WO2012053615A1 - 走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラム - Google Patents

走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラム Download PDF

Info

Publication number
WO2012053615A1
WO2012053615A1 PCT/JP2011/074210 JP2011074210W WO2012053615A1 WO 2012053615 A1 WO2012053615 A1 WO 2012053615A1 JP 2011074210 W JP2011074210 W JP 2011074210W WO 2012053615 A1 WO2012053615 A1 WO 2012053615A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift schedule
mode control
electric motor
engine
travel mode
Prior art date
Application number
PCT/JP2011/074210
Other languages
English (en)
French (fr)
Inventor
博孝 植野
Original Assignee
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車株式会社 filed Critical 日野自動車株式会社
Priority to EP11834454.8A priority Critical patent/EP2631141A4/en
Priority to US13/876,508 priority patent/US20130184921A1/en
Priority to AU2011318945A priority patent/AU2011318945A1/en
Priority to CN201180046775.7A priority patent/CN103140401B/zh
Publication of WO2012053615A1 publication Critical patent/WO2012053615A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H2059/082Range selector apparatus with different modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H2059/082Range selector apparatus with different modes
    • F16H2059/084Economy mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H2059/082Range selector apparatus with different modes
    • F16H2059/085Power mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/945Characterized by control of gearing, e.g. control of transmission ratio

Definitions

  • the present invention relates to a travel mode control device, a hybrid vehicle, a travel mode control method, and a program.
  • a vehicle having a driving mode control device that allows the driver to select a driving mode of preference from a plurality of driving modes.
  • a travel mode control device by selecting a travel mode, for example, a shift schedule for automatic shift can be changed.
  • the shift schedule includes a normal shift schedule (hereinafter referred to as a first shift schedule) more suitable for the potential of the vehicle, and a power driving shift schedule (hereinafter referred to as a second shift schedule) for quickly responding by an accelerator operation. Shift schedule).
  • a first shift schedule a transition from a gear stage having a large gear ratio to a gear stage having a small gear ratio (so-called shift-up) is performed at a lower rotational speed than in the second shift schedule.
  • shift-up gear ratio
  • the upshift is performed at a higher rotational speed than in the first shift schedule.
  • the acceleration feeling is small, but the fuel consumption is good compared to the latter, whereas in the latter case, the acceleration feeling is large, but the fuel consumption is not good compared to the former (for example, see Patent Document 1).
  • a hybrid vehicle having an engine and an electric motor
  • the present invention has been made under such a background, and is capable of appropriately changing the driving sensation of the hybrid vehicle according to the driver's preference, the hybrid vehicle, and the driving mode. It is an object to provide a control method and a program.
  • the travel mode control device of the present invention includes an engine and an electric motor, and can travel by the engine or the electric motor, or the engine and the electric motor can collaborate, and can be set according to a preset travel mode type.
  • the shift schedule has a shift schedule selection means for selecting a shift schedule in a transmission that performs automatic shift according to the shift schedule, and the shift schedule shifts from a gear stage having a large gear ratio to a gear stage having a small gear ratio at different accelerator openings or vehicle speeds.
  • a hybrid vehicle travel mode having a first shift schedule to be performed and a second shift schedule, wherein an accelerator opening or a vehicle speed in the first shift schedule is smaller than an accelerator opening or a vehicle speed in the second shift schedule
  • the first shift schedule When selected, the first shift schedule is executed by controlling the running time of the motor to exceed the running time of the engine, and when the second shift schedule is selected, the running time of the engine is driven by the motor. It has a running mode control part which controls so that it may not go below time, and performs the 2nd shift schedule.
  • the travel mode control unit can prohibit travel using only the electric motor.
  • the travel mode control unit stores the shift schedule when the first shift schedule is selected at the end of the current operation prior to the end of the operation of the vehicle, and the first shift is performed at the start of the next operation.
  • a schedule can be pre-selected.
  • the selection switch has a push button for changing the driving mode every time the button is pressed, and the driving mode control unit has a push button for a predetermined time.
  • the second shift schedule can be selected.
  • Still another aspect of the present invention is a viewpoint as a hybrid vehicle.
  • the hybrid vehicle of the present invention has the traveling mode control device of the present invention.
  • Still another aspect of the present invention is a viewpoint as a traveling mode control method.
  • the travel mode control method of the present invention includes an engine and an electric motor, and can be driven by the engine or the electric motor, or the engine and the electric motor can collaborate, and can be set to a preset travel mode type.
  • the shift schedule has a shift schedule selection means for selecting a shift schedule in a transmission that performs automatic shift according to the shift schedule, and the shift schedule shifts from a gear stage having a large gear ratio to a gear stage having a small gear ratio at different accelerator openings or vehicle speeds.
  • a hybrid vehicle travel mode having a first shift schedule to be performed and a second shift schedule, wherein an accelerator opening or a vehicle speed in the first shift schedule is smaller than an accelerator opening or a vehicle speed in the second shift schedule
  • the first shift schedule When selected, the first shift schedule is executed by controlling the running time of the motor to exceed the running time of the engine, and when the second shift schedule is selected, the running time of the engine is driven by the motor. It has a driving mode control step for executing the second shift schedule by controlling so as not to fall below the time.
  • Still another aspect of the present invention is a viewpoint as a program.
  • the program of the present invention causes the information processing apparatus to realize the function of the travel mode control device of the present invention.
  • the driving sensation of a hybrid vehicle can be appropriately changed according to the driver's preference.
  • FIG. 6 is a block diagram illustrating an example of a functional configuration realized in the hybrid ECU of FIG. 5. It is a flowchart which shows the driving mode setting process of the driving mode control part of FIG. It is a flowchart which shows the PWR mode selection process of the driving mode control part of 3rd embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of the hybrid vehicle 1.
  • the hybrid vehicle 1 is an example of a vehicle.
  • the hybrid vehicle 1 is driven by an engine (internal combustion engine) 10 and / or an electric motor 13 via a transmission of a semi-automatic transmission, and can select one of a plurality of travel modes.
  • the driving mode is a control mode for controlling the hybrid vehicle 1 in order to realize one drivability, and a plurality of driving modes are prepared and appropriately selected according to the driver's preference.
  • the semi-automatic transmission is a transmission that can automatically perform a shift operation (automatic shift in the claims) while having the same configuration as a manual transmission.
  • the hybrid vehicle 1 includes an engine 10 and an engine ECU (Electronic Control Unit) 11, clutch 12, electric motor 13, inverter 14, battery 15, transmission 16, motor ECU 17, hybrid ECU 18, wheels 19, and key switch 20.
  • the transmission 16 includes the above-described semi-automatic transmission and the shift unit 21 and is operated by the shift unit 21 having a drive range (hereinafter referred to as a D (Drive) range).
  • the engine 10 is an example of an internal combustion engine, and is controlled by an engine ECU 11 to be gasoline, light oil, CNG (Compressed Natural Gas), LPG (Liquefied). Petroleum Gas) or alternative fuel or the like is combusted inside to generate power for rotating the shaft, and the generated power is transmitted to the clutch 12.
  • ECU 11 gasoline, light oil, CNG (Compressed Natural Gas), LPG (Liquefied). Petroleum Gas) or alternative fuel or the like is combusted inside to generate power for rotating the shaft, and the generated power is transmitted to the clutch 12.
  • the engine ECU 11 is a computer that operates in cooperation with the motor ECU 17 by following instructions from the hybrid ECU 18 and controls the engine 10 such as fuel injection amount and valve timing.
  • the engine ECU 11 includes a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), microprocessor (microcomputer), DSP (Digital (Signal Processor) and the like, and has an arithmetic unit, a memory, an I / O (Input / Output) port, and the like.
  • the clutch 12 is controlled by the hybrid ECU 18 and transmits the shaft output from the engine 10 to the wheels 19 via the electric motor 13 and the transmission 16. That is, the clutch 12 mechanically connects the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 under the control of the hybrid ECU 18 to transmit the shaft output of the engine 10 to the electric motor 13, or By disconnecting the mechanical connection between the rotating shaft of the motor 10 and the rotating shaft of the electric motor 13, the shaft of the engine 10 and the rotating shaft of the electric motor 13 can be rotated at different rotational speeds.
  • the clutch 12 causes the hybrid vehicle 1 to travel by the power of the engine 10, thereby causing the electric motor 13 to generate electric power, when the engine 10 is assisted by the driving force of the electric motor 13, and to start the engine 10 by the electric motor 13.
  • the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 are mechanically connected.
  • the clutch 12 is in a state where the engine 10 is stopped or idling and the hybrid vehicle 1 is running by the driving force of the electric motor 13 and when the engine 10 is stopped or idling and the hybrid vehicle 1 is decelerated.
  • the electric motor 13 is generating electric power (regenerating electric power)
  • the mechanical connection between the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 is disconnected.
  • the clutch 12 is different from the clutch that is operated by the driver operating the clutch pedal, and operates under the control of the hybrid ECU 18.
  • the electric motor 13 is a so-called motor generator.
  • the electric power supplied from the inverter 14 generates motive power for rotating the shaft, and supplies the shaft output to the transmission 16 or the shaft supplied from the transmission 16. Electric power is generated by the rotating power, and the electric power is supplied to the inverter 14.
  • the electric motor 13 When the hybrid vehicle 1 is accelerating or traveling at a constant speed, the electric motor 13 generates power for rotating the shaft, supplies the shaft output to the transmission 16, and cooperates with the engine 10.
  • the hybrid vehicle 1 is driven to work. Further, for example, when the motor 13 is driven by the engine 10, or when the hybrid vehicle 1 is decelerating or traveling downhill, the motor 13 is traveling without power. Operates as a generator. In this case, power is generated by the power that rotates the shaft supplied from the transmission 16, and the electric power is supplied to the inverter 14 to charge the battery 15.
  • the inverter 14 is controlled by the motor ECU 17 and converts the DC voltage from the battery 15 into an AC voltage or converts the AC voltage from the motor 13 into a DC voltage.
  • the inverter 14 converts the DC voltage of the battery 15 into an AC voltage and supplies electric power to the electric motor 13.
  • the inverter 14 converts the AC voltage from the electric motor 13 into a DC voltage. That is, in this case, the inverter 14 serves as a rectifier and a voltage regulator for supplying a DC voltage to the battery 15.
  • the battery 15 is a chargeable / dischargeable secondary battery.
  • the electric power is supplied to the electric motor 13 via the inverter 14 or when the electric motor 13 is generating electric power, It is charged by the power it generates.
  • the transmission 16 has a semi-automatic transmission (not shown) that selects one of a plurality of gear ratios (speed ratios) in accordance with a speed change instruction signal from the hybrid ECU 18.
  • the power and / or power of the electric motor 13 is transmitted to the wheel 19. Further, the transmission 16 transmits the power from the wheels 19 to the electric motor 13 when decelerating or traveling downhill.
  • the driver can manually change the gear position to an arbitrary gear stage by operating the shift unit 21.
  • the motor ECU 17 is a computer that operates in cooperation with the engine ECU 11 by following instructions from the hybrid ECU 18, and controls the electric motor 13 by controlling the inverter 14.
  • the motor ECU 17 is configured by a CPU, an ASIC, a microprocessor (microcomputer), a DSP, and the like, and includes a calculation unit, a memory, an I / O port, and the like.
  • the hybrid ECU 18 is an example of a computer, and acquires accelerator opening information, brake operation information, vehicle speed information, gear position information acquired from the transmission 16, and engine rotation speed information acquired from the engine ECU 11 for hybrid traveling. With reference to this, the clutch 12 is controlled, and the transmission 16 is controlled by supplying a shift instruction signal. Further, the hybrid ECU 18 gives a control instruction for the electric motor 13 and the inverter 14 to the motor ECU 17 based on the obtained SOC information of the battery 15 and other information for the hybrid running, and gives a control instruction for the engine 10 to the engine ECU 11. give.
  • the hybrid ECU 18 includes a CPU, an ASIC, a microprocessor (microcomputer), a DSP, and the like, and has an arithmetic unit, a memory, an I / O port, and the like.
  • the program executed by the hybrid ECU 18 can be installed in advance in the hybrid ECU 18 that is a computer by storing the program in a nonvolatile memory inside the hybrid ECU 18 in advance.
  • the engine ECU 11, the motor ECU 17, and the hybrid ECU 18 are CAN (Control Are connected to each other by a bus conforming to a standard such as Area Network.
  • Wheel 19 is a driving wheel that transmits driving force to the road surface. Although only one wheel 19 is shown in FIG. 1, the hybrid vehicle 1 actually has a plurality of wheels 19.
  • the key switch 20 is a switch that is turned on / off by a user when the operation is started, for example, and is turned on / off. When the key switch 20 is turned on, each part of the hybrid vehicle 1 is activated and turned off. Each part of the hybrid vehicle 1 stops.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration realized in the hybrid ECU 18 that executes the program. That is, when the hybrid ECU 18 executes the program, the travel mode control unit 30 is realized.
  • the travel mode control unit 30 has a function of controlling the gear position by sending a shift instruction signal to the transmission 16.
  • the “ECO mode” is a travel mode for the purpose of giving priority to reduction of exhaust gas and improvement of fuel consumption of the hybrid vehicle 1, and the gear ratio is small from the gear stage having a large gear ratio while giving priority to the travel by the electric motor 13.
  • a shift schedule is executed in which the shift to the gear stage is performed with the smallest accelerator opening or vehicle speed as compared with other travel modes.
  • the “PWR mode” is a travel mode in which the acceleration of the hybrid vehicle 1 is prioritized, and the transition from a gear stage having a large gear ratio to a gear stage having a small gear ratio is prioritized as a travel mode with priority given to travel by the engine 10.
  • a shift schedule that is performed at the maximum accelerator opening or vehicle speed is executed.
  • the “NOMAL mode” is a general travel mode for performing the same travel as a vehicle that does not have a travel mode switching function. Therefore, the shift schedule is intermediate between the “ECO mode” and the “PWR mode”.
  • step S1 when the key switch 20 is turned on and the hybrid vehicle 1 is ready to run, the procedure proceeds to step S1.
  • the hybrid ECU 18 executes a program, and a traveling mode control unit 30 is realized in the hybrid ECU 18.
  • step S1 the traveling mode control unit 30 determines the mode type set by the driver. If it is determined in step S1 that the set mode type is “NOMAL (normal) mode”, the procedure proceeds to step S2. If it is determined in step S1 that the set mode type is “ECO (eco) mode”, the procedure proceeds to step S11. If it is determined in step S1 that the set mode type is “PWR (power) mode”, the procedure proceeds to step S20.
  • step S2 the travel mode control unit 30 selects “NOMAL shift schedule”.
  • the horizontal axis represents the rotational speed
  • the vertical axis represents the vehicle speed.
  • the solid line in FIG. 4 is the shift schedule in the ECO mode
  • the broken line is the shift schedule in the NOMAL mode
  • the alternate long and short dash line is the shift schedule in the PWR mode.
  • traveling mode control unit 30 determines whether or not hybrid vehicle 1 is accelerating, and when it is determined that hybrid vehicle 1 is accelerating (for example, when the accelerator is continuously depressed). ), The procedure proceeds to step S4. On the other hand, when it is determined in step S3 that the hybrid vehicle 1 is not accelerating (for example, when the foot is released from the accelerator), the procedure proceeds to step S9.
  • step S4 the travel mode control unit 30 determines whether or not the hybrid vehicle 1 is capable of running on an electric motor. Specifically, it is determined whether or not the required torque according to the accelerator opening can be covered by the output from the electric motor 13. If it is determined in step S4 that the hybrid vehicle 1 is capable of running on an electric motor, the procedure proceeds to step S5. On the other hand, when it is determined in step S4 that the hybrid vehicle 1 cannot travel on the electric motor, the procedure proceeds to step S7.
  • step S5 the travel mode control unit 30 turns the clutch 12 in a disengaged state. Thereby, the output shaft of the engine 10 and the output shaft of the electric motor 13 are separated.
  • step S6 the traveling mode control unit 30 performs electric motor traveling. That is, the clutch 12 is in a disconnected state, and the electric motor 13 causes the hybrid vehicle 1 to travel while being disconnected from the engine 10.
  • step S7 the traveling mode control unit 30 brings the clutch 12 into an engaged state. Thereby, the output shaft of the engine 10 and the output shaft of the electric motor 13 are connected.
  • step S8 the traveling mode control unit 30 performs assist traveling and returns to the procedure in step S3. That is, the hybrid vehicle 1 is caused to travel with the engine 10 in cooperation with the electric motor 13.
  • step S9 the traveling mode control unit 30 sets the clutch 12 in the disengaged state and proceeds to the procedure of step S10. Thereby, the output shaft of the engine 10 and the output shaft of the electric motor 13 are separated.
  • step S10 the traveling mode control unit 30 performs regeneration by the electric motor 13 and ends the process for one cycle. That is, the electric motor 13 is driven as a generator by the rotation of the wheel 19 of the hybrid vehicle 1 being decelerated, and performs regeneration.
  • step S11 the traveling mode control unit 30 selects “ECO shift schedule” and proceeds to the procedure of step S12.
  • step S12 the traveling mode control unit 30 determines whether or not the hybrid vehicle 1 is accelerating. If it is determined in step S12 that the hybrid vehicle 1 is accelerating, the procedure proceeds to step S13. On the other hand, if it is determined in step S12 that the hybrid vehicle 1 is not accelerating, the procedure proceeds to step S18.
  • step S13 the traveling mode control unit 30 determines whether or not the hybrid vehicle 1 is capable of traveling with an electric motor. If it is determined in step S13 that the hybrid vehicle 1 is capable of running on an electric motor, the procedure proceeds to step S14. On the other hand, if it is determined in step S13 that the hybrid vehicle 1 cannot run on the electric motor, the procedure proceeds to step S16. Specifically, it is determined whether or not the required torque according to the accelerator opening can be covered by the output from the electric motor 13.
  • step S14 the traveling mode control unit 30 turns the clutch 12 in a disengaged state and proceeds to the procedure of step S15. Thereby, the output shaft of the engine 10 and the output shaft of the electric motor 13 are separated.
  • step S15 the traveling mode control unit 30 performs electric motor traveling and returns to the procedure in step S13. That is, the electric motor 13 transmits power to the transmission 16 independently while being separated from the engine 10.
  • step S16 the traveling mode control unit 30 sets the clutch 12 to the engaged state and proceeds to the procedure of step S17. Thereby, the output shaft of the engine 10 and the output shaft of the electric motor 13 are connected.
  • step S17 the travel mode control unit 30 performs “ECO assist travel” and returns to the procedure of step S12.
  • the “ECO assist travel” is assist travel that is performed with the fuel injection amount with respect to the accelerator opening being smaller than when the NOMAL mode is selected.
  • step S18 the traveling mode control unit 30 sets the clutch 12 in a disengaged state and proceeds to the procedure of step S19. Thereby, the output shaft of the engine 10 and the output shaft of the electric motor 13 are separated.
  • step S19 the traveling mode control unit 30 performs regeneration by the electric motor 13, and ends the processing for one cycle. That is, the electric motor 13 is driven as a generator by the rotation of the wheel 19 of the hybrid vehicle 1 being decelerated, and performs regeneration.
  • step S20 the traveling mode control unit 30 selects “PWR shift schedule” and proceeds to the procedure of step S21.
  • step S21 the traveling mode control unit 30 determines whether or not the hybrid vehicle 1 is accelerating. If it is determined in step S21 that the hybrid vehicle 1 is accelerating, the procedure proceeds to step S22. On the other hand, if it is determined in step S21 that the hybrid vehicle 1 is not accelerating, the procedure proceeds to step S24.
  • step S22 the traveling mode control unit 30 sets the clutch 12 in the engaged state and proceeds to the procedure of step S23. Thereby, the output shaft of the engine 10 and the output shaft of the electric motor 13 are connected.
  • step S23 the traveling mode control unit 30 performs assist traveling and returns to the procedure in step S21. That is, the hybrid vehicle 1 is caused to travel with the engine 10 in cooperation with the electric motor 13.
  • step S24 the traveling mode control unit 30 sets the clutch 12 in the engaged state and proceeds to the procedure of step S25. Thereby, the output shaft of the engine 10 and the output shaft of the electric motor 13 are connected.
  • step S25 the traveling mode control unit 30 performs “regeneration for PWR” by the electric motor 13 and ends the process for one cycle.
  • the “PWR regeneration” is regeneration performed in a state where the engine 10 and the electric motor 13 are connected by the clutch 12, and is a relatively small regeneration torque that assists the engine braking effect of the engine 10. Regeneration is performed.
  • the hybrid vehicle 1 executes the “ECO shift schedule” while traveling so that the travel time of the electric motor 13 exceeds the travel time of the engine 10, and when the PWR mode is selected, the engine 1 Since the “PWR shift schedule” is executed while traveling so that the traveling time of 10 does not fall below the traveling time of the electric motor 13, the driving sensation can be appropriately changed according to the driver's preference.
  • the hybrid vehicle 1 in the PWR mode, as in steps S21 and S22 in FIG. 3, if the hybrid vehicle 1 is accelerating, the clutch 12 is immediately connected and the assist running is performed.
  • the hybrid vehicle 1 can travel with the high torque generated by the engine 10 and the electric motor 13 in the PWR mode, and can satisfy the acceleration feeling required by the driver (according to steps S21 and S22) 10 so that the traveling time by 10 does not fall below the traveling time by the electric motor 13).
  • step S24 and S25 of FIG. 3 regeneration for PWR is performed, and regeneration is performed with a relatively small regeneration torque while the clutch 12 is connected even during regeneration.
  • the clutch 12 remains connected, so that the acceleration feeling requested by the driver can be satisfied by allowing the engine 10 to quickly shift to acceleration.
  • steps S24 and S25 it is possible to travel so that the traveling time of the engine 10 exceeds the traveling time of the electric motor 13).
  • step S13 to S15 in FIG. 3 once the travel by the electric motor 13 is performed, the travel by the electric motor 13 is controlled as long as the travel by the electric motor 13 is possible. Further, as in step S17 of FIG. 3, “ECO assist travel” is performed in which the fuel injection amount with respect to the accelerator opening is smaller than in the NOMAL mode even when travel by the electric motor 13 is difficult. Thus, the hybrid vehicle 1 can satisfy the high fuel consumption required by the driver in the ECO mode.
  • FIG. 5 is a diagram showing an overall configuration of the hybrid vehicle 1A.
  • the hybrid vehicle 1 ⁇ / b> A has a configuration in which a travel mode selection switch 22 is added to the hybrid vehicle 1.
  • the travel mode selection switch 22 is a so-called momentary switch, and is configured such that the contacts are brought into conduction only while an operator such as a driver presses the button portion of the travel mode selection switch 22.
  • FIG. 6 is a block diagram showing a configuration of functions realized by the hybrid ECU 18A of the hybrid vehicle 1A during execution of the program.
  • FIG. 7 is a flowchart showing a process for controlling the travel mode executed by the travel mode control unit 30A of the hybrid ECU 18A.
  • traveling mode control unit 30A and traveling mode storage unit 31 are realized.
  • the traveling mode control unit 30 ⁇ / b> A has a function of controlling the gear position by sending a shift instruction signal to the transmission 16, and is the same as the traveling mode control unit 30.
  • the travel mode storage unit 31 is a memory for the travel mode control unit 30A to store the travel mode. A partial area of the memory included in the hybrid ECU 18A can be allocated as the travel mode storage unit 31.
  • the running mode storage unit 31 is a non-volatile memory that can hold the stored contents even when the key switch 20 is in the OFF state.
  • a driving mode storage unit 31 may be provided by externally attaching a non-volatile memory such as a flash memory to the hybrid ECU 18A.
  • the travel mode control unit 30A of the hybrid vehicle 1A stores the travel mode immediately before the end of operation in the travel mode storage unit 31 prior to the end of operation of the hybrid vehicle 1A.
  • the traveling mode is set to the ECO mode in advance.
  • the travel mode control unit 30A of the hybrid vehicle 1A will be described with reference to the flowchart of FIG.
  • the key switch 20 of the hybrid vehicle 1A is in an ON state and in an operating state.
  • a traveling mode control unit 30A and a traveling mode storage unit 31 are realized in the hybrid ECU 18A.
  • step S30 the hybrid vehicle 1A is immediately before the end of operation, the key switch 20 is operated from the ON state to the OFF state, and the procedure proceeds to step S31.
  • the key switch 20 is provided with a timer (delay circuit) (not shown), and the timing from when the key switch 20 is operated to the OFF position until the key switch 20 is actually turned OFF is delayed.
  • step S31 the traveling mode control unit 30A determines whether or not the traveling mode immediately before the end of the operation is the ECO mode. If it is determined in step S31 that the traveling mode immediately before the end of the operation is the ECO mode, the procedure proceeds to step S32. On the other hand, if it is determined in step S31 that the travel mode immediately before the end of the operation is not the ECO mode, the process proceeds to step S35.
  • step S32 the traveling mode control unit 30A stores in the traveling mode storage unit 31 that the traveling mode immediately before the end of the operation is the ECO mode, and proceeds to the procedure of step S33.
  • step S33 the hybrid vehicle 1A performs an OFF routine for terminating the operation, and proceeds to the procedure of step S34.
  • step S34 when the key switch 20 is turned on, the hybrid vehicle 1A starts operation and proceeds to the procedure of step S36.
  • step S36 the traveling mode control unit 30A determines whether or not the traveling mode storage unit 31 has a memory. If it is determined in step S36 that there is a memory in the travel mode storage unit 31, the procedure proceeds to step S37. On the other hand, if it is determined in step S36 that there is no memory in the travel mode storage unit 31, the procedure proceeds to step S43.
  • step S37 the traveling mode control unit 30A performs control in the ECO mode and proceeds to the procedure of step S38.
  • step S38 the traveling mode control unit 30A determines whether or not the traveling mode selection switch 22 is operated. If it is determined in step S38 that the travel mode selection switch 22 is operated, the procedure proceeds to step S39. On the other hand, if it is determined in step S38 that the travel mode selection switch 22 is not operated, the procedure returns to step S37.
  • step S39 the traveling mode control unit 30A performs control in the NOMAL mode, and proceeds to the procedure of step S40.
  • step S40 the traveling mode control unit 30A determines whether or not there is an operation of the traveling mode selection switch 22. If it is determined in step S40 that the travel mode selection switch 22 is operated, the procedure proceeds to step S41. On the other hand, when it is determined in step S40 that the travel mode selection switch 22 is not operated, the procedure returns to step S39.
  • step S41 the traveling mode control unit 30A performs control in the PWR mode, and proceeds to the procedure of step S42.
  • step S42 the traveling mode control unit 30A determines whether or not the traveling mode selection switch 22 is operated. If it is determined in step S42 that the travel mode selection switch 22 is operated, the procedure returns to step S37. On the other hand, if it is determined in step S42 that the travel mode selection switch 22 is not operated, the procedure returns to step S41.
  • step S43 the traveling mode control unit 30A performs control in the NOMAL mode, and proceeds to the procedure of step S44.
  • step S44 the traveling mode control unit 30A determines whether or not the traveling mode selection switch 22 is operated. If it is determined in step S44 that the travel mode selection switch 22 is operated, the procedure proceeds to step S45. On the other hand, if it is determined in step S44 that the travel mode selection switch 22 is not operated, the procedure returns to step S43.
  • step S45 the traveling mode control unit 30A performs control in the PWR mode, and proceeds to the procedure of step S46.
  • step S46 the traveling mode control unit 30A determines whether or not there is an operation of the traveling mode selection switch 22. If it is determined in step S46 that the travel mode selection switch 22 is operated, the procedure proceeds to step S47. On the other hand, if it is determined in step S46 that the traveling mode selection switch 22 is not operated, the procedure returns to step S45.
  • step S47 the traveling mode control unit 30A performs control in the ECO mode and proceeds to the procedure of step S48.
  • step S48 the traveling mode control unit 30A determines whether or not the traveling mode selection switch 22 is operated. If it is determined in step S48 that the travel mode selection switch 22 is operated, the procedure returns to step S43. On the other hand, if it is determined in step S48 that the travel mode selection switch 22 is not operated, the procedure returns to step S47.
  • the hybrid vehicle 1A stores this travel mode and selects the ECO mode in advance for the next start of operation. can do. According to this, when the driver selects the ECO mode, the operation can be started in the ECO mode even when the next operation starts. Thereby, reduction of exhaust gas and improvement of fuel consumption can be promoted.
  • the operation is started in the NOMAL mode at the start of the next operation, which can also promote the reduction of exhaust gas and the improvement of fuel consumption.
  • the ECO mode may be selected at the start of the next operation regardless of the driving mode selected by the driver. Further, at the start of the next operation, the driver may be able to set whether the ECO mode is selected or the NOMAL mode is selected.
  • hybrid vehicle 1B according to a third embodiment of the present invention will be described with reference to the flowchart of FIG.
  • the configuration of the hybrid vehicle 1B is the same as that of the hybrid vehicle 1A, and will be described using the same reference numerals (for example, the hybrid ECU 18B, the travel mode control unit 30B, etc.).
  • the traveling mode control unit 30B of the hybrid vehicle 1B switches the traveling mode each time the traveling mode selection switch 22 is pressed. For example, when the traveling mode selection switch 22 is pressed while the NOMAL mode is selected, the ECO mode is selected. Similarly, when the travel mode selection switch 22 is pressed while the ECO mode is selected, the PWR mode is selected. Similarly, when the travel mode selection switch 22 is pressed while the PWR mode is selected, the NOMAL mode is selected.
  • the traveling mode selection switch 22 when the traveling mode selection switch 22 is pressed for a long time (pressed for a predetermined time or longer in the claims), the PWR mode is selected.
  • step S50 the travel mode control unit 30B is activated, and the travel mode control unit 30B determines whether or not the travel mode selection switch 22 is operated. If it is determined in step S50 that the travel mode selection switch 22 is operated, the procedure proceeds to step S51. On the other hand, if there is no operation of the travel mode selection switch 22 in step S50, the procedure repeats step S50.
  • step S51 the traveling mode control unit 30B determines whether or not the traveling mode selection switch 22 is pressed long. If it is determined in step S51 that the travel mode selection switch 22 has been pressed long, the procedure proceeds to step S52. On the other hand, if it is determined in step S51 that there is no long press operation of the travel mode selection switch 20, the procedure proceeds to step S53.
  • step S52 the traveling mode control unit 30B performs control in the PWR mode and ends the process for one cycle.
  • step S53 the traveling mode control unit 30B performs control in the next traveling mode and ends the process for one cycle.
  • the PWR mode is selected when the travel mode selection switch 22 is pressed for a predetermined time or longer (ie, long press), so the driver can select which travel mode the current travel mode is. Therefore, the PWR mode can be immediately selected as necessary. According to this, when overtaking on an expressway or the like, if acceleration is necessary, the driver can select the PWR mode by a simple operation of pressing and holding the travel mode selection switch 22. As a result, the driver can obtain a sense of security that acceleration is possible whenever necessary.
  • the boundary of the determination area may be variously changed such that “more than” is “exceeded” and “less than” is “less than”.
  • the engine 10 has been described as an internal combustion engine, it may be a heat engine including an external combustion engine.
  • the program executed by the hybrid ECU 18, 18A, 18B has been described as being installed in advance in the hybrid ECU 18, 18A, 18B.
  • the removable medium on which the program is recorded (the program is stored) is illustrated.
  • the program read from the removable medium is stored in a non-volatile memory inside the hybrid ECU 18, 18A, 18B, or transmitted via a wired or wireless transmission medium.
  • the data can be received by a communication unit (not shown) and stored in a nonvolatile memory inside the hybrid ECU 18, 18A, 18B, so that it can be installed in the hybrid ECU 18, 18A, 18B that is a computer.
  • each ECU may be realized by an ECU in which some or all of these functions are combined into one, or an ECU that further subdivides the functions of each ECU may be newly provided.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • SYMBOLS 1 Hybrid vehicle, 10 ... Engine, 11 ... Engine ECU, 12 ... Clutch, 13 ... Electric motor, 14 ... Inverter, 15 ... Battery, 16 ... Transmission, 17 ... Motor ECU, 18, 18A, 18B ... Hybrid ECU (travel mode) Control device), 19 ... wheel, 20 ... key switch, 22 ... travel mode selection switch, 30, 30A, 30B ... travel mode control unit, 31 ... travel mode storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 ハイブリッド自動車の運転感覚を運転者の好みに応じて適切に変更すること。 第1のシフトスケジュールが選択されたときは、電動機による走行時間がエンジンによる走行時間を上回るように制御して第1のシフトスケジュールを実行し、第2のシフトスケジュールが選択されたときには、エンジンによる走行時間が電動機による走行時間を下回らないように制御して第2のシフトスケジュールを実行する走行モード制御部を有するハイブリッド自動車を構成する。

Description

走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラム
 本発明は、走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラムに関する。
 運転者の運転感覚の好みに対応するために、複数の走行モードの中から運転者が好みの走行モードを選択できる走行モード制御装置を有する車両がある。このような走行モード制御装置では、走行モードを選択することにより、たとえば自動変速の際のシフトスケジュールが変更できるようになっている。
 たとえばシフトスケジュールには、車両のポテンシャルにより適した通常のシフトスケジュール(以下、第1のシフトスケジュールと称する)と、アクセル操作により迅速に対応するためのパワー走行用のシフトスケジュール(以下、第2のシフトスケジュール)がある。第1のシフトスケジュールでは、ギア比が大きいギア段からギア比が小さいギア段への遷移(いわゆるシフトアップ)が、第2のシフトスケジュールに比べ、小さい回転速度で行われる。第2のシフトスケジュールでは、シフトアップが、第1のシフトスケジュールに比べ、大きい回転速度で行われる。前者の場合、加速感は小さいが後者に比べると燃費は良いのに対し、後者の場合、加速感は大きいが前者に比べると燃費は良くない(たとえば特許文献1参照)。
特開2008-128192号公報
 上述した走行モード制御装置をハイブリッド自動車に適用した場合について以下に説明する。
 エンジンと電動機とを有するハイブリッド自動車では、エンジンによる走行、電動機による走行、エンジンと電動機とが協働する走行の3とおりの走行形態が有り、所定の条件に応じてこの3とおりの走行形態のいずれかが選択される。
 このようなハイブリッド自動車が電動機により走行している場合、電動機は、一般的に、ある程度回転速度が上昇したときに最大トルクを発生するものであるので、低速域でのトルクが不足気味になる。このような状況下で、従来の走行モード制御装置によりギア比が大きいギア段(発進段)からギア比が小さいギア段への遷移を比較的大きいアクセル開度または車速で行うシフトスケジュールを選択してもエンジン走行の場合と比べて十分な加速感が得られない場合がある。
 このように従来の走行モード制御装置をそのままハイブリッド自動車に適用した場合、運転者が要求する運転感覚を得ることが難しい場合がある。
 本発明は、このような背景の下に行われたものであって、ハイブリッド自動車の運転感覚を運転者の好みに応じて適切に変更することができる走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラムを提供することを目的とする。
 本発明の1つの観点は、走行モード制御装置としての観点である。本発明の走行モード制御装置は、エンジンと電動機とを有し、エンジンもしくは電動機により走行可能であり、またはエンジンと電動機とが協働して走行可能であり、予め設定される走行モードの種別に応じて自動変速を行うトランスミッションにおけるシフトスケジュールを選択するシフトスケジュール選択手段を有し、シフトスケジュールは、ギア比が大きいギア段からギア比が小さいギア段への遷移をそれぞれ異なるアクセル開度または車速で行う第1のシフトスケジュールと第2のシフトスケジュールとを有し、第1のシフトスケジュールにおけるアクセル開度または車速は、第2のシフトスケジュールにおけるアクセル開度または車速よりも小さい、ハイブリッド自動車の走行モード制御装置において、第1のシフトスケジュールが選択されたときは、電動機による走行時間がエンジンによる走行時間を上回るように制御して第1のシフトスケジュールを実行し、第2のシフトスケジュールが選択されたときには、エンジンによる走行時間が電動機による走行時間を下回らないように制御して第2のシフトスケジュールを実行する走行モード制御部を有するものである。
 たとえば走行モード制御部は、第2のシフトスケジュールが選択されたときには、電動機のみによる走行を禁止することができる。
 さらに走行モード制御部は、車両の運行終了に先立って、今回の運行終了時に第1のシフトスケジュールが選択されていたときには、このシフトスケジュールを記憶し、次回の運行開始に当たっては、第1のシフトスケジュールを予め選択することができる。
 さらに第1または第2のシフトスケジュールを選択する選択スイッチを有し、選択スイッチは、1回の押圧毎に走行モードが遷移する押し釦を有し、走行モード制御部は、押し釦が所定時間以上押圧されたときには第2のシフトスケジュールを選択することができる。
 本発明のさらに他の観点は、ハイブリッド自動車としての観点である。本発明のハイブリッド自動車は、本発明の走行モード制御装置を有するものである。
 本発明のさらに他の観点は、走行モード制御方法としての観点である。本発明の走行モード制御方法は、エンジンと電動機とを有し、エンジンもしくは電動機により走行可能であり、またはエンジンと電動機とが協働して走行可能であり、予め設定される走行モードの種別に応じて自動変速を行うトランスミッションにおけるシフトスケジュールを選択するシフトスケジュール選択手段を有し、シフトスケジュールは、ギア比が大きいギア段からギア比が小さいギア段への遷移をそれぞれ異なるアクセル開度または車速で行う第1のシフトスケジュールと第2のシフトスケジュールとを有し、第1のシフトスケジュールにおけるアクセル開度または車速は、第2のシフトスケジュールにおけるアクセル開度または車速よりも小さい、ハイブリッド自動車の走行モード制御方法において、第1のシフトスケジュールが選択されたときは、電動機による走行時間がエンジンによる走行時間を上回るように制御して第1のシフトスケジュールを実行し、第2のシフトスケジュールが選択されたときには、エンジンによる走行時間が電動機による走行時間を下回らないように制御して第2のシフトスケジュールを実行する走行モード制御ステップを有するものである。
 本発明のさらに他の観点は、プログラムとしての観点である。本発明のプログラムは、情報処理装置に、本発明の走行モード制御装置の機能を実現させるものである。
 本発明によれば、ハイブリッド自動車の運転感覚を運転者の好みに応じて適切に変更することができる。
第一の実施の形態のハイブリッド自動車の構成の例を示すブロック図である。 図1のハイブリッドECUにおいて実現される機能の構成の例を示すブロック図である。 図2の走行モード制御部の走行モード選択処理を示すフローチャートである。 図2の走行モード制御部のシフトスケジュールマップを示す図である。 第二の実施の形態のハイブリッド自動車の構成の例を示すブロック図である。 図5のハイブリッドECUにおいて実現される機能の構成の例を示すブロック図である。 図6の走行モード制御部の走行モード設定処理を示すフローチャートである。 第三の実施の形態の走行モード制御部のPWRモード選択処理を示すフローチャートである。
(第一の実施の形態)
 以下、本発明の第一の実施の形態のハイブリッド自動車について、図1~図4を参照しながら説明する。
 図1は、ハイブリッド自動車1の構成の例を示すブロック図である。ハイブリッド自動車1は、車両の一例である。ハイブリッド自動車1は、半自動トランスミッションの変速機を介したエンジン(内燃機関)10および/または電動機13によって駆動され、複数の走行モードの中からいずれかの走行モードを選択可能である。ここで走行モードとは、1つのドライバビリティを実現するために、ハイブリッド自動車1を制御する制御形態であり、複数の走行モードが用意され、運転者の好みに応じて適宜選択されるものである。なお、半自動トランスミッションとは、マニュアルトランスミッションと同じ構成を有しながら変速操作を自動的に行う(請求項でいう自動変速)ことができるトランスミッションである。
 ハイブリッド自動車1は、エンジン10、エンジンECU(Electronic
Control Unit)11、クラッチ12、電動機13、インバータ14、バッテリ15、トランスミッション16、モータECU17、ハイブリッドECU18、車輪19、キースイッチ20を有して構成される。なお、トランスミッション16は、上述した半自動トランスミッション、およびシフト部21を有し、ドライブレンジ(以下では、D(Drive)レンジと記す)を有するシフト部21により操作される。
 エンジン10は、内燃機関の一例であり、エンジンECU11によって制御され、ガソリン、軽油、CNG(Compressed Natural Gas)、LPG(Liquefied
Petroleum Gas)、または代替燃料等を内部で燃焼させて、軸を回転させる動力を発生させ、発生した動力をクラッチ12に伝達する。
 エンジンECU11は、ハイブリッドECU18からの指示に従うことにより、モータECU17と連携動作するコンピュータであり、燃料噴射量やバルブタイミングなど、エンジン10を制御する。たとえば、エンジンECU11は、CPU(Central Processing Unit)、ASIC(Application
Specific Integrated Circuit)、マイクロプロセッサ(マイクロコンピュータ)、DSP(Digital
Signal Processor)などにより構成され、内部に、演算部、メモリ、およびI/O(Input/Output)ポートなどを有する。
 クラッチ12は、ハイブリッドECU18によって制御され、エンジン10からの軸出力を、電動機13およびトランスミッション16を介して車輪19に伝達する。すなわち、クラッチ12は、ハイブリッドECU18の制御によって、エンジン10の回転軸と電動機13の回転軸とを機械的に接続することにより、エンジン10の軸出力を電動機13に伝達させたり、または、エンジン10の回転軸と電動機13の回転軸との機械的な接続を切断することにより、エンジン10の軸と、電動機13の回転軸とが互いに異なる回転速度で回転できるようにする。
 たとえば、クラッチ12は、エンジン10の動力によってハイブリッド自動車1が走行し、これにより電動機13に発電させる場合、電動機13の駆動力によってエンジン10がアシストされる場合、および電動機13によってエンジン10を始動させる場合などに、エンジン10の回転軸と電動機13の回転軸とを機械的に接続する。
 また、たとえば、クラッチ12は、エンジン10が停止またはアイドリング状態にあり、電動機13の駆動力によってハイブリッド自動車1が走行している場合、およびエンジン10が停止またはアイドリング状態にあり、ハイブリッド自動車1が減速中または下り坂を走行中であり、電動機13が発電している(電力回生している)場合、エンジン10の回転軸と電動機13の回転軸との機械的な接続を切断する。
 なお、クラッチ12は、運転者がクラッチペダルを操作して動作しているクラッチとは異なるものであり、ハイブリッドECU18の制御によって動作する。
 電動機13は、いわゆる、モータジェネレータであり、インバータ14から供給された電力により、軸を回転させる動力を発生させて、その軸出力をトランスミッション16に供給するか、またはトランスミッション16から供給された軸を回転させる動力によって発電し、その電力をインバータ14に供給する。たとえば、ハイブリッド自動車1が加速しているときまたは定速で走行しているときにおいて、電動機13は、軸を回転させる動力を発生させて、その軸出力をトランスミッション16に供給し、エンジン10と協働してハイブリッド自動車1を走行させる。また、たとえば、電動機13がエンジン10によって駆動されているとき、またはハイブリッド自動車1が減速しているとき、もしくは下り坂を走行しているときなど、無動力で走行しているときにおいて、電動機13は、発電機として動作し、この場合、トランスミッション16から供給された軸を回転させる動力によって発電して、電力をインバータ14に供給し、バッテリ15が充電される。
 インバータ14は、モータECU17によって制御され、バッテリ15からの直流電圧を交流電圧に変換するか、または電動機13からの交流電圧を直流電圧に変換する。電動機13が動力を発生させる場合、インバータ14は、バッテリ15の直流電圧を交流電圧に変換して、電動機13に電力を供給する。電動機13が発電する場合、インバータ14は、電動機13からの交流電圧を直流電圧に変換する。すなわち、この場合、インバータ14は、バッテリ15に直流電圧を供給するための整流器および電圧調整装置としての役割を果たす。
 バッテリ15は、充放電可能な二次電池であり、電動機13が動力を発生させるとき、電動機13にインバータ14を介して電力を供給するか、または電動機13が発電しているとき、電動機13が発電する電力によって充電される。
 トランスミッション16は、ハイブリッドECU18からの変速指示信号に従って、複数のギア比(変速比)のいずれかを選択する半自動トランスミッション(図示せず)を有し、変速比を切り換えて、変速されたエンジン10の動力および/または電動機13の動力を車輪19に伝達する。また、減速しているとき、もしくは下り坂を走行しているときなど、トランスミッション16は、車輪19からの動力を電動機13に伝達する。なお、半自動トランスミッションは、シフト部21を操作して運転者が手動で任意のギア段にギア位置を変更することもできる。
 モータECU17は、ハイブリッドECU18からの指示に従うことにより、エンジンECU11と連携動作するコンピュータであり、インバータ14を制御することによって電動機13を制御する。たとえば、モータECU17は、CPU、ASIC、マイクロプロセッサ(マイクロコンピュータ)、DSPなどにより構成され、内部に、演算部、メモリ、およびI/Oポートなどを有する。
 ハイブリッドECU18は、コンピュータの一例であり、ハイブリッド走行のために、アクセル開度情報、ブレーキ操作情報、車速情報、およびトランスミッション16から取得したギア位置情報、エンジンECU11から取得したエンジン回転速度情報を取得して、これを参照して、クラッチ12を制御すると共に、変速指示信号を供給することでトランスミッション16を制御する。また、ハイブリッドECU18は、ハイブリッド走行のために、取得したバッテリ15のSOC情報その他の情報に基づきモータECU17に対して電動機13およびインバータ14の制御指示を与え、エンジンECU11に対してエンジン10の制御指示を与える。たとえば、ハイブリッドECU18は、CPU、ASIC、マイクロプロセッサ(マイクロコンピュータ)、DSPなどにより構成され、内部に、演算部、メモリ、およびI/Oポートなどを有する。
 なお、ハイブリッドECU18によって実行されるプログラムは、ハイブリッドECU18の内部の不揮発性のメモリにあらかじめ記憶しておくことで、コンピュータであるハイブリッドECU18にあらかじめインストールしておくことができる。
 エンジンECU11、モータECU17、およびハイブリッドECU18は、CAN(Control
Area Network)などの規格に準拠したバスなどにより相互に接続されている。
 車輪19は、路面に駆動力を伝達する駆動輪である。なお、図1において、1つの車輪19のみが図示されているが、実際には、ハイブリッド自動車1は、複数の車輪19を有する。
 キースイッチ20は、運転を開始するときにユーザにより、たとえばキーが差し込まれてON/OFFされるスイッチであり、ON状態になることによってハイブリッド自動車1の各部は起動し、OFF状態になることによってハイブリッド自動車1の各部は停止する。
 図2は、プログラムを実行するハイブリッドECU18において実現される機能の構成の例を示すブロック図である。すなわち、ハイブリッドECU18がプログラムを実行すると、走行モード制御部30が実現される。走行モード制御部30は、トランスミッション16に変速指示信号を送出することによってギア位置を制御する機能である。
 次に、図3のフローチャートおよび図4のシフトスケジュールマップを参照して、プログラムを実行するハイブリッドECU18において行われる、走行モード選択制御の処理を説明する。なお、図3のフローチャートにおける処理は1周期分であり、ハイブリッド自動車1のキースイッチ20がオン状態である場合、繰り返し実行される。
 ここで、各走行モードについて説明する。「ECOモード」は、ハイブリッド自動車1の排気ガスの低減および燃費の向上を優先することを目的とする走行モードであり、電動機13による走行を優先しつつギア比が大きいギア段からギア比が小さいギア段への遷移を他の走行モードと比較して最も小さいアクセル開度または車速で行うシフトスケジュールを実行する。「PWRモード」は、ハイブリッド自動車1の加速性を優先する走行モードであり、エンジン10による走行を優先しつつギア比が大きいギア段からギア比が小さいギア段への遷移を他の走行モードと比較して最も大きいアクセル開度または車速で行うシフトスケジュールを実行する。「NOMALモード」は、走行モードの切替え機能を有しない車両と同じ走行を行うための一般的な走行モードである。したがって、シフトスケジュールは、「ECOモード」と「PWRモード」の中間的なものになる。
 図3の「START」において、キースイッチ20がON状態になりハイブリッド自動車1が走行可能な状態になると手続きはステップS1に進む。このときハイブリッドECU18がプログラムを実行し、ハイブリッドECU18には、走行モード制御部30が実現されている。
 ステップS1において、走行モード制御部30は、運転者により設定されているモード種別を判定する。ステップS1で、設定されているモード種別が「NOMAL(ノーマル)モード」であると判定された場合、手続きはステップS2に進む。ステップS1において、設定されているモード種別が「ECO(エコ)モード」であると判定された場合、手続きはステップS11に進む。ステップS1において、設定されているモード種別が「PWR(パワー)モード」であると判定された場合、手続きはステップS20に進む。
 ステップS2において、走行モード制御部30は、「NOMALシフトスケジュール」を選択する。
 ここで、シフトスケジュールの詳細について図4を参照して説明する。図4は、横軸に回転速度をとり、縦軸に車速をとる。図4の実線は、ECOモードにおけるシフトスケジュールであり、破線は、NOMALモードにおけるシフトスケジュールであり、一点鎖線は、PWRモードにおけるシフトスケジュールである。各シフトスケジュールの左側の領域と右側の領域とでギア段が1段異なり、左側の領域のギア段のギア比は右側の領域のギア段のギア比よりも大きい。
 図4に示すように、同じアクセル開度で比較した場合、ECOモードと比較してNOMALモードは、より大きな車速でギア段の遷移が行われる。同様に、同じアクセル開度で比較した場合、NOMALモードと比較してPWRモードは、より大きな車速でギア段の遷移が行われる。これにより、同じアクセル開度で比較した場合、運転者が感じる加速感は、ECOモード→NOMALモード→PWRモードの順で大きくなることがわかる。一方、同じアクセル開度で比較した場合、消費燃料は、ECOモード→NOMALモード→PWRモードの順で増えることがわかる。
 ステップS3において、走行モード制御部30は、ハイブリッド自動車1が加速中であるか否かを判定し、ハイブリッド自動車1が加速中であると判定された場合(たとえば、アクセルが踏み続けられている場合)、手続きはステップS4に進む。一方、ステップS3において、ハイブリッド自動車1が加速中でないと判定された場合(たとえば、アクセルから足が離れると)、手続きはステップS9に進む。
 ステップS4において、走行モード制御部30は、ハイブリッド自動車1が電動機走行可能であるか否かを判定する。具体的には、アクセル開度に応じた要求トルクに対して、電動機13による出力でカバーできるか否かが判定される。ステップS4で、ハイブリッド自動車1が電動機走行可能であると判定された場合、手続きはステップS5に進む。一方、ステップS4において、ハイブリッド自動車1が電動機走行可能でないと判定された場合、手続きはステップS7に進む。
 ステップS5において、走行モード制御部30は、クラッチ12を断状態とする。これにより、エンジン10の出力軸と電動機13の出力軸とは切り離される。
 ステップS6において、走行モード制御部30は、電動機走行を実施する。すなわちクラッチ12は断状態であり、電動機13は、エンジン10とは切り離された状態でハイブリッド自動車1を走行させる。
 ステップS7において、走行モード制御部30は、クラッチ12を接状態とする。これにより、エンジン10の出力軸と電動機13の出力軸とは接続される。
 ステップS8において、走行モード制御部30は、アシスト走行を実施してステップS3の手続きに戻る。すなわちエンジン10を電動機13とが協働してハイブリッド自動車1を走行させる。
 ステップS9において、走行モード制御部30は、クラッチ12を断状態としてステップS10の手続きに進む。これにより、エンジン10の出力軸と電動機13の出力軸とは切り離される。
 ステップS10において、走行モード制御部30は、電動機13による回生を実施して1周期分の処理を終了する。すなわち電動機13は、減速中のハイブリッド自動車1の車輪19の回転によって発電機として駆動されて回生を実施する。
 ステップS11において、走行モード制御部30は、「ECOシフトスケジュール」を選択してステップS12の手続きに進む。
 ステップS12において、走行モード制御部30は、ハイブリッド自動車1が加速中であるか否かを判定する。ステップS12において、ハイブリッド自動車1が加速中であると判定されると手続きはステップS13に進む。一方、ステップS12において、ハイブリッド自動車1が加速中でないと判定されると手続きはステップS18に進む。
 ステップS13において、走行モード制御部30は、ハイブリッド自動車1が電動機走行可能であるか否かを判定する。ステップS13において、ハイブリッド自動車1が電動機走行可能であると判定されると手続きはステップS14に進む。一方、ステップS13において、ハイブリッド自動車1が電動機走行可能でないと判定されると手続きはステップS16に進む。具体的には、アクセル開度に応じた要求トルクに対して、電動機13による出力でカバーできるか否かが判定される。
 ステップS14において、走行モード制御部30は、クラッチ12を断状態としてステップS15の手続きに進む。これにより、エンジン10の出力軸と電動機13の出力軸とは切り離される。
 ステップS15において、走行モード制御部30は、電動機走行を実施してステップS13の手続きに戻る。すなわち電動機13は、エンジン10とは切り離された状態で単独にトランスミッション16に動力を伝達する。
 ステップS16において、走行モード制御部30は、クラッチ12を接状態としてステップS17の手続きに進む。これにより、エンジン10の出力軸と電動機13の出力軸とは接続される。
 ステップS17において、走行モード制御部30は、「ECO用アシスト走行」を実施してステップS12の手続きに戻る。なお、「ECO用アシスト走行」とは、アクセル開度に対する燃料噴射量をNOMALモード選択時よりも少なくして行われるアシスト走行である。
 ステップS18において、走行モード制御部30は、クラッチ12を断状態としてステップS19の手続きに進む。これにより、エンジン10の出力軸と電動機13の出力軸とは切り離される。
 ステップS19において、走行モード制御部30は、電動機13による回生を実施して1周期分の処理を終了する。すなわち電動機13は、減速中のハイブリッド自動車1の車輪19の回転によって発電機として駆動されて回生を実施する。
 ステップS20において、走行モード制御部30は、「PWRシフトスケジュール」を選択してステップS21の手続きに進む。
 ステップS21において、走行モード制御部30は、ハイブリッド自動車1が加速中であるか否かを判定する。ステップS21において、ハイブリッド自動車1が加速中であると判定されると手続きはステップS22に進む。一方、ステップS21において、ハイブリッド自動車1が加速中でないと判定されると手続きはステップS24に進む。
 ステップS22において、走行モード制御部30は、クラッチ12を接状態としてステップS23の手続きに進む。これにより、エンジン10の出力軸と電動機13の出力軸とは接続される。
 ステップS23において、走行モード制御部30は、アシスト走行を実施してステップS21の手続きに戻る。すなわちエンジン10を電動機13とが協働してハイブリッド自動車1を走行させる。
 ステップS24において、走行モード制御部30は、クラッチ12を接状態としてステップS25の手続きに進む。これにより、エンジン10の出力軸と電動機13の出力軸とは接続される。
 ステップS25において、走行モード制御部30は、電動機13による「PWR用回生」を実施して1周期分の処理を終了する。なお、「PWR用回生」とは、クラッチ12によって、エンジン10と電動機13とが接続された状態で行われる回生であり、エンジン10のエンジンブレーキの効果を補助する程度の比較的小さい回生トルクで行われる回生である。
(効果について)
 ハイブリッド自動車1は、ECOモードが選択されたときは、電動機13による走行時間がエンジン10による走行時間を上回るように走行しながら「ECOシフトスケジュール」を実行し、PWRモードが選択されたときには、エンジン10による走行時間が電動機13による走行時間を下回らないように走行しながら「PWRシフトスケジュール」を実行するので運転感覚を運転者の好みに応じて適切に変更することができる。
 たとえばPWRモードでは、図3のステップS21およびS22のように、ハイブリッド自動車1が加速中であれば即座にクラッチ12を接続してアシスト走行を実施する。これによりハイブリッド自動車1は、PWRモード時には、エンジン10および電動機13が発生する高いトルクによって走行可能であり、運転者が要求する加速感を満足させることができる(ステップS21、S22によれば、エンジン10による走行時間が電動機13による走行時間を下回らないように走行できる。)。
 さらにPWRモードでは、図3のステップS24およびS25のように、PWR用回生を行い、回生中であってもクラッチ12を接続したまま比較的小さい回生トルクで回生を行う。これにより、ハイブリッド自動車1の走行状態が減速から加速に転じたときに、クラッチ12が接続されたままなので、速やかにエンジン10による加速に移行できるようにして運転者が要求する加速感を満足させることができる(ステップS24、S25によれば、エンジン10による走行時間が電動機13による走行時間を上回るように走行できる。)。
 一方、ECOモードでは、図3のステップS13~S15のように、いったん電動機13による走行を実施したときには、電動機13による走行が可能な限り、電動機13による走行を継続するように制御する。さらに、図3のステップS17のように、電動機13による走行が困難であってもアクセル開度に対する燃料噴射量をNOMALモードよりも少なくした「ECO用アシスト走行」を実施する。これによりハイブリッド自動車1は、ECOモード時には、運転者が要求する高い燃費を満足させることができる。
(第二の実施の形態)
 本発明の第二の実施の形態のハイブリッド自動車1Aを図5~図7を参照して説明する。図5は、ハイブリッド自動車1Aの全体構成を示す図である。ハイブリッド自動車1Aは、ハイブリッド自動車1に、走行モード選択スイッチ22が追加された構成である。走行モード選択スイッチ22は、いわゆるモーメンタリースイッチであり、運転者などの操作者が走行モード選択スイッチ22の釦部分を押圧している間だけ接点間が導通するように構成されたスイッチである。
 図6は、ハイブリッド自動車1AのハイブリッドECU18Aがプログラムの実行中に実現される機能の構成を示すブロック図である。図7は、ハイブリッドECU18Aの走行モード制御部30Aが実行する走行モードの制御の処理を示すフローチャートである。ハイブリッドECU18Aがプログラムを実行すると、走行モード制御部30Aおよび走行モード記憶部31が実現される。
 走行モード制御部30Aは、トランスミッション16に変速指示信号を送出することによってギア位置を制御する機能であり、走行モード制御部30と同じである。走行モード記憶部31は、走行モード制御部30Aが走行モードを記憶しておくためのメモリである。ハイブリッドECU18Aが有するメモリの一部の領域を走行モード記憶部31として割り当てることができる。ただし、走行モード記憶部31は、キースイッチ20がOFF状態であっても記憶内容を保持できる不揮発性のメモリである。ハイブリッドECU18Aに不揮発性のメモリが無い場合などには、ハイブリッドECU18Aにフラッシュメモリなどの不揮発性メモリを外付けして走行モード記憶部31としてもよい。
 ハイブリッド自動車1Aの走行モード制御部30Aは、ハイブリッド自動車1Aの運行終了直前の走行モードがECOモードである場合、ハイブリッド自動車1Aの運行終了に先立って走行モード記憶部31に、運行終了直前の走行モードがECOモードであったことを記憶する。そして、ハイブリッド自動車1Aが次回運行開始する際には、予め走行モードをECOモードに設定する。
 ハイブリッド自動車1Aの走行モード制御部30Aの動作を図7のフローチャートを参照して説明する。図7のSTARTにおいて、ハイブリッド自動車1Aのキースイッチ20はON状態であり運行状態である。このときハイブリッドECU18Aには、走行モード制御部30Aおよび走行モード記憶部31が実現されている。
 ステップS30において、ハイブリッド自動車1Aは運行終了直前であり、キースイッチ20はON状態からOFF状態に操作され、手続きはステップS31に進む。なお、ハイブリッド自動車1Aでは、キースイッチ20がON状態からOFF状態に操作されても図7のフローの少なくともステップS30~S33の処理が終了するまでの時間、ハイブリッドECU18Aへの電源の供給は確保されるものとする。たとえばキースイッチ20に不図示のタイマ(遅延回路)を備え、キースイッチ20がOFFの位置に操作されてから実際にキースイッチ20がOFF状態となるまでのタイミングを遅らせるようにする。
 ステップS31において、走行モード制御部30Aは、運行終了直前の走行モードがECOモードであるか否かを判定する。ステップS31において、運行終了直前の走行モードがECOモードであると判定されるとステップS32の手続きに進む。一方、ステップS31において、運行終了直前の走行モードがECOモードでないと判定されるとステップS35の手続きに進む。
 ステップS32において、走行モード制御部30Aは、運行終了直前の走行モードがECOモードであったことを走行モード記憶部31に記憶してステップS33の手続きに進む。
 ステップS33において、ハイブリッド自動車1Aは、運行を終了させるためのOFFルーチンを実施してステップS34の手続きに進む。
 ステップS34において、キースイッチ20がON状態になると、ハイブリッド自動車1Aは、運行を開始してステップS36の手続きに進む。
 ステップS36において、走行モード制御部30Aは、走行モード記憶部31に記憶があるか否かを判定する。ステップS36において、走行モード記憶部31に記憶があると判定されると手続きはステップS37に進む。一方、ステップS36において、走行モード記憶部31に記憶がないと判定されると手続きはステップS43に進む。
 ステップS37において、走行モード制御部30Aは、ECOモードにて制御を実施してステップS38の手続きに進む。
 ステップS38において、走行モード制御部30Aは、走行モード選択スイッチ22の操作があるか否かを判定する。ステップS38において、走行モード選択スイッチ22の操作があると判定されると手続きはステップS39に進む。一方、ステップS38において、走行モード選択スイッチ22の操作がないと判定されると手続きはステップS37に戻る。
 ステップS39において、走行モード制御部30Aは、NOMALモードにて制御を実施してステップS40の手続きに進む。
 ステップS40において、走行モード制御部30Aは、走行モード選択スイッチ22の操作があるか否かを判定する。ステップS40において、走行モード選択スイッチ22の操作があると判定されると手続きはステップS41に進む。一方、ステップS40において、走行モード選択スイッチ22の操作がないと判定されると手続きはステップS39に戻る。
 ステップS41において、走行モード制御部30Aは、PWRモードにて制御を実施してステップS42の手続きに進む。
 ステップS42において、走行モード制御部30Aは、走行モード選択スイッチ22の操作があるか否かを判定する。ステップS42において、走行モード選択スイッチ22の操作があると判定すると手続きはステップS37に戻る。一方、ステップS42において、走行モード選択スイッチ22の操作がないと判定されると手続きはステップS41に戻る。
 ステップS43において、走行モード制御部30Aは、NOMALモードにて制御を実施してステップS44の手続きに進む。
 ステップS44において、走行モード制御部30Aは、走行モード選択スイッチ22の操作があるか否かを判定する。ステップS44において、走行モード選択スイッチ22の操作があると判定されると手続きはステップS45に進む。一方、ステップS44において、走行モード選択スイッチ22の操作がないと判定されると手続きはステップS43に戻る。
 ステップS45において、走行モード制御部30Aは、PWRモードにて制御を実施してステップS46の手続きに進む。
 ステップS46において、走行モード制御部30Aは、走行モード選択スイッチ22の操作があるか否かを判定する。ステップS46において、走行モード選択スイッチ22の操作があると判定されると手続きはステップS47に進む。一方、ステップS46において、走行モード選択スイッチ22の操作がないと判定されると手続きはステップS45に戻る。
 ステップS47において、走行モード制御部30Aは、ECOモードにて制御を実施してステップS48の手続きに進む。
 ステップS48において、走行モード制御部30Aは、走行モード選択スイッチ22の操作があるか否かを判定する。ステップS48において、走行モード選択スイッチ22の操作があると判定されると手続きはステップS43に戻る。一方、ステップS48において、走行モード選択スイッチ22の操作がないと判定されると手続きはステップS47に戻る。
 なお、ステップS37~S42またはステップS43~S48の手続きを実行中にキースイッチ20がOFFに操作されるとステップS30の手続きに戻る。
(効果について)
 ハイブリッド自動車1Aは、車両の運行終了に先立って、今回の運行終了時に設定されていた走行モードがECOモードであるときには、この走行モードを記憶し、次回の運行開始に当たっては、ECOモードを予め選択することができる。これによれば運転者がECOモードを選択した場合、次回の運行開始時にもECOモードで運行を開始することができる。これにより排気ガスの低減および燃費の向上を促進することができる。
 さらに運転者がPWRモードを選択した場合には、次回の運行開始時には、NOMALモードで運行を開始するので、これによっても排気ガスの低減および燃費の向上を促進することができる。
 第二の実施の形態の変形例として、運転者がどのような走行モードを選択していても次回の運行開始時にはECOモードが選択されるようにしてもよい。さらに次回の運行開始時に、ECOモードが選択されるかNOMALモードが選択されるかを運転者が設定可能であるようにしてもよい。
(第三の実施の形態)
 本発明の第三の実施の形態のハイブリッド自動車1Bを図8のフローチャートを参照して説明する。ハイブリッド自動車1Bの構成はハイブリッド自動車1Aと共通であり、同じ系統の符号(たとえばハイブリッドECU18B,走行モード制御部30Bなど)を用いて説明する。
 ハイブリッド自動車1Bの走行モード制御部30Bは、走行モード選択スイッチ22が押される度に、走行モードを切替える。たとえばNOMALモードが選択されているときに、走行モード選択スイッチ22が押されると、ECOモードが選択される。同様に、ECOモードが選択されているときに、走行モード選択スイッチ22が押されると、PWRモードが選択される。同様に、PWRモードが選択されているときに、走行モード選択スイッチ22が押されると、NOMALモードが選択される。
 ここでハイブリッド自動車1Bでは、走行モード選択スイッチ22が長押し(請求項でいう所定時間以上押圧)されるとPWRモードが選択される。
 以上の処理を図8のフローチャートで説明する。STARTにおいて、ハイブリッド自動車1Bのキースイッチ20がONになると手続きはステップS50に進む。このときハイブリッドECU18Bには、走行モード制御部30Bが実現されている。
 ステップS50において、走行モード制御部30Bが起動し、走行モード制御部30Bは、走行モード選択スイッチ22の操作の有無を判定する。ステップS50において、走行モード選択スイッチ22の操作が有ると判定されると手続きはステップS51に進む。一方、ステップS50において、走行モード選択スイッチ22の操作が無いと手続きはステップS50を繰り返す。
 ステップS51において、走行モード制御部30Bは、走行モード選択スイッチ22の長押し操作の有無を判定する。ステップS51において、走行モード選択スイッチ22の長押し操作が有ると判定されると手続きはステップS52に進む。一方、ステップS51において、走行モード選択スイッチ20の長押し操作が無いと判定されると手続きはステップS53に進む。
 ステップS52において、走行モード制御部30Bは、PWRモードにて制御を実施して1周期分の処理を終了する。
 ステップS53において、走行モード制御部30Bは、次の走行モードにて制御を実施して1周期分の処理を終了する。
(効果について)
 ハイブリッド自動車1Bによれば、走行モード選択スイッチ22が所定時間以上押圧(すなわら長押し)されたときにはPWRモードを選択するので、運転者は、現在の走行モードがいずれの走行モードであるかを考慮する必要が無く、必要に応じて即座にPWRモードを選択することができる。これによれば高速道路などで追い越しを実施する際に、加速が必要であれば運転者は、走行モード選択スイッチ22を長押しするという簡単な操作によりPWRモードを選択することができる。これにより運転者は、必要なときにいつでも加速が可能であるという安心感を得ることができる。
(その他の実施の形態)
 また、上述したフローチャートの説明では「以上」を「超える」とし、「未満」を「以下」とするなど、判定領域の境界については様々に変更してよい。
 エンジン10は、内燃機関であると説明したが、外燃機関を含む熱機関であってもよい。
 また、ハイブリッドECU18,18A,18Bによって実行されるプログラムは、ハイブリッドECU18,18A,18Bにあらかじめインストールされると説明したが、プログラムが記録されている(プログラムを記憶している)リムーバブルメディアを図示せぬドライブなどに装着し、リムーバブルメディアから読み出したプログラムをハイブリッドECU18,18A,18Bの内部の不揮発性のメモリに記憶することにより、または、有線または無線の伝送媒体を介して送信されてきたプログラムを、図示せぬ通信部で受信し、ハイブリッドECU18,18A,18Bの内部の不揮発性のメモリに記憶することで、コンピュータであるハイブリッドECU18,18A,18Bにインストールすることができる。
 また、各ECUは、これらの機能の一部または全部を1つにまとめたECUにより実現してもよいし、あるいは、各ECUの機能をさらに細分化したECUを新たに設けてもよい。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであってもよいし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであってもよい。
 また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 1…ハイブリッド自動車、10…エンジン、11…エンジンECU、12…クラッチ、13…電動機、14…インバータ、15…バッテリ、16…トランスミッション、17…モータECU、18,18A,18B…ハイブリッドECU(走行モード制御装置)、19…車輪、20…キースイッチ、22…走行モード選択スイッチ、30,30A,30B…走行モード制御部、31…走行モード記憶部

Claims (7)

  1.  エンジンと電動機とを有し、前記エンジンもしくは前記電動機により走行可能であり、または前記エンジンと前記電動機とが協働して走行可能であり、予め設定される走行モードの種別に応じて自動変速を行うトランスミッションにおけるシフトスケジュールを選択するシフトスケジュール選択手段を有し、
     前記シフトスケジュールは、ギア比が大きいギア段からギア比が小さいギア段への遷移をそれぞれ異なるアクセル開度または車速で行う第1のシフトスケジュールと第2のシフトスケジュールとを有し、
     前記第1のシフトスケジュールにおける前記アクセル開度または車速は、前記第2のシフトスケジュールにおける前記アクセル開度または車速よりも小さい、
     ハイブリッド自動車の走行モード制御装置において、
     前記第1のシフトスケジュールが選択されたときは、前記電動機による走行時間が前記エンジンによる走行時間を上回るように制御して前記第1のシフトスケジュールを実行し、前記第2のシフトスケジュールが選択されたときには、前記エンジンによる走行時間が前記電動機による走行時間を下回らないように制御して前記第2のシフトスケジュールを実行する走行モード制御部を有する、
     ことを特徴とする走行モード制御装置。
  2.  請求項1記載の走行モード制御装置であって、
     前記走行モード制御部は、前記第2のシフトスケジュールが選択されたときには、前記電動機のみによる走行を禁止する、
     ことを特徴とする走行モード制御装置。
  3.  請求項1または2記載の走行モード制御装置であって、
     前記走行モード制御部は、車両の運行終了に先立って、今回の運行終了時に前記第1のシフトスケジュールが選択されていたときには、このシフトスケジュールを記憶し、次回の運行開始に当たっては、前記第1のシフトスケジュールを予め選択する、
     ことを特徴とする走行モード制御装置。
  4.  請求項1から3のいずれか1項記載の走行モード制御装置であって、
     前記第1または第2のシフトスケジュールを選択する選択スイッチを有し、
     前記選択スイッチは、1回の押圧毎に走行モードが遷移する押し釦を有し、
     前記走行モード制御部は、前記押し釦が所定時間以上押圧されたときには前記第2のシフトスケジュールを選択する、
     ことを特徴とする走行モード制御装置。
  5.  請求項1から4のいずれか1項記載の走行モード制御装置を有することを特徴とするハイブリッド自動車。
  6.  エンジンと電動機とを有し、前記エンジンもしくは前記電動機により走行可能であり、または前記エンジンと前記電動機とが協働して走行可能であり、予め設定される走行モードの種別に応じて自動変速を行うトランスミッションにおけるシフトスケジュールを選択するシフトスケジュール選択手段を有し、
     前記シフトスケジュールは、ギア比が大きいギア段からギア比が小さいギア段への遷移をそれぞれ異なるアクセル開度または車速で行う第1のシフトスケジュールと第2のシフトスケジュールとを有し、
     前記第1のシフトスケジュールにおける前記アクセル開度または車速は、前記第2のシフトスケジュールにおける前記アクセル開度または車速よりも小さい、
     ハイブリッド自動車の走行モード制御方法において、
     前記第1のシフトスケジュールが選択されたときは、前記電動機による走行時間が前記エンジンによる走行時間を上回るように制御して前記第1のシフトスケジュールを実行し、前記第2のシフトスケジュールが選択されたときには、前記エンジンによる走行時間が前記電動機による走行時間を下回らないように制御して前記第2のシフトスケジュールを実行する走行モード制御ステップを有する、
     ことを特徴とする走行モード制御方法。
  7.  情報処理装置に、請求項1から4のいずれか1項記載の走行モード制御装置の機能を実現させることを特徴とするプログラム。
PCT/JP2011/074210 2010-10-21 2011-10-20 走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラム WO2012053615A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11834454.8A EP2631141A4 (en) 2010-10-21 2011-10-20 DRIVE MODE CONTROL DEVICE, HYBRID VEHICLE, DRIVE MODE CONTROL METHOD AND PROGRAM
US13/876,508 US20130184921A1 (en) 2010-10-21 2011-10-20 Driving mode control device, hybrid vehicle, driving mode control method, and computer program
AU2011318945A AU2011318945A1 (en) 2010-10-21 2011-10-20 Driving mode control device, hybrid vehicle, driving mode control method, and program
CN201180046775.7A CN103140401B (zh) 2010-10-21 2011-10-20 行驶模式控制装置、混合动力汽车以及行驶模式控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-236605 2010-10-21
JP2010236605A JP2012086742A (ja) 2010-10-21 2010-10-21 走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラム

Publications (1)

Publication Number Publication Date
WO2012053615A1 true WO2012053615A1 (ja) 2012-04-26

Family

ID=45975325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074210 WO2012053615A1 (ja) 2010-10-21 2011-10-20 走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラム

Country Status (6)

Country Link
US (1) US20130184921A1 (ja)
EP (1) EP2631141A4 (ja)
JP (1) JP2012086742A (ja)
CN (1) CN103140401B (ja)
AU (1) AU2011318945A1 (ja)
WO (1) WO2012053615A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8775004B2 (en) * 2010-10-22 2014-07-08 Hino Motors, Ltd. Vehicle, control method, and computer program
JP6260173B2 (ja) * 2013-09-27 2018-01-17 トヨタ自動車株式会社 車両の制御装置
US20150249419A1 (en) * 2014-02-28 2015-09-03 Kia Motors Corporation System and method for controlling inverter
CN103872966B (zh) * 2014-03-13 2016-03-02 湖南恒新重工机械有限公司 采用计算机控制多速电机或绕线转子电机变速的方法
US9533677B2 (en) * 2014-08-26 2017-01-03 Ford Global Technologies, Llc Method of transitioning among shift schedules
CN105128860B (zh) * 2015-09-11 2017-08-25 浙江吉利汽车研究院有限公司 一种车辆驾驶模式的智能控制方法及***
DE102016100888A1 (de) * 2016-01-20 2017-07-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Steuern eines Hybridelektrokraftfahrzeuges
CN111465541B (zh) * 2017-12-15 2023-04-28 日产自动车株式会社 混合动力车辆的控制方法和混合动力车辆的控制装置
CN113428166A (zh) * 2021-07-31 2021-09-24 重庆长安汽车股份有限公司 一种车辆驾驶模式控制方法、***和车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113967A (ja) * 2003-10-03 2005-04-28 Toyota Motor Corp 車両用自動変速機の変速制御装置
JP2006217750A (ja) * 2005-02-04 2006-08-17 Toyota Motor Corp 自動車およびその制御方法
JP2008128192A (ja) 2006-11-24 2008-06-05 Toyota Motor Corp 動力出力装置、それを搭載した車両及びその制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138743A (ja) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP4333636B2 (ja) * 2005-05-30 2009-09-16 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4462170B2 (ja) * 2005-11-07 2010-05-12 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置
DE102007008477B4 (de) * 2006-02-22 2018-10-04 Mitsubishi Fuso Truck And Bus Corp. Steuerverfahren für ein hybrid-elektrisches Fahrzeug
JP4462208B2 (ja) * 2006-02-28 2010-05-12 日産自動車株式会社 ハイブリッド車両の発進時エンジン始動制御装置
DE102007011410A1 (de) * 2006-03-14 2007-11-08 Mitsubishi Fuso Truck and Bus Corp., Kawasaki Steuergerät für ein elektrisches Hybridfahrzeug
JP5371200B2 (ja) * 2006-05-24 2013-12-18 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法。
JP5103992B2 (ja) * 2006-05-29 2012-12-19 日産自動車株式会社 ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2008001258A (ja) * 2006-06-23 2008-01-10 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP5076516B2 (ja) * 2007-01-24 2012-11-21 日産自動車株式会社 ハイブリッド車両の変速時モード切り替え制御装置
US8204659B2 (en) * 2007-03-12 2012-06-19 Nissan Motor Co., Ltd. Engine start control system for hybrid vehicle
JP4527138B2 (ja) * 2007-07-12 2010-08-18 本田技研工業株式会社 ハイブリッド車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113967A (ja) * 2003-10-03 2005-04-28 Toyota Motor Corp 車両用自動変速機の変速制御装置
JP2006217750A (ja) * 2005-02-04 2006-08-17 Toyota Motor Corp 自動車およびその制御方法
JP2008128192A (ja) 2006-11-24 2008-06-05 Toyota Motor Corp 動力出力装置、それを搭載した車両及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631141A4

Also Published As

Publication number Publication date
JP2012086742A (ja) 2012-05-10
CN103140401B (zh) 2016-01-20
EP2631141A1 (en) 2013-08-28
EP2631141A4 (en) 2014-03-19
CN103140401A (zh) 2013-06-05
AU2011318945A1 (en) 2013-05-09
US20130184921A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2012053615A1 (ja) 走行モード制御装置、ハイブリッド自動車、および走行モード制御方法、並びにプログラム
JP4988046B1 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP5373201B2 (ja) 走行モード切替制御装置、ハイブリッド自動車および走行モード切替制御方法、並びにプログラム
JP5079864B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP5362107B2 (ja) 発進制御方法、発進制御装置およびハイブリッド自動車、並びにプログラム
JP5037668B2 (ja) アイドルストップ制御装置、車両およびアイドルストップ制御方法、並びにプログラム
JP5059247B2 (ja) 変速制御装置、ハイブリッド自動車、および変速制御方法、並びにプログラム
WO2012053607A1 (ja) 車両および制御方法、並びにプログラム
JP2010143423A (ja) ハイブリッド車両のエンジン始動・停止制御装置
JP5059248B2 (ja) 車両および制御方法、並びにプログラム
WO2012101878A1 (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP2011079451A (ja) ハイブリッド電気自動車の制御装置
JP5063829B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP5386935B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP5053112B2 (ja) 自動変速機の制御装置
JP2011183875A (ja) ハイブリッド車両の制御装置
JP2013014239A (ja) ハイブリッド自動車の制御装置、ハイブリッド自動車およびハイブリッド自動車の制御方法、並びにプログラム
JP5789996B2 (ja) ハイブリッド車両の制御装置
JP6053099B2 (ja) ハイブリッド車両の駆動制御装置
JP2012236566A (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP2012158295A (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP2012148702A (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP2013220663A (ja) ハイブリッド自動車の制御装置、ハイブリッド自動車、およびハイブリッド自動車の制御方法、並びにプログラム
JP2004019786A (ja) 車両の発進制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046775.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834454

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011834454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011834454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13876508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011318945

Country of ref document: AU

Date of ref document: 20111020

Kind code of ref document: A