子は、通常、基板上に形成される。該基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
 一対の電極の材料として、金属、導電性高分子等を用いることができる。一対の電極のうち一方の電極の材料は仕事関数の小さい材料が好ましい。該材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれらの金属のうちの2つ以上の金属の合金、又はそれらの金属のうちの1つ以上の金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1つ以上の金属との合金、グラファイト、グラファイト層間化合物が挙げられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金が挙げられる。
 前記の透明又は半透明の電極の材料としては、例えば、導電性の金属酸化物膜、半透明の金属薄膜が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜、NESA、金、白金、銀、銅が挙げられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
 前記付加的な層としての電荷輸送層、即ち、ホール輸送層又は電子輸送層に用いられる材料として、それぞれ後述の電子供与性化合物、電子受容性化合物を用いることができる。
 付加的な層としてのバッファ層に用いられる材料としては、フッ化リチウム等のアルカリ金属又はアルカリ土類金属のハロゲン化物又は酸化物等を用いることができる。また、酸化チタン等の無機半導体の微粒子を用いることもできる。
 本発明の有機光電変換素子における前記機能層として、例えば、本発明の高分子化合物と電子受容性化合物とを含有する有機薄膜を用いることができる。
 前記有機薄膜は、膜厚が、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 前記有機薄膜は、前記高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。また、前記有機薄膜のホール輸送性を高めるため、前記有機薄膜中に電子供与性化合物として、低分子化合物及び/又は前記高分子化合物以外の高分子化合物を混合して用いることもできる。
 式(1)で表される繰り返し単位を有する高分子化合物以外に有機薄膜が含んでいてもよい電子供与性化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体が挙げられる。
 前記電子受容性化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、カーボンナノチューブ、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン等のフェナントロリン誘導体が挙げられ、とりわけフラーレン及びその誘導体が好ましい。
 なお、前記電子供与性化合物、前記電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
 フラーレンの例としては、C60フラーレン、C70フラーレン、C84フラーレンが挙げられる。フラーレン誘導体の例としては、C60フラーレン誘導体、C70フラーレン誘導体、C84フラーレン誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000012
(式(I)~(IV)中、Rは、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又はエステル構造を有する基である。複数個あるRは、それぞれ同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、それぞれ同一であっても相異なってもよい。)
 R及びRで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び置換されていてもよいヘテロアリール基の定義及び具体例は、Rで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び置換されていてもよいヘテロアリール基の定義及び具体例と同じである。
 Rで表されるエステル構造を有する基は、例えば、式(V)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000013
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいヘテロアリール基を表す。)
 Rで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び置換されていてもよいヘテロアリール基の定義及び具体例は、Rで表されるフッ素置換されていてもよいアルキル基、置換されていてもよいアリール基及び置換されていてもよいヘテロアリール基の定義及び具体例と同じである。
 C60フラーレン誘導体の具体例としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 C70フラーレン誘導体の具体例としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000016
 前記有機薄膜は、如何なる方法で製造してもよく、例えば、本発明の高分子化合物を含む溶液からの成膜による方法で製造してもよいし、真空蒸着法により有機薄膜を形成してもよい。溶液からの成膜により有機薄膜を製造する方法としては、例えば、一方の電極上に該溶液を塗布し、その後、溶媒を蒸発させて有機薄膜を製造する方法が挙げられる。
 溶液からの成膜に用いる溶媒は、本発明の高分子化合物を溶解させるものであれば特に制限はない。該溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 溶液からの成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法及びディスペンサー印刷法が好ましい。
 有機光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 ポリスチレン換算の数平均分子量はサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 カラム: TOSOH TSKgel SuperHM−H(2本)+ TSKgel SuperH2000(4.6mm l.d.× 15cm);検出器:RI (SHIMADZU RID−10A);移動相:テトラヒドロフラン(THF)
合成例1(化合物(A−1)の合成)
 フラスコ内の気体を窒素で置換した500mlの3口フラスコに、2,7−ジブロモ−9−フルオレノンを6.65g入れ、140mlのトリフルオロ酢酸とクロロホルムとの混合溶媒に溶解させた。該混合溶媒中のトリフルオロ酢酸の重量に対するクロロホルムの重量の比は1であった。得られた溶液に過ホウ酸ナトリウム1水和物を加え、20時間攪拌した。反応液をセライト濾過し、残渣をトルエンで洗浄した。濾液を水、亜硫酸水素ナトリウム、飽和食塩水を用いてこの順に洗浄した後、硫酸ナトリウムを用いて乾燥した。その後、溶媒を留去し、6.11gの粗生成物を得た。
 トルエンを用いて該粗生成物を再結晶して生成物を得、さらに、クロロホルムを用いて該生成物を再結晶し、化合物(A−1)を1.19g得た。
Figure JPOXMLDOC01-appb-I000017
(C17MgBrの調製)
 100mlの3口フラスコに、マグネシウムを1.33g入れ、該フラスコをヒートガンで熱した。その後、フラスコ内の気体をアルゴンで置換した。フラスコに、テトラヒドロフラン(THF)を10ml、1−ブロモオクタンを2.3ml加え、加熱し、反応を開始させた。反応液を2.5時間還流した後に、室温まで放冷し、C17MgBrを含む溶液を得た。
(化合物(A−2)の合成)
 フラスコ内の気体を窒素で置換した300mlの3口フラスコに、化合物(A−1)を1.00g、テトラヒドロフランを10ml入れ、化合物(A−1)をテトラヒドロフランに懸濁させた。フラスコを冷浴で0℃に冷却し、上記で調製したC17MgBrを含む溶液を加えた。フラスコから冷浴を外し、還流下、反応液を5時間攪拌した。反応液を放冷後、水10ml及び塩酸5mlを加えた。塩酸を加える前の反応液は懸濁液であったが、塩酸を加えた後の反応液は、2相の溶液となった。反応液を分液後、有機相を水、飽和食塩水を用いてこの順に洗浄した。こうして得られた有機相を硫酸ナトリウムで乾燥し、溶媒を留去して、1.65gの粗生成物を得た。展開溶媒がヘキサンと酢酸エチルの混合溶媒であるシリカゲルカラムクロマトグラフィーにより粗生成物を精製し、化合物(A−2)を1.30g得た。展開溶媒中の酢酸エチルの容積に対するヘキサンの容積の比は20であった。
Figure JPOXMLDOC01-appb-I000018
(化合物(A−3)の合成)
 フラスコ内の気体を窒素で置換した25mlの2口フラスコに、化合物(A−2)を0.20g、トルエンを4ml入れ、化合物(A−2)をトルエンに溶解させた。該溶液に、p−トルエンスルホン酸・1水和物を0.02g(0.06mmol)加え、100℃で11時間攪拌した。得られた反応液を放冷後、水、4N水酸化ナトリウム水溶液、水、飽和食塩水を用いてこの順に洗浄した。その後、溶媒を留去し、化合物(A−3)を0.14g得た。
Figure JPOXMLDOC01-appb-I000019
(化合物(C)の合成)
 窒素雰囲気下、反応容器に、化合物(A−3)を1.0g(1.77mmol)、ビス(ピナコレート)ジボロンを0.945g(3.72mmol)、〔1,1’−ビス(ジフェニルホスフィノ)フェロセン〕パラジウムジクロリドを0.078g(0.11mmol)、1,1’−ビス(ジフェニルホスフィノ)フェロセンを0.059g(0.11mmol)、及び、1,4−ジオキサンを15ml入れ、反応液をアルゴンガスで30分間バブリングした。その後、反応液に酢酸カリウムを1.043g(10.6mmol)加え、窒素雰囲気下、95℃で13.5時間反応させた。反応終了後、得られた反応液を濾過して不溶物を除いた。アルミナショートカラムで反応液を精製し、溶媒を除去後、固形分をトルエンに溶解させた。得られた溶液に活性炭を加えて攪拌し、その後、濾過した。得られた濾液を、アルミナショートカラムで精製し、精製後の溶液に活性炭を加えて攪拌し、その後、濾過した。得られた濾液からトルエンを除去した後、ヘキサン2.5mlを加えて再結晶することにより、化合物(C)を0.28g得た。
Figure JPOXMLDOC01-appb-I000020
実施例1(高分子化合物1の合成)
Figure JPOXMLDOC01-appb-I000021
 フラスコ内の気体をアルゴンで置換した100mLフラスコに、化合物(C)を0.140g(0.213mmol)、化合物(D)(Luminescence Technology Corporation社製)を0.120g(0.192mmol)、メチルトリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマアルドリッチジャパン社製)を65.0mg加え、トルエン13mLに溶解させ、得られたトルエン溶液をアルゴンで30分バブリングした。その後、反応液に酢酸パラジウムを0.72mg、トリス(2−メトキシフェニル)ホスフィン(Tris(2−methoxyphenyl)phosphine)を3.9mg、16.7重量(wt)%の炭酸ナトリウム水溶液を1.3mL加え、100℃で7時間攪拌を行った。その後、反応液にフェニルブロミドを100mg加え、100℃でさらに3時間攪拌した。その後、反応液にジエチルジチオカルバミン酸ナトリウム1g及び水10mLを加え、100℃で3時間攪拌を行った。反応終了後、反応液を室温(25℃)付近まで冷却した後、得られた反応液を静置し、分液したトルエン層を回収した。該トルエン層を水10mLで2回、3%酢酸水10mLで2回、さらに水10mLで2回洗浄し、得られたトルエン層をメタノール中に注ぎ込み、析出した沈殿物を回収した。この沈殿物を減圧乾燥した後、トルエンに溶解させた。次に、得られたクロロホルム溶液を濾過し、不溶物を除去した後、濾液をシリカゲル/アルミナカラムに通し、精製した。得られたクロロホルム溶液を減圧濃縮した後、メタノール中に注ぎ込み、生成した沈殿を回収した。該沈殿をメタノールで洗浄した後、減圧乾燥して、重合体55mgを得た。以下、この重合体を高分子化合物1と呼称する。高分子化合物1は、ポリスチレン換算の重量平均分子量(Mw)が11200であり、ポリスチレン換算の数平均分子量(Mn)が4800であった。
合成例2(高分子化合物2の合成)
Figure JPOXMLDOC01-appb-I000022
 フラスコ内の気体をアルゴンで置換した2L四つ口フラスコに、化合物(E)を7.928g(16.72mmol)、化合物(F)を13.00g(17.60mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、シグマアルドリッチジャパン社製、CHN[(CHCHCl、density 0.884g/ml、25℃)を4.979g、及びトルエンを405ml入れ、撹拌しながら反応系内を30分間アルゴンバブリングした。フラスコ内にジクロロビス(トリフェニルホスフィン)パラジウム(II)を0.02g加え、105℃に昇温し、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mlを滴下した。滴下終了後5時間反応させ、その後、フェニルボロン酸2.6gとトルエン1.8mlとを加え、105℃で16時間撹拌した。その後、反応液にトルエン700ml及び7.5wt%のジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mlを加え、85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mlで2回、60℃の3wt%酢酸300mlで1回、さらに60℃のイオン交換水300mlで3回洗浄した。有機層をセライト、アルミナ及びシリカを充填したカラムに通し、溶出液を集めた。その後、熱トルエン800mlでカラムを洗浄し、洗浄後のトルエン溶液を溶出液に加えた。得られた溶液を700mlまで濃縮した後、濃縮した溶液を2Lのメタノールに加え、重合体を沈殿させた。重合体を濾過して単離し、500mlのメタノール、500mlのアセトン、500mlのメタノールで洗浄した。重合体を50℃で一晩真空乾燥することにより、ペンタチエニル−フルオレンコポリマー(高分子化合物2)12.21gを得た。高分子化合物2のポリスチレン換算の重量平均分子量は1.1×10であった。
測定例1(有機薄膜の吸光度の測定)
 高分子化合物1を0.5重量%の濃度でクロロホルムに溶解させ、塗布溶液を作製した。得られた塗布溶液をガラス基板上に、スピンコートで塗布した。塗布操作は23℃で行った。その後、大気下120℃の条件で5分間ベークし、膜厚約100nmの有機薄膜を得た。有機薄膜の吸収スペクトルを分光光度計(日本分光株式会社製、商品名:V−670)で測定した。測定したスペクトルを図1に示す。600nm、700nm、800nmにおける吸光度を表1に示す。
 比較例1(有機薄膜の吸光度の測定)
 高分子化合物1の代わりに高分子化合物2を使用し、溶媒にo−ジクロロベンゼンを使用した以外は、測定例1と同様にして有機薄膜を作製し、該有機薄膜の吸収スペクトルを測定した。測定したスペクトルを図2に示す。600nm、700nm、800nmにおける吸光度を表1に示す。
Figure JPOXMLDOC01-appb-T000023
実施例2(有機薄膜太陽電池の作製、評価)
 電子受容性化合物であるフラーレン誘導体C60PCBM(Phenyl C61−butyric acid methyl ester、フロンティアカーボン社製、商品名:E100)と、電子供与性化合物である高分子化合物1とを、3:1の重量比で混合し、混合物の濃度が2重量%となるよう、クロロホルム/o−ジクロロベンゼン=95/5(重量割合)の混合溶媒に溶解させた。得られた溶液を、孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液1を調製した。
 スパッタ法により150nmの厚みでITO膜を付けたガラス基板をオゾンUV処理して表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を作製した。次に、前記塗布溶液1を、スピンコートにより正孔注入層上に塗布し、有機薄膜太陽電池の機能層を得た。機能層の膜厚は100nmであった。その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1×10−3~9×10−3Paであった。こうして得られた有機薄膜太陽電池の形状は、2mm×2mmの正方形であった。得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO−SUNII:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定した。光電変換効率は1.1%であり、Jsc(短絡電流密度)は3.54mA/cmであり、Voc(開放端電圧)は0.77Vであり、FF(フィルファクター)は0.40であった。
 本発明の高分子化合物は、長波長の光の吸光度が大きく、有機光電変換素子に有用である。

Claims (6)

  1.  式(1)で表される繰り返し単位を含む高分子化合物。
    Figure JPOXMLDOC01-appb-I000001
    〔式中、Q及びRは、同一又は相異なり、水素原子、フッ素原子、フッ素置換されていてもよいアルキル基、フッ素置換されていてもよいアルコキシ基、置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は式(2)
    Figure JPOXMLDOC01-appb-I000002
    (式中、m1は、0~6の整数を表し、m2は、0~6の整数を表す。R’は、フッ素置換されていてもよいアルキル基、置換されていてもよいアリール基又は置換されていてもよいヘテロアリール基を表す。(CHm1又は(CHm2で示される式中の水素原子はフッ素置換されていてもよい。)で表される基を表す。2個あるQは、同一でも相異なってもよい。12個あるRは、それぞれ同一でも相異なってもよい。〕
  2.  Q及びRが、水素原子、フッ素原子、炭素数1~20のフッ素置換されていてもよいアルキル基、置換されていてもよい炭素数6~60のアリール基又は置換されていてもよいヘテロアリール基又は式(2)で表される基であり、R’が、炭素数1~20のフッ素置換されていてもよいアルキル基、置換されていてもよい炭素数6~60のアリール基又は置換されていてもよいヘテロアリール基であり、Q、R及びR’のヘテロアリール基はチエニル基、ピロリル基、フリル基、ピリジル基、キノリル基又はイソキノリル基であり、Q、R及びR’のアリール基又はヘテロアリール基の置換基は、ハロゲン原子、炭素数1~20のアルキル基及び炭素数1~20のアルコキシ基からなる群より選ばれる一種以上である請求項1の高分子化合物。
  3.  一対の電極と、該電極間に設けられた機能層とを有し、該機能層が電子受容性化合物と請求項1又は2に記載の高分子化合物とを含む有機光電変換素子。
  4.  機能層中に含まれる電子受容性化合物の量が、高分子化合物100重量部に対して、10~1000重量部である請求項1又は2に記載の有機光電変換素子。
  5.  電子受容性化合物が、フラーレン誘導体である請求項3に記載の有機光電変換素子。
  6.  電子受容性化合物が、フラーレン誘導体である請求項4に記載の有機光電変換素子。
PCT/JP2011/074888 2010-11-02 2011-10-21 高分子化合物及びそれを用いた有機光電変換素子 WO2012060283A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010245934 2010-11-02
JP2010-245934 2010-11-02
JP2011-074569 2011-03-30
JP2011074569 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012060283A1 true WO2012060283A1 (ja) 2012-05-10

Family

ID=46024398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074888 WO2012060283A1 (ja) 2010-11-02 2011-10-21 高分子化合物及びそれを用いた有機光電変換素子

Country Status (2)

Country Link
JP (1) JP5810837B2 (ja)
WO (1) WO2012060283A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214681A (ja) * 2010-11-02 2012-11-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた有機光電変換素子
WO2012165128A1 (ja) * 2011-05-27 2012-12-06 住友化学株式会社 高分子化合物及び有機光電変換素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269698A (ja) * 2003-03-10 2004-09-30 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2007516315A (ja) * 2003-10-28 2007-06-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 新規ジケトピロロピロールポリマー
WO2008140057A1 (ja) * 2007-05-11 2008-11-20 Sumitomo Chemical Company, Limited 高分子化合物及びその製造方法、並びに、その高分子化合物を用いた発光材料、液状組成物、薄膜、高分子発光素子、面状光源、表示装置、有機トランジスタ及び太陽電池
JP2009062537A (ja) * 2007-09-06 2009-03-26 Xerox Corp ジケトピロロピロール系ポリマーおよびその形成方法
JP2009073808A (ja) * 2007-08-30 2009-04-09 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた有機光電変換素子
JP2009135422A (ja) * 2007-09-06 2009-06-18 Xerox Corp 薄膜トランジスタおよびその形成方法
JP2009541548A (ja) * 2006-06-30 2009-11-26 チバ ホールディング インコーポレーテッド 有機半導体としてのジケトピロロピロールポリマー
WO2010001984A1 (ja) * 2008-06-30 2010-01-07 住友化学株式会社 有機光電変換素子
JP2010235698A (ja) * 2009-03-30 2010-10-21 Daio Paper Corp ペーパースラッジを原料とする固形燃料の製造方法及びペーパースラッジを原料とする固形燃料を用いた衛生薄葉紙の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063334A (ja) * 2004-07-30 2006-03-09 Sumitomo Chemical Co Ltd 高分子化合物、高分子薄膜およびそれを用いた高分子薄膜素子
JP5303896B2 (ja) * 2007-10-19 2013-10-02 住友化学株式会社 高分子化合物およびそれを用いた有機光電変換素子
US8975359B2 (en) * 2008-10-31 2015-03-10 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices
BRPI1013566A2 (pt) * 2009-03-23 2016-04-12 Basf Se polímero, composto, material, camada ou componente orgânicos semi condutores, dispositivo semicondutor, processos para a preparação de um dispositivo semicondutor orgânico, de um composto, e de um polímero, e, uso do polímero, do composto e/ou do material, camada ou componente orgânicos semi condutores
WO2012060283A1 (ja) * 2010-11-02 2012-05-10 住友化学株式会社 高分子化合物及びそれを用いた有機光電変換素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269698A (ja) * 2003-03-10 2004-09-30 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2007516315A (ja) * 2003-10-28 2007-06-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 新規ジケトピロロピロールポリマー
JP2009541548A (ja) * 2006-06-30 2009-11-26 チバ ホールディング インコーポレーテッド 有機半導体としてのジケトピロロピロールポリマー
WO2008140057A1 (ja) * 2007-05-11 2008-11-20 Sumitomo Chemical Company, Limited 高分子化合物及びその製造方法、並びに、その高分子化合物を用いた発光材料、液状組成物、薄膜、高分子発光素子、面状光源、表示装置、有機トランジスタ及び太陽電池
JP2009073808A (ja) * 2007-08-30 2009-04-09 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた有機光電変換素子
JP2009062537A (ja) * 2007-09-06 2009-03-26 Xerox Corp ジケトピロロピロール系ポリマーおよびその形成方法
JP2009135422A (ja) * 2007-09-06 2009-06-18 Xerox Corp 薄膜トランジスタおよびその形成方法
WO2010001984A1 (ja) * 2008-06-30 2010-01-07 住友化学株式会社 有機光電変換素子
JP2010235698A (ja) * 2009-03-30 2010-10-21 Daio Paper Corp ペーパースラッジを原料とする固形燃料の製造方法及びペーパースラッジを原料とする固形燃料を用いた衛生薄葉紙の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214681A (ja) * 2010-11-02 2012-11-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた有機光電変換素子
WO2012165128A1 (ja) * 2011-05-27 2012-12-06 住友化学株式会社 高分子化合物及び有機光電変換素子

Also Published As

Publication number Publication date
JP5810837B2 (ja) 2015-11-11
JP2012214681A (ja) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5369384B2 (ja) 有機光電変換素子及びその製造に有用な重合体
JP5991324B2 (ja) 高分子化合物及び有機光電変換素子
JP5810818B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
US20110101325A1 (en) Organic photoelectric conversion element
KR20120098603A (ko) 광전 변환 소자
JP5834819B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
JP5747789B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
JP6003399B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
WO2012165128A1 (ja) 高分子化合物及び有機光電変換素子
JP5834682B2 (ja) 高分子化合物及びそれを用いた電子素子
JP2014028912A (ja) 高分子化合物及びそれを用いた有機光電変換素子
WO2012090971A1 (ja) 光電変換素子及びそれに用いられる組成物
JP5810837B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
WO2012032949A1 (ja) 高分子化合物及び有機光電変換素子
WO2012029675A1 (ja) 高分子化合物の製造方法
WO2011138885A1 (ja) 高分子化合物及びそれを用いた有機光電変換素子
JP2014019781A (ja) 高分子化合物及びそれを用いた有機光電変換素子
JP5786504B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
JP5884423B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
JP5874302B2 (ja) 高分子化合物及びそれを用いた有機光電変換素子
WO2013047293A1 (ja) 光電変換素子
JP2010010438A (ja) 有機光電変換素子及びその製造に有用な組成物
JP2013004722A (ja) 光電変換素子
JP2012253212A (ja) 高分子化合物及びそれを用いた有機光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837933

Country of ref document: EP

Kind code of ref document: A1