WO2012053463A1 - 電子装置の製造方法およびそれを用いてなる電子装置、電気、電子部品の製造方法およびそれを用いてなる電気、電子部品 - Google Patents

電子装置の製造方法およびそれを用いてなる電子装置、電気、電子部品の製造方法およびそれを用いてなる電気、電子部品 Download PDF

Info

Publication number
WO2012053463A1
WO2012053463A1 PCT/JP2011/073782 JP2011073782W WO2012053463A1 WO 2012053463 A1 WO2012053463 A1 WO 2012053463A1 JP 2011073782 W JP2011073782 W JP 2011073782W WO 2012053463 A1 WO2012053463 A1 WO 2012053463A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
fixed resin
semiconductor wafer
fixed
electronic device
Prior art date
Application number
PCT/JP2011/073782
Other languages
English (en)
French (fr)
Inventor
楠木 淳也
江津 竹内
広道 杉山
敏寛 佐藤
俊治 久保山
川田 政和
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020137012485A priority Critical patent/KR20130129938A/ko
Priority to JP2012539709A priority patent/JP5942850B2/ja
Publication of WO2012053463A1 publication Critical patent/WO2012053463A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0652Bump or bump-like direct electrical connections from substrate to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to a method for manufacturing an electronic device, an electronic device using the same, an electric and electronic component manufacturing method, and an electric and electronic component using the same.
  • An object of the present invention is to provide a method for manufacturing a WL-CSP type (Wafer Level-Chip Size Package) electronic device having a COW structure with a simple manufacturing process, high yield, low cost, and high reliability.
  • the present invention also provides an electronic device manufactured by the method for manufacturing an electronic device, and an electronic device manufactured by the method for manufacturing an electronic device.
  • the object of the present invention can be achieved by the following (1) to (22).
  • (1) A laminate in which a first support substrate / first fixed resin layer / semiconductor wafer / second fixed resin layer / second support substrate are stacked in this order.
  • (2) A first fixed resin layer is provided on the surface of the first support substrate, and then the first fixed resin layer and the semiconductor wafer are placed so that the functional surfaces of the first fixed resin layer and the semiconductor wafer face each other.
  • the first fixing resin layer is a thermally decomposable fixing resin layer, and in the first peeling step, the laminate according to (1) is heated to form the thermally decomposable fixing resin.
  • the method for producing an electronic device according to (10), wherein the first supporting substrate is peeled off by thermally decomposing the layer (12) The method for manufacturing an electronic device according to (11), wherein the first fixed resin layer is a thermally decomposable fixed resin layer containing a thermally decomposable resin, (13) The first fixed resin layer is a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays, and the first peeling step is performed from the first support substrate side.
  • the thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with the active energy ray is a thermally decomposable fixed resin layer containing a thermally decomposable resin whose thermal decomposition temperature is reduced by an acid
  • the second fixing resin layer is a thermally decomposable or thermosoftening fixed resin layer, and in the second peeling step, the third laminate is heated to generate the thermally decomposable or Pyrol
  • the second fixed resin layer is a fixed resin layer having solvent solubility, and in the second peeling step, a solvent is supplied to the third laminate. , Dissolving the solvent-soluble fixed resin layer in a solvent,
  • the second fixed resin layer is a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays, and the second peeling step is performed from the second support base material side.
  • the method for producing an electronic device according to (16), which is a step of thermally decomposing a thermally decomposable fixed resin layer after irradiation with active energy rays (19)
  • the thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with the active energy ray is a thermally decomposable fixed resin layer containing a thermal decomposable resin whose thermal decomposition temperature is decreased by an acid
  • Electronic device manufacturing method according to (20) An electronic device manufactured by the method for manufacturing an electronic device according to any one of (3) to (19), (21) Electrical and electronic component manufacturing method having the step of mounting the electronic device according to (20) on a substrate (22) Electrical and electronic component manufactured by the electrical and electronic component manufacturing method according to (21) .
  • a method for manufacturing a WL-CSP type electronic device having a COW structure a method for manufacturing an electronic device capable of obtaining an electronic device having a simple manufacturing process, a good yield, a low cost and high reliability, Furthermore, an electronic device manufactured by the electronic device manufacturing method can be provided.
  • a first fixed resin layer is provided on the surface of the first support base, and then the first fixed resin layer and the functional surface of the semiconductor wafer are opposed to each other.
  • the first fixing resin layer and the semiconductor wafer are bonded together, or the first fixing resin layer is provided on the functional surface of the semiconductor wafer, and then the first fixing resin layer and the first supporting substrate are bonded together to form the first.
  • the electronic device manufacturing method of the present invention includes a step of obtaining a first laminate, a step of processing a semiconductor wafer back surface, a step of obtaining a second laminate, a first peeling step, and a third laminate.
  • the functional surface of the semiconductor wafer means a surface on which semiconductor elements such as transistors and diodes and circuits for connecting them are formed.
  • a thermally decomposable fixed resin layer As a resin layer, a thermally decomposable fixed resin layer, a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays, a thermosoftening fixed resin layer, and a fixed resin layer having a photothermal conversion layer
  • a resin layer As a resin layer, a thermally decomposable fixed resin layer, a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays, a thermosoftening fixed resin layer, and a fixed resin layer having a photothermal conversion layer
  • the thermally decomposable fixed resin layer is a component that constitutes the fixed resin layer in detail because the fixed resin layer is thermally decomposed by heating at a temperature equal to or higher than the thermal decomposition temperature in the peeling step.
  • a fixed resin layer that can be thermally decomposed to peel the support substrate from the laminate Therefore, in the peeling step, the laminated body is heated at a temperature equal to or higher than the thermal decomposition temperature of the thermally decomposable fixing resin layer, whereby the thermally decomposable fixing resin layer is thermally decomposed and the supporting substrate is peeled off.
  • the heating temperature when heating the laminate is preferably 120 to 420 ° C., particularly preferably 150 to 350 ° C.
  • the thermally decomposable fixed resin layer includes a fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays.
  • the laminated body is heated at a temperature equal to or higher than the reduced thermal decomposition temperature, whereby the thermally decomposable fixing resin layer is thermally decomposed and the supporting base material is peeled off. Therefore, the heating temperature of the laminate in the peeling step can be lowered by using a thermally decomposable fixing resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays.
  • the heating temperature when heating the laminate is preferably 100 to 400 ° C., particularly preferably 120 to 300 ° C. is there.
  • the heat softening fixed resin layer can be peeled off from the laminate by lowering the melt viscosity of the fixed resin layer by heating at a temperature equal to or higher than the softening temperature in the peeling step. Refers to the fixed resin layer.
  • the laminated body is heated at a temperature equal to or higher than the heat softening temperature of the heat softening fixed resin layer to soften the heat softening fixing resin layer and peel the support substrate.
  • the heating temperature when heating the laminate is preferably 100 to 350 ° C., particularly preferably 120 to 300 ° C.
  • the fixing resin layer having the photothermal conversion layer is, in the peeling process, by irradiating active energy rays, the light absorbent contained in the photothermal conversion layer generates thermal energy, and the generated thermal energy Since the thermally decomposable resin contained in the light-to-heat conversion layer is thermally decomposed to generate voids in the light-to-heat conversion layer, it refers to a fixed resin layer that can peel the support substrate from the laminate. Therefore, in the peeling step, the photothermal conversion layer is first irradiated with active energy rays to thermally decompose the thermally decomposable resin in the photothermal change layer to generate voids, and then the support substrate is peeled off. A void means a gap such as a bubble generated between layers.
  • the fixed resin layer having the light-heat conversion layer includes a light-heat conversion layer only and a light-heat conversion layer and an adhesive layer.
  • the fixed resin layer having solvent solubility means that in the peeling step, the fixed resin layer is dissolved by supplying the solvent to the fixed resin layer from the through-hole provided in the support base material, and the laminate.
  • the fixed resin layer which can peel a support base material from is pointed out. Therefore, in a peeling process, a support base material is peeled by supplying a solvent to a fixed resin layer and dissolving a fixed resin layer.
  • Embodiments of the method for manufacturing an electronic device according to the present invention are shown in Table 1.
  • the first fixed resin is used.
  • the layer and the second fixed resin layer those having a thermal decomposition temperature or a thermal softening temperature higher than that of the first fixed resin layer are used.
  • the laminate is heated at a temperature higher than the thermal decomposition temperature of the first fixed resin layer and lower than the thermal decomposition temperature or thermal softening temperature of the second fixed resin layer in the first peeling step.
  • the first support substrate can be selectively peeled off, and the second support substrate can be prevented from being peeled off or displaced.
  • the first fixed resin layer is a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays, and when the active energy rays are irradiated first in the first peeling step, the first In the fixed resin layer and the second fixed resin layer, the thermal decomposition temperature of the second fixed resin layer (the second fixed resin layer is a thermally decomposable fixing whose thermal decomposition temperature is lowered by irradiation with active energy rays).
  • the thermal decomposition temperature before irradiation with the active energy rays) or thermal softening temperature is the active energy rays in the first peeling step.
  • a material having a temperature higher than the thermal decomposition temperature of the first fixed resin layer after irradiation is used.
  • thermally decomposable fixed resin layer As a 1st fixed resin layer and a 2nd fixed resin layer, you may use the thermally decomposable fixed resin layer of the same composition, or another composition.
  • a thermally decomposable fixed resin layer may be used.
  • a thermally decomposable fixed resin layer having the same composition for example, as the first fixed resin layer and the second fixed resin layer, a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays
  • the thermal decomposition temperature of the first fixed resin layer can be lowered.
  • the thermal decomposition temperature of the 2nd fixed resin layer can be made higher than the thermal decomposition temperature of the 1st fixed resin layer after being irradiated with an active energy ray.
  • the thermal decomposition temperature of the thermally decomposable resin contained in the first fixed resin layer is set to the thermal decomposability contained in the second fixed resin layer.
  • the thermal decomposition temperature of the second fixed resin layer can be made higher than the thermal decomposition temperature of the first fixed resin layer.
  • the first peeling step In the case of using a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiating active energy rays as both the first fixed resin layer and the second fixed resin layer, the first peeling step
  • the semiconductor wafer prevents the active energy ray from being irradiated to the second fixed resin layer, so that only the first fixed resin layer is irradiated. Active energy rays are irradiated.
  • thermosoftening fixing resin layer When a thermosoftening fixing resin layer is used as the first fixing resin layer, the first fixing resin layer and the second fixing resin layer have a thermal decomposition temperature or a heat softening temperature of the second fixing resin layer. A material having a temperature higher than the heat softening temperature of the first fixed resin layer is used. Thereby, in the first peeling step, the laminate is heated at a temperature higher than the thermal softening temperature of the first fixed resin layer and lower than the thermal decomposition temperature or thermal softening temperature of the second fixed resin layer. As a result, the first support substrate can be selectively peeled, and the second support substrate can be prevented from being peeled off or displaced.
  • the second fixed resin layer is a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays, and the active energy rays are irradiated first in the second peeling step
  • the first In the fixed resin layer and the second fixed resin layer the thermal decomposition temperature of the second fixed resin layer before irradiation with the active energy ray is higher than the thermal softening temperature of the first fixed resin layer.
  • the heat softening temperature of the second fixed resin layer is set to the heat softening temperature of the first fixed resin layer. Higher than.
  • the thermal softening temperature of the thermosoftening resin contained in the first fixed resin layer is For example, the temperature may be lower than the heat softening temperature of the heat softening resin contained in the second fixed resin layer.
  • the first fixed resin layer and the second fixed resin layer include a thermal decomposition temperature of the second fixed resin layer (the thermal decomposition temperature of the second fixed resin layer is lowered by irradiation of active energy rays.
  • the thermal decomposing temperature before irradiation with active energy rays) or thermal softening temperature is the first exfoliation step.
  • the layered body is heated by the heat generated by the light absorber and the temperature higher than the temperature reached by the photothermal conversion layer is used.
  • the first fixed resin layer is heated to a temperature higher than the thermal decomposition temperature of the thermally decomposable resin included in the photothermal conversion layer of the first fixed resin layer, and the first Since the second fixing resin layer is heated to a temperature lower than the thermal decomposition temperature or thermal softening temperature of the second fixing resin layer, the first supporting substrate can be selectively peeled off and the second It is possible to prevent the support substrate from being peeled off or displaced.
  • the fixed resin layer which has a photothermal conversion layer as both the 1st fixed resin layer and the 2nd fixed resin layer, you may use the photothermal conversion layer of the same composition, or the photothermal conversion of another composition. Layers may be used.
  • the first fixed resin layer a fixed resin layer having a photothermal conversion layer is used
  • the second fixed resin layer a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays
  • a semiconductor wafer turns into the 2nd fixed resin layer. Since the active energy ray is prevented from being irradiated, only the photothermal conversion layer of the first fixed resin layer is irradiated with the active energy ray.
  • the photothermal conversion layer in the first fixed resin layer can be obtained by selectively irradiating the photothermal conversion layer of the first fixed resin layer with active energy rays. Voids can be formed.
  • the fixed resin layer which has the photothermal conversion layer of another composition for example, by adjusting the thermal decomposition temperature of the thermally decomposable resin in the photothermal conversion layer, the kind and blending amount of the light absorbent, A void can be selectively formed only in the photothermal conversion layer in the fixed resin layer.
  • a solvent-soluble fixed resin layer having the same composition may be used, or a different composition may be used.
  • a solvent-soluble fixed resin layer may be used.
  • the first fixed resin layer When using a solvent-soluble fixed resin layer having the same composition, only the first fixed resin layer can be dissolved by selectively supplying the solvent only to the first fixed resin layer.
  • a solvent-soluble fixed resin layer having another composition for example, the solubility of the solvent-soluble resin contained in the first fixed resin layer with respect to the solvent is determined based on the solvent contained in the second fixed resin layer. By making it higher than the solubility of the soluble resin in the solvent, the first fixed resin layer can be selectively dissolved in the solvent in the first peeling step.
  • the manufacturing method of the electronic device according to the first embodiment of the present invention includes a thermally decomposable fixing resin in which a thermal decomposition temperature is lowered by irradiation with active energy rays as a first fixing resin layer and a second fixing resin layer.
  • a layer is used, and thermal decomposition is performed after first irradiating active energy rays in the first peeling step, and thermal decomposition is performed after first irradiating active energy rays in the second peeling step.
  • a thermally decomposable first fixed resin layer 10 whose thermal decomposition temperature is lowered by irradiation with active energy rays is formed on the first support substrate 1.
  • active energy rays are first irradiated from the first support base material 1 side in the first peeling step described later, and from the second support base material 4 side in the second peeling step.
  • a support substrate that transmits the active energy ray is used as the first support substrate 1 and the second support substrate 4.
  • the first support base material 1 and the second support base material 4 that transmit active energy rays are not particularly limited, and examples thereof include a hard substrate that transmits ultraviolet light and laser light. Specifically, a glass substrate etc. are mentioned.
  • the first fixed resin layer 10 is provided on the first support base 1, the functional surfaces of the first fixed resin layer 10 and the semiconductor wafer 2 are bonded.
  • the first fixed resin layer 10 is provided on the functional surface side of the semiconductor wafer 2, the first fixed resin layer 10 and the first support substrate 1 may be attached. This is the same for the present invention, and the same applies to other embodiments such as the second to 25th embodiments of the present invention.
  • a method for providing the first fixed resin layer 10 for example, a known method such as a spin coating method, a spray method, a printing method, a film transfer method, a slit coating method, or a scan coating method can be used. There is an advantage that no significant capital investment is required.
  • a spin coating method is preferable, and a uniform and flat thin film can be formed.
  • the first fixed resin layer 10 and the second fixed resin layer 20 of the first embodiment are thermally decomposable fixed resin layers whose thermal decomposition temperature is lowered by irradiation with active energy rays, and are irradiated with active energy rays. Thus, it is composed of a thermally decomposable resin composition whose thermal decomposition temperature is lowered.
  • the first fixed resin layer 10 and the second fixed resin layer 20 are composed of a photoacid generator or photobase generator that generates an acid upon irradiation with active energy rays, and an acid or light generated by the photoacid generator.
  • thermally decomposable resin (1) whose thermal decomposition temperature is lowered by a base generated by a base generator.
  • the thermally decomposable resin whose thermal decomposition temperature is lowered by the acid generated by the photoacid generator or the base generated by the photobase generator is also referred to as a thermally decomposable resin (1).
  • the difference between the 95% weight reduction temperature and the 5% weight reduction temperature is 5 ° C. ⁇ (95% weight reduction temperature) ⁇ (5% weight
  • a thermally decomposable resin composition containing a thermally decomposable resin satisfying (decrease temperature) ⁇ 100 ° C. is preferred.
  • the difference between the 95% weight reduction temperature and the 5% weight reduction temperature is 5 ° C. ⁇ (95% weight reduction temperature) ⁇ (5 % Degradable temperature) ⁇ 100 ° C. is preferred.
  • the 5% weight reduction temperature, 50% weight reduction temperature and 95% weight reduction temperature of the thermally decomposable resin are measured with a TG / DTA apparatus (manufactured by Seiko Instruments Inc.) by weighing approximately 10 mg of the thermally decomposable resin. Atmosphere: nitrogen, heating rate: 5 ° C./min). Moreover, that the thermal decomposition temperature of a thermally decomposable resin falls means that the 5% weight reduction temperature of a thermally decomposable resin falls.
  • the thermal decomposable fixing resin layer contains a thermal decomposable resin in which the difference between the 95% weight reduction temperature and the 5% weight reduction temperature is specified in the range of 5 ° C. or more and 100 ° C. or less, so
  • the temperature range required for the thermal decomposition of the conductive fixing resin layer is narrow, the time required for the thermal decomposition can be shortened, and damage to the semiconductor wafer can be suppressed.
  • the semiconductor wafer after processing can be easily detached and the fixed resin layer hardly remains on the semiconductor wafer.
  • since a wide temperature range that can be stably used can be secured, it is possible to use the substrate for various processing steps while temporarily fixing the supporting base material to the semiconductor wafer.
  • the surface can be formed as a thin film on a support base having a smooth surface and sufficient accuracy
  • the connection terminal is formed on the semiconductor wafer, and further, the processing accuracy such as obtaining a joined body of the semiconductor wafer and the semiconductor device is high. There is an effect.
  • the temperature range in which the semiconductor wafer can be stably used is a temperature range in which the semiconductor wafer can be stably held without decomposition of the thermally decomposable fixing resin layer. Since the fixed resin layer according to the first embodiment can secure a wide temperature range, it can be used for a back surface processing step that requires heating while temporarily fixing the semiconductor wafer to the support base. Become. Therefore, it has the advantage that a different process can be performed continuously.
  • the heat decomposable resin (1) has a 5% weight loss temperature of 50 ° C. or higher. According to this, it is possible to obtain an effect that the fixed resin layer is not thermally decomposed during an electronic device manufacturing process, such as forming an electrode on a semiconductor wafer and obtaining a joined body of the semiconductor wafer and the semiconductor device, which will be described later. .
  • the thermally decomposable resin (1) preferably has a 50% weight loss temperature of 400 ° C. or lower. According to this, it is possible to obtain an effect that it is possible to prevent the semiconductor wafer from being damaged by the thermal history in the peeling step described later.
  • the thermally decomposable resin (1) in which the difference between the 95% weight reduction temperature and the 5% weight reduction temperature is specified in a range of 5 ° C. or more and 100 ° C. or less is not limited, For example, it can be obtained by selecting a resin having a bond hydrolyzed by an acid or base in the main chain and having a low bond strength of the main chain and adjusting the molecular weight and the like.
  • the thermal decomposition temperature is lowered by the acid generated by the photoacid generator or the base generated by the photobase generator, and the difference between the 95% weight reduction temperature and the 5% weight reduction temperature is in the range of 5 ° C to 100 ° C.
  • the thermally decomposable resin (1) that can be defined is not particularly limited.
  • polycarbonate resin, polyester resin, polyamide resin, polyether resin, polyurethane resin, (meth) Examples include acrylate resins.
  • thermally decomposable resins By applying these thermally decomposable resins, it is possible to prevent thermal decomposition of the fixed resin layer during an electronic device manufacturing process such as a step of obtaining a laminate and a semiconductor wafer back surface processing step, which will be described later, and further peeling
  • the thermal decomposition time of the fixed resin layer in the process can be shortened.
  • thermally decomposable resins (1) the thermal decomposition of the fixed resin layer during the electronic device manufacturing process can be effectively prevented, and the thermal decomposition time of the fixed resin layer in the peeling process can be effectively reduced.
  • Polycarbonate resins are preferred because they can be shortened.
  • the decomposition time at a 5% weight loss temperature is preferably 1 minute or more and 60 minutes or less.
  • the thermal decomposition time is preferably 1 minute or more and 60 minutes or less.
  • the polycarbonate resin is not particularly limited.
  • examples of the polycarbonate resin include polypropylene carbonate / polycyclohexene carbonate copolymer, poly [(oxycarbonyloxy-1,1,4,4-tetramethylbutane) -alt- (oxycarbonyl).
  • the polycarbonate resin has a weight average molecular weight (Mw) of preferably 1,000 to 1,000,000, and more preferably 5,000 to 800,000.
  • Mw weight average molecular weight
  • the wettability of the fixed resin layer to the semiconductor wafer or the support substrate is improved, The effect of improving the film formability can be obtained.
  • the effect of improving the compatibility with the various components constituting the fixed resin layer, the solubility in various solvents, and the thermal decomposability of the fixed resin layer in the peeling step is obtained by setting the upper limit value or less. be able to.
  • a weight average molecular weight (Mw) is measured by calculating as polystyrene conversion value by GPC (gel permeation chromatogram) using THF (tetrahydrofuran) as a solvent.
  • the wettability refers to the ease of spreading of the solution when a resin solution is applied to a solid surface such as a semiconductor wafer or a support substrate.
  • the method for polymerizing the polycarbonate-based resin is not particularly limited.
  • a known polymerization method such as a phosgene method (solvent method) or a transesterification method (melting method) is used.
  • the content of the thermally decomposable resin (1) is preferably 10% by weight to 100% by weight, more preferably 30% by weight to 100% by weight of the thermally decomposable fixing resin layer. By making content of a thermally decomposable resin (1) more than the said lower limit, it can prevent that a fixed resin layer remains on a semiconductor wafer or a support base material after the peeling process mentioned later.
  • thermally decomposable resin (1) a polypropylene carbonate polymer, a 1,4-polybutylene carbonate polymer, and a polycyclohexene carbonate / polynorbornene carbonate copolymer are particularly preferable.
  • the thermally decomposable fixed resin layer containing the thermally decomposable resin (1) includes a photoacid generator that generates an acid or a photobase generator that generates a base by applying energy by irradiation of active energy rays. Including. Thereby, the thermal decomposition temperature of the said thermally decomposable resin (1) can be reduced.
  • the photoacid generator is not particularly limited, but tetrakis (pentafluorophenyl) borate-4-methylphenyl [4- (1-methylethyl) phenyl] iodonium (DPI-TPFPB), tris (4-t-butyl) Phenyl) sulfonium tetrakis- (pentafluorophenyl) borate (TTBPS-TPFPB), tris (4-t-butylphenyl) sulfonium hexafluorophosphate (TTBPS-HFP), triphenylsulfonium triflate (TPS-Tf), bis (4 -Tert-butylphenyl) iodonium triflate (DTBPI-Tf), triazine (TAZ-101), triphenylsulfonium hexafluoroantimonate (TPS-103), triphenylsulfonium bis (perf) Olomethane
  • tetrakis (pentafluorophenyl) borate-4-methylphenyl [4- (1-methylethyl) is particularly preferable because the thermal decomposition temperature of the thermally decomposable resin (1) can be efficiently lowered.
  • Phenyl] iodonium (DPI-TPFPB) is preferred.
  • the photobase generator is not particularly limited, and examples thereof include 5-benzyl-1,5-diazabicyclo (4.3.0) nonane and 1- (2-nitrobenzoylcarbamoyl) imidazole.
  • 5-benzyl-1,5-diazabicyclo (4.3.0) nonane and 5-benzyl-1 are particularly preferable because the thermal decomposition temperature of the thermally decomposable resin (1) can be efficiently lowered.
  • a derivative having a 5-diazabicyclo (4.3.0) nonane skeleton is preferred.
  • the content of the photoacid generator or photobase generator is preferably 0.01 to 50% by weight, more preferably 0.1 to 30% by weight of the thermally decomposable fixing resin layer.
  • the polycarbonate resin is particularly preferably a polypropylene carbonate polymer, a 1,4-polybutylene carbonate polymer, a neopentyl carbonate polymer, It is a cyclohexene carbonate / norbornene carbonate copolymer.
  • Tetrakis (pentafluorophenyl) borate-4-methylphenyl [4- (1-methylethyl) phenyl] iodonium (DPI-TPFPB) is used as a photoacid generator or photobase generator.
  • the content of the polycarbonate-based resin is 30 to 100% by weight of the thermally decomposable fixed resin layer, and the content of the photoacid generator or photobase generator is 0.1% of the thermally decomposable fixed resin layer.
  • the weight average molecular weight (Mw) of the polycarbonate-based resin is preferably 5,000 to 800,000.
  • the polycarbonate resin forms a structure that facilitates thermal cutting of the main chain of the polycarbonate resin in the presence of the photoacid generator or photobase generator, or the polycarbonate resin itself is easily heated. It is considered that the thermal decomposition temperature is lowered because a thermal ring closure structure that decomposes (thermal ring closure reaction) is formed.
  • reaction formula (1) shows the mechanism of thermal cleavage of the main chain of the polypropylene carbonate resin and formation of a thermal ring closure structure.
  • H + derived from the photoacid generator protonates the carbonyl oxygen of the polypropylene carbonate resin, and further shifts the polar transition state to generate unstable tautomeric intermediates [A] and [B].
  • an intermediate [A] is fragmented as acetone and CO 2.
  • intermediate [B] produces propylene carbonate, which is fragmented as CO 2 and propylene oxide.
  • the thermally decomposable resin (1) and the photoacid generator or photobase generator and other components constituting the thermally decomposable fixing resin layer are dissolved in a solvent.
  • a resin composition containing a solvent is prepared by dispersion, and the resin containing the obtained solvent is formed into a film on a support substrate or a semiconductor wafer, and the solvent is removed by drying, whereby a thermally decomposable resin is obtained.
  • a fixing resin can be formed.
  • Solvents are not particularly limited, but hydrocarbons such as mesitylene, decalin, mineral spirits, alcohols / ethers such as anisole, propylene glycol monomethyl ether, dipropylene glycol methyl ether, diethylene glycol monoethyl ether, diglyme, etc.
  • Esters such as ethylene carbonate, ethyl acetate, N-butyl acetate, ethyl lactate, ethyl 3-ethoxypropionate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene carbonate, ⁇ -butyrolactone, cyclopenta Non-, cyclohexanone, methyl isobutyl ketone, ketones such as 2-heptanone, amide / lactams such as N-methyl-2-pyrrolidinone, etc. .
  • the thermally decomposable resin composition contains a solvent, it becomes easy to adjust the viscosity of the thermally decomposable resin composition, and a thin film of a thermally decomposable fixed resin layer is formed on a semiconductor wafer or a supporting substrate. Easy to do.
  • the content of the solvent is not particularly limited, but is preferably 5 to 98% by weight, and particularly preferably 10 to 95% by weight in the resin composition containing the solvent.
  • the thermally decomposable fixing resin layer has a function of developing or increasing the reactivity of the photoacid generator or photobase generator with respect to an active energy ray of a specific type or wavelength together with the photoacid generator or photobase generator. It may contain a sensitizer which is a component it has.
  • the sensitizer is not particularly limited.
  • the content of such a sensitizer is preferably 100 parts by weight or less and more preferably 20 parts by weight or less with respect to 100 parts by weight of the photoacid generator or photobase generator described above.
  • the thermally decomposable fixing resin layer may contain an antioxidant.
  • the antioxidant has a function of preventing generation of undesirable acid and natural oxidation of the thermally decomposable fixed resin layer.
  • the antioxidant is not particularly limited, but for example, Ciba IRGANOX (registered trademark) 1076 or Ciba IRGAFOS (registered trademark) 168 available from Ciba Fine Chemicals of Tarrytown, New York is preferably used. It is done.
  • Ciba Irganox registered trademark
  • Ciba Irganox 1330 Ciba Irganox 1010
  • Ciba Cyanox registered trademark 1790
  • Ciba Irganox 331C31 Ciba Irganox 3114C, etc.
  • the content of the antioxidant is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the thermally decomposable resin (1).
  • thermally decomposable fixing resin layer may contain additives such as acrylic, silicone, fluorine, and vinyl leveling agents, silane coupling agents, diluents, and the like as necessary.
  • the silane coupling agent is not particularly limited.
  • the diluent is not particularly limited, and examples thereof include cycloether compounds such as cyclohexene oxide and ⁇ -pinene oxide, and aromatic cycloethers such as [methylenebis (4,1-phenyleneoxymethylene)] bisoxirane. And cycloaliphatic vinyl ether compounds such as 1,4-cyclohexanedimethanol divinyl ether.
  • cycloether compounds such as cyclohexene oxide and ⁇ -pinene oxide
  • aromatic cycloethers such as [methylenebis (4,1-phenyleneoxymethylene)] bisoxirane.
  • cycloaliphatic vinyl ether compounds such as 1,4-cyclohexanedimethanol divinyl ether.
  • the first fixed resin layer 10 and the semiconductor wafer 2 are bonded to each other with the first fixed resin layer 10 and the functional surface of the semiconductor wafer 2 facing each other.
  • a first laminated body 60 is obtained in which the supporting substrate 1 / first fixed resin layer 10 / semiconductor wafer 2 are laminated in this order.
  • the method for adhering the first fixed resin layer 10 and the semiconductor wafer 2 is not particularly limited, and examples thereof include a vacuum press apparatus and a wafer bonder.
  • the conditions for adhering the first fixed resin layer 10 and the semiconductor wafer 2 are not particularly limited, but temperature: 50 to 350 ° C., pressure: 0.01 to 3 MPa, time: 10 to 600 It is preferable to apply under the conditions of temperature: 70 to 300 ° C., pressure: 0.03 to 2 MPa, time: 20 to 500 seconds, temperature: 100 to 250 ° C., pressure 0. It is particularly preferable that the sticking be performed under the conditions of 05: to 1 MPa and time: 30 to 400 seconds. Thereby, since it is possible to effectively prevent bubbles from being generated between the first support base 1 and the semiconductor wafer 2, the thickness variation of the semiconductor wafer 2 after the semiconductor wafer 2 is ground (described later). Can be reduced. Furthermore, it is preferable to stick the first fixed resin layer 10 and the semiconductor wafer 2 under a reduced pressure, and bubbles generated between the first support base 1 and the semiconductor wafer 2 can be more effectively prevented. .
  • the method for performing the back surface grinding of the semiconductor wafer 2 is not particularly limited, but the back surface grinding of the semiconductor wafer 2 can be performed by a commercially available back grinding apparatus.
  • the back surface grinding of the semiconductor wafer 2 can be performed by a commercially available back grinding apparatus.
  • the functional surface of the semiconductor wafer 2 is protected by the first fixed resin layer 10, it is possible to effectively prevent dust and moisture from adhering to the functional surface during back grinding. it can.
  • the thickness of the semiconductor wafer 2 is not particularly limited, but is preferably 10 to 100 ⁇ m, particularly preferably 20 to 80 ⁇ m. By setting the thickness of the semiconductor wafer 2 within the above range, the thickness of the electronic device can be reduced.
  • the electrode on the back surface of the semiconductor wafer 2 is not particularly limited, but is preferably formed of a metal material such as solder, copper, gold, silver, nickel, etc., and can be bonded to a semiconductor device such as a semiconductor chip. It is particularly preferable to form with excellent solder bumps and gold stud bumps.
  • the solder bumps and gold stud bumps can be produced from the solder bumps and gold stud bumps by a known method.
  • solder is formed on at least one of the electrodes of the semiconductor wafer and the semiconductor device such as the semiconductor chip.
  • the junction of the semiconductor wafer / semiconductor chip stack can be made of an alloy of solder and dissimilar metal, so that the electrical characteristics and mechanical characteristics of the junction of the semiconductor wafer / semiconductor device can be improved.
  • TSV Through Silicon Via
  • a second fixed resin layer 20 having the same composition as that of the first fixed resin layer 10 is formed on the back surface of the semiconductor wafer 2 and the second support base 4.
  • the first supporting base material 1 / first fixing resin layer 10 / semiconductor wafer 2 / second fixing resin layer 20 / second supporting base material 4 are laminated in this order.
  • the laminate 70 is obtained.
  • the composition of the first fixed resin layer 10 and the composition of the second fixed resin layer 20 may be different.
  • the method for adhering the back surface of the semiconductor wafer 2 and the second support base material 4 through the second fixed resin layer 20 is not particularly limited, but the semiconductor may be formed using a vacuum press device, a wafer bonder, or the like.
  • the back surface of the wafer 2 and the second support base 4 can be attached via the second fixed resin layer 20.
  • the conditions for adhering the back surface of the semiconductor wafer 2 and the second support base material 4 through the second fixed resin layer 20 are not particularly limited, but the temperature is 50 to 350 ° C., the pressure : 0.01-3 MPa, time: 10-600 seconds, temperature: 70-300 ° C., pressure: 0.03-2 MPa, time: 20-500 seconds. It is particularly preferable to apply the paste under the conditions of temperature: 100 to 250 ° C., pressure: 0.05 to 1 MPa, and time: 30 to 400 seconds. Thereby, since it is possible to effectively prevent bubbles from being generated between the second support base 4 and the semiconductor wafer 2, the thickness variation of the semiconductor wafer 2 after the semiconductor wafer 2 is ground (described later). Can be reduced.
  • the second fixed resin layer 20 may be formed in advance on the back surface of the semiconductor wafer 2, and the second support base material 4 may be adhered.
  • Two fixed resin layers 20 may be formed in advance on the second support base 4 and the back surface of the semiconductor wafer 2 may be adhered. This is the same for the present invention, and the same applies to other embodiments such as the second to 25th embodiments of the present invention.
  • Examples of the active energy rays include near ultraviolet rays and far infrared rays such as g rays, i rays, and excimer lasers.
  • the thermal decomposition temperature of the first fixed resin layer 10 can be lowered by first irradiating the active energy ray from the first support substrate 1 side.
  • the first fixed resin layer 10 is a thermally decomposable fixed resin containing a photoacid generator and a thermally decomposable resin (1)
  • active energy rays are irradiated to the first fixed resin layer 10.
  • the photoacid generator generates an acid in the first fixed resin layer 10
  • the acid generated by the photoacid generator causes the heat decomposable resin (1) contained in the first fixed resin layer 10. Since the thermal decomposition temperature decreases, the thermal decomposition temperature of the first fixed resin layer 10 decreases.
  • the thermal decomposition temperature of the second fixed resin layer 20 does not decrease.
  • the thermal decomposition temperature of the first fixed resin layer 10 is made lower than the thermal decomposition temperature of the second fixed resin layer 20. be able to.
  • the first support substrate 1 is peeled from the second laminate 70 by heating the second laminate 70.
  • the method of peeling the first support substrate 1 is not particularly limited, but a method of detaching in the direction perpendicular to the back surface of the semiconductor wafer 2 while heating, or the back surface of the semiconductor wafer 2 is performed. And a method of detaching by sliding in the horizontal direction, a method of floating the first support substrate 1 from one side of the first support substrate 1, and the like.
  • the heating temperature of the 2nd laminated body in a 1st peeling process shall be T1 (degreeC), and 5% weight of the thermally decomposable resin (1) contained in the 2nd fixed resin layer
  • T1 degreeC
  • T2 ° C.
  • T1 ⁇ T2 preferably “T1 + 20 ⁇ T2”.
  • T2 is included in the second fixed resin layer before being irradiated with active energy rays. This is the thermal decomposition temperature of the thermal decomposition resin (1).
  • the first fixed resin layer 10 remaining on the first support substrate 1 or the semiconductor wafer 2 may be removed as necessary.
  • a method for removing the remaining first fixed resin layer 10 is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • the first fixing resin layer 10 is thermally decomposed to have a low molecular weight, the first support substrate 1 can be detached without stress. There is an effect that the support base material 1 and the semiconductor wafer 2 are not easily damaged. Further, the component of the first fixed resin layer 10 having a reduced molecular weight is volatilized during heating, and the first fixed resin layer 10 is less likely to remain on the first support base 1 and the semiconductor wafer 2. Play. Therefore, there is an advantage that a post-process such as cleaning can be simplified and handling properties are improved.
  • Step of obtaining a third laminate Next, as shown in FIG. 2B, by mounting a plurality of semiconductor devices 100 on the functional surface of the semiconductor wafer 2, the second support base 4 / second fixed resin layer 20 / semiconductor wafer 2 are mounted. / A third stacked body 80 in which the semiconductor devices 100 are stacked in this order is obtained.
  • the semiconductor device 100 is not particularly limited, and examples thereof include a semiconductor chip.
  • the semiconductor device 100 may be a single layer or a multi-layer semiconductor device 100 in which semiconductor chips are stacked in advance.
  • a method for mounting the plurality of semiconductor devices 100 on the functional surface of the semiconductor wafer 2 is not particularly limited.
  • a surface of the semiconductor device 100 that faces the functional surface of the semiconductor wafer 2 is previously made of solder, gold, or the like.
  • There is a method of mounting by forming bumps made of a metal material and bonding the bumps 3 to the electrodes 3 on the functional surface of the semiconductor wafer 2.
  • a semiconductor chip having solder bumps on the surface facing the semiconductor wafer is prepared.
  • a solder reflow process is performed to bond the solder bumps to the gold electrodes.
  • the second fixed resin layer 20 before being irradiated with the active energy ray has a high thermal decomposition temperature because it is not irradiated with the active energy ray, and is difficult to be thermally decomposed.
  • the semiconductor wafer 2 can be prevented from being displaced, and the semiconductor device 100 can be mounted reliably.
  • the semiconductor chip can be mounted by filling the gap between the semiconductor chip and the semiconductor wafer with a thermosetting liquid sealing material and further thermosetting the liquid sealing material.
  • a resin composition layer made of a thermosetting resin having a flux function is formed on the surface of the semiconductor chip having the solder bumps.
  • the flux function refers to a function that facilitates joining of metals by dissolving and removing dirt such as an oxide film on a metal surface such as a solder bump.
  • the method of forming the resin composition layer made of the thermosetting resin having the flux function is not particularly limited, and the resin composition made of the thermosetting resin having the liquid flux function is dispensed, printed, or spin coated. And a method of laminating a resin composition made of a thermosetting resin having a film-like flux function.
  • the solder bump and the gold electrode can be joined by aligning, pressurizing and heating the solder bump and the gold electrode.
  • the resin composition layer made of a thermosetting resin having a flux function is reliably formed by forming a resin composition made of a thermosetting resin having a flux function in order to remove the oxide film on the surface of the solder bump.
  • the solder bump and the gold electrode can be bonded to each other.
  • the resin composition layer made of a thermosetting resin having a flux function is filled around the solder bump and the gold electrode, and therefore made of a thermosetting resin having a flux function.
  • the semiconductor chip mounting is completed by thermosetting the resin composition layer.
  • the present invention is not limited to this. Bonding of copper electrode and the like may be used.
  • a sealing step of sealing the semiconductor device 100 may be performed.
  • moisture and dust can be prevented from being mixed, so that the reliability of the electronic device can be improved.
  • the sealing material for sealing the semiconductor device 100 is not particularly limited, and may be a liquid sealing material or a solid sealing material. Further, the sealing method is not particularly limited, and transfer molding or compression molding may be used, but compression molding in which the third laminated body 80 hardly causes displacement is preferable.
  • Examples of the active energy rays include near ultraviolet rays and far infrared rays such as g rays, i rays, and excimer lasers.
  • the second support base 4 is peeled from the third laminate 80 by heating the third laminate 80. Thereby, the electronic device 200 in which the semiconductor device 100 is mounted on the functional surface of the semiconductor wafer 2 can be obtained.
  • the second fixed resin layer 20 is thermally decomposed by heating to a temperature higher than the thermal decomposition temperature of the second fixed resin layer 20 after being irradiated with the active energy rays, and the second The support base material 4 is peeled off.
  • the method of peeling the second support substrate 4 is not particularly limited, but a method of detaching in the direction perpendicular to the back surface of the semiconductor wafer 2 while heating, or the back surface of the semiconductor wafer 2 is performed. And a method of detaching by sliding in the horizontal direction, a method of floating the second support substrate 4 from one side of the second support substrate 4 and the like.
  • the second fixed resin layer 20 remaining on the second support base 4 or the semiconductor wafer 2 may be removed as necessary.
  • a method for removing the remaining second fixed resin layer 20 is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • the second fixed resin layer 20 is thermally decomposed to have a low molecular weight, the second support substrate can be detached without stress.
  • the support base 4 and the semiconductor wafer 2 are not easily damaged.
  • the component of the second fixed resin layer 20 having a reduced molecular weight is volatilized during the heating, and the second fixed resin layer 20 is unlikely to remain on the second support base 4 and the semiconductor wafer 2. Play. Therefore, it is possible to simplify post-cleaning and other post-processes and to improve handling.
  • an individualization process for separating the electronic device 200 in which the semiconductor device 100 is mounted on the semiconductor wafer can be performed.
  • the method for dividing into individual pieces is not particularly limited.
  • the dicing tape may be attached to the back surface of the semiconductor wafer 2 and diced by a dicing apparatus. it can.
  • a semiconductor wafer is obtained after the step of obtaining the third stacked body 80 or after the sealing step when the semiconductor device 100 is sealed. 2 may be performed in a state of being bonded to the second support base 4.
  • a semiconductor wafer back surface processing step grinding of the semiconductor wafer back surface, formation of electrodes
  • a step of obtaining the third stacked body 80 mounting a semiconductor device on the functional surface of the semiconductor wafer 2
  • the first support substrate 1 or the second support substrate 4 being supported.
  • the second support base 4 supports with the second support base 4 with the second support base 4
  • the manufacturing process of the electronic device can be simplified, and the electronic device 300 can be manufactured with high yield and low cost.
  • the method for manufacturing an electronic device uses a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation of an active energy ray as the first fixed resin layer, and the second fixed resin layer.
  • a heat decomposable fixing resin layer is used as the resin layer, and in the first peeling step, the fixing resin layer is first irradiated with active energy rays, and then the fixing resin layer is thermally decomposed, and the second peeling step. Then, it is embodiment which performs thermal decomposition of a fixed resin layer, without irradiating an active energy ray to a fixed resin layer.
  • the second embodiment is different from the first embodiment in that the active energy ray is not irradiated first in the second peeling step.
  • the second fixed resin layer may be a fixed resin layer that is thermally decomposed by heating at a temperature equal to or higher than the thermal decomposition temperature. Therefore, even if it is a thermally decomposable fixed resin layer whose thermal decomposition temperature does not decrease even when irradiated with active energy rays, it is a thermally decomposable fixed resin layer whose thermal decomposition temperature decreases due to irradiation with active energy rays. Also good.
  • the thermal decomposition temperature is lowered even when the second fixing resin layer is irradiated with the active energy ray, in which the thermal energy is not irradiated in the second peeling step and the second fixing resin layer is irradiated with the active energy ray.
  • the heat-decomposable fixed resin layer is the same as that of the first embodiment except that the heat-decomposable fixed resin layer may be a heat-decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation with active energy rays. . Therefore, in the following description, the second embodiment will be described with reference to FIGS. 1 and 2 used in the description of the first embodiment.
  • Step of obtaining the first laminate First, as shown in FIG. 1-a, as in the first embodiment, a first pyrolytic decomposable material in which the thermal decomposition temperature is lowered by irradiation with active energy rays on the first supporting substrate 1.
  • the fixed resin layer 10 is formed.
  • the first supporting substrate 1 is a supporting substrate that transmits the active energy rays. Is used.
  • the process of obtaining the 1st laminated body of 2nd Embodiment is the same as the process of obtaining the 1st laminated body of 1st Embodiment.
  • the first support base material 1 that transmits the active energy rays of the second embodiment is the same as the first support base material 1 that transmits the active energy rays of the first embodiment.
  • the first fixed resin layer 10 of the second embodiment is the same as the first fixed resin layer 10 of the first embodiment.
  • the first fixed resin layer 10 and the semiconductor wafer 2 are bonded to each other with the first fixed resin layer 10 and the functional surface of the semiconductor wafer 2 facing each other.
  • a first laminated body 60 is obtained in which the supporting substrate 1 / first fixed resin layer 10 / semiconductor wafer 2 are laminated in this order.
  • the method for adhering the first fixed resin layer 10 and the semiconductor wafer 2 is the same as the method for adhering the first fixed resin layer 10 and the semiconductor wafer 2 in the first embodiment. It is.
  • semiconductor wafer backside processing process Next, as shown in FIG. 1 (c), the back surface of the semiconductor wafer 2 is ground, and further a semiconductor wafer back surface processing step for forming the electrodes 3 is performed.
  • the semiconductor wafer back surface processing step of the second embodiment is the same as the semiconductor wafer back surface processing step of the first embodiment.
  • Step of obtaining the second laminate Next, as shown in FIG. 1 (d), a second fixed resin layer 20 having the same composition as that of the first fixed resin layer 10 is formed on the back surface of the semiconductor wafer 2 and the second support base 4.
  • the first supporting base material 1 / first fixing resin layer 10 / semiconductor wafer 2 / second fixing resin layer 20 / second supporting base material 4 are laminated in this order.
  • the laminate 70 is obtained.
  • the process of obtaining the 2nd laminated body of 2nd Embodiment is as a 2nd fixed resin layer of a thermally decomposable fixed resin layer or an active energy ray whose thermal decomposition temperature does not fall even if an active energy ray is irradiated.
  • the second support base 4 may be a support base that transmits active energy rays or a support base that does not transmit active energy rays, and the active energy rays of the first embodiment. And a support substrate that does not transmit active energy rays, such as a semiconductor wafer or a metal plate.
  • the thermally decomposable fixed resin layer used for the second fixed resin layer 20 of the second embodiment is a fixed resin layer that is thermally decomposed by heating at a temperature equal to or higher than the thermal decomposition temperature. Therefore, even if it is a thermally decomposable fixed resin layer whose thermal decomposition temperature does not decrease even when irradiated with active energy rays, it is a thermally decomposable fixed resin layer whose thermal decomposition temperature decreases due to irradiation with active energy rays. Also good.
  • the thermally decomposable second fixed resin layer 20 of the second embodiment is made of a thermally decomposable resin composition, and is, for example, a fixed resin layer containing a thermally decomposable resin.
  • the resin that is thermally decomposed by heating is also referred to as a thermally decomposable resin (2).
  • the difference between the 95% weight reduction temperature and the 5% weight reduction temperature is 5 ° C.
  • a thermally decomposable resin having a decreasing temperature) ⁇ 100 ° C. is preferred.
  • the thermal decomposition of the second decomposable resin layer 20 of the second embodiment is such that the difference between the 95% weight reduction temperature and the 5% weight reduction temperature is specified in the range of 5 ° C to 100 ° C.
  • the temperature range required for the thermal decomposition of the thermally decomposable fixing resin layer is narrow, the time required for the thermal decomposition can be shortened, and damage to the semiconductor wafer can be suppressed.
  • the semiconductor wafer after processing can be easily detached and the fixed resin layer hardly remains on the semiconductor wafer. Further, since a wide temperature range that can be stably used can be secured, it is possible to use the support base material in various processing steps while temporarily fixing the support base material to the semiconductor wafer.
  • the surface can be formed as a thin film on a support base having a smooth surface and sufficient accuracy
  • the connection terminal is formed on the semiconductor wafer, and further, the processing accuracy such as obtaining a joined body of the semiconductor wafer and the semiconductor device is high. There is an effect.
  • the temperature range in which the semiconductor wafer can be stably used is a temperature range in which the semiconductor wafer can be stably held without decomposition of the thermally decomposable fixing resin layer. Since the thermal decomposable second fixing resin layer of the second embodiment can secure a wide temperature range, the back surface processing step that requires heating while the semiconductor wafer is temporarily fixed to the support substrate. Can also be used. Therefore, it has the advantage that a different process can be performed continuously.
  • the 5% weight loss temperature of the thermally decomposable resin (2) contained in the thermally decomposable second fixed resin layer of the second embodiment is 50 ° C. or more. According to this, it is possible to obtain an effect that the fixed resin layer is not thermally decomposed during an electronic device manufacturing process, such as forming an electrode on a semiconductor wafer and obtaining a joined body of the semiconductor wafer and the semiconductor device, which will be described later. .
  • the 50% weight reduction temperature of the thermally decomposable resin (2) contained in the thermally decomposable second fixed resin layer of the second embodiment is 400 ° C. or less. According to this, it is possible to obtain an effect that it is possible to prevent the semiconductor wafer from being damaged by the thermal history in the peeling step described later.
  • the difference between the 95% weight reduction temperature and the 5% weight reduction temperature contained in the thermally decomposable second fixed resin layer of the second embodiment is defined in a range of 5 ° C. or more and 100 ° C. or less.
  • the thermally decomposable resin (2) is not limited, but can be obtained by adjusting the molecular weight of the resin having a low bond strength of the main chain.
  • the decomposable resin (2) is not particularly limited.
  • a polycarbonate resin, a polyester resin, a polyamide resin, a polyimide resin, a polyether resin, a polyurethane resin, and a (meth) acrylate resin examples thereof include resins.
  • thermally decomposable resins (2) contained in the thermally decomposable second fixed resin layer of the second embodiment the thermal decomposition of the fixed resin layer during the electronic device manufacturing process is effectively prevented. Furthermore, since the thermal decomposition time of the fixed resin layer in the peeling step can be effectively shortened, a polycarbonate resin is preferable.
  • the thermal decomposition time at a 5% weight reduction temperature is 1 minute or more and 60 minutes.
  • the following is preferable.
  • the thermal decomposition time is equal to or greater than the above lower limit value, rapid thermal decomposition of the fixed resin layer can be suppressed, and the pyrolyzed gas can be exhausted by the exhaust device. It is possible to prevent contamination of the equipment for manufacturing.
  • the time required for thermal decomposition in the peeling step can be shortened by setting it to the above upper limit value or less, the productivity of the electronic device can be improved.
  • the polycarbonate resin contained in the thermally decomposable second fixed resin layer of the second embodiment is not particularly limited, and examples thereof include propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, and 1,3-butylene. Carbonate, 1,4-butylene carbonate, cis-2,3-butylene carbonate, trans-2,3-butylene carbonate, ⁇ , ⁇ -isobutylene carbonate, ⁇ , ⁇ -isobutylene carbonate, cis-1,2-cyclobutylene carbonate , Trans-1,2-cyclobutylene carbonate, cis-1,3-cyclobutylene carbonate, trans-1,3-cyclobutylene carbonate, hexene carbonate, cyclopropene carbonate, cyclohexene carbonate, (methyl Chlohexene carbonate), (vinylcyclohexene carbonate), dihydronaphthalene carbonate, hexahydrostyrene carbonate, cyclo
  • examples of the polycarbonate-based resin contained in the thermally decomposable second fixed resin layer of the second embodiment include a polypropylene carbonate / polycyclohexene carbonate copolymer, poly [(oxycarbonyloxy- 1,1,4,4-tetramethylbutane) -alt- (oxycarbonyloxy-5-norbornene-2-endo-3-endo-dimethane)], poly [(oxycarbonyloxy-1,4-dimethylbutane) -Alt- (oxycarbonyloxy-5-norbornene-2-endo-3-endo-dimethane)], poly [(oxycarbonyloxy-1,1,4,4-tetramethylbutane) -alt- (oxycarbonyloxy -P-xylene)], and poly [(oxycarbonyloxy-1,4-dimethyl) Butane)-alt-(oxycarbonyl -p- xylene), polycyclohexene carbonate / polynorborn
  • the weight-average molecular weight (Mw) of the polycarbonate-based resin contained in the thermally decomposable second fixed resin layer of the second embodiment is preferably 1,000 to 1,000,000, preferably 5,000 to More preferably, it is 800,000.
  • Mw weight average molecular weight
  • the wettability of the fixed resin layer to the semiconductor wafer or the support substrate is improved when the fixed resin layer is formed on the semiconductor wafer or the support substrate.
  • the effect of improving the film property can be obtained.
  • the effect of improving the compatibility with the various components constituting the fixed resin layer, the solubility in various solvents, and the thermal decomposability of the fixed resin layer in the peeling step is obtained by setting the upper limit value or less. be able to.
  • the polymerization method of the polycarbonate resin contained in the thermally decomposable second fixed resin layer of the second embodiment is not particularly limited.
  • the phosgene method solvent method
  • the transesterification method And a known polymerization method such as a melting method.
  • the content of the thermally decomposable resin (2) contained in the thermally decomposable second fixed resin layer of the second embodiment is 10% by weight to 100% by weight of the thermally decomposable second fixed resin layer. More preferably, it is 30 to 100% by weight.
  • thermally decomposable resin (2) contained in the thermally decomposable second fixed resin layer of the second embodiment a polypropylene carbonate polymer, a 1,4-polybutylene carbonate polymer, a polycyclohexene is particularly preferable. It is a carbonate / polynorbornene carbonate copolymer.
  • the second fixed resin layer a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiating the active energy ray used in the first embodiment is used. You can also.
  • thermally decomposable second fixed resin layer of the second embodiment may contain an antioxidant.
  • the antioxidant contained in the thermally decomposable second fixed resin layer of the second embodiment is the same as the antioxidant contained in the fixed resin layer of the first embodiment.
  • the content of the antioxidant contained in the thermally decomposable second fixed resin layer of the second embodiment is the same as that of the thermally decomposable second fixed resin layer of the second embodiment.
  • the amount is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight.
  • the thermally decomposable second fixing resin layer according to the second embodiment is provided with additives such as acrylic, silicone, fluorine, and vinyl leveling agents, silane coupling agents, diluents, and the like as necessary. May be included.
  • additives such as acrylic, silicone, fluorine, and vinyl leveling agents, silane coupling agents, diluents, and the like as necessary. May be included.
  • Leveling agents such as silicone-based, fluorine-based, and vinyl-based materials, silane coupling agents, diluents, and the like contained in the thermally decomposable second fixed resin layer of the second embodiment are the same as those in the first embodiment.
  • additives such as silicone-based, fluorine-based and vinyl-based leveling agents, silane coupling agents, diluents and the like contained in the fixed resin layer.
  • the heating temperature of the 2nd laminated body in a 1st peeling process shall be T1 (degreeC), and 5% weight of the thermally decomposable resin (2) contained in the 2nd fixed resin layer Assuming that the decrease temperature is T2 (° C.), “T1 ⁇ T2”, preferably “T1 + 20 ⁇ T2”.
  • the first fixed resin layer 10 remaining on the first support substrate 1 or the semiconductor wafer 2 may be removed as necessary.
  • a method for removing the remaining first fixed resin layer 10 is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • Step of obtaining a third laminate Next, as shown in FIG. 2B, by mounting a plurality of semiconductor devices 100 on the functional surface of the semiconductor wafer 2, the second support base 4 / second fixed resin layer 20 / semiconductor wafer 2 are mounted. / A third stacked body 80 in which the semiconductor devices 100 are stacked in this order is obtained.
  • the process of obtaining the 3rd laminated body of 2nd Embodiment is the same as the process of obtaining the 3rd laminated body of 1st Embodiment.
  • a sealing step of sealing the semiconductor device 100 may be performed.
  • moisture and dust can be prevented from being mixed, so that the reliability of the electronic device can be improved.
  • the second fixed resin layer 20 is thermally decomposed, and the second support substrate 4 is peeled off.
  • the method for peeling off the second support base 4 is not particularly limited, but a method of detaching in the direction perpendicular to the back surface of the semiconductor wafer 2 or a direction in the horizontal direction with respect to the back surface of the semiconductor wafer 2. Examples include a method of detaching by sliding, a method of floating the second support substrate 4 from one side of the second support substrate 4, and the like.
  • the second fixed resin layer 20 remaining on the second support base 4 or the semiconductor wafer 2 may be removed as necessary.
  • a method for removing the remaining second fixed resin layer 20 is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • the second fixed resin layer 20 is thermally decomposed to have a low molecular weight, the second support substrate can be detached without stress.
  • the support base 4 and the semiconductor wafer 2 are not easily damaged.
  • the component of the second fixed resin layer 20 having a reduced molecular weight is volatilized during the heating, and the second fixed resin layer 20 is unlikely to remain on the second support base 4 and the semiconductor wafer 2. Play. Therefore, it is possible to simplify post-cleaning and other post-processes and to improve handling.
  • an individualization process for separating the electronic device 200 in which the semiconductor device 100 is mounted on the semiconductor wafer can be performed.
  • the singulation process of the second embodiment is the same as the singulation process of the first embodiment.
  • the electronic device manufacturing method uses a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation of active energy rays as the first fixed resin layer.
  • a heat-softening fixed resin layer is used as the resin layer, and the fixed resin layer is thermally decomposed after first irradiating the fixed resin layer with active energy rays in the first peeling step, and then the second peeling step. Then, it is embodiment which heat-softens a fixed resin layer by heating.
  • the third embodiment is an embodiment in which active energy rays are not irradiated in the second peeling step.
  • the active energy ray irradiation step is not performed in the second peeling step, and heat softening is performed by heating, and the second fixed resin layer has a thermal decomposition temperature by irradiation of the active energy rays.
  • the first embodiment it is different from the first embodiment in that it is not a heat-decomposable fixed resin layer that is lowered but a heat-softening fixed resin layer, the other points are the same as those in the first embodiment. Therefore, in the third embodiment, the description of the parts common to the first embodiment is omitted, and the description of the parts different from the first embodiment is mainly described.
  • the thermal decomposition temperature of the first fixed resin layer after being irradiated with the active energy rays is lower than the softening point of the thermosoftening fixed resin layer that is the second fixed resin layer. Accordingly, the first heat-degradable first fixing resin is selectively heated by heating at a temperature higher than the heat-decomposition temperature of the heat-decomposable fixing resin layer and lower than the softening point of the heat-softening fixing resin layer. Since only the layer can be thermally decomposed, only the first supporting substrate can be reliably peeled in the first peeling step.
  • the step of obtaining the first laminate of the third embodiment is the same as the step of obtaining the first laminate of the first embodiment.
  • a thermal decomposability in which the thermal decomposition temperature is lowered on the first support substrate 1 by irradiation with active energy rays.
  • the first fixed resin layer 10 is formed.
  • the fixed resin layer 10 of the third embodiment is the same as the fixed resin layer 10 of the first embodiment.
  • the first supporting base material 1 transmits the active energy rays. Is used.
  • the second support substrate may be a support substrate that transmits active energy rays or a support substrate that does not transmit active energy rays.
  • the first laminate 61 is obtained in the same manner as in the first embodiment described above.
  • Step of obtaining the second laminate Next, as shown in FIG. 3D, the back surface of the semiconductor wafer 2 and the second support base 4 are bonded together via a heat softening second fixing resin layer 30, thereby A second laminated body 71 is obtained in which the supporting substrate 1 / first fixing resin layer 10 / semiconductor wafer 2 / second fixing resin layer 30 / second supporting substrate 4 are laminated in this order.
  • thermosoftening second fixing resin layer 30 is not particularly limited, but a vacuum press device, a wafer bonder, or the like may be used. Can be mentioned.
  • the conditions for adhering the back surface of the semiconductor wafer 2 and the second support base material 4 through the thermosoftening second fixing resin layer 30 are not particularly limited, but the temperature: 25 to Can be applied under conditions of 300 ° C, pressure: 0.01-3 MPa, time: 1-300 seconds, temperature: 30-250 ° C, pressure: 0.03-2 MPa, time: 3-250 seconds It is preferable to apply it under the conditions of temperature: 50 to 200 ° C., pressure: 0.05 to 1 MPa, and time: 5 to 200 seconds. Thereby, since it is possible to effectively prevent bubbles from being generated between the second support base 4 and the semiconductor wafer 2, the thickness variation of the semiconductor wafer 2 after the semiconductor wafer 2 is ground (described later). Can be reduced.
  • thermosoftening second fixing resin layer 30 is formed in advance on the back surface of the semiconductor wafer 2 and the second support base material 4 is adhered.
  • the heat-softening second fixed resin layer 30 may be formed in advance on the second support base 4 and the back surface of the semiconductor wafer 2 may be adhered.
  • the second fixed resin layer 30 is made of a heat softening resin composition.
  • the heat-softening second fixing resin layer 30 does not decrease in viscosity at the heating temperature in the first peeling step, but decreases in melt viscosity by heating at the heating temperature in the second peeling step. If it is a thing, it will not specifically limit.
  • the thermosoftening second fixing resin layer preferably has a viscosity at the heating temperature in the first peeling step of 500 Pa ⁇ s or more, particularly 1000 Pa ⁇ s or more.
  • the viscosity at the heating temperature in the second peeling step is preferably 300 Pa ⁇ s or less, and particularly preferably 250 Pa ⁇ s or less.
  • the heat softening temperature of the heat softening fixed resin layer refers to a temperature at which the melt viscosity of the fixed resin layer becomes 300 Pa ⁇ s.
  • the thermosoftening fixed resin layer contains a thermosoftening resin.
  • the thermosoftening resin is not particularly limited as long as it is a thermoplastic resin that is softened by heating in the second peeling step.
  • an acrylic ester copolymer containing an acrylic ester monomer as a main component.
  • acrylic resins such as vinyl acetate / acrylic acid ester copolymers, rubber resins such as butyl rubber, polyisoprene, polybutadiene and styrene / butadiene copolymers, and polyimide resins.
  • the second support base 4 can be peeled without damaging the semiconductor wafer 2.
  • the heat-softening fixed resin layer is not particularly limited, and contains additives such as an antioxidant, a flocculant, a plasticizer, a surfactant, a wax and a filler in addition to the heat-softening resin. Also good.
  • thermosoftening second fixing resin layer 30 a resin composition containing a solvent by dissolving or dispersing the thermosoftening resin and other components constituting the thermosoftening fixing resin layer in a solvent.
  • a heat-softening fixed resin layer can be formed by preparing a product, forming a resin composition containing the obtained solvent on a support substrate or a semiconductor wafer, and removing the solvent by drying.
  • Solvents are not particularly limited, but hydrocarbons such as mesitylene, decalin and mineral spirits, alcohols / ethers such as anisole, propylene glycol monomethyl ether, dipropylene glycol methyl ether, diethylene glycol monoethyl ether and diglyme.
  • Esters lactones such as ethylene carbonate, ethyl acetate, N-butyl acetate, ethyl lactate, ethyl 3-ethoxypropionate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene carbonate, ⁇ -butyrolactone, acetone, Ketones such as methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl isobutyl ketone, 2-heptanone, N-methyl-2-pyrrolidinone, etc. Bromide / lactams, and the like.
  • the thermosoftening resin composition contains a solvent, it becomes easy to adjust the viscosity of the thermosoftening resin composition, and a thin film of the thermosoftening resin composition is formed on a semiconductor wafer or a supporting substrate. Easy to do.
  • thermosoftening second fixing resin layer 30 a resin containing a solvent by dissolving the thermosoftening resin and other components constituting the thermosoftening fixing resin layer in the above-described solvent.
  • a film is obtained by obtaining a composition, and then applying a resin composition containing a solvent to a substrate such as polyethylene terephthalate (PET), polyethylene (PE), or polypropylene (PP), and further evaporating the solvent by heating.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • the second laminated body 71 is heated to peel the first support substrate 1 from the second laminated body 71.
  • the first peeling process of the third embodiment is the same as the first peeling process of the first embodiment.
  • the first fixed resin layer 10 by heating to a temperature that is higher than the thermal decomposition temperature of the first fixed resin layer 10 after being irradiated with the active energy rays and lower than the thermal softening temperature of the second fixed resin layer 30, Only the first fixed resin layer 10 is selectively thermally decomposed, and the first support substrate 1 is peeled off.
  • the first fixed resin layer 10 remaining on the first support substrate 1 or the semiconductor wafer 2 may be removed as necessary.
  • a method for removing the remaining first fixed resin layer 10 is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • the first fixed resin layer 10 is thermally decomposed to have a low molecular weight, the first support substrate can be detached without stress.
  • the support substrate 1 and the semiconductor wafer 2 are not easily damaged.
  • the component of the first fixed resin layer 10 having a low molecular weight is volatilized during heating, and the first fixed resin layer 1 hardly remains on the first support base 1 and the semiconductor wafer 2. Play. Therefore, it is possible to simplify post-cleaning and other post-processes and to improve handling.
  • the third laminate 81 is heated by heating the third laminate 81 at a temperature equal to or higher than the softening temperature of the thermosoftening second fixed resin layer 30.
  • a second peeling step for peeling the second support base material 4 from 81 is performed. Thereby, the electronic device 200 in which the semiconductor device 100 is mounted on the functional surface of the semiconductor wafer 2 can be obtained.
  • the second fixed resin layer 30 is thermally softened, the second support substrate 4 can be detached without stress. 4 and the semiconductor wafer 2 are less likely to be damaged.
  • the manufacturing method of the electronic device of the fourth embodiment of the present invention uses a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation of active energy rays as the first fixed resin layer, and the second fixed resin layer.
  • a fixed resin layer having a light-to-heat conversion layer is used as the resin layer, and the fixed resin layer is thermally decomposed after first irradiating the fixed resin layer in the first peeling step, and then the second peeling.
  • the photothermal conversion layer is decomposed by irradiating active energy rays.
  • 4th Embodiment is a point which decomposes
  • the thermal decomposition temperature of the first fixed resin layer after irradiation with active energy rays is lower than the temperature at which voids are formed in the photothermal conversion layer of the second fixed resin layer.
  • Step of obtaining the first laminate The process of obtaining the 1st laminated body of 4th Embodiment is the same as the process of obtaining the 1st laminated body of 1st Embodiment.
  • a thermal decomposability in which the thermal decomposition temperature is lowered by irradiating active energy rays on the first support base material 1.
  • the first fixed resin layer 10 is formed.
  • the fixed resin layer 10 of the fourth embodiment is the same as the fixed resin layer 10 of the first embodiment.
  • the first supporting substrate 1 is a supporting substrate that transmits the active energy rays. Is used.
  • transmits an active energy ray is used as a 2nd support base material.
  • the first laminate 62 is obtained in the same manner as in the first embodiment described above.
  • Step of obtaining the second laminate the back surface of the semiconductor wafer 2 and the second support base 4 are bonded together via a second fixed resin layer 40 having a photothermal conversion layer 42 and an adhesive layer 41. Accordingly, the first support base material 1 / the first fixed resin layer 10 / the semiconductor wafer 2 / the second fixed resin layer 40 / the second support base material 4 are stacked in this order. Get.
  • the second fixed resin layer is a fixed resin layer having a photothermal conversion layer and an adhesive layer.
  • the second fixed resin layer of the fourth embodiment is Further, it may be a fixed resin layer composed only of the photothermal conversion layer.
  • the second laminate 72 is more Specifically, a structure in which the first support substrate 1 / first fixed resin layer 10 / semiconductor wafer 2 / adhesive layer 41 / photothermal conversion layer 42 / second support substrate 4 are laminated in this order. Have.
  • the photothermal conversion layer 42 is not particularly limited, but preferably contains a light absorber and a thermally decomposable resin.
  • the thermally decomposable resin contained in the photothermal conversion layer 42 is also referred to as a thermally decomposable resin (3).
  • the photothermal conversion layer 42 contains the light absorber and the thermally decomposable resin (3), the photothermal conversion layer 42 is irradiated with active energy rays, whereby thermal energy is generated, and the temperature of the photothermal conversion layer 42 is increased. It rises rapidly.
  • the thermally decomposable resin (3) is decomposed and volatilized, so that a void is formed in the photothermal conversion layer 42.
  • the active energy ray is not particularly limited, and examples thereof include laser light having a wavelength of 300 to 2000 nm, and more specifically, a YAG laser that generates an active energy ray having a wavelength of 1064 nm, 532 nm. And a semiconductor laser having a wavelength of 780 to 1300 nm.
  • the YAG laser which can utilize the present general-purpose equipment is preferable.
  • the light absorber is not particularly limited, but for example, carbon black, graphite powder, iron, aluminum, copper, nickel, cobalt, manganese, chromium, zinc and other metal fine particle powder, squarylium compound, cyanine And dyes such as methine dyes, methine dyes, naphthoquinone dyes, and anthraquinone dyes.
  • carbon black that can efficiently convert active energy into thermal energy is preferable.
  • the content of the light absorber varies depending on the type and shape of the light absorber, the dispersibility in the photothermal conversion layer 42, etc., but is preferably 1 to 80% by volume of the photothermal conversion layer. It is preferable that it is volume%. If the content is less than the lower limit, the light-to-heat conversion layer 42 may not generate enough heat, and the thermally decomposable resin (3) may be difficult to decompose. On the other hand, when the above upper limit is exceeded, the film-forming property of the photothermal conversion layer 42 may be poor and the uniform photothermal conversion layer 42 may not be formed.
  • the thermally decomposable resin (3) is not particularly limited.
  • gelatin cellulose, cellulose acetate, nitrocellulose, polyphenol, polyvinyl butyral, polyvinyl acetal, polycarbonate, polyurethane, polyester, polyorthoester, polyacetal , Polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylate resin, polyvinyl chloride and the like, and these may be used alone or in combination of two or more.
  • the glass transition temperature of the thermally decomposable resin (3) is not less than room temperature (25 ° C.) so that the photothermal conversion layer 42 formed by forming voids by thermal decomposition of the thermally decomposable resin (3) is not reattached. Desirably, the glass transition temperature is more preferably 100 ° C. or higher in order to prevent re-adhesion.
  • the second supporting substrate is glass, in order to increase the adhesive force between the glass and the photothermal conversion layer 42, polar groups capable of hydrogen bonding with silanol groups on the glass surface (for example, —COOH, —OH, etc.) A thermally decomposable resin (3) having in the molecule can be used.
  • a thermally decomposable resin in the molecule having a functional group capable of self-crosslinking by heat treatment
  • a thermally decomposable resin (3) that can be cross-linked with ultraviolet rays or visible light can also be used.
  • the photothermal conversion layer 42 contains additives such as a filler, a coupling agent, a surfactant, an antioxidant, a foaming agent, and a sublimation agent as necessary, in addition to the thermally decomposable resin and the light absorber. Also good.
  • the adhesive layer 41 is used for fixing the semiconductor wafer 2 to the second support base 4 via the photothermal conversion layer 42. After the separation of the semiconductor wafer 2 and the second support base 4 by thermal decomposition of the photothermal conversion layer 42, the semiconductor wafer 2 to which the adhesive layer 41 is attached is obtained.
  • the adhesive layer 41 has a sufficient adhesive force for fixing the semiconductor wafer 2 to the second support base 4, but after the semiconductor wafer 2 and the second support base 4 are peeled, the adhesive layer 41 is What can be easily peeled off from the semiconductor wafer 2 is preferable.
  • the adhesive that can be used to form the adhesive layer 41 is not particularly limited, but is a one-component solution based on a rubber adhesive, epoxy, urethane, or the like in which rubber or elastomer is dissolved in a solvent.
  • UV ultraviolet
  • a water dispersion type adhesive etc. are mentioned.
  • UV curing by adding a photopolymerization initiator and, if necessary, an additive to an oligomer and / or a (meth) acrylic monomer having a (meth) acrylic group such as urethane acrylate, epoxy acrylate or polyester acrylate.
  • an additive include a thickener, a plasticizer, a dispersant, a filler, a flame retardant, and an antioxidant.
  • the adhesive layer 41 is a liquid adhesive in order to fill the unevenness of the semiconductor wafer 2 with the adhesive layer 41 and make the adhesive layer 41 have a uniform thickness.
  • the viscosity of the liquid adhesive is preferably 10 Pa ⁇ s or less, particularly preferably 5 Pa ⁇ s or less, at a temperature (for example, 25 ° C.) when applied to the semiconductor wafer 2.
  • the elastic modulus at 25 ° C. after the adhesive layer 41 is formed on the semiconductor wafer 2 is preferably 100 MPa or more, and particularly preferably 200 MPa or more. Further, the elastic modulus at 260 ° C. after forming the adhesive layer 41 on the semiconductor wafer 2 is preferably 1 MPa or more, and particularly preferably 5 Mpa or more. Thereby, it is possible to suitably prevent the semiconductor wafer 2 from being damaged or the semiconductor wafer 2 from being displaced due to stress generated when the semiconductor device 100 described later is mounted on the semiconductor wafer 2.
  • a double-sided adhesive tape can be used as the adhesive layer 41.
  • Such a double-sided adhesive tape is usually provided with a pressure-sensitive adhesive layer on both sides of a base film.
  • the pressure-sensitive adhesive is not particularly limited, and includes a pressure-sensitive adhesive mainly composed of acrylic, urethane, natural rubber, or the like, or a pressure-sensitive adhesive containing a crosslinking agent in addition to these.
  • it is a pressure-sensitive adhesive containing a copolymer mainly composed of an acrylate ester.
  • the base film is not particularly limited, and base films such as paper and plastic are used.
  • the base film is preferably a flexible base film that can facilitate peeling of the adhesive layer 41 from the semiconductor wafer 2.
  • the thickness of the adhesive layer 41 is not particularly limited as long as the thickness can be filled with the thickness uniformity and the unevenness of the semiconductor wafer, but is preferably 10 to 200 ⁇ m, and particularly preferably 20 to 150 ⁇ m.
  • a first peeling step is performed in which the second stacked body 72 is heated to peel the first support substrate 1 from the second stacked body 72.
  • the first peeling process of the fourth embodiment is the same as the first peeling process of the first embodiment.
  • the heating temperature of the 2nd laminated body in a 1st peeling process shall be T1 (degreeC), and the thermally decomposable resin (3) contained in the photothermal conversion layer of a 2nd fixed resin layer
  • T1 degreeC
  • T2 the thermally decomposable resin (3) contained in the photothermal conversion layer of a 2nd fixed resin layer
  • Step of obtaining a third laminate Next, as shown in FIG. 6-a, a third stacked body 82 is obtained in the same manner as in the first embodiment described above.
  • the step of obtaining the third laminate of the fourth embodiment is the same as the step of obtaining the third laminate of the first embodiment.
  • the second support base 4 is peeled from the third laminate 82.
  • the void 5 is formed in the photothermal conversion layer 42 by first irradiating the active energy ray, and the adhesion area between the adhesive layer 41 and the second support base 4 is reduced. Therefore, the second support substrate 4 can be easily peeled off.
  • the second support substrate 4 can be detached without stress. 4 and the semiconductor wafer 2 are less likely to be damaged.
  • the method for removing the adhesive layer 41 is not particularly limited, and examples include plasma treatment, chemical immersion treatment, polishing treatment, and simple peeling. However, the damage to the semiconductor wafer 2 on which the semiconductor device 100 is laminated is reduced. A simple peel that can be done is preferred.
  • the photothermal conversion layer 42 when the second support base 4 is reused, it is preferable to remove the photothermal conversion layer 42 remaining on the second support base 4.
  • the method for removing the photothermal conversion layer 42 is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • the 2nd fixed resin layer of 4th Embodiment is a fixed resin layer which consists only of a photothermal conversion layer
  • by irradiating an active energy ray from the 2nd support base material 4 side, in a photothermal conversion layer The thermally decomposable resin (3) is thermally decomposed to generate voids in the photothermal conversion layer, and the second supporting substrate is peeled off.
  • the photothermal conversion layer (second fixed resin layer) remaining on the semiconductor wafer 2 is removed using a method such as plasma treatment, chemical solution immersion treatment, polishing treatment, or heat treatment.
  • an individualization step for individualizing the electronic device 200 in which the semiconductor device 100 is mounted on the semiconductor wafer is performed as in the first embodiment described above.
  • the manufacturing method of the electronic device of the fifth embodiment of the present invention uses a thermally decomposable fixed resin layer whose thermal decomposition temperature is lowered by irradiation of active energy rays as the first fixed resin layer, and uses the second fixed resin layer.
  • a fixed resin layer having solvent solubility is used as the resin layer, the active resin is irradiated with active energy rays in the first peeling step, the fixed resin layer is thermally decomposed, and the second peeling is performed.
  • the second fixing resin layer is dissolved in the solvent.
  • the point that the second fixing resin layer is dissolved in the second peeling step and the second fixing resin layer is a fixing resin layer having solvent solubility are the first implementation. Although it differs from a form, it is the same as that of 1st Embodiment except those. For this reason, in the fifth embodiment, descriptions of parts common to the first embodiment are omitted, and descriptions of parts different from the first embodiment are mainly described.
  • the thermal decomposition temperature of the first fixed resin layer after being irradiated with active energy is lower than the softening temperature of the fixed resin layer having solvent solubility, which is the second fixed resin layer.
  • the temperature is higher than the thermal decomposition temperature of the first decomposable resin layer that is thermally decomposable after irradiation with the active energy ray, and lower than the thermal softening temperature of the second fixed resin layer having solvent solubility. Since only the thermally decomposable fixed resin layer can be thermally decomposed by heating, only the first base material can be reliably peeled in the first peeling step.
  • the heat softening temperature of the fixed resin layer having solvent solubility refers to a temperature at which the melt viscosity of the fixed resin layer becomes 300 Pa ⁇ s.
  • the step of obtaining the first laminate of the fifth embodiment is the same as the step of obtaining the first laminate of the first embodiment.
  • a pyrolytic property in which the thermal decomposition temperature is lowered on the first support substrate 1 by irradiation with active energy rays.
  • the first fixed resin layer 10 is formed.
  • the fixed resin layer 10 of the fifth embodiment is the same as the fixed resin layer 10 of the first embodiment.
  • the first supporting substrate 1 is a supporting substrate that transmits the active energy rays. Is used.
  • Step of obtaining the first laminate Next, as shown in FIG. 7B, a first laminate 63 is obtained in the same manner as in the first embodiment described above.
  • Step of obtaining the second laminate Next, as shown in FIG. 7D, the back surface of the semiconductor wafer 2 and the second support base material 4 are bonded together via a second fixing resin layer 50 having solvent solubility. Support substrate 1 / first fixed resin layer 10 / semiconductor wafer 2 / second fixed resin layer 50 having solvent solubility / second support substrate 4 stacked in this order. Get.
  • the second support substrate 4 in the fifth embodiment is preferably provided with a through hole 6 in the thickness direction. Accordingly, the solvent can be supplied from the through-hole 6 in the second peeling step described later, and the contact area between the solvent and the second fixed resin layer 50 having the solvent solubility is increased. The two fixed resin layers 50 can be rapidly dissolved.
  • the solvent-soluble second fixed resin layer 50 is made of a solvent-soluble resin composition and is not particularly limited as long as it contains a solvent-soluble resin.
  • the solvent-soluble resin is not particularly limited as long as it is a resin that is soluble in the solvent supplied in the second peeling step, that is, a solvent-soluble resin.
  • a solvent-soluble resin for example, a phenol novolac resin , Cresol novolak resins, bisphenol A type novolak resins, bisphenol F type novolak resins and other novolak phenol resins, polyimide precursor resins obtained by reaction of diamines and acid anhydrides, and polyimide precursor resins that are dehydrated and cyclized And an acrylic resin obtained by polymerizing a (meth) acrylate monomer.
  • the solvent-soluble resin refers to a resin that is dissolved in 1 g or more in 100 g of a solvent at 25 ° C.
  • the fixed resin layer having solvent solubility may contain additives such as an antioxidant, a flocculant, a plasticizer, a surfactant, a wax, and a filler, if necessary.
  • the component which comprises resin which has solvent solubility, and other fixed resin layer which has solvent solubility is dissolved or disperse
  • the resin composition containing the obtained solvent is prepared, and the resin composition containing the obtained solvent is formed on a support substrate or a semiconductor wafer, and the solvent is removed by drying to form a thermosoftening fixed resin layer. be able to.
  • Solvents are not particularly limited, but hydrocarbons such as mesitylene, decalin and mineral spirits, alcohols / ethers such as anisole, propylene glycol monomethyl ether, dipropylene glycol methyl ether, diethylene glycol monoethyl ether and diglyme.
  • hydrocarbons such as mesitylene, decalin and mineral spirits
  • alcohols / ethers such as anisole, propylene glycol monomethyl ether, dipropylene glycol methyl ether, diethylene glycol monoethyl ether and diglyme.
  • Esters lactones such as ethylene carbonate, ethyl acetate, N-butyl acetate, ethyl lactate, ethyl 3-ethoxypropionate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene carbonate, ⁇ -butyrolactone, acetone, Ketones such as methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl isobutyl ketone, 2-heptanone, N-methyl-2-pyrrolidinone, etc. Bromide / lactams, and the like.
  • the thermosoftening resin composition contains a solvent, it becomes easy to adjust the viscosity of the thermosoftening resin composition, and a thin film of the thermosoftening resin composition is formed on a semiconductor wafer or a supporting substrate. Easy to do.
  • the solvent-soluble second fixed resin layer 50 is formed by dissolving a solvent-soluble resin and other components constituting the solvent-soluble fixed resin layer in the above-mentioned solvent and containing a solvent.
  • a resin composition containing a solvent is then applied to a substrate such as polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and the solvent is evaporated by heating.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • a film-like resin composition can be obtained, and then the resin composition on the film can be laminated on a supporting substrate or a semiconductor wafer to form a thermosoftening fixed resin layer.
  • the first fixed resin layer 10 is heated to a temperature higher than the thermal decomposition temperature of the first fixed resin layer 10 after irradiation with the active energy rays and lower than the thermal softening temperature of the second fixed resin layer having solvent solubility. By doing so, only the first fixed resin layer 10 is selectively thermally decomposed, and the first support substrate 1 is peeled off.
  • the heating temperature of the second laminate in the first peeling step is T1 (° C.) and the thermal softening temperature of the second fixing resin layer having solvent solubility is T2 (° C.).
  • T1 ⁇ T2 the thermal softening temperature of the second fixing resin layer having solvent solubility
  • the first fixed resin layer 10 remaining on the first support substrate 1 or the semiconductor wafer 2 may be removed as necessary.
  • a method for removing the remaining first fixed resin layer 10 is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • the first fixed resin layer 10 is thermally decomposed and reduced in molecular weight, the first support base material can be detached without stress. There is an effect that the support base material 1 and the semiconductor wafer 2 are not easily damaged. In addition, the component of the first fixed resin layer 1 having a reduced molecular weight is volatilized during heating, and the first fixed resin layer 10 hardly remains on the first support base 1 and the semiconductor wafer 2. Play. Therefore, it is possible to simplify post-cleaning and other post-processes and to improve handling.
  • a third laminate 83 is obtained in the same manner as in the first embodiment described above.
  • a solvent capable of dissolving the second fixing resin layer 50 having solvent solubility is supplied from the through hole 6 of the second support base 4.
  • the solvent since the solvent can be supplied from the through hole 6 of the second support base 4, the solvent is applied only to the cross section in the thickness direction of the second fixed resin layer 50 having solvent solubility. Compared with the case where it supplies, the contact area of the 2nd fixed resin layer 50 which has solvent solubility, and a solvent can be enlarged. Therefore, the second fixed resin layer 50 having solvent solubility can be removed in a short time, and the residue remaining on the semiconductor wafer 2 and the second support base 4 can be reduced.
  • the solvent for dissolving the second fixed resin layer having solvent solubility may be any solvent that can dissolve the second fixed resin layer 50 having solvent solubility, such as acetone, methyl ethyl ketone, cyclohexanone, and the like.
  • solvents such as acetone, methyl ethyl ketone, cyclohexanone, and the like.
  • ketones include ketones, alcohols such as methanol, ethanol, isopropyl alcohol, and n-butanol, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, and the like, which may be used alone or in combination.
  • the second support base 4 is peeled from the third laminate 83.
  • the 2nd fixed resin layer 50 solvent solubility melt
  • the second fixed resin layer 50 having solvent solubility is dissolved in the solvent, it is possible to detach the second support substrate 4 without stress.
  • the second support base material 4 and the semiconductor wafer 2 are less likely to be damaged.
  • the second fixed resin layer 50 having solvent solubility attached to the semiconductor wafer 2 is removed after the second peeling step.
  • a method for removing the second fixed resin layer 50 having solvent solubility is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and simple peeling, but the semiconductor device 100 is laminated. Simple peeling that can reduce damage to the semiconductor wafer 2 is preferable.
  • a method for removing the second fixed resin layer 50 is not particularly limited, and examples thereof include plasma treatment, chemical immersion treatment, polishing treatment, and heat treatment.
  • a thermally decomposable fixing resin layer is used as the first fixing resin layer, and active energy rays are applied to the fixing resin layer in the first peeling step.
  • the pyrolyzable first fixing resin layer of the sixth to tenth embodiments is the same as the pyrolyzable second fixing resin layer of the second embodiment, and the sixth to tenth embodiments.
  • the first peeling process is the same as the second peeling process of the second embodiment, and the second peeling processes of the sixth to tenth embodiments are the first to fifth embodiments, respectively. This is the same as the second peeling step.
  • a thermally decomposable fixed resin layer is used as the first fixed resin layer, and a thermal decomposition temperature is applied by irradiation with active energy rays as the second fixed resin layer.
  • the heat decomposable fixing resin layer is used to reduce the temperature, and in the first peeling step, the fixing resin layer is thermally decomposed without irradiating the fixing resin layer with active energy rays.
  • the fixed resin layer is thermally decomposed after the active resin is irradiated with active energy rays.
  • the heating temperature of the 2nd laminated body in a 1st peeling process shall be T1 (degreeC), and 5% weight of the thermally decomposable resin (1) contained in the 2nd fixed resin layer
  • T1 degreeC
  • T2 ° C.
  • T1 ⁇ T2 preferably “T1 + 20 ⁇ T2”.
  • T2 is included in the second fixed resin layer before being irradiated with active energy rays. This is the thermal decomposition temperature of the thermal decomposition resin (1).
  • a thermally decomposable fixed resin layer is used as the first fixed resin layer, and a thermally decomposable fixed resin layer is used as the second fixed resin layer.
  • the fixing resin layer is thermally decomposed without irradiating the fixed resin layer with active energy rays
  • the fixed energy layer is irradiated with active energy rays.
  • the fixed resin layer is thermally decomposed.
  • the heating temperature of the 2nd laminated body in a 1st peeling process shall be T1 (degreeC), and 5% weight of the thermally decomposable resin (2) contained in the 2nd fixed resin layer Assuming that the decrease temperature is T2 (° C.), “T1 ⁇ T2”, preferably “T1 + 20 ⁇ T2”.
  • a thermally decomposable fixed resin layer is used as the first fixed resin layer, and a thermosoftening fixed resin layer is used as the second fixed resin layer.
  • the fixing resin layer is thermally decomposed without irradiating the fixing resin layer with active energy rays, and in the second peeling step, the fixing resin layer is thermally softened.
  • T1 ° C.
  • T2 ° C.
  • the manufacturing method of the electronic device of the ninth embodiment of the present invention uses a thermally decomposable fixed resin layer as the first fixed resin layer and a fixed resin layer having a photothermal change layer as the second fixed resin layer.
  • the fixing resin layer is thermally decomposed without irradiating the fixing resin layer with the active energy ray
  • the photothermal conversion layer is irradiated with the active energy ray. It is an embodiment which decomposes
  • the heating temperature degree of the 2nd laminated body in a 1st peeling process shall be T1 (degreeC), and the 5% weight reduction
  • a thermally decomposable fixed resin layer is used as the first fixed resin layer, and a solvent-soluble fixed resin layer is used as the second fixed resin layer.
  • the fixing resin layer is thermally decomposed without irradiating the fixing resin layer with active energy rays, and in the second peeling step, the second fixing resin layer is dissolved in a solvent. It is a form.
  • the heating temperature of the second laminate in the first peeling step is T1 (° C.) and the thermal softening temperature of the fixed resin layer having solvent solubility is T2 (° C.), “T1 ⁇ T2 ”, preferably“ T1 + 20 ⁇ T2 ”.
  • thermosoftening fixing resin layer is used as the first fixing resin layer, and the second laminate is heated in the first peeling step.
  • the heat-softening first fixing resin layer of the eleventh to fifteenth embodiments is the same as the heat-softening second fixing resin layer of the third embodiment, and the eleventh to fifteenth embodiments.
  • the first peeling step is the same as the second peeling step of the third embodiment, and the second peeling steps of the eleventh to fifteenth embodiments are respectively the first to fifth embodiments. This is the same as the second peeling step.
  • the electronic device manufacturing method uses a thermosoftening fixing resin layer as the first fixing resin layer, and the thermal decomposition temperature by irradiation with active energy rays as the second fixing resin layer.
  • the fixing resin layer was thermally softened, and in the second peeling process, the active resin was irradiated with active energy rays first.
  • the fixed resin layer is thermally decomposed later.
  • the heating temperature of the second laminate in the first peeling step is T1 (° C.), and 5% by weight of the thermally decomposable resin (1) contained in the second fixed resin layer
  • the decrease temperature is T2 (° C.), “T1 ⁇ T2”, preferably “T1 + 20 ⁇ T2”.
  • T2 is included in the second fixed resin layer before being irradiated with active energy rays. This is the thermal decomposition temperature of the thermal decomposition resin (1).
  • thermosoftening fixing resin layer is used as the first fixing resin layer
  • a thermally decomposable fixing resin layer is used as the second fixing resin layer.
  • the fixing resin layer is thermally softened in the first peeling step
  • the fixing resin layer is thermally decomposed without irradiating the fixing resin layer with active energy rays in the second peeling step.
  • the heating temperature of the second laminate in the first peeling step is T1 (° C.), and 5% by weight of the thermally decomposable resin (2) contained in the second fixed resin layer Assuming that the decrease temperature is T2 (° C.), “T1 ⁇ T2”, preferably “T1 + 20 ⁇ T2”.
  • thermosoftening fixing resin layer is used as the first fixing resin layer
  • thermosoftening fixing resin layer is used as the second fixing resin layer.
  • the fixing resin layer is thermally softened
  • the fixing resin layer is heat softened.
  • T1 ⁇ T2 when the heating temperature of the second laminate in the first peeling step is T1 (° C.) and the heat softening temperature of the thermosetting second fixing resin layer is T2 (° C.), “T1 ⁇ T2”, preferably “T1 + 20 ⁇ T2”.
  • the electronic device manufacturing method uses a heat-softening fixed resin layer as the first fixed resin layer, and a fixed resin layer having a photothermal conversion layer as the second fixed resin layer.
  • the fixing resin layer is thermally softened in the first peeling step, and the photothermal conversion layer is decomposed by irradiating the photothermal conversion layer with active energy rays in the second peeling step.
  • the heating temperature of the second laminate in the first peeling step is T1 (° C.), and the 5% weight reduction temperature of the thermally decomposable resin (3) contained in the photothermal conversion layer is Assuming T2 (° C.), “T1 ⁇ T2”, and preferably “T1 + 20 ⁇ T2”.
  • thermosoftening fixing resin layer is used as the first fixing resin layer
  • a solvent-soluble fixing resin layer is used as the second fixing resin layer.
  • the fixing resin layer is thermally softened in the first peeling step
  • the solvent of the second fixing resin layer is dissolved in the second peeling step.
  • a fixed resin layer having a photothermal conversion layer is used as the first fixed resin layer, and active energy rays are applied to the photothermal conversion layer in the first peeling step.
  • the photothermal conversion layer is decomposed by irradiation.
  • the first fixed resin layer having the photothermal conversion layer of the sixteenth to twentieth embodiments is the same as the second fixed resin layer having the photothermal conversion layer of the fourth embodiment, and the sixteenth to twentieth
  • the first peeling process of the embodiment is the same as the second peeling process of the fourth embodiment, and the second peeling processes of the sixteenth to twentieth embodiments are the first to fifth, respectively. It is the same as that of the 2nd peeling process of embodiment.
  • a fixed resin layer having a photothermal conversion layer is used as the first fixed resin layer, and thermal decomposition is performed by irradiation with active energy rays as the second fixed resin layer.
  • the photothermal conversion layer is decomposed by irradiating the photothermal conversion layer with active energy rays in the first peeling step, and is fixed first in the second peeling step.
  • a fixed resin layer having a photothermal conversion layer is used as the first fixed resin layer, and a thermally decomposable fixed resin layer is used as the second fixed resin layer.
  • the photothermal conversion layer is decomposed by irradiating the photothermal conversion layer with active energy rays, and fixed in the second peeling step without irradiating the fixed resin layer with active energy rays.
  • a fixed resin layer having a photothermal conversion layer is used as the first fixed resin layer, and a thermosoftening fixed resin layer is used as the second fixed resin layer.
  • the photothermal conversion layer is decomposed by irradiating the photothermal conversion layer with active energy rays in the first peeling step, and the fixing resin layer is thermally softened in the second peeling step.
  • the electronic device manufacturing method of the nineteenth embodiment of the present invention uses a fixed resin layer having a photothermal conversion layer as the first fixed resin layer, and a fixed resin layer having a photothermal conversion layer as the second fixed resin layer.
  • the photothermal conversion layer is decomposed by irradiating the photothermal conversion layer with active energy rays
  • the photothermal conversion layer is irradiated with active energy rays. It is embodiment which performs decomposition
  • the electronic device manufacturing method uses a fixed resin layer having a photothermal conversion layer as the first fixed resin layer, and a fixed resin layer having solvent solubility as the second fixed resin layer.
  • the photothermal conversion layer is decomposed by irradiating the photothermal conversion layer with active energy rays, and the second fixing resin layer is dissolved in the solvent in the second peeling step. is there.
  • a fixed resin layer having solvent solubility is used as the first fixed resin layer, and a solvent is applied to the first fixed resin layer in the first peeling step.
  • the first fixing resin layer having solvent solubility in the twenty-first to twenty-fifth embodiments is the same as the second fixing resin layer having solvent solubility in the fifth embodiment, and the twenty-first to twenty-fifth embodiments.
  • the first peeling process of the embodiment is the same as the second peeling process of the fifth embodiment, and the second peeling processes of the twenty-first to twenty-fifth embodiments are the first to fifth, respectively. It is the same as that of the 2nd peeling process of embodiment.
  • a fixed resin layer having solvent solubility is used as the first fixed resin layer, and thermal decomposition is performed by irradiation with active energy rays as the second fixed resin layer.
  • thermally decomposable fixed resin layer whose temperature drops, the solvent of the fixed resin layer is dissolved in the first peeling step, and the active energy ray is irradiated to the fixed resin layer first in the second peeling step.
  • a solvent-soluble fixing resin layer is used as the first fixing resin layer, and a thermally decomposable fixing resin layer is used as the second fixing resin layer.
  • the solvent of the fixing resin layer is dissolved in the first peeling step, and the fixing resin layer is thermally decomposed without irradiating the fixing resin layer with active energy rays in the second peeling step.
  • a fixed resin layer having solvent solubility is used as the first fixed resin layer, and a thermosoftening fixed resin layer is used as the second fixed resin layer.
  • the solvent of the fixing resin layer is dissolved in the first peeling step, and the softening of the fixing resin layer is performed in the second peeling step.
  • a fixed resin layer having solvent solubility is used as the first fixed resin layer, and a fixed resin layer having a photothermal change layer as the second fixed resin layer.
  • the solvent of the fixing resin layer is dissolved
  • the photothermal conversion layer is decomposed by irradiating the photothermal conversion layer with active energy rays.
  • a fixed resin layer having solvent solubility is used as the first fixed resin layer, and a fixed resin layer having solvent solubility is used as the second fixed resin layer.
  • the solvent of the fixed resin layer is dissolved in the first peeling step, and the solvent of the second fixed resin layer is dissolved in the second peeling step.
  • the present invention is not limited thereto.
  • an arbitrary step may be added as necessary.
  • a method for manufacturing a WL-CSP type electronic device having a COW structure a method for manufacturing an electronic device capable of obtaining an electronic device with a simple manufacturing process, high yield, low cost, and high reliability.
  • An electronic device manufactured by the manufacturing method can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 半導体ウエハの機能面を第1の固定樹脂層を介して第1の支持基材で支持した状態で半導体ウエハの裏面加工を実施し、次いで、半導体ウエハの裏面を第2の固定樹脂層を介して第2の支持基材で支持した状態で半導体装置を実装することにより、COW構造を有するWL-CSP型電子装置を製造することができる。

Description

電子装置の製造方法およびそれを用いてなる電子装置、電気、電子部品の製造方法およびそれを用いてなる電気、電子部品
 本発明は電子装置の製造方法およびそれを用いてなる電子装置、電気、電子部品の製造方法およびそれを用いてなる電気、電子部品に関する。
 従来型のCOW(Chip On Wafer)構造の電子装置おいては、半導体ウエハの厚みをそれ程薄くする必要がなかったため、半導体ウエハの裏面研削工程、TSV(Through Silicon Via)形成工程、半田バンプ形成工程、および、半導体チップ実装工程を半導体ウエハに支持体を貼着することなく実施することができた(特許文献1)。
 一方、電子装置の軽薄短小化に伴い、半導体ウエハの厚みを薄くするという市場の要求が高まってきている。しかしながら、半導体ウエハの厚みを薄く(例えば100μm以下)すると、半導体ウエハ自身の自己支持機能がなくなるため、上記工程において半導体ウエハが破損してしまう等のハンドリング性に関する問題が発生し、COW型電子装置を歩留り良く製造するのが困難であった。
特開2009-110995号公報
本発明の目的は、COW構造を有するWL-CSP型(Wafer Level-Chip Size Package)電子装置の製造方法において、製造プロセスが簡便であり、歩留りが良く安価で信頼性の高い電子装置を得ることができる電子装置の製造方法、さらには、前記電子装置の製造方法により製造された電子装置を提供することである。
本発明の目的は、以下の(1)~(22)により達成することができる。
(1)第1の支持基材/第1の固定樹脂層/半導体ウエハ/第2の固定樹脂層/第2の支持基材がこの順に積層された積層体。
(2)第1の支持基材の表面に第1の固定樹脂層を設け、次いで、前記第1の固定樹脂層と半導体ウエハの機能面を対向させて第1の固定樹脂層と半導体ウエハを貼り合せること、または半導体ウエハの機能面に第1の固定樹脂層を設け、次いで、前記第1の固定樹脂層と第1の支持基材を貼り合わせることにより第1の支持基材/第1の固定樹脂層/半導体ウエハがこの順に積層された第1の積層体を得る工程と、
前記半導体ウエハの裏面を研削し、さらに、半導体ウエハの裏面に電極を形成する半導体ウエハ裏面加工工程と、
前記半導体ウエハの裏面と第2の支持基材を第2の固定樹脂層を介して貼り合せることにより第1の支持基材/第1の固定樹脂層/半導体ウエハ/第2の固定樹脂層/第2の支持基材がこの順に積層された第2の積層体を得る工程と、
を有する(1)に記載の積層体の製造方法、
(3)(1)に記載の積層体から第1の支持基材を剥離する第1の剥離工程と、
前記半導体ウエハの機能面に複数の半導体装置を実装することにより第2の支持基材/第2の固定樹脂層/半導体ウエハ/半導体装置がこの順に積層された第3の積層体を得る工程と、
前記第3の積層体から第2の支持基材を剥離する第2の剥離工程と、
を有することを特徴とする電子装置の製造方法、
(4)前記第1の剥離工程後に、半導体ウエハの機能面に付着した第1の固定樹脂層を除去する工程を有する(3)に記載の電子装置の製造方法、
(5)前記第2の剥離工程後に、半導体ウエハの裏面に付着した第2の固定樹脂層を除去する工程を有する(3)または(4)に記載の電子装置の製造方法、
(6)前記半導体装置が半導体チップまたは半導体チップの積層体である(3)ないし(5)のいずれかに記載の電子装置の製造方法、
(7)前記半導体装置がフラックス機能を有する樹脂組成物を介して半導体ウエハに実装されている(3)ないし(6)のいずれかに記載の電子装置の製造方法、
(8)前記第2の積層体を得る工程後に、半導体装置を封止樹脂により封止する封止工程を有する(3)ないし(7)のいずれかに記載の電子装置の製造方法、
(9)前記第2の剥離工程後に、各半導体装置単位に個片化する個片化工程を有する(3)ないし(8)のいずれかに記載の電子装置の製造方法、
(10)前記第1の剥離工程において、(1)に記載の積層体を加熱することにより第1の支持基材を剥離する(3)ないし(9)のいずれかに記載の電子装置の製造方法、
(11)前記第1の固定樹脂層が、熱分解性の固定樹脂層であり、前記第1の剥離工程において、(1)に記載の積層体を加熱して、前記熱分解性の固定樹脂層を熱分解することにより第1の支持基材を剥離する(10)に記載の電子装置の製造方法、
(12)前記第1の固定樹脂層が、熱分解性樹脂を含有する熱分解性の固定樹脂層である(11)に記載の電子装置の製造方法、
(13)前記第1の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であり、前記第1の剥離工程が、第1の支持基材側から活性エネルギー線を照射した後、熱分解性の固定樹脂層を熱分解する工程である(11)に記載の電子装置の製造方法、
(14)前記活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層が、酸により熱分解温度が低下する熱分解性樹脂を含む熱分解性の固定樹脂層である(13)に記載の電子装置の製造方法、
(15)前記第2の剥離工程において、前記第3の積層体に対し、
 (i)加熱すること、
 (ii)活性エネルギー線を照射すること、あるいは
 (iii)溶剤を供給すること、
により第2の支持基材を剥離する(3)ないし(14)のいずれかに記載の電子装置の製造方法、
(16)
 (i)前記第2の固定樹脂層が、熱分解性または熱軟化性の固定樹脂層であり、前記第2の剥離工程において、前記第3の積層体を加熱して、前記熱分解性または熱軟化性の固定樹脂層を熱分解または熱軟化すること、
 (ii)前記第2の固定樹脂層が、光熱変換層を有する固定樹脂層であり、前記第2の剥離工程において、前記第3の積層体を照射して、前記光熱変換層を有する固定樹脂層を分解すること、あるいは
 (iii)前記第2の固定樹脂層が、溶剤溶解性を有する固定樹脂層であり、前記第2の剥離工程において、前記第3の積層体に溶剤を供給して、前記溶剤溶解性を有する固定樹脂層を溶剤溶解させること、
により第2の支持基材を剥離する(15)に記載の電子装置の製造方法、
(17)前記第2の固定樹脂層が、熱分解性樹脂を含有する熱分解性の固定樹脂層である(16)に記載の電子装置の製造方法、
(18)前記第2の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であり、前記第2の剥離工程が、第2の支持基材側から活性エネルギー線を照射した後、熱分解性の固定樹脂層を熱分解する工程である(16)に記載の電子装置の製造方法、
(19)前記活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層が、酸により熱分解温度が低下する熱分解性樹脂を含む熱分解性の固定樹脂層である(18)に記載の電子装置の製造方法、
(20)(3)ないし(19)のいずれかに記載の電子装置の製造方法で製造された電子装置、
(21)(20)に記載の電子装置を基板に実装する工程を有する電気、電子部品の製造方法
(22)(21)に記載の電気、電子部品の製造方法で製造された電気、電子部品。
 本発明によれば、COW構造を有するWL-CSP型電子装置の製造方法において、製造プロセスが簡便であり、歩留りが良く安価で信頼性の高い電子装置を得ることができる電子装置の製造方法、さらには、前記電子装置の製造方法により製造された電子装置を提供することができる。
本発明の第1および第2の実施形態にかかる電子装置の製造工程を説明するための縦断面図である。 本発明の第1および第2の実施形態にかかる電子装置の製造工程を説明するための縦断面図である。 本発明の第3の実施形態にかかる電子装置の製造工程を説明するための縦断面図である。 本発明の第3の実施形態にかかる電子装置の製造工程を説明するための縦断面図である。 本発明の第4の実施形態にかかる電子装置の製造工程を説明するための縦断面図である。 本発明の第4の実施形態にかかる電子装置の製造工程を説明するための縦断面図である。 本発明の第5の実施形態にかかる電子装置の製造工程を説明するための縦断面図である。 本発明の第5の実施形態にかかる電子装置の製造工程を説明するための縦断面図である。
 本発明の電子装置の製造方法は、第1の支持基材の表面に第1の固定樹脂層を設け、次いで、前記第1の固定樹脂層と半導体ウエハの機能面を対向させて第1の固定樹脂層と半導体ウエハを貼り合せること、または半導体ウエハの機能面に第1の固定樹脂層を設け、次いで、前記第1の固定樹脂層と第1の支持基材を貼り合わせることにより第1の支持基材/第1の固定樹脂層/半導体ウエハがこの順に積層された第1の積層体を得る工程と、
前記半導体ウエハの裏面を研削し、さらに、半導体ウエハの裏面に電極を形成する半導体ウエハ裏面加工工程と、
前記半導体ウエハの裏面と第2の支持基材を第2の固定樹脂層を介して貼り合せることにより第1の支持基材/第1の固定樹脂層/半導体ウエハ/第2の固定樹脂層/第2の支持基材がこの順に積層された第2の積層体を得る工程と、
前記第2の積層体から第1の支持基材を剥離する第1の剥離工程と、
前記半導体ウエハの機能面に複数の半導体装置を実装することにより第2の支持基材/第2の固定樹脂層/半導体ウエハ/半導体装置がこの順に積層された第3の積層体を得る工程と、
前記第3の積層体から第2の支持基材を剥離する第2の剥離工程と、
を有することを特徴とする電子装置の製造方法である。
 つまり、本発明の電子装置の製造方法は、第1の積層体を得る工程と、半導体ウエハ裏面加工工程と、第2の積層体を得る工程と、第1の剥離工程と、第3の積層体を得る工程と、第2の剥離工程と、を有する。なお、半導体ウエハの機能面とは、トランジスターやダイオードなどの半導体素子やそれらを接続する回路がその表面に形成された面をいう。
 本発明の電子装置の製造方法においては、半導体ウエハに第1の支持基材を固定するための第1の固定樹脂層および半導体ウエハに第2の支持基材を固定するための第2の固定樹脂層として、熱分解性の固定樹脂層、活性エネルギー線を照射することにより熱分解温度が低下する熱分解性の固定樹脂層、熱軟化性の固定樹脂層、光熱変換層を有する固定樹脂層、溶剤溶解性を有する固定樹脂層の5つを挙げることができ、第1の固定樹脂層および第2の固定樹脂層として、どのタイプの固定樹脂層を使用するかにより実施形態が異なる。
 なお、熱分解性の固定樹脂層とは、剥離工程において、熱分解温度以上の温度で加熱することにより、固定樹脂層が熱分解して、詳細には、固定樹脂層を構成している成分が熱分解して、積層体から支持基材を剥離することができる固定樹脂層を指す。そのため、剥離工程では、積層体を熱分解性の固定樹脂層の熱分解温度以上の温度で加熱することにより、熱分解性の固定樹脂層を熱分解させて、支持基材を剥離する。剥離工程で熱分解性の固定樹脂層を熱分解させるために、積層体を加熱するときの加熱温度は、好ましくは120~420℃、特に好ましく150~350℃である。
 また、熱分解性の固定樹脂層には、活性エネルギー線の照射により熱分解温度が低下する固定樹脂層がある。活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を用いる場合は、剥離工程において、先に固定樹脂層に活性エネルギー線を照射させて固定樹脂層の熱分解温度を低下させた後、積層体を、低下した熱分解温度以上の温度で加熱することにより、熱分解性の固定樹脂層を熱分解させて、支持基材を剥離する。そのため、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を用いることにより、剥離工程での積層体の加熱温度を低くすることができる。剥離工程で活性エネルギー線を照射した後の熱分解性の固定樹脂層を熱分解させるために、積層体を加熱するときの加熱温度は、好ましくは100~400℃、特に好ましく120~300℃である。
また、熱軟化性の固定樹脂層とは、剥離工程において、軟化温度以上の温度で加熱することにより、固定樹脂層の溶融粘度が低下して、積層体から支持基材を剥離することができる固定樹脂層を指す。そのため、剥離工程では、積層体を熱軟化性の固定樹脂層の熱軟化温度以上の温度で加熱することにより、熱軟化性の固定樹脂層を軟化させて、支持基材を剥離する。剥離工程で熱軟化性の固定樹脂層を熱軟化させるために、積層体を加熱するときの加熱温度は、好ましくは100~350℃、特に好ましくは120~300℃である。
 また、光熱変換層を有する固定樹脂層とは、剥離工程において、活性エネルギー線を照射することにより、光熱変換層に含まれている光吸収剤が熱エネルギーを発生し、発生した熱エネルギーにより、光熱変換層に含まれている熱分解性樹脂が熱分解して、光熱変換層中にボイドが生じるために、積層体から支持基材を剥離することができる固定樹脂層を指す。そのため、剥離工程では、先に光熱変換層に活性エネルギー線を照射させて、光熱変化層中の熱分解性樹脂を熱分解させてボイドを生じさせた後、支持基材を剥離する。なお、ボイドとは層間に生じる気泡などの間隙をいう。また、光熱変換層を有する固定樹脂層には、光熱変換層のみからなるものと、光熱変換層および接着層からなるものとがある。
 また、溶剤溶解性を有する固定樹脂層とは、剥離工程において、支持基材に設けられている貫通孔から、固定樹脂層に溶剤を供給することにより、固定樹脂層が溶解して、積層体から支持基材を剥離することができる固定樹脂層を指す。そのため、剥離工程では、固定樹脂層に溶剤を供給して固定樹脂層を溶解させることにより、支持基材を剥離する。
 本発明の電子装置の製造方法の実施形態を表1に示す。
Figure JPOXMLDOC01-appb-T000001
1)先に活性エネルギー線を照射した後、熱分解することを指す。
 第1の固定樹脂層として熱分解性の固定樹脂層を使用し、第2の固定樹脂層として熱分解性の固定樹脂層または熱軟化性の固定樹脂層を使用する場合、第1の固定樹脂層および第2の固定樹脂層には、第2の固定樹脂層の熱分解温度または熱軟化温度が、第1の固定樹脂層の熱分解温度よりも高いものを用いる。これにより、第1の剥離工程において第1の固定樹脂層の熱分解温度よりも高く、かつ、第2の固定樹脂層の熱分解温度または熱軟化温度よりも低い温度で積層体を加熱することにより、選択的に第1の支持基材を剥離することができるとともに、第2の支持基材の剥離や位置ずれを防止することができる。なお、第1の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であり、第1の剥離工程で先に活性エネルギー線を照射する場合、第1の固定樹脂層および第2の固定樹脂層には、第2の固定樹脂層の熱分解温度(第2の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であり、第2の剥離工程で先に活性エネルギー線を照射する場合は、活性エネルギー線が照射される前の熱分解温度)または熱軟化温度が、第1の剥離工程で活性エネルギー線を照射した後の第1の固定樹脂層の熱分解温度よりも高いものを用いる。
 また、第1の固定樹脂層および第2の固定樹脂層として両方とも熱分解性の固定樹脂層を用いる場合、同じ組成の熱分解性の固定樹脂層を用いてもよいし、別の組成の熱分解性の固定樹脂層を用いてもよい。
 同じ組成の熱分解性の固定樹脂層を用いる場合、例えば、第1の固定樹脂層および第2の固定樹脂層として、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を用いて、第1の剥離工程で第1の固定樹脂層に活性エネルギー線を選択的に照射することで、第1の固定樹脂層の熱分解温度を低下させることができる。これにより、第1の剥離工程において、第2の固定樹脂層の熱分解温度を、活性エネルギー線が照射された後の第1の固定樹脂層の熱分解温度よりも高くすることができる。
 また、別の組成の熱分解性の固定樹脂層を用いる場合、例えば、第1の固定樹脂層に含まれる熱分解性樹脂の熱分解温度を、第2の固定樹脂層に含まれる熱分解性樹脂の熱分解温度よりも低くすることにより、第2の固定樹脂層の熱分解温度を第1の固定樹脂層の熱分解温度よりも高くすることができる。
 なお、第1の固定樹脂層および第2の固定樹脂層として両方とも活性エネルギー線を照射することにより熱分解温度が低下する熱分解性の固定樹脂層を使用する場合は、第1の剥離工程で、第1の支持基材側から活性エネルギー線が照射されたときに、半導体ウエハが第2の固定樹脂層に活性エネルギー線が照射されるのを防ぐので、第1の固定樹脂層にのみ活性エネルギー線が照射される。
 第1の固定樹脂層として熱軟化性の固定樹脂層を使用する場合、第1の固定樹脂層および第2の固定樹脂層には、第2の固定樹脂層の熱分解温度または熱軟化温度が、第1の固定樹脂層の熱軟化温度よりも高いものを用いる。これにより、第1の剥離工程において、第1の固定樹脂層の熱軟化温度よりも高く、かつ、第2の固定樹脂層の熱分解温度または熱軟化温度よりも低い温度で積層体を加熱することにより、選択的に第1の支持基材を剥離することができるとともに、第2の支持基材の剥離や位置ずれを防止することができる。なお、第2の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であり、第2の剥離工程で先に活性エネルギー線を照射する場合、第1の固定樹脂層および第2の固定樹脂層には、活性エネルギー線が照射される前の第2の固定樹脂層の熱分解温度が、第1の固定樹脂層の熱軟化温度よりも高いものを用いる。
 また、第1の固定樹脂層および第2の固定樹脂層として両方とも熱軟化性の固定樹脂層を用いる場合、第2の固定樹脂層の熱軟化温度を第1の固定樹脂層の熱軟化温度よりも高くする。
 第2の固定樹脂層の熱軟化温度を第1の固定樹脂層の熱軟化温度よりも高くする方法としては、例えば、第1の固定樹脂層に含まれる熱軟化性樹脂の熱軟化温度を、第2の固定樹脂層に含まれる熱軟化性樹脂の熱軟化温度よりも低くすることが挙げられる。
 第1の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第2の固定樹脂層として熱分解性の固定樹脂層または熱軟化性の固定樹脂層を使用する場合、第1の剥離工程において、光熱変換層に活性エネルギー線が照射されることにより、光熱変換層に含まれている光吸収剤から熱エネルギーが発生し、発生した熱により、熱分解性樹脂が分解する。ここで、第1の固定樹脂層および第2の固定樹脂層には、第2の固定樹脂層の熱分解温度(第2の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂であり、第2の剥離工程で先に活性エネルギー線を照射する場合は、活性エネルギー線が照射される前の熱分解温度)または熱軟化温度が、第1の剥離工程で光吸収剤が発生する熱で積層体が加熱されて光熱変換層が達する温度よりも高いものを用いる。これにより、第1の剥離工程において、第1の固定樹脂層が、第1の固定樹脂層の光熱変換層に含まれる熱分解性樹脂の熱分解温度よりも高い温度に加熱され、かつ、第2の固定樹脂層が、第2の固定樹脂層の熱分解温度または熱軟化温度よりも低い温度に加熱されるので、選択的に第1の支持基材を剥離することができるとともに、第2の支持基材の剥離や位置ずれを防止することができる。
 また、第1の固定樹脂層および第2の固定樹脂層として両方とも光熱変換層を有する固定樹脂層を使用する場合、同じ組成の光熱変換層を用いてもよいし、別の組成の光熱変換層を用いてもよい。
 また、第1の固定樹脂層として、光熱変換層を有する固定樹脂層を使用し、第2の固定樹脂層として、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層、または光熱変換層を有する固定樹脂層を使用する場合は、第1の剥離工程で、第1の支持基材側から活性エネルギー線が照射されたときに、半導体ウエハが第2の固定樹脂層に活性エネルギー線が照射されるのを防ぐので、第1の固定樹脂層の光熱変換層のみに活性エネルギー線が照射される。
 同じ組成の光熱変換層を有する固定樹脂層を用いる場合、第1の固定樹脂層の光熱変換層に活性エネルギー線を選択的に照射することで、第1の固定樹脂層中の光熱変換層のみにボイドを形成することができる。
 また、別の組成の光熱変換層を有する固定樹脂層を用いる場合、例えば、光熱変換層中の熱分解性樹脂の熱分解温度、光吸収剤の種類および配合量を調整することにより、第1の固定樹脂層中の光熱変換層のみに選択的にボイドを形成することができる。
 また、第1の固定樹脂層および第2の固定樹脂層として両方とも溶剤溶解性の固定樹脂層を用いる場合、同じ組成の溶剤溶解性の固定樹脂層を用いてもよいし、別の組成の溶剤溶解性の固定樹脂層を用いてもよい。
 同じ組成の溶剤溶解性の固定樹脂層を用いる場合、第1の固定樹脂層のみに選択的に溶剤を供給することにより、第1の固定樹脂層のみを溶解させることができる。
 また、別の組成の溶剤溶解性の固定樹脂層を用いる場合、例えば、第1の固定樹脂層に含まれる溶剤溶解性の樹脂の溶剤に対する溶解性を、第2の固定樹脂層に含まれる溶剤溶解性の樹脂の溶剤に対する溶解性よりも高くすることにより、第1の剥離工程において、第1の固定樹脂層を選択的に溶剤に溶解させることができる。
 以下、本発明の好ましい例を説明するが、本発明はこれらの例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 まず、本発明の電子装置の製造方法の中でも好ましい形態である第1の固定樹脂層として熱分解性の固定樹脂層を用いた5つの実施形態について詳細に説明する。
<第1の実施形態>
 以下、本発明の第1の実施形態の電子装置の製造方法は、第1の固定樹脂層および第2の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第1の剥離工程で先に活性エネルギー線を照射した後熱分解を行い、第2の剥離工程で先に活性エネルギー線を照射した後熱分解を行う実施形態である。
(第1の積層体を得る工程)
 先ず、図(1-a)に示すように、第1の支持基材1上に、活性エネルギー線の照射により熱分解温度が低下する熱分解性の第1の固定樹脂層10を形成する。第1の実施形態では、後述する第1の剥離工程で先に第1の支持基材1側から活性エネルギー線を照射し、第2の剥離工程で先に第2の支持基材4側から活性エネルギー線を照射するため、第1の支持基材1および第2の支持基材4としては活性エネルギー線を透過する支持基材を用いる。
 ここで、活性エネルギー線を透過する第1の支持基材1および第2の支持基材4としては、特に限定されるわけではないが、紫外線、レーザー光を透過する硬質基板が挙げられ、より具体的には、ガラス基板等が挙げられる。
 図1に示す第1の実施形態では、第1の支持基材1上に第1の固定樹脂層10を設けた後に、第1の固定樹脂層10と半導体ウエハ2の機能面を貼着するようにしたが、第1の固定樹脂層10を半導体ウエハ2の機能面側に設けた後に、第1の固定樹脂層10と第1の支持基材1を貼着してもよい。なお、この点については、本発明について同様であり、本発明の第2~25の実施形態等の他の実施形態についても同じである。
 また、第1の固定樹脂層10を設ける方法として、例えば、スピンコート法、スプレー法、印刷法、フィルム転写法、スリットコート法、スキャン塗布法等の公知の方法を用いることができるため、新たな設備投資が必要ないという利点がある。
 なお、第1の固定樹脂層10を設ける方法としては、スピンコート法が好ましく、均一で平坦な薄膜を形成することができる。
 次に、第1の実施形態の第1の固定樹脂層10および第2の固定樹脂層20で使用する熱分解性の固定樹脂層について説明する。
 第1の実施形態の第1の固定樹脂層10および第2の固定樹脂層20は、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であり、活性エネルギー線の照射により熱分解温度が低下する熱分解性の樹脂組成物により構成されている。例えば、第1の固定樹脂層10および第2の固定樹脂層20は、活性エネルギー線の照射により酸を発生する光酸発生剤または光塩基発生剤と、光酸発生剤が発生する酸または光塩基発生剤が発生する塩基により熱分解温度が低下する熱分解性樹脂とを含む固定樹脂層である。なお、光酸発生剤が発生する酸または光塩基発生剤が発生する塩基により熱分解温度が低下する熱分解性樹脂を、熱分解性樹脂(1)とも記載する。
 第1の固定樹脂層10に含まれる熱分解性樹脂(1)は、95%重量減少温度と5%重量減少温度との差が、5℃≦(95%重量減少温度)-(5%重量減少温度)≦100℃である熱分解性樹脂を含む熱分解性の樹脂組成物が好ましい。また、第2の固定樹脂層20に含まれる熱分解性樹脂(1)は、95%重量減少温度と5%重量減少温度との差が、5℃≦(95%重量減少温度)-(5%重量減少温度)≦100℃である熱分解性樹脂が好ましい。
なお、熱分解性樹脂の5%重量減少温度、50%重量減少温度および95%重量減少温度は、熱分解性樹脂を約10mg精秤し、TG/DTA装置(セイコーインスツルメンツ社製)により測定(雰囲気:窒素、昇温速度:5℃/分)することができる。また、熱分解性樹脂の熱分解温度が低下するとは、熱分解性樹脂の5%重量減少温度が低下することを指す。
 上記熱分解性の固定樹脂層が、95%重量減少温度と5%重量減少温度との差が、5℃以上100℃以下という範囲に規定されている熱分解性樹脂を含むことにより、熱分解性の固定樹脂層の熱分解に要する温度範囲が狭く、熱分解に要する時間を短縮でき、半導体ウエハへのダメージを抑制することができる。また、加工後の半導体ウエハの脱離が容易で、かつ半導体ウエハに固定樹脂層が残留し難いという効果を奏する。また、安定に使用可能な温度領域が広く確保できるため、支持基材を半導体ウエハに仮固定したまま、種々の加工工程に供することが可能となる。また、表面が平滑で十分な精度を有する支持基材上に薄膜として形成できるため、半導体ウエハに接続端子を形成し、さらに、半導体ウエハと半導体装置の接合体を得る等の加工の精度が高いという効果を奏する。
 ここで、安定に使用可能な温度領域とは、熱分解性の固定樹脂層が分解せずに、半導体ウエハを安定して保持できる温度領域のことである。第1の実施形態に係る固定樹脂層は、この温度領域が広く確保できるため、半導体ウエハを支持基材に仮固定したままで、加温が必要である裏面加工工程にも供することが可能となる。そのため、異なる工程を連続的に行うことができるという利点を有する。
 また、前記熱分解性樹脂(1)は、5%重量減少温度が50℃以上であることが好ましい。これによれば、後述する、半導体ウエハに電極を形成し、さらに、半導体ウエハと半導体装置の接合体を得る等の電子装置製造プロセス中で固定樹脂層が熱分解しないという効果を得ることができる。
 また、前記熱分解性樹脂(1)は、50%重量減少温度が400℃以下であることが好ましい。これによれば、後述する、剥離工程で半導体ウエハが熱履歴により損傷することを防止することができるという効果を得ることができる。
 ここで、前記95%重量減少温度と5%重量減少温度との差が、5℃以上100℃以下という範囲に規定されている熱分解性樹脂(1)は、限定されるわけではないが、例えば、酸または塩基により加水分解する結合を主鎖に有し、主鎖の結合強度が低い樹脂を選択し、分子量等を調整することにより得られる。
 光酸発生剤が発生する酸または光塩基発生剤が発生する塩基により熱分解温度が低下し且つ95%重量減少温度と5%重量減少温度との差を、5℃以上100℃以下という範囲に規定することができる熱分解性樹脂(1)としては、特に限定されるわけではないが、例えば、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、(メタ)アクリレート系樹脂等が挙げられる。これらの熱分解性樹脂を適用することにより、後述する、積層体を得る工程、半導体ウエハ裏面加工工程等の電子装置製造プロセス中における固定樹脂層の熱分解を防止することができ、さらに、剥離工程における固定樹脂層の熱分解時間を短縮することができる。
 これらの熱分解性樹脂(1)の中でも、電子装置製造プロセス中の固定樹脂層の熱分解を効果的に防止することができ、さらに、剥離工程における固定樹脂層の熱分解時間を効果的に短縮することができるため、ポリカーボネート系樹脂が好ましい。
 前記熱分解性樹脂(1)がポリカーボネート系樹脂である場合、5%重量減少温度における分解時間が、1分以上60分以下であることが好ましい。
 熱分解時間を上記下限値以上とすることで、固定樹脂層の急激な熱分解を抑制することができ、熱分解したガスを排気装置で排気することが可能となるため、電子装置や電子装置を作製する設備の汚染を防止することができる。また、上記上限値以下とすることで、剥離工程において熱分解に要する時間を短縮することができるため、電子装置の生産性を向上することができる。
 前記ポリカーボネート系樹脂としては、特に限定されないが、例えば、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,4-ブチレンカーボネート、cis-2,3-ブチレンカーボネート、trans-2,3-ブチレンカーボネート、α,β-イソブチレンカーボネート、α,γ-イソブチレンカーボネート、cis-1,2-シクロブチレンカーボネート、trans-1,2-シクロブチレンカーボネート、cis-1,3-シクロブチレンカーボネート、trans-1,3-シクロブチレンカーボネート、ヘキセンカーボネート、シクロプロペンカーボネート、シクロヘキセンカーボネート、(メチルシクロヘキセンカーボネート)、(ビニルシクロヘキセンカーボネート)、ジヒドロナフタレンカーボネート、ヘキサヒドロスチレンカーボネート、シクロヘキサンプロピレンカーボネート、スチレンカーボネート、(3-フェニルプロピレンカーボネート)、(3-トリメチルシリロキシプロピレンカーボネート)、(3-メタクリロイロキシプロピレンカーボネート)、パーフルオロプロピレンカーボネート、ノルボルネンカーボネート、並びにこれらの組合せの骨格を有するポリカーボネート系樹脂が挙げられる。
 前記ポリカーボネート系樹脂としては、より具体的には、例えば、ポリプロピレンカーボネート/ポリシクロヘキセンカーボネート共重合体、ポリ[(オキシカルボニルオキシ-1,1,4,4-テトラメチルブタン)-alt-(オキシカルボニルオキシ-5-ノルボルネン-2-endo-3-endo-ジメタン)]、ポリ[(オキシカルボニルオキシ-1,4-ジメチルブタン)-alt-(オキシカルボニルオキシ-5-ノルボルネン-2-endo-3-endo-ジメタン)]、ポリ[(オキシカルボニルオキシ-1,1,4,4-テトラメチルブタン)-alt-(オキシカルボニルオキシ-p-キシレン)]、及びポリ[(オキシカルボニルオキシ-1,4-ジメチルブタン)-alt-(オキシカルボニルオキシ-p-キシレン)]、ポリシクロヘキセンカーボネート/ポリノルボルネンカーボネート共重合体等が挙げられる。
 前記ポリカーボネート系樹脂の重量平均分子量(Mw)は、1,000~1,000,000であることが好ましく、5,000~800,000であることがさらに好ましい。
 前記重量平均分子量を上記下限値以上とすることにより、半導体ウエハまたは支持基材に固定樹脂層を形成するときに、固定樹脂層の半導体ウエハまたは支持基材に対する濡れ性が向上すること、さらに、成膜性を向上するという効果を得ることができる。また、上記上限値以下とすることで、固定樹脂層を構成する各種成分との相溶性や各種溶剤に対する溶解性、さらには、剥離工程における固定樹脂層の熱分解性を向上するという効果を得ることができる。
 なお、重量平均分子量(Mw)は、THF(テトラヒドロフラン)を溶媒としてGPC(ゲル浸透クロマトグラム)により、ポリスチレン換算値として算出することにより測定される。また、濡れ性とは樹脂の溶液を半導体ウエハや支持基材などの固体表面に塗布した際の溶液の濡れ広がりやすさをいう。
 前記ポリカーボネート系樹脂の重合方法は、特に限定されるわけではないが、例えば、ホスゲン法(溶剤法)または、エステル交換法(溶融法)等の公知の重合方法が用いられる。
 前記熱分解性樹脂(1)の含有量は、熱分解性の固定樹脂層の10重量%~100重量%が好ましく、さらに好ましくは、30重量%~100重量%である。熱分解性樹脂(1)の含有量を上記下限値以上とすることで、後述する剥離工程後に、固定樹脂層が半導体ウエハまたは支持基材に残留することを防止できる。
 前記熱分解性樹脂(1)として、特に好ましいのは、ポリプロピレンカーボネート重合体、1,4-ポリブチレンカーボネート重合体、ポリシクロヘキセンカーボネート/ポリノルボルネンカーボネート共重合体である。
 また、前記熱分解性樹脂(1)を含む熱分解性の固定樹脂層は、活性エネルギー線の照射によってエネルギーを加えることにより酸を発生する光酸発生剤または塩基を発生する光塩基発生剤を含む。これにより、前記熱分解性樹脂(1)の熱分解温度を低下させることができる。
前記光酸発生剤としては、特に限定されないが、テトラキス(ペンタフルオロフェニル)ボレート-4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウム(DPI-TPFPB)、トリス(4-t-ブチルフェニル)スルホニウムテトラキス-(ペンタフルオロフェニル)ボレート(TTBPS-TPFPB)、トリス(4-t-ブチルフェニル)スルホニウムヘキサフルオロホスフェート(TTBPS-HFP)、トリフェニルスルホニウムトリフレート(TPS-Tf)、ビス(4-tert-ブチルフェニル)ヨードニウムトリフレート(DTBPI-Tf)、トリアジン(TAZ-101)、トリフェニルスルホニウムヘキサフルオロアンチモネート(TPS-103)、トリフェニルスルホニウムビス(パーフルオロメタンスルホニル)イミド(TPS-N1)、ジ-(p-t-ブチル)フェニルヨードニウム、ビス(パーフルオロメタンスルホニル)イミド(DTBPI-N1)、トリフェニルスルホニウム、トリス(パーフルオロメタンスルホニル)メチド(TPS-C1)、ジ-(p-t-ブチルフェニル)ヨードニウムトリス(パーフルオロメタンスルホニル)メチド(DTBPI-C1)、トリス{4-[(4-アセチルフェニル)チオ]フェニル}スルフォニウムトリス(パーフルオロメタンスルホニル)メチド及びこれらの2種以上の組合せが挙げられる。
 これらの中でも特に、前記熱分解性樹脂(1)の熱分解温度を効率的に下げることができるという理由から、テトラキス(ペンタフルオロフェニル)ボレート-4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウム(DPI-TPFPB)が好ましい。
 前記光塩基発生剤としては、特に限定されないが、5-ベンジルー1,5-ジアザビシクロ(4.3.0)ノナン、1-(2-ニトロベンゾイルカルバモイル)イミダゾール等が挙げられる。これらの中でも特に、前記熱分解性樹脂(1)の熱分解温度を効率的に下げることができるという理由から、5-ベンジルー1,5-ジアザビシクロ(4.3.0)ノナン及び5-ベンジルー1,5-ジアザビシクロ(4.3.0)ノナン骨格を有する誘導体が好ましい。
 前記光酸発生剤または光塩基発生剤の含有量は、熱分解性の固定樹脂層の0.01~50重量%が好ましく、さらに好ましくは、0.1~30重量%である。上記下限値以上とすることで、前記熱分解性樹脂(1)の熱分解温度を安定的に下げることが可能となり、上記上限値以下とすることで固定樹脂層が半導体ウエハまたは支持基板に残渣として残留することを効果的に防止することが可能となる。
 前記ポリカーボネート系樹脂、光酸発生剤または光塩基発生剤の組み合わせとして、特に好ましいのは、ポリカーボネート系樹脂としては、ポリプロピレンカーボネート重合体、1,4-ポリブチレンカーボネート重合体、ネオペンチルカーボネート重合体、シクロヘキセンカーボネート/ノルボルネンカーボネート共重合体であり、光酸発生剤または光塩基発生剤としてはテトラキス(ペンタフルオロフェニル)ボレート-4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウム(DPI-TPFPB)、トリス{4-[(4-アセチルフェニル)チオ]フェニル}スルフォニウムトリス(パーフルオロメタンスルホニル)メチドである。
 この場合、ポリカーボネート系樹脂の含有量は、熱分解性の固定樹脂層の30~100重量%、光酸発生剤または光塩基発生剤の含有量は、熱分解性の固定樹脂層の0.1~30重量%であり、ポリカーボネート系樹脂の重量平均分子量(Mw)は5,000~800,000であることが好ましい。このことにより、半導体ウエハまたは支持体に対する濡れ性、熱分解性の固定樹脂層の成膜性、熱分解性の固定樹脂層を構成する各種成分との相溶性や各種溶剤に対する溶解性、さらには、剥離工程における固定樹脂層の熱分解性を確保することができる。
 前記ポリカーボネート系樹脂は、前記光酸発生剤または光塩基発生剤の存在下で、ポリカーボネート系樹脂の主鎖の熱切断が容易となる構造を形成するため、又は、ポリカーボネート系樹脂自身が容易に熱分解する熱閉環構造を形成する(熱閉環反応)ため、熱分解温度が低下すると考えられる。
 下記の反応式(1)は、ポリプロピレンカーボネート樹脂の主鎖の熱切断及び熱閉環構造の形成のメカニズムを示す。
 先ず、前記光酸発生剤由来のHが、ポリプロピレンカーボネート樹脂のカルボニル酸素をプロトン化し、さらに極性遷移状態を転移させ不安定な互変異性中間体[A]及び[B]を生じる。
 次に、主鎖の熱切断の場合には、中間体[A]は、アセトン及びCOとして断片化する。
 熱閉環構造の形成(a又はb)の場合には、中間体[B]は炭酸プロピレンを生成し、炭酸プロピレンはCO及びプロピレンオキシドとして断片化される。
Figure JPOXMLDOC01-appb-C000002
 また、前記熱分解性の固定樹脂層の形成については、熱分解性樹脂(1)および光酸発生剤または光塩基発生剤や、その他熱分解性の固定樹脂層を構成する成分を溶媒に溶解または分散させて、溶媒を含有する樹脂組成物を調製し、得られた溶媒を含有する樹脂を、支持基材または半導体ウエハ上で成膜し、溶媒を乾燥除去することにより、熱分解性の固定樹脂を形成させることができる。溶媒としては、特に限定されるものではないが、メシチレン、デカリン、ミネラルスピリット類等の炭化水素類、アニソール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジグライム等のアルコール/エーテル類、炭酸エチレン、酢酸エチル、酢酸N-ブチル、乳酸エチル、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、炭酸プロピレン、γ-ブチロラクトン等のエステル/ラクトン類、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、2-ヘプタノン等のケトン類、N-メチル-2-ピロリジノン等のアミド/ラクタム類等が挙げられる。熱分解性の樹脂組成物が溶媒を含有することにより、熱分解性の樹脂組成物の粘度を調整することが容易となり、半導体ウエハまたは支持基材に熱分解性の固定樹脂層の薄膜を形成するのが容易となる。
 前記溶媒の含有量は、特に限定されるものではないが、溶媒を含有する樹脂組成物中、5~98重量%であることが好ましく、10~95重量%であることが特に好ましい。
 前記熱分解性の固定樹脂層は、光酸発生剤または光塩基発生剤とともに、特定のタイプまたは波長の活性エネルギー線に対する光酸発生剤または光塩基発生剤の反応性を発現あるいは増大させる機能を有する成分である増感剤を含んでいても良い。
 前記増感剤としては、特に限定されるものではないが、例えば、アントラセン、フェナントレン、クリセン、ベンツピレン、フルオランテン、ルブレン、ピレン、キサントン、インダンスレン、チオキサンテン-9-オン、2‐イソプロピル-9H-チオキサンテン-9-オン、4-イソプロピル-9H-チオキサンテン-9-オン、1-クロロ-4‐プロポキシチオキサントン、およびこれらの混合物等が挙げられる。このような増感剤の含有量は、前述した光酸発生剤または光塩基発生剤100重量部に対して、100重量部以下であるのが好ましく、20重量部以下であるのがより好ましい。
 また、前記熱分解性の固定樹脂層は、酸化防止剤を含んでいてもよい。前記酸化防止剤は、望ましくない酸の発生や、熱分解性の固定樹脂層の自然酸化を防止する機能を有している。
 前記酸化防止剤としては、特に限定されるわけではないが、例えば、ニューヨーク州タリータウンのCiba Fine Chemicals社から入手可能なCiba IRGANOX(登録商標) 1076又はCiba IRGAFOS(登録商標) 168が好適に用いられる。
 また、他の酸化防止剤としては、例えば、Ciba Irganox(登録商標) 129、Ciba Irganox 1330、Ciba Irganox 1010、Ciba Cyanox(登録商標) 1790、Ciba Irganox 3114、Ciba Irganox 3125等を用いることもできる。
 前記酸化防止剤の含有量は、前記熱分解性樹脂(1)100重量部に対して、0.1~10重量部が好ましく、0.5~5重量部がより好ましい。
 また前記熱分解性の固定樹脂層は、必要によりアクリル系、シリコーン系、フッ素系、ビニル系等のレベリング剤、シランカップリング剤、希釈剤等の添加剤等を含んでも良い。
 前記シランカップリング剤としては、特に限定されるものではないが、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が挙げられ、単独でも2種以上混合して用いてもよい。
 前記熱分解性の固定樹脂層がシランカップリング剤を含むことにより、半導体ウエハまたは支持基材との密着性を向上することが可能となる。
 前記希釈剤としては、特に限定されるわけではないが、例えば、シクロヘキセンオキサイドやα-ピネンオキサイド等のシクロエーテル化合物、[メチレンビス(4,1-フェニレンオキシメチレン)]ビスオキシランなどの芳香族シクロエーテル、1,4-シクロヘキサンジメタノールジビニルエーテルなどのシクロアリファティックビニルエーテル化合物等が挙げられる。
 前記熱分解性の固定樹脂層の形成に用いる熱分解性の樹脂組成物が希釈剤を含むことにより、熱分解性の樹脂組成物の流動性を向上することができ、熱分解性の樹脂組成物の半導体ウエハまたは支持基材に対する濡れ性を向上することが可能となる。
 次に、図(1-b)に示すように、第1の固定樹脂層10と半導体ウエハ2の機能面を対向させて第1の固定樹脂層10と半導体ウエハ2を貼り合せることにより第1の支持基材1/第1の固定樹脂層10/半導体ウエハ2がこの順に積層された第1の積層体60を得る。
 第1の固定樹脂層10と半導体ウエハ2を貼着する方法は、特に制限されるわけでないが、真空プレス装置、ウエハボンダー等が挙げられる。
 また、第1の固定樹脂層10と半導体ウエハ2を貼着する条件としては、特に制限されるわけではないが、温度:50~350℃、圧力:0.01~3MPa、時間:10~600秒の条件で行うことができ、温度:70~300℃、圧力:0.03~2MPa、時間:20~500秒の条件で貼着するのが好ましく、温度:100~250℃、圧力0.05:~1MPa、時間:30~400秒の条件で貼着するのが特に好ましい。これにより、第1の支持基材1と半導体ウエハ2間に気泡が発生することを効果的に防止することができるため、半導体ウエハ2を研削(後述する)した後の半導体ウエハ2の厚みばらつきを低減することができる。
 さらに、減圧下で第1の固定樹脂層10と半導体ウエハ2を貼着することが好ましく、第1の支持基材1と半導体ウエハ2間に発生する気泡をより効果的に防止することができる。
(半導体ウエハ裏面加工工程)
 次に、図(1-c)に示すように、半導体ウエハ2の裏面を研削し、さらに、電極3を形成する半導体ウエハ裏面加工工程を行う。
 半導体ウエハ2の裏面研削を行う方法は、特に制限されるわけではないが、市販されているバックグラインド装置で半導体ウエハ2の裏面研削を行うことができる。第1の実施形態において、半導体ウエハ2の機能面は、第1の固定樹脂層10で保護されているためバックグラインド時の塵埃や水分が機能面に付着することを効果的に防止することができる。
 また、半導体ウエハ2の厚みは、特に制限されるわけではないが、10~100μmが好ましく、20~80μmが特に好ましい。半導体ウエハ2の厚みを上記範囲とすることで、電子装置の厚みを低減することができる。
 半導体ウエハ2裏面の電極は、特に制限されるわけではないが、半田、銅、金、銀、ニッケル等の金属材料で形成されていることが好ましく、半導体チップ等の半導体装置との接合性に優れる、半田バンプ、金スタッドバンプで形成されているのが特に好ましい。前記半田バンプ、金スタッドバンプを、公知の方法により半田バンプ、金スタッドバンプを作製することができる。また、半導体ウエハの電極および半導体チップ等の半導体装置の少なくともいずれか一方の電極は半田が形成されているのが好ましい。これにより、半導体ウエハ/半導体チップの積層体の接合部を半田と異種金属の合金とすることができるため、半導体ウエハ/半導体装置の接合部の電気特性および機械特性を向上させることができる。
 また、半導体ウエハ裏面加工工程では、半導体ウエハ2の裏面を研削し、さらに電極3を形成する以外に、例えば、TSV(Through Silicon Via)を形成する等の他のプロセスを行ってもよい。
(第2の積層体を得る工程)
 次に、図(1-d)に示すように、半導体ウエハ2の裏面と第2の支持基材4を第1の固定樹脂層10と同じ組成で構成される第2の固定樹脂層20を介して貼り合せることにより、第1の支持基材1/第1の固定樹脂層10/半導体ウエハ2/第2の固定樹脂層20/第2の支持基材4がこの順に積層された第2の積層体70を得る。なお、第1の固定樹脂層10の組成と第2の固定樹脂層20の組成は異なっていてもよい。
 半導体ウエハ2の裏面と第2の支持基材4を第2の固定樹脂層20を介して貼着する方法は、特に制限されるわけでないが、真空プレス装置、ウエハボンダー等を用いて、半導体ウエハ2の裏面と第2の支持基材4を第2の固定樹脂層20を介して貼着することができる。
 また、半導体ウエハ2の裏面と第2の支持基材4を第2の固定樹脂層20を介して貼着する条件としては、特に制限されるわけではないが、温度:50~350℃、圧力:0.01~3MPa、時間:10~600秒の条件で行うことができ、温度:70~300℃、圧力:0.03~2MPa、時間:20~500秒の条件で貼着するのが好ましく、温度:100~250℃、圧力:0.05~1MPa、時間:30~400秒の条件で貼着するのが特に好ましい。これにより、第2の支持基材4と半導体ウエハ2間に気泡が発生することを効果的に防止することができるため、半導体ウエハ2を研削(後述する)した後の半導体ウエハ2の厚みばらつきを低減することができる。
 ここで、第2の積層体70の作製方法としては、第2の固定樹脂層20を半導体ウエハ2の裏面に予め形成し、第2の支持基材4を貼着してもよいし、第2の固定樹脂層20を第2の支持基材4に予め形成し、半導体ウエハ2の裏面を貼着してもよい。なお、この点については、本発明について同様であり、本発明の第2~25の実施形態等の他の実施形態についても同じである。
(第1の剥離工程)
 次に、図(1-e)に示すように、第1の支持基材1側から活性エネルギー線を照射する。
 前記活性エネルギー線としては、g線、i線、エキシマレーザ等の近紫外線、遠赤外線が挙げられる。
 このように、先に第1の支持基材1側から活性エネルギー線を照射することにより、第1の固定樹脂層10の熱分解温度を低下させることができる。例えば、第1の固定樹脂層10が、光酸発生剤と熱分解性樹脂(1)とを含む熱分解性の固定樹脂の場合、第1の固定樹脂層10に活性エネルギー線が照射されることにより、第1の固定樹脂層10内で光酸発生剤が酸を発生させ、光酸発生剤が発生させる酸により、第1の固定樹脂層10に含まれる熱分解性樹脂(1)の熱分解温度が低下するので、第1の固定樹脂層10の熱分解温度が低下する。一方、半導体ウエハ2が第2の固定樹脂層20への活性エネルギー線の照射を遮蔽する作用を示すため、第2の固定樹脂層20の熱分解温度は低下しない。以上のように、第1の支持基材1側から活性エネルギー線を照射することにより、第1の固定樹脂層10の熱分解温度を第2の固定樹脂層20の熱分解温度よりも低くすることができる。
 次に、図(2-a)に示すように、第2の積層体70を加熱することにより、第2の積層体70から第1の支持基材1を剥離する。
 具体的には、活性エネルギー線を照射した後の第1の固定樹脂層10の熱分解温度よりは高く、第2の固定樹脂層20の熱分解温度よりは低い温度に加熱することにより、第1の固定樹脂層10のみを選択的に熱分解させ、第1の支持基材1を剥離する。
 第1の支持基材1を剥離する方法は、特に限定されるものではないが、加熱しながら、半導体ウエハ2の裏面に対して垂直方向に脱離する方法や、半導体ウエハ2の裏面に対して水平方向にスライドさせて脱離する方法や第1の支持基材1片側から第1の支持基材1を浮かして脱離する方法等が挙げられる。
 第1の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、第2の固定樹脂層に含まれている熱分解性樹脂(1)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。なお、第1の剥離工程の時点では、第2の固定樹脂層には未だ活性エネルギーは照射されていないので、T2は、活性エネルギー線が照射される前の第2の固定樹脂層に含まれる熱分解樹脂(1)の熱分解温度である。
 第1の剥離工程後、必要に応じて、第1の支持基材1または半導体ウエハ2に残留した第1の固定樹脂層10を除去してもよい。残留した第1の固定樹脂層10の除去方法としては、特に限定されるものではないが、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理などが挙げられる。
 第1の実施形態の電子装置の製造方法では、第1の固定樹脂層10が熱分解し低分子化されるので、ストレス無く第1の支持基材1の脱離が可能であるため、第1の支持基材1および半導体ウエハ2の破損が生じにくいという効果を奏する。また、低分子化した第1の固定樹脂層10の成分は、加熱の際に揮散し、第1の支持基材1および半導体ウエハ2に第1の固定樹脂層10が残留し難いという効果を奏する。そのため、洗浄等の後工程を簡素化でき、ハンドリング性が向上するといった利点もある。
(第3の積層体を得る工程)
 次に、図(2-b)に示すように、半導体ウエハ2の機能面に複数の半導体装置100を実装することにより第2の支持基材4/第2の固定樹脂層20/半導体ウエハ2/半導体装置100がこの順に積層された第3の積層体80を得る。
 ここで、半導体装置100とは、特に限定されるものではないが、半導体チップ等が挙げられる。半導体装置100は、単層であっても、予め半導体チップを積層したような複数層の半導体装置100であってもよい。
 半導体ウエハ2の機能面に複数の半導体装置100を実装する方法は、特に限定されるわけではないが、例えば、半導体装置100の半導体ウエハ2の機能面と対向する面に予め半田、金等の金属材料で構成されるバンプを形成しておき、半導体ウエハ2の機能面の電極3と前記バンプを接合することにより実装する方法が挙げられる。
 半導体ウエハ2の機能面に複数の半導体装置100を実装する方法をより具体的に説明するために、半導体装置100として半導体チップを用いた場合について説明する。
 まず、半導体ウエハと対向する面に半田バンプを有する半導体チップを用意する。次に、半導体ウエハの機能面の電極(金電極)と前記半田バンプの位置合わせを行ってから、半田リフロー処理を行い、半田バンプと金電極を金属結合させる。半田リフロー処理において、第1の実施形態では活性エネルギー線が照射される前の第2の固定樹脂層20は、活性エネルギー線が照射されていないので熱分解温度が高く、熱分解し難いため、半導体ウエハ2が位置ずれすることを防止することができ、半導体装置100を確実に実装することができる。次に、半導体チップと半導体ウエハの間隙に熱硬化性の液状封止材を充填し、さらに液状封止材を熱硬化させることにより、半導体チップを実装することができる。
 また、半導体チップを実装する別の方法としては、半導体チップの半田バンプを有する面にフラックス機能を有する熱硬化性樹脂からなる樹脂組成物層を形成する。フラックス機能とは半田バンプなどの金属表面の酸化物膜などの汚れを溶解除去することにより、金属同士の接合を容易にする機能をいう。フラックス機能を有する熱硬化性樹脂からなる樹脂組成物層を形成する方法は、特に限定されるわけではなく、液状のフラックス機能を有する熱硬化性樹脂からなる樹脂組成物をディスペンス、印刷、スピンコートすることにより形成する方法、フィルム状のフラックス機能を有する熱硬化性樹脂からなる樹脂組成物をラミネートする方法が挙げられる。次に、前記半田バンプと前記金電極を位置合わせし、加圧および加熱することにより半田バンプと金電極を接合することができる。この際、フラックス機能を有する熱硬化性樹脂からなる樹脂組成物層は、半田バンプ表面の酸化膜を除去するため、フラックス機能を有する熱硬化性樹脂からなる樹脂組成物を形成することにより、確実に半田バンプと金電極を接合することができる。半田バンプと金電極を接合した後、フラックス機能を有する熱硬化性樹脂からなる樹脂組成物層は、半田バンプおよび金電極の周囲に充填されているため、フラックス機能を有する熱硬化性樹脂からなる樹脂組成物層を熱硬化させることにより、半導体チップの実装が完了する。
 上記第1の実施形態の説明では、半導体チップの半田バンプと半導体ウエハの金電極を接合する実施形態について説明したが、これに限定されることはなく、金バンプと半田電極の接合、半田バンプと銅電極の接合等を用いてもよい。
(封止工程)
 次に、第3の積層体80を得る工程を経た後に、半導体装置100を封止する封止工程を行ってもよい。半導体装置100を封止することにより、水分や塵埃の混入を防止することができるため、電子装置の信頼性を高めることができる。
 半導体装置100を封止するための封止材としては、特に限定されるわけではなく、液状封止材でも固形封止材でもよい。また、封止方法としては、特に限定されるわけではなく、トランスファー成型でも圧縮成型でもよいが、第3の積層体80が位置ずれを起こし難い圧縮成型が好ましい。
(第2の剥離工程)
 次に、第2の支持基材4側から活性エネルギー線を照射する。
 前記活性エネルギー線としては、g線、i線、エキシマレーザ等の近紫外線、遠赤外線が挙げられる。
 次に、図(2-c)に示すように、第3の積層体80を加熱することにより、第3の積層体80から第2の支持基材4を剥離する。これにより、半導体ウエハ2の機能面に半導体装置100が実装された電子装置200を得ることができる。
 具体的には、活性エネルギー線が照射された後の第2の固定樹脂層20の熱分解温度よりも高い温度に加熱することにより、第2の固定樹脂層20を熱分解させ、第2の支持基材4を剥離する。
 第2の支持基材4を剥離する方法は、特に限定されるものではないが、加熱しながら、半導体ウエハ2の裏面に対して垂直方向に脱離する方法や、半導体ウエハ2の裏面に対して水平方向にスライドさせて脱離する方法や第2の支持基材4片側から第2の支持基材4を浮かして脱離する方法等が挙げられる。
 第2の剥離工程後、必要に応じて、第2の支持基材4または半導体ウエハ2に残留した第2の固定樹脂層20を除去してもよい。残留した第2の固定樹脂層20の除去方法としては、特に限定されるものではないが、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理などが挙げられる。
 第1の実施形態の電子装置の製造方法では、第2の固定樹脂層20が熱分解し低分子化されるので、ストレス無く第2の支持基材の脱離が可能であるため、第2の支持基材4および半導体ウエハ2の破損が生じにくいという効果を奏する。また、低分子化した第2の固定樹脂層20の成分は、加熱の際に揮散し、第2の支持基材4および半導体ウエハ2に第2の固定樹脂層20が残留し難いという効果を奏する。そのため、洗浄等の後工程を簡素化でき、ハンドリングが向上するといった利点もある。
(個片化工程)
 次に、図(2-d)に示すように、半導体ウエハに半導体装置100が実装された電子装置200を個片化する個片化工程を行うことができる。
 個片化する方法としては、特に限定されるわけではないが、例えば、第2の剥離工程後に、半導体ウエハ2裏面にダイシングテープを貼り付け、ダイシング装置によりダイシングすることにより個片化することができる。
 また、半導体装置100が実装された電子装置200を個片化する方法としては、第3の積層体80を得る工程後、あるいは、半導体装置100を封止する場合は封止工程後に、半導体ウエハ2を第2の支持基材4に貼り合わせたままの状態で行ってもよい。これにより、上述したダイシングテープを貼り付けてダイシングする場合に比べて工程を簡略化することができるという効果を奏することができる。
 第1の実施形態では、半導体ウエハ裏面加工工程(半導体ウエハ裏面の研削、電極の形成)および第3の積層体80を得る工程(半導体ウエハの機能面に半導体装置を実装する)を、半導体ウエハ2を第1の支持基材1または第2の支持基材4で支持した状態で行うことができる。第1の支持基板1で支持することにより、半導体ウエハ裏面加工工程において耐熱性の低いバックグラインドテープ脱着をする必要がない。また、第2の支持基材4で支持することにより、第2の支持基材4に、第1の剥離工程から第3の積層体80を得る工程まで搬送するための支持機能と半導体装置100を半導体ウエハ2に実装する際の支持機能を兼用させることができる。以上より、電子装置の製造プロセスを簡便化することができるとともに歩留りよく安価に電子装置300を製造することができる。
<第2の実施形態>
 本発明の第2の実施形態の電子装置の製造方法は、第1の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第2の固定樹脂層として熱分解性の固定樹脂層を使用し、第1の剥離工程では先に固定樹脂層への活性エネルギー線の照射を行った後に固定樹脂層の熱分解を行い、第2の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行う実施形態である。
 第2の実施形態は、第2の剥離工程で先に活性エネルギー線の照射を行わない点が、第1の実施形態とは相違する。第2の剥離工程では、活性エネルギー線の照射を行わないため、第2の固定樹脂層は、熱分解温度以上の温度で加熱することにより熱分解する固定樹脂層であればよい。そのため、活性エネルギー線を照射しても熱分解温度が低下しない熱分解性の固定樹脂層であっても、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であってもよい。つまり、第2の実施形態は、第2の剥離工程では活性エネルギー線の照射を行わずに熱分解させる点および第2の固定樹脂層が、活性エネルギー線を照射しても熱分解温度が低下しない熱分解性の固定樹脂層であっても、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であってもよい点以外は、第1の実施形態と同様である。そのため、以下の説明では、第1の実施形態の説明で用いた図1及び図2を参照して、第2の実施形態について説明する。
(第1の積層体を得る工程)
 先ず、図(1-a)に示すように、第1の実施形態と同様に、第1の支持基材1上に、活性エネルギー線の照射により熱分解温度が低下する熱分解性の第1の固定樹脂層10を形成する。第2の実施形態では、第1の剥離工程で先に第1の支持基材1側から活性エネルギー線を照射するため、第1の支持基材1としては活性エネルギー線を透過する支持基材を用いる。第2の実施形態の第1の積層体を得る工程は、第1の実施形態の第1の積層体を得る工程と同様である。
 第2の実施形態の活性エネルギー線を透過する第1の支持基材1は、第1の実施形態の活性エネルギー線を透過する第1の支持基材1と同様である。
 第2の実施形態の第1の固定樹脂層10は、第1の実施形態の第1の固定樹脂層10と同様である。
 次に、図(1-b)に示すように、第1の固定樹脂層10と半導体ウエハ2の機能面を対向させて第1の固定樹脂層10と半導体ウエハ2を貼り合せることにより第1の支持基材1/第1の固定樹脂層10/半導体ウエハ2がこの順に積層された第1の積層体60を得る。
 第2の実施形態において、第1の固定樹脂層10と半導体ウエハ2を貼着する方法は、第1の実施形態において、第1の固定樹脂層10と半導体ウエハ2を貼着する方法と同様である。
(半導体ウエハ裏面加工工程)
 次に、図(1-c)に示すように、半導体ウエハ2の裏面を研削し、さらに、電極3を形成する半導体ウエハ裏面加工工程を行う。第2の実施形態の半導体ウエハ裏面加工工程は、第1の実施形態の半導体ウエハ裏面加工工程と同様である。
(第2の積層体を得る工程)
 次に、図(1-d)に示すように、半導体ウエハ2の裏面と第2の支持基材4を第1の固定樹脂層10と同じ組成で構成される第2の固定樹脂層20を介して貼り合せることにより、第1の支持基材1/第1の固定樹脂層10/半導体ウエハ2/第2の固定樹脂層20/第2の支持基材4がこの順に積層された第2の積層体70を得る。第2の実施形態の第2の積層体を得る工程は、第2の固定樹脂層として、活性エネルギー線を照射しても熱分解温度が低下しない熱分解性の固定樹脂層または活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用すること以外は、第1の実施形態の第2の積層体を得る工程と同様である。また、第2の支持基材4としては、活性エネルギー線を透過する支持基材であっても、活性エネルギー線を透過しない支持基材であってもよく、第1の実施形態の活性エネルギー線を透過する第1の支持基材や、半導体ウエハ、金属板等の活性エネルギー線を透過しない支持基材が挙げられる。
 第2の実施形態の第2の固定樹脂層20に使用する熱分解性の固定樹脂層は、熱分解温度以上の温度で加熱することにより熱分解する固定樹脂層である。そのため、活性エネルギー線を照射しても熱分解温度が低下しない熱分解性の固定樹脂層であっても、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であってもよい。第2の実施形態の熱分解性の第2の固定樹脂層20は、熱分解性の樹脂組成物により構成されており、例えば、熱分解性樹脂を含む固定樹脂層である。なお、加熱することにより熱分解する樹脂を、熱分解性樹脂(2)とも記載する。
 第2の固定樹脂層20に含まれる熱分解性樹脂(2)は、95%重量減少温度と5%重量減少温度との差が、5℃≦(95%重量減少温度)-(5%重量減少温度)≦100℃である熱分解性樹脂が好ましい。
 第2の実施形態の熱分解性の第2の固定樹脂層20が、95%重量減少温度と5%重量減少温度との差が、5℃以上100℃以下という範囲に規定されている熱分解性樹脂(2)を含むことにより、熱分解性の固定樹脂層の熱分解に要する温度範囲が狭く、熱分解に要する時間を短縮でき、半導体ウエハへのダメージを抑制することができる。また、加工後の半導体ウエハの脱離が容易で、かつ半導体ウエハに固定樹脂層が残留し難いという効果を奏する。また、安定に使用可能な温度領域が広く確保できるため、支持基材を半導体ウエハに仮固定をしたまま、種々の加工工程に供することが可能となる。また、表面が平滑で十分な精度を有する支持基材上に薄膜として形成できるため、半導体ウエハに接続端子を形成し、さらに、半導体ウエハと半導体装置の接合体を得る等の加工の精度が高いという効果を奏する。
 ここで、安定に使用可能な温度領域とは、熱分解性の固定樹脂層が分解せずに、半導体ウエハを安定して保持できる温度領域のことである。第2の実施形態の熱分解性の第2の固定樹脂層は、この温度領域が広く確保できるため、半導体ウエハを支持基材に仮固定をしたままで、加温が必要である裏面加工工程にも供することが可能となる。そのため、異なる工程を連続的に行うことができるという利点を有する。
 また、第2の実施形態の熱分解性の第2の固定樹脂層に含まれる熱分解性樹脂(2)は、5%重量減少温度が50℃以上であることが好ましい。これによれば、後述する、半導体ウエハに電極を形成し、さらに、半導体ウエハと半導体装置の接合体を得る等の電子装置製造プロセス中で固定樹脂層が熱分解しないという効果を得ることができる。
 また、第2の実施形態の熱分解性の第2の固定樹脂層に含まれる熱分解性樹脂(2)は、50%重量減少温度が400℃以下であることが好ましい。これによれば、後述する、剥離工程で半導体ウエハが熱履歴により損傷することを防止することができるという効果を得ることができる。
 ここで、第2の実施形態の熱分解性の第2の固定樹脂層に含まれる95%重量減少温度と5%重量減少温度との差が5℃以上100℃以下という範囲に規定されている熱分解性樹脂(2)は、限定されるわけではないが、主鎖の結合強度が低い樹脂の分子量等を調整することにより得られる。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれる95%重量減少温度と5%重量減少温度との差を、5℃以上100℃以下という範囲に規定することができる熱分解性樹脂(2)としては、特に限定されるわけではないが、例えば、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、(メタ)アクリレート系樹脂等が挙げられる。これらの熱分解性樹脂を適用することにより、電子装置製造プロセス中における固定樹脂層の熱分解を防止することができ、さらに、剥離工程における固定樹脂層の熱分解時間を短縮することができる。
 これらの第2の実施形態の熱分解性の第2の固定樹脂層に含まれる熱分解性樹脂(2)の中でも、電子装置製造プロセス中の固定樹脂層の熱分解を効果的に防止することができ、さらに、剥離工程における固定樹脂層の熱分解時間を効果的に短縮することができるため、ポリカーボネート系樹脂が好ましい。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれる熱分解性樹脂(2)がポリカーボネート系樹脂である場合、5%重量減少温度における熱分解時間が、1分以上60分以下であることが好ましい。
 熱分解時間を上記下限値以上とすることで、固定樹脂層の急激な熱分解を抑制することができ、熱分解したガスを排気装置で排気することが可能となるため、電子装置や電子装置を作製する設備の汚染を防止することができる。また、上記上限値以下とすることで、剥離工程において熱分解に要する時間を短縮することができるため、電子装置の生産性を向上することができる。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれるポリカーボネート系樹脂としては、特に限定されないが、例えば、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,4-ブチレンカーボネート、cis-2,3-ブチレンカーボネート、trans-2,3-ブチレンカーボネート、α,β-イソブチレンカーボネート、α,γ-イソブチレンカーボネート、cis-1,2-シクロブチレンカーボネート、trans-1,2-シクロブチレンカーボネート、cis-1,3-シクロブチレンカーボネート、trans-1,3-シクロブチレンカーボネート、ヘキセンカーボネート、シクロプロペンカーボネート、シクロヘキセンカーボネート、(メチルシクロヘキセンカーボネート)、(ビニルシクロヘキセンカーボネート)、ジヒドロナフタレンカーボネート、ヘキサヒドロスチレンカーボネート、シクロヘキサンプロピレンカーボネート、スチレンカーボネート、(3-フェニルプロピレンカーボネート)、(3-トリメチルシリロキシプロピレンカーボネート)、(3-メタクリロイロキシプロピレンカーボネート)、パーフルオロプロピレンカーボネート、ノルボルネンカーボネート、並びにこれらの組合せの骨格を有するポリカーボネート系樹脂が挙げられる。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれるポリカーボネート系樹脂としては、より具体的には、例えば、ポリプロピレンカーボネート/ポリシクロヘキセンカーボネート共重合体、ポリ[(オキシカルボニルオキシ-1,1,4,4-テトラメチルブタン)-alt-(オキシカルボニルオキシ-5-ノルボルネン-2-endo-3-endo-ジメタン)]、ポリ[(オキシカルボニルオキシ-1,4-ジメチルブタン)-alt-(オキシカルボニルオキシ-5-ノルボルネン-2-endo-3-endo-ジメタン)]、ポリ[(オキシカルボニルオキシ-1,1,4,4-テトラメチルブタン)-alt-(オキシカルボニルオキシ-p-キシレン)]、及びポリ[(オキシカルボニルオキシ-1,4-ジメチルブタン)-alt-(オキシカルボニルオキシ-p-キシレン)]、ポリシクロヘキセンカーボネート/ポリノルボルネンカーボネート共重合体等が挙げられる。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれるポリカーボネート系樹脂の重量平均分子量(Mw)は、1,000~1,000,000であることが好ましく、5,000~800,000であることがさらに好ましい。
 前記重量平均分子量を上記下限以上とすることにより、半導体ウエハまたは支持基材に固定樹脂層を形成するときに、固定樹脂層の半導体ウエハまたは支持基材に対する濡れ性が向上すること、さらに、成膜性を向上するという効果を得ることができる。また、上記上限値以下とすることで、固定樹脂層を構成する各種成分との相溶性や各種溶剤に対する溶解性、さらには、剥離工程における固定樹脂層の熱分解性を向上するという効果を得ることができる。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれるポリカーボネート系樹脂の重合方法は、特に限定されるわけではないが、例えば、ホスゲン法(溶剤法)または、エステル交換法(溶融法)等の公知の重合方法が挙げられる。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれる熱分解性樹脂(2)の含有量は、熱分解性の第2の固定樹脂層の10重量%~100重量%が好ましく、さらに好ましくは、30重量%~100重量%である。第2の実施形態の熱分解性の第2の固定樹脂層に含まれる熱分解性樹脂(2)の含有量を上記下限値以上とすることで、剥離工程後に、固定樹脂層が半導体ウエハまたは支持基材に残留することを防止できる。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれる熱分解性樹脂(2)として、特に好ましいのは、ポリプロピレンカーボネート重合体、1,4-ポリブチレンカーボネート重合体、ポリシクロヘキセンカーボネート/ポリノルボルネンカーボネート共重合体である。
 また、第2の実施形態においては、第2の固定樹脂層として、第1の実施形態で使用した活性エネルギー線を照射することにより熱分解温度が低下する熱分解性の固定樹脂層を使用することもできる。
 また、第2の実施形態の熱分解性の第2の固定樹脂層は、酸化防止剤を含んでいてもよい。第2の実施形態の熱分解性の第2の固定樹脂層に含まれる酸化防止剤は、第1の実施形態の固定樹脂層に含まれる酸化防止剤と同様である。
 第2の実施形態の熱分解性の第2の固定樹脂層に含まれる酸化防止剤の含有量は、第2の実施形態の熱分解性の第2の固定樹脂層に含まれる熱分解性樹脂(2)100重量部に対して、0.1~10重量部であるのが好ましく、0.5~5重量部であるのがより好ましい。
 また、第2の実施形態の熱分解性の第2の固定樹脂層は、必要によりアクリル系、シリコーン系、フッ素系、ビニル系等のレベリング剤、シランカップリング剤、希釈剤等の添加剤等を含んでも良い。第2の実施形態の熱分解性の第2の固定樹脂層に含まれるシリコーン系、フッ素系、ビニル系等のレベリング剤、シランカップリング剤、希釈剤等の添加剤は、第1の実施形態の固定樹脂層に含まれるシリコーン系、フッ素系、ビニル系等のレベリング剤、シランカップリング剤、希釈剤等の添加剤と同様である。
(第1の剥離工程)
 次に、図(1-e)に示すように、第1の支持基材1側から活性エネルギー線を照射する。次に、図(2-a)に示すように、第2の積層体70を加熱して、第2の積層体70から第1の支持基材1を剥離する。第2の実施形態の第1の剥離工程は、第1の実施形態の第1の剥離工程と同様である。
 第2の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、第2の固定樹脂層に含まれている熱分解性樹脂(2)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 第1の剥離工程後、必要に応じて、第1の支持基材1または半導体ウエハ2に残留した第1の固定樹脂層10を除去してもよい。残留した第1の固定樹脂層10の除去方法としては、特に限定されるものではないが、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理などが挙げられる。
(第3の積層体を得る工程)
 次に、図(2-b)に示すように、半導体ウエハ2の機能面に複数の半導体装置100を実装することにより第2の支持基材4/第2の固定樹脂層20/半導体ウエハ2/半導体装置100がこの順に積層された第3の積層体80を得る。第2の実施形態の第3の積層体を得る工程は、第1の実施形態の第3の積層体を得る工程と同様である。
(封止工程)
 次に、第3の積層体80を得る工程を経た後に、半導体装置100を封止する封止工程を行ってもよい。半導体装置100を封止することにより、水分や塵埃の混入を防止することができるため、電子装置の信頼性を高めることができる。
(第2の剥離工程)
 次に、図(2-c)に示すように、第3の積層体80を加熱して、第3の積層体80から第2の支持基材4を剥離する。これにより、半導体ウエハ2の機能面に半導体装置100が実装された電子装置200を得ることができる。
 具体的には、第2の固定樹脂層20の熱分解温度よりも高い温度に加熱することにより、第2の固定樹脂層20を熱分解させ、第2の支持基材4を剥離する。
 第2の支持基材4を剥離する方法は、特に限定されるものではないが、半導体ウエハ2の裏面に対して垂直方向に脱離する方法や、半導体ウエハ2の裏面に対して水平方向にスライドさせて脱離する方法や第2の支持基材4片側から第2の支持基材4を浮かして脱離する方法等が挙げられる。
 第2の剥離工程後、必要に応じて、第2の支持基材4または半導体ウエハ2に残留した第2の固定樹脂層20を除去してもよい。残留した第2の固定樹脂層20の除去方法としては、特に限定されるものではないが、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理などが挙げられる。
 第2の実施形態の電子装置の製造方法では、第2の固定樹脂層20が熱分解し低分子化されるので、ストレス無く第2の支持基材の脱離が可能であるため、第2の支持基材4および半導体ウエハ2の破損が生じにくいという効果を奏する。また、低分子化した第2の固定樹脂層20の成分は、加熱の際に揮散し、第2の支持基材4および半導体ウエハ2に第2の固定樹脂層20が残留し難いという効果を奏する。そのため、洗浄等の後工程を簡素化でき、ハンドリングが向上するといった利点もある。
(個片化工程)
 次に、図(2-d)に示すように、半導体ウエハに半導体装置100が実装された電子装置200を個片化する個片化工程を行うことができる。第2の実施形態の個片化工程は、第1の実施形態の個片化工程と同様である。
<第3の実施形態>
 本発明の第3の実施形態の電子装置の製造方法は、第1の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第2の固定樹脂層として熱軟化性の固定樹脂層を使用し、第1の剥離工程で先に固定樹脂層への活性エネルギー線の照射を行った後に固定樹脂層の熱分解を行い、第2の剥離工程では加熱することにより固定樹脂層の熱軟化を行う実施形態である。
 第3の実施形態は、第2の剥離工程で活性エネルギー線の照射を行わない実施形態である。第3の実施形態は、第2の剥離工程で活性エネルギー線照射工程を行わず、加熱することにより熱軟化させる点、および第2の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層ではなく、熱軟化性の固定樹脂層である点が、第1の実施形態とは相違するが、それら以外は第1の実施形態と同様である。そのため、第3の実施形態では、第1の実施形態と共通する部分の説明は省略し、第1の実施形態と異なる部分の説明を中心に記載する。
 第3の実施形態において、活性エネルギー線が照射された後の第1の固定樹脂層の熱分解温度は、第2の固定樹脂層である熱軟化性の固定樹脂層の軟化点よりも低い。これにより、熱分解性の固定樹脂層の熱分解温度よりも高く、熱軟化性の固定樹脂層の軟化点よりも低い温度で加熱することにより、選択的に熱分解性の第1の固定樹脂層のみを熱分解させることができるため、第1の剥離工程で確実に第1の支持基材のみを剥離することができる。
(第1の積層体を得る工程)
 第3の実施形態の第1の積層体を得る工程は、第1の実施形態の第1の積層体を得る工程と同様である。
 まず、図(3-a)に示すように、前述した第1の実施形態と同様に、第1の支持基材1上に、活性エネルギー線の照射により熱分解温度が低下する熱分解性の第1の固定樹脂層10を形成する。第3の実施形態の固定樹脂層10は、第1の実施形態の固定樹脂層10と同様である。第3の実施形態では、第1の剥離工程で先に第1の支持基材1側から活性エネルギー線を照射するため、第1の支持基材1としては活性エネルギー線を透過する支持基材を用いる。第2の支持基材としては、活性エネルギー線を透過する支持基材であっても、活性エネルギー線を透過しない支持基材であってもよい。
 次に、図(3-b)に示すように、前述した第1の実施形態と同様に、第1の積層体61を得る。
(半導体ウエハ裏面加工工程)
 次に、図(3-c)に示すように、前述した第1の実施形態と同様に、半導体ウエハ裏面加工工程を行う。
(第2の積層体を得る工程)
 次に、図(3-d)に示すように、半導体ウエハ2の裏面と第2の支持基材4を熱軟化性の第2の固定樹脂層30を介して貼り合せることにより、第1の支持基材1/第1の固定樹脂層10/半導体ウエハ2/第2の固定樹脂層30/第2の支持基材4がこの順に積層された第2の積層体71を得る。
 半導体ウエハ2の裏面と第2の支持基材4を熱軟化性の第2の固定樹脂層30を介して貼着する方法は、特に制限されるわけでないが、真空プレス装置、ウエハボンダー等が挙げられる。
 また、半導体ウエハ2の裏面と第2の支持基材4を熱軟化性の第2の固定樹脂層30を介して貼着する条件としては、特に制限されるわけではないが、温度:25~300℃、圧力:0.01~3MPa、時間:1~300秒の条件で行うことができ、温度:30~250℃、圧力:0.03~2MPa、時間:3~250秒の条件で貼着するのが好ましく、温度:50~200℃、圧力:0.05~1MPa、時間:5~200秒の条件で貼着するのが特に好ましい。これにより、第2の支持基材4と半導体ウエハ2間に気泡が発生することを効果的に防止することができるため、半導体ウエハ2を研削(後述する)した後の半導体ウエハ2の厚みばらつきを低減することができる。
 ここで、第2の積層体71の作製方法としては、熱軟化性の第2の固定樹脂層30を半導体ウエハ2の裏面に予め形成し、第2の支持基材4を貼着してもよいし、熱軟化性の第2の固定樹脂層30を第2の支持基材4に予め形成し、半導体ウエハ2の裏面を貼着してもよい。
 次に、第2の固定樹脂層30で使用する熱軟化性の固定樹脂層について説明する。第2の固定樹脂層30は、熱軟化性の樹脂組成物により構成されている。
 熱軟化性の第2の固定樹脂層30は、第1の剥離工程での加熱温度では粘度が低下せずに、第2の剥離工程での加熱温度で加熱することにより、溶融粘度が低下するものであれば、特に限定されるものではない。具体的には、熱軟化性の第2の固定樹脂層としては、第1の剥離工程での加熱温度における粘度が、500Pa・s以上であるのが好ましく、1000Pa・s以上であるのが特に好ましく、また、第2の剥離工程での加熱温度における粘度が、300Pa・s以下であるのが好ましく、250Pa・s以下であるのが特に好ましい。これにより、第1の剥離工程で半導体ウエハ2が位置ずれを起こすことを防止することができるとともに、半導体ウエハ2に確実に半導体装置100を実装することができる。なお、熱軟化性の固定樹脂層の熱軟化温度とは、固定樹脂層の溶融粘度が300Pa・sになる温度を指す。
 熱軟化性の固定樹脂層は、熱軟化性の樹脂を含有する。前記熱軟化性の樹脂は、第2の剥離工程における加熱により軟化する熱可塑性樹脂であれば、特に限定されるものではなく、例えば、アクリル酸エステルモノマーを主成分とするアクリル酸エステル共重合体、酢酸ビニル/アクリル酸エステル共重合体等のアクリル系樹脂、ブチルゴム、ポリイソプレン、ポリブタジエン、スチレン/ブタジエン共重合体等のゴム系樹脂、ポリイミド樹脂等が挙げられる。上述のように、第2の剥離工程における加熱により熱軟化性の樹脂が軟化するため、半導体ウエハ2を損傷することなく第2の支持基材4を剥離することができる。
 熱軟化性の固定樹脂層は、特に限定されるわけではなく、熱軟化性の樹脂以外に酸化防止剤、凝集剤、可塑剤、界面活性剤、ワックス、フィラー等の添加剤を含有していてもよい。
 熱軟化性の第2の固定樹脂層30の形成については、熱軟化性の樹脂や、その他熱軟化性の固定樹脂層を構成する成分を溶媒に溶解または分散させて、溶媒を含有する樹脂組成物を調製し、得られた溶媒を含有する樹脂組成物を、支持基材または半導体ウエハ上で成膜し、溶媒を乾燥除去することにより、熱軟化性の固定樹脂層を形成させることができる。溶媒としては、特に限定されるものではないが、メシチレン、デカリン、ミネラルスピリット類等の炭化水素類、アニソール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジグライム等のアルコール/エーテル類、炭酸エチレン、酢酸エチル、酢酸N-ブチル、乳酸エチル、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、炭酸プロピレン、γ-ブチロラクトン等のエステル/ラクトン類、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、2-ヘプタノン等のケトン類、N-メチル-2-ピロリジノン等のアミド/ラクタム類等が挙げられる。熱軟化性の樹脂組成物が溶媒を含有することにより、熱軟化性の樹脂組成物の粘度を調整することが容易となり、半導体ウエハまたは支持基材に熱軟化性の樹脂組成物の薄膜を形成するのが容易となる。
 また、熱軟化性の第2の固定樹脂層30の形成については、熱軟化性の樹脂や、その他熱軟化性の固定樹脂層を構成する成分を前述の溶媒に溶解し、溶媒を含有する樹脂組成物を得、次いで、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)等の基材に溶媒を含有する樹脂組成物を塗布、さらに、加熱することにより溶剤を揮散させることでフィルム状の樹脂組成物を得、次いで、フィルム上の樹脂組成物を、支持基材または半導体ウエハ上にラミネートして、熱軟化性の固定樹脂層を形成させることができる。
(第1の剥離工程)
 次に、第1の支持基材1側から活性エネルギー線を照射する。
 次に、図(4-a)に示すように、第2の積層体71を加熱して、第2の積層体71から第1の支持基材1を剥離する。第3の実施形態の第1の剥離工程は、第1の実施形態の第1の剥離工程と同様である。
 具体的には、活性エネルギー線が照射された後の第1の固定樹脂層10の熱分解温度よりは高く、第2の固定樹脂層30の熱軟化温度よりは低い温度に加熱することにより、第1の固定樹脂層10のみを選択的に熱分解させ、第1の支持基材1を剥離する。
 第3の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、第2の固定樹脂層の熱軟化温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 第1の剥離工程後、必要に応じて、第1の支持基材1または半導体ウエハ2に残留した第1の固定樹脂層10を除去してもよい。残留した第1の固定樹脂層10の除去方法としては、特に限定されるものではないが、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理などが挙げられる。
 第3の実施形態の電子装置の製造方法では、第1の固定樹脂層10が熱分解し低分子化されるので、ストレス無く第1の支持基材の脱離が可能であるため、第1の支持基材1および半導体ウエハ2の破損が生じにくいという効果を奏する。
 また、低分子化した第1の固定樹脂層10の成分は、加熱の際に揮散し、第1の支持基材1および半導体ウエハ2に第1の固定樹脂層1が残留し難いという効果を奏する。そのため、洗浄等の後工程を簡素化でき、ハンドリングが向上するといった利点もある。
(第3の積層体を得る工程)
 次に、図(4-b)に示すように、前述した第1の実施形態と同様に、第3の積層体81を得る。
(第2の剥離工程)
 次に、図(4-c)に示すように、熱軟化性の第2の固定樹脂層30の軟化温度以上の温度で、第3の積層体81を加熱することにより、第3の積層体81から第2の支持基材4を剥離する、第2の剥離工程を行う。これにより、半導体ウエハ2の機能面に半導体装置100が実装された電子装置200を得ることができる。
 第3の実施形態の電子装置の製造方法では、第2の固定樹脂層30が熱軟化するので、ストレス無く第2の支持基材4の脱離が可能であるため、第2の支持基材4および半導体ウエハ2の破損が生じにくいという効果を奏する。
(個片化工程)
 次に、図(4-d)に示すように、前述した第1の実施形態と同様に半導体ウエハ2に半導体装置100が実装された電子装置200を個片化する個片化工程を行うことができる。
<第4の実施形態>
 本発明の第4の実施形態の電子装置の製造方法は、第1の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第2の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第1の剥離工程で先に固定樹脂層への活性エネルギー線の照射を行った後に固定樹脂層の熱分解を行い、第2の剥離工程では活性エネルギー線を照射することにより、光熱変換層の分解を行う実施形態である。第4の実施形態は、第2の剥離工程では活性エネルギー線を照射することにより光熱変換層の分解を行う点および第2の固定樹脂層が光熱変換層を有する固定樹脂層である点で、第1の実施形態とは相違するが、それら以外は、第1の実施形態と同様である。そのため、第3の実施形態では、第1の実施形態と共通する部分の説明は省略し、第1の実施形態と異なる部分の説明を中心に記載する。
 第4の実施形態において、活性エネルギー線が照射された後の第1の固定樹脂層の熱分解温度は、第2の固定樹脂層が有する光熱変換層にボイドが形成される温度よりも低い。これにより、熱分解性の固定樹脂層の熱分解温度よりも高く、光熱変換層が熱分解しボイドを形成するよりも低い温度に加熱することにより、選択的に熱分解性の固定樹脂層のみを熱分解させることができるため、第1の剥離工程で確実に第1の支持基材のみを剥離することができる。
(第1の積層体を得る工程)
 第4の実施形態の第1の積層体を得る工程は、第1の実施形態の第1の積層体を得る工程と同様である。
 まず、図(5-a)に示すように、前述した第1の実施形態と同様に、第1の支持基材1上に、活性エネルギー線の照射により熱分解温度が低下する熱分解性の第1の固定樹脂層10を形成する。第4の実施形態の固定樹脂層10は、第1の実施形態の固定樹脂層10と同様である。第4の実施形態では、第1の剥離工程で先に第1の支持基材1側から活性エネルギー線を照射するため、第1の支持基材1としては活性エネルギー線を透過する支持基材を用いる。また、第4の実施形態では、第2の剥離工程で活性エネルギー線を照射するため、第2の支持基材としては、活性エネルギー線を透過する支持基材を用いる。
 次に、図(5-b)に示すように、前述した第1の実施形態と同様に、第1の積層体62を得る。
(半導体ウエハ裏面加工工程)
 次に、図(5-c)に示すように、前述した第1の実施形態と同様に、半導体ウエハ裏面加工工程を行う。
(第2の積層体を得る工程)
 次に、図(5-d)に示すように、半導体ウエハ2の裏面と第2の支持基材4を光熱変換層42および接着層41を有する第2の固定樹脂層40を介して貼り合せることにより、第1の支持基材1/第1の固定樹脂層10/半導体ウエハ2/第2の固定樹脂層40/第2の支持基材4がこの順に積層された第2の積層体72を得る。なお、図(5-d)では、第2の固定樹脂層が、光熱変換層および接着層を有する固定樹脂層である旨を記載したが、第4の実施形態の第2の固定樹脂層は、光熱変換層のみからなる固定樹脂層であってもよい。
 図5および図6に示す第4の実施形態においては、第2の固定樹脂層40として接着層41および光熱変換層42を有する固定樹脂層を使用するため、第2の積層体72は、より具体的には、第1の支持基材1/第1の固定樹脂層10/半導体ウエハ2/接着層41/光熱変換層42/第2の支持基材4がこの順で積層された構造を有している。
(光熱変換層)
 ここで、第4の実施形態で使用する光熱変換層42および接着層41について説明する。
 前記光熱変換層42は、特に限定されるわけではないが、光吸収剤と熱分解性樹脂を含有することが好ましい。光熱変換層42に含有される熱分解性樹脂を、熱分解性樹脂(3)とも記載する。光熱変換層42が、光吸収剤および熱分解性樹脂(3)を含有することにより、光熱変換層42に活性エネルギー線を照射することにより、熱エネルギーが発生し、光熱変換層42の温度が急激に上昇する。光熱変換層42の温度が、熱分解性樹脂(3)の分解温度に達すると、熱分解性樹脂(3)が分解し揮散するため、光熱変換層42にボイドができることとなる。
 ここで、前記活性エネルギー線は、特に限定されるものではないが、300~2000nmの波長のレーザー光が挙げられ、より具体的には、1064nmの波長の活性エネルギー線を発生するYAGレーザー、532nmの波長の2倍高調波YAGレーザー、780~1300nmの波長の半導体レーザーを挙げることができる。これらの中でも、現状の汎用的な設備を利用することができる、YAGレーザーが好ましい。
 前記光吸収剤としては、特に限定されるわけではないが、例えば、カーボンブラック、グラファイト粉、鉄、アルミニウム、銅、ニッケル、コバルト、マンガン、クロム、亜鉛等の金属微粒子粉末、スクアリリウム系化合物、シアニン系色素、メチン系色素、ナフトキノン系色素、アントラキノン系色素などの染料が挙げられる。これらの中でも、活性エネルギーを効率的に熱エネルギーに変換することができるカーボンブラックが好ましい。
 前記光吸収剤の含有量は、光吸収剤の種類、形状、光熱変換層42中での分散性などによっても異なるが、光熱変換層の1~80体積%であるのが好ましく、3~70体積%であるのが好ましい。前記下限値未満の含有量では、光熱変換層42の発熱が乏しく、熱分解性樹脂(3)が分解し難い場合がある。また、上記上限値を超えると、光熱変換層42の成膜性が悪く均一な光熱変換層42を形成できない場合がある。
 熱分解性樹脂(3)としては、特に限定されるわけではないが、例えば、ゼラチン、セルロース、酢酸セルロース、ニトロセルロース、ポリフェノール、ポリビニルブチラール、ポリビニルアセタール、ポリカーボネート、ポリウレタン、ポリエステル、ポリオルトエステル、ポリアセタール、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリレート樹脂、ポリ塩化ビニル等が挙げられ、これらは、単独又は2種以上混合であってもよい。また、熱分解性樹脂(3)の熱分解によりボイドを形成して分離した光熱変換層42が再接着しないように、熱分解性樹脂(3)のガラス転移温度は室温(25℃)以上であることが望ましく、再接着を防止するために、さらに好ましいガラス転移温度は100℃以上である。また、第2の支持基材がガラスである場合、ガラスと光熱変換層42の接着力を高めるために、ガラス表面のシラノール基と水素結合しうる極性基(例えば、-COOH、-OHなど)を分子内に持つ熱分解性樹脂(3)を用いることができる。さらに、ケミカルエッチングなどの薬液処理を必要とする用途への応用では、光熱変換層42に耐薬品性を付与するために、熱処理により自己架橋しうる官能基を分子内に持つ熱分解性樹脂(3)や、紫外線、可視光で架橋可能な熱分解性樹脂(3)を用いることもできる。
 前記光熱変換層42は、熱分解性樹脂および光吸収剤以外に、必要に応じて、フィラー、カップリング剤、界面活性剤、酸化防止剤、発泡剤、昇華剤等の添加剤を含んでいてもよい。
(接着層)
 第3の実施形態おいて接着層41は、半導体ウエハ2を光熱変換層42を介して第2の支持基材4に固定するために用いられる。光熱変換層42の熱分解による半導体ウエハ2と第2の支持基材4との剥離の後には、接着層41が付着した半導体ウエハ2が得られる。接着層41は半導体ウエハ2を第2の支持基材4に固定するための十分な接着力を有するが、半導体ウエハ2と第2の支持基材4との剥離の後には、接着層41が半導体ウエハ2から容易に剥離できるものが好ましい。
 前記接着層41を形成するために使用可能な接着剤としては、特に限定されるわけではないが、ゴム、エラストマーなどを溶剤に溶解したゴム系接着剤、エポキシ、ウレタンなどをベースとする一液熱硬化型接着剤、エポキシ、ウレタン、アクリルなどをベースとする二液混合反応型接着剤、ホットメルト型接着剤、アクリル、エポキシなどをベースとする紫外線(UV)もしくは電子線硬化型接着剤、水分散型接着剤等が挙げられる。より具体的には、ウレタンアクリレート、エポキシアクリレート又はポリエステルアクリレートなどの(メタ)アクリル基を有するオリゴマー及び/又は(メタ)アクリルモノマーに光重合開始剤、及び、必要により、添加剤を添加したUV硬化型接着剤が挙げられる。また、添加剤としては、増粘剤、可塑剤、分散剤、フィラー、難燃剤、酸化防止剤等が挙げられる。
 特に、半導体ウエハ2は、回路パターン等の凹凸を有するため、半導体ウエハ2の凹凸に接着層41を充填させ、接着層41を均一な厚さとするためには、接着層41は液状の接着剤を用いて形成されていることが好ましく、半導体ウエハ2へ塗布する際の温度(例えば、25℃)で液状の接着剤の粘度が10Pa・s以下が好ましく、5Pa・s以下が特に好ましい。
 また、接着層41を半導体ウエハ2へ形成した後の25℃における弾性率は、100MPa以上であることが好ましく、200MPa以上であること特に好ましい。また、接着層41を半導体ウエハ2へ形成した後の260℃における弾性率は、1MPa以上であることが好ましく、5Mpa以上であることが特に好ましい。これにより、後述する半導体装置100を半導体ウエハ2に実装する際に発生する応力によって、半導体ウエハ2が破損したり、半導体ウエハ2が位置ずれすることを好適に防止することができる。
 また、接着層41としては両面接着テープを用いることもできる。このような両面接着テープは、通常、基材フィルムの両面に粘着剤層が設けられている。前記粘着剤としては、特に限定されるわけではないが、アクリル、ウレタン、天然ゴムなどを主成分とする粘着剤、あるいは、これらに加えて架橋剤を含む粘着剤が挙げられる。好ましくはアクリル酸エステルを主成分とする共重合体を含む粘着剤である。また、基材フィルムとしては、特に限定されるわけではないが、紙やプラスティックなどの基材フィルムが用いられる。ここで、基材フィルムは半導体ウエハ2からの接着層41の剥離を容易にすることができる可撓性基材フィルムが好ましい。
 前記接着層41の厚さは、厚み均一性と半導体ウエハの凸凹を充填できる厚みであれば、特に限定されるわけではないが、10~200μmが好ましく、20~150μmが特に好ましい。
(第1の剥離工程)
 次に、第1の支持基材1側から活性エネルギー線を照射する。
 次に、図(5-e)に示すように、第2の積層体72を加熱して、第2の積層体72から第1の支持基材1を剥離する、第1の剥離工程を行う。第4の実施形態の第1の剥離工程は、第1の実施形態の第1の剥離工程と同様である。
 第4の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、第2の固定樹脂層の光熱変換層に含まれている熱分解性樹脂(3)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
(第3の積層体を得る工程)
 次に、図(6-a)に示すように、前述した第1の実施形態と同様に、第3の積層体82を得る。第4の実施形態の第3の積層体を得る工程は、第1の実施形態の第3の積層体を得る工程と同様である。
(第2の剥離工程)
 次に、図(6-b)に示すように、第2の支持基材4側から活性エネルギー線を照射することにより、光熱変換層42中に熱エネルギーが発生し、光熱変換層42中の熱分解性樹脂(3)が熱分解し、光熱変換層42中にボイド5が生成する。ここで、光熱変換層42は、全て熱分解する必要はなく、一部が熱分解することにより光熱変換層42中にボイド5が形成されればよい。
 次に、図(6-c)に示すように、第3の積層体82から第2の支持基材4を剥離する。第4の実施形態では、先に活性エネルギー線を照射することにより光熱変換層42にボイド5が形成されており、接着層41と第2の支持基材4との接着面積が減少しているため、第2の支持基材4を容易に剥離することができる。
 第4の実施形態の電子装置の製造方法では、光熱変換層42にボイド5が形成されるので、ストレス無く第2の支持基材4の脱離が可能であるため、第2の支持基材4および半導体ウエハ2の破損が生じにくいという効果を奏する。
 次いで、半導体ウエハ2に接している接着層41を除去する。接着層41の除去方法は、特に限定されるわけではないが、プラズマ処理、薬液浸漬処理、研磨処理、単なる引き剥がし等が挙げられるが、半導体装置100が積層された半導体ウエハ2に対するダメージを低減することができる、単なる引き剥がしが好ましい。
 また、第4の実施形態では、第2の支持基材4を再利用する場合、第2の支持基材4に残留する光熱変換層42を除去する方が好ましい。光熱変換層42を除去する方法は、特に限定されるわけではないが、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理等が挙げられる。
 また、第4の実施形態の第2の固定樹脂層が、光熱変換層のみからなる固定樹脂層の場合、第2の支持基材4側から活性エネルギー線を照射することにより、光熱変換層中の熱分解性樹脂(3)を熱分解させて、光熱変換層にボイドを発生させて、第2の支持基材を剥離する。次いで、必要に応じて、半導体ウエハ2に残留した光熱変換層(第2の固定樹脂層)を、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理などの方法を用いて除去する。
(個片化工程)
 次に、図(6-d)に示すように、前述した第1の実施形態と同様に半導体ウエハに半導体装置100が実装された電子装置200を個片化する個片化工程を行う。
<第5の実施形態>
 本発明の第5の実施形態の電子装置の製造方法は、第1の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第2の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第1の剥離工程で先に固定樹脂層への活性エネルギー線の照射を行った後に固定樹脂層の熱分解を行い、第2の剥離工程では第2の固定樹脂層の溶剤溶解を行う実施形態である。第5の実施形態は、第2の剥離工程で第2の固定樹脂層を溶剤溶解させる点および第2の固定樹脂層が、溶媒溶解性を有する固定樹脂層である点が、第1の実施形態と相違するが、それら以外は、第1の実施形態と同様である。そのため、第5の実施形態では、第1の実施形態と共通する部分の説明は省略し、第1の実施形態と異なる部分の説明を中心に記載する。
 第5の実施形態において、活性エネルギーを照射された後の第1の固定樹脂層の熱分解温度は、第2の固定樹脂層である溶剤溶解性を有する固定樹脂層の軟化温度よりも低い。これにより、活性エネルギー線が照射された後の熱分解性の第1の固定樹脂層の熱分解温度よりも高く、溶剤溶解性を有する第2の固定樹脂層の熱軟化温度よりも低い温度に加熱することにより、熱分解性の固定樹脂層のみを熱分解させることができるため、第1の剥離工程で確実に第1の基材のみを剥離することができる。なお、溶剤溶解性を有する固定樹脂層の熱軟化温度とは、固定樹脂層の溶融粘度が300Pa・sになる温度を指す。
(第1の積層体を得る工程)
 第5の実施形態の第1の積層体を得る工程は、第1の実施形態の第1の積層体を得る工程と同様である。
 まず、図(7-a)に示すように、前述した第1の実施形態と同様に、第1の支持基材1上に、活性エネルギー線の照射により熱分解温度が低下する熱分解性の第1の固定樹脂層10を形成する。第5の実施形態の固定樹脂層10は、第1の実施形態の固定樹脂層10と同様である。第5の実施形態では、第1の剥離工程の前に第1の支持基材1側から活性エネルギー線を照射するため、第1の支持基材1としては活性エネルギー線を透過する支持基材を用いる。
(第1の積層体を得る工程)
 次に、図(7-b)に示すように、前述した第1の実施形態と同様に、第1の積層体63を得る。
(半導体ウエハ裏面加工工程)
 次に、図(7-c)に示すように、前述した第1の実施形態と同様に、半導体ウエハ裏面加工工程を行う。
(第2の積層体を得る工程)
 次に、図(7-d)に示すように、半導体ウエハ2の裏面と第2の支持基材4を溶剤溶解性を有する第2の固定樹脂層50を介して貼り合せることにより、第1の支持基材1/第1の固定樹脂層10/半導体ウエハ2/溶剤溶解性を有する第2の固定樹脂層50/第2の支持基材4がこの順に積層された第2の積層体73を得る。
 第5の実施形態における第2の支持基板4は、図(7-d)に示すように、その厚さ方向に貫通孔6が設けられている方が好ましい。これにより、後述する第2の剥離工程で貫通孔6から溶剤を供給することができ、溶剤と溶剤溶解性を有する第2の固定樹脂層50の接触面積が高まるため、溶剤溶解性を有する第2の固定樹脂層50を迅速に溶解させることができる。
 ここで、第5の実施形態で使用する溶剤溶解性の固定樹脂層について説明する。
 溶剤溶解性の第2の固定樹脂層50は、溶剤溶解性の樹脂組成物により構成されており、溶剤溶解性の樹脂を含むものであれば特に限定されるものではない。
 前記溶剤溶解性の樹脂としては、第2の剥離工程で供給する溶剤に溶解性がある樹脂、すなわち、溶剤溶解性の樹脂であれば、特に限定されるものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、ビスフェノールF型ノボラック樹脂等のノボラック系フェノール樹脂、ジアミンおよび酸無水物の反応により得られるポリイミド前駆体樹脂、さらには、ポリイミド前駆体樹脂を脱水閉環させることにより得られるポリイミド樹脂、(メタ)アクリレート系モノマーを重合することにより得られるアクリル系樹脂等が挙げられる。なお、溶剤溶解性の樹脂とは、25℃の溶剤100gに1g以上溶解する樹脂を指す。
 また、溶剤溶解性を有する固定樹脂層は、必要に応じて、酸化防止剤、凝集剤、可塑剤、界面活性剤、ワックス、フィラー等の添加剤を含有していてもよい。
 溶剤溶解性を有する第2の固定樹脂層50の形成については、溶剤溶解性を有する樹脂や、その他溶剤溶解性を有する固定樹脂層を構成する成分を溶媒に溶解または分散させて、溶媒を含有する樹脂組成物を調製し、得られた溶媒を含有する樹脂組成物を、支持基材または半導体ウエハ上で成膜し、溶媒を乾燥除去することにより、熱軟化性の固定樹脂層を形成させることができる。溶媒としては、特に限定されるものではないが、メシチレン、デカリン、ミネラルスピリット類等の炭化水素類、アニソール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジグライム等のアルコール/エーテル類、炭酸エチレン、酢酸エチル、酢酸N-ブチル、乳酸エチル、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、炭酸プロピレン、γ-ブチロラクトン等のエステル/ラクトン類、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルイソブチルケトン、2-ヘプタノン等のケトン類、N-メチル-2-ピロリジノン等のアミド/ラクタム類等が挙げられる。熱軟化性の樹脂組成物が溶媒を含有することにより、熱軟化性の樹脂組成物の粘度を調整することが容易となり、半導体ウエハまたは支持基材に熱軟化性の樹脂組成物の薄膜を形成するのが容易となる。
 また、溶剤溶解性の第2の固定樹脂層50の形成については、溶剤溶解性を有する樹脂や、その他溶剤溶解性を有する固定樹脂層を構成する成分を前述の溶媒に溶解し、溶媒を含有する樹脂組成物を得、次いで、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)等の基材に溶媒を含有する樹脂組成物を塗布、さらに、加熱することにより溶剤を揮散させることでフィルム状の樹脂組成物を得、次いで、フィルム上の樹脂組成物を、支持基材または半導体ウエハ上にラミネートして、熱軟化性の固定樹脂層を形成させることができる。
(第1の剥離工程)
 次に、第1の支持基材1側から活性エネルギー線を照射する。
(第1の剥離工程)
 次に、図(7-e)に示すように、第2の積層体73を加熱して、第2の積層体73から第1の支持基材1を剥離する。第5の実施形態の第1の剥離工程は、第1の実施形態の第1の剥離工程と同様である。
 具体的には、活性エネルギー線が照射された後の第1の固定樹脂層10の熱分解温度よりは高く、溶剤溶解性を有する第2の固定樹脂層の熱軟化温度よりは低い温度に加熱することにより、第1の固定樹脂層10のみを選択的に熱分解させ、第1の支持基材1を剥離する。
 第5の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、溶剤溶解性を有する第2の固定樹脂層の熱軟化温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 第1の剥離工程後、必要に応じて、第1の支持基材1または半導体ウエハ2に残留した第1の固定樹脂層10を除去してもよい。残留した第1の固定樹脂層10の除去方法としては、特に限定されるものではないが、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理などが挙げられる。
 第5の実施形態に係る電子装置の製造方法では、第1の固定樹脂層10が熱分解し低分子化されるので、ストレス無く第1の支持基材の脱離が可能であるため、第1の支持基材1および半導体ウエハ2の破損が生じにくいという効果を奏する。
 また、低分子化した第1の固定樹脂層1の成分は、加熱の際に揮散し、第1の支持基材1および半導体ウエハ2に第1の固定樹脂層10が残留し難いという効果を奏する。そのため、洗浄等の後工程を簡素化でき、ハンドリングが向上するといった利点もある。
(第3の積層体を得る工程)
 次に、図(8-a)に示すように、前述した第1の実施形態にと同様に、第3の積層体83を得る。
(第2の剥離工程)
 次に、図(8-b)に示すように、第2の支持基材4の貫通孔6から溶剤溶解性を有する第2の固定樹脂層50を溶解させることができる溶剤を供給する。
 第5の実施形態では、第2の支持基材4の貫通孔6より溶剤を供給することができるため、溶剤溶解性を有する第2の固定樹脂層50の厚さ方向の断面のみに溶剤を供給する場合と比較して、溶剤溶解性を有する第2の固定樹脂層50と溶剤の接触面積を大きくすることができる。そのため、短時間で溶剤溶解性を有する第2の固定樹脂層50を除去することができ、さらに、半導体ウエハ2および第2の支持基材4に残存する残渣を低減することができる。
 溶剤溶解性を有する第2の固定樹脂層を溶解させるための溶剤としては、溶剤溶解性を有する第2の固定樹脂層50を溶解させるものであればよく、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、メタノール、エタノール、イソプロピルアルコール、n-ブタノール等のアルコール類、γ―ブチロラクトン、N-メチル-2-ピロリドン等が挙げられ、単独でも2種以上混合であってもよい。
 次に、図(8-c)に示すように、第3の積層体83から第2の支持基材4を剥離する。第5の実施形態では、先に第2の固定樹脂層50(溶剤溶解性)が溶剤に溶解し、第2の支持基材4と溶剤溶解性を有する第2の固定樹脂層50の接着面積が減少しているため、第2の支持基材4を容易に剥離することができる。
 第5の実施形態に係る電子装置の製造方法では、溶剤溶解性を有する第2の固定樹脂層50が溶剤に溶解するので、ストレス無く第2の支持基材4の脱離が可能であるため、第2の支持基材4および半導体ウエハ2の破損が生じにくいという効果を奏する。
 第5の実施形態では、第2の剥離工程後に、半導体ウエハ2に付着している溶剤溶解性を有する第2の固定樹脂層50を除去する。溶剤溶解性を有する第2の固定樹脂層50の除去方法は、特に限定されるわけではないが、プラズマ処理、薬液浸漬処理、研磨処理、単なる引き剥がし等が挙げられるが、半導体装置100が積層された半導体ウエハ2に対するダメージを低減することができる、単なる引き剥がしが好ましい。
 また、第5の実施形態では、第2の支持基材4を再利用する場合、第2の支持基材4に残留する溶剤溶解性を有する第2の固定樹脂層50を除去する方が好ましい。第2の固定樹脂層50を除去する方法は、特に限定されるわけではないが、プラズマ処理、薬液浸漬処理、研磨処理、加熱処理等が挙げられる。
(個片化工程)
 次に、図(8-d)に示すように、前述した第1の実施形態と同様に半導体ウエハ2に半導体装置100が実装された電子装置200を個片化する個片化工程を行う。
 本発明の第6~第10の実施形態は、第1の固定樹脂層として、熱分解性の固定樹脂層を使用し、且つ、第1の剥離工程で、固定樹脂層への活性エネルギー線の照射を行うことなく、積層体を加熱することにより固定樹脂層の熱分解を行う実施形態である。第6~第10の実施形態の熱分解性の第1の固定樹脂層は、第2の実施形態の熱分解性の第2の固定樹脂層と同様であり、第6~第10の実施形態の第1の剥離工程は、第2の実施形態の第2の剥離工程と同様であり、第6~第10の実施形態の第2の剥離工程は、それぞれ、第1~第5の実施形態の第2の剥離工程と同様である。
 本発明の第6の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱分解性の固定樹脂層を使用し、第2の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行い、第2の剥離工程では先に固定樹脂層への活性エネルギー線の照射を行った後に固定樹脂層の熱分解を行う実施形態である。
 第6の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、第2の固定樹脂層に含まれている熱分解性樹脂(1)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。なお、第1の剥離工程の時点では、第2の固定樹脂層には未だ活性エネルギーは照射されていないので、T2は、活性エネルギー線が照射される前の第2の固定樹脂層に含まれる熱分解樹脂(1)の熱分解温度である。
 本発明の第7の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱分解性の固定樹脂層を使用し、第2の固定樹脂層として熱分解性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行い、第2の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行う実施形態である。
 第7の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、第2の固定樹脂層に含まれている熱分解性樹脂(2)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 本発明の第8の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱分解性の固定樹脂層を使用し、第2の固定樹脂層として熱軟化性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行い、第2の剥離工程では固定樹脂層の熱軟化を行う実施形態である。
 第8の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、熱軟化性の第2の固定樹脂層の熱軟化温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 本発明の第9の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱分解性の固定樹脂層を使用し、第2の固定樹脂層として光熱変化層を有する固定樹脂層を使用し、第1の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行い、第2の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行う実施形態である。
 第9の実施形態では、第1の剥離工程における第2の積層体の加熱温度度をT1(℃)とし、光熱変換層に含まれている熱分解性樹脂(3)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 本発明の第10の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱分解性の固定樹脂層を使用し、第2の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第1の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行い、第2の剥離工程では第2の固定樹脂層の溶剤溶解を行う実施形態である。
 第10の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、溶剤溶解性を有する固定樹脂層の熱軟化温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 本発明の第11~第15の実施形態は、第1の固定樹脂層として、熱軟化性の固定樹脂層を使用し、且つ、第1の剥離工程で、第2の積層体を加熱することにより、熱軟化性の第1の固定樹脂層を熱軟化させる実施形態である。第11~第15の実施形態の熱軟化性の第1の固定樹脂層は、第3の実施形態の熱軟化性の第2の固定樹脂層と同様であり、第11~第15の実施形態の第1の剥離工程は、第3の実施形態の第2の剥離工程と同様であり、第11~第15の実施形態の第2の剥離工程は、それぞれ、第1~第5の実施形態の第2の剥離工程と同様である。
 本発明の第11の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱軟化性の固定樹脂層を使用し、第2の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層の熱軟化を行い、第2の剥離工程では先に固定樹脂層への活性エネルギー線の照射を行った後に固定樹脂層の熱分解を行う実施形態である。
 第11の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、第2の固定樹脂層に含まれている熱分解性樹脂(1)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。なお、第1の剥離工程の時点では、第2の固定樹脂層には未だ活性エネルギーは照射されていないので、T2は、活性エネルギー線が照射される前の第2の固定樹脂層に含まれる熱分解樹脂(1)の熱分解温度である。
 本発明の第12の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱軟化性の固定樹脂層を使用し、第2の固定樹脂層として熱分解性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層の熱軟化を行い、第2の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行う実施形態である。
 第12の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、第2の固定樹脂層に含まれている熱分解性樹脂(2)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 本発明の第13の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱軟化性の固定樹脂層を使用し、第2の固定樹脂層として熱軟化性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層の熱軟化を行い、第2の剥離工程では固定樹脂層の熱軟化を行う実施形態である。
 第13の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、熱軟化性の第2の固定樹脂層の熱軟化温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 本発明の第14の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱軟化性の固定樹脂層を使用し、第2の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第1の剥離工程では固定樹脂層の熱軟化を行い、第2の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行う実施形態である。
 第14の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、光熱変換層に含まれている熱分解性樹脂(3)の5%重量減少温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 本発明の第15の実施形態の電子装置の製造方法は、第1の固定樹脂層として熱軟化性の固定樹脂層を使用し、第2の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第1の剥離工程では固定樹脂層の熱軟化を行い、第2の剥離工程では第2の固定樹脂層の溶剤溶解を行う実施形態である。
 第15の実施形態では、第1の剥離工程における第2の積層体の加熱温度をT1(℃)とし、溶剤溶解性を有する固定樹脂層の熱軟化温度をT2(℃)とすると、「T1<T2」であり、好ましくは「T1+20<T2」である。
 本発明の第16~第20の実施形態は、第1の固定樹脂層として、光熱変換層を有する固定樹脂層を使用し、且つ、第1の剥離工程で、光熱変換層に活性エネルギー線を照射することにより、光熱変換層の分解を行う実施形態である。第16~第20の実施形態の光熱変換層を有する第1の固定樹脂層は、第4の実施形態の光熱変換層を有する第2の固定樹脂層と同様であり、第16~第20の実施形態の第1の剥離工程は、第4の実施形態の第2の剥離工程と同様であり、第16~第20の実施形態の第2の剥離工程は、それぞれ、第1~第5の実施形態の第2の剥離工程と同様である。
 本発明の第16の実施形態の電子装置の製造方法は、第1の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第2の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第1の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行い、第2の剥離工程では先に固定樹脂層への活性エネルギー線の照射を行った後に固定樹脂層の熱分解を行う実施形態である。
 本発明の第17の実施形態の電子装置の製造方法は、第1の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第2の固定樹脂層として熱分解性の固定樹脂層を使用し、第1の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行い、第2の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行う実施形態である。
 本発明の第18の実施形態の電子装置の製造方法は、第1の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第2の固定樹脂層として熱軟化性の固定樹脂層を使用し、第1の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行い、第2の剥離工程では固定樹脂層の熱軟化を行う実施形態である。
 本発明の第19の実施形態の電子装置の製造方法は、第1の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第2の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第1の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行い、第2の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行う実施形態である。
 本発明の第20の実施形態の電子装置の製造方法は、第1の固定樹脂層として光熱変換層を有する固定樹脂層を使用し、第2の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第1の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行い、第2の剥離工程では第2の固定樹脂層の溶剤溶解を行う実施形態である。
 本発明の第21~第25の実施形態は、第1の固定樹脂層として、溶剤溶解性を有する固定樹脂層を使用し、且つ、第1の剥離工程で、第1の固定樹脂層に溶剤を供給することにより、溶剤溶解性を有する第1の固定樹脂層を溶剤溶解させる実施形態である。第21~第25の実施形態の溶剤溶解性を有する第1の固定樹脂層は、第5の実施形態の溶剤溶解性を有する第2の固定樹脂層と同様であり、第21~第25の実施形態の第1の剥離工程は、第5の実施形態の第2の剥離工程と同様であり、第21~第25の実施形態の第2の剥離工程は、それぞれ、第1~第5の実施形態の第2の剥離工程と同様である。
 本発明の第21の実施形態の電子装置の製造方法は、第1の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第2の固定樹脂層として活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層の溶剤溶解を行い、第2の剥離工程では先に固定樹脂層への活性エネルギー線の照射を行った後に固定樹脂層の熱分解を行う実施形態である。
 本発明の第22の実施形態の電子装置の製造方法は、第1の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第2の固定樹脂層として熱分解性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層の溶剤溶解を行い、第2の剥離工程では固定樹脂層への活性エネルギー線の照射を行うことなく固定樹脂層の熱分解を行う実施形態である。
 本発明の第23の実施形態の電子装置の製造方法は、第1の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第2の固定樹脂層として熱軟化性の固定樹脂層を使用し、第1の剥離工程では固定樹脂層の溶剤溶解を行い、第2の剥離工程では固定樹脂層の熱軟化を行う実施形態である。
 本発明の第24の実施形態の電子装置の製造方法は、第1の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第2の固定樹脂層として光熱変化層を有する固定樹脂層を使用し、第1の剥離工程では固定樹脂層の溶剤溶解を行い、第2の剥離工程では光熱変換層に活性エネルギー線を照射することにより光熱変換層の分解を行う実施形態である。
 本発明の第25の実施形態の電子装置の製造方法は、第1の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第2の固定樹脂層として溶剤溶解性を有する固定樹脂層を使用し、第1の剥離工程では固定樹脂層の溶剤溶解を行い、第2の剥離工程では第2の固定樹脂層の溶剤溶解を行う実施形態である。
 このように、本発明に係る固定樹脂層を使用してCOW構造を有するWL-CSP型電子装置を製造することにより、製造プロセスが簡便であり、歩留りが良く安価で信頼性の高い電子装置を得ることができるという効果を奏することができる。
 以上、本発明の電子装置の製造方法の具体例を、実施形態を挙げて説明したが、本発明はこれらに限定されるものではない。例えば、本発明の電子装置の製造方法は、必要に応じて任意の工程が追加されてもよい。
 COW構造を有するWL-CSP型電子装置の製造方法において、製造プロセスが簡便であり、歩留りが良く安価で信頼性の高い電子装置を得ることができる電子装置の製造方法、さらには、前記電子装置の製造方法により製造された電子装置を提供することができる。
1   第1の支持基板
2   半導体ウエハ
3   電極
4   第2の支持基板
5   ボイド
6   貫通孔
10  第1の固定樹脂層(活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層)
20  第2の固定樹脂層(熱分解性の固定樹脂層)
30  第2の固定樹脂層(熱軟化性の固定樹脂層)
40  第2の固定樹脂層(光熱変換層を有する固定樹脂層)
41  接着層
42  光熱変換層
50  第2の固定樹脂層(溶剤溶解性を有する固定樹脂層)
60、61、62、63 第1の積層体
70、71、72、73 第2の積層体
80、81、82、83 第3の積層体
100 半導体装置
200 電子装置
300 電子装置(個片化)

Claims (22)

  1.  第1の支持基材/第1の固定樹脂層/半導体ウエハ/第2の固定樹脂層/第2の支持基材がこの順に積層された積層体。
  2.  第1の支持基材の表面に第1の固定樹脂層を設け、次いで、前記第1の固定樹脂層と半導体ウエハの機能面を対向させて第1の固定樹脂層と半導体ウエハを貼り合せること、または半導体ウエハの機能面に第1の固定樹脂層を設け、次いで、前記第1の固定樹脂層と第1の支持基材を貼り合わせることにより第1の支持基材/第1の固定樹脂層/半導体ウエハがこの順に積層された第1の積層体を得る工程と、
    前記半導体ウエハの裏面を研削し、さらに、半導体ウエハの裏面に電極を形成する半導体ウエハ裏面加工工程と、
    前記半導体ウエハの裏面と第2の支持基材を第2の固定樹脂層を介して貼り合せることにより第1の支持基材/第1の固定樹脂層/半導体ウエハ/第2の固定樹脂層/第2の支持基材がこの順に積層された第2の積層体を得る工程と、
    を有する請求項1に記載の積層体の製造方法。
  3.  請求項1に記載の積層体から第1の支持基材を剥離する第1の剥離工程と、
    前記半導体ウエハの機能面に複数の半導体装置を実装することにより第2の支持基材/第2の固定樹脂層/半導体ウエハ/半導体装置がこの順に積層された第3の積層体を得る工程と、
    前記第3の積層体から第2の支持基材を剥離する第2の剥離工程と、
    を有することを特徴とする電子装置の製造方法。
  4.  前記第1の剥離工程後に、半導体ウエハの機能面に付着した第1の固定樹脂層を除去する工程を有する請求項3に記載の電子装置の製造方法。
  5.  前記第2の剥離工程後に、半導体ウエハの裏面に付着した第2の固定樹脂層を除去する工程を有する請求項3または4に記載の電子装置の製造方法。
  6.  前記半導体装置が半導体チップまたは半導体チップの積層体である請求項3ないし5のいずれかに記載の電子装置の製造方法。
  7.  前記半導体装置がフラックス機能を有する樹脂組成物を介して半導体ウエハに実装されている請求項3ないし6のいずれかに記載の電子装置の製造方法。
  8.  前記第2の積層体を得る工程後に、半導体装置を封止樹脂により封止する封止工程を有する請求項3ないし7のいずれかに記載の電子装置の製造方法。
  9.  前記第2の剥離工程後に、各半導体装置単位に個片化する個片化工程を有する請求項3ないし8のいずれかに記載の電子装置の製造方法。
  10.  前記第1の剥離工程において、請求項1に記載の積層体を加熱することにより第1の支持基材を剥離する請求項3ないし9のいずれかに記載の電子装置の製造方法。
  11.  前記第1の固定樹脂層が、熱分解性の固定樹脂層であり、前記第1の剥離工程において、請求項1に記載の積層体を加熱して、前記熱分解性の固定樹脂層を熱分解することにより第1の支持基材を剥離する請求項10に記載の電子装置の製造方法。
  12.  前記第1の固定樹脂層が、熱分解性樹脂を含有する熱分解性の固定樹脂層である請求項11に記載の電子装置の製造方法。
  13.  前記第1の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であり、前記第1の剥離工程が、第1の支持基材側から活性エネルギー線を照射した後、熱分解性の固定樹脂層を熱分解する工程である請求項11に記載の電子装置の製造方法。
  14.  前記活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層が、酸により熱分解温度が低下する熱分解性樹脂を含む熱分解性の固定樹脂層である請求項13に記載の電子装置の製造方法。
  15.  前記第2の剥離工程において、前記第3の積層体に対し、
     (i)加熱すること、
     (ii)活性エネルギー線を照射すること、あるいは
     (iii)溶剤を供給すること、
    により第2の支持基材を剥離する請求項3ないし14のいずれかに記載の電子装置の製造方法。
  16.  (i)前記第2の固定樹脂層が、熱分解性または熱軟化性の固定樹脂層であり、前記第2の剥離工程において、前記第3の積層体を加熱して、前記熱分解性または熱軟化性の固定樹脂層を熱分解または熱軟化すること、
     (ii)前記第2の固定樹脂層が、光熱変換層を有する固定樹脂層であり、前記第2の剥離工程において、前記第3の積層体を照射して、前記光熱変換層を有する固定樹脂層を分解すること、あるいは
     (iii)前記第2の固定樹脂層が、溶剤溶解性を有する固定樹脂層であり、前記第2の剥離工程において、前記第3の積層体に溶剤を供給して、前記溶剤溶解性を有する固定樹脂層を溶剤溶解させること、
    により第2の支持基材を剥離する請求項15に記載の電子装置の製造方法。
  17.  前記第2の固定樹脂層が、熱分解性樹脂を含有する熱分解性の固定樹脂層である請求項16に記載の電子装置の製造方法。
  18.  前記第2の固定樹脂層が、活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層であり、前記第2の剥離工程が、第2の支持基材側から活性エネルギー線を照射した後、熱分解性の固定樹脂層を熱分解する工程である請求項16に記載の電子装置の製造方法。
  19.  前記活性エネルギー線の照射により熱分解温度が低下する熱分解性の固定樹脂層が、酸により熱分解温度が低下する熱分解性樹脂を含む熱分解性の固定樹脂層である請求項18に記載の電子装置の製造方法。
  20.  請求項3ないし19のいずれかに記載の電子装置の製造方法で製造された電子装置。
  21.  請求項20に記載の電子装置を基板に実装する工程を有する電気、電子部品の製造方法。
  22.  請求項21に記載の電気、電子部品の製造方法で製造された電気、電子部品。
PCT/JP2011/073782 2010-10-21 2011-10-17 電子装置の製造方法およびそれを用いてなる電子装置、電気、電子部品の製造方法およびそれを用いてなる電気、電子部品 WO2012053463A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137012485A KR20130129938A (ko) 2010-10-21 2011-10-17 전자 장치의 제조 방법 및 그것을 사용하여 이루어지는 전자 장치, 전기, 전자 부품의 제조 방법 및 그것을 사용하여 이루어지는 전기, 전자 부품
JP2012539709A JP5942850B2 (ja) 2010-10-21 2011-10-17 電子装置の製造方法、電気、電子部品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-236398 2010-10-21
JP2010236398 2010-10-21

Publications (1)

Publication Number Publication Date
WO2012053463A1 true WO2012053463A1 (ja) 2012-04-26

Family

ID=45975175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073782 WO2012053463A1 (ja) 2010-10-21 2011-10-17 電子装置の製造方法およびそれを用いてなる電子装置、電気、電子部品の製造方法およびそれを用いてなる電気、電子部品

Country Status (4)

Country Link
JP (1) JP5942850B2 (ja)
KR (1) KR20130129938A (ja)
TW (1) TW201241941A (ja)
WO (1) WO2012053463A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531993A (ja) * 2012-07-12 2015-11-05 ザイリンクス インコーポレイテッドXilinx Incorporated フリップチップの積層のための方法
JP2017028166A (ja) * 2015-07-24 2017-02-02 積水化学工業株式会社 半導体ウェハ保護用フィルム
CN109075085A (zh) * 2016-03-30 2018-12-21 三井化学东赛璐株式会社 半导体装置的制造方法
EP3439023A4 (en) * 2016-03-30 2020-01-29 Mitsui Chemicals Tohcello, Inc. METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
JP2020088264A (ja) * 2018-11-29 2020-06-04 日立化成株式会社 半導体装置の製造方法及び仮固定材用積層フィルム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102258743B1 (ko) 2014-04-30 2021-06-02 삼성전자주식회사 반도체 패키지의 제조 방법, 이에 의해 형성된 반도체 패키지 및 이를 포함하는 반도체 장치
JP6429388B2 (ja) * 2015-03-19 2018-11-28 株式会社ディスコ 積層デバイスの製造方法
JP2023098471A (ja) * 2021-12-28 2023-07-10 スリーエム イノベイティブ プロパティズ カンパニー 光熱変換層インク組成物及び積層体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511922A (ja) * 2000-10-20 2004-04-15 シルバーブルック リサーチ ピーティワイ リミテッド リセスを有する集積回路キャリヤ
JP2009111367A (ja) * 2007-10-09 2009-05-21 Shinko Electric Ind Co Ltd 基板の製造方法
JP2009212300A (ja) * 2008-03-04 2009-09-17 Hitachi Chem Co Ltd 半導体ウエハのバックグラインド方法、半導体ウエハのダイシング方法、及び半導体チップの実装方法
JP2010074194A (ja) * 2009-12-28 2010-04-02 Nec Electronics Corp 半導体装置およびその製造方法
WO2010073583A1 (ja) * 2008-12-24 2010-07-01 住友ベークライト株式会社 接着フィルム、多層回路基板、半導体用部品および半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565804B2 (ja) * 2002-06-03 2010-10-20 スリーエム イノベイティブ プロパティズ カンパニー 被研削基材を含む積層体、その製造方法並びに積層体を用いた極薄基材の製造方法及びそのための装置
JP2005191550A (ja) * 2003-12-01 2005-07-14 Tokyo Ohka Kogyo Co Ltd 基板の貼り付け方法
JP4694305B2 (ja) * 2005-08-16 2011-06-08 ルネサスエレクトロニクス株式会社 半導体ウエハの製造方法
JP5217260B2 (ja) * 2007-04-27 2013-06-19 住友ベークライト株式会社 半導体ウエハーの接合方法および半導体装置の製造方法
JP2009110995A (ja) * 2007-10-26 2009-05-21 Toray Eng Co Ltd 3次元実装方法及び装置
EP2104138A1 (de) * 2008-03-18 2009-09-23 EV Group E. Thallner GmbH Verfahren zum Bonden von Chips auf Wafer
US7960840B2 (en) * 2008-05-12 2011-06-14 Texas Instruments Incorporated Double wafer carrier process for creating integrated circuit die with through-silicon vias and micro-electro-mechanical systems protected by a hermetic cavity created at the wafer level
US8017439B2 (en) * 2010-01-26 2011-09-13 Texas Instruments Incorporated Dual carrier for joining IC die or wafers to TSV wafers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511922A (ja) * 2000-10-20 2004-04-15 シルバーブルック リサーチ ピーティワイ リミテッド リセスを有する集積回路キャリヤ
JP2009111367A (ja) * 2007-10-09 2009-05-21 Shinko Electric Ind Co Ltd 基板の製造方法
JP2009212300A (ja) * 2008-03-04 2009-09-17 Hitachi Chem Co Ltd 半導体ウエハのバックグラインド方法、半導体ウエハのダイシング方法、及び半導体チップの実装方法
WO2010073583A1 (ja) * 2008-12-24 2010-07-01 住友ベークライト株式会社 接着フィルム、多層回路基板、半導体用部品および半導体装置
JP2010074194A (ja) * 2009-12-28 2010-04-02 Nec Electronics Corp 半導体装置およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531993A (ja) * 2012-07-12 2015-11-05 ザイリンクス インコーポレイテッドXilinx Incorporated フリップチップの積層のための方法
JP2017028166A (ja) * 2015-07-24 2017-02-02 積水化学工業株式会社 半導体ウェハ保護用フィルム
CN109075085A (zh) * 2016-03-30 2018-12-21 三井化学东赛璐株式会社 半导体装置的制造方法
EP3439023A4 (en) * 2016-03-30 2020-01-29 Mitsui Chemicals Tohcello, Inc. METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
EP3442012A4 (en) * 2016-03-30 2020-01-29 Mitsui Chemicals Tohcello, Inc. SEMICONDUCTOR COMPONENT MANUFACTURING METHOD
US11107789B2 (en) 2016-03-30 2021-08-31 Mitsui Chemicals Tohcello, Inc. Method for manufacturing semiconductor device
CN109075085B (zh) * 2016-03-30 2022-04-05 三井化学东赛璐株式会社 半导体装置的制造方法
JP2020088264A (ja) * 2018-11-29 2020-06-04 日立化成株式会社 半導体装置の製造方法及び仮固定材用積層フィルム
JP7331351B2 (ja) 2018-11-29 2023-08-23 株式会社レゾナック 半導体装置の製造方法及び仮固定材用積層フィルム

Also Published As

Publication number Publication date
KR20130129938A (ko) 2013-11-29
JP5942850B2 (ja) 2016-06-29
TW201241941A (en) 2012-10-16
JPWO2012053463A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5942850B2 (ja) 電子装置の製造方法、電気、電子部品の製造方法
TWI502659B (zh) 電子裝置之製造方法及電子裝置封裝之製造方法
US9184083B2 (en) Apparatus, hybrid laminated body, method and materials for temporary substrate support
JP2007211246A (ja) 半導体用接着組成物、それを用いた半導体装置および半導体装置の製造方法
TW201130934A (en) Adhesive film, multiple circuit board, electronic component and semiconductor device
JP6128970B2 (ja) 接着剤組成物、接着フィルム、貼付方法、および処理方法
JP5422878B2 (ja) 半導体用接着組成物、それを用いた半導体装置および半導体装置の製造方法
JP2011157552A (ja) 接着剤組成物、回路部材接続用接着剤シート及び半導体装置の製造方法
WO2013153904A1 (ja) 接着剤組成物、接着フィルム、及び貼付方法
JP2014037458A (ja) 接着剤組成物、接着フィルムおよび貼付方法
JP6034625B2 (ja) 剥離方法
JP2008211224A (ja) ダイシングシート機能付きダイアタッチフィルム及びそれを用いた半導体装置の製造方法
JP5661669B2 (ja) 接着剤組成物、接着フィルムおよび基板の処理方法
JP2006206787A (ja) ダイシングシート機能付きダイアタッチフィルム及びそれを用いた半導体装置の製造方法及び半導体装置。
JP2006237483A (ja) ダイシングシート機能付きダイアタッチフィルム及びそれを用いた半導体装置の製造方法及び半導体装置。
JP2011168663A (ja) 有機基板の仮固定剤及びそれを用いた半導体装置の製造方法
TWI611931B (zh) 層合體之製造方法、基板之處理方法及層合體
JP6353662B2 (ja) 接着剤積層体及びその利用
JP2012129326A (ja) 電子装置の製造方法および電子装置パッケージの製造方法
JP4650024B2 (ja) ダイシングシート機能付きダイアタッチフィルム及びそれを用いた半導体装置の製造方法及び半導体装置。
JP6194394B2 (ja) 半導体装置の製造方法
KR102629865B1 (ko) 필름상 접착제, 접착 시트, 및 반도체 장치와 그 제조 방법
JP6059507B2 (ja) 接着剤組成物及び接着フィルム
WO2012070612A1 (ja) 電子装置の製造方法、電子装置、電子装置パッケージの製造方法、電子装置パッケージ、および半導体装置の製造方法
JP6247871B2 (ja) 積層体、積層体形成キットおよび積層体形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834302

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539709

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012485

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11834302

Country of ref document: EP

Kind code of ref document: A1