WO2012057165A1 - Touch panel - Google Patents

Touch panel Download PDF

Info

Publication number
WO2012057165A1
WO2012057165A1 PCT/JP2011/074587 JP2011074587W WO2012057165A1 WO 2012057165 A1 WO2012057165 A1 WO 2012057165A1 JP 2011074587 W JP2011074587 W JP 2011074587W WO 2012057165 A1 WO2012057165 A1 WO 2012057165A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
transparent electrode
touch panel
metal oxide
substrate
Prior art date
Application number
PCT/JP2011/074587
Other languages
French (fr)
Japanese (ja)
Inventor
和輝 江口
慶太 村梶
賢一 元山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012540893A priority Critical patent/JP5920220B2/en
Priority to CN201180062501.7A priority patent/CN103270477B/en
Priority to KR1020137012941A priority patent/KR101871527B1/en
Publication of WO2012057165A1 publication Critical patent/WO2012057165A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a touch panel, and more particularly to a capacitive touch panel.
  • the touch panel detects the contact position of the operation surface touched by a finger or pen. Using this function, the touch panel is used as an input device.
  • Examples of the contact position detection method include a resistance film method and a capacitance method.
  • the resistance film method two substrates having transparent electrodes provided on the surface are arranged apart from each other so that the transparent electrodes face each other. That is, there is a problem that it is difficult to reduce the thickness because two substrates are required.
  • the transparent electrode provided on this substrate and the transparent electrode provided on the other substrate are short-circuited to detect the pressed position. Therefore, there is a problem that the substrate on the side pressed by the finger is easily worn and the durability of the touch panel is lowered.
  • the electrostatic capacity method can be said to be a method suitable for a portable device because it can be thinned by using a single substrate.
  • Patent Document 1 discloses a capacitive touch panel.
  • a first transparent electrode for detecting coordinates in the X direction and a second transparent electrode for detecting coordinates in the Y direction are arranged via glass as a dielectric.
  • a plurality of electrodes for detecting coordinates in the X direction are arranged on one surface of a single glass substrate, and a plurality of electrodes for detecting coordinates in the Y direction are separated on the other surface. Arranged. That is, each transparent electrode is provided on one substrate.
  • Patent Document 2 discloses a capacitive touch panel having another configuration.
  • a first transparent electrode for detecting coordinates in the X direction and a second transparent electrode for detecting coordinates in the Y direction are arranged on one surface of the transparent substrate, and intersect each other.
  • An insulating layer is interposed in the part so as not to conduct. Such a structure eliminates the need for electrode formation on both sides of the substrate.
  • the touch panel is incorporated in a display device such as a liquid crystal display device and is used as a display device with a touch panel function capable of detecting a touch position. Since a person who operates the touch panel visually recognizes the display device through the touch panel, a member having excellent light transmission characteristics is used for the transparent electrode. For example, an inorganic material such as ITO (Indium Tin Oxide) is used.
  • ITO Indium Tin Oxide
  • an acrylic layer made of an acrylic material is provided on a transparent electrode such as ITO.
  • the purpose of this acrylic layer is to protect the transparent electrode, and no consideration is given to the refractive index characteristics. For this reason, the effect of making the electrode pattern inconspicuous in the acrylic layer cannot be expected.
  • the acrylic layer is an organic material thin film, the hardness as a protective film is not sufficient. Adhesiveness with a transparent electrode such as ITO is also weak, which is a cause of lowering the reliability of the touch panel. Furthermore, in the case of an acrylic layer, it is difficult to form a film using a printing technique such as flexographic printing. For this reason, it is necessary to use a photolithography technique with complicated processes in forming the film.
  • an object of the present invention is to provide a capacitive touch panel that can reduce deterioration in display properties of a display device due to the visual recognition of a transparent electrode pattern.
  • Another object of the present invention is to provide a capacitance formed by forming on the transparent electrode a film that can be formed with high hardness, high adhesion with the transparent electrode, and film formation using printing technology. It is to provide a touch panel of the type.
  • the present invention is a capacitive touch panel in which a transparent electrode pattern is formed in an operation area of a transparent substrate,
  • the following general formula (I) M 1 (OR) n (I) (In the formula, M 1 represents a metal, R represents a C1-C5 alkyl group, and n represents a valence of M.)
  • a metal oxide layer formed from a coating composition obtained by hydrolysis / condensation in an organic solvent in the presence of a metal salt and further adding a precipitation inhibitor is placed on the transparent electrode. It is a feature.
  • the present invention is a capacitive touch panel in which a transparent electrode pattern is formed in an operation region of a transparent substrate,
  • M 1 represents a metal
  • R represents a C1-C5 alkyl group
  • n represents the valence of M 1.
  • the metal M 1 in the general formula (I) is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg).
  • At least one selected from the group consisting of tin (Sn) and zinc (Zn) is preferable.
  • the metal M 2 in the general formulas (II) and (II-1) is aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum. It is preferably at least one selected from the group consisting of (La), tantalum (Ta), yttrium (Y) and cerium (Ce).
  • the metal oxide layer has a refractive index of 1.50 to 1.70, and a thickness of the metal oxide layer (hereinafter, the thickness of the layer is also referred to as a film thickness) is 40 nm to It is preferably 170 nm.
  • the metal oxide layer preferably has a refractive index of 1.54 to 1.68.
  • the metal alkoxide is preferably a mixture of silicon alkoxide or a partial condensate thereof and titanium alkoxide.
  • the precipitation inhibitor is at least one selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. preferable.
  • the molar ratio of the metal atom (M 1 ) of the metal alkoxide contained in the coating composition to the metal atom (M 2 ) of the metal salt is: 0.01 ⁇ M 2 / (M 1 + M 2 ) ⁇ 0.7 It is preferable that
  • the metal salt includes metal nitrate, metal sulfate, metal acetate, metal chloride, metal oxalate, metal sphamate, metal sulfonate, metal acetoacetate, metal acetylacetonate, and these It is preferably at least one selected from the group consisting of basic salts.
  • the organic solvent preferably contains an alkylene glycol or a monoether derivative thereof.
  • the transparent electrode preferably includes a first transparent electrode and a second transparent electrode for detecting positions in at least two different directions.
  • the first transparent electrode and the second transparent electrode may be disposed on the same surface of the transparent substrate.
  • the first transparent electrode and the second transparent electrode may be disposed on different surfaces of the transparent substrate.
  • a capacitance type touch panel that can reduce deterioration in display properties of the display device due to the visual recognition of the transparent electrode pattern.
  • FIG. 2 is a cross-sectional view taken along the line A1-A1 'of FIG. (A)-(d) is process sectional drawing which shows the manufacturing method of the touchscreen which is the 1st example of this Embodiment. It is a top view which shows the touchscreen which is the 2nd example of this Embodiment.
  • FIG. 5 is a sectional view taken along line B1-B1 ′ of FIG. 4. It is sectional drawing which shows schematic structure of the touchscreen which is the 3rd example of this Embodiment. It is sectional drawing which shows schematic structure of the touchscreen which is the 4th example of this Embodiment. It is sectional drawing which shows schematic structure of the touchscreen which is the 5th example of this Embodiment.
  • the reason why the display performance of the display device is deteriorated when the transparent electrode pattern is visually recognized is that the refractive index of the transparent electrode is different from the refractive index of the substrate.
  • the transparent electrode is usually made of ITO (Indium Tin Oxide), which is an inorganic metal oxide.
  • ITO Indium Tin Oxide
  • the refractive index of ITO is about 1.8 to 2.1. Is about 1.5, which is very different from the refractive index of ITO because of the difference in the light reflection characteristics between the region where the transparent electrode is formed and the region where the transparent electrode is not formed. That is, the interfacial reflection characteristics with interference differ between the region where the transparent electrode is formed and the region where the transparent electrode is not formed, which results in conspicuous electrode patterns in the screen display.
  • the present inventor is controlled so that the refractive index and the film thickness are within a desired range on the transparent electrode arranged on the substrate. It was found that providing a layer was effective. By providing such a layer, a phenomenon in which an unintended electrode pattern is visually recognized on the touch panel can be suppressed.
  • a technique for providing an acrylic layer on a transparent electrode is known for touch panels.
  • the purpose of this acrylic layer is to protect the transparent electrode, and no consideration is given to the refractive index characteristics. For this reason, the effect of making the electrode pattern inconspicuous in the acrylic layer cannot be expected.
  • the acrylic layer is an organic material thin film, the mechanical strength is not sufficient because the acrylic layer has low hardness and low adhesion to ITO.
  • an insulating film must not be disposed on the wiring portion of the frame portion of the touch panel, patterning is necessary, but film formation using a printing technique such as flexographic printing is difficult. Therefore, in forming a film, it is necessary to use a photolithography technique having a complicated process.
  • the layer whose refractive index and film thickness are controlled to be within the desired ranges is preferably an acrylic layer. That is, it is desirable that the transparent electrode has a function of protecting the transparent electrode, specifically, excellent mechanical strength and can be protected from multiple pressings with a finger or the like. Moreover, it is preferable that a transparent electrode pattern can be easily formed on a substrate using a printing technique such as flexographic printing.
  • the present inventor uses a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt and adding a precipitation inhibitor to form a layer satisfying the above performance. Has been found to be suitable. By providing a metal oxide layer formed using this coating composition on the transparent electrode (that is, covering the transparent electrode), in the touch panel, the transparent electrode is protected and the electrode pattern is made inconspicuous. Can do.
  • the touch panel of the present embodiment will be described.
  • a metal oxide layer applied to the touch panel and a coating composition used for forming the metal oxide layer will be described.
  • FIG. 1 and 2 are configuration diagrams of a touch panel as a first example of the present embodiment.
  • FIG. 1 is a plan view
  • FIG. 2 is a cross-sectional view taken along line A1-A1 ′ of FIG.
  • the touch panel 1 includes a transparent substrate 2, a first transparent electrode 3 for detecting coordinates in the X direction, and a second transparent electrode 4 for detecting coordinates in the Y direction.
  • the first transparent electrode 3 and the second transparent electrode 4 are formed from the same layer provided on the same surface of the substrate 2.
  • the substrate 2 is made of a transparent material such as glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, triacetyl cellulose resin, and polyethylene naphthalate resin. In particular, it is preferable to select a material having heat resistance and chemical resistance suitable for forming the metal oxide layers 5 and 6 described later.
  • the thickness of the substrate 2 is, for example, about 0.1 mm to 2 mm when glass is used, and is about 10 ⁇ m to 2000 ⁇ m, for example, when a resin film is used.
  • the first transparent electrode 3 and the second transparent electrode 4 are formed at positions corresponding to the operation surface of the touch panel 1.
  • the first transparent electrode 3 is provided separately in a plurality of regions along the X direction
  • the second transparent electrode 4 is provided separately in a plurality of regions along the Y direction. Yes. With such a structure, the accuracy of touch position detection can be increased.
  • each of the first transparent electrode 3 and the second transparent electrode 4 includes a plurality of pad portions 21, and each pad portion 21 is isolated in a planar manner, and each pad portion It arrange
  • the pad part 21 can be made into polygonal shapes, such as a rhombus, a rectangle, and a hexagon, for example, These are arrange
  • the first transparent electrode 3 and the second transparent electrode 4 are formed using a transparent electrode material having a high transmittance for at least visible light and having conductivity.
  • a transparent electrode material having conductivity include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and ZnO (Zinc Oxide).
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • ZnO Zinc Oxide
  • the thickness is preferably 10 to 200 nm so as to ensure sufficient conductivity.
  • the first transparent electrode 3 and the second transparent electrode 4 are formed as follows, for example.
  • the transparent conductive film is selected by a method selected in consideration of the material of the substrate 2 as a base from sputtering, vacuum deposition, ion plating, spray, dip, or CVD (Chemical Vapor Deposition). Is deposited.
  • the transparent conductive film is patterned using a photolithography technique. Alternatively, a desired pattern may be formed by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent.
  • the first transparent electrode 3 and the second transparent electrode 4 are formed on the same surface of the substrate 2 and form the same layer. For this reason, the 1st transparent electrode 3 and the 2nd transparent electrode 4 cross
  • FIG. 1 and FIG. 2 are formed on the same surface of the substrate 2 and form the same layer.
  • one of the first transparent electrode and the second transparent electrode is divided so as not to contact the other. That is, as shown in FIG. 2, the second transparent electrode 4 is connected at any of the plurality of intersecting portions 18, but the first transparent electrode 3 is divided. And in order to connect the parting part of the 1st transparent electrode 3, the bridging electrode 20 is provided and the interlayer insulation film 19 which consists of an insulating substance between the bridging electrode 20 and the 2nd transparent electrode 4 is provided. Is provided.
  • a light transmissive interlayer insulating film 19 is formed on the second transparent electrode 4 at the intersection 18.
  • an inorganic material such as SiO 2 or an organic material such as a photosensitive acrylic resin can be used.
  • SiO 2 for example, a structure in which an SiO 2 film is formed only on the second transparent electrode 4 at the intersection 18 by a sputtering method using a mask can be used.
  • a photosensitive acrylic resin the same structure can be formed using the photolithographic method.
  • a bridging electrode 20 is provided in the upper layer of the interlayer insulating film 19.
  • the bridging electrode 20 is for electrically connecting the first transparent electrodes 3 separated by the intersecting portion 18 and is formed of a light transmissive material. By providing the bridging electrode 20, the first transparent electrode 3 can be electrically connected in the Y direction.
  • the first transparent electrode 3 and the second transparent electrode 4 have a shape in which a plurality of rhombus pad portions 21 are arranged vertically or horizontally.
  • the connection portion located at the intersecting portion 18 has a shape narrower than the rhomboid pad portion 21 of the second transparent electrode 4.
  • the bridging electrode 20 is also formed in a strip shape having a narrower width than the diamond-shaped pad portion 21.
  • the first transparent electrode 3 and the second transparent electrode 4 are placed on the first transparent electrode 3 and the second transparent electrode 4 (that is, the first transparent electrode 3 and the second transparent electrode 4).
  • a metal oxide layer 5 is formed (covering the electrode 4). And the formation area and non-formation area
  • the metal oxide layer 5 has a high hardness and is excellent in adhesion with the first transparent electrode 3 and the second transparent electrode 4.
  • a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor is used. It is done. Details of the coating composition will be described later.
  • the refraction of the metal oxide layer 5 is performed so that the electrode patterns of the first transparent electrode 3 and the second transparent electrode 4 are not conspicuous based on the examination results described in the example column of this specification.
  • the rate and film thickness are selected.
  • the refractive index of the metal oxide layer 5 is preferably in the range of 1.50 to 1.70, more preferably in the range of 1.54 to 1.68.
  • the film thickness is preferably in the range of 40 nm to 170 nm. When the refractive index of the metal oxide layer 5 is 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm.
  • the film thickness is more preferably in the range of 40 nm to 170 nm.
  • the metal oxide layer 5 is selected from metal oxide layers that are insulative and have high visible light transparency so that the first transparent electrode 3 and the second transparent electrode 4 do not conduct.
  • the metal oxide layer 5 is formed of a coating composition containing silicon alkoxide and titanium alkoxide, and has a refractive index of 1.60 and a film thickness of 80 nm.
  • the touch panel 1 has an adhesive layer using an acrylic photocurable resin or the like on the surface on which the first transparent electrode 3 and the like are formed and the uppermost layer on the viewing side of the display panel 10.
  • the adhesive layer 9 is provided on the metal oxide layer 5.
  • the display device described above includes the touch panel 1 and the display panel 10, and may have a backlight as necessary. Although details are omitted in FIG. 2, the display panel 10 can have the same configuration as a known display device.
  • the display panel 10 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates.
  • a polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer.
  • a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal.
  • the liquid crystal layer is sealed with each transparent substrate and a sealing material.
  • terminals are provided at end portions of the first transparent electrode 3 and the second transparent electrode 4, and a plurality of lead wires 11 are provided from the terminals. Is pulled out.
  • the lead-out wiring 11 can be an opaque metal wiring using silver, aluminum, chromium, copper, molybdenum, or an alloy containing these metals such as Mo—Nb (molybdenum-niobium) alloy.
  • the lead-out wiring 11 is connected to a control circuit (not shown) that detects voltage application and a touch position to the first transparent electrode 3 and the second transparent electrode 4.
  • a voltage is sequentially applied to the plurality of first transparent electrodes 3 and the second transparent electrodes 4 to give an electric charge.
  • a capacitor is formed by capacitive coupling between the fingertip and the first transparent electrode 3 and the second transparent electrode 4. Therefore, it is possible to detect which part of the finger touched by capturing the change in the charge at the contact position of the fingertip.
  • the touch panel 1 can also selectively apply a voltage to either the first transparent electrode 3 or the second transparent electrode 4 under the control of a control circuit (not shown).
  • a control circuit not shown
  • an electric field is formed on the transparent electrode to which a voltage is applied, and when a finger or the like touches in this state, the contact position is grounded via the capacitance of the human body.
  • a change in resistance value occurs between the terminal (not shown) of the target first transparent electrode 3 or second transparent electrode 4 and the contact position. Since this resistance value is proportional to the distance between the contact position and the terminal of the first transparent electrode 3 or the second transparent electrode 4 as a target, the contact position and the first transparent electrode 3 or the first transparent electrode 3 as a target.
  • the coordinates of the contact position can be obtained by the control circuit detecting the current value flowing between the two transparent electrodes 4.
  • the conspicuous electrode pattern on the operation surface is suppressed by the effect of the metal oxide layer 5 provided on the first and second transparent electrodes 3 and 4.
  • 3 (a) to 3 (d) are process cross-sectional views illustrating a manufacturing method of a touch panel as a first example of the present embodiment.
  • a transparent substrate 2 such as a glass substrate is prepared.
  • the substrate 2 is cut into a desired shape and washed as necessary. Further, an intermediate layer such as SiOx, SiNx, or SiON may be formed between the substrate 2 and the transparent conductive film.
  • a transparent conductive film is formed on one surface of the substrate 2.
  • the transparent conductive film is, for example, ITO, and is formed to a thickness of 10 to 200 nm using a sputtering method, a vacuum deposition method, or the like.
  • the transparent conductive film is etched in a state where an etching mask made of a photosensitive resin or the like is formed on the upper layer side of the transparent conductive film, and the first transparent electrode 3 and the second transparent electrode 4 are formed by patterning. By removing the etching mask, a transparent conductive film substrate 14 as shown in FIG. 3A is obtained.
  • the second transparent electrode 4 is connected through the connection portion, but the first transparent electrode 3 is divided.
  • a photosensitive resin is applied to the side on which the first transparent electrode 3 and the second transparent electrode 4 are provided, and then exposed and developed, whereby an interlayer insulation is formed at the connection portion of the second transparent electrode 4.
  • a film 19 is formed (FIG. 3B).
  • the photosensitive resin for forming the interlayer insulating film 19 a resin having transparency and heat resistance is used.
  • an acrylic resin can be used.
  • the interlayer insulating film 19 is formed using SiO 2 , the same structure can be obtained by sputtering using a mask.
  • the transparent conductive film is etched with an etching mask made of a photosensitive resin formed on the surface of the transparent conductive film. Thereafter, the etching mask is removed, and the bridging electrode 20 is formed on the interlayer insulating film 19 so as to connect the divided portions of the first transparent electrode 3. Thereby, the structure shown in FIG. 3C is obtained.
  • An example of the transparent conductive film formed on the interlayer insulating film 19 is an ITO film. In that case, the bridging electrode 20 is also preferably formed of ITO.
  • the above-described lead-out wiring 11 is formed using silver ink or the like in a later process. However, when the transparent conductive film is etched in the above step, the transparent conductive film is left along the outer peripheral edges of the first transparent electrode 3 and the second transparent electrode 4 to form the lead-out wiring 11. Is possible.
  • a coating composition for forming a metal oxide layer is applied on the first transparent electrode 3, the second transparent electrode 4, and the bridging electrode 20 by flexographic printing.
  • the coating composition is obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor.
  • the substrate 2 on which the coating film of the coating composition has been formed is dried on, for example, a hot plate at 40 to 150 ° C. (eg, 60 ° C.).
  • the metal oxide layer 5 is formed on the first transparent electrode 3, the second transparent electrode 4, and the bridging electrode 20 by heating in, for example, an oven at 100 to 300 ° C.
  • a lead-out wiring 11 is formed with silver ink or the like from terminals (not shown) at the ends of the first transparent electrode 3 and the second transparent electrode 4 to form the touch panel 1.
  • the touch panel 1 is connected to a control circuit (not shown) of the touch panel via the lead wiring 11.
  • the completed touch panel 1 is attached to the front surface of the display panel 10 through an adhesive layer 9 such as an acrylic transparent adhesive.
  • an adhesive layer 9 such as an acrylic transparent adhesive.
  • alignment is performed by providing alignment marks at the corners of the substrate 2 and the display panel 10 as necessary.
  • the electrode pattern of the first transparent electrode 3 and the second transparent electrode 4 is visually recognized on the operation surface of the touch panel 1 by providing the metal oxide layer 5. It becomes difficult.
  • FIG. 4 and 5 show a touch panel as a second example of the present embodiment, FIG. 4 is a plan view, and FIG. 5 is a cross-sectional view taken along line B1-B1 'of FIG.
  • the touch panel 101 is formed on a transparent substrate 102, a first transparent electrode 103 for detecting coordinates in the X direction formed on one surface of the substrate 102, and the other surface of the substrate 102. And a second transparent electrode 104 for detecting coordinates in the Y direction.
  • one surface of the substrate 102 is upward and the other surface of the substrate 102 is downward.
  • the other surface of the substrate 102 is a surface on which the display panel 110 is mounted.
  • the substrate 102 is a dielectric substrate.
  • transparent materials such as glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, and polyethylene naphthalate resin are used.
  • the thickness of the substrate 102 can be about 0.1 mm to 2 mm for glass, and can be 10 ⁇ m to 2000 ⁇ m for a resin film.
  • the first transparent electrode 103 and the second transparent electrode 104 are each composed of an elongated rectangular electrode.
  • the first transparent electrode 103 extends in the X direction
  • the second transparent electrode 104 extends in the Y direction.
  • the first transparent electrode 103 is arranged in a stripe shape at regular intervals. Further, the first transparent electrode 103 and the second transparent electrode 104 are disposed so as to be orthogonal to each other, and are in a lattice shape as a whole.
  • the first transparent electrode 103 and the second transparent electrode 104 are formed using a transparent electrode material that has high transmittance for at least visible light and has conductivity.
  • a transparent electrode material having conductivity for example, ITO or ZnO can be used.
  • the thickness is preferably 5 to 100 nm so that sufficient conductivity can be secured.
  • the first transparent electrode 103 and the second transparent electrode 104 are optimal in consideration of the transparent substrate 102 as a base from sputtering method, vacuum deposition method, ion plating method, spray method, dip method or CVD method. It is formed by selecting a proper method.
  • a transparent electrode formed in a planar shape is patterned by an etching method using photolithography, or directly by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent.
  • a method of forming the pattern What is important in the process of forming the transparent electrode is whether the film thickness can be controlled with high precision. Therefore, it is preferable to select a method that can form a desired film thickness and that can form a low-resistance film excellent in transparency.
  • a metal oxide layer 105 is formed on the first transparent electrode 103.
  • the metal oxide layer 105 covers a region where the first transparent electrode is formed and a region where the first transparent electrode is not formed, corresponding to the operation surface of the touch panel 101.
  • a metal oxide layer 106 is also formed on the second transparent electrode 104 (below in the drawing).
  • the metal oxide layer 106 covers the transparent electrode forming region and the non-forming region corresponding to the operation surface of the touch panel 101.
  • the metal oxide layers 105 and 106 have high hardness and excellent adhesion to the first transparent electrode 103 and the second transparent electrode 104.
  • a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Is used. Details of this coating composition will be described later.
  • the metal oxide layers 105 and 106 are formed so that the electrode patterns of the first transparent electrode 103 and the second transparent electrode 104 are not conspicuous based on the examination results described in the example column of this specification.
  • the refractive index and film thickness are selected.
  • the refractive indexes of the metal oxide layers 105 and 106 are each preferably in the range of 1.50 to 1.70, and more preferably in the range of 1.54 to 1.68.
  • the film thickness is preferably in the range of 40 nm to 170 nm.
  • the film thickness is more preferably in the range of 60 nm to 150 nm.
  • the film thickness is more preferably in the range of 40 nm to 170 nm.
  • the metal oxide layers 105 and 106 are insulative so as not to be electrically connected to the first transparent electrode 103 and the second transparent electrode 104, respectively, and have high visible light transparency. Selected from metal oxide layers.
  • the first transparent electrode 103 and the second transparent electrode 104 are preferably ITO films each having a thickness of 10 to 200 nm.
  • the first transparent electrode 103 and the second transparent electrode 104 are each made of an ITO film having a thickness of 28 nm, and the metal oxide layers 105 and 106 are made of silicon alkoxide and titanium alkoxide, respectively.
  • the film was formed from a coating composition prepared using a material having a refractive index of 1.6 and a film thickness of 80 nm.
  • an adhesive layer 108 made of an acrylic transparent adhesive is provided on one surface of the substrate 102.
  • a cover film 107 made of a transparent resin is bonded on the adhesive layer 108.
  • the cover film 107 is omitted.
  • the cover film 107 functions as a protective film for the first transparent electrode 103 and the metal oxide layer 105. Instead of the cover film 107, a transparent resin may be coated. In this case, the adhesive layer 108 can be omitted.
  • a display panel 110 is attached to the other surface of the substrate 102 via an adhesive layer 109 made of an acrylic transparent adhesive.
  • the display panel 110 can have the same configuration as a known display device.
  • the display panel 110 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates.
  • a polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer.
  • a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal.
  • the liquid crystal layer is sealed with each transparent substrate and a sealing material.
  • terminals are provided at end portions of the first transparent electrode 103 and the second transparent electrode 104, and a plurality of lead wires (not shown) are drawn from the terminals.
  • the lead-out wiring can be an opaque metal wiring using silver, aluminum, chromium, copper or an alloy containing these.
  • the lead-out wiring is connected to a control circuit (not shown) that detects voltage application to the first transparent electrode 103 and the second transparent electrode 104 and a touch position.
  • the touch panel 101 having the above configuration, when a finger that is a conductor touches any part of the operation surface, capacitive coupling between the fingertip and the first transparent electrode 103 and the second transparent electrode 104 is performed. To form a capacitor. Therefore, it is possible to detect which part of the finger touched by capturing the change in charge at the contact position of the fingertip.
  • the effect of the metal oxide layers 105 and 106 provided on the first transparent electrode 103 and the second transparent electrode 104 is suppressed from conspicuous on the operation surface.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a touch panel as a third example of the present embodiment.
  • the display panel 210 is regarded as a first substrate, and a first transparent electrode 203 is provided on the surface of the display 210.
  • a second transparent electrode 204 is provided on one surface of the second substrate 212 prepared separately.
  • one surface of the second substrate 212 is upward and the other surface is downward.
  • the other surface of the second substrate 212 is a side on which the display panel 210 is attached.
  • the display panel 210 can have the same configuration as a known display device.
  • the display panel 210 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates.
  • a polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer.
  • a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal.
  • the liquid crystal layer is sealed with each transparent substrate and a sealing material.
  • a metal oxide layer 205 is provided on the first transparent electrode 203.
  • the metal oxide layer 205 covers the transparent electrode formation region and the non-formation region corresponding to the operation surface of the touch panel 201.
  • a metal oxide layer 206 is formed on the second transparent electrode 204.
  • the metal oxide layer 206 covers the transparent electrode forming region and the non-forming region corresponding to the operation surface of the touch panel 201.
  • the metal oxide layers 205 and 206 have high hardness and excellent adhesion to the first transparent electrode 203 and the second transparent electrode 204.
  • a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Is used. Details of this coating composition will be described later.
  • the metal oxide layers 205 and 206 are formed so that the electrode patterns of the first transparent electrode 203 and the second transparent electrode 204 are not conspicuous based on the examination results described in the example column of this specification.
  • the refractive index and film thickness are selected. Specifically, the refractive indexes of the metal oxide layers 205 and 206 are each preferably in the range of 1.50 to 1.70, more preferably in the range of 1.54 to 1.68.
  • the film thickness is preferably in the range of 40 nm to 170 nm. When the refractive indexes of the metal oxide layers 205 and 206 are 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm.
  • the film thickness is more preferably in the range of 40 nm to 170 nm.
  • the metal oxide layers 205 and 206 are insulative so as not to be electrically connected to the first transparent electrode 203 and the second transparent electrode 204, respectively, and are further transparent to visible light. Selected from high metal oxide layers.
  • each of the first transparent electrode 203 and the second transparent electrode 204 is preferably an ITO film having a thickness of 10 to 200 nm.
  • the first transparent electrode 203 and the second transparent electrode 204 are each made of an ITO film having a thickness of 28 nm, and the metal oxide layers 205 and 206 are made of silicon alkoxide and titanium alkoxide, respectively.
  • the film has a refractive index of 1.6 and a film thickness of 80 nm.
  • an adhesive layer 208 made of an acrylic transparent adhesive is provided on one surface of the second substrate 212.
  • a cover film 207 made of a transparent resin is bonded on the adhesive layer 208.
  • the cover film 207 functions as a protective film.
  • a transparent resin may be coated.
  • the adhesive layer 208 can be omitted.
  • the first transparent electrode 203 and the second transparent electrode 204 are the same as those described with reference to FIGS.
  • the electrode pattern is suppressed from being noticeable on the operation surface.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a touch panel as a fourth example of the present embodiment.
  • the display panel 310 is regarded as a first substrate, and a first transparent electrode 303 is provided on the surface of the display 310.
  • a second transparent electrode 304 is provided on one surface of a second substrate 312 prepared separately.
  • one surface of the second substrate 312 is downward and the other surface is upward.
  • the other surface of the second substrate 312 is a surface on which the touch panel 301 is touched.
  • the display panel 310 can have the same configuration as a known display device.
  • the display panel 310 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates.
  • a polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer.
  • a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal.
  • the liquid crystal layer is sealed with each transparent substrate and a sealing material.
  • a metal oxide layer 305 is provided on the first transparent electrode 303.
  • the metal oxide layer 305 covers the transparent electrode formation region and the non-formation region corresponding to the operation surface of the touch panel 201.
  • a metal oxide layer 306 is also formed on the second transparent electrode 304 (shown on the lower side in FIG. 7).
  • the metal oxide layer 306 covers the transparent electrode forming region and the non-forming region corresponding to the operation surface of the touch panel 301.
  • the metal oxide layers 305 and 306 have high hardness and excellent adhesion to the first transparent electrode 303 and the second transparent electrode 304.
  • a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Is used. Details of this coating composition will be described later.
  • An adhesive layer 308 made of an acrylic transparent adhesive is provided between the metal oxide layer 305 and the metal oxide layer 306. With this adhesive layer 308, the second substrate 312 is attached to the display panel 310.
  • the metal oxide layers 305 and 306 are formed so that the electrode patterns of the first transparent electrode 303 and the second transparent electrode 304 are not conspicuous based on the examination results described in the example column of this specification.
  • the refractive index and film thickness are selected.
  • the refractive indexes of the metal oxide layers 305 and 306 are each preferably in the range of 1.50 to 1.70, more preferably in the range of 1.54 to 1.68.
  • the film thickness is preferably in the range of 40 nm to 170 nm.
  • the film thickness is more preferably in the range of 60 nm to 150 nm.
  • the film thickness is more preferably in the range of 40 nm to 170 nm.
  • the metal oxide layers 305 and 306 are insulative so as not to be electrically connected to the first transparent electrode 303 and the second transparent electrode 304, respectively, and visible light transparent. Selected from high metal oxide layers.
  • each of the first transparent electrode 303 and the second transparent electrode 304 is preferably an ITO film having a thickness of 10 to 200 nm.
  • the first transparent electrode 303 and the second transparent electrode 304 are each made of an ITO film having a thickness of 28 nm, and the metal oxide layers 305 and 306 are made of silicon alkoxide and titanium alkoxide, respectively.
  • the film has a refractive index of 1.6 and a film thickness of 80 nm.
  • the effect of the metal oxide layers 305 and 306 provided on the first transparent electrode 303 and the second transparent electrode 304 is suppressed from conspicuous on the operation surface.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a touch panel as a fifth example of the present embodiment.
  • the touch panel 401 includes a transparent substrate 402.
  • a first transparent electrode 403 and a second transparent electrode 404 for detecting positions in two different directions are provided on the upper layer of the substrate 402.
  • the first transparent electrode 403 and the second transparent electrode 404 are formed using a transparent electrode material that has high transmittance for at least visible light and has conductivity.
  • a transparent electrode material having conductivity for example, ITO or ZnO can be used.
  • the thickness is preferably 5 to 100 nm so that sufficient conductivity can be secured.
  • the first transparent electrode 403 and the second transparent electrode 404 can be formed by sputtering, vacuum deposition, ion plating, spraying, dipping, CVD, or the like from a transparent substrate 102 or an overcoat described later. An optimum method is selected in consideration of the layer 407.
  • a transparent electrode formed in a planar shape is patterned by an etching method using photolithography, or directly by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent.
  • a method of forming the pattern What is important in the process of forming the transparent electrode is whether the film thickness can be controlled with high precision. Therefore, it is preferable to select a method that can form a desired film thickness and that can form a low-resistance film excellent in transparency.
  • the first transparent electrode 403 is disposed on the substrate 402.
  • a metal oxide layer 405 is formed on the first transparent electrode 403.
  • the metal oxide layer 405 covers a formation region and a non-formation region of the first transparent electrode 403 corresponding to the operation surface of the touch panel 401.
  • An overcoat layer 407 is provided on the metal oxide layer 405.
  • a highly transparent acrylic resin is used for the overcoat layer 407.
  • the second transparent electrode 404 is disposed on the overcoat layer 407.
  • a metal oxide layer 406 is formed on the second transparent electrode 404.
  • the metal oxide layer 406 covers the transparent electrode forming region and the non-forming region corresponding to the operation surface of the touch panel 401.
  • the metal oxide layers 405 and 406 have high hardness and excellent adhesion to the first transparent electrode 403 and the second transparent electrode 404.
  • a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Is used. Details of this coating composition will be described later.
  • the metal oxide layers 405 and 406 are formed so that the electrode patterns of the first transparent electrode 403 and the second transparent electrode 404 are not visible based on the examination results described in the example column of this specification.
  • the refractive index and film thickness are selected.
  • the refractive indexes of the metal oxide layers 405 and 406 are each preferably in the range of 1.50 to 1.70, more preferably in the range of 1.54 to 1.68.
  • the film thickness is preferably in the range of 40 nm to 170 nm. When the refractive indexes of the metal oxide layers 405 and 406 are 1.54 or more and smaller than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm.
  • the film thickness is more preferably in the range of 40 nm to 170 nm.
  • the metal oxide layers 305 and 306 are insulative so as not to be electrically connected to the first transparent electrode 303 and the second transparent electrode 304, respectively, and visible light transparent. Selected from high metal oxide layers.
  • the first transparent electrode 403 and the second transparent electrode 404 are each preferably an ITO film having a thickness of 10 to 200 nm.
  • the first transparent electrode 303 and the second transparent electrode 304 are each made of an ITO film having a thickness of 28 nm, and the metal oxide layers 405 and 406 are made of silicon alkoxide and titanium alkoxide, respectively.
  • the refractive index is 1.60 and the film thickness is 80 nm.
  • an adhesive layer 408 made of an acrylic transparent adhesive is provided on the metal oxide layer 406.
  • the display panel 110 is attached to the touch panel 401 through the adhesive layer 408.
  • the touch panel 401 having the above configuration, when a finger as a conductor touches any part of the operation surface, capacitive coupling between the fingertip and the first transparent electrode 403 and the second transparent electrode 404 is achieved. To form a capacitor. Therefore, it is possible to detect which part of the finger touched by capturing the change in charge at the contact position of the fingertip.
  • the effect of the metal oxide layers 405 and 406 provided on the first transparent electrode 403 and the second transparent electrode 404 is suppressed from conspicuous on the operation surface.
  • the touch panel of this Embodiment was demonstrated, this invention is not limited to the said embodiment.
  • touch panels that use transparent electrodes such as ITO
  • the same effect as described above can be obtained by providing a metal oxide layer selected so that the refractive index and the film thickness are suitable on the transparent electrode. Is obtained.
  • the coating composition used to form the metal oxide layer is a composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt and further adding a precipitation inhibitor. .
  • Examples of the metal alkoxide used in the coating composition include silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), and tin (Sn). And alkoxides of metals such as zinc (Zn).
  • silicon alkoxide, partial condensate of silicon alkoxide, and titanium alkoxide is preferable from the viewpoint of easy availability and storage stability of the coating composition.
  • the coating composition is a composition obtained by hydrolyzing and condensing these metal alkoxides in an organic solvent in the presence of a metal salt.
  • the coating composition includes a precipitation inhibitor.
  • the precipitation inhibitor has an effect of preventing the metal salt from being precipitated in the coating film when the coating film is formed.
  • the coating composition contains a titanium alkoxide component
  • the titanium alkoxide when preparing a coating composition containing a titanium alkoxide component, in order to stabilize the titanium alkoxide and improve the storage stability of the coating composition, after mixing and stabilizing the titanium alkoxide and alkylene glycol or monoether thereof, the titanium alkoxide alone Alternatively, it is mixed with silicon alkoxide and hydrolyzed / condensed in the presence of a metal salt.
  • the silicon alkoxide is hydrolyzed in the presence of a metal salt, and then mixed with a titanium alkoxide in which glycols or monoethers thereof are mixed and stabilized in advance. It is preferable to do.
  • the metal alkoxide used in the coating composition is represented by the general formula (I).
  • M (OR) n — (I) (Wherein, M represents a metal, R represents a C1-C5 alkyl group, and n represents the valence of M.)
  • silicon alkoxide or the partial condensate thereof at least one selected from one or more compounds represented by the general formula (III) and a partial condensate (pentamer or less) is used.
  • Si (OR ') 4 & (III) In the formula, R ′ represents a C1-C5 alkyl group.
  • Ti (OR ") 4 ; (IV) In the formula, R ′′ represents a C1-C5 alkyl group.
  • metal salt used for coating composition at least 1 sort (s) chosen from the compound shown by general formula (II) is mentioned.
  • M 2 (X) m — (II) (Wherein M 2 is a metal, X is chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and m is the valence of M 2.
  • Particularly preferred metal salts used in the coating composition include those containing at least one selected from the compounds represented by the following (II-1) and metal oxalates used in the following (II-1): .
  • M 2 (X) m (II-1) (In the formula, M 2 represents a metal, X represents chlorine, nitric acid, sulfuric acid, acetic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and m represents the valence of M 2 .
  • Examples of the metal M 2 of the metal salt represented by the general formula (II) include aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum ( At least one selected from the group consisting of Ta), yttrium (Y) and cerium (Ce) is preferred.
  • metal nitrates such as aluminum, indium, and cerium are particularly preferable.
  • metal nitrates such as aluminum, indium, and cerium are preferred from the viewpoints of availability and storage stability of the coating composition.
  • organic solvent used in the coating composition examples include alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol and t-butanol; esters such as ethyl acetate; ethylene glycol and the like Glycols and ester derivatives thereof; ethers such as diethyl ether; ketones such as acetone, methyl ethyl ketone and cyclohexanone; or aromatic hydrocarbons such as benzene and toluene, etc., which are used alone or in combination .
  • alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol and t-butanol
  • esters such as ethyl acetate
  • ethylene glycol and the like Glycols and ester derivatives thereof examples include ethers such as dieth
  • examples of the alkylene glycol or monoether thereof contained in the organic solvent include ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol and their monomethyl, monoethyl, Examples thereof include monopropyl, monobutyl, and monophenyl ether.
  • the molar ratio of the glycols or monoethers contained in the organic solvent used in the coating composition is less than 1 with respect to the titanium alkoxide, the stability of the titanium alkoxide is less effective, and the storage stability of the coating composition is reduced. Sexuality gets worse.
  • all of the organic solvents used in the coating composition can be the above-described glycols or monoethers thereof.
  • the coating composition does not contain titanium alkoxide, it is not necessary to specifically contain the above-mentioned glycol and / or its monoether.
  • the precipitation inhibitor contained in the coating composition prevents the metal salt from being deposited in the coating film when the coating film is formed.
  • the precipitation inhibitor include at least one selected from the group consisting of N-methyl-pyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. More than seeds can be used.
  • the precipitation inhibitor is used at a ratio of (precipitation inhibitor) / (metal oxide) ⁇ 1 (weight ratio) by converting the metal of the metal salt into a metal oxide.
  • weight ratio is less than 1, the effect of preventing precipitation of the metal salt during formation of the coating film is reduced.
  • the use of a large amount of a precipitation inhibitor has no effect on the coating composition.
  • the precipitation inhibitor may be added when a metal alkoxide, particularly silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide undergoes hydrolysis / condensation reaction in the presence of a metal salt. It may be added after completion of the reaction.
  • a metal alkoxide particularly silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide undergoes hydrolysis / condensation reaction in the presence of a metal salt. It may be added after completion of the reaction.
  • the metal atom (M 1 ) means the sum of plural kinds of metal atoms
  • the metal of the metal salt contained in the coating composition When there are plural kinds of atoms, the metal atom (M 2 ) means the sum of plural kinds of metal atoms.
  • the solid content concentration in the coating composition is preferably in the range of 0.5 to 20 wt% as the solid content when the metal alkoxide and the metal salt are converted as metal oxides.
  • the solid content exceeds 20 wt%, the storage stability of the coating composition is deteriorated and the film thickness control of the metal oxide layer becomes difficult.
  • the solid content is 0.5 wt% or less, the thickness of the obtained metal oxide layer becomes thin, and many coatings are required to obtain a predetermined film thickness.
  • the coating composition is obtained by hydrolyzing and condensing a metal alkoxide represented by M (OR) n in an organic solvent in the presence of a metal salt (for example, an aluminum salt).
  • a metal salt for example, an aluminum salt.
  • the amount of water used for hydrolysis of silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide is 2 in terms of molar ratio with respect to the total number of moles of silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide. It is preferable to set to 24. More preferably, it is 2-20.
  • the molar ratio (amount of water (mole) / (total number of moles of metal alkoxide)) is 2 or less, the hydrolysis of the metal alkoxide becomes insufficient and the film formability is lowered or the metal obtained This is not preferable because the strength of the oxide film is lowered.
  • the molar ratio is more than 24, polycondensation continues to proceed, which is not preferable because storage stability is lowered. The same applies when other metal alkoxides are used.
  • the coexisting metal salt for example, aluminum salt
  • the moisture content is involved in the reaction. Therefore, it is necessary to consider the moisture content of metal salts (for example, aluminum salts).
  • the coating composition is produced by hydrolyzing and condensing a metal alkoxide.
  • the refractive index of the obtained metal oxide layer can be adjusted within a predetermined range. Is possible. For example, when silicon alkoxide and titanium alkoxide are selected as the metal alkoxide, it can be obtained within a predetermined range described later, specifically within a range of 1.45 to 2.1 by adjusting the mixing ratio. It is possible to adjust the refractive index of the resulting metal oxide layer.
  • the composition molar ratio of silicon alkoxide and titanium alkoxide can be determined according to the refractive index. is there.
  • this composition molar ratio is arbitrary, for example, the refractive index of the metal oxide layer from the coating composition obtained by hydrolyzing only silicon alkoxide is a value of about 1.45. And the refractive index of the metal oxide layer from the coating composition obtained by hydrolyzing only a titanium alkoxide is a value of about 2.1.
  • a coating composition is formed using silicon alkoxide and titanium alkoxide at a predetermined ratio according to the refractive index value within the range. Can be manufactured.
  • the refractive index of the obtained metal oxide layer can be adjusted by using other metal alkoxides.
  • the refractive index of the metal oxide layer can be adjusted by selecting film forming conditions in addition to the composition conditions. In this way, it is possible to realize a high hardness of the metal oxide layer and a desired refractive index value.
  • the firing temperature is preferably in the range of 100 ° C. to 300 ° C., more preferably in the range of 150 ° C. to 250 ° C.
  • the refractive index of the metal oxide layer obtained will fluctuate. Specifically, the refractive index of the metal oxide layer can be increased as the amount of ultraviolet irradiation is increased. Therefore, it is possible to select the presence or absence of ultraviolet irradiation in order to achieve a desired refractive index.
  • a desired refractive index can be realized by selecting conditions such as composition, ultraviolet irradiation is not necessary. And when performing ultraviolet irradiation, it is possible to adjust the refractive index of a metal oxide layer by selecting the irradiation amount.
  • a high-pressure mercury lamp when ultraviolet irradiation is necessary to obtain a desired refractive index, for example, a high-pressure mercury lamp can be used. Then, using a high-pressure mercury lamp, total light irradiation 1000 mJ / cm 2 or more dose is preferably at 365nm terms, the dose of 3000mJ / cm 2 ⁇ 10000mJ / cm 2 is more preferable.
  • the UV light source is not particularly specified, and another UV light source can be used. When using another light source, it is only necessary to irradiate the same amount of accumulated light as when using the high-pressure mercury lamp.
  • the coating composition contains a titanium alkoxide component
  • it has a property that the viscosity gradually increases under room temperature storage.
  • careful control over temperature and the like is necessary when precisely controlling the thickness of the metal oxide layer.
  • Such an increase in viscosity becomes more significant as the composition ratio of titanium alkoxide in the coating composition increases. This is presumably because titanium alkoxide has a higher hydrolysis rate than silicon alkoxide and the like, and the condensation reaction is fast.
  • the coating composition contains a titanium alkoxide component
  • the following two production methods are effective for reducing the viscosity change.
  • the production method of 1) is effective because when titanium alkoxide is mixed with glycols, heat is generated, so transesterification occurs between the alkoxide group of titanium alkoxide and the glycols, resulting in hydrolysis / condensation reactions. This is considered to be stabilized.
  • a silicon alkoxide is preliminarily hydrolyzed in the presence of a metal salt, and then mixed with a titanium alkoxide solution mixed with glycols to perform a condensation reaction to obtain a coating composition.
  • a coating composition having a small viscosity change can be obtained.
  • the production method of 2) is effective for the following reasons. That is, the hydrolysis reaction of silicon alkoxide is performed at a high rate, but the subsequent condensation reaction is slower than titanium alkoxide. Therefore, when titanium alkoxide is added quickly after finishing the hydrolysis reaction, the silanol group of the hydrolyzed silicon alkoxide and the titanium alkoxide react uniformly. Thereby, it is thought that the hydrolyzed silicon alkoxide stabilizes the condensation reactivity of titanium alkoxide.
  • a method for mixing silicon alkoxide hydrolyzed in advance and titanium alkoxide has already been attempted.
  • the organic solvent used in the reaction does not contain glycols, a coating composition having excellent storage stability cannot be obtained.
  • the method shown in 2) is also useful when a coating composition is obtained from another metal alkoxide having a high hydrolysis rate and silicon alkoxide.
  • the coating composition described above can be formed into a metal oxide layer by applying a commonly applied coating method to form a coating film.
  • a coating method for example, a dip coating method, a spin coating method, a spray coating method, a brush coating method, a roll transfer method, a screen printing method, an ink jet method, or a flexographic printing method is used.
  • the inkjet method and flexographic printing method suitable for pattern printing are particularly preferred.
  • TEOS Tetraethoxysilane
  • TIPT Tetraisopropoxy titanium
  • ZTB Zirconium tetra-n-butoxide
  • AN Aluminum nitrate nonahydrate CeN: Cerium nitrate hexahydrate
  • InN Indium nitrate trihydrate
  • EG Ethylene glycol
  • HG 2-Methyl-2,4-pentanediol (also known as hexylene glycol)
  • BCS 2-Butoxyethanol (Alternative name: Butyl cellosolve)
  • TIPT 14.4g was put as a titanium alkoxide in a 300 mL capacity
  • the above-mentioned liquid I and liquid J were mixed and stirred at room temperature for 30 minutes.
  • a coating composition K-1 was obtained as a metal alkoxide.
  • ⁇ Film Formation Method I> Using the coating composition described above, pressure filtration is performed with a membrane filter having a pore diameter of 0.5 ⁇ m, and a coating film is formed on the substrate by a spin coating method. The substrate is heated for 3 minutes on a hot plate set to 60 ° C. and dried. Next, it is transferred into a hot air circulation oven set at 200 ° C. and baked for 30 minutes. In this manner, a metal oxide film (that is, the metal oxide layer is also referred to as a metal oxide film; hereinafter the same) is formed over the substrate.
  • a metal oxide film that is, the metal oxide layer is also referred to as a metal oxide film; hereinafter the same
  • ⁇ Film Formation Method II> Using the coating composition described above, pressure filtration is performed with a membrane filter having a pore diameter of 0.5 ⁇ m, and a coating film is formed on the substrate by a spin coating method. The substrate is heated for 3 minutes on a hot plate set to 60 ° C. and dried. Next, ultraviolet rays are irradiated for 2 minutes at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). The amount of ultraviolet irradiation is 6000 mJ / cm 2 . After the ultraviolet irradiation, it is transferred into a hot air circulation oven set at 200 ° C. and baked for 30 minutes. Thus, a metal oxide film is formed on the substrate.
  • the film formation method III is a method of forming an acrylic film as a comparison target of a metal oxide film on a substrate.
  • an acrylic material composition (K7) for forming an acrylic film pressure filtration is performed with a membrane filter having a pore diameter of 0.5 ⁇ m, and a coating film is formed on the substrate by a spin coating method.
  • This substrate is heated for 2 minutes on a hot plate set at 90 ° C. and dried. Next, it is transferred into a hot air circulation oven set at 200 ° C. and baked for 30 minutes. Thus, an acrylic film is formed on the substrate.
  • an acrylic film (KM3) was formed on the silicon substrate by using the acrylic material composition K7, using the silicon substrate (100) as the substrate, and applying the above-described film forming method III.
  • the refractive index at a wavelength of 633 nm was measured using an ellipsometer (DVA-FLVW, manufactured by Mizoji Optical Co., Ltd.).
  • Table 1 shows the evaluation results of the refractive indexes of the metal oxide films (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KM1 and KM2) and the acrylic film (KM3). . From this table, it can be seen that the refractive index of the acrylic film is 1.50.
  • the description in the film formation method column in Table 1 shows the film formation methods (I to III) applied to the film formation of each film.
  • Pencil hardness was evaluated for the hardness of the metal oxide film.
  • a metal oxide film on the substrate KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KL5, KM1, and KM2 were formed.
  • an acrylic film (KM3) was formed on the glass substrate with ITO by using the acrylic material composition K7, using a glass substrate with ITO as the substrate, and applying the above-described film forming method III.
  • the pencil hardness was evaluated according to the test method (JIS K5400).
  • Table 1 shows the pencil hardness evaluation results of the metal oxide films (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KM1 and KM2) and the acrylic film (KM3). . From this table, the pencil hardness of the acrylic film (KM3) is 3H, and the metal oxide films (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KM1 and KM2) It can be seen that the hardness is low.
  • Transparent conductive film substrate A transparent conductive film substrate on which a patterned transparent conductive film is formed on a substrate is prepared.
  • a glass substrate is used as the substrate, and ITO is used as the transparent conductive film.
  • the transparent conductive film substrate 14 used in the touch panel 1 of the present embodiment described above can be used.
  • two types of transparent conductive film substrates having the same ITO pattern and different film thicknesses of 28 nm and 75 nm were prepared.
  • Example 1 A substrate in which a metal oxide film KL1 was formed to a thickness of 70 nm on a transparent conductive film substrate having an ITO thickness of 28 nm was produced. An optical adhesive was applied on this substrate, and a 0.7 mm soda lime glass substrate was bonded thereto. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 2 A touch panel for evaluation was produced in the same manner as in Example 1 except that the thickness of the metal oxide film KL1 was 80 nm (Example 2) and 90 nm (Example 3).
  • Example 4 A substrate in which a metal oxide film KL2 was formed to a thickness of 70 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 5 A touch panel for evaluation was produced in the same manner as in Example 4 except that the thickness of the metal oxide film KL2 was 80 nm (Example 5) and 90 nm (Example 6).
  • Example 7 A substrate in which a metal oxide film KL3 was formed to a thickness of 50 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 8 Except for the thickness of the metal oxide film KL3 being 70 nm (Example 8), 80 nm (Example 9), 120 nm (Example 10) and 150 nm (Example 11), the same method as in Example 7 was used. A touch panel for evaluation was produced.
  • Example 12 A substrate in which a metal oxide film KL4 was formed to a thickness of 80 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 13 A touch panel for evaluation was produced in the same manner as in Example 12 except that the thickness of the metal oxide film KL4 was 100 nm.
  • Example 14 A substrate in which a metal oxide film KL4 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 75 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 15 A substrate in which a metal oxide film KL5 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 75 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 16 A substrate in which a metal oxide film KL5-1 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 17 A substrate in which a metal oxide film KL5-2 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 18 A substrate in which a metal oxide film KL5-3 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • Example 3 A touch panel for evaluation was produced in the same manner as in Example 12 except that the thickness of the metal oxide film KL4 was 30 nm.
  • ⁇ Comparative example 4> A substrate in which a metal oxide film KM1 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • ⁇ Comparative Example 5> A substrate in which a metal oxide film KM2 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
  • a substrate in which a metal oxide film KM2 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 75 nm was produced.
  • An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded.
  • UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). .
  • the optical adhesive was hardened and the touch panel for evaluation was produced.
  • a substrate was prepared by forming an acrylic film KM3 with a thickness of 2 ⁇ m on a transparent conductive film substrate with an ITO film thickness of 75 nm.
  • An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded.
  • UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). .
  • the optical adhesive was hardened, and the touch panel for evaluation in which the acrylic film was formed was produced.
  • the result of the electrode pattern appearance evaluation is good, and the electrode pattern is not visible, or even if it is visible, it does not have a metal oxide film. It turns out that the degree has improved. Therefore, it has been found that by forming a metal oxide film having a refractive index and a film thickness adjusted on the transparent electrode, the appearance of the electrode pattern is improved and the electrode can be made inconspicuous. It was also found that the adhesion of each metal oxide film was higher than that of the acrylic film.
  • the electrode pattern does not stand out, and the adhesion between the constituent members is good. Therefore, it is useful as a touch panel for a display device that requires excellent appearance and high reliability.

Abstract

Provided is a capacitance type touch panel in which the decrease in display quality that occurs in a display device when the transparent electrode pattern is visually recognized can be mitigated. The touch panel (1) includes a metal oxide layer (5) disposed over first transparent electrodes (3) and second transparent electrodes (4). The metal oxide layer (5) is formed from a coating composition obtained by hydrolyzing and condensing one or more metal alkoxides of the formula M(OR)n (M represents a metal, R represents a C1-5 alkyl, and n indicates the valence of the M) in an organic solvent in the presence of a metal salt of the formula M2(X)m (M2 represents a metal, X represents a chlorine atom, nitric acid, sulfuric acid, acetic acid, oxalic acid, a sufamic acid, a sulfonic acid, acetoacetic acid, acetylacetonato, or a basic salt of any of these, and m indicates the valence of the M2) and adding a precipitation inhibitor thereto. The metal alkoxides preferably are a mixture of a titanium alkoxide and either a silicon alkoxide or a partial condensate thereof.

Description

タッチパネルTouch panel
 本発明は、タッチパネルに関し、より詳しくは、静電容量方式のタッチパネルに関する。 The present invention relates to a touch panel, and more particularly to a capacitive touch panel.
 近年、スマートフォンの普及とともに携帯電話の表示画面が大型化している。これに伴って、ディスプレイの表示を利用した入力操作が可能なタッチパネルの開発が盛んに行われている。タッチパネルによれば、押下げ式のスイッチなどの入力手段が不要となるため、表示画面の大型化が図れる。 In recent years, the display screen of mobile phones has become larger with the spread of smartphones. In connection with this, development of the touch panel which can perform input operation using the display of a display is performed actively. According to the touch panel, an input unit such as a push-down switch is not necessary, so that the display screen can be enlarged.
 タッチパネルは、指やペンなどが触れた操作面の接触位置を検出する。この機能を利用して、タッチパネルは入力装置として用いられる。接触位置の検出方式としては、例えば、抵抗膜方式や静電容量方式などがある。 The touch panel detects the contact position of the operation surface touched by a finger or pen. Using this function, the touch panel is used as an input device. Examples of the contact position detection method include a resistance film method and a capacitance method.
 抵抗膜方式では、表面に透明電極が設けられた2枚の基板を、互いの透明電極が対向するように離間して配置する。すなわち、2枚の基板を必要とするために薄型化が困難であるという問題がある。また、この方式では、一方の基板を押すことにより、この基板に設けられた透明電極と、他方の基板に設けられた透明電極とをショートさせて、押圧位置を検出する。したがって、指で押される側の基板に摩耗などが生じやすく、タッチパネルの耐久性を低下させるという問題もあった。 In the resistance film method, two substrates having transparent electrodes provided on the surface are arranged apart from each other so that the transparent electrodes face each other. That is, there is a problem that it is difficult to reduce the thickness because two substrates are required. In this method, by pressing one substrate, the transparent electrode provided on this substrate and the transparent electrode provided on the other substrate are short-circuited to detect the pressed position. Therefore, there is a problem that the substrate on the side pressed by the finger is easily worn and the durability of the touch panel is lowered.
 一方、静電容量方式は、基板を1枚にして薄型化を図れるため、携帯機器に好適な方式と言える。 On the other hand, the electrostatic capacity method can be said to be a method suitable for a portable device because it can be thinned by using a single substrate.
 特許文献1には、静電容量方式のタッチパネルが開示されている。このタッチパネルでは、X方向の座標を検出するための第1の透明電極と、Y方向の座標を検出するための第2の透明電極とが、誘電体であるガラスを介して配置されている。具体的には、1枚のガラス基板の一方の面にX方向の座標を検出するための電極が複数離間して配置され、他方の面にY方向の座標を検出するための電極が複数離間して配置される。すなわち、1枚の基板に各透明電極を設ける構成となっている。 Patent Document 1 discloses a capacitive touch panel. In this touch panel, a first transparent electrode for detecting coordinates in the X direction and a second transparent electrode for detecting coordinates in the Y direction are arranged via glass as a dielectric. Specifically, a plurality of electrodes for detecting coordinates in the X direction are arranged on one surface of a single glass substrate, and a plurality of electrodes for detecting coordinates in the Y direction are separated on the other surface. Arranged. That is, each transparent electrode is provided on one substrate.
 また、特許文献2には、別の構成の静電容量方式のタッチパネルが開示されている。このタッチパネルでは、透明基板の一方の面に、X方向の座標を検出するための第1の透明電極と、Y方向の座標を検出するための第2の透明電極とを配置し、それぞれの交差部に絶縁層を介在させて導通しないようにしている。かかる構造によれば、電極形成を基板の両面で行う必要がなくなる。 Patent Document 2 discloses a capacitive touch panel having another configuration. In this touch panel, a first transparent electrode for detecting coordinates in the X direction and a second transparent electrode for detecting coordinates in the Y direction are arranged on one surface of the transparent substrate, and intersect each other. An insulating layer is interposed in the part so as not to conduct. Such a structure eliminates the need for electrode formation on both sides of the substrate.
日本特開2003-173238号公報Japanese Unexamined Patent Publication No. 2003-173238 日本特開2010-28115号公報Japanese Unexamined Patent Publication No. 2010-28115
 タッチパネルは、液晶表示装置などの表示装置に組み込まれ、タッチ位置を検出可能なタッチパネル機能付き表示装置として使用される。タッチパネルを操作する者は、タッチパネルを通して表示装置を視認するため、透明電極には、光の透過特性に優れた部材が使用される。例えば、ITO(酸化インジウムスズ(Indium Tin Oxide)などの無機材料が使用されている。 The touch panel is incorporated in a display device such as a liquid crystal display device and is used as a display device with a touch panel function capable of detecting a touch position. Since a person who operates the touch panel visually recognizes the display device through the touch panel, a member having excellent light transmission characteristics is used for the transparent electrode. For example, an inorganic material such as ITO (Indium Tin Oxide) is used.
 しかしながら、静電容量方式のタッチパネルにおいては、ITOなどの透明電極の形成領域と透明電極の形成されていない領域とで反射率に違いが生じる。このため、透明電極のパターンが視認されてしまい、表示性を低下させるという問題があった。 However, in a capacitive touch panel, there is a difference in reflectivity between a region where a transparent electrode such as ITO is formed and a region where a transparent electrode is not formed. For this reason, the pattern of the transparent electrode is visually recognized, and there is a problem that the display property is lowered.
 また、従来のタッチパネルでは、ITOなどの透明電極の上にアクリル材料からなるアクリル層を設ける技術が知られている。このアクリル層は、透明電極を保護することを目的としており、屈折率特性については何ら考慮されていない。このため、アクリル層に電極パターンを目立たなくする効果は期待できない。 In the conventional touch panel, a technique is known in which an acrylic layer made of an acrylic material is provided on a transparent electrode such as ITO. The purpose of this acrylic layer is to protect the transparent electrode, and no consideration is given to the refractive index characteristics. For this reason, the effect of making the electrode pattern inconspicuous in the acrylic layer cannot be expected.
 また、アクリル層は、有機材料薄膜であるので保護膜としての硬度が十分でない。ITOなどの透明電極との密着性も弱く、タッチパネルの信頼性を低下させる一因となっている。さらに、アクリル層の場合、フレキソ印刷などの印刷技術を利用した膜形成が困難である。そのため、膜形成にあたっては、工程が複雑なフォトリソグラフィ技術の利用が必要となる。 Also, since the acrylic layer is an organic material thin film, the hardness as a protective film is not sufficient. Adhesiveness with a transparent electrode such as ITO is also weak, which is a cause of lowering the reliability of the touch panel. Furthermore, in the case of an acrylic layer, it is difficult to form a film using a printing technique such as flexographic printing. For this reason, it is necessary to use a photolithography technique with complicated processes in forming the film.
 本発明は、こうした点に鑑みてなされたものである。すなわち、本発明の目的は、透明電極パターンが視認されることによる表示装置の表示性低下を低減可能な静電容量方式のタッチパネルを提供することにある。 The present invention has been made in view of these points. In other words, an object of the present invention is to provide a capacitive touch panel that can reduce deterioration in display properties of a display device due to the visual recognition of a transparent electrode pattern.
 また、本発明の別の目的は、高い硬度と、透明電極との高い密着性と、印刷技術を利用した成膜とが可能な膜を、透明電極上に形成して構成された静電容量方式のタッチパネルを提供することにある。 Another object of the present invention is to provide a capacitance formed by forming on the transparent electrode a film that can be formed with high hardness, high adhesion with the transparent electrode, and film formation using printing technology. It is to provide a touch panel of the type.
 本発明の他の目的および利点は、以下の記載から明らかとなるであろう。 Other objects and advantages of the present invention will become apparent from the following description.
 本発明は、透明基板の操作領域に透明電極のパターンが形成された静電容量方式のタッチパネルであって、
 下記一般式(I)
   M(OR)         (I)
  (式中、Mは金属を、RはC1~C5のアルキル基を、nはMの価数を表す。)
で示される金属アルコキシドを、
 下記一般式(II)
   M(X)          (II)
  (式中、Mは金属を、Xは塩素、硝酸、硫酸、酢酸、蓚酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を、mはMの価数を表す。)
で示される金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物から形成される金属酸化物の層を透明電極上に配置したことを特徴とするものである。
The present invention is a capacitive touch panel in which a transparent electrode pattern is formed in an operation area of a transparent substrate,
The following general formula (I)
M 1 (OR) n (I)
(In the formula, M 1 represents a metal, R represents a C1-C5 alkyl group, and n represents a valence of M.)
A metal alkoxide represented by
The following general formula (II)
M 2 (X) m (II)
(Wherein M 2 is a metal, X is chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and m is the valence of M 2. To express.)
A metal oxide layer formed from a coating composition obtained by hydrolysis / condensation in an organic solvent in the presence of a metal salt and further adding a precipitation inhibitor is placed on the transparent electrode. It is a feature.
 また、本発明は、透明基板の操作領域に透明電極のパターンが形成された静電容量方式のタッチパネルであって、
 下記一般式(I)
   M(OR)         (I)
  (式中、Mは金属を、RはC1~C5のアルキル基を、nはMの価数を表す。)
で示される金属アルコキシドを、
 下記一般式(II-1)
   M(X)          (II-1)
  (式中、Mは金属を、Xは塩素、硝酸、硫酸、酢酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を、mはMの価数を表す。)
 および一般式(II-1)中で用いられる金属の蓚酸塩で示される金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物から形成される金属酸化物の層を透明電極上に配置したことを特徴とするものである。
Further, the present invention is a capacitive touch panel in which a transparent electrode pattern is formed in an operation region of a transparent substrate,
The following general formula (I)
M 1 (OR) n (I)
(In the formula, M 1 represents a metal, R represents a C1-C5 alkyl group, and n represents the valence of M 1. )
A metal alkoxide represented by
The following general formula (II-1)
M 2 (X) m (II-1)
(In the formula, M 2 represents a metal, X represents chlorine, nitric acid, sulfuric acid, acetic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and m represents the valence of M 2 . )
And a coating composition obtained by hydrolysis / condensation in an organic solvent in the presence of a metal salt represented by the metal oxalate used in formula (II-1), and further adding a precipitation inhibitor The metal oxide layer is disposed on the transparent electrode.
 本発明において、前記一般式(I)における金属Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、錫(Sn)および亜鉛(Zn)よりなる群から選ばれる少なくとも1種であることが好ましい。
 また、本発明において、前記一般式(II)および(II-1)における金属Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)およびセリウム(Ce)よりなる群から選ばれる少なくとも1種であることが好ましい。
 本発明において、前記金属酸化物の層は、屈折率が1.50~1.70であり、当該金属酸化物の層の厚さ(以下、層の厚さを膜厚とも称する)が40nm~170nmであることが好ましい。特に、前記金属酸化物の層は、屈折率が1.54~1.68であるのが好ましい。
In the present invention, the metal M 1 in the general formula (I) is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg). , At least one selected from the group consisting of tin (Sn) and zinc (Zn) is preferable.
In the present invention, the metal M 2 in the general formulas (II) and (II-1) is aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum. It is preferably at least one selected from the group consisting of (La), tantalum (Ta), yttrium (Y) and cerium (Ce).
In the present invention, the metal oxide layer has a refractive index of 1.50 to 1.70, and a thickness of the metal oxide layer (hereinafter, the thickness of the layer is also referred to as a film thickness) is 40 nm to It is preferably 170 nm. In particular, the metal oxide layer preferably has a refractive index of 1.54 to 1.68.
 本発明において、前記金属アルコキシドは、シリコンアルコキシドまたはその部分縮合物と、チタンアルコキシドとの混合物であることが好ましい。
 本発明において、前記析出防止剤は、N-メチル-ピロリドン、エチレングリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジエチレングリコール、プロピレングリコール、ヘキシレングリコールおよびこれらの誘導体よりなる群から選ばれる少なくとも1種であることが好ましい。
In the present invention, the metal alkoxide is preferably a mixture of silicon alkoxide or a partial condensate thereof and titanium alkoxide.
In the present invention, the precipitation inhibitor is at least one selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. preferable.
 本発明において、前記コーティング組成物に含まれる金属アルコキシドの金属原子(M)と、前記金属塩の金属原子(M)とのモル比は、
   0.01≦M/(M+M)≦0.7
であることが好ましい。
In the present invention, the molar ratio of the metal atom (M 1 ) of the metal alkoxide contained in the coating composition to the metal atom (M 2 ) of the metal salt is:
0.01 ≦ M 2 / (M 1 + M 2 ) ≦ 0.7
It is preferable that
 本発明において、前記金属塩は、金属硝酸塩、金属硫酸塩、金属酢酸塩、金属塩化物、金属蓚酸塩、金属スファミン酸塩、金属スルホン酸塩、金属アセト酢酸塩、金属アセチルアセトナートおよびこれらの塩基性塩よりなる群から選ばれる少なくとも1種であることが好ましい。 In the present invention, the metal salt includes metal nitrate, metal sulfate, metal acetate, metal chloride, metal oxalate, metal sphamate, metal sulfonate, metal acetoacetate, metal acetylacetonate, and these It is preferably at least one selected from the group consisting of basic salts.
 本発明において、前記有機溶媒は、アルキレングリコール類またはそのモノエーテル誘導体を含むことが好ましい。 In the present invention, the organic solvent preferably contains an alkylene glycol or a monoether derivative thereof.
 本発明において、前記透明電極は、少なくとも2つの異なる方向の位置を検出するための第1の透明電極と第2の透明電極とを有することが好ましい。 In the present invention, the transparent electrode preferably includes a first transparent electrode and a second transparent electrode for detecting positions in at least two different directions.
 本発明において、前記第1の透明電極と前記第2の透明電極とは、透明基板の同じ面に配置されることができる。 In the present invention, the first transparent electrode and the second transparent electrode may be disposed on the same surface of the transparent substrate.
 本発明において、前記第1の透明電極と前記第2の透明電極は、それぞれ、透明基板の異なる面に配置されることができる。 In the present invention, the first transparent electrode and the second transparent electrode may be disposed on different surfaces of the transparent substrate.
 本発明によれば、透明電極パターンが視認されることによる表示装置の表示性低下を低減可能な静電容量方式のタッチパネルが提供される。 According to the present invention, there is provided a capacitance type touch panel that can reduce deterioration in display properties of the display device due to the visual recognition of the transparent electrode pattern.
本実施の形態の第1の例であるタッチパネルの平面図である。It is a top view of the touch panel which is the 1st example of this Embodiment. 図1のA1-A1’線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line A1-A1 'of FIG. (a)~(d)は、本実施の形態の第1の例であるタッチパネルの製造方法を示す工程断面図である。(A)-(d) is process sectional drawing which shows the manufacturing method of the touchscreen which is the 1st example of this Embodiment. 本実施の形態の第2の例であるタッチパネルを示す平面図である。It is a top view which shows the touchscreen which is the 2nd example of this Embodiment. 図4のB1-B1’線に沿う断面図である。FIG. 5 is a sectional view taken along line B1-B1 ′ of FIG. 4. 本実施の形態の第3の例であるタッチパネルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the touchscreen which is the 3rd example of this Embodiment. 本実施の形態の第4の例であるタッチパネルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the touchscreen which is the 4th example of this Embodiment. 本実施の形態の第5の例であるタッチパネルの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the touchscreen which is the 5th example of this Embodiment.
 透明電極パターンが視認されることによって表示装置の表示性が低下するのは、透明電極の屈折率と基板の屈折率とが異なることに起因している。 The reason why the display performance of the display device is deteriorated when the transparent electrode pattern is visually recognized is that the refractive index of the transparent electrode is different from the refractive index of the substrate.
 透明電極は、通常、無機の金属酸化物であるITO(酸化インジウムスズ(Indium Tin Oxide)からなる。ITOの屈折率は、1.8~2.1程度である。一方、ガラス基板の屈折率は1.5程度であるので、ITOの屈折率とは大きく異なる。かかる屈折率の違いは、透明電極が形成された領域と、形成されていない領域との間に、光反射特性の違いを生じさせる。すなわち、干渉を伴う界面反射特性が、透明電極の形成された領域と、形成されない領域とで異なることにより、画面表示において電極パターンを目立たせる結果となる。 The transparent electrode is usually made of ITO (Indium Tin Oxide), which is an inorganic metal oxide.The refractive index of ITO is about 1.8 to 2.1. Is about 1.5, which is very different from the refractive index of ITO because of the difference in the light reflection characteristics between the region where the transparent electrode is formed and the region where the transparent electrode is not formed. That is, the interfacial reflection characteristics with interference differ between the region where the transparent electrode is formed and the region where the transparent electrode is not formed, which results in conspicuous electrode patterns in the screen display.
 そこで、本発明者は、電極パターンを目立たなくするべく鋭意検討を重ねた結果、基板上に配置された透明電極の上に、屈折率と膜厚とが所望の範囲内となるように制御された層を設けることが有効であることを見出した。このような層を設けることで、タッチパネルにおいて、意図しない電極パターンが視認される現象を抑えることができる。 Therefore, as a result of intensive studies to make the electrode pattern inconspicuous, the present inventor is controlled so that the refractive index and the film thickness are within a desired range on the transparent electrode arranged on the substrate. It was found that providing a layer was effective. By providing such a layer, a phenomenon in which an unintended electrode pattern is visually recognized on the touch panel can be suppressed.
 ところで、タッチパネルでは、上述したように、透明電極の上にアクリル層を設ける技術が知られている。このアクリル層は、透明電極を保護することを目的としており、屈折率特性については何ら考慮されていない。このため、アクリル層に電極パターンを目立たなくする効果は期待できない。また、アクリル層は、有機材料薄膜であるので硬度が低くITOとの密着性も弱いため機械的強度が十分でない。さらには、タッチパネルの額縁部の配線部分に絶縁膜を配してはならないため、パターニングが必要であるが、フレキソ印刷などの印刷技術を利用した膜形成が困難である。それ故、膜形成にあたっては、工程が複雑なフォトリソグラフィ技術の利用が必要になる。 By the way, as described above, a technique for providing an acrylic layer on a transparent electrode is known for touch panels. The purpose of this acrylic layer is to protect the transparent electrode, and no consideration is given to the refractive index characteristics. For this reason, the effect of making the electrode pattern inconspicuous in the acrylic layer cannot be expected. In addition, since the acrylic layer is an organic material thin film, the mechanical strength is not sufficient because the acrylic layer has low hardness and low adhesion to ITO. Furthermore, since an insulating film must not be disposed on the wiring portion of the frame portion of the touch panel, patterning is necessary, but film formation using a printing technique such as flexographic printing is difficult. Therefore, in forming a film, it is necessary to use a photolithography technique having a complicated process.
 こうしたことから、上述の屈折率と膜厚とが所望の範囲内となるよう制御された層は、アクリル層に替わるものであることが好ましい。すなわち、透明電極を保護する機能、具体的には、機械的強度に優れ、指などによる多数回の押圧から透明電極を保護できることが望ましい。また、フレキソ印刷などの印刷技術を用いて、基板上に透明電極パターンを簡便に形成できることが好ましい。 For these reasons, the layer whose refractive index and film thickness are controlled to be within the desired ranges is preferably an acrylic layer. That is, it is desirable that the transparent electrode has a function of protecting the transparent electrode, specifically, excellent mechanical strength and can be protected from multiple pressings with a finger or the like. Moreover, it is preferable that a transparent electrode pattern can be easily formed on a substrate using a printing technique such as flexographic printing.
 本発明者は、上記性能を満足する層の形成には、金属アルコキシドを金属塩の存在下で有機溶剤中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物を用いることが好適であることを見出した。このコーティング組成物を用いて形成される金属酸化物層を透明電極の上(すなわち、透明電極を覆って)に設けることにより、タッチパネルにおいて、透明電極を保護するとともに、電極パターンを目立たなくすることができる。 The present inventor uses a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt and adding a precipitation inhibitor to form a layer satisfying the above performance. Has been found to be suitable. By providing a metal oxide layer formed using this coating composition on the transparent electrode (that is, covering the transparent electrode), in the touch panel, the transparent electrode is protected and the electrode pattern is made inconspicuous. Can do.
 以下では、まず、本実施の形態のタッチパネルについて説明する。次いで、このタッチパネルに適用される金属酸化物層と、この金属酸化物層の形成に用いられるコーティング組成物とについて述べる。 Hereinafter, first, the touch panel of the present embodiment will be described. Next, a metal oxide layer applied to the touch panel and a coating composition used for forming the metal oxide layer will be described.
<タッチパネル>
 図1および図2は、本実施の形態の第1の例であるタッチパネルの構成図であり、図1は平面図、図2は図1のA1-A1’線に沿う断面図である。
<Touch panel>
1 and 2 are configuration diagrams of a touch panel as a first example of the present embodiment. FIG. 1 is a plan view, and FIG. 2 is a cross-sectional view taken along line A1-A1 ′ of FIG.
 図1に示すように、タッチパネル1は、透明な基板2と、X方向の座標を検出するための第1の透明電極3と、Y方向の座標を検出するための第2の透明電極4とを有する。第1の透明電極3と第2の透明電極4は、基板2の同一面に設けられた同一層から形成される。 As shown in FIG. 1, the touch panel 1 includes a transparent substrate 2, a first transparent electrode 3 for detecting coordinates in the X direction, and a second transparent electrode 4 for detecting coordinates in the Y direction. Have The first transparent electrode 3 and the second transparent electrode 4 are formed from the same layer provided on the same surface of the substrate 2.
 基板2は、ガラス、アクリル樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニリデン樹脂、ポリメチルメタクリレート樹脂、トリアセチルセルロース樹脂およびポリエチレンナフタレート樹脂などの透明材料を用いて構成される。特に、後述する金属酸化物層5、6の形成に好適な耐熱性と耐薬品性能を備えた材料を選択することが好ましい。基板2の厚みは、ガラスを用いた場合には、例えば0.1mm~2mm程度であり、樹脂フィルムを用いた場合には、例えば10μm~2000μm程度である。 The substrate 2 is made of a transparent material such as glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, triacetyl cellulose resin, and polyethylene naphthalate resin. In particular, it is preferable to select a material having heat resistance and chemical resistance suitable for forming the metal oxide layers 5 and 6 described later. The thickness of the substrate 2 is, for example, about 0.1 mm to 2 mm when glass is used, and is about 10 μm to 2000 μm, for example, when a resin film is used.
 第1の透明電極3と第2の透明電極4は、タッチパネル1の操作面に相当する位置に形成されている。そして、第1の透明電極3は、X方向に沿った複数の領域に分離して設けられており、第2の透明電極4は、Y方向に沿った複数の領域に分離して設けられている。このような構造とすることで、タッチ位置検出の精度を高めることができる。 The first transparent electrode 3 and the second transparent electrode 4 are formed at positions corresponding to the operation surface of the touch panel 1. The first transparent electrode 3 is provided separately in a plurality of regions along the X direction, and the second transparent electrode 4 is provided separately in a plurality of regions along the Y direction. Yes. With such a structure, the accuracy of touch position detection can be increased.
 図1において、第1の透明電極3と第2の透明電極4は、それぞれ複数のパッド部21を構成要素としており、各パッド部21は、それぞれが平面的に隔離され、且つ、各パッド部21間の隙間が少なくなるように配置される。すなわち、X軸方向に列をなすパッド部21と、Y軸方向に列をなすパッド部21とは、これらが互いに交差する領域が可能な限り小さくなるようにして、操作面の全体に配置される。パッド部21は、例えば、菱形、矩形および六角形などの多角形形状とすることができ、これらは、例えば、互い違いまたは直列状に配置される。また、分離(離間)した電極の本数も図1の例に限られるものではなく、操作面の大きさと要求される検出位置の精度に応じて決定される。 In FIG. 1, each of the first transparent electrode 3 and the second transparent electrode 4 includes a plurality of pad portions 21, and each pad portion 21 is isolated in a planar manner, and each pad portion It arrange | positions so that the clearance gap between 21 may become small. That is, the pad portions 21 that form a row in the X-axis direction and the pad portions 21 that form a row in the Y-axis direction are arranged on the entire operation surface so that the region where they intersect each other is as small as possible. The The pad part 21 can be made into polygonal shapes, such as a rhombus, a rectangle, and a hexagon, for example, These are arrange | positioned alternately or in series, for example. Further, the number of separated (separated) electrodes is not limited to the example of FIG. 1 and is determined according to the size of the operation surface and the required detection position accuracy.
 第1の透明電極3および第2の透明電極4は、少なくとも可視光に対する透過率が高く、導電性を有する透明電極材料を用いて形成される。このような導電性を有する透明電極材料としては、例えば、ITO(酸化インジウム錫、Indium Tin Oxide)、IZO(Indium Zinc Oxide)またはZnO(酸化亜鉛)などが挙げられる。ITOを用いる場合には、十分な導電性を確保できるよう、厚さを10~200nmとすることが好ましい。 The first transparent electrode 3 and the second transparent electrode 4 are formed using a transparent electrode material having a high transmittance for at least visible light and having conductivity. Examples of such a transparent electrode material having conductivity include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and ZnO (Zinc Oxide). When ITO is used, the thickness is preferably 10 to 200 nm so as to ensure sufficient conductivity.
 第1の透明電極3と第2の透明電極4は、例えば、次のようにして形成される。 The first transparent electrode 3 and the second transparent electrode 4 are formed as follows, for example.
 まず、スパッタリング法、真空蒸着法、イオンプレーティング法、スプレー法、ディップ法またはCVD(Chemical Vapor Deposition)法などの中から、下地となる基板2の材質を考慮して選択した方法によって透明導電膜を成膜する。次に、上記透明導電膜をフォトリソグラフィ技術を用いてパターニングする。あるいは、有機溶剤に上記材料からなる導電性フィラーなどを分散させた塗料を用い、印刷法によって所望のパターンを形成してもよい。 First, the transparent conductive film is selected by a method selected in consideration of the material of the substrate 2 as a base from sputtering, vacuum deposition, ion plating, spray, dip, or CVD (Chemical Vapor Deposition). Is deposited. Next, the transparent conductive film is patterned using a photolithography technique. Alternatively, a desired pattern may be formed by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent.
 透明電極の形成工程で重要となるのは、膜厚を精度良く制御できるかどうかである。したがって、形成にあたっては、特に、所望の膜厚とすることができるとともに、透明性に優れた低抵抗の膜を形成可能な方法を選択することが好ましい。 An important factor in the transparent electrode formation process is whether the film thickness can be accurately controlled. Therefore, it is preferable to select a method that can form a desired film thickness and that can form a low-resistance film excellent in transparency.
 図1および図2に示すように、第1の透明電極3と第2の透明電極4とは、基板2の同一面上に形成されており、同一層をなしている。このため、第1の透明電極3と第2の透明電極4とは、複数の箇所で交差しており、交差部18を形成している。 As shown in FIG. 1 and FIG. 2, the first transparent electrode 3 and the second transparent electrode 4 are formed on the same surface of the substrate 2 and form the same layer. For this reason, the 1st transparent electrode 3 and the 2nd transparent electrode 4 cross | intersect in several places, and form the cross | intersection part 18. FIG.
 本実施の形態では、交差部において、第1の透明電極と第2の透明電極のいずれか一方が他方と接触しないよう分断されている。すなわち、図2に示すように、複数の交差部18のいずれにおいても、第2の透明電極4は繋がっているが、第1の透明電極3は分断されている。そして、第1の透明電極3の分断箇所を接続させるために、架橋電極20が設けられており、架橋電極20と第2の透明電極4の間には、絶縁性物質からなる層間絶縁膜19が設けられている。以下、図1および図2を参照して、さらに詳述する。 In the present embodiment, at the intersection, one of the first transparent electrode and the second transparent electrode is divided so as not to contact the other. That is, as shown in FIG. 2, the second transparent electrode 4 is connected at any of the plurality of intersecting portions 18, but the first transparent electrode 3 is divided. And in order to connect the parting part of the 1st transparent electrode 3, the bridging electrode 20 is provided and the interlayer insulation film 19 which consists of an insulating substance between the bridging electrode 20 and the 2nd transparent electrode 4 is provided. Is provided. Hereinafter, further details will be described with reference to FIGS. 1 and 2.
 図2に示すように、交差部18における第2の透明電極4の上には、光透過性の層間絶縁膜19が形成されている。層間絶縁膜19には、SiOなどの無機材料や、感光性アクリル樹脂などの有機材料を用いることができる。SiOを用いる場合、例えば、マスクを用いたスパッタリング法によって、交差部18における第2の透明電極4の上にのみSiO膜が形成された構造とすることができる。また、感光性アクリル樹脂を用いる場合にも、フォトリソグラフィ法を利用して、同様の構造を形成することができる。 As shown in FIG. 2, a light transmissive interlayer insulating film 19 is formed on the second transparent electrode 4 at the intersection 18. For the interlayer insulating film 19, an inorganic material such as SiO 2 or an organic material such as a photosensitive acrylic resin can be used. When SiO 2 is used, for example, a structure in which an SiO 2 film is formed only on the second transparent electrode 4 at the intersection 18 by a sputtering method using a mask can be used. Moreover, also when using a photosensitive acrylic resin, the same structure can be formed using the photolithographic method.
 層間絶縁膜19の上層には、架橋電極20が設けられている。架橋電極20は、交差部18で分断されている第1の透明電極3同士を電気的に接続するものであり、光透過性の材料によって形成されている。架橋電極20を設けることで、第1の透明電極3をY方向に電気的に接続することができる。 In the upper layer of the interlayer insulating film 19, a bridging electrode 20 is provided. The bridging electrode 20 is for electrically connecting the first transparent electrodes 3 separated by the intersecting portion 18 and is formed of a light transmissive material. By providing the bridging electrode 20, the first transparent electrode 3 can be electrically connected in the Y direction.
 図1に示すように、第1の透明電極3と第2の透明電極4は、菱形のパッド部21を縦または横に複数並べた形状をしている。第2の透明電極4において、交差部18に位置する接続部分は、第2の透明電極4の菱形のパッド部21より幅の狭い形状になっている。また、架橋電極20も、菱形のパッド部21より幅の狭い形状で短冊状に形成されている。 As shown in FIG. 1, the first transparent electrode 3 and the second transparent electrode 4 have a shape in which a plurality of rhombus pad portions 21 are arranged vertically or horizontally. In the second transparent electrode 4, the connection portion located at the intersecting portion 18 has a shape narrower than the rhomboid pad portion 21 of the second transparent electrode 4. The bridging electrode 20 is also formed in a strip shape having a narrower width than the diamond-shaped pad portion 21.
 図1および図2に示すように、本実施の形態のタッチパネル1においては、第1の透明電極3と第2の透明電極4の上に(すなわち、第1の透明電極3と第2の透明電極4を覆って)金属酸化物層5が形成されている。そして、タッチパネル1の操作面に相当する部分における透明電極の形成領域と非形成領域とを被覆している。金属酸化物層5は硬度が高く、第1の透明電極3および第2の透明電極4との密着性に優れる。 As shown in FIG. 1 and FIG. 2, in the touch panel 1 of the present embodiment, the first transparent electrode 3 and the second transparent electrode 4 are placed on the first transparent electrode 3 and the second transparent electrode 4 (that is, the first transparent electrode 3 and the second transparent electrode 4). A metal oxide layer 5 is formed (covering the electrode 4). And the formation area and non-formation area | region of the transparent electrode in the part corresponded to the operation surface of the touch panel 1 are coat | covered. The metal oxide layer 5 has a high hardness and is excellent in adhesion with the first transparent electrode 3 and the second transparent electrode 4.
 金属酸化物層5の形成には、金属アルコキシドを金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物が用いられる。このコーティング組成物の詳細については、後に説明する。 For the formation of the metal oxide layer 5, a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor is used. It is done. Details of the coating composition will be described later.
 タッチパネル1においては、本明細書の実施例欄で述べる検討結果に基づき、第1の透明電極3と第2の透明電極4の各電極パターンが見立たないように、金属酸化物層5の屈折率と膜厚が選択される。具体的には、金属酸化物層5の屈折率は1.50~1.70の範囲内が好ましく、より好ましくは1.54~1.68の範囲内である。膜厚は40nm~170nmの範囲内であることが好ましい。そして、金属酸化物層5の屈折率が1.54以上で1.60より小さい場合、膜厚は60nm~150nmの範囲内であることがさらに好ましい。また、金属酸化物層5の屈折率が1.60以上で1.68以下の範囲内である場合、膜厚は40nm~170nmの範囲内であることがさらに好ましい。なお、金属酸化物層5は、第1の透明電極3と第2の透明電極4とが導通しないように、絶縁性であり、さらに可視光透明性の高い金属酸化物層から選ばれる。
 タッチパネル1においては、例えば、金属酸化物層5は、シリコンアルコキシドとチタンアルコキシドとを含むコーティング組成物から形成されたものであり、屈折率は1.60、膜厚は80nmである。
In the touch panel 1, the refraction of the metal oxide layer 5 is performed so that the electrode patterns of the first transparent electrode 3 and the second transparent electrode 4 are not conspicuous based on the examination results described in the example column of this specification. The rate and film thickness are selected. Specifically, the refractive index of the metal oxide layer 5 is preferably in the range of 1.50 to 1.70, more preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm. When the refractive index of the metal oxide layer 5 is 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. When the refractive index of the metal oxide layer 5 is in the range of 1.60 or more and 1.68 or less, the film thickness is more preferably in the range of 40 nm to 170 nm. The metal oxide layer 5 is selected from metal oxide layers that are insulative and have high visible light transparency so that the first transparent electrode 3 and the second transparent electrode 4 do not conduct.
In the touch panel 1, for example, the metal oxide layer 5 is formed of a coating composition containing silicon alkoxide and titanium alkoxide, and has a refractive index of 1.60 and a film thickness of 80 nm.
 図2に示すように、タッチパネル1は、第1の透明電極3などが形成された面と、ディスプレイパネル10の視認側の最上位層とを、アクリル系光硬化性樹脂などを用いた接着層9を介して重ね合わせることで、1つの表示装置とすることができる。ここで、接着層9は、金属酸化物層5の上に設けられる。 As shown in FIG. 2, the touch panel 1 has an adhesive layer using an acrylic photocurable resin or the like on the surface on which the first transparent electrode 3 and the like are formed and the uppermost layer on the viewing side of the display panel 10. By superimposing via 9, it can be set as one display apparatus. Here, the adhesive layer 9 is provided on the metal oxide layer 5.
 上記の表示装置は、タッチパネル1と、ディスプレイパネル10とを有し、必要に応じてバックライトを有することができる。図2では詳細を省略しているが、ディスプレイパネル10は、公知の表示装置と同様の構成とすることができる。例えば、液晶表示装置の場合、ディスプレイパネル10は、2枚の透明基板の間に液晶層が挟持された構造とすることができる。各透明基板の液晶層に接する側とは反対の側には、それぞれ偏光板を設けることができる。また、各透明基板には、液晶の状態を制御するためにセグメント電極やコモン電極を形成することができる。そして、液晶層は、各透明基板とシール材とによって封止される。 The display device described above includes the touch panel 1 and the display panel 10, and may have a backlight as necessary. Although details are omitted in FIG. 2, the display panel 10 can have the same configuration as a known display device. For example, in the case of a liquid crystal display device, the display panel 10 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer. In addition, a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal. The liquid crystal layer is sealed with each transparent substrate and a sealing material.
 図1に示すように、タッチパネル1において、第1の透明電極3と第2の透明電極4の端部には、それぞれ端子(図示されない)が設けられており、その端子から複数の引き出し配線11が引き出される。引き出し配線11は、銀、アルミニウム、クロム、銅、モリブデンのほか、Mo-Nb(モリブデン-ニオブ)合金など、これら金属を含む合金などを使用した不透明な金属配線とすることができる。引き出し配線11は、第1の透明電極3と第2の透明電極4への電圧印加や、タッチ位置を検出する制御回路(図示されない)に接続される。 As shown in FIG. 1, in the touch panel 1, terminals (not shown) are provided at end portions of the first transparent electrode 3 and the second transparent electrode 4, and a plurality of lead wires 11 are provided from the terminals. Is pulled out. The lead-out wiring 11 can be an opaque metal wiring using silver, aluminum, chromium, copper, molybdenum, or an alloy containing these metals such as Mo—Nb (molybdenum-niobium) alloy. The lead-out wiring 11 is connected to a control circuit (not shown) that detects voltage application and a touch position to the first transparent electrode 3 and the second transparent electrode 4.
 以上の構成を有するタッチパネル1では、複数の第1の透明電極3および第2の透明電極4に順次電圧を印加して電荷を与える。操作面のいずれかの箇所に導電体である指が触れると、指先と、第1の透明電極3および第2の透明電極4との間の静電容量結合によってコンデンサが形成される。したがって、指先の接触位置における電荷の変化を捉えることで、いずれの箇所に指が触れたのかを検出することができる。 In the touch panel 1 having the above configuration, a voltage is sequentially applied to the plurality of first transparent electrodes 3 and the second transparent electrodes 4 to give an electric charge. When a finger as a conductor touches any part of the operation surface, a capacitor is formed by capacitive coupling between the fingertip and the first transparent electrode 3 and the second transparent electrode 4. Therefore, it is possible to detect which part of the finger touched by capturing the change in the charge at the contact position of the fingertip.
 また、タッチパネル1は、制御回路(図示されない)の制御により、第1の透明電極3と第2の透明電極4のいずれか一方に選択的に電圧を印加することもできる。この場合、電圧が印加された透明電極上には電界が形成され、この状態で指などが触れると、接触位置は人の体の静電容量を介して接地されることになる。その結果、対象となる第1の透明電極3または第2の透明電極4の端子(図示されない)と接触位置との間に抵抗値の変化が生じる。この抵抗値は、接触位置と、対象となる第1の透明電極3または第2の透明電極4の端子との距離に比例するため、接触位置と、対象となる第1の透明電極3または第2の透明電極4の端子との間に流れる電流値を制御回路が検出することで、接触位置の座標を求めることができる。 The touch panel 1 can also selectively apply a voltage to either the first transparent electrode 3 or the second transparent electrode 4 under the control of a control circuit (not shown). In this case, an electric field is formed on the transparent electrode to which a voltage is applied, and when a finger or the like touches in this state, the contact position is grounded via the capacitance of the human body. As a result, a change in resistance value occurs between the terminal (not shown) of the target first transparent electrode 3 or second transparent electrode 4 and the contact position. Since this resistance value is proportional to the distance between the contact position and the terminal of the first transparent electrode 3 or the second transparent electrode 4 as a target, the contact position and the first transparent electrode 3 or the first transparent electrode 3 as a target. The coordinates of the contact position can be obtained by the control circuit detecting the current value flowing between the two transparent electrodes 4.
 本実施の形態のタッチパネル1では、第1および第2の透明電極3、4上に設けられた金属酸化物層5の効果により、操作面において電極パターンが目立つことが抑制されている。 In the touch panel 1 of the present embodiment, the conspicuous electrode pattern on the operation surface is suppressed by the effect of the metal oxide layer 5 provided on the first and second transparent electrodes 3 and 4.
 次に、本実施の形態のタッチパネル1の製造方法について説明する。 Next, a method for manufacturing the touch panel 1 of the present embodiment will be described.
 図3(a)~(d)は、本実施の形態の第1の例であるタッチパネルの製造方法を示す工程断面図である。 3 (a) to 3 (d) are process cross-sectional views illustrating a manufacturing method of a touch panel as a first example of the present embodiment.
 まず、ガラス基板などの透明な基板2を準備する。基板2は、必要に応じて所望の形状にカットし、洗浄する。また、基板2と透明導電膜の間にSiOx、SiNx、SiONなどの中間層が形成される場合もある。次いで、基板2の一面に透明導電膜を形成する。透明導電膜は、例えばITOであり、スパッタ法や真空蒸着法などを用いて10~200nmの厚さで成膜する。次いで、透明導電膜の上層側に感光性樹脂などからなるエッチングマスクを形成した状態で、透明導電膜をエッチングし、第1の透明電極3および第2の透明電極4をパターニング形成する。エッチングマスクを除することにより、図3(a)に示すような透明導電膜基板14が得られる。 First, a transparent substrate 2 such as a glass substrate is prepared. The substrate 2 is cut into a desired shape and washed as necessary. Further, an intermediate layer such as SiOx, SiNx, or SiON may be formed between the substrate 2 and the transparent conductive film. Next, a transparent conductive film is formed on one surface of the substrate 2. The transparent conductive film is, for example, ITO, and is formed to a thickness of 10 to 200 nm using a sputtering method, a vacuum deposition method, or the like. Next, the transparent conductive film is etched in a state where an etching mask made of a photosensitive resin or the like is formed on the upper layer side of the transparent conductive film, and the first transparent electrode 3 and the second transparent electrode 4 are formed by patterning. By removing the etching mask, a transparent conductive film substrate 14 as shown in FIG. 3A is obtained.
 ここで、透明導電膜基板14の交差部18において、第2の透明電極4は接続部分を介して繋がっているが、第1の透明電極3は分断されている。 Here, at the intersecting portion 18 of the transparent conductive film substrate 14, the second transparent electrode 4 is connected through the connection portion, but the first transparent electrode 3 is divided.
 次に、第1の透明電極3および第2の透明電極4が設けられている側に、感光性の樹脂を塗布した後に露光現像することによって、第2の透明電極4の接続部分に層間絶縁膜19を形成する(図3(b))。層間絶縁膜19を形成するための感光性樹脂としては、透明性と耐熱性を有するものが用いられる。例えば、アクリル樹脂などが使用可能である。尚、SiOを用いて層間絶縁膜19を形成する場合には、マスクを用いたスパッタリング法によって、同様の構造とすることができる。 Next, a photosensitive resin is applied to the side on which the first transparent electrode 3 and the second transparent electrode 4 are provided, and then exposed and developed, whereby an interlayer insulation is formed at the connection portion of the second transparent electrode 4. A film 19 is formed (FIG. 3B). As the photosensitive resin for forming the interlayer insulating film 19, a resin having transparency and heat resistance is used. For example, an acrylic resin can be used. When the interlayer insulating film 19 is formed using SiO 2 , the same structure can be obtained by sputtering using a mask.
 次に、層間絶縁膜19の上に透明導電膜を形成した後、この透明導電膜の表面に感光性樹脂からなるエッチングマスクを形成した状態で、透明導電膜をエッチングする。その後、エッチングマスクを除去し、層間絶縁膜19の上層に、第1の透明電極3の分断部分を繋ぐように架橋電極20を形成する。これにより、図3(c)に示す構造が得られる。層間絶縁膜19の上に形成される透明導電膜としては、例えばITO膜が挙げられ、その場合、架橋電極20もITOにより形成することが好ましい。 Next, after forming a transparent conductive film on the interlayer insulating film 19, the transparent conductive film is etched with an etching mask made of a photosensitive resin formed on the surface of the transparent conductive film. Thereafter, the etching mask is removed, and the bridging electrode 20 is formed on the interlayer insulating film 19 so as to connect the divided portions of the first transparent electrode 3. Thereby, the structure shown in FIG. 3C is obtained. An example of the transparent conductive film formed on the interlayer insulating film 19 is an ITO film. In that case, the bridging electrode 20 is also preferably formed of ITO.
 尚、前述した引き出し配線11については、後の工程で銀インクなどを使用して形成される。しかし、上記工程で透明導電膜をエッチングする際に、第1の透明電極3および第2の透明電極4の外周縁の各々に沿うように透明導電膜を残し、引き出し配線11を形成することも可能である。 Note that the above-described lead-out wiring 11 is formed using silver ink or the like in a later process. However, when the transparent conductive film is etched in the above step, the transparent conductive film is left along the outer peripheral edges of the first transparent electrode 3 and the second transparent electrode 4 to form the lead-out wiring 11. Is possible.
 次に、第1の透明電極3、第2の透明電極4および架橋電極20の上に、金属酸化物層形成用のコーティング組成物をフレキソ印刷により塗布する。ここで、コーティング組成物は、金属アルコキシドを金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるものである。次いで、コーティング組成物の塗膜が形成された基板2を40~150℃(例えば、60℃)の、例えばホットプレート上で乾燥する。その後、100~300℃(例えば、200℃)の、例えばオーブン内で加熱して、第1の透明電極3、第2の透明電極4および架橋電極20の上に金属酸化物層5を形成する。これにより、図3(d)に示すタッチパネル基板30が得られる。尚、基板2上の塗膜を、例えばホットプレート上で乾燥した後、この塗膜に紫外線を照射してから、オーブン内で加熱してもよい。 Next, a coating composition for forming a metal oxide layer is applied on the first transparent electrode 3, the second transparent electrode 4, and the bridging electrode 20 by flexographic printing. Here, the coating composition is obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Next, the substrate 2 on which the coating film of the coating composition has been formed is dried on, for example, a hot plate at 40 to 150 ° C. (eg, 60 ° C.). Thereafter, the metal oxide layer 5 is formed on the first transparent electrode 3, the second transparent electrode 4, and the bridging electrode 20 by heating in, for example, an oven at 100 to 300 ° C. (for example, 200 ° C.). . Thereby, the touch panel board | substrate 30 shown in FIG.3 (d) is obtained. In addition, after drying the coating film on the board | substrate 2, for example on a hotplate, after irradiating this coating film with an ultraviolet-ray, you may heat in oven.
 次いで、第1の透明電極3と第2の透明電極4の端部の端子(図示されない)から銀インクなどで引き出し配線11を形成してタッチパネル1とする。タッチパネル1は、引き出し配線11を介して、タッチパネルの制御回路(図示されない)に接続される。 Next, a lead-out wiring 11 is formed with silver ink or the like from terminals (not shown) at the ends of the first transparent electrode 3 and the second transparent electrode 4 to form the touch panel 1. The touch panel 1 is connected to a control circuit (not shown) of the touch panel via the lead wiring 11.
 完成したタッチパネル1は、アクリル系透明接着剤などの接着層9を介して、ディスプレイパネル10の前面に取り付けられる。このとき、必要に応じて、基板2やディスプレイパネル10の角にアライメントマークを設けて位置合わせを行う。 The completed touch panel 1 is attached to the front surface of the display panel 10 through an adhesive layer 9 such as an acrylic transparent adhesive. At this time, alignment is performed by providing alignment marks at the corners of the substrate 2 and the display panel 10 as necessary.
 ディスプレイパネル10に取り付けられたタッチパネル1では、金属酸化物層5が設けられていることにより、第1の透明電極3および第2の透明電極4の電極パターンがタッチパネル1の操作面上で視認され難い状態となる。 In the touch panel 1 attached to the display panel 10, the electrode pattern of the first transparent electrode 3 and the second transparent electrode 4 is visually recognized on the operation surface of the touch panel 1 by providing the metal oxide layer 5. It becomes difficult.
 次に、本実施の形態の別の例であるタッチパネル101について説明する。 Next, a touch panel 101 which is another example of the present embodiment will be described.
 図4および図5は、本実施の形態の第2の例であるタッチパネルを示し、図4は平面図、図5は図4のB1-B1’線に沿う断面図である。 4 and 5 show a touch panel as a second example of the present embodiment, FIG. 4 is a plan view, and FIG. 5 is a cross-sectional view taken along line B1-B1 'of FIG.
 図4に示すように、タッチパネル101は、透明な基板102と、基板102の一面に形成されたX方向の座標を検出するための第1の透明電極103と、基板102の他面に形成されたY方向の座標を検出するための第2の透明電極104とを有する。尚、下記説明においては、基板102の一方の面が上方、基板102の他方の面が下方になる。そして、この場合、基板102の他方の面がディスプレイパネル110に装着される側の面となる。 As shown in FIG. 4, the touch panel 101 is formed on a transparent substrate 102, a first transparent electrode 103 for detecting coordinates in the X direction formed on one surface of the substrate 102, and the other surface of the substrate 102. And a second transparent electrode 104 for detecting coordinates in the Y direction. In the following description, one surface of the substrate 102 is upward and the other surface of the substrate 102 is downward. In this case, the other surface of the substrate 102 is a surface on which the display panel 110 is mounted.
 基板102は誘電体基板である。基板102の材料としては、ガラス、アクリル樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニリデン樹脂、ポリメチルメタクリレート樹脂およびポリエチレンナフタレート樹脂などの透明材料が使用される。特に、後述する金属酸化物層105、106の形成に好適な耐熱性と耐薬品性能を備えた材料を選択することが好ましい。基板102の厚みは、ガラスであれば約0.1mm~2mmとすることができ、樹脂フィルムであれば10μm~2000μmとすることができる。 The substrate 102 is a dielectric substrate. As the material of the substrate 102, transparent materials such as glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, and polyethylene naphthalate resin are used. In particular, it is preferable to select a material having heat resistance and chemical resistance suitable for forming the metal oxide layers 105 and 106 described later. The thickness of the substrate 102 can be about 0.1 mm to 2 mm for glass, and can be 10 μm to 2000 μm for a resin film.
 図4に示すように、第1の透明電極103と第2の透明電極104は、それぞれ細長い長方形の電極からなる。第1の透明電極103はX方向に伸び、第2の透明電極104はY方向に伸び、それぞれストライプ状に一定間隔で配設されている。また、第1の透明電極103と第2の透明電極104は、互いに直交するように配設されており、全体として格子状となっている。 As shown in FIG. 4, the first transparent electrode 103 and the second transparent electrode 104 are each composed of an elongated rectangular electrode. The first transparent electrode 103 extends in the X direction, and the second transparent electrode 104 extends in the Y direction. The first transparent electrode 103 is arranged in a stripe shape at regular intervals. Further, the first transparent electrode 103 and the second transparent electrode 104 are disposed so as to be orthogonal to each other, and are in a lattice shape as a whole.
 第1の透明電極103および第2の透明電極104は、少なくとも可視光に対する透過率が高く、導電性を有する透明電極材料を用いて形成される。このような導電性を有する透明電極材料としては、例えば、ITOまたはZnOなどを用いることができる。ITOを用いる場合には、十分な導電性を確保できるよう、厚さを5~100nmとすることが好ましい。 The first transparent electrode 103 and the second transparent electrode 104 are formed using a transparent electrode material that has high transmittance for at least visible light and has conductivity. As such a transparent electrode material having conductivity, for example, ITO or ZnO can be used. When ITO is used, the thickness is preferably 5 to 100 nm so that sufficient conductivity can be secured.
 第1の透明電極103と第2の透明電極104は、スパッタリング法、真空蒸着法、イオンプレーティング法、スプレー法、ディップ法またはCVD法などから、下地となる透明な基板102を考慮して最適な方法を選択して形成される。 The first transparent electrode 103 and the second transparent electrode 104 are optimal in consideration of the transparent substrate 102 as a base from sputtering method, vacuum deposition method, ion plating method, spray method, dip method or CVD method. It is formed by selecting a proper method.
 例えば、面状に形成した透明電極をフォトリソグラフィ技術を利用してエッチング法でパターニングする方法、あるいは、有機溶剤に上記材料からなる導電性フィラーなどを分散した塗料を用い、印刷法により直接、所望のパターンに形成する方法などがある。透明電極の形成工程で重要となるのは、膜厚を精度良く制御できるかどうかである。したがって、形成にあたっては、特に、所望の膜厚とすることができるとともに、透明性に優れた低抵抗の膜を形成可能な方法を選択することが好ましい。 For example, a transparent electrode formed in a planar shape is patterned by an etching method using photolithography, or directly by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent. There is a method of forming the pattern. What is important in the process of forming the transparent electrode is whether the film thickness can be controlled with high precision. Therefore, it is preferable to select a method that can form a desired film thickness and that can form a low-resistance film excellent in transparency.
 図4および図5に示すように、第1の透明電極103の上には、金属酸化物層105が形成されている。金属酸化物層105は、タッチパネル101の操作面に相当する部分の第1の透明電極の形成領域と非形成の領域を被覆している。また、図5に示すように、第2の透明電極104上(図では下側になる)にも金属酸化物層106が形成されている。金属酸化物層106は、タッチパネル101の操作面に相当する部分の透明電極の形成領域と非形成の領域を被覆している。金属酸化物層105、106は、硬度が高く、第1の透明電極103および第2の透明電極104との密着性に優れる。 As shown in FIGS. 4 and 5, a metal oxide layer 105 is formed on the first transparent electrode 103. The metal oxide layer 105 covers a region where the first transparent electrode is formed and a region where the first transparent electrode is not formed, corresponding to the operation surface of the touch panel 101. Further, as shown in FIG. 5, a metal oxide layer 106 is also formed on the second transparent electrode 104 (below in the drawing). The metal oxide layer 106 covers the transparent electrode forming region and the non-forming region corresponding to the operation surface of the touch panel 101. The metal oxide layers 105 and 106 have high hardness and excellent adhesion to the first transparent electrode 103 and the second transparent electrode 104.
 金属酸化物層105、106の形成には、金属アルコキシドを金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物が用いられる。このコーティング組成物の詳細については後に説明する。 For the formation of the metal oxide layers 105 and 106, a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Is used. Details of this coating composition will be described later.
 タッチパネル101においては、本明細書の実施例欄で述べる検討結果に基づき、第1の透明電極103と第2の透明電極104の各電極パターンが見立たないように、金属酸化物層105、106の屈折率と膜厚が選択される。具体的には、金属酸化物層105、106の屈折率はそれぞれ1.50~1.70の範囲内が好ましく、より好ましくは1.54~1.68の範囲内である。膜厚はそれぞれ40nm~170nmの範囲内であることが好ましい。そして、金属酸化物層105、106の屈折率が1.54以上で1.60より小さい場合、膜厚は60nm~150nmの範囲内であることがさらに好ましい。また、金属酸化物層105、106の屈折率が1.60以上で1.68以下の範囲内である場合、膜厚は40nm~170nmの範囲内であることがさらに好ましい。
 なお、この場合においても、金属酸化物層105および106は、第1の透明電極103と、また第2の透明電極104とそれぞれ導通しないように、絶縁性であり、さらに可視光透明性の高い金属酸化物層から選ばれる。
In the touch panel 101, the metal oxide layers 105 and 106 are formed so that the electrode patterns of the first transparent electrode 103 and the second transparent electrode 104 are not conspicuous based on the examination results described in the example column of this specification. The refractive index and film thickness are selected. Specifically, the refractive indexes of the metal oxide layers 105 and 106 are each preferably in the range of 1.50 to 1.70, and more preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm. When the refractive indexes of the metal oxide layers 105 and 106 are 1.54 or more and smaller than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive indexes of the metal oxide layers 105 and 106 are in the range of 1.60 to 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm.
Even in this case, the metal oxide layers 105 and 106 are insulative so as not to be electrically connected to the first transparent electrode 103 and the second transparent electrode 104, respectively, and have high visible light transparency. Selected from metal oxide layers.
 タッチパネル101においては、例えば、第1の透明電極103および第2の透明電極104は、それぞれ膜厚が10~200nmのITO膜が好ましい。このタッチパネル101においては、例えば、第1の透明電極103および第2の透明電極104は、それぞれ膜厚28nmのITO膜からなり、金属酸化物層105、106は、それぞれ、シリコンアルコキシドとチタンアルコキシドとを用いて調製されたコーティング組成物から形成されたものであり、屈折率は1.6、膜厚は80nmである。 In the touch panel 101, for example, the first transparent electrode 103 and the second transparent electrode 104 are preferably ITO films each having a thickness of 10 to 200 nm. In this touch panel 101, for example, the first transparent electrode 103 and the second transparent electrode 104 are each made of an ITO film having a thickness of 28 nm, and the metal oxide layers 105 and 106 are made of silicon alkoxide and titanium alkoxide, respectively. The film was formed from a coating composition prepared using a material having a refractive index of 1.6 and a film thickness of 80 nm.
 図5に示すように、基板102の一方の面には、アクリル系の透明接着剤からなる接着層108が設けられている。また、接着層108の上には、透明な樹脂から構成されたカバーフィルム107が接着されている。尚、図4では、カバーフィルム107を省略している。 As shown in FIG. 5, an adhesive layer 108 made of an acrylic transparent adhesive is provided on one surface of the substrate 102. A cover film 107 made of a transparent resin is bonded on the adhesive layer 108. In FIG. 4, the cover film 107 is omitted.
 カバーフィルム107は、第1の透明電極103および金属酸化物層105の保護膜として機能する。尚、カバーフィルム107の代わりに、透明樹脂をコーティングしても良い。この場合は、接着層108を不要とすることができる。 The cover film 107 functions as a protective film for the first transparent electrode 103 and the metal oxide layer 105. Instead of the cover film 107, a transparent resin may be coated. In this case, the adhesive layer 108 can be omitted.
 基板102の他方の面には、アクリル系の透明接着剤からなる接着層109を介して、ディスプレイパネル110が取り付けられている。 A display panel 110 is attached to the other surface of the substrate 102 via an adhesive layer 109 made of an acrylic transparent adhesive.
 図5では詳細を省略しているが、ディスプレイパネル110は、公知の表示装置と同様の構成とすることができる。例えば、液晶表示装置の場合、ディスプレイパネル110は、2枚の透明基板の間に液晶層が挟持された構造とすることができる。各透明基板の液晶層に接する側とは反対の側には、それぞれ偏光板を設けることができる。また、各透明基板には、液晶の状態を制御するためにセグメント電極やコモン電極を形成することができる。そして、液晶層は、各透明基板とシール材とによって封止される。 Although details are omitted in FIG. 5, the display panel 110 can have the same configuration as a known display device. For example, in the case of a liquid crystal display device, the display panel 110 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer. In addition, a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal. The liquid crystal layer is sealed with each transparent substrate and a sealing material.
 タッチパネル101においては、第1の透明電極103と第2の透明電極104の端部には、それぞれ端子(図示されない)が設けられており、その端子から複数の引き出し配線(図示されない)が引き出される。引き出し配線は、銀、アルミニウム、クロム、銅またはこれらを含む合金などを使用した不透明な金属配線とすることができる。引き出し配線は、第1の透明電極103と第2の透明電極104への電圧印加や、タッチ位置を検出する制御回路(図示されない)に接続される。 In the touch panel 101, terminals (not shown) are provided at end portions of the first transparent electrode 103 and the second transparent electrode 104, and a plurality of lead wires (not shown) are drawn from the terminals. . The lead-out wiring can be an opaque metal wiring using silver, aluminum, chromium, copper or an alloy containing these. The lead-out wiring is connected to a control circuit (not shown) that detects voltage application to the first transparent electrode 103 and the second transparent electrode 104 and a touch position.
 以上の構成を有するタッチパネル101では、操作面のいずれかの箇所に導電体である指が触れると、指先と、第1の透明電極103および第2の透明電極104との間の静電容量結合によってコンデンサが形成される。したがって、指先の接触位置における電荷の変化を捉えることで、いずれの箇所に指が触れたかを検出することができる。 In the touch panel 101 having the above configuration, when a finger that is a conductor touches any part of the operation surface, capacitive coupling between the fingertip and the first transparent electrode 103 and the second transparent electrode 104 is performed. To form a capacitor. Therefore, it is possible to detect which part of the finger touched by capturing the change in charge at the contact position of the fingertip.
 タッチパネル101では、第1の透明電極103と第2の透明電極104の上に設けられた金属酸化物層105、106の効果により、操作面において電極パターンが目立つことが抑制されている。 In the touch panel 101, the effect of the metal oxide layers 105 and 106 provided on the first transparent electrode 103 and the second transparent electrode 104 is suppressed from conspicuous on the operation surface.
 図6は、本実施の形態の第3の例であるタッチパネルの概略構成を示す断面図である。 FIG. 6 is a cross-sectional view showing a schematic configuration of a touch panel as a third example of the present embodiment.
 図6に示すように、タッチパネル201においては、ディスプレイパネル210を第1の基板とみなして、ディスプレイ210の表面に第1の透明電極203が設けられている。また、別に準備した第2の基板212の一方の面には、第2の透明電極204が設けられている。尚、以下の説明では、第2の基板212の一方の面が上方、他方の面が下方になる。そして、第2の基板212の他方の面がディスプレイパネル210に装着される側となる。 As shown in FIG. 6, in the touch panel 201, the display panel 210 is regarded as a first substrate, and a first transparent electrode 203 is provided on the surface of the display 210. A second transparent electrode 204 is provided on one surface of the second substrate 212 prepared separately. In the following description, one surface of the second substrate 212 is upward and the other surface is downward. The other surface of the second substrate 212 is a side on which the display panel 210 is attached.
 図6では詳細を省略しているが、ディスプレイパネル210は、公知の表示装置と同様の構成とすることができる。例えば、液晶表示装置の場合、ディスプレイパネル210は、2枚の透明基板の間に液晶層が挟持された構造とすることができる。各透明基板の液晶層に接する側とは反対の側には、それぞれ偏光板を設けることができる。また、各透明基板には、液晶の状態を制御するためにセグメント電極やコモン電極を形成することができる。そして、液晶層は、各透明基板とシール材とによって封止される。 Although details are omitted in FIG. 6, the display panel 210 can have the same configuration as a known display device. For example, in the case of a liquid crystal display device, the display panel 210 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer. In addition, a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal. The liquid crystal layer is sealed with each transparent substrate and a sealing material.
 第1の透明電極203の上には、金属酸化物層205が設けられている。金属酸化物層205は、タッチパネル201の操作面に相当する部分の透明電極の形成領域と非形成領域を被覆する。同様に、第2の透明電極204の上にも、金属酸化物層206が形成されている。金属酸化物層206は、タッチパネル201の操作面に相当する部分の透明電極の形成領域と非形成領域を被覆する。金属酸化物層205、206は、硬度が高く、第1の透明電極203および第2の透明電極204との密着性に優れる。 A metal oxide layer 205 is provided on the first transparent electrode 203. The metal oxide layer 205 covers the transparent electrode formation region and the non-formation region corresponding to the operation surface of the touch panel 201. Similarly, a metal oxide layer 206 is formed on the second transparent electrode 204. The metal oxide layer 206 covers the transparent electrode forming region and the non-forming region corresponding to the operation surface of the touch panel 201. The metal oxide layers 205 and 206 have high hardness and excellent adhesion to the first transparent electrode 203 and the second transparent electrode 204.
 金属酸化物層205、206の形成には、金属アルコキシドを金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物が用いられる。このコーティング組成物の詳細については後に説明する。 For the formation of the metal oxide layers 205 and 206, a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Is used. Details of this coating composition will be described later.
 タッチパネル201においては、本明細書の実施例欄で述べる検討結果に基づき、第1の透明電極203と第2の透明電極204の各電極パターンが見立たないように、金属酸化物層205、206の屈折率と膜厚が選択される。具体的には、金属酸化物層205、206の屈折率はそれぞれ1.50~1.70の範囲内が好ましく、より好ましくは1.54~1.68の範囲内である。膜厚はそれぞれ40nm~170nmの範囲内であることが好ましい。そして、金属酸化物層205、206の屈折率が1.54以上で1.60より小さい場合、膜厚は60nm~150nmの範囲内であることがさらに好ましい。また、金属酸化物層205、206の屈折率が1.60以上で1.68以下の範囲内である場合、膜厚は40nm~170nmの範囲内であることがさらに好ましい。なお、この場合においても、金属酸化物層205および206は、第1の透明電極203と、また第2の透明電極204のそれぞれと導通しないように、絶縁性であり、さらに可視光透明性の高い金属酸化物層から選ばれる。 In the touch panel 201, the metal oxide layers 205 and 206 are formed so that the electrode patterns of the first transparent electrode 203 and the second transparent electrode 204 are not conspicuous based on the examination results described in the example column of this specification. The refractive index and film thickness are selected. Specifically, the refractive indexes of the metal oxide layers 205 and 206 are each preferably in the range of 1.50 to 1.70, more preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm. When the refractive indexes of the metal oxide layers 205 and 206 are 1.54 or more and less than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive indexes of the metal oxide layers 205 and 206 are in the range of 1.60 to 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm. In this case as well, the metal oxide layers 205 and 206 are insulative so as not to be electrically connected to the first transparent electrode 203 and the second transparent electrode 204, respectively, and are further transparent to visible light. Selected from high metal oxide layers.
 タッチパネル201においては、例えば、第1の透明電極203および第2の透明電極204は、それぞれ膜厚が10~200nmのITO膜が好ましい。このタッチパネル201においては、例えば、第1の透明電極203および第2の透明電極204は、それぞれ膜厚28nmのITO膜からなり、金属酸化物層205、206は、それぞれ、シリコンアルコキシドとチタンアルコキシドとを含むコーティング組成物から形成されたものであり、屈折率は1.6、膜厚は80nmである。 In the touch panel 201, for example, each of the first transparent electrode 203 and the second transparent electrode 204 is preferably an ITO film having a thickness of 10 to 200 nm. In this touch panel 201, for example, the first transparent electrode 203 and the second transparent electrode 204 are each made of an ITO film having a thickness of 28 nm, and the metal oxide layers 205 and 206 are made of silicon alkoxide and titanium alkoxide, respectively. The film has a refractive index of 1.6 and a film thickness of 80 nm.
 図6に示すように、第2の基板212の一方の面には、アクリル系の透明接着剤からなる接着層208が設けられている。また、接着層208の上には、透明な樹脂から構成されたカバーフィルム207が接着されている。カバーフィルム207は、保護膜として機能する。カバーフィルム207の代わりに、透明樹脂をコーティングしても良い。この場合は、接着層208を不要とすることができる。尚、第1の透明電極203および第2の透明電極204などは、図4および図5で説明したのと同様である。 As shown in FIG. 6, an adhesive layer 208 made of an acrylic transparent adhesive is provided on one surface of the second substrate 212. A cover film 207 made of a transparent resin is bonded on the adhesive layer 208. The cover film 207 functions as a protective film. Instead of the cover film 207, a transparent resin may be coated. In this case, the adhesive layer 208 can be omitted. The first transparent electrode 203 and the second transparent electrode 204 are the same as those described with reference to FIGS.
 タッチパネル201では、第1の透明電極203と第2の透明電極204の上に設けられた金属酸化物層205、206の効果により、操作面において電極パターンが目立つことが抑制されている。 In the touch panel 201, due to the effect of the metal oxide layers 205 and 206 provided on the first transparent electrode 203 and the second transparent electrode 204, the electrode pattern is suppressed from being noticeable on the operation surface.
 図7は、本実施の形態の第4の例であるタッチパネルの概略構成を示す断面図である。 FIG. 7 is a cross-sectional view showing a schematic configuration of a touch panel as a fourth example of the present embodiment.
 図7に示すように、タッチパネル301においては、ディスプレイパネル310を第1の基板とみなして、ディスプレイ310の表面に第1の透明電極303が設けられている。また、別に準備した第2の基板312の一方の面には、第2の透明電極304が設けられている。尚、以下の説明では、第2の基板312の一方の面が下方、他方の面が上方になる。そして、第2の基板312の他方の面がタッチパネル301をタッチ操作する面となる。 As shown in FIG. 7, in the touch panel 301, the display panel 310 is regarded as a first substrate, and a first transparent electrode 303 is provided on the surface of the display 310. In addition, a second transparent electrode 304 is provided on one surface of a second substrate 312 prepared separately. In the following description, one surface of the second substrate 312 is downward and the other surface is upward. The other surface of the second substrate 312 is a surface on which the touch panel 301 is touched.
 図7では詳細を省略しているが、ディスプレイパネル310は、公知の表示装置と同様の構成とすることができる。例えば、液晶表示装置の場合、ディスプレイパネル310は、2枚の透明基板の間に液晶層が挟持された構造とすることができる。各透明基板の液晶層に接する側とは反対の側には、それぞれ偏光板を設けることができる。また、各透明基板には、液晶の状態を制御するためにセグメント電極やコモン電極を形成することができる。そして、液晶層は、各透明基板とシール材とによって封止される。 Although details are omitted in FIG. 7, the display panel 310 can have the same configuration as a known display device. For example, in the case of a liquid crystal display device, the display panel 310 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer. In addition, a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal. The liquid crystal layer is sealed with each transparent substrate and a sealing material.
 第1の透明電極303の上には、金属酸化物層305が設けられている。金属酸化物層305は、タッチパネル201の操作面に相当する部分の透明電極の形成領域と非形成領域を被覆する。同様に、第2の透明電極304の上(図7では下方側に図示される)にも、金属酸化物層306が形成されている。金属酸化物層306は、タッチパネル301の操作面に相当する部分の透明電極の形成領域と非形成領域を被覆する。金属酸化物層305、306は、硬度が高く、第1の透明電極303および第2の透明電極304との密着性に優れる。 A metal oxide layer 305 is provided on the first transparent electrode 303. The metal oxide layer 305 covers the transparent electrode formation region and the non-formation region corresponding to the operation surface of the touch panel 201. Similarly, a metal oxide layer 306 is also formed on the second transparent electrode 304 (shown on the lower side in FIG. 7). The metal oxide layer 306 covers the transparent electrode forming region and the non-forming region corresponding to the operation surface of the touch panel 301. The metal oxide layers 305 and 306 have high hardness and excellent adhesion to the first transparent electrode 303 and the second transparent electrode 304.
 金属酸化物層305、306の形成には、金属アルコキシドを金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物が用いられる。このコーティング組成物の詳細については後に説明する。
 金属酸化物層305と金属酸化物層306との間には、アクリル系の透明接着剤からなる接着層308が設けられている。この接着層308により、第2の基板312はディスプレイパネル310に取り付けられる。
For the formation of the metal oxide layers 305 and 306, a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Is used. Details of this coating composition will be described later.
An adhesive layer 308 made of an acrylic transparent adhesive is provided between the metal oxide layer 305 and the metal oxide layer 306. With this adhesive layer 308, the second substrate 312 is attached to the display panel 310.
 タッチパネル301においては、本明細書の実施例欄で述べる検討結果に基づき、第1の透明電極303と第2の透明電極304の各電極パターンが見立たないように、金属酸化物層305、306の屈折率と膜厚が選択される。具体的には、金属酸化物層305、306の屈折率はそれぞれ1.50~1.70の範囲内が好ましく、より好ましくは1.54~1.68の範囲内である。膜厚はそれぞれ40nm~170nmの範囲内であることが好ましい。そして、金属酸化物層305、306の屈折率が1.54以上で1.60より小さい場合、膜厚は60nm~150nmの範囲内であることがさらに好ましい。また、金属酸化物層305、306の屈折率が1.60以上で1.68以下の範囲内である場合、膜厚は40nm~170nmの範囲内であることがさらに好ましい。なお、この場合においても、金属酸化物層305および306は、第1の透明電極303と、また第2の透明電極304のそれぞれと導通しないように、絶縁性であり、さらに可視光透明性の高い金属酸化物層から選ばれる。 In the touch panel 301, the metal oxide layers 305 and 306 are formed so that the electrode patterns of the first transparent electrode 303 and the second transparent electrode 304 are not conspicuous based on the examination results described in the example column of this specification. The refractive index and film thickness are selected. Specifically, the refractive indexes of the metal oxide layers 305 and 306 are each preferably in the range of 1.50 to 1.70, more preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm. When the refractive indexes of the metal oxide layers 305 and 306 are 1.54 or more and smaller than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive indexes of the metal oxide layers 305 and 306 are in the range of 1.60 to 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm. In this case as well, the metal oxide layers 305 and 306 are insulative so as not to be electrically connected to the first transparent electrode 303 and the second transparent electrode 304, respectively, and visible light transparent. Selected from high metal oxide layers.
 タッチパネル301においては、例えば、第1の透明電極303および第2の透明電極304は、それぞれ膜厚が10~200nmのITO膜が好ましい。このタッチパネル301においては、例えば、第1の透明電極303および第2の透明電極304は、それぞれ膜厚28nmのITO膜からなり、金属酸化物層305、306は、それぞれ、シリコンアルコキシドとチタンアルコキシドとを含むコーティング組成物から形成されたものであり、屈折率は1.6、膜厚は80nmである。 In the touch panel 301, for example, each of the first transparent electrode 303 and the second transparent electrode 304 is preferably an ITO film having a thickness of 10 to 200 nm. In this touch panel 301, for example, the first transparent electrode 303 and the second transparent electrode 304 are each made of an ITO film having a thickness of 28 nm, and the metal oxide layers 305 and 306 are made of silicon alkoxide and titanium alkoxide, respectively. The film has a refractive index of 1.6 and a film thickness of 80 nm.
 タッチパネル301では、第1の透明電極303と第2の透明電極304の上に設けられた金属酸化物層305、306の効果により、操作面において電極パターンが目立つことが抑制されている。 In the touch panel 301, the effect of the metal oxide layers 305 and 306 provided on the first transparent electrode 303 and the second transparent electrode 304 is suppressed from conspicuous on the operation surface.
 図8は、本実施の形態の第5の例であるタッチパネルの概略構成を示す断面図である。 FIG. 8 is a cross-sectional view showing a schematic configuration of a touch panel as a fifth example of the present embodiment.
 図8に示すように、タッチパネル401は、透明な基板402を有する。基板402の上層には2つの異なる方向の位置をそれぞれ検出するための第1の透明電極403と第2の透明電極404とが設けられている。
 第1の透明電極403および第2の透明電極404は、少なくとも可視光に対する透過率が高く、導電性を有する透明電極材料を用いて形成される。このような導電性を有する透明電極材料としては、例えば、ITOまたはZnOなどを用いることができる。ITOを用いる場合には、十分な導電性を確保できるよう、厚さを5~100nmとすることが好ましい。
As illustrated in FIG. 8, the touch panel 401 includes a transparent substrate 402. A first transparent electrode 403 and a second transparent electrode 404 for detecting positions in two different directions are provided on the upper layer of the substrate 402.
The first transparent electrode 403 and the second transparent electrode 404 are formed using a transparent electrode material that has high transmittance for at least visible light and has conductivity. As such a transparent electrode material having conductivity, for example, ITO or ZnO can be used. When ITO is used, the thickness is preferably 5 to 100 nm so that sufficient conductivity can be secured.
 第1の透明電極403と第2の透明電極404は、スパッタリング法、真空蒸着法、イオンプレーティング法、スプレー法、ディップ法またはCVD法などから、下地となる透明な基板102や後述するオーバーコート層407を考慮して最適な方法を選択して形成される。 The first transparent electrode 403 and the second transparent electrode 404 can be formed by sputtering, vacuum deposition, ion plating, spraying, dipping, CVD, or the like from a transparent substrate 102 or an overcoat described later. An optimum method is selected in consideration of the layer 407.
 例えば、面状に形成した透明電極をフォトリソグラフィ技術を利用してエッチング法でパターニングする方法、あるいは、有機溶剤に上記材料からなる導電性フィラーなどを分散した塗料を用い、印刷法により直接、所望のパターンに形成する方法などがある。透明電極の形成工程で重要となるのは、膜厚を精度良く制御できるかどうかである。したがって、形成にあたっては、特に、所望の膜厚とすることができるとともに、透明性に優れた低抵抗の膜を形成可能な方法を選択することが好ましい。 For example, a transparent electrode formed in a planar shape is patterned by an etching method using photolithography, or directly by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent. There is a method of forming the pattern. What is important in the process of forming the transparent electrode is whether the film thickness can be controlled with high precision. Therefore, it is preferable to select a method that can form a desired film thickness and that can form a low-resistance film excellent in transparency.
 図8に示すように、第1の透明電極403は基板402の上に配置される。そして、第1の透明電極403の上には、金属酸化物層405が形成されている。金属酸化物層405は、タッチパネル401の操作面に相当する部分の第1の透明電極403の形成領域と非形成の領域を被覆している。 As shown in FIG. 8, the first transparent electrode 403 is disposed on the substrate 402. A metal oxide layer 405 is formed on the first transparent electrode 403. The metal oxide layer 405 covers a formation region and a non-formation region of the first transparent electrode 403 corresponding to the operation surface of the touch panel 401.
 金属酸化物層405の上には、オーバーコート層407が設けられている。オーバーコート層407には、透明性の高いアクリル樹脂が用いられる。 An overcoat layer 407 is provided on the metal oxide layer 405. A highly transparent acrylic resin is used for the overcoat layer 407.
 図8に示すように、第2の透明電極404はオーバーコート層407の上に配置される。第2の透明電極404の上には金属酸化物層406が形成されている。金属酸化物層406は、タッチパネル401の操作面に相当する部分の透明電極の形成領域と非形成の領域を被覆している。金属酸化物層405、406は、硬度が高く、第1の透明電極403および第2の透明電極404との密着性に優れる。 As shown in FIG. 8, the second transparent electrode 404 is disposed on the overcoat layer 407. A metal oxide layer 406 is formed on the second transparent electrode 404. The metal oxide layer 406 covers the transparent electrode forming region and the non-forming region corresponding to the operation surface of the touch panel 401. The metal oxide layers 405 and 406 have high hardness and excellent adhesion to the first transparent electrode 403 and the second transparent electrode 404.
 金属酸化物層405、406の形成には、金属アルコキシドを金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物が用いられる。このコーティング組成物の詳細については後に説明する。 For the formation of the metal oxide layers 405 and 406, a coating composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Is used. Details of this coating composition will be described later.
 タッチパネル401においては、本明細書の実施例欄で述べる検討結果に基づき、第1の透明電極403と第2の透明電極404の各電極パターンが見立たないように、金属酸化物層405、406の屈折率と膜厚が選択される。具体的には、金属酸化物層405、406の屈折率はそれぞれ1.50~1.70の範囲内が好ましく、より好ましくは1.54~1.68の範囲内である。膜厚はそれぞれ40nm~170nmの範囲内であることが好ましい。そして、金属酸化物層405、406の屈折率が1.54以上で1.60より小さい場合、膜厚は60nm~150nmの範囲内であることがさらに好ましい。また、金属酸化物層405、406の屈折率が1.60以上で1.68以下の範囲内である場合、膜厚は40nm~170nmの範囲内であることがさらに好ましい。なお、この場合においても、金属酸化物層305および306は、第1の透明電極303と、また第2の透明電極304のそれぞれと導通しないように、絶縁性であり、さらに可視光透明性の高い金属酸化物層から選ばれる。 In the touch panel 401, the metal oxide layers 405 and 406 are formed so that the electrode patterns of the first transparent electrode 403 and the second transparent electrode 404 are not visible based on the examination results described in the example column of this specification. The refractive index and film thickness are selected. Specifically, the refractive indexes of the metal oxide layers 405 and 406 are each preferably in the range of 1.50 to 1.70, more preferably in the range of 1.54 to 1.68. The film thickness is preferably in the range of 40 nm to 170 nm. When the refractive indexes of the metal oxide layers 405 and 406 are 1.54 or more and smaller than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive indexes of the metal oxide layers 405 and 406 are in the range of 1.60 to 1.68, the film thickness is more preferably in the range of 40 nm to 170 nm. In this case as well, the metal oxide layers 305 and 306 are insulative so as not to be electrically connected to the first transparent electrode 303 and the second transparent electrode 304, respectively, and visible light transparent. Selected from high metal oxide layers.
 タッチパネル401においては、例えば、第1の透明電極403および第2の透明電極404は、それぞれ膜厚が10~200nmのITO膜が好ましい。このタッチパネル301においては、例えば、第1の透明電極303および第2の透明電極304は、それぞれ膜厚28nmのITO膜からなり、金属酸化物層405、406は、それぞれ、シリコンアルコキシドとチタンアルコキシドとを含むコーティング組成物から形成されたものであり、屈折率は1.60、膜厚は80nmである。 In the touch panel 401, for example, the first transparent electrode 403 and the second transparent electrode 404 are each preferably an ITO film having a thickness of 10 to 200 nm. In this touch panel 301, for example, the first transparent electrode 303 and the second transparent electrode 304 are each made of an ITO film having a thickness of 28 nm, and the metal oxide layers 405 and 406 are made of silicon alkoxide and titanium alkoxide, respectively. The refractive index is 1.60 and the film thickness is 80 nm.
 図8に示すように、金属酸化物層406の上には、アクリル系の透明接着剤からなる接着層408が設けられている。タッチパネル401は、この接着層408を介して、ディスプレイパネル110が取り付けられている。 As shown in FIG. 8, an adhesive layer 408 made of an acrylic transparent adhesive is provided on the metal oxide layer 406. The display panel 110 is attached to the touch panel 401 through the adhesive layer 408.
 以上の構成を有するタッチパネル401では、操作面のいずれかの箇所に導電体である指が触れると、指先と、第1の透明電極403および第2の透明電極404との間の静電容量結合によってコンデンサが形成される。したがって、指先の接触位置における電荷の変化を捉えることで、いずれの箇所に指が触れたかを検出することができる。 In the touch panel 401 having the above configuration, when a finger as a conductor touches any part of the operation surface, capacitive coupling between the fingertip and the first transparent electrode 403 and the second transparent electrode 404 is achieved. To form a capacitor. Therefore, it is possible to detect which part of the finger touched by capturing the change in charge at the contact position of the fingertip.
 タッチパネル401では、第1の透明電極403と第2の透明電極404の上に設けられた金属酸化物層405、406の効果により、操作面において電極パターンが目立つことが抑制されている。 In the touch panel 401, the effect of the metal oxide layers 405 and 406 provided on the first transparent electrode 403 and the second transparent electrode 404 is suppressed from conspicuous on the operation surface.
 以上、本実施の形態のタッチパネルについて説明したが、本発明は上記実施の形態に限定されるものではない。ITOなどの透明電極を用いる多様なタイプのタッチパネルに対し、その透明電極上に、屈折率と膜厚が好適となるように選択された金属酸化物の層を設けることで、上記と同様の効果が得られる。 As mentioned above, although the touch panel of this Embodiment was demonstrated, this invention is not limited to the said embodiment. For various types of touch panels that use transparent electrodes such as ITO, the same effect as described above can be obtained by providing a metal oxide layer selected so that the refractive index and the film thickness are suitable on the transparent electrode. Is obtained.
 次に、金属酸化物層を形成するためのコーティング組成物について説明する。 Next, the coating composition for forming the metal oxide layer will be described.
<コーティング組成物>
 金属酸化物層を形成するのに使用されるコーティング組成物は、金属アルコキシドを金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られる組成物である。
<Coating composition>
The coating composition used to form the metal oxide layer is a composition obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt and further adding a precipitation inhibitor. .
 コーティング組成物に用いられる金属アルコキシドとしては、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、錫(Sn)および亜鉛(Zn)などの金属のアルコキシドが挙げられる。この内、入手の容易性と、コーティング組成物の貯蔵安定性の点から、シリコンアルコキシド、シリコンアルコキシドの部分縮合物、およびチタンアルコキシドから選ばれる少なくとも1つであることが好ましい。 Examples of the metal alkoxide used in the coating composition include silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), and tin (Sn). And alkoxides of metals such as zinc (Zn). Among these, at least one selected from silicon alkoxide, partial condensate of silicon alkoxide, and titanium alkoxide is preferable from the viewpoint of easy availability and storage stability of the coating composition.
 コーティング組成物は、上述のように、これらの金属アルコキシドを金属塩の存在下に有機溶媒中で加水分解・縮合して得られる組成物である。このコーティング組成物は、析出防止剤を含む。析出防止剤は、塗布被膜を形成した際、塗膜中に金属塩が析出するのを防止する効果を有する。 As described above, the coating composition is a composition obtained by hydrolyzing and condensing these metal alkoxides in an organic solvent in the presence of a metal salt. The coating composition includes a precipitation inhibitor. The precipitation inhibitor has an effect of preventing the metal salt from being precipitated in the coating film when the coating film is formed.
 コーティング組成物中にチタンアルコキシド成分を含む場合には、有機溶媒中にチタンアルコキシド成分を安定化させる効果を有するアルキレングリコール類またはそのモノエーテルを含むことが望ましい。 When the coating composition contains a titanium alkoxide component, it is desirable to contain an alkylene glycol having an effect of stabilizing the titanium alkoxide component or a monoether thereof in the organic solvent.
 チタンアルコキシド成分を含むコーティング組成物を製造する場合、チタンアルコキシドを安定化してコーティング組成物の貯蔵安定性をよくするため、チタンアルコキシドとアルキレングリコール類またはそのモノエーテルを混合安定化後、チタンアルコキシド単独またはシリコンアルコキシドと混合し、金属塩の存在下で加水分解・縮合する。 When preparing a coating composition containing a titanium alkoxide component, in order to stabilize the titanium alkoxide and improve the storage stability of the coating composition, after mixing and stabilizing the titanium alkoxide and alkylene glycol or monoether thereof, the titanium alkoxide alone Alternatively, it is mixed with silicon alkoxide and hydrolyzed / condensed in the presence of a metal salt.
 コーティング組成物中に、チタンアルコキシドとシリコンアルコキシド両成分を含む場合には、シリコンアルコキシドを金属塩の存在下で加水分解した後、前もってグリコール類またはそのモノエーテル類を混合安定化したチタンアルコキシドを混合することが好ましい。 When the coating composition contains both titanium alkoxide and silicon alkoxide components, the silicon alkoxide is hydrolyzed in the presence of a metal salt, and then mixed with a titanium alkoxide in which glycols or monoethers thereof are mixed and stabilized in advance. It is preferable to do.
 コーティング組成物に用いられる金属アルコキシドは、一般式(I)で示される。
   M(OR)   ……(I)
(式中、Mは金属を表し、RはC1~C5のアルキル基を表し、nはMの価数を表す。)
The metal alkoxide used in the coating composition is represented by the general formula (I).
M (OR) n ...... (I)
(Wherein, M represents a metal, R represents a C1-C5 alkyl group, and n represents the valence of M.)
 特に、シリコンアルコキシドまたはその部分縮合物には、一般式(III)で示される化合物の1種若しくは2種以上及び部分縮合物(5量体以下)から選ばれる少なくとも1種が用いられる。
   Si(OR’)   ……(III)
(式中、R’はC1~C5のアルキル基を表す。)
In particular, as the silicon alkoxide or the partial condensate thereof, at least one selected from one or more compounds represented by the general formula (III) and a partial condensate (pentamer or less) is used.
Si (OR ') 4 ...... (III)
(In the formula, R ′ represents a C1-C5 alkyl group.)
 また、チタンアルコキシドまたはその部分縮合物には、一般式(IV)で示される化合物の1種または2種以上及び部分縮合物(5量体以下)から選ばれる少なくとも1種が用いられる。
   Ti(OR”)   ……(IV)
(式中、R”はC1~C5のアルキル基を表す。)
Moreover, at least 1 sort (s) chosen from 1 type (s) or 2 or more types of a compound shown by general formula (IV), and a partial condensate (pentamer or less) is used for titanium alkoxide or its partial condensate.
Ti (OR ") 4 ...... (IV)
(In the formula, R ″ represents a C1-C5 alkyl group.)
 コーティング組成物に用いられる金属塩は、一般式(II)で示される化合物から選ばれる少なくとも1種が挙げられる。
   M(X)   ……(II)
(式中、Mは金属を、Xは塩素、硝酸、硫酸、酢酸、蓚酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を、mはMの価数を表す。)
 特に好ましい上記コーティング組成物に用いられる金属塩は、下記(II-1)で示される化合物から選ばれる少なくとも1種および下記(II-1)中で用いられる金属の蓚酸塩を含むものが挙げられる。
   M(X)   ……(II-1)
(式中、Mは金属を、Xは塩素、硝酸、硫酸、酢酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を、mはMの価数を表す。)
 上記一般式(II)で示される金属塩の金属Mとしては、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)およびセリウム(Ce)よりなる群から選ばれる少なくとも1種が好ましい。
 上記で示される化合物のうち、特に、金属硝酸塩、金属塩化物塩、金属蓚酸塩およびその塩基性塩が好ましい。この内、入手の容易性と、コーティング組成物の貯蔵安定性の点から、アルミニウム、インジウム、セリウムなどの金属硝酸塩が好ましい。
As for the metal salt used for coating composition, at least 1 sort (s) chosen from the compound shown by general formula (II) is mentioned.
M 2 (X) m ...... (II)
(Wherein M 2 is a metal, X is chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and m is the valence of M 2. To express.)
Particularly preferred metal salts used in the coating composition include those containing at least one selected from the compounds represented by the following (II-1) and metal oxalates used in the following (II-1): .
M 2 (X) m (II-1)
(In the formula, M 2 represents a metal, X represents chlorine, nitric acid, sulfuric acid, acetic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and m represents the valence of M 2 . )
Examples of the metal M 2 of the metal salt represented by the general formula (II) include aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum ( At least one selected from the group consisting of Ta), yttrium (Y) and cerium (Ce) is preferred.
Of the compounds shown above, metal nitrates, metal chloride salts, metal oxalates and basic salts thereof are particularly preferable. Of these, metal nitrates such as aluminum, indium, and cerium are preferred from the viewpoints of availability and storage stability of the coating composition.
 コーティング組成物に用いられる有機溶媒としては、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノールおよびt-ブタノールなどのアルコール類;酢酸エチルエステルなどのエステル類;エチレングリコールなどのグリコール類およびそのエステル誘導体;ジエチルエーテルなどのエーテル類;アセトン、メチルエチルケトンおよびシクロヘキサノンなどのケトン類;または、ベンゼンおよびトルエンなどの芳香族炭化水素類などが挙げられ、これらは単独または組み合わせて用いられる。 Examples of the organic solvent used in the coating composition include alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol and t-butanol; esters such as ethyl acetate; ethylene glycol and the like Glycols and ester derivatives thereof; ethers such as diethyl ether; ketones such as acetone, methyl ethyl ketone and cyclohexanone; or aromatic hydrocarbons such as benzene and toluene, etc., which are used alone or in combination .
 コーティング組成物中に、チタンアルコシド成分を含む場合、有機溶媒中に含まれるアルキレングリコール類またはそのモノエーテルとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコールおよびそれらのモノメチル、モノエチル、モノプロピル、モノブチルまたはモノフェニルエーテルなどが挙げられる。 When the coating composition contains a titanium alkoxide component, examples of the alkylene glycol or monoether thereof contained in the organic solvent include ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol and their monomethyl, monoethyl, Examples thereof include monopropyl, monobutyl, and monophenyl ether.
 コーティング組成物に用いられる有機溶媒に含まれるグリコール類またはそのモノエーテルは、チタンアルコキシドに対してモル比が1未満であると、チタンアルコキシドの安定性に効果が少なく、コーティング用組成物の貯蔵安定性が悪くなる。一方、グリコール類またはそのモノエーテルを多量に用いることは何ら問題でない。例えば、コーティング組成物に用いられる有機溶媒の全てが、上述のグリコール類またはそのモノエーテルであっても差支えない。しかしながら、コーティング組成物がチタンアルコキシドを含まない場合には、上述したグリコールおよび/またはそのモノエーテルを特に含む必要はない。 When the molar ratio of the glycols or monoethers contained in the organic solvent used in the coating composition is less than 1 with respect to the titanium alkoxide, the stability of the titanium alkoxide is less effective, and the storage stability of the coating composition is reduced. Sexuality gets worse. On the other hand, it is not a problem to use a large amount of glycols or monoethers thereof. For example, all of the organic solvents used in the coating composition can be the above-described glycols or monoethers thereof. However, when the coating composition does not contain titanium alkoxide, it is not necessary to specifically contain the above-mentioned glycol and / or its monoether.
 コーティング組成物に含まれる析出防止剤は、塗布被膜を形成する際に、塗膜中に金属塩が析出するのを防止する。析出防止剤としては、N-メチル-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコールおよびこれらの誘導体よりなる群から選ばれる少なくとも1種が挙げられ、これらを少なくとも1種以上使用することができる。 The precipitation inhibitor contained in the coating composition prevents the metal salt from being deposited in the coating film when the coating film is formed. Examples of the precipitation inhibitor include at least one selected from the group consisting of N-methyl-pyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. More than seeds can be used.
 析出防止剤は、金属塩の金属を金属酸化物に換算して、(析出防止剤)/(金属酸化物)≧1(重量比)の比率で用いられる。重量比が1未満であると、塗布被膜を形成時における金属塩の析出防止効果が小さくなる。一方、析出防止剤を多量に用いることは、コーティング組成物に何ら影響を与えない。 The precipitation inhibitor is used at a ratio of (precipitation inhibitor) / (metal oxide) ≧ 1 (weight ratio) by converting the metal of the metal salt into a metal oxide. When the weight ratio is less than 1, the effect of preventing precipitation of the metal salt during formation of the coating film is reduced. On the other hand, the use of a large amount of a precipitation inhibitor has no effect on the coating composition.
 析出防止剤は、金属アルコキシド、特に、シリコンアルコキシド、チタンアルコキシド、または、シリコンアルコキシドおよびチタンアルコキシドが、金属塩の存在下で加水分解・縮合反応する際に添加されていても良く、加水分解・縮合反応の終了後に添加されていても良い。 The precipitation inhibitor may be added when a metal alkoxide, particularly silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide undergoes hydrolysis / condensation reaction in the presence of a metal salt. It may be added after completion of the reaction.
 コーティング組成物に含まれる金属アルコキシドの金属原子(M)と金属塩の金属原子(M)の含有比率は、モル比換算で、0.01≦M/(M+M)≦0.7の関係を満たすことが好ましい。この値が0.01より小さいと、得られる被膜の機械的強度が充分でないため好ましくない。一方、0.7を越えると、ガラス基板や透明電極などの基材に対する金属酸化物層の密着性が低下する。さらに、450℃以下の低温で焼成した場合、得られる金属酸化物層の耐薬品性が低下する傾向にもある。なお、コーティング組成物に含まれる金属アルコキシドの金属原子が複数種の場合、上記金属原子(M)は、複数種の金属原子の合計を意味し、またコーティング組成物に含まれる金属塩の金属原子が複数種の場合、上記金属原子(M)は、複数種の金属原子の合計を意味する。 Content ratio of the metal atoms of the metal alkoxide contained in the coating composition (M 1) and a metal atom of the metal salt (M 2) in molar ratio terms, 0.01 ≦ M 2 / (M 1 + M 2) ≦ 0 .7 is preferably satisfied. If this value is less than 0.01, the mechanical strength of the resulting coating is not sufficient, which is not preferable. On the other hand, if it exceeds 0.7, the adhesion of the metal oxide layer to a substrate such as a glass substrate or a transparent electrode is lowered. Furthermore, when fired at a low temperature of 450 ° C. or lower, the chemical resistance of the resulting metal oxide layer tends to be lowered. In addition, when the metal atom of the metal alkoxide contained in the coating composition is plural kinds, the metal atom (M 1 ) means the sum of plural kinds of metal atoms, and the metal of the metal salt contained in the coating composition When there are plural kinds of atoms, the metal atom (M 2 ) means the sum of plural kinds of metal atoms.
 コーティング組成物中の固形分濃度については、金属アルコキシドと金属塩を金属酸化物として換算した場合、固形分としては0.5~20wt%の範囲であることが好ましい。固形分が20wt%を越えると、コーティング組成物の貯蔵安定性が悪くなるうえ、金属酸化物層の膜厚制御が困難になる。一方、固形分が0.5wt%以下では、得られる金属酸化物層の厚みが薄くなり、所定の膜厚を得るために多数回の塗布が必要となる。 The solid content concentration in the coating composition is preferably in the range of 0.5 to 20 wt% as the solid content when the metal alkoxide and the metal salt are converted as metal oxides. When the solid content exceeds 20 wt%, the storage stability of the coating composition is deteriorated and the film thickness control of the metal oxide layer becomes difficult. On the other hand, when the solid content is 0.5 wt% or less, the thickness of the obtained metal oxide layer becomes thin, and many coatings are required to obtain a predetermined film thickness.
 コーティング組成物は、M(OR)で示される金属アルコキシドを金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合して得られるものである。シリコンアルコキシド、チタンアルコキシド、または、シリコンアルコキシドおよびチタンアルコキシドの加水分解に用いられる水の量は、シリコンアルコキシド、チタンアルコキシド、または、シリコンアルコキシドおよびチタンアルコキシドの総モル数に対して、モル比換算で2~24にすることが好ましい。より好ましくは2~20である。モル比(水の量(モル)/(金属アルコキシドの総モル数))が2以下の場合には、金属アルコキシドの加水分解が不十分となって、成膜性を低下させたり、得られる金属酸化物被膜の強度を低下させたりするので好ましくない。また、モル比が24より多い場合は、重縮合が進行し続けるため、貯蔵安定性を低下させるので好ましくない。
 その他の金属アルコキシドを用いる場合でも同様である。
The coating composition is obtained by hydrolyzing and condensing a metal alkoxide represented by M (OR) n in an organic solvent in the presence of a metal salt (for example, an aluminum salt). The amount of water used for hydrolysis of silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide is 2 in terms of molar ratio with respect to the total number of moles of silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide. It is preferable to set to 24. More preferably, it is 2-20. When the molar ratio (amount of water (mole) / (total number of moles of metal alkoxide)) is 2 or less, the hydrolysis of the metal alkoxide becomes insufficient and the film formability is lowered or the metal obtained This is not preferable because the strength of the oxide film is lowered. On the other hand, when the molar ratio is more than 24, polycondensation continues to proceed, which is not preferable because storage stability is lowered.
The same applies when other metal alkoxides are used.
 尚、他の金属アルコキシドを用いた場合にも、水の添加量について、同様の条件を選択することが好ましい。 Even when other metal alkoxides are used, it is preferable to select the same conditions for the amount of water added.
 コーティング組成物を調製する際の加水分解過程において、共存する金属塩(例えば、アルミニウム塩)が含水塩の場合には、その含水分が反応に関与するため、加水分解に用いる水の量に対して金属塩(例えば、アルミニウム塩)の含水分を考慮する必要がある。 In the hydrolysis process when preparing the coating composition, when the coexisting metal salt (for example, aluminum salt) is a hydrate salt, the moisture content is involved in the reaction. Therefore, it is necessary to consider the moisture content of metal salts (for example, aluminum salts).
 コーティング組成物は、金属アルコキシドを加水分解・縮合させて製造されるものであり、金属アルコキシドの組成を選択することにより、得られる金属酸化物層の屈折率を所定の範囲内で調整することが可能である。例えば、金属アルコキシドとして、シリコンアルコキシドとチタンアルコキシドを選択した場合、その混合比率を調整することにより、後述する所定の範囲内で、具体的には1.45~2.1の範囲内で、得られる金属酸化物層の屈折率を調整することが可能である。 The coating composition is produced by hydrolyzing and condensing a metal alkoxide. By selecting the composition of the metal alkoxide, the refractive index of the obtained metal oxide layer can be adjusted within a predetermined range. Is possible. For example, when silicon alkoxide and titanium alkoxide are selected as the metal alkoxide, it can be obtained within a predetermined range described later, specifically within a range of 1.45 to 2.1 by adjusting the mixing ratio. It is possible to adjust the refractive index of the resulting metal oxide layer.
 換言すると、コーティング用組成物を塗布し焼成した後の金属酸化物層に要求される屈折率が決められると、その屈折率にしたがって、シリコンアルコキシドとチタンアルコキシドの組成モル比を決めることが可能である。この組成モル比は任意であるが、例えば、シリコンアルコキシドのみを加水分解することによって得られるコーティング組成物からの金属酸化物層の屈折率は、1.45程度の値である。そして、チタンアルコキシドのみを加水分解して得られるコーティング組成物からの金属酸化物層の屈折率は、2.1程度の値である。したがって、金属酸化物層の屈折率を1.45~2.1までの間で設定したい場合、その範囲内の屈折率値に合わせてシリコンアルコキシドとチタンアルコキシドを所定の割合で用いてコーティング組成物を製造することが可能である。 In other words, once the refractive index required for the metal oxide layer after the coating composition is applied and baked is determined, the composition molar ratio of silicon alkoxide and titanium alkoxide can be determined according to the refractive index. is there. Although this composition molar ratio is arbitrary, for example, the refractive index of the metal oxide layer from the coating composition obtained by hydrolyzing only silicon alkoxide is a value of about 1.45. And the refractive index of the metal oxide layer from the coating composition obtained by hydrolyzing only a titanium alkoxide is a value of about 2.1. Therefore, when it is desired to set the refractive index of the metal oxide layer between 1.45 and 2.1, a coating composition is formed using silicon alkoxide and titanium alkoxide at a predetermined ratio according to the refractive index value within the range. Can be manufactured.
 また、他の金属アルコキシドを用いることによっても、得られる金属酸化物層の屈折率の調整は可能である。 Also, the refractive index of the obtained metal oxide layer can be adjusted by using other metal alkoxides.
 さらに、金属酸化物層の屈折率については、組成条件以外に、成膜条件を選択することで調整することも可能である。こうすることで、金属酸化物層の高い硬度を実現するとともに、所望の屈折率値を実現することが可能である。 Furthermore, the refractive index of the metal oxide layer can be adjusted by selecting film forming conditions in addition to the composition conditions. In this way, it is possible to realize a high hardness of the metal oxide layer and a desired refractive index value.
 すなわち、コーティング組成物の塗膜を焼成して金属酸化物層を製造する場合、その焼成温度にしたがって、金属酸化物層の屈折率は変動する。この場合、焼成温度が高くするほど、金属酸化物層の屈折率を高くすることができる。したがって、焼成温度を適度な値に選択することで、得られる金属酸化物層の屈折率の調整が可能である。そして、他のタッチパネル構成部材の耐熱性を考慮した場合、焼成温度は100℃~300℃の範囲が好ましく、150℃~250℃の範囲内とすることがより好ましい。 That is, when the metal oxide layer is produced by firing the coating film of the coating composition, the refractive index of the metal oxide layer varies according to the firing temperature. In this case, the higher the firing temperature, the higher the refractive index of the metal oxide layer. Therefore, the refractive index of the resulting metal oxide layer can be adjusted by selecting an appropriate firing temperature. In consideration of the heat resistance of other touch panel components, the firing temperature is preferably in the range of 100 ° C. to 300 ° C., more preferably in the range of 150 ° C. to 250 ° C.
 また、コーティング組成物がチタンアルコキシドを含む場合、焼成前に塗膜に紫外線(UV)を照射すると、得られる金属酸化物層の屈折率が変動する。具体的には、紫外線照射量を多くするほど、金属酸化物層の屈折率を高くすることができる。したがって、所望の屈折率を実現するため紫外線照射の有無を選択することが可能である。金属酸化物層において、組成等の条件選択により所望の屈折率が実現できる場合は、紫外線照射は行わなくてもよい。そして、紫外線照射を行う場合は、その照射量を選択することで、金属酸化物層の屈折率を調整することが可能である。金属酸化物層において、所望の屈折率を得るために紫外線照射が必要な場合は、例えば、高圧水銀ランプを使用することができる。そして、高圧水銀ランプを使用した場合、365nm換算で全光照射1000mJ/cm以上の照射量が好ましく、3000mJ/cm~10000mJ/cmの照射量がより好ましい。また、UV光源としては特に指定はなく、別のUV光源を使用することもできる。別の光源を用いる場合は、上記高圧水銀ランプを使用した場合と同量の積算光量が照射されればよい。 Moreover, when a coating composition contains a titanium alkoxide, if a coating film is irradiated with an ultraviolet-ray (UV) before baking, the refractive index of the metal oxide layer obtained will fluctuate. Specifically, the refractive index of the metal oxide layer can be increased as the amount of ultraviolet irradiation is increased. Therefore, it is possible to select the presence or absence of ultraviolet irradiation in order to achieve a desired refractive index. In the metal oxide layer, when a desired refractive index can be realized by selecting conditions such as composition, ultraviolet irradiation is not necessary. And when performing ultraviolet irradiation, it is possible to adjust the refractive index of a metal oxide layer by selecting the irradiation amount. In the metal oxide layer, when ultraviolet irradiation is necessary to obtain a desired refractive index, for example, a high-pressure mercury lamp can be used. Then, using a high-pressure mercury lamp, total light irradiation 1000 mJ / cm 2 or more dose is preferably at 365nm terms, the dose of 3000mJ / cm 2 ~ 10000mJ / cm 2 is more preferable. The UV light source is not particularly specified, and another UV light source can be used. When using another light source, it is only necessary to irradiate the same amount of accumulated light as when using the high-pressure mercury lamp.
 しかしながら、特にコーティング組成物にチタンアルコキシド成分を含む場合には、室温保存下で徐々に粘度が上昇するという性質を有する。実用上大きな問題となる懸念は無いものの、金属酸化物層の厚みを精密に制御する場合には、温度などに対する慎重な管理が必要となる。尚、こうした粘度の上昇は、コーティング組成物中のチタンアルコキシドの組成比率が多くなるにしたがって顕著となる。これは、チタンアルコキシドがシリコンアルコキシドなどに対して加水分解速度が大きく、縮合反応が速いためと考えられる。 However, in particular, when the coating composition contains a titanium alkoxide component, it has a property that the viscosity gradually increases under room temperature storage. Although there is no concern of becoming a major problem in practical use, careful control over temperature and the like is necessary when precisely controlling the thickness of the metal oxide layer. Such an increase in viscosity becomes more significant as the composition ratio of titanium alkoxide in the coating composition increases. This is presumably because titanium alkoxide has a higher hydrolysis rate than silicon alkoxide and the like, and the condensation reaction is fast.
 コーティング組成物がチタンアルコキシド成分を含む場合において、粘度変化を少なくするためには、次の2つの製法が有効である。 In the case where the coating composition contains a titanium alkoxide component, the following two production methods are effective for reducing the viscosity change.
 1)チタンアルコキシドを金属塩の存在下、加水分解する際にあらかじめグリコール類とチタンアルコキシドを充分混合した後、必要に応じて、シリコンアルコキシドと混合し、有機溶媒の存在下で加水分解する。こうすることにより、粘度変化の小さいコーティング組成物が得られる。 1) When titanium alkoxide is hydrolyzed in the presence of a metal salt, glycols and titanium alkoxide are sufficiently mixed in advance, and if necessary, mixed with silicon alkoxide and hydrolyzed in the presence of an organic solvent. By doing so, a coating composition having a small viscosity change can be obtained.
 1)の製法が有効なのは、チタンアルコキシドをグリコール類と混合した際に発熱があることから、チタンアルコキシドのアルコキシド基と、グリコール類との間でエステル交換反応が起こり、加水分解・縮合反応に対して安定化されるためと考えられる。 The production method of 1) is effective because when titanium alkoxide is mixed with glycols, heat is generated, so transesterification occurs between the alkoxide group of titanium alkoxide and the glycols, resulting in hydrolysis / condensation reactions. This is considered to be stabilized.
 2)予めシリコンアルコキシドを金属塩の存在下で加水分解反応させた後、グリコール類と混合したチタンアルコキシド溶液に混合して縮合反応を行い、コーティング組成物を得る。こうすることにより、粘度変化の小さいコーティング組成物が得られる。 2) A silicon alkoxide is preliminarily hydrolyzed in the presence of a metal salt, and then mixed with a titanium alkoxide solution mixed with glycols to perform a condensation reaction to obtain a coating composition. By doing so, a coating composition having a small viscosity change can be obtained.
 2)の製法が有効なのは、次の理由によると考えられる。すなわち、シリコンアルコキシドの加水分解反応は速い速度で行われるが、その後の縮合反応はチタンアルコキシドに比較して遅い。そのため、加水分解反応を終えた後、速やかにチタンアルコキシドを加えると、加水分解反応したシリコンアルコキシドのシラノール基と、チタンアルコキシドとが均一に反応する。これにより、チタンアルコキシドの縮合反応性を、加水分解されたシリコンアルコキシドが安定化させると考えられる。 It is considered that the production method of 2) is effective for the following reasons. That is, the hydrolysis reaction of silicon alkoxide is performed at a high rate, but the subsequent condensation reaction is slower than titanium alkoxide. Therefore, when titanium alkoxide is added quickly after finishing the hydrolysis reaction, the silanol group of the hydrolyzed silicon alkoxide and the titanium alkoxide react uniformly. Thereby, it is thought that the hydrolyzed silicon alkoxide stabilizes the condensation reactivity of titanium alkoxide.
 予め加水分解されたシリコンアルコキシドと、チタンアルコキシドとを混合する方法は、既に試みられている。しかし、反応に用いられる有機溶媒にグリコール類が含まれていない場合には、貯蔵安定性に優れたコーティング用組成物が得られない。また、2)に示した方法は、大きな加水分解速度を有する他の金属アルコキシドとシリコンアルコキシドとからコーティング組成物を得る場合にも有用である。 A method for mixing silicon alkoxide hydrolyzed in advance and titanium alkoxide has already been attempted. However, when the organic solvent used in the reaction does not contain glycols, a coating composition having excellent storage stability cannot be obtained. The method shown in 2) is also useful when a coating composition is obtained from another metal alkoxide having a high hydrolysis rate and silicon alkoxide.
 以上説明したコーティング組成物は、一般に行われている塗布法を適用して、塗膜を成膜し、その後、金属酸化物層とすることが可能である。塗布法としては、例えば、ディップコート法、スピンコート法、スプレーコート法、刷毛塗り法、ロール転写法、スクリーン印刷法、インクジェット法またはフレキソ印刷法などが用いられる。この内、パターン印刷に好適なインクジェット法とフレキソ印刷法が特に好ましい。 The coating composition described above can be formed into a metal oxide layer by applying a commonly applied coating method to form a coating film. As the coating method, for example, a dip coating method, a spin coating method, a spray coating method, a brush coating method, a roll transfer method, a screen printing method, an ink jet method, or a flexographic printing method is used. Of these, the inkjet method and flexographic printing method suitable for pattern printing are particularly preferred.
 以下、実施例にしたがって本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[実施例で用いる略記号]
 以下の実施例などで用いる略記号の意味は、次の通りである。
  ・TEOS:テトラエトキシシラン
  ・TIPT:テトライソプロポキシチタン
  ・ZTB:ジルコニウムテトラ-n-ブトキシド
  ・AN:硝酸アルミニウム九水和物
  ・CeN:硝酸セリウム六水和物
  ・InN:硝酸インジウム三水和物
  ・EG:エチレングリコール
  ・HG:2-メチル-2,4-ペンタンジオール(別称:ヘキシレングリコール)
  ・BCS:2-ブトキシエタノール(別称:ブチルセロソルブ)
[Abbreviations used in Examples]
The meanings of the abbreviations used in the following examples are as follows.
TEOS: Tetraethoxysilane TIPT: Tetraisopropoxy titanium ZTB: Zirconium tetra-n-butoxide AN: Aluminum nitrate nonahydrate CeN: Cerium nitrate hexahydrate InN: Indium nitrate trihydrate EG: Ethylene glycol HG: 2-Methyl-2,4-pentanediol (also known as hexylene glycol)
・ BCS: 2-Butoxyethanol (Alternative name: Butyl cellosolve)
<合成例1>(コーティング組成物K1の合成)
 200mL容量のフラスコ中に、AN 12.8g、水3.0gを加えて撹拌し、ANの水溶液を得た。そのANの水溶液に、EG 13.7g、HG 48.8g、BCS 37.1g、およびシリコンアルコキシドとしてTEOS 31.1gを加え、室温条件下で30分間撹拌して、A液を得た。
<Synthesis Example 1> (Synthesis of Coating Composition K1)
In a 200 mL volumetric flask, 12.8 g of AN and 3.0 g of water were added and stirred to obtain an aqueous solution of AN. 13.7 g of EG, 48.8 g of HG, 37.1 g of BCS, and 31.1 g of TEOS as silicon alkoxide were added to the AN aqueous solution, and the mixture was stirred at room temperature for 30 minutes to obtain Liquid A.
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 4.7gを入れ、そこにHG 48.8gを加え、室温条件下で30分間撹拌して、B液を得た。 In a 300 mL volumetric flask, 4.7 g of TIPT as titanium alkoxide was added, 48.8 g of HG was added thereto, and the mixture was stirred for 30 minutes at room temperature to obtain Liquid B.
 次いで、上述のA液とB液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K1を得た。 Next, the above-mentioned A liquid and B liquid were mixed and stirred for 30 minutes under room temperature conditions. This obtained coating composition K1.
<合成例2>(コーティング組成物K2の合成)
 200mL容量のフラスコ中に、AN 12.1g、水2.8gを加えて撹拌し、ANの水溶液を得た。そのANの水溶液に、EG 13.7g、HG 57.7g、BCS 37.2g、およびシリコンアルコキシドとしてTEOS 22.9gを加え、室温条件下で30分間撹拌して、C液を得た。
<Synthesis Example 2> (Synthesis of Coating Composition K2)
In a 200 mL volumetric flask, 12.1 g of AN and 2.8 g of water were added and stirred to obtain an aqueous solution of AN. 13.7 g of EG, 57.7 g of HG, 37.2 g of BCS, and 22.9 g of TEOS as silicon alkoxide were added to the AN aqueous solution, and stirred at room temperature for 30 minutes to obtain solution C.
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 13.4gを入れ、そこにHG 40.2gを加え、室温条件下で30分間撹拌して、D液を得た。 In a 300 mL flask, 13.4 g of TIPT as titanium alkoxide was added, 40.2 g of HG was added thereto, and the mixture was stirred for 30 minutes at room temperature to obtain Liquid D.
 次いで、上述のC液とD液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K2を得た。 Next, the above-mentioned C solution and D solution were mixed and stirred at room temperature for 30 minutes. This obtained coating composition K2.
<合成例3>(コーティング組成物K3の合成)
 200mL容量のフラスコ中に、AN 11.7g、水2.8gを加えて撹拌し、ANの水溶液を得た。そのANの水溶液に、EG 13.7g、HG 46.0g、BCS 37.3g、およびシリコンアルコキシドとしてTEOS 19.1gを加え、室温条件下で30分間撹拌して、E液を得た。
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 17.4gを入れ、そこにHG 52.1gを加え、室温条件下で30分間撹拌して、F液を得た。
 次いで、上述のE液とF液とを混合し、室温条件下で30分間撹拌した。これにより、金属アルコキシドとして、コーティング組成物K3を得た。
<Synthesis Example 3> (Synthesis of Coating Composition K3)
In a 200 mL volumetric flask, 11.7 g of AN and 2.8 g of water were added and stirred to obtain an aqueous solution of AN. EG 13.7g, HG 46.0g, BCS 37.3g, and TEOS 19.1g as a silicon alkoxide were added to the aqueous solution of AN, and it stirred for 30 minutes under room temperature conditions, and obtained E liquid.
In a 300 mL volumetric flask, 17.4 g of TIPT as titanium alkoxide was added, and 52.1 g of HG was added thereto, followed by stirring for 30 minutes at room temperature to obtain Liquid F.
Subsequently, the above-mentioned E liquid and F liquid were mixed, and it stirred under room temperature conditions for 30 minutes. This obtained coating composition K3 as a metal alkoxide.
<合成例4>(コーティング組成物K4の合成)
 200mL容量のフラスコ中に、AN 11.5g、水2.7gを加えて撹拌し、ANの水溶液を得た。そのANの水溶液に、EG 13.7g、HG 34.5g、BCS 37.3g、およびシリコンアルコキシドとしてTEOS 15.6gを加え、室温条件下で30分間撹拌して、G液を得た。
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 21.2gを入れ、そこにHG 63.6gを加え、室温条件下で30分間撹拌して、H液を得た。
 次いで、上述のG液とH液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K4を得た。
<Synthesis Example 4> (Synthesis of Coating Composition K4)
In a 200 mL capacity flask, 11.5 g of AN and 2.7 g of water were added and stirred to obtain an aqueous solution of AN. EG 13.7g, HG 34.5g, BCS 37.3g, and TEOS 15.6g as silicon alkoxide were added to the aqueous solution of AN, and it stirred for 30 minutes under room temperature conditions, and obtained G liquid.
In a 300 mL volumetric flask, 21.2 g of TIPT as titanium alkoxide was added, 63.6 g of HG was added thereto, and the mixture was stirred for 30 minutes at room temperature to obtain liquid H.
Subsequently, the above-mentioned G liquid and H liquid were mixed, and it stirred under room temperature conditions for 30 minutes. This obtained coating composition K4.
<合成例5>(コーティング組成物K4-1の合成)
 200mL容量のフラスコ中に、InN9.2g、水2.3gを加えて撹拌し、InNの水溶液を得た。そのInNの水溶液に、EG 14.6g、HG 41.6g、BCS 39.5g、およびシリコンアルコキシドとしてTEOS 15.9gを加え、室温条件下で30分間撹拌して、I液を得た。
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 14.4gを入れ、そこにHG 62.4gを加え、室温条件下で30分間撹拌して、J液を得た。
 次いで、上述のI液とJ液とを混合し、室温条件下で30分間撹拌した。これにより、金属アルコキシドとして、コーティング組成物K-1を得た。
<Synthesis Example 5> (Synthesis of Coating Composition K4-1)
In a 200 mL volumetric flask, 9.2 g of InN and 2.3 g of water were added and stirred to obtain an aqueous solution of InN. 14.6 g of EG, 41.6 g of HG, 39.5 g of BCS, and 15.9 g of TEOS as silicon alkoxide were added to the aqueous solution of InN, and the mixture was stirred at room temperature for 30 minutes to obtain liquid I.
TIPT 14.4g was put as a titanium alkoxide in a 300 mL capacity | capacitance flask, HG 62.4g was added there, and it stirred for 30 minutes under room temperature conditions, and obtained J liquid.
Next, the above-mentioned liquid I and liquid J were mixed and stirred at room temperature for 30 minutes. As a result, a coating composition K-1 was obtained as a metal alkoxide.
<合成例6>(コーティング組成物K4-2の合成)
 200mL容量のフラスコ中に、CeN10.3g、水2.1gを加えて撹拌し、CeNの水溶液を得た。そのCeNの水溶液に、EG 14.7g、HG 42.1g、BCS 40.0g、およびシリコンアルコキシドとしてTEOS 14.5gを加え、室温条件下で30分間撹拌して、K液を得た。
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 13.2gを入れ、そこにHG 62.4gを加え、室温条件下で30分間撹拌して、L液を得た。
 次いで、上述のK液とL液とを混合し、室温条件下で30分間撹拌した。これにより、金属アルコキシドとして、コーティング組成物K-2を得た。
<Synthesis Example 6> (Synthesis of Coating Composition K4-2)
In a 200 mL volumetric flask, 10.3 g of CeN and 2.1 g of water were added and stirred to obtain an aqueous solution of CeN. 14.7 g of EG, 42.1 g of HG, 40.0 g of BCS, and 14.5 g of TEOS as silicon alkoxide were added to the CeN aqueous solution, and the mixture was stirred for 30 minutes at room temperature to obtain solution K.
TIPT 13.2g was put as a titanium alkoxide in a 300 mL capacity | capacitance flask, HG 62.4g was added there, and it stirred for 30 minutes under room temperature conditions, and obtained L liquid.
Subsequently, the above-mentioned K liquid and L liquid were mixed, and it stirred under room temperature conditions for 30 minutes. As a result, a coating composition K-2 was obtained as a metal alkoxide.
<合成例7>(コーティング組成物K4-3の合成)
 200mL容量のフラスコ中に、AN8.5g、水2.0gを加えて撹拌し、ANの水溶液を得た。そのANの水溶液に、EG 14.3g、HG 40.8g、BCS 38.7g、およびシリコンアルコキシドとしてTEOS 9.2gを加え、室温条件下で30分間撹拌して、M液を得た。
<Synthesis Example 7> (Synthesis of Coating Composition K4-3)
In a 200 mL volumetric flask, 8.5 g of AN and 2.0 g of water were added and stirred to obtain an AN aqueous solution. EG 14.3g, HG 40.8g, BCS 38.7g, and TEOS 9.2g as a silicon alkoxide were added to the aqueous solution of AN, and it stirred under room temperature conditions for 30 minutes, and obtained M liquid.
 300mL容量のフラスコ中に、ジルコニウムアルコキシドとしてZTB 25.4gを入れ、そこにHG 61.2gを加え、室温条件下で30分間撹拌して、N液を得た。
 次いで、上述のM液とN液とを混合し、室温条件下で30分間撹拌した。これにより、金属アルコキシドとして、コーティング組成物K-3を得た。
In a 300 mL volumetric flask, 25.4 g of ZTB was added as zirconium alkoxide, 61.2 g of HG was added thereto, and the mixture was stirred at room temperature for 30 minutes to obtain N solution.
Subsequently, the above-mentioned M liquid and N liquid were mixed, and it stirred under room temperature conditions for 30 minutes. As a result, a coating composition K-3 was obtained as a metal alkoxide.
<合成例8>(コーティング組成物K5の合成)
 300mL容量のフラスコ中に、AN 15.5g、水8.9gを加えて撹拌し、ANの水溶液を得た。そのANの水溶液に、EG 13.0g、HG 93.0g、BCS 35.3g、およびシリコンアルコキシドとしてTEOS 34.3gを加え、室温条件下で30分間撹拌した。これにより、コーティング組成物K5を得た。
<Synthesis Example 8> (Synthesis of Coating Composition K5)
In a 300 mL flask, 15.5 g of AN and 8.9 g of water were added and stirred to obtain an aqueous solution of AN. 13.0 g of EG, 93.0 g of HG, 35.3 g of BCS, and 34.3 g of TEOS as silicon alkoxide were added to the AN aqueous solution, and the mixture was stirred at room temperature for 30 minutes. This obtained coating composition K5.
<合成例9>(コーティング組成物K6の合成)
 200mL容量のフラスコ中に、AN 11.2g、水2.6gを加えて撹拌し、ANの水溶液を得た。そのANの水溶液に、EG 13.7g、HG 23.9g、BCS 37.4g、およびシリコンアルコキシドとしてTEOS 12.1gを加え、室温条件下で30分間撹拌して、I液を得た。
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 24.8gを入れ、そこにHG 74.4gを加え、室温条件下で30分間撹拌して、J液を得た。
<Synthesis Example 9> (Synthesis of Coating Composition K6)
In a 200 mL volumetric flask, 11.2 g of AN and 2.6 g of water were added and stirred to obtain an aqueous solution of AN. EG 13.7g, HG 23.9g, BCS 37.4g, and TEOS 12.1g as silicon alkoxide were added to the aqueous solution of AN, and it stirred for 30 minutes under room temperature conditions, and obtained liquid I.
In a 300 mL flask, 24.8 g of TIPT as titanium alkoxide was added, 74.4 g of HG was added thereto, and the mixture was stirred at room temperature for 30 minutes to obtain Liquid J.
 次いで、上述のI液とJ液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K6を得た。 Next, the above-mentioned I solution and J solution were mixed and stirred at room temperature for 30 minutes. This obtained coating composition K6.
 次に、上述したコーティング組成物K1~K6を用いて、金属酸化物層を成膜する成膜方法の例について説明する。併せて、金属酸化物層の比較対象となるアクリル膜を基板上に成膜する方法についても説明する。 Next, an example of a film forming method for forming a metal oxide layer using the above-described coating compositions K1 to K6 will be described. In addition, a method for forming an acrylic film to be compared with the metal oxide layer on the substrate will be described.
<成膜方法I>
 上述したコーティング組成物を用いて、孔径0.5μmのメンブランフィルタで加圧濾過し、基板上にスピンコート法により塗膜を形成する。この基板を60℃に設定されたホットプレート上で3分間加熱し乾燥する。次いで、200℃に設定された熱風循環式オーブン内に移し、30分間焼成する。こうして、基板上に金属酸化物の膜(すなわち、金属酸化物層を金属酸化物の膜とも称する。以下、同様である。)を成膜する。
<Film Formation Method I>
Using the coating composition described above, pressure filtration is performed with a membrane filter having a pore diameter of 0.5 μm, and a coating film is formed on the substrate by a spin coating method. The substrate is heated for 3 minutes on a hot plate set to 60 ° C. and dried. Next, it is transferred into a hot air circulation oven set at 200 ° C. and baked for 30 minutes. In this manner, a metal oxide film (that is, the metal oxide layer is also referred to as a metal oxide film; hereinafter the same) is formed over the substrate.
<成膜方法II>
 上述したコーティング組成物を用いて、孔径0.5μmのメンブランフィルタで加圧濾過し、基板上にスピンコート法により塗膜を形成する。この基板を60℃に設定されたホットプレート上で3分間加熱し乾燥する。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて50mW/cm(波長365nm換算)の光強度で2分間紫外線照射する。紫外線照射量は6000mJ/cmとなる。紫外線照射の後、200℃に設定された熱風循環式オーブン内に移し、30分間焼成する。こうして、基板上に金属酸化物の膜を成膜する。
<Film Formation Method II>
Using the coating composition described above, pressure filtration is performed with a membrane filter having a pore diameter of 0.5 μm, and a coating film is formed on the substrate by a spin coating method. The substrate is heated for 3 minutes on a hot plate set to 60 ° C. and dried. Next, ultraviolet rays are irradiated for 2 minutes at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). The amount of ultraviolet irradiation is 6000 mJ / cm 2 . After the ultraviolet irradiation, it is transferred into a hot air circulation oven set at 200 ° C. and baked for 30 minutes. Thus, a metal oxide film is formed on the substrate.
<成膜方法III>
 成膜方法IIIは、金属酸化物の膜の比較対象となるアクリル膜を基板上に成膜する方法である。
<Film Formation Method III>
The film formation method III is a method of forming an acrylic film as a comparison target of a metal oxide film on a substrate.
 アクリル膜形成のためのアクリル材料組成物(K7)を用い、孔径0.5μmのメンブランフィルタで加圧濾過し、基板上にスピンコート法により塗膜を形成する。この基板を90℃に設定されたホットプレート上で2分間加熱し乾燥する。次いで、200℃に設定された熱風循環式オーブン内に移し、30分間焼成する。こうして、基板上にアクリル膜を成膜する。 Using an acrylic material composition (K7) for forming an acrylic film, pressure filtration is performed with a membrane filter having a pore diameter of 0.5 μm, and a coating film is formed on the substrate by a spin coating method. This substrate is heated for 2 minutes on a hot plate set at 90 ° C. and dried. Next, it is transferred into a hot air circulation oven set at 200 ° C. and baked for 30 minutes. Thus, an acrylic film is formed on the substrate.
<屈折率の評価>
 上述したコーティング組成物K1~K6を用い、基板にシリコン基板(100)を使用し、上記した成膜方法I、成膜方法IIまたは成膜方法IIIを適用して、シリコン基板上に金属酸化物の膜(KL1、KL2、KL3、KL4、KL5、KL5-1、KL5-2、KL5-3、KM1およびKM2)を成膜した。
<Evaluation of refractive index>
Using the above-described coating compositions K1 to K6, using a silicon substrate (100) as a substrate, and applying the above-described deposition method I, deposition method II, or deposition method III, a metal oxide is formed on the silicon substrate. (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KM1 and KM2) were formed.
 また、アクリル材料組成物K7を用い、基板にシリコン基板(100)を使用し、上記した成膜方法IIIを適用して、シリコン基板上にアクリル膜(KM3)を成膜した。 Also, an acrylic film (KM3) was formed on the silicon substrate by using the acrylic material composition K7, using the silicon substrate (100) as the substrate, and applying the above-described film forming method III.
 これらの基板を用いて、エリプソメータ(溝尻光学工業所社製 DVA-FLVW)を使用し、波長633nmにおける屈折率を測定した。 Using these substrates, the refractive index at a wavelength of 633 nm was measured using an ellipsometer (DVA-FLVW, manufactured by Mizoji Optical Co., Ltd.).
 金属酸化物の膜(KL1、KL2、KL3、KL4、KL5、KL5-1、KL5-2、KL5-3、KM1およびKM2)、並びにアクリル膜(KM3)の屈折率の評価結果を表1に示す。この表より、アクリル膜の屈折率は1.50であることが分かる。 Table 1 shows the evaluation results of the refractive indexes of the metal oxide films (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KM1 and KM2) and the acrylic film (KM3). . From this table, it can be seen that the refractive index of the acrylic film is 1.50.
 尚、表1中の成膜方法欄の記載は、それぞれの膜の成膜に適用された成膜方法(I~III)を示している。 In addition, the description in the film formation method column in Table 1 shows the film formation methods (I to III) applied to the film formation of each film.
<硬度の評価>
 金属酸化物の膜の硬度については鉛筆硬度を評価した。
 上述したコーティング組成物K1~K6を用い、基板にITO付きガラス基板を使用し、上記した成膜方法I、成膜方法IIまたは成膜方法IIIを適用して、基板上に金属酸化物の膜(KL1、KL2、KL3、KL4、KL5、KL5-1、KL5-2、KL5-3、KL5、KM1およびKM2)を成膜した。
<Evaluation of hardness>
Pencil hardness was evaluated for the hardness of the metal oxide film.
Using the above-described coating compositions K1 to K6, using a glass substrate with ITO as the substrate, and applying the above-described deposition method I, deposition method II or deposition method III, a metal oxide film on the substrate (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KL5, KM1, and KM2) were formed.
 また、アクリル材料組成物K7を用い、基板にITO付きガラス基板を使用し、上記した成膜方法IIIを適用して、ITO付きガラス基板上にアクリル膜(KM3)を成膜した。 Further, an acrylic film (KM3) was formed on the glass substrate with ITO by using the acrylic material composition K7, using a glass substrate with ITO as the substrate, and applying the above-described film forming method III.
 これらの基板を用いて、鉛筆硬度を試験法(JIS K5400)に準拠して評価した。 Using these substrates, the pencil hardness was evaluated according to the test method (JIS K5400).
 金属酸化物の膜(KL1、KL2、KL3、KL4、KL5、KL5-1、KL5-2、KL5-3、KM1およびKM2)、並びにアクリル膜(KM3)の鉛筆硬度の評価結果を表1に示す。この表より、アクリル膜(KM3)の鉛筆硬度は3Hであり、金属酸化物の膜(KL1、KL2、KL3、KL4、KL5、KL5-1、KL5-2、KL5-3、KM1およびKM2)に比べ硬度が低いことがわかる。 Table 1 shows the pencil hardness evaluation results of the metal oxide films (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KM1 and KM2) and the acrylic film (KM3). . From this table, the pencil hardness of the acrylic film (KM3) is 3H, and the metal oxide films (KL1, KL2, KL3, KL4, KL5, KL5-1, KL5-2, KL5-3, KM1 and KM2) It can be seen that the hardness is low.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<透明導電膜基板>
 基板上にパターニングされた透明導電膜が成膜された透明導電膜基板を準備する。基板にはガラス基板を用い、透明導電膜にはITOを用いる。この透明導電膜基板としては、上述した本実施の形態のタッチパネル1に使用した透明導電膜基板14の使用が可能である。ここでは、ITOのパターンが同一で、膜厚が28nmと75nmと異なる2種類の透明導電膜基板を準備した。
<Transparent conductive film substrate>
A transparent conductive film substrate on which a patterned transparent conductive film is formed on a substrate is prepared. A glass substrate is used as the substrate, and ITO is used as the transparent conductive film. As this transparent conductive film substrate, the transparent conductive film substrate 14 used in the touch panel 1 of the present embodiment described above can be used. Here, two types of transparent conductive film substrates having the same ITO pattern and different film thicknesses of 28 nm and 75 nm were prepared.
<実施例1>
 ITOの膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KL1を70nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmのソーダライムガラス基板を貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Example 1>
A substrate in which a metal oxide film KL1 was formed to a thickness of 70 nm on a transparent conductive film substrate having an ITO thickness of 28 nm was produced. An optical adhesive was applied on this substrate, and a 0.7 mm soda lime glass substrate was bonded thereto. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
 <実施例2および3>
 金属酸化物の膜KL1の膜厚が80nm(実施例2)と90nm(実施例3)である以外は、実施例1と同様の方法で評価用のタッチパネルを作製した。
<Examples 2 and 3>
A touch panel for evaluation was produced in the same manner as in Example 1 except that the thickness of the metal oxide film KL1 was 80 nm (Example 2) and 90 nm (Example 3).
<実施例4>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KL2を70nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Example 4>
A substrate in which a metal oxide film KL2 was formed to a thickness of 70 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
 <実施例5および6>
 金属酸化物の膜KL2の膜厚が80nm(実施例5)と90nm(実施例6)である以外は、実施例4と同様の方法で評価用のタッチパネルを作製した。
<Examples 5 and 6>
A touch panel for evaluation was produced in the same manner as in Example 4 except that the thickness of the metal oxide film KL2 was 80 nm (Example 5) and 90 nm (Example 6).
<実施例7>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KL3を50nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて評価用のタッチパネルを作製した。
<Example 7>
A substrate in which a metal oxide film KL3 was formed to a thickness of 50 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<実施例8~11>
 金属酸化物の膜KL3の膜厚が70nm(実施例8)、80nm(実施例9)、120nm(実施例10)および150nm(実施例11)である以外は、実施例7と同様の方法で評価用のタッチパネルを作製した。
<Examples 8 to 11>
Except for the thickness of the metal oxide film KL3 being 70 nm (Example 8), 80 nm (Example 9), 120 nm (Example 10) and 150 nm (Example 11), the same method as in Example 7 was used. A touch panel for evaluation was produced.
<実施例12>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KL4を80nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Example 12>
A substrate in which a metal oxide film KL4 was formed to a thickness of 80 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<実施例13>
 金属酸化物の膜KL4の膜厚が100nmである以外は、実施例12と同様の方法で評価用のタッチパネルを作製した。
<Example 13>
A touch panel for evaluation was produced in the same manner as in Example 12 except that the thickness of the metal oxide film KL4 was 100 nm.
<実施例14>
 ITO膜厚が75nmである透明導電膜基板上に、金属酸化物の膜KL4を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Example 14>
A substrate in which a metal oxide film KL4 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 75 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<実施例15>
 ITO膜厚が75nmである透明導電膜基板上に、金属酸化物の膜KL5を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Example 15>
A substrate in which a metal oxide film KL5 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 75 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<実施例16>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KL5-1を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Example 16>
A substrate in which a metal oxide film KL5-1 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<実施例17>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KL5-2を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Example 17>
A substrate in which a metal oxide film KL5-2 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<実施例18>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KL5-3を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Example 18>
A substrate in which a metal oxide film KL5-3 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<比較例1>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜を成膜すること無く、そのまま光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させ、金属酸化物の層を有しない評価用のタッチパネルを作製した。
<Comparative Example 1>
On the transparent conductive film substrate with an ITO film thickness of 28 nm, an optical adhesive was applied as it was without forming a metal oxide film, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation which does not have a metal oxide layer was produced.
<比較例2>
 ITO膜厚が75nmである透明導電膜基板上に、金属酸化物の膜を成膜すること無く、そのまま光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させ、金属酸化物の層を有しない評価用のタッチパネルを作製した。
<Comparative Example 2>
On the transparent conductive film substrate having an ITO film thickness of 75 nm, an optical adhesive was applied as it was without forming a metal oxide film, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation which does not have a metal oxide layer was produced.
<比較例3>
 金属酸化物の膜KL4の膜厚が30nmである以外は、実施例12と同様の方法で評価用のタッチパネルを作製した。
<Comparative Example 3>
A touch panel for evaluation was produced in the same manner as in Example 12 except that the thickness of the metal oxide film KL4 was 30 nm.
<比較例4>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KM1を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Comparative example 4>
A substrate in which a metal oxide film KM1 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<比較例5>
 ITO膜厚が28nmである透明導電膜基板上に、金属酸化物の膜KM2を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Comparative Example 5>
A substrate in which a metal oxide film KM2 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<比較例6>
 ITO膜厚が75nmである透明導電膜基板上に、金属酸化物の膜KM2を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、評価用のタッチパネルを作製した。
<Comparative Example 6>
A substrate in which a metal oxide film KM2 was formed to a thickness of 100 nm on a transparent conductive film substrate having an ITO film thickness of 75 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened and the touch panel for evaluation was produced.
<比較例7>
 ITO膜厚が75nmである透明導電膜基板上に、アクリル膜KM3を2μmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィック社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させ、アクリル膜の形成された評価用のタッチパネルを作製した。
<Comparative Example 7>
A substrate was prepared by forming an acrylic film KM3 with a thickness of 2 μm on a transparent conductive film substrate with an ITO film thickness of 75 nm. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, UV irradiation was performed for 80 seconds at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphic). . Thereby, the optical adhesive was hardened, and the touch panel for evaluation in which the acrylic film was formed was produced.
<密着性の評価>
 実施例1~実施例18において、評価用のタッチパネルを作製する際、その途中で作製される金属酸化物の膜(KL1~KL5)の成膜された基板を使用した。その透明導電膜基板上の各金属酸化物の膜に対し、JIS K5600の密着性のクロスカット法に準拠して剥離試験を行い、密着性を評価した。
<Evaluation of adhesion>
In Examples 1 to 18, when a touch panel for evaluation was manufactured, a substrate on which a metal oxide film (KL1 to KL5) formed in the middle was formed was used. A peeling test was performed on each metal oxide film on the transparent conductive film substrate in accordance with the adhesive cross-cut method of JIS K5600 to evaluate the adhesiveness.
 同様に、比較例3~比較例7において、評価用のタッチパネルを作製する際、その途中で作製される金属酸化物の膜(KL4、KM1およびKM2)並びにアクリル膜(KM3)の成膜された基板を使用し、密着性を評価した。 Similarly, in Comparative Examples 3 to 7, when the touch panel for evaluation was produced, the metal oxide films (KL4, KM1, and KM2) and the acrylic film (KM3) that were produced in the middle were formed. Adhesion was evaluated using a substrate.
<電極パターン見えの評価>
 実施例1~実施例18および比較例1~比較例7において作製した評価用のタッチパネルを用い、ITOの電極パターン見えの評価を行った。
<Evaluation of electrode pattern appearance>
Using the evaluation touch panels prepared in Examples 1 to 18 and Comparative Examples 1 to 7, the appearance of the ITO electrode pattern was evaluated.
 各タッチパネルを黒い布の上に置き、上部からライトを照らした状態で、目視にて観察を行った。観察の結果、電極パターンが見えないものを、<電極パターン見え評価◎>とした。また、電極パターンは見えるが、その程度が、ITO膜上に金属酸化物の膜を有しない比較例1および比較例2のタッチパネルに比べ改善されているものを、<電極パターン見え評価○>とした。さらに、比較例1および比較例2のタッチパネルと同等なものを、<電極パターン見え評価△>とし、比較例1および比較例2のタッチパネルよりもITOの電極パターンが目立つものを<×>として評価した。 各 Each touch panel was placed on a black cloth and visually observed with the light illuminated from the top. As a result of observation, an electrode pattern that was not visible was defined as <Evaluation of electrode pattern appearance>. In addition, although the electrode pattern is visible, the degree of improvement is compared with the touch panels of Comparative Example 1 and Comparative Example 2 that do not have a metal oxide film on the ITO film. did. Further, the touch panel equivalent to Comparative Example 1 and Comparative Example 2 was evaluated as <electrode pattern appearance evaluation Δ>, and the electrode pattern of ITO more conspicuous than the touch panel of Comparative Example 1 and Comparative Example 2 was evaluated as <×>. did.
 実施例1~実施例18および比較例1~比較例7の評価用のタッチパネルの電極パターン見え評価の結果をまとめ、上記した密着性の評価結果とともに表2に示す。 The results of the electrode pattern appearance evaluation of the touch panels for evaluation in Examples 1 to 18 and Comparative Examples 1 to 7 are summarized and shown in Table 2 together with the above-described adhesion evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~実施例15のタッチパネルでは、電極パターン見え評価の結果が良好であり、電極パターンは見えないか、または,見えたとしても金属酸化物の膜を有していない比較例と比べ、その程度が改善していることが分かった。したがって、透明電極の上に、屈折率と膜厚の調整された金属酸化物の膜を形成することにより、電極パターン見えが改善され、電極を目立たなくできることが分かった。また、それぞれの金属酸化物の膜の密着性は、アクリル膜に比べて高いことも分かった。 In the touch panels of Examples 1 to 15, the result of the electrode pattern appearance evaluation is good, and the electrode pattern is not visible, or even if it is visible, it does not have a metal oxide film. It turns out that the degree has improved. Therefore, it has been found that by forming a metal oxide film having a refractive index and a film thickness adjusted on the transparent electrode, the appearance of the electrode pattern is improved and the electrode can be made inconspicuous. It was also found that the adhesion of each metal oxide film was higher than that of the acrylic film.
 表2の結果から、実施例1~実施例15によれば、透明電極のパターンが目立つことによる表示性の低下を低減できるタッチパネルが得られることが分かった。より具体的には、透明電極のパターンが目立つことが抑制された、本実施の形態のタッチパネル1、101、201、301、401を提供できることが分かった。 From the results shown in Table 2, it was found that according to Examples 1 to 15, a touch panel capable of reducing deterioration in display properties due to the conspicuous transparent electrode pattern can be obtained. More specifically, it was found that the touch panel 1, 101, 201, 301, 401 according to the present embodiment, in which the transparent electrode pattern is suppressed, can be provided.
 本発明のタッチパネルは、電極パターンが目立つことがなく、また構成部材間の密着性も良好である。したがって、優れた見栄えと高い信頼性が求められる表示デバイス用のタッチパネルとして有用である。
 なお、2010年10月26日に出願された日本特許出願2010-240080号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
In the touch panel of the present invention, the electrode pattern does not stand out, and the adhesion between the constituent members is good. Therefore, it is useful as a touch panel for a display device that requires excellent appearance and high reliability.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-240080 filed on Oct. 26, 2010 are incorporated herein as the disclosure of the present invention. .
 1、101、201、301、401  タッチパネル
 2、102、402  基板
 3、103、203、303、403  第1の透明電極
 4、104、204、304、404  第2の透明電極
 5、6、105、106、205、206、305、306、405、406  金属酸化物層
 7、107、207  カバーフィルム
 9、108、109、208、209、308、408  透明接着材
 10、110、210、310、410  ディスプレイパネル
 11  引き出し配線
 14  透明導電膜基板
 18  交差部
 19  層間絶縁膜
 20  架橋電極
 21  パッド部
 212、312  第2基板
 407  オーバーコート層
1, 101, 201, 301, 401 Touch panel 2, 102, 402 Substrate 3, 103, 203, 303, 403 First transparent electrode 4, 104, 204, 304, 404 Second transparent electrode 5, 6, 105, 106, 205, 206, 305, 306, 405, 406 Metal oxide layer 7, 107, 207 Cover film 9, 108, 109, 208, 209, 308, 408 Transparent adhesive 10, 110, 210, 310, 410 Display Panel 11 Lead-out wiring 14 Transparent conductive film substrate 18 Crossing portion 19 Interlayer insulating film 20 Bridge electrode 21 Pad portions 212 and 312 Second substrate 407 Overcoat layer

Claims (14)

  1.  透明基板の操作領域に透明電極のパターンが形成された静電容量方式のタッチパネルであって、
     下記一般式(I)
       M(OR)      ……(I)
     (式中、Mは金属を、RはC1~C5のアルキル基を、nはMの価数を表す。)
    で示される金属アルコキシドを
     下記一般式(II)
       M(X)       ……(II)
     (式中、Mは金属を、Xは塩素、硝酸、硫酸、酢酸、蓚酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を、mはMの価数を表す。)
    で示される金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物から形成される金属酸化物の層を前記透明電極上に配置したことを特徴とするタッチパネル。
    A capacitive touch panel in which a transparent electrode pattern is formed in an operation area of a transparent substrate,
    The following general formula (I)
    M 1 (OR) n ...... (I)
    (In the formula, M 1 represents a metal, R represents a C1-C5 alkyl group, and n represents the valence of M 1. )
    A metal alkoxide represented by the following general formula (II)
    M 2 (X) m ...... (II)
    (Wherein M 2 is a metal, X is chlorine, nitric acid, sulfuric acid, acetic acid, succinic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and m is the valence of M 2. To express.)
    A metal oxide layer formed from a coating composition obtained by hydrolysis / condensation in an organic solvent in the presence of a metal salt and further adding a precipitation inhibitor is disposed on the transparent electrode. Touch panel characterized by.
  2.  透明基板の操作領域に透明電極のパターンが形成された静電容量方式のタッチパネルであって、
     下記一般式(I)
       M(OR)      ……(I)
     (式中、Mは金属を、RはC1~C5のアルキル基を、nはMの価数を表す。)
    で示される金属アルコキシドを
     下記一般式(II-1)
       M(X)       ……(II-1)
     (式中、Mは金属を、Xは塩素、硝酸、硫酸、酢酸、スファミン酸、スルホン酸、アセト酢酸、アセチルアセトナートまたはこれらの塩基性塩を、mはMの価数を表す。)
     および式(II-1)中で用いられる金属の蓚酸塩で示される金属塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物から形成される金属酸化物の層を前記透明電極上に配置したことを特徴とするタッチパネル。
    A capacitive touch panel in which a transparent electrode pattern is formed in an operation area of a transparent substrate,
    The following general formula (I)
    M 1 (OR) n ...... (I)
    (In the formula, M 1 represents a metal, R represents a C1-C5 alkyl group, and n represents the valence of M 1. )
    A metal alkoxide represented by the following general formula (II-1)
    M 2 (X) m (II-1)
    (In the formula, M 2 represents a metal, X represents chlorine, nitric acid, sulfuric acid, acetic acid, sfamic acid, sulfonic acid, acetoacetic acid, acetylacetonate or a basic salt thereof, and m represents the valence of M 2 . )
    And a coating composition obtained by hydrolysis / condensation in an organic solvent in the presence of a metal salt represented by the metal oxalate used in formula (II-1) and further adding a precipitation inhibitor. A touch panel comprising: a metal oxide layer disposed on the transparent electrode.
  3.  上記一般式(I)における金属Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、錫(Sn)および亜鉛(Zn)よりなる群から選ばれる少なくとも1種であることを特徴とする請求項1または2に記載のタッチパネル。 The metal M 1 in the general formula (I) is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), tin (Sn). ) And zinc (Zn). The touch panel according to claim 1 or 2, wherein the touch panel is at least one selected from the group consisting of zinc (Zn).
  4.  上記一般式(II)および(II-1)における金属Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)およびセリウム(Ce)よりなる群から選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれか1項に記載のタッチパネル。 In the general formulas (II) and (II-1), the metal M 2 is aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum ( The touch panel according to any one of claims 1 to 3, wherein the touch panel is at least one selected from the group consisting of Ta), yttrium (Y), and cerium (Ce).
  5.  前記金属酸化物の層は、屈折率が1.50~1.70であり、当該層の膜厚が40nm~170nmであることを特徴とする請求項1~4のいずれか1項に記載のタッチパネル。 5. The metal oxide layer according to claim 1, wherein the metal oxide layer has a refractive index of 1.50 to 1.70, and the thickness of the layer is 40 nm to 170 nm. Touch panel.
  6.  前記金属酸化物の層は、屈折率が1.54~1.68であり、当該層の膜厚が40nm~170nmであることを特徴とする請求項1~5のいずれか1項に記載のタッチパネル。 6. The metal oxide layer according to claim 1, wherein the metal oxide layer has a refractive index of 1.54 to 1.68, and the thickness of the layer is 40 nm to 170 nm. Touch panel.
  7.  前記金属アルコキシドは、シリコンアルコキシドまたはその部分縮合物とチタンアルコキシドの混合物であることを特徴とする請求項1~6のいずれか1項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 6, wherein the metal alkoxide is a mixture of silicon alkoxide or a partial condensate thereof and titanium alkoxide.
  8.  前記析出防止剤は、N-メチル-ピロリドン、エチレングリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジエチレングリコール、プロピレングリコール、ヘキシレングリコールおよびこれらの誘導体よりなる群から選ばれる少なくとも1種であることを特徴とする請求項1~7のいずれか1項に記載のタッチパネル。 The precipitation inhibitor is at least one selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. Item 8. The touch panel according to any one of Items 1 to 7.
  9.  前記コーティング組成物に含まれる金属アルコキシドの金属原子(M)と、金属塩の金属原子(M)とのモル比は、
       0.01≦M/(M+M)≦0.7
    であることを特徴とする請求項1~8のいずれか1項に記載のタッチパネル。
    The molar ratio of the metal atom (M 1 ) of the metal alkoxide contained in the coating composition to the metal atom (M 2 ) of the metal salt is:
    0.01 ≦ M 2 / (M 1 + M 2 ) ≦ 0.7
    The touch panel according to any one of claims 1 to 8, characterized in that:
  10.  前記金属塩は、金属硝酸塩、金属硫酸塩、金属酢酸塩、金属塩化物、金属蓚酸塩、金属スファミン酸塩、金属スルホン酸塩、金属アセト酢酸塩、金属アセチルアセトナートおよびこれらの塩基性塩よりなる群から選ばれる少なくとも1種であることを特徴とする請求項1~9のいずれか1項に記載のタッチパネル。 The metal salt includes metal nitrate, metal sulfate, metal acetate, metal chloride, metal oxalate, metal sphamate, metal sulfonate, metal acetoacetate, metal acetylacetonate, and basic salts thereof. The touch panel according to any one of claims 1 to 9, wherein the touch panel is at least one selected from the group consisting of:
  11.  前記有機溶媒は、アルキレングリコール類またはそのモノエーテル誘導体を含むことを特徴とする請求項1~10のいずれか1項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 10, wherein the organic solvent contains an alkylene glycol or a monoether derivative thereof.
  12.  前記透明電極は、少なくとも2つの異なる方向の位置を検出するための第1の透明電極と第2の透明電極とを有することを特徴とする請求項1~11のいずれか1項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 11, wherein the transparent electrode has a first transparent electrode and a second transparent electrode for detecting positions in at least two different directions. .
  13.  前記第1の透明電極と前記第2の透明電極とは、前記透明基板の同じ面に配置されることを特徴とする請求項12に記載のタッチパネル。 The touch panel according to claim 12, wherein the first transparent electrode and the second transparent electrode are disposed on the same surface of the transparent substrate.
  14.  前記第1の透明電極と前記第2の透明電極は、それぞれ、前記透明基板の異なる面に配置されることを特徴とする請求項12に記載のタッチパネル。 The touch panel according to claim 12, wherein the first transparent electrode and the second transparent electrode are respectively disposed on different surfaces of the transparent substrate.
PCT/JP2011/074587 2010-10-26 2011-10-25 Touch panel WO2012057165A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012540893A JP5920220B2 (en) 2010-10-26 2011-10-25 Capacitive touch panel manufacturing method
CN201180062501.7A CN103270477B (en) 2010-10-26 2011-10-25 Contact panel
KR1020137012941A KR101871527B1 (en) 2010-10-26 2011-10-25 Touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240080 2010-10-26
JP2010-240080 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012057165A1 true WO2012057165A1 (en) 2012-05-03

Family

ID=45993871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074587 WO2012057165A1 (en) 2010-10-26 2011-10-25 Touch panel

Country Status (5)

Country Link
JP (1) JP5920220B2 (en)
KR (1) KR101871527B1 (en)
CN (1) CN103270477B (en)
TW (1) TWI535830B (en)
WO (1) WO2012057165A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010814A (en) * 2012-07-03 2014-01-20 Fujifilm Corp Transparent laminate, capacitance type input device and image display device
WO2014054748A1 (en) * 2012-10-03 2014-04-10 日産化学工業株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
WO2014058018A1 (en) * 2012-10-11 2014-04-17 日産化学工業株式会社 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
JP2014153987A (en) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd Touch panel substrate and display device
JP2015141605A (en) * 2014-01-29 2015-08-03 株式会社アルバック touch panel
WO2016136746A1 (en) * 2015-02-24 2016-09-01 日産化学工業株式会社 Laminate, touch panel, and patterning method for laminate
US9632640B2 (en) 2012-07-03 2017-04-25 Fujifilm Corporation Transparent laminate, capacitance type input device, and image display device
US9916057B2 (en) 2015-08-20 2018-03-13 Samsung Display Co., Ltd. Touch panel, display device having the same, and method of manufacturing the touch panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5922008B2 (en) * 2012-11-30 2016-05-24 富士フイルム株式会社 TRANSFER FILM AND TRANSPARENT LAMINATE, ITS MANUFACTURING METHOD, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE
TWI480782B (en) * 2013-01-31 2015-04-11 Henghao Technology Co Ltd Touch panel
TWI612453B (en) * 2016-09-01 2018-01-21 友達光電股份有限公司 Touch panel
TWI620108B (en) * 2016-09-01 2018-04-01 友達光電股份有限公司 Touch panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024516A (en) * 1996-07-10 1998-01-27 Teijin Ltd Transparent conductive laminate and transparent tablet
JP2000301648A (en) * 1999-04-19 2000-10-31 Teijin Ltd Transparent conductive laminate and transparent tablet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881847B2 (en) * 1988-12-15 1999-04-12 日産化学工業株式会社 Coating composition and method for producing the same
JP3825813B2 (en) * 1992-07-17 2006-09-27 日産化学工業株式会社 Coating liquid for forming high refractive index insulating coating for liquid crystal display
JPH06264008A (en) * 1993-03-12 1994-09-20 Nissan Chem Ind Ltd Coating fluid composition for forming antibacterial, and algicidal transparent coating film
JP2003173238A (en) 2001-12-05 2003-06-20 Sharp Corp Touch sensor and display device with touch sensor
JP2003241172A (en) * 2002-02-22 2003-08-27 Konica Corp Metal/plastic composite film and optical film
WO2008041506A1 (en) * 2006-09-29 2008-04-10 Kimoto Co., Ltd. Film for optical use, transparent conductive member using the same, and transparent touch panel
JPWO2009011224A1 (en) * 2007-07-18 2010-09-16 コニカミノルタホールディングス株式会社 Method for producing metal oxide semiconductor and thin film transistor obtained thereby
JP2009205379A (en) * 2008-02-27 2009-09-10 Seiko Instruments Inc Display device with touch panel
EP2259272A4 (en) * 2008-03-25 2015-08-12 Toray Industries Electrically conductive complex and process for production thereof
KR20100006987A (en) * 2008-07-11 2010-01-22 삼성모바일디스플레이주식회사 Touch screen panel and fabricating method for the same
US9342176B2 (en) 2008-07-21 2016-05-17 Samsung Display Co., Ltd. Organic light emitting display device
CN101576793A (en) * 2009-01-12 2009-11-11 深圳市中显微电子有限公司 Capacitance touch screen and preparation method thereof
JP5484891B2 (en) * 2009-03-04 2014-05-07 株式会社ジャパンディスプレイ Display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024516A (en) * 1996-07-10 1998-01-27 Teijin Ltd Transparent conductive laminate and transparent tablet
JP2000301648A (en) * 1999-04-19 2000-10-31 Teijin Ltd Transparent conductive laminate and transparent tablet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9632640B2 (en) 2012-07-03 2017-04-25 Fujifilm Corporation Transparent laminate, capacitance type input device, and image display device
JP2014010814A (en) * 2012-07-03 2014-01-20 Fujifilm Corp Transparent laminate, capacitance type input device and image display device
CN104395867B (en) * 2012-07-03 2018-04-20 富士胶片株式会社 Sparent laminate, capacitive input device and image display device
CN104395867A (en) * 2012-07-03 2015-03-04 富士胶片株式会社 Transparent layered body, electrostatic capacitance input device, and image display device
US9632639B2 (en) 2012-07-03 2017-04-25 Fujifilm Corporation Transparent laminate, capacitance type input device, and image display device
JPWO2014054748A1 (en) * 2012-10-03 2016-08-25 日産化学工業株式会社 Coating liquid for forming finely coated inorganic oxide film and method for producing finely divided inorganic oxide film
WO2014054748A1 (en) * 2012-10-03 2014-04-10 日産化学工業株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
CN104822783A (en) * 2012-10-03 2015-08-05 日产化学工业株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
KR20150070215A (en) * 2012-10-11 2015-06-24 닛산 가가쿠 고교 가부시키 가이샤 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
CN104854509B (en) * 2012-10-11 2021-04-13 日产化学工业株式会社 Coating liquid for forming inorganic oxide coating film, and display device
JPWO2014058018A1 (en) * 2012-10-11 2016-09-05 日産化学工業株式会社 Coating liquid for forming inorganic oxide film, inorganic oxide film, and display device
WO2014058018A1 (en) * 2012-10-11 2014-04-17 日産化学工業株式会社 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
KR102170063B1 (en) 2012-10-11 2020-10-26 닛산 가가쿠 가부시키가이샤 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
CN104854509A (en) * 2012-10-11 2015-08-19 日产化学工业株式会社 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
JP2014153987A (en) * 2013-02-12 2014-08-25 Dainippon Printing Co Ltd Touch panel substrate and display device
JP2015141605A (en) * 2014-01-29 2015-08-03 株式会社アルバック touch panel
WO2016136746A1 (en) * 2015-02-24 2016-09-01 日産化学工業株式会社 Laminate, touch panel, and patterning method for laminate
JPWO2016136746A1 (en) * 2015-02-24 2018-02-08 日産化学工業株式会社 LAMINATE, TOUCH PANEL, AND LAMINATE PATTERNING METHOD
US9916057B2 (en) 2015-08-20 2018-03-13 Samsung Display Co., Ltd. Touch panel, display device having the same, and method of manufacturing the touch panel

Also Published As

Publication number Publication date
KR20140009193A (en) 2014-01-22
TWI535830B (en) 2016-06-01
TW201231632A (en) 2012-08-01
CN103270477B (en) 2016-11-09
JPWO2012057165A1 (en) 2014-05-12
JP5920220B2 (en) 2016-05-18
KR101871527B1 (en) 2018-06-26
CN103270477A (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5920220B2 (en) Capacitive touch panel manufacturing method
JP6048148B2 (en) Coating composition for touch panel, coating film and touch panel
US10019084B2 (en) Touchscreen and method for manufacturing same
TWI595508B (en) Transparent conductive film and image display device
JP6155537B2 (en) CONDUCTIVE PATTERN LAMINATE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE AND TOUCH SCREEN CONTAINING CONDUCTIVE PATTERN LAMINATE
TWI607349B (en) Touch panel
CN203366304U (en) Glass capacitive touch screen
JP2013161203A (en) Touch panel sensor substrate and display unit equipped with the same
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP6186805B2 (en) Touch panel
JP2013246610A (en) Electrostatic capacitance type touch panel substrate, display device and method of manufacturing electrostatic capacitance type touch panel substrate
CN105005402A (en) Touch panel
JP6751271B2 (en) Laminated body, touch panel, and patterning method for laminated body
TW201626408A (en) Transparent conductor and touch panel
JP6880714B2 (en) Decorative member, display device using it, and manufacturing method of decorative member
JP2015075840A (en) Touch panel sensor and display device with touch panel
JP2015194799A (en) Substrate for touch panel sensor and touch panel sensor
JP6375847B2 (en) Touch panel sensor and manufacturing method thereof, touch panel sensor substrate
TWI483158B (en) Touch panel and touch display panel using the same
JP2015230510A (en) Touch panel sensor substrate, touch panel sensor and display device
JP2016076174A (en) Touch panel sensor, and touch panel sensor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540893

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012941

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11836298

Country of ref document: EP

Kind code of ref document: A1