WO2012049723A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2012049723A1
WO2012049723A1 PCT/JP2010/067841 JP2010067841W WO2012049723A1 WO 2012049723 A1 WO2012049723 A1 WO 2012049723A1 JP 2010067841 W JP2010067841 W JP 2010067841W WO 2012049723 A1 WO2012049723 A1 WO 2012049723A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
carbon
Prior art date
Application number
PCT/JP2010/067841
Other languages
French (fr)
Japanese (ja)
Inventor
上田 篤司
山田 直毅
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to PCT/JP2010/067841 priority Critical patent/WO2012049723A1/en
Priority to JP2012538484A priority patent/JP5528564B2/en
Publication of WO2012049723A1 publication Critical patent/WO2012049723A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery that uses a lithium iron phosphate positive electrode and achieves both high capacity and storage characteristics.
  • lithium cobalt oxide has been the mainstream as a positive electrode active material for non-aqueous electrolyte batteries.
  • cobalt which is the raw material
  • the use of lithium cobaltate increases the production cost of the battery.
  • a battery using lithium cobaltate has a problem in safety when the battery temperature rises at the end of charging.
  • lithium manganate, lithium nickelate, etc. as a positive electrode active material instead of lithium cobaltate is currently being studied.
  • lithium manganate cannot realize a sufficient discharge capacity, and the battery temperature is low. When it becomes higher, there are problems such as elution of manganese.
  • lithium nickelate has problems such as a lower discharge voltage and lower thermal stability at the end of charging.
  • olivine-type lithium iron phosphate such as metal elution hardly LiFePO 4 has attracted attention as a positive electrode active material can be used in place of lithium cobaltate ing.
  • the olivine-type lithium phosphate is represented by a general formula of LiMPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe), and the battery voltage is arbitrarily determined depending on the type of the constituent metal element M. Can be selected. Further, since the use capacity is relatively high at about 140 to 170 mAh / g, there is an advantage that the battery capacity per unit weight can be increased. And when iron and manganese are selected as M, it has the advantage that the production cost can be greatly reduced because the production amount is large and it is inexpensive.
  • lithium iron phosphate becomes iron phosphate in the charged state, and its structural stability and end-of-charge voltage can be charged almost 100% at the lithium metal standard 3.6V, so it is used as the main component of organic electrolyte. 100% can be charged at 4.2 V or less of the decomposition potential of the cyclic carbonate and the chain carbonate. Therefore, it is expected as a positive electrode active material that can suppress decomposition of the electrolytic solution and has high durability.
  • lithium iron phosphate has a NASICON structure, which is an ionic conductor, and therefore has a poor electronic conductivity and a strong crystal structure. Therefore, lithium ion diffusion is limited, and a one-dimensional diffusion path. Therefore, it is known that the diffusion of lithium ions is poor. Therefore, the material has a high resistance value and is not suitable for battery materials.
  • the surface of lithium iron phosphate particles is coated with a highly conductive carbon material, thereby improving the electronic conductivity, reducing the particle size to 1 ⁇ m or less, shortening the reactive path, and reacting.
  • the technique of making it function as a battery material by devising which raises speed has been reported (patent document 1).
  • JP 2002-110162 A Japanese Patent No. 4183403
  • lithium iron phosphate whose surface is coated with a carbon material there arises a problem that battery characteristics, particularly storage characteristics, deteriorate.
  • the specific surface area of lithium iron phosphate whose surface was coated with nano-level carbon particles was as high as 10 to 30 m 2 / g, so that it easily adsorbs moisture in the atmosphere.
  • the moisture is taken into the pores of the nano-sized carbon material, it is difficult to remove it. Therefore, it is considered that the expected battery characteristics cannot be obtained when water mixed in the lithium ion secondary battery reacts with LiPF 6 as an electrolyte to generate hydrofluoric acid.
  • hydrofluoric acid is produced together with lithium fluoride and trifluorophosphoric acid. Since hydrofluoric acid is a strong acid, iron may be eluted from the olivine Fe positive electrode and a solid electrolyte interface (SEI) that is a protective layer of the negative electrode may be eluted. Therefore, gas is generated during charging, charging / discharging efficiency is reduced, and durability is reduced.
  • SEI solid electrolyte interface
  • Lithium iron phosphate is useful because it has high thermal stability and it is difficult to elute metals at high temperatures. However, since it has low reactivity, it is necessary to increase the specific surface area for application to batteries for electric vehicles. However, as described above, when the specific surface area is large, moisture is easily adsorbed, so that moisture is mixed into the battery and battery characteristics are deteriorated. Therefore, an object of the present invention is to achieve both load characteristics and high-temperature storage characteristics of a lithium ion secondary battery using a lithium iron phosphate positive electrode having a large specific surface area by suppressing the influence of moisture.
  • TTFP tristrifluoroethyl phosphate
  • DMA N-dimethylacetamide
  • NMP n-methylpyrrolidone
  • Non-Patent Document 2 reports that when DMA is used as a part of the mixed solvent, the reaction resistance is increased.
  • EC ethylene carbonate
  • DMA is expected to improve load characteristics as a high dielectric constant solvent.
  • the present invention includes the following.
  • a positive electrode comprising a positive electrode active material represented by: A negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions; and a non-aqueous electrolyte;
  • a non-aqueous electrolyte secondary battery comprising: The surface of the positive electrode active material is coated with carbon, The non-aqueous electrolyte includes N, N-dimethylacetamide, vinylene carbonate, a supporting salt, and an organic solvent; The non-aqueous electrolyte secondary battery, wherein a content of the N, N-dimethylacetamide is 0.01 to 0.7% by weight of the non-aqueous electrolyte.
  • the amount of carbon covering the surface of the positive electrode active material is 1 to 5% by weight of the carbon-coated positive electrode active material, the specific surface area of the carbon-coated positive electrode active material is 10 to 20 m 2 / g, and the carbon
  • the organic solvent is a mixed solvent of ethylene carbonate and chain carbonate, and the content of the chain carbonate is 70 to 80% by volume of the mixed solvent.
  • a structural diagram of a cylindrical battery is shown. The relationship between DMA content rate and initial resistance value is shown. The relationship between DMA content rate and the capacity maintenance rate after high temperature storage is shown.
  • Nonaqueous electrolyte secondary battery Compositional formula LiFe 1-x M x PO 4 having an olivine type structure: [Where M is at least one selected from the group consisting of Ni, Co, Mn, Ti, Zr, and Mo; x is 0 ⁇ x ⁇ 1]
  • a positive electrode comprising a positive electrode active material represented by: A negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions; and a non-aqueous electrolyte; And the surface of the positive electrode active material is coated with carbon, and the non-aqueous electrolyte contains N, N-dimethylacetamide, vinylene carbonate, a supporting salt, and an organic solvent, The content of N-dimethylacetamide is 0.01 to 0.7% by weight of the nonaqueous electrolyte.
  • the positive electrode active material having an olivine structure has high thermal stability, and the metal does not easily elute at a high temperature. Moreover, it is possible to increase the battery capacity per unit weight, and furthermore, by covering the surface with carbon, the electronic conductivity can be improved. However, when the specific surface area is increased by coating with carbon, moisture in the air is easily adsorbed, and the battery characteristics are deteriorated.
  • the above disadvantage can be overcome by using a non-aqueous electrolyte containing N, N-dimethylacetamide and vinylene carbonate. That is, by combining the positive electrode active material having an olivine type structure and the non-aqueous electrolyte, it is possible to sufficiently exert the function of the positive electrode active material having many advantages over the conventional positive electrode active material. Become.
  • a nonaqueous electrolyte battery having the configuration shown in FIG. 1 can be cited.
  • the nonaqueous electrolyte battery includes a positive electrode in which a positive electrode active material, a carbon material of a conductive additive and a binder are formed in a film shape on an aluminum foil, and a negative electrode active material and a binder in a film shape on a copper foil.
  • the structure is filled with a non-aqueous electrolyte solution in a state where the negative electrodes formed on the surface are opposed and electrically isolated by a separator.
  • the positive and negative electrodes are wound as shown in FIG. 1 and stored in a predetermined metal container.
  • There are two types of battery structures one that is housed in cylindrical and square metal containers as shown in the figure, and the other that is a sheet-like positive and negative electrode layered without being wound.
  • M is at least one selected from the group consisting of Ni, Co, Mn, Ti, Zr, and Mo; x is 0 ⁇ x ⁇ 1]
  • the positive electrode containing the positive electrode active material represented by these is used.
  • lithium iron manganese phosphate (composition formula: LiFe 1-x Mn x PO 4 where 0 ⁇ x ⁇ 1) in which a part of iron of lithium iron phosphate is substituted with manganese has the same characteristics as lithium iron phosphate. Since it has, it can be used as a positive electrode active material. In addition, since lithium iron phosphate or a part of iron or manganese of lithium manganese phosphate is replaced with Ti, Zr and / or Mo, and the material having improved reactivity basically has the same characteristics, It can be used as a positive electrode active material.
  • lithium iron phosphate, or lithium manganese phosphate in which iron or a part of manganese is substituted with Ni and / or Co can also be used as a positive electrode active material (hereinafter, a part of iron is another metal).
  • the lithium iron phosphate substituted with the element M may also be simply expressed as “lithium iron phosphate”).
  • lithium manganese phosphate (composition formula: LiMnPO 4 ) in which all of iron of lithium iron phosphate is substituted with manganese also has the same characteristics as lithium iron phosphate, and can be used as a positive electrode active material. .
  • x is preferably 0 ⁇ x ⁇ 0.5, more preferably 0 ⁇ x ⁇ 0.3, and particularly preferably x is 0.
  • M is Mn.
  • the average particle diameter is preferably 0.5 ⁇ m or less.
  • the surface of lithium iron phosphate is coated with carbon.
  • coating means that the entire surface is coated or only a part of the surface is coated.
  • the amount of carbon to be coated (hereinafter also simply referred to as “coated carbon”) is not particularly limited, but 1 to 5 of lithium iron phosphate coated with carbon (hereinafter also simply referred to as “carbon-coated positive electrode active material”). % By weight is preferable, and 1 to 3% by weight is particularly preferable. If the amount of the coated carbon is less than 1% by weight, sufficient electron conductivity cannot be imparted and load characteristics may not be obtained.
  • the amount of coated carbon and electronic conductivity are in a proportional relationship, but if the amount of coated carbon exceeds 5% by weight, the specific surface area also increases, so the amount of moisture adsorbed increases and the storage characteristics can be reduced. There is sex. Note that, with respect to the positive electrode mixture after drying, the amount of coated carbon is preferably 1 to 6% by weight, and particularly preferably 1 to 4% by weight.
  • the specific surface area of the carbon-coated positive electrode active material is preferably 10 to 20 m 2 / g, particularly preferably 10 to 15 m 2 / g, although it depends on the amount of coated carbon.
  • a conductive auxiliary agent having a large specific surface area may be added to the positive electrode mixture separately from the coated carbon.
  • the conductive assistant it is preferable to use a carbon material, and it is particularly preferable to use a carbon material having a specific surface area of 10 m 2 / g or more.
  • the amount of the conductive auxiliary is not particularly limited, but is preferably 3 to 8% by weight of the positive electrode mixture after drying.
  • the content of the positive electrode active material in the positive electrode mixture is preferably 83 to 92% by weight, particularly preferably 85 to 92% by weight. If it is less than 83% by weight, the content of lithium iron phosphate decreases, the content of carbon having a low true density increases, the electrode density decreases, and the energy density may decrease. On the other hand, if it exceeds 92% by weight, the lithium iron phosphate particles are fine and have a high specific surface area, so the adhesiveness between the particles and between the particles and the current collector foil is weakened, and a structure having sufficient strength is formed. Can be difficult.
  • the binder is preferably used in an amount of 4 to 8% by weight with respect to the positive electrode mixture after drying.
  • the binder is not particularly limited, but it is preferable to use polyvinylidene fluoride (PVdF).
  • the water content in the carbon-coated positive electrode active material depends on the specific surface area and the amount of coated carbon.
  • the specific surface area of the carbon-coated positive electrode active material is 10 to 20 m 2 / g and the amount of coated carbon is 3 to 5% by weight of the carbon-coated positive electrode active material, the water content is 500 to 2000 ppm.
  • the water content is almost saturated at 2000 ppm.
  • the moisture content depends on the storage condition of the material, it is preferable that the moisture content is 300 to 1000 ppm in a state where drying under reduced pressure at 80 ° C. is performed for 6 hours.
  • the positive electrode paint was first mixed with lithium iron phosphate and acetylene black, impregnated with NMP, then added with a PVdF binder solution, kneaded, added with NMP, and adjusted to a predetermined viscosity.
  • the prepared positive electrode paint was applied on an aluminum foil in the range of 100 to 160 g / m 2 and dried at 120 ° C. for 15 minutes to obtain a positive electrode coating film. Thereafter, pressing was performed and the electrode density adjusted between 1.6 and 2.2 g / cm 3 was used as the positive electrode.
  • the negative electrode active material contained in the negative electrode is not particularly limited as long as it is a substance capable of occluding and releasing lithium ions, and various substances can be used. For example, it is preferable to use graphite as the negative electrode active material.
  • a predetermined amount of a paint in which graphite material, binder carboxymethyl cellulose and styrene butadiene rubber are dispersed in an aqueous solution is applied on a copper foil, and dried at 100 ° C. for 15 minutes.
  • the coating amount of the negative electrode is preferably 1/2 to 2/3 of the coating amount of the positive electrode. When less than 1/2 of the coating amount of the positive electrode, the charging depth of the negative electrode is too deep, and the cycle and the storage life are reduced. On the other hand, when it is more than 2/3, the energy density becomes small.
  • the electrode density of the negative electrode is preferably in the range of 1.3 to 1.7 g / cm 3 .
  • the ratio of the active material in the positive electrode to the negative electrode varies depending on the type of the negative electrode active material, but in general, (weight of the positive electrode active material) / (weight of the negative electrode active material) is 1.5 to 3.5. Preferably there is. Within this range, the characteristics of the lithium iron phosphate can be used well. However, as an anode active material, an alloy containing an element that can be alloyed with lithium, or an alloy mainly containing such an element, a lithium-containing composite nitride, and other components such as those materials and a carbonaceous material When the composite is used, the capacity of the negative electrode becomes too large at the above ratio, so it is desirable that (weight of the positive electrode active material) / (weight of the negative electrode active material) be 4 to 7.
  • Nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery according to the present invention includes N, N-dimethylacetamide (DMA), vinylene carbonate (VC), a supporting salt, and an organic solvent (other than DMA and VC). including.
  • N, N-dimethylacetamide and vinylene carbonate in combination, the high temperature storage characteristics can be improved while maintaining the load characteristics of the secondary battery.
  • an organic solvent-based liquid electrolyte in which a supporting salt is dissolved in an organic solvent that is, an electrolytic solution, a polymer electrolyte in which the electrolytic solution is held in a polymer, or the like can be used.
  • N, N-dimethylacetamide functions as a hydrofluoric acid inhibitor and can reduce the influence of moisture mixed in the secondary battery.
  • the content of N, N-dimethylacetamide is 0.01 to 0.7% by weight of the nonaqueous electrolyte from the viewpoint of improving high-temperature storage characteristics while maintaining the load characteristics of the secondary battery, and 0.05 It is preferably from 0.7 to 0.7% by weight, particularly preferably from 0.1 to 0.7% by weight. When the content is less than 0.01% by weight, the high-temperature storage characteristics tend to decrease, and when the content exceeds 0.7% by weight, both the load characteristics and the high-temperature storage characteristics tend to decrease.
  • the content of vinylene carbonate is not particularly limited, but from the viewpoint of improving high-temperature storage characteristics while maintaining the load characteristics of the secondary battery, and from the viewpoint of forming good SEI when using a graphite negative electrode, It is preferably 0.5 to 3% by weight, more preferably 0.5 to 2% by weight, and particularly preferably 0.5 to 1.5% by weight. If it exceeds 3% by weight, the service life is improved, but the SEI film is formed too much, and the load characteristics may not be obtained.
  • the organic solvent contained in the non-aqueous electrolyte is not particularly limited, but preferably contains a chain ester from the viewpoint of load characteristics.
  • chain esters include chain carbonates typified by dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), ethyl acetate, and methyl propionate. These chain esters may be used alone or in admixture of two or more.
  • the chain ester may occupy 50% by volume or more of the total organic solvent.
  • an ester having a high induction rate (induction rate: 30 or more) is mixed with the chain ester.
  • induction rate induction rate: 30 or more
  • Specific examples of such esters include, for example, cyclic carbonates represented by ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, ethylene glycol sulfite, and the like, particularly ethylene carbonate, propylene carbonate, and the like. Cyclic esters are preferred.
  • Such an ester having a high dielectric constant is preferably contained in an amount of 10% by volume or more, particularly 20% by volume or more of the total organic solvent from the viewpoint of discharge capacity. Moreover, from the point of load characteristics, 40 volume% or less is preferable and 30 volume% or less is more preferable.
  • examples of the solvent that can be used in addition to the ester having a high dielectric constant include 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, and diethyl ether.
  • a fluorine-containing organic solvent can also be used.
  • the supporting salt dissolved in an organic solvent for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2) are used alone or in combination of two or more.
  • LiPF 6 and LiC 4 F 9 SO 3 that can obtain good charge / discharge characteristics are preferably used.
  • the concentration of the supporting salt in the nonaqueous electrolyte is not particularly limited, but is preferably about 0.3 to 1.7 mol / dm 3 , particularly about 0.4 to 1.5 mol / dm 3 .
  • LiPF 6 salt is desirable as a supporting salt because it exhibits good load characteristics.
  • Other supporting salts include selective branches such as LiBF 4 , but it is desirable that LiPF 6 be the main component.
  • the mixed organic solvent preferably contains ethylene carbonate and 70 to 80% by volume of a chain carbonate such as dimethyl carbonate or ethyl methyl carbonate.
  • an aromatic compound may be contained in the nonaqueous electrolytic solution.
  • aromatic compound benzenes having an alkyl group such as cyclohexylbenzene or t-butylbenzene, biphenyl, or fluorobenzenes are preferably used.
  • the separator a separator having sufficient strength and capable of retaining a large amount of non-aqueous electrolyte is preferable. From such a viewpoint, the thickness is 5 to 50 ⁇ m, and polypropylene, polyethylene, a copolymer of propylene and ethylene, etc. A polyolefin microporous film or non-woven fabric is preferably used. In particular, when a thin separator of 5 to 20 ⁇ m is used, the characteristics of the battery are likely to deteriorate during charge / discharge cycles and high-temperature storage, but the lithium iron phosphate of the present invention is excellent in stability. Even if such a thin separator is used, the battery can function stably.
  • the lithium iron phosphate positive electrode has high thermal stability, it is possible to provide a lithium ion battery with high thermal stability even when the above polyolefin separator is used.
  • a functional separator that suppresses thermal shrinkage at 150 ° C. or higher by applying 3 to 5 ⁇ m of an oxide such as magnesium oxide or silicon dioxide, the thermal stability of the lithium ion battery can be further improved. Can do.
  • Lithium iron phosphate represented by the composition formula LiFePO 4 consists of 107 g of LiH 2 PO 4 (manufactured by Aldrich), 175 g of FeC 2 O 4 .2H 2 O (manufactured by Kojundo Kagaku) and 16.4 g of dextrin (sum)
  • the zirconia grinding balls were put into a zirconia pot and mixed with a planetary ball mill (manufactured by Frichche) at a rotation speed of 3 levels for 30 minutes.
  • the mixed powder was put into an alumina crucible and calcined at 400 ° C. for 10 hours under an argon flow of 0.3 L / min.
  • the zirconia grinding balls were put into the zirconia pot, rotated at 1 level for 1 minute, crushed, and again put into the alumina crucible, under an argon flow of 0.3 L / min, 700 After firing for 10 hours at °C, the obtained powder was put into a zirconia pot with zirconia grinding balls, rotated at 1 level for 1 minute, crushed, and screened with a 45 ⁇ m mesh. The desired particle size was obtained by adjusting the particle size. As a result of conducting a composition analysis by ICP measurement (manufactured by Shimadzu Corporation), it was Li 1.0 Fe 0.98 P 1.02 O 4 (carbon content: 3.0 wt%).
  • the coating with amorphous carbon was confirmed using a scanning electron microscope (manufactured by Hitachi, Ltd.) and a powder X-ray diffractometer (manufactured by Rigaku Corporation).
  • a fully automatic BET specific surface area measuring device manufactured by Mountec Co., Ltd.
  • vacuum deaeration was performed as a pretreatment at 300 ° C. for 6 hours, and the nitrogen adsorption amount was determined at a liquid nitrogen (77 ° K) temperature.
  • the moisture content was measured using a Karl Fischer moisture meter (manufactured by Kyoto Electronics Industry Co., Ltd.). As a result, the moisture content after vacuum drying at 80 ° C. was 600 ppm.
  • lithium carbonate may be used instead of lithium hydroxide.
  • carbon coated lithium iron phosphate is 87 wt%, and acetylene is used as a conductive aid other than the coated carbon. 6% by weight of black and 7% by weight of PVdF binder were used.
  • the negative electrode As the negative electrode, a natural graphite material having a particle diameter of 20 ⁇ m was used, and 80 g / m 2 of a negative electrode slurry in which carboxymethyl cellulose and styrene butadiene rubber were dispersed in an aqueous solution as a binder was applied and dried at 100 ° C. Then, it pressed so that it might become 1.5 g / cm ⁇ 3 >, and it cut
  • a 18650 size cylindrical battery (diameter: 18 mm, height: 65 mm) was used.
  • Current collector leads made of aluminum and nickel were welded to the positive electrode and negative electrode cut to a predetermined size, respectively, and the separator was wound and assembled using a polyolefin-based porous film having a thickness of 25 ⁇ m.
  • the DC resistance value was measured by the following method in order to evaluate the load characteristics, the capacity retention rate during high temperature storage was determined, and the storage characteristics were evaluated. .
  • the battery was charged at room temperature with a current value of 0.5 CA, an upper limit voltage of 3.6 V, and a final current value of 0.1 CA. Discharge was conducted up to 2.0 V with a current value of 1.0 CA. The capacity at that time was defined as a discharge depth of 0%, and the capacity when charged again under the same conditions was defined as a charge depth of 100%. After discharging at a discharge depth of 50% and leaving it for 1 hour to obtain an open circuit voltage, 1CA, 2CA and 3CA pulses were discharged at room temperature, and a DC resistance was obtained by linear approximation using a closed circuit voltage at the 5th second.
  • the high-temperature storage characteristics are charged to the fully charged state (charging depth 100%) under the above-mentioned charging conditions, stored in a constant temperature bath at 50 ° C. for 10 days, then measured at 1 CA, and the initial capacity as 100%. The maintenance rate was determined.
  • Example 1 Although an Example and a comparative example are shown, the same positive electrode and negative electrode as Example 1 were used, and the production method and evaluation method of both electrodes were also the same as Example 1.
  • Example 2 In the same procedure as in Example 1, 0.1% by weight of N, N-dimethylacetamide as an HF inhibitor was added to a 1% by weight VC solution of 1M LiPF 6 EC / DMC (1/3) as an electrolytic solution. investigated. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
  • Comparative Example 1 In the same procedure as in Example 1, a 1M LiPF 6 EC / DMC (1/3) 1 wt% VC solution was examined as an electrolytic solution. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
  • Comparative Example 2 In the same procedure as in Example 1, as electrolyte, 1 M LiPF 6 EC / DMC (1/3) 1 wt% VC solution containing 1.0 wt% of N, N-dimethylacetamide as HF inhibitor was added. investigated. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
  • Comparative Example 3 In the same procedure as in Example 1, an electrolyte was prepared by adding 2.0% by weight of N, N-dimethylacetamide as an HF inhibitor in a 1M LiPF 6 EC / DMC (1/3) 1% by weight VC solution. investigated. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
  • Comparative Example 4 In the same procedure as in Example 1, an electrolytic solution in which 0.5% by weight of N, N-dimethylacetamide was added to a 1M LiPF 6 EC / DMC (1/3) solution was examined. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
  • Example 1 The results of Examples and Comparative Examples are summarized in Table 1. Moreover, the direct-current resistance value was obtained by comparing the resistance values with Comparative Example 1 as a reference (1.00). The capacity retention rate was summarized as the high temperature storage characteristics.
  • FIG. 2 shows the relationship between the DMA content and the DC resistance value for Example 1 to Comparative Example 3 in order to see the effect of the DMA content with 1% VC as an additive in the electrolyte.
  • FIG. 3 shows the relationship with the capacity maintenance rate.
  • Example 1 when the VC contains or does not contain VC, the VC itself affects the DC resistance value and the high temperature storage characteristics. The effect is different.
  • the DMA content is 0.5%
  • the dependence of the VC on the increase of the DC resistance value is large. Therefore, when the VC is not contained, the DC resistance value is low.
  • the dependence of VC on the high temperature storage characteristics is high, the capacity maintenance rate decreases when VC is not included. From the above, it has been found that by including both VC and DMA, the DC resistance can be effectively lowered and the capacity retention rate can be improved.
  • N, N-dimethylacetamide (DMA) as a hydrofluoric acid inhibitor in an electrolyte containing VC was reduced to 0.
  • DMA N, N-dimethylacetamide

Abstract

The purpose of the present invention is to establish both load characteristics and high temperature storage characteristics for a lithium ion battery that uses a lithium iron phosphate positive electrode. The battery comprises an olivine lithium iron phosphate positive electrode and negative electrode. A battery that maintains a direct current resistance value and for which both output characteristics and high temperature storage characteristics are established is provided by using a nonaqueous electrolyte containing vinylene carbonate and, as a hydrochloric acid controlling agent, 0.01 - 0.7 wt% of a N,N-dimethylacetamide.

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 本発明は、リン酸鉄リチウム正極を用い、高容量化と保存特性を両立した非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery that uses a lithium iron phosphate positive electrode and achieves both high capacity and storage characteristics.
 非水電解質電池の正極活物質としては、従来、コバルト酸リチウムが主流となっている。しかし、その原料であるコバルトは産出量が少なく高価であるので、コバルト酸リチウムを用いると電池の生産コストが高くなる。またコバルト酸リチウムを用いた電池は、充電末期に電池温度が上昇した場合における安全性に課題を有している。 Conventionally, lithium cobalt oxide has been the mainstream as a positive electrode active material for non-aqueous electrolyte batteries. However, since cobalt, which is the raw material, is low in production and expensive, the use of lithium cobaltate increases the production cost of the battery. A battery using lithium cobaltate has a problem in safety when the battery temperature rises at the end of charging.
 このため、コバルト酸リチウムに代わる正極活物質として、現在、マンガン酸リチウムやニッケル酸リチウムなどの利用が検討されているが、マンガン酸リチウムは、十分な放電容量が実現できず、また電池温度が高くなるとマンガンが溶出するなどの問題点を有している。他方、ニッケル酸リチウムは放電電圧が低くなるとともに、充電末期での熱的安定性がより低くなるなどの問題点を有している。 For this reason, the use of lithium manganate, lithium nickelate, etc. as a positive electrode active material instead of lithium cobaltate is currently being studied. However, lithium manganate cannot realize a sufficient discharge capacity, and the battery temperature is low. When it becomes higher, there are problems such as elution of manganese. On the other hand, lithium nickelate has problems such as a lower discharge voltage and lower thermal stability at the end of charging.
 このようなこともあって、最近、発熱量が低く高温時の安定性が高く、金属溶出し難いLiFePOなどのオリビン型リン酸鉄リチウムがコバルト酸リチウムに代替し得る正極活物質として注目されている。 Such that even recently, high stability at high temperature calorific value is low, olivine-type lithium iron phosphate such as metal elution hardly LiFePO 4 has attracted attention as a positive electrode active material can be used in place of lithium cobaltate ing.
 上記オリビン型リン酸リチウムは、一般式がLiMPO(MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素)で表され、その構成金属元素Mの種類によって電池電圧を任意に選定することができる。また、利用容量は140から170mAh/g程度と比較的高いので、単位重量当たりの電池容量を大きくすることができるという利点がある。そして、Mとして鉄及びマンガンを選定した場合、産出量が多く安価であるということから、生産コストを大幅に低減させることができるという利点を有している。 The olivine-type lithium phosphate is represented by a general formula of LiMPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe), and the battery voltage is arbitrarily determined depending on the type of the constituent metal element M. Can be selected. Further, since the use capacity is relatively high at about 140 to 170 mAh / g, there is an advantage that the battery capacity per unit weight can be increased. And when iron and manganese are selected as M, it has the advantage that the production cost can be greatly reduced because the production amount is large and it is inexpensive.
 特に、リン酸鉄リチウムは充電状態でリン酸鉄となり、その構造安定性と充電終止電圧がリチウム金属基準の3.6Vでほぼ100%充電することができることから、有機電解液の主成分として使用される環状及び鎖状カーボネートの分解電位の4.2V以下で100%充電できる。そのため、電解液の分解が抑制でき、耐久性が高い正極活物質として期待されている。 In particular, lithium iron phosphate becomes iron phosphate in the charged state, and its structural stability and end-of-charge voltage can be charged almost 100% at the lithium metal standard 3.6V, so it is used as the main component of organic electrolyte. 100% can be charged at 4.2 V or less of the decomposition potential of the cyclic carbonate and the chain carbonate. Therefore, it is expected as a positive electrode active material that can suppress decomposition of the electrolytic solution and has high durability.
 しかしながら、リン酸鉄リチウムは本来イオン伝導体であるNASICON構造を持つために電子伝導性は乏しく、かつ強固な結晶構造を持つが故に、リチウムイオンの拡散は限定されており、一次元の拡散経路しかないためにリチウムイオンの拡散性も乏しいことが知られている。そのため、抵抗値が高く電池材料には適さない材料であった。 However, lithium iron phosphate has a NASICON structure, which is an ionic conductor, and therefore has a poor electronic conductivity and a strong crystal structure. Therefore, lithium ion diffusion is limited, and a one-dimensional diffusion path. Therefore, it is known that the diffusion of lithium ions is poor. Therefore, the material has a high resistance value and is not suitable for battery materials.
 これらを解決するために、導電性の高い炭素材料でリン酸鉄リチウム粒子表面を被覆させることで、電子導電性を向上させるととともに、粒子サイズを1μm以下にし、反応性経路を短縮させ、反応速度を高める工夫をすることで、電池材料として機能させるという技術が報告されている(特許文献1)。 In order to solve these problems, the surface of lithium iron phosphate particles is coated with a highly conductive carbon material, thereby improving the electronic conductivity, reducing the particle size to 1 μm or less, shortening the reactive path, and reacting. The technique of making it function as a battery material by devising which raises speed has been reported (patent document 1).
特開2002-110162号JP 2002-110162 A 特許第4183403号明細書Japanese Patent No. 4183403
 しかしながら、表面を炭素材料で被覆したリン酸鉄リチウムを使用した場合、電池特性、特に保存特性が低下するという問題が生じる。本発明者らがこの問題について検討したところ、ナノレベルの炭素粒子で表面を被覆したリン酸鉄リチウムの比表面積は10~30m/gと高くなるため、大気中の水分を容易に吸着してしまい、更にその水分はナノサイズの炭素材料の細孔に取り込まれるため、取り除くことは困難となる。従って、リチウムイオン二次電池に混入した水分が電解質のLiPFと反応し、フッ酸が生成することによって、期待する電池特性が得られないと考えられる。 However, when lithium iron phosphate whose surface is coated with a carbon material is used, there arises a problem that battery characteristics, particularly storage characteristics, deteriorate. When the present inventors examined this problem, the specific surface area of lithium iron phosphate whose surface was coated with nano-level carbon particles was as high as 10 to 30 m 2 / g, so that it easily adsorbs moisture in the atmosphere. Furthermore, since the moisture is taken into the pores of the nano-sized carbon material, it is difficult to remove it. Therefore, it is considered that the expected battery characteristics cannot be obtained when water mixed in the lithium ion secondary battery reacts with LiPF 6 as an electrolyte to generate hydrofluoric acid.
 リチウムイオン二次電池に水分が混入すると、水分とLiPFが式(1): 
  LiPF + HO → LiF + PFO + HF  (1)
のように反応し、フッ化リチウムと三フッ化リン酸とともに、フッ酸が生成する。フッ酸は強酸であるため、オリビンFe正極から鉄を溶出させるとともに、負極の保護層である固体電解質界面(Solid Electrolyte Interface:SEI)を溶出させる可能性がある。そのため、充電時にガスが発生し、充放電効率が低下し、耐久性が低下する。
When water is mixed in the lithium ion secondary battery, the water and LiPF 6 are expressed by the formula (1):
LiPF 6 + H 2 O → LiF + PF 3 O + HF (1)
Thus, hydrofluoric acid is produced together with lithium fluoride and trifluorophosphoric acid. Since hydrofluoric acid is a strong acid, iron may be eluted from the olivine Fe positive electrode and a solid electrolyte interface (SEI) that is a protective layer of the negative electrode may be eluted. Therefore, gas is generated during charging, charging / discharging efficiency is reduced, and durability is reduced.
 リン酸鉄リチウムは熱的安定性が高く、高温時に金属が溶出し難いために有用であるが、反応性が低いために電気自動車用電池へ適用するには比表面積を大きくする必要がある。しかしながら、上記の通り、比表面積が大きいと水分が容易に吸着するため、電池内へ水分が混入し、電池特性が低下してしまう。そこで、本発明は、水分の影響を抑制することによって、比表面積の大きいリン酸鉄リチウム正極を用いたリチウムイオン二次電池の負荷特性と高温保存特性を両立させることを目的としている。 鉄 Lithium iron phosphate is useful because it has high thermal stability and it is difficult to elute metals at high temperatures. However, since it has low reactivity, it is necessary to increase the specific surface area for application to batteries for electric vehicles. However, as described above, when the specific surface area is large, moisture is easily adsorbed, so that moisture is mixed into the battery and battery characteristics are deteriorated. Therefore, an object of the present invention is to achieve both load characteristics and high-temperature storage characteristics of a lithium ion secondary battery using a lithium iron phosphate positive electrode having a large specific surface area by suppressing the influence of moisture.
 従来から、高温保存特性を改善するために電解液添加剤としてビニレンカーボネート(VC)を使用し、負極上に被膜を形成させることが知られており、VCの含有率を増やすことで、高温保存特性が向上することが報告されている。しかしながら、この方法では負極に被膜が形成されることから、電解液から負極活物質中へのリチウムイオンの移動が阻害され、直流抵抗値が上昇するという問題が生じる。 Conventionally, it has been known that vinylene carbonate (VC) is used as an electrolytic solution additive to improve high-temperature storage characteristics, and a film is formed on the negative electrode. By increasing the content of VC, high-temperature storage is achieved. It has been reported that the properties are improved. However, in this method, since a film is formed on the negative electrode, there is a problem in that the movement of lithium ions from the electrolytic solution into the negative electrode active material is hindered and the direct current resistance value increases.
 一方、電解液中の水分の影響を除去するためのフッ酸抑制剤としては、トリストリフルオロエチルフォスフェイト(TTFP)、N,N-ジメチルアセトアミド(DMA)、及びn-メチルピロリドン(NMP)が知られている(非特許文献1及び2)。これらのフッ酸抑制剤は、コバルト置換ニッケル酸リチウムLiNi0.8Co0.2正極と黒鉛負極とを組み合わせた電池系において、支持塩としてLiPFを用いた電解液中でのPFイオンと水分との反応を抑制してフッ酸(HF)の生成を抑制し、ビニレンカーボネート(VC)と同様に、高温保存特性を改善させると報告されている。一方、非特許文献2ではDMAを混合溶媒の一部として使用した場合、反応抵抗を増大させると報告されている。特許文献2では、エチレンカーボネート(EC)と同じく、DMAが高誘電率溶媒として負荷特性を改善させることが期待されている。このように、フッ酸抑制剤の電池特性への効能は、適用する電池系、フッ酸抑制剤の種類、電解液中の含有率によって異なる。そのため、フッ酸抑制剤の効能を予測することは非常に困難である。 On the other hand, as a hydrofluoric acid inhibitor for removing the influence of moisture in the electrolyte, tristrifluoroethyl phosphate (TTFP), N, N-dimethylacetamide (DMA), and n-methylpyrrolidone (NMP) are available. It is known (Non-Patent Documents 1 and 2). These hydrofluoric acid inhibitors are PF 5 in an electrolyte solution using LiPF 6 as a supporting salt in a battery system in which a cobalt-substituted lithium nickelate LiNi 0.8 Co 0.2 O 2 positive electrode and a graphite negative electrode are combined. It has been reported that the reaction between ions and moisture is suppressed to suppress the formation of hydrofluoric acid (HF), and the high-temperature storage characteristics are improved as in the case of vinylene carbonate (VC). On the other hand, Non-Patent Document 2 reports that when DMA is used as a part of the mixed solvent, the reaction resistance is increased. In Patent Document 2, as with ethylene carbonate (EC), DMA is expected to improve load characteristics as a high dielectric constant solvent. Thus, the effect of the hydrofluoric acid inhibitor on the battery characteristics varies depending on the battery system to be applied, the type of hydrofluoric acid inhibitor, and the content in the electrolytic solution. Therefore, it is very difficult to predict the efficacy of the hydrofluoric acid inhibitor.
 しかしながら、本発明者らが、リン酸鉄リチウム正極を用いたリチウムイオン二次電池の負荷特性と高温保存特性を両立させることを目的に鋭意検討した結果、非電解質中にビニレンカーボネート、及び所定量のフッ酸抑制剤のN,N-ジメチルアセトアミドを添加することにより、上述の目的を達成できることを見出した。 However, as a result of intensive studies aimed at achieving both load characteristics and high-temperature storage characteristics of lithium ion secondary batteries using lithium iron phosphate positive electrodes, the present inventors have found that vinylene carbonate and a predetermined amount are contained in the non-electrolyte. It was found that the above-mentioned object can be achieved by adding N, N-dimethylacetamide, a hydrofluoric acid inhibitor.
 すなわち、本発明は以下を包含する。 That is, the present invention includes the following.
(1)オリビン型構造を有する組成式LiFe1-XPO
[式中、
 MはNi、Co、Mn、Ti、Zr、及びMoからなる群から選択される少なくとも1種であり、
 xは0≦x<1である]
で表される正極活物質を含む正極;
 リチウムイオンを吸蔵放出可能な負極活物質を含む負極;並びに
 非水電解質;
を有する非水電解質二次電池であって、
 前記正極活物質の表面が炭素で被覆されており、
 前記非水電解質がN,N-ジメチルアセトアミド、ビニレンカーボネート、支持塩、及び有機溶媒を含み、
 前記N,N-ジメチルアセトアミドの含有量が前記非水電解質の0.01~0.7重量%である、前記非水電解質二次電池。
(1) Composition formula LiFe 1-X M x PO 4 having an olivine type structure:
[Where
M is at least one selected from the group consisting of Ni, Co, Mn, Ti, Zr, and Mo;
x is 0 ≦ x <1]
A positive electrode comprising a positive electrode active material represented by:
A negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions; and a non-aqueous electrolyte;
A non-aqueous electrolyte secondary battery comprising:
The surface of the positive electrode active material is coated with carbon,
The non-aqueous electrolyte includes N, N-dimethylacetamide, vinylene carbonate, a supporting salt, and an organic solvent;
The non-aqueous electrolyte secondary battery, wherein a content of the N, N-dimethylacetamide is 0.01 to 0.7% by weight of the non-aqueous electrolyte.
(2)正極活物質の表面を被覆する炭素の量が炭素被覆正極活物質の1~5重量%であり、前記炭素被覆正極活物質の比表面積が10~20m/gであり、前記炭素被覆正極活物質が300~1000ppmの水分を含む、(1)に記載の非水電解質二次電池。 (2) The amount of carbon covering the surface of the positive electrode active material is 1 to 5% by weight of the carbon-coated positive electrode active material, the specific surface area of the carbon-coated positive electrode active material is 10 to 20 m 2 / g, and the carbon The nonaqueous electrolyte secondary battery according to (1), wherein the coated positive electrode active material contains 300 to 1000 ppm of water.
(3)ビニレンカーボネートの含有量が非水電解質の0.5~3重量%である、(1)または(2)に記載の非水電解質二次電池。 (3) The nonaqueous electrolyte secondary battery according to (1) or (2), wherein the content of vinylene carbonate is 0.5 to 3% by weight of the nonaqueous electrolyte.
(4)xが0である、(1)~(3)のいずれかに記載の非水電解質二次電池。 (4) The nonaqueous electrolyte secondary battery according to any one of (1) to (3), wherein x is 0.
(5)リチウムイオンを吸蔵放出可能な負極活物質が黒鉛である、(1)~(4)のいずれかに記載の非水電解質二次電池。 (5) The nonaqueous electrolyte secondary battery according to any one of (1) to (4), wherein the negative electrode active material capable of occluding and releasing lithium ions is graphite.
(6)支持塩がLiPFである、(1)~(5)のいずれかに記載の非水電解質二次電池。 (6) The nonaqueous electrolyte secondary battery according to any one of (1) to (5), wherein the supporting salt is LiPF 6 .
(7)有機溶媒がエチレンカーボネートと鎖状カーボネートとの混合溶媒であり、前記鎖状カーボネートの含有量が前記混合溶媒の70~80体積%である、(1)~(6)のいずれかに記載の非水電解質二次電池。 (7) The organic solvent is a mixed solvent of ethylene carbonate and chain carbonate, and the content of the chain carbonate is 70 to 80% by volume of the mixed solvent. The nonaqueous electrolyte secondary battery as described.
 本発明を適用することより、リン酸鉄リチウム正極の反応抵抗の上昇を抑えつつ、含まれる水分の影響を低減できることから、リン酸鉄リチウム正極を用いた電池の負荷特性を維持しつつ、高温保存特性を向上させることができる。 By applying the present invention, it is possible to reduce the influence of moisture contained while suppressing an increase in the reaction resistance of the lithium iron phosphate positive electrode, while maintaining the load characteristics of the battery using the lithium iron phosphate positive electrode while maintaining a high temperature. Storage characteristics can be improved.
円筒型電池の構造図を示す。A structural diagram of a cylindrical battery is shown. DMA含有率と初期抵抗値との関係を示す。The relationship between DMA content rate and initial resistance value is shown. DMA含有率と高温保存後の容量維持率との関係を示す。The relationship between DMA content rate and the capacity maintenance rate after high temperature storage is shown.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る非水電解質二次電池は、
 オリビン型構造を有する組成式LiFe1-xPO
[式中、
 MはNi、Co、Mn、Ti、Zr、及びMoからなる群から選択される少なくとも1種であり、
 xは0≦x<1である]
で表される正極活物質を含む正極;
 リチウムイオンを吸蔵放出可能な負極活物質を含む負極;並びに
 非水電解質;
を有するものであり、更に、前記正極活物質の表面が炭素で被覆されており、前記非水電解質が、N,N-ジメチルアセトアミド、ビニレンカーボネート、支持塩、及び有機溶媒を含み、前記N,N-ジメチルアセトアミドの含有量が前記非水電解質の0.01~0.7重量%である。
Nonaqueous electrolyte secondary battery according to the present invention,
Compositional formula LiFe 1-x M x PO 4 having an olivine type structure:
[Where
M is at least one selected from the group consisting of Ni, Co, Mn, Ti, Zr, and Mo;
x is 0 ≦ x <1]
A positive electrode comprising a positive electrode active material represented by:
A negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions; and a non-aqueous electrolyte;
And the surface of the positive electrode active material is coated with carbon, and the non-aqueous electrolyte contains N, N-dimethylacetamide, vinylene carbonate, a supporting salt, and an organic solvent, The content of N-dimethylacetamide is 0.01 to 0.7% by weight of the nonaqueous electrolyte.
 従来の正極活物質と比べて、オリビン型構造を有する前記正極活物質は熱的安定性が高く、高温時に金属が溶出し難い。また、単位重量当たりの電池容量を大きくすることが可能であり、更に、その表面を炭素で被覆することにより、電子導電性を向上させることもできる。しかし、炭素による被覆で比表面積が増大すると空気中の水分を容易に吸着し、電池特性が低下するという欠点が存在した。しかし、N,N-ジメチルアセトアミドとビニレンカーボネートを含む非水電解質を使用することで前記欠点を克服することができる。つまり、オリビン型構造を有する前記正極活物質と前記非水電解質とを組み合わせることにより、従来の正極活物質に比べて多くの利点を有する前記正極活物質の機能を十分に発揮させることが可能となる。 Compared with a conventional positive electrode active material, the positive electrode active material having an olivine structure has high thermal stability, and the metal does not easily elute at a high temperature. Moreover, it is possible to increase the battery capacity per unit weight, and furthermore, by covering the surface with carbon, the electronic conductivity can be improved. However, when the specific surface area is increased by coating with carbon, moisture in the air is easily adsorbed, and the battery characteristics are deteriorated. However, the above disadvantage can be overcome by using a non-aqueous electrolyte containing N, N-dimethylacetamide and vinylene carbonate. That is, by combining the positive electrode active material having an olivine type structure and the non-aqueous electrolyte, it is possible to sufficiently exert the function of the positive electrode active material having many advantages over the conventional positive electrode active material. Become.
 本発明の一実施形態としては、図1に示す構成の非水電解質電池を挙げることができる。非水電解質電池は、アルミ箔上に正極活物質と導電助剤の炭素材料とバインダの構成物が膜状に形成された正極と、銅箔上に負極活物質とバインダの構成物が膜状に形成された負極が対向し、セパレータで電気的に隔離された状態で、非水電解質溶液で満たされた構造をしている。正負極は図1に示すように捲回され、所定の金属製容器に収納されている。電池構造は、図に示すような円筒型と角型の金属製容器に収容されているものと、捲回せずに、シート状の正負極電極を積層させた構造があるが、本発明は図1に示す電池構造に限定されるものではない。 As an embodiment of the present invention, a nonaqueous electrolyte battery having the configuration shown in FIG. 1 can be cited. The nonaqueous electrolyte battery includes a positive electrode in which a positive electrode active material, a carbon material of a conductive additive and a binder are formed in a film shape on an aluminum foil, and a negative electrode active material and a binder in a film shape on a copper foil. The structure is filled with a non-aqueous electrolyte solution in a state where the negative electrodes formed on the surface are opposed and electrically isolated by a separator. The positive and negative electrodes are wound as shown in FIG. 1 and stored in a predetermined metal container. There are two types of battery structures, one that is housed in cylindrical and square metal containers as shown in the figure, and the other that is a sheet-like positive and negative electrode layered without being wound. The battery structure shown in FIG.
1.正極
 本発明に係る非水電解質二次電池では、オリビン型構造を有する組成式LiFe1-XPO
[式中、
 MはNi、Co、Mn、Ti、Zr、及びMoからなる群から選択される少なくとも1種であり、
 xは0≦x<1である]
で表される正極活物質を含む正極を使用する。
1. In the nonaqueous electrolyte secondary battery according to the present invention, the composition formula LiFe 1-X M x PO 4 having an olivine structure:
[Where
M is at least one selected from the group consisting of Ni, Co, Mn, Ti, Zr, and Mo;
x is 0 ≦ x <1]
The positive electrode containing the positive electrode active material represented by these is used.
 例えば、リン酸鉄リチウムの鉄の一部をマンガンに置換したリン酸鉄マンガンリチウム(組成式:LiFe1-xMnPO 式中0<x<1)はリン酸鉄リチウムと同じ特徴を持っていることから、正極活物質として使用することができる。また、リン酸鉄リチウム、またはリン酸マンガンリチウムの鉄またはマンガンの一部をTi、Zr及び/またはMoで置換し、反応性を向上させた材料も基本的には同じ特徴を持つことから、正極活物質として使用することができる。更に、リン酸鉄リチウム、またはリン酸マンガンリチウムの鉄またはマンガンの一部をNi及び/またはCoで置換したものも正極活物質として使用することができる(以下、鉄の一部を他の金属元素Mで置換したリン酸鉄リチウムも、単に「リン酸鉄リチウム」と表現する場合がある)。なお、リン酸鉄リチウムの鉄の全てをマンガンに置換したリン酸マンガンリチウム(組成式:LiMnPO)もリン酸鉄リチウムと同じ特徴を持っていることから、正極活物質として使用することができる。 For example, lithium iron manganese phosphate (composition formula: LiFe 1-x Mn x PO 4 where 0 <x <1) in which a part of iron of lithium iron phosphate is substituted with manganese has the same characteristics as lithium iron phosphate. Since it has, it can be used as a positive electrode active material. In addition, since lithium iron phosphate or a part of iron or manganese of lithium manganese phosphate is replaced with Ti, Zr and / or Mo, and the material having improved reactivity basically has the same characteristics, It can be used as a positive electrode active material. Further, lithium iron phosphate, or lithium manganese phosphate in which iron or a part of manganese is substituted with Ni and / or Co can also be used as a positive electrode active material (hereinafter, a part of iron is another metal). The lithium iron phosphate substituted with the element M may also be simply expressed as “lithium iron phosphate”). Note that lithium manganese phosphate (composition formula: LiMnPO 4 ) in which all of iron of lithium iron phosphate is substituted with manganese also has the same characteristics as lithium iron phosphate, and can be used as a positive electrode active material. .
 生産コストの観点からは、xは0≦x≦0.5であることが好ましく、0≦x≦0.3であることがより好ましく、xが0であることが特に好ましい。また、鉄の一部を置換する場合には、MがMnであることが好ましい。 From the viewpoint of production cost, x is preferably 0 ≦ x ≦ 0.5, more preferably 0 ≦ x ≦ 0.3, and particularly preferably x is 0. Moreover, when substituting a part of iron, it is preferable that M is Mn.
 リン酸鉄リチウムは反応活性化するために、平均粒子径が0.5μm以下であることが好ましい。 In order to activate the reaction of lithium iron phosphate, the average particle diameter is preferably 0.5 μm or less.
 電子導電性を付与するために、リン酸鉄リチウムの表面は炭素で被覆されている。ここで、「被覆」とは表面全体が被覆されていること、及び表面の一部のみが被覆されていることのいずれをも意味する。被覆する炭素(以下、単に「被覆炭素」ともいう)の量に特に制限はないが、炭素で被覆されたリン酸鉄リチウム(以下、単に「炭素被覆正極活物質」ともいう)の1~5重量%であることが好ましく、1~3重量%であることが特に好ましい。被覆炭素の量が1重量%未満であると、十分な電子伝導性を付与することができず、負荷特性が得られない可能性がある。一方、被覆炭素の量と電子導電性は比例関係にあるが、被覆炭素の量が5重量%を超えると比表面積も大きくなるため、吸着される水分量が多くなり、保存特性は低下する可能性がある。なお、乾燥後の正極合剤に対しては、被覆炭素の量が1~6重量%であることが好ましく、1~4重量%であることが特に好ましい。 In order to impart electronic conductivity, the surface of lithium iron phosphate is coated with carbon. Here, “coating” means that the entire surface is coated or only a part of the surface is coated. The amount of carbon to be coated (hereinafter also simply referred to as “coated carbon”) is not particularly limited, but 1 to 5 of lithium iron phosphate coated with carbon (hereinafter also simply referred to as “carbon-coated positive electrode active material”). % By weight is preferable, and 1 to 3% by weight is particularly preferable. If the amount of the coated carbon is less than 1% by weight, sufficient electron conductivity cannot be imparted and load characteristics may not be obtained. On the other hand, the amount of coated carbon and electronic conductivity are in a proportional relationship, but if the amount of coated carbon exceeds 5% by weight, the specific surface area also increases, so the amount of moisture adsorbed increases and the storage characteristics can be reduced. There is sex. Note that, with respect to the positive electrode mixture after drying, the amount of coated carbon is preferably 1 to 6% by weight, and particularly preferably 1 to 4% by weight.
 炭素被覆正極活物質の比表面積は、被覆炭素の量などに依存するが、10~20m/gであることが好ましく、10~15m/gであることが特に好ましい。 The specific surface area of the carbon-coated positive electrode active material is preferably 10 to 20 m 2 / g, particularly preferably 10 to 15 m 2 / g, although it depends on the amount of coated carbon.
 十分な電子導電性を付与するために、被覆炭素とは別に、比表面積の大きな導電助剤を正極合剤中に加えてもよい。導電助剤としては炭素材料を使用することが好ましく、比表面積が10m/g以上の炭素材料を使用することが特に好ましい。導電助剤の量は特に制限されないが、乾燥後の正極合剤の3~8重量%であることが好ましい。 In order to give sufficient electronic conductivity, a conductive auxiliary agent having a large specific surface area may be added to the positive electrode mixture separately from the coated carbon. As the conductive assistant, it is preferable to use a carbon material, and it is particularly preferable to use a carbon material having a specific surface area of 10 m 2 / g or more. The amount of the conductive auxiliary is not particularly limited, but is preferably 3 to 8% by weight of the positive electrode mixture after drying.
 正極合剤中の正極活物質の含有率は83~92重量%であることが好ましく、85~92重量%であることが特に好ましい。83重量%未満ではリン酸鉄リチウムの含有率が少なくなるとともに、真密度の低い炭素の含有率が増え、電極密度が下がり、エネルギー密度が下がる可能性がある。一方、92重量%を超えると、リン酸鉄リチウムの粒子が細かく高比表面積であるために、粒子間及び粒子と集電箔界面の接着性が弱まり、十分な強度を持つ構造体を形成することが困難となる可能性がある。 The content of the positive electrode active material in the positive electrode mixture is preferably 83 to 92% by weight, particularly preferably 85 to 92% by weight. If it is less than 83% by weight, the content of lithium iron phosphate decreases, the content of carbon having a low true density increases, the electrode density decreases, and the energy density may decrease. On the other hand, if it exceeds 92% by weight, the lithium iron phosphate particles are fine and have a high specific surface area, so the adhesiveness between the particles and between the particles and the current collector foil is weakened, and a structure having sufficient strength is formed. Can be difficult.
 粒子間及び集電箔界面の密着強度を保持するためには、バインダを、乾燥後の正極合剤に対して、4~8重量%の量で使用することが好ましい。バインダとしては、特に制限されないが、ポリフッ化ビニリデン(PVdF)を使用することが好ましい。 In order to maintain the adhesion strength between the particles and at the current collector foil interface, the binder is preferably used in an amount of 4 to 8% by weight with respect to the positive electrode mixture after drying. The binder is not particularly limited, but it is preferable to use polyvinylidene fluoride (PVdF).
 炭素被覆正極活物質中の水分含有量は比表面積及び被覆炭素の量に依存する。炭素被覆正極活物質の比表面積が10~20m/gであり、被覆炭素の量が炭素被覆正極活物質の3~5重量%である場合、水分含有量は500~2000ppmとなる。水分含有量は少ないほど良いが、表面を炭素で被覆したリン酸鉄リチウム粒子は、大気中の水分を吸着しやすく、500ppm以上の水分を含む。一方で、被覆炭素の量にもよるが、水分量は2000ppmでほぼ飽和する。それ以上の水分を含む場合には、リン酸鉄リチウムは水分と反応し、リン化鉄などが生成するため、その正極活物質としての特性は低下してしまう。また、水分含有量は材料の保管状況によって左右されることから、80℃で減圧乾燥を6時間実施した状態で、水分含有量が300~1000ppmであるものが好ましい。 The water content in the carbon-coated positive electrode active material depends on the specific surface area and the amount of coated carbon. When the specific surface area of the carbon-coated positive electrode active material is 10 to 20 m 2 / g and the amount of coated carbon is 3 to 5% by weight of the carbon-coated positive electrode active material, the water content is 500 to 2000 ppm. The lower the moisture content, the better, but the lithium iron phosphate particles whose surface is coated with carbon are easy to adsorb moisture in the atmosphere and contain 500 ppm or more of moisture. On the other hand, depending on the amount of coated carbon, the water content is almost saturated at 2000 ppm. When it contains more moisture, lithium iron phosphate reacts with moisture to produce iron phosphide and the like, and its properties as a positive electrode active material are degraded. In addition, since the moisture content depends on the storage condition of the material, it is preferable that the moisture content is 300 to 1000 ppm in a state where drying under reduced pressure at 80 ° C. is performed for 6 hours.
 正極塗料は、はじめにリン酸鉄リチウムとアセチレンブラックを混合し、NMPを加えて含浸させた後、PVdFバインダ溶液を加えて、混練し、NMPを追加し、所定の粘度に調整した。作製した正極塗料をアルミニウム箔上に100~160g/mの範囲で塗布して、120℃で15分間乾燥させて正極塗膜とした。その後、プレスし、電極密度を1.6~2.2g/cmの間で調整したものを正極とした。 The positive electrode paint was first mixed with lithium iron phosphate and acetylene black, impregnated with NMP, then added with a PVdF binder solution, kneaded, added with NMP, and adjusted to a predetermined viscosity. The prepared positive electrode paint was applied on an aluminum foil in the range of 100 to 160 g / m 2 and dried at 120 ° C. for 15 minutes to obtain a positive electrode coating film. Thereafter, pressing was performed and the electrode density adjusted between 1.6 and 2.2 g / cm 3 was used as the positive electrode.
2.負極
 負極に含まれる負極活物質としては、リチウムイオンを吸蔵放出可能な物質であれば特に制限されず、様々な物質を使用することができる。例えば、負極活物質として黒鉛を使用することが好ましい。
2. The negative electrode active material contained in the negative electrode is not particularly limited as long as it is a substance capable of occluding and releasing lithium ions, and various substances can be used. For example, it is preferable to use graphite as the negative electrode active material.
 本発明の一実施形態としては、黒鉛材料と、結着剤であるカルボキシメチルセルロースとスチレンブタジエンゴムを水溶液中に分散した塗料を、銅箔上に所定量を塗布し、100℃で15分間乾燥させたものを負極として使用する。負極の塗布量は正極の塗布量の1/2~2/3であることが好ましい。正極の塗布量の1/2より少ないと、負極の充電深度が深すぎて、サイクル及び保存寿命が低下する。一方、2/3より多いとエネルギー密度が小さくなる。負極の電極密度は1.3~1.7g/cmの範囲が好ましい。1.3g/cmより小さいとエネルギー密度が小さくなる。一方、1.7g/cmより大きいと電極内空孔が少なくなり、電解液の含有量が減り、リチウム反応量が減り、電流が流れ難くなる。 As one embodiment of the present invention, a predetermined amount of a paint in which graphite material, binder carboxymethyl cellulose and styrene butadiene rubber are dispersed in an aqueous solution is applied on a copper foil, and dried at 100 ° C. for 15 minutes. Is used as the negative electrode. The coating amount of the negative electrode is preferably 1/2 to 2/3 of the coating amount of the positive electrode. When less than 1/2 of the coating amount of the positive electrode, the charging depth of the negative electrode is too deep, and the cycle and the storage life are reduced. On the other hand, when it is more than 2/3, the energy density becomes small. The electrode density of the negative electrode is preferably in the range of 1.3 to 1.7 g / cm 3 . If it is less than 1.3 g / cm 3 , the energy density becomes small. On the other hand, when it is larger than 1.7 g / cm 3 , the number of vacancies in the electrode decreases, the content of the electrolytic solution decreases, the amount of lithium reaction decreases, and the current hardly flows.
 正極と負極における活物質の比率としては、負極活物質の種類によっても異なるが、一般的には、(正極活物質の重量)/(負極活物質の重量)が1.5~3.5であることが好ましい。この範囲内であると、上記リン酸鉄リチウムの特性をうまく利用することができる。ただし、負極活物質として、リチウムとの合金化が可能な元素を含む合金、あるいはそれらの元素を主体として含む合金、リチウム含有複合窒化物、及びそれらの材料と炭素質材料などの他の構成要素との複合体を用いる場合には、上記比率では負極の容量が大きくなりすぎるため、(正極活物質の重量)/(負極活物質の重量)を4~7とするのが望ましい。 The ratio of the active material in the positive electrode to the negative electrode varies depending on the type of the negative electrode active material, but in general, (weight of the positive electrode active material) / (weight of the negative electrode active material) is 1.5 to 3.5. Preferably there is. Within this range, the characteristics of the lithium iron phosphate can be used well. However, as an anode active material, an alloy containing an element that can be alloyed with lithium, or an alloy mainly containing such an element, a lithium-containing composite nitride, and other components such as those materials and a carbonaceous material When the composite is used, the capacity of the negative electrode becomes too large at the above ratio, so it is desirable that (weight of the positive electrode active material) / (weight of the negative electrode active material) be 4 to 7.
3.非水電解質
 本発明に係る非水電解質二次電池に使用する非水電解質は、N,N-ジメチルアセトアミド(DMA)、ビニレンカーボネート(VC)、支持塩、及び(DMA及びVC以外の)有機溶媒を含む。N,N-ジメチルアセトアミドとビニレンカーボネートを併用することで二次電池の負荷特性を維持しつつ、高温保存特性を向上させることができる。非水電解質としては、有機溶媒に支持塩を溶解させた有機溶媒系の液状電解質すなわち電解液や、前記電解液をポリマー中に保持させたポリマー電解質などを用いることができる。
3. Nonaqueous electrolyte The nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery according to the present invention includes N, N-dimethylacetamide (DMA), vinylene carbonate (VC), a supporting salt, and an organic solvent (other than DMA and VC). including. By using N, N-dimethylacetamide and vinylene carbonate in combination, the high temperature storage characteristics can be improved while maintaining the load characteristics of the secondary battery. As the non-aqueous electrolyte, an organic solvent-based liquid electrolyte in which a supporting salt is dissolved in an organic solvent, that is, an electrolytic solution, a polymer electrolyte in which the electrolytic solution is held in a polymer, or the like can be used.
 N,N-ジメチルアセトアミドはフッ酸抑制剤として機能し、二次電池内に混入した水分の影響を小さくすることができる。N,N-ジメチルアセトアミドの含有量は、二次電池の負荷特性を維持しつつ、高温保存特性を向上させる観点から、非水電解質の0.01~0.7重量%であり、0.05~0.7重量%であることが好ましく、0.1~0.7重量%であることが特に好ましい。含有量が0.01重量%未満であると、高温保存特性が低下する傾向にあり、0.7重量%を超えると、負荷特性及び高温保存特性が共に低下する傾向にある。 N, N-dimethylacetamide functions as a hydrofluoric acid inhibitor and can reduce the influence of moisture mixed in the secondary battery. The content of N, N-dimethylacetamide is 0.01 to 0.7% by weight of the nonaqueous electrolyte from the viewpoint of improving high-temperature storage characteristics while maintaining the load characteristics of the secondary battery, and 0.05 It is preferably from 0.7 to 0.7% by weight, particularly preferably from 0.1 to 0.7% by weight. When the content is less than 0.01% by weight, the high-temperature storage characteristics tend to decrease, and when the content exceeds 0.7% by weight, both the load characteristics and the high-temperature storage characteristics tend to decrease.
 ビニレンカーボネートの含有量は特に制限されないが、二次電池の負荷特性を維持しつつ、高温保存特性を向上させる観点、及び黒鉛負極を用いる場合に良好なSEIを形成させる観点から、非水電解質の0.5~3重量%であることが好ましく、0.5~2重量%であることがより好ましく、0.5~1.5重量%であることが特に好ましい。3重量%を超えると、寿命は向上するが、SEI被膜が形成されすぎて、負荷特性が得られなくなる可能性がある。 The content of vinylene carbonate is not particularly limited, but from the viewpoint of improving high-temperature storage characteristics while maintaining the load characteristics of the secondary battery, and from the viewpoint of forming good SEI when using a graphite negative electrode, It is preferably 0.5 to 3% by weight, more preferably 0.5 to 2% by weight, and particularly preferably 0.5 to 1.5% by weight. If it exceeds 3% by weight, the service life is improved, but the SEI film is formed too much, and the load characteristics may not be obtained.
 非水電解質に含まれる有機溶媒は特に限定されるものではないが、負荷特性の点からは鎖状エステルを含んでいることが好ましい。そのような鎖状エステルとしては、たとえば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)に代表される鎖状のカーボネートや、酢酸エチル、プロピオン酸メチルなどが挙げられる。これらの鎖状エステルは、単独でもあるいは2種以上を混合して用いてもよく、特に、低温特性の改善のためには、上記鎖状エステルが全有機溶媒の50体積%以上を占めることが好ましく、特に鎖状エステルが全有機溶媒の65体積%以上を占めることが好ましい。 The organic solvent contained in the non-aqueous electrolyte is not particularly limited, but preferably contains a chain ester from the viewpoint of load characteristics. Examples of such chain esters include chain carbonates typified by dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC), ethyl acetate, and methyl propionate. These chain esters may be used alone or in admixture of two or more. In particular, in order to improve the low temperature characteristics, the chain ester may occupy 50% by volume or more of the total organic solvent. In particular, it is preferable that the chain ester occupies 65% by volume or more of the total organic solvent.
 ただし、有機溶媒としては、上記鎖状エステルのみで構成するよりも、放電容量の向上を図るために、上記鎖状エステルに誘導率の高い(誘導率:30以上)エステルを混合して用いることが好ましい。このようなエステルの具体例としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートに代表される環状のカーボネートや、γ-ブチロラクトン、エチレングリコールサルファイトなどが挙げられ、特にエチレンカーボネート、プロピレンカーボネートなどの環状構造のエステルが好ましい。 However, as an organic solvent, in order to improve the discharge capacity, compared with the chain ester alone, an ester having a high induction rate (induction rate: 30 or more) is mixed with the chain ester. Is preferred. Specific examples of such esters include, for example, cyclic carbonates represented by ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, and the like, particularly ethylene carbonate, propylene carbonate, and the like. Cyclic esters are preferred.
 そのような誘電率の高いエステルは、放電容量の点から、全有機溶媒の10体積%以上、特に20体積%以上含有されることが好ましい。また、負荷特性の点からは、40体積%以下が好ましく、30体積%以下がより好ましい。 Such an ester having a high dielectric constant is preferably contained in an amount of 10% by volume or more, particularly 20% by volume or more of the total organic solvent from the viewpoint of discharge capacity. Moreover, from the point of load characteristics, 40 volume% or less is preferable and 30 volume% or less is more preferable.
 また、上記誘電率の高いエステル以外に併用可能な溶媒としては、たとえば、1,2-ジメトキシエタン、1,3-ジオキソラン、テトラヒドロフラン、2-メチル-テトラヒドロフラン、ジエチルエーテルなどが挙げられる。そのほか、含フッ素系有機溶媒なども用いることができる。 Further, examples of the solvent that can be used in addition to the ester having a high dielectric constant include 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, and diethyl ether. In addition, a fluorine-containing organic solvent can also be used.
 有機溶媒に溶解させる支持塩としては、たとえば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)などが単独でまたは2種以上混合して用いられる。なかでも、良好な充放電特性が得られるLiPFやLiCSOなどが好ましく用いられる。非水電解質中における支持塩の濃度は、特に限定されるものではないが、0.3~1.7mol/dm、特に0.4~1.5mol/dm程度が好ましい。 The supporting salt dissolved in an organic solvent, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2) are used alone or in combination of two or more. Among these, LiPF 6 and LiC 4 F 9 SO 3 that can obtain good charge / discharge characteristics are preferably used. The concentration of the supporting salt in the nonaqueous electrolyte is not particularly limited, but is preferably about 0.3 to 1.7 mol / dm 3 , particularly about 0.4 to 1.5 mol / dm 3 .
 これらの中でも、LiPF塩は良好な負荷特性を示すため、支持塩として望ましい。他の支持塩としてLiBFなどの選択枝があるが、LiPFを主成分とすることが望ましい。また、実用的な負荷特性を持たせるため、混合有機溶媒にエチレンカーボネート、及び70~80体積%のジメチルカーボネートまたはエチルメチルカーボネートなどの鎖状カーボネートが含まれていることが好ましい。 Among these, LiPF 6 salt is desirable as a supporting salt because it exhibits good load characteristics. Other supporting salts include selective branches such as LiBF 4 , but it is desirable that LiPF 6 be the main component. In order to give practical load characteristics, the mixed organic solvent preferably contains ethylene carbonate and 70 to 80% by volume of a chain carbonate such as dimethyl carbonate or ethyl methyl carbonate.
 また、電池の安全性や貯蔵特性を向上させるために、非水電解液に芳香族化合物を含有させてもよい。芳香族化合物としては、シクロヘキシルベンゼンやt-ブチルベンゼンなどのアルキル基を有するベンゼン類、ビフェニル、あるいはフルオロベンゼン類が好ましく用いられる。 Moreover, in order to improve the safety and storage characteristics of the battery, an aromatic compound may be contained in the nonaqueous electrolytic solution. As the aromatic compound, benzenes having an alkyl group such as cyclohexylbenzene or t-butylbenzene, biphenyl, or fluorobenzenes are preferably used.
4.セパレータ
 セパレータとしては、強度が充分でしかも非水電解質を多く保持できるものがよく、そのような観点から、5~50μmの厚さで、ポリプロピレン製、ポリエチレン製、プロピレンとエチレンとの共重合体などポリオレフィン製の微孔性フィルムや不織布などが好ましく用いられる。特に、5~20μmと薄いセパレータを用いた場合には、充放電サイクルや高温貯蔵などにおいて電池の特性が劣化しやすくなるが、本発明のリン酸鉄リチウムは安定性に優れているため、このような薄いセパレータを用いても安定して電池を機能させることができる。
4). As the separator, a separator having sufficient strength and capable of retaining a large amount of non-aqueous electrolyte is preferable. From such a viewpoint, the thickness is 5 to 50 μm, and polypropylene, polyethylene, a copolymer of propylene and ethylene, etc. A polyolefin microporous film or non-woven fabric is preferably used. In particular, when a thin separator of 5 to 20 μm is used, the characteristics of the battery are likely to deteriorate during charge / discharge cycles and high-temperature storage, but the lithium iron phosphate of the present invention is excellent in stability. Even if such a thin separator is used, the battery can function stably.
 リン酸鉄リチウム正極は熱的安定性が高いことから、上記のポリオレフィン系セパレータを用いても熱的安定性の高いリチウムイオン電池を提供することができるが、そのポリオレフィン系セパレータの表面に酸化アルミニウム、酸化マグネシウム、二酸化珪素などの酸化物を3~5μm塗布して150℃以上での熱収縮を抑えた機能性セパレータを適用することで、そのリチウムイオン電池の熱的安定性をさらに向上させることができる。 Since the lithium iron phosphate positive electrode has high thermal stability, it is possible to provide a lithium ion battery with high thermal stability even when the above polyolefin separator is used. By further applying a functional separator that suppresses thermal shrinkage at 150 ° C. or higher by applying 3 to 5 μm of an oxide such as magnesium oxide or silicon dioxide, the thermal stability of the lithium ion battery can be further improved. Can do.
 以下に本発明の実施例に関して説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。 Hereinafter, examples of the present invention will be described. However, this invention is not limited only to those Examples.
実施例1
 組成式LiFePOで表されるリン酸鉄リチウムは、107gのLiHPO(アルドリッチ製)と175gのFeC・2HO(高純度化学社製)と16.4gのデキストリン(和光純薬社製)を、ジルコニア製ポットにジルコニア製粉砕用ボールを投入し、遊星型ボールミル(フリッチェ社製)を用いて、回転数は3レベルで30分間混合した。その混合粉体をアルミナ製ルツボに投入して、0.3L/minのアルゴン流下で、400℃で10時間仮焼成を行った。再度、ジルコニア製ポットにジルコニア製粉砕用ボールを投入し、回転数は1レベルで1分間回転させ、解砕し、再度アルミナ製ルツボへ投入して、0.3L/minのアルゴン流下で、700℃で10時間本焼成を行った後、得られた粉体をジルコニア製ポットにジルコニア製粉砕用ボールを投入し、回転数は1レベルで1分間回転させ、解砕し、45μmのメッシュの篩で粒度調整を行い、目的の材料を得た。ICP測定(島津製作所社製)により、組成分析を実施した結果、Li1.0Fe0.981.02(炭素含有率:3.0重量%)であった。非晶質炭素で被覆されたことは、走査型電子顕微鏡(日立製作所社製)と、粉末X線回折装置(リガク社製)を用いて確認した。B.E.T法によって低温低湿条件下での窒素吸着量から、その比表面積を測定した結果、15m/gであった。測定には、全自動BET比表面積測定装置(マウンテック社製)を用い、前処理として真空脱気を300℃で6時間行い、液体窒素(77°K)温度下で窒素吸着量から求めた。また、水分量は、カールフィッシャー水分量計(京都電子工業社製)を用いて測定した結果、80℃真空乾燥後の水分量は600ppmであった。ここで、水酸化リチウムの代わりに炭酸リチウムを用いてもよい。
Example 1
Lithium iron phosphate represented by the composition formula LiFePO 4 consists of 107 g of LiH 2 PO 4 (manufactured by Aldrich), 175 g of FeC 2 O 4 .2H 2 O (manufactured by Kojundo Kagaku) and 16.4 g of dextrin (sum) The zirconia grinding balls were put into a zirconia pot and mixed with a planetary ball mill (manufactured by Frichche) at a rotation speed of 3 levels for 30 minutes. The mixed powder was put into an alumina crucible and calcined at 400 ° C. for 10 hours under an argon flow of 0.3 L / min. Again, the zirconia grinding balls were put into the zirconia pot, rotated at 1 level for 1 minute, crushed, and again put into the alumina crucible, under an argon flow of 0.3 L / min, 700 After firing for 10 hours at ℃, the obtained powder was put into a zirconia pot with zirconia grinding balls, rotated at 1 level for 1 minute, crushed, and screened with a 45 μm mesh. The desired particle size was obtained by adjusting the particle size. As a result of conducting a composition analysis by ICP measurement (manufactured by Shimadzu Corporation), it was Li 1.0 Fe 0.98 P 1.02 O 4 (carbon content: 3.0 wt%). The coating with amorphous carbon was confirmed using a scanning electron microscope (manufactured by Hitachi, Ltd.) and a powder X-ray diffractometer (manufactured by Rigaku Corporation). B. E. The specific surface area was measured from the amount of nitrogen adsorbed under low temperature and low humidity conditions by the T method, and as a result, it was 15 m 2 / g. For the measurement, a fully automatic BET specific surface area measuring device (manufactured by Mountec Co., Ltd.) was used, and vacuum deaeration was performed as a pretreatment at 300 ° C. for 6 hours, and the nitrogen adsorption amount was determined at a liquid nitrogen (77 ° K) temperature. Further, the moisture content was measured using a Karl Fischer moisture meter (manufactured by Kyoto Electronics Industry Co., Ltd.). As a result, the moisture content after vacuum drying at 80 ° C. was 600 ppm. Here, lithium carbonate may be used instead of lithium hydroxide.
 リン酸鉄リチウム、炭素、バインダがそれぞれ85重量%、8重量%、7重量%となるように配合するために、炭素被覆リン酸鉄リチウムを87重量%、被覆炭素以外の導電助剤としてアセチレンブラックを6重量%、PVdFバインダを7重量%使用した。 In order to blend lithium iron phosphate, carbon, and binder at 85 wt%, 8 wt%, and 7 wt%, respectively, carbon coated lithium iron phosphate is 87 wt%, and acetylene is used as a conductive aid other than the coated carbon. 6% by weight of black and 7% by weight of PVdF binder were used.
 小型混練機を用いて、炭素被覆リン酸鉄リチウムとアセチレンブラックを混合し、PVdF含有のNMP溶液を加えて、塗料化させたものを、アルミ箔上に150g/m塗布し、120℃で乾燥させた。その後、電極密度を1.7g/cmになるようにプレスし、所定のサイズに裁断し正極を作製した。 Using a small kneader, carbon coated lithium iron phosphate and acetylene black were mixed, PVdF-containing NMP solution was added, and the resulting coating was applied to aluminum foil at 150 g / m 2 at 120 ° C. Dried. Then, it pressed so that an electrode density might be set to 1.7 g / cm < 3 >, and it cut | judged to the predetermined size, and produced the positive electrode.
 負極は、粒径20μmの天然黒鉛材を用い、バインダとしてカルボキシメチルセルロースとスチレンブタジエンゴムを水溶液中に分散した負極スラリを80g/m塗布し、100℃で乾燥させた。その後、1.5g/cmになるようにプレスし、所定のサイズに裁断し負極を作製した。 As the negative electrode, a natural graphite material having a particle diameter of 20 μm was used, and 80 g / m 2 of a negative electrode slurry in which carboxymethyl cellulose and styrene butadiene rubber were dispersed in an aqueous solution as a binder was applied and dried at 100 ° C. Then, it pressed so that it might become 1.5 g / cm < 3 >, and it cut | judged to the predetermined size, and produced the negative electrode.
 電池評価は、18650サイズの円筒型電池(径:18mm、高さ:65mm)を用いた。所定のサイズに裁断した正極、負極に各々アルミニウムとニッケル製の集電リードを溶接し、セパレータは25μm厚みのポリオレフィン系多孔質膜を用いて、捲回し、組立てた。 For the battery evaluation, a 18650 size cylindrical battery (diameter: 18 mm, height: 65 mm) was used. Current collector leads made of aluminum and nickel were welded to the positive electrode and negative electrode cut to a predetermined size, respectively, and the separator was wound and assembled using a polyolefin-based porous film having a thickness of 25 μm.
 電解液として、1M LiPF EC/DMC(1/3) 1重量%VC溶液中にHF抑制剤としてN,N-ジメチルアセトアミドを0.5重量%加えたものを検討した。その電解液量は5~6mlになるように調整した。 As an electrolytic solution, a 1M LiPF 6 EC / DMC (1/3) 1 wt% VC solution in which 0.5 wt% of N, N-dimethylacetamide was added as an HF inhibitor was examined. The amount of the electrolyte was adjusted to 5 to 6 ml.
 上記の構成で得られた18650円筒型評価電池を用いて、負荷特性を評価するために直流抵抗値を下記手法で測定し、高温保存時の容量維持率を求め、保存特性の評価を行った。 Using the 18650 cylindrical evaluation battery obtained in the above configuration, the DC resistance value was measured by the following method in order to evaluate the load characteristics, the capacity retention rate during high temperature storage was determined, and the storage characteristics were evaluated. .
 室温で充電は電流値0.5CAとして、上限電圧を3.6Vとし、0.1CAの終止電流値になるまで充電した。放電は1.0CAの電流値で2.0Vまで通電させた。その時の容量を放電深度0%として、再度同じ条件で充電した際の容量を充電深度100%とした。放電深度50%に放電し、1時間放置し、開回路電圧としてから、室温で1CA、2CA、3CAパルス放電し、5秒目閉回路電圧を用いて直線近似で直流抵抗を求めた。 The battery was charged at room temperature with a current value of 0.5 CA, an upper limit voltage of 3.6 V, and a final current value of 0.1 CA. Discharge was conducted up to 2.0 V with a current value of 1.0 CA. The capacity at that time was defined as a discharge depth of 0%, and the capacity when charged again under the same conditions was defined as a charge depth of 100%. After discharging at a discharge depth of 50% and leaving it for 1 hour to obtain an open circuit voltage, 1CA, 2CA and 3CA pulses were discharged at room temperature, and a DC resistance was obtained by linear approximation using a closed circuit voltage at the 5th second.
 高温保存特性は、上記充電条件で満充電状態(充電深度100%)まで充電し、50℃の恒温槽に10日間保管し、その後の1CAでの容量を測定し、初期容量を100%として容量維持率を求めた。 The high-temperature storage characteristics are charged to the fully charged state (charging depth 100%) under the above-mentioned charging conditions, stored in a constant temperature bath at 50 ° C. for 10 days, then measured at 1 CA, and the initial capacity as 100%. The maintenance rate was determined.
 以下、実施例及び比較例を示すが、実施例1と同じ正極及び負極を用い、両電極の作製方法及び評価方法も実施例1と同じくした。 Hereinafter, although an Example and a comparative example are shown, the same positive electrode and negative electrode as Example 1 were used, and the production method and evaluation method of both electrodes were also the same as Example 1.
実施例2
 実施例1と同じ手順で、電解液として、1M LiPF EC/DMC(1/3) 1重量%VC溶液中にHF抑制剤としてN,N-ジメチルアセトアミドを0.1重量%加えたものを検討した。作製した18650型試作電池は、実施例1に記述した方法で、直流抵抗値と高温保存特性を評価した。
Example 2
In the same procedure as in Example 1, 0.1% by weight of N, N-dimethylacetamide as an HF inhibitor was added to a 1% by weight VC solution of 1M LiPF 6 EC / DMC (1/3) as an electrolytic solution. investigated. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
比較例1
 実施例1と同じ手順で、電解液として、1M LiPF EC/DMC(1/3) 1重量%VC溶液を検討した。作製した18650型試作電池は、実施例1に記述した方法で、直流抵抗値と高温保存特性を評価した。
Comparative Example 1
In the same procedure as in Example 1, a 1M LiPF 6 EC / DMC (1/3) 1 wt% VC solution was examined as an electrolytic solution. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
比較例2
 実施例1と同じ手順で、電解液として、1M LiPF EC/DMC(1/3) 1重量%VC溶液中にHF抑制剤としてN,N-ジメチルアセトアミドを1.0重量%加えたものを検討した。作製した18650型試作電池は、実施例1に記述した方法で、直流抵抗値と高温保存特性を評価した。
Comparative Example 2
In the same procedure as in Example 1, as electrolyte, 1 M LiPF 6 EC / DMC (1/3) 1 wt% VC solution containing 1.0 wt% of N, N-dimethylacetamide as HF inhibitor was added. investigated. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
比較例3
 実施例1と同じ手順で、電解液として、1M LiPF EC/DMC(1/3) 1重量%VC溶液中にHF抑制剤としてN,N-ジメチルアセトアミドを2.0重量%加えたものを検討した。作製した18650型試作電池は、実施例1に記述した方法で、直流抵抗値と高温保存特性を評価した。
Comparative Example 3
In the same procedure as in Example 1, an electrolyte was prepared by adding 2.0% by weight of N, N-dimethylacetamide as an HF inhibitor in a 1M LiPF 6 EC / DMC (1/3) 1% by weight VC solution. investigated. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
比較例4
 実施例1と同じ手順で、電解液として、1M LiPF EC/DMC(1/3)溶液中にN,N-ジメチルアセトアミドを0.5重量%加えたものを検討した。作製した18650型試作電池は、実施例1に記述した方法で、直流抵抗値と高温保存特性を評価した。
Comparative Example 4
In the same procedure as in Example 1, an electrolytic solution in which 0.5% by weight of N, N-dimethylacetamide was added to a 1M LiPF 6 EC / DMC (1/3) solution was examined. The produced 18650 type prototype battery was evaluated for DC resistance and high-temperature storage characteristics by the method described in Example 1.
 実施例と比較例の結果を表1にまとめる。また、その直流抵抗値は、比較例1を基準(1.00)として、その抵抗値を比較した値をまとめた。高温保存特性として、容量維持率をまとめた。電解液中に添加剤としてVCを1%含有した状態で、DMAの含有率の効果を見るために、実施例1から比較例3について、DMA含有率と直流抵抗値との関係を図2に、容量維持率との関係を図3に示す。 The results of Examples and Comparative Examples are summarized in Table 1. Moreover, the direct-current resistance value was obtained by comparing the resistance values with Comparative Example 1 as a reference (1.00). The capacity retention rate was summarized as the high temperature storage characteristics. FIG. 2 shows the relationship between the DMA content and the DC resistance value for Example 1 to Comparative Example 3 in order to see the effect of the DMA content with 1% VC as an additive in the electrolyte. FIG. 3 shows the relationship with the capacity maintenance rate.
 図2から見て取れるように、DMAの含有率が0%(比較例1)である場合、直流抵抗値は最も低い。そして、0.5%までは直流抵抗値は大幅に大きくならず、1.03で保持している。そして、DMA含有率が1%(比較例2)では、その値は1.10となり、さらに、DMA含有率が2%(比較例3)の場合、直流抵抗値は1.25と急激に大きくなることがわかった。つまり、DMA含有率が0.5%以下であれば、DMAによる直流抵抗値は若干大きくなるものの、大幅な上昇は認められず、負荷特性が低下することはない。一方で、DMAの含有率が0.5%より大きい場合、直流抵抗値は極端に上昇し、負荷特性は大幅に低下する傾向がある。これは、所定量のDMAがフッ酸抑制に機能し、残ったDMAが電極上で分解し、被膜を形成するためであると考えている。 As can be seen from FIG. 2, when the DMA content is 0% (Comparative Example 1), the DC resistance value is the lowest. The DC resistance value is not significantly increased up to 0.5% and is maintained at 1.03. When the DMA content is 1% (Comparative Example 2), the value is 1.10. When the DMA content is 2% (Comparative Example 3), the DC resistance value is rapidly increased to 1.25. I found out that That is, if the DMA content is 0.5% or less, the direct current resistance value due to DMA is slightly increased, but no significant increase is observed, and the load characteristics are not deteriorated. On the other hand, when the DMA content is higher than 0.5%, the direct current resistance value is extremely increased, and the load characteristics tend to be significantly decreased. This is because a predetermined amount of DMA functions to suppress hydrofluoric acid, and the remaining DMA decomposes on the electrode to form a film.
 一方で、高温保存特性は、図3に示すように、DMA含有率が0%(比較例1)から0.5%(実施例1)まで増加させた場合、容量維持率は85から92%まで向上し、さらにDMA含有率を増加させた場合、逆に容量維持率は降下し、DMA含有率が1%(比較例2)では80%、DMA含有率が2%(比較例3)の場合には70%にまで低下することがわかった。以上のことから、DMA含有率が0.5%以下までは、高温保存特性が改善するが、それ以上では低下する傾向がある。DMA含有率が約1.0%では、DMAの効果は無くなり、その容量維持率は含有率が0%との時とほぼ同じ値を示した。つまり、DMAがフッ酸抑制に機能し、残ったDMAは、図2に示すように直流抵抗が増加させるため、1CA電流で取り出せる容量が減り、結果として容量維持率が低下したと考えている。 On the other hand, as shown in FIG. 3, when the DMA content is increased from 0% (Comparative Example 1) to 0.5% (Example 1), the capacity retention rate is 85 to 92%. When the DMA content is further increased, the capacity retention rate is decreased, and the DMA content is 80% when the DMA content is 1% (Comparative Example 2) and 2% (Comparative Example 3). In some cases, it has been found to decrease to 70%. From the above, when the DMA content is 0.5% or less, the high-temperature storage characteristics are improved, but when the DMA content is more than that, it tends to decrease. When the DMA content was about 1.0%, the effect of DMA disappeared, and the capacity retention rate was almost the same as when the content was 0%. In other words, the DMA functions to suppress hydrofluoric acid, and the remaining DMA increases the direct current resistance as shown in FIG. 2, so that the capacity that can be taken out with 1 CA current decreases, and as a result, the capacity maintenance rate decreases.
 さらに、表1にまとめた実施例1と比較例4の結果から、電解液中にVCを含有する場合としない場合では、VC自体が直流抵抗値及び高温保存特性に影響を与えるため、DMAの効果は異なる。DMAが0.5%含有率では、直流抵抗値上昇に関わるVCの依存度が大きいため、VCを含有しない場合、直流抵抗値は低くなる。一方で、高温保存特性に関するVCの依存度が高いために、VCを含有しない場合、容量維持率は低下する。以上のことから、VCとDMAを共に含有させることで、効果的に直流抵抗を低く、かつ容量維持率を向上させることができることを見出した。 Furthermore, from the results of Example 1 and Comparative Example 4 summarized in Table 1, when the VC contains or does not contain VC, the VC itself affects the DC resistance value and the high temperature storage characteristics. The effect is different. When the DMA content is 0.5%, the dependence of the VC on the increase of the DC resistance value is large. Therefore, when the VC is not contained, the DC resistance value is low. On the other hand, since the dependence of VC on the high temperature storage characteristics is high, the capacity maintenance rate decreases when VC is not included. From the above, it has been found that by including both VC and DMA, the DC resistance can be effectively lowered and the capacity retention rate can be improved.
 以上の結果を検討すると、オリビン型リン酸鉄リチウム正極と黒鉛負極で構成される電池系に、VCを含んだ電解液中にフッ酸抑制剤としてN,N-ジメチルアセトアミド(DMA)を0.01~0.7重量%、好ましくは0.05~0.7重量%、特に好ましくは0.1~0.7重量%含有させることで、直流抵抗値を維持し、出力特性と高温保存特性を両立させた電池を提供することができる。
Figure JPOXMLDOC01-appb-T000001
Examining the above results, in a battery system composed of an olivine-type lithium iron phosphate positive electrode and a graphite negative electrode, N, N-dimethylacetamide (DMA) as a hydrofluoric acid inhibitor in an electrolyte containing VC was reduced to 0. By containing 01 to 0.7% by weight, preferably 0.05 to 0.7% by weight, particularly preferably 0.1 to 0.7% by weight, the DC resistance value is maintained, and the output characteristics and high temperature storage characteristics are maintained. Can be provided.
Figure JPOXMLDOC01-appb-T000001
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書に取り入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into this specification for reference.
1・・・電池缶
2・・・ガスケット
3・・・上蓋
4・・・上蓋ケース
5・・・正極集電部品
6・・・負極集電部品
7・・・軸芯
8・・・電極群
12・・・正極タブ
13・・・負極タブ
14・・・正極電極
15・・・負極電極
16・・・正極合剤
17・・・負極合剤
18a, 18b・・・セパレータ
19・・・テープ
1 ... Battery can
2 ... Gasket
3 ... Top cover
4 ... Upper lid case
5 ... Positive current collector
6 ... Negative current collector
7 ... shaft core
8 ... Electrode group
12 ... Positive electrode tab
13 ... Negative electrode tab
14 ... Positive electrode
15 ... Negative electrode
16 ... Positive electrode mixture
17 ... Negative electrode mixture
18a, 18b ・ ・ ・ Separator
19 ・ ・ ・ Tape

Claims (7)

  1.  オリビン型構造を有する組成式LiFe1-XPO
    [式中、
     MはNi、Co、Mn、Ti、Zr、及びMoからなる群から選択される少なくとも1種であり、
     xは0≦x<1である]
    で表される正極活物質を含む正極;
     リチウムイオンを吸蔵放出可能な負極活物質を含む負極;並びに
     非水電解質;
    を有する非水電解質二次電池であって、
     前記正極活物質の表面が炭素で被覆されており、
     前記非水電解質がN,N-ジメチルアセトアミド、ビニレンカーボネート、支持塩、及び有機溶媒を含み、
     前記N,N-ジメチルアセトアミドの含有量が前記非水電解質の0.01~0.7重量%である、前記非水電解質二次電池。
    Compositional formula LiFe 1-X M x PO 4 having an olivine type structure:
    [Where
    M is at least one selected from the group consisting of Ni, Co, Mn, Ti, Zr, and Mo;
    x is 0 ≦ x <1]
    A positive electrode comprising a positive electrode active material represented by:
    A negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions; and a non-aqueous electrolyte;
    A non-aqueous electrolyte secondary battery comprising:
    The surface of the positive electrode active material is coated with carbon,
    The non-aqueous electrolyte includes N, N-dimethylacetamide, vinylene carbonate, a supporting salt, and an organic solvent;
    The non-aqueous electrolyte secondary battery, wherein a content of the N, N-dimethylacetamide is 0.01 to 0.7% by weight of the non-aqueous electrolyte.
  2.  正極活物質の表面を被覆する炭素の量が炭素被覆正極活物質の1~5重量%であり、前記炭素被覆正極活物質の比表面積が10~20m/gであり、前記炭素被覆正極活物質が300~1000ppmの水分を含む、請求項1に記載の非水電解質二次電池。 The amount of carbon covering the surface of the positive electrode active material is 1 to 5% by weight of the carbon-coated positive electrode active material, the specific surface area of the carbon-coated positive electrode active material is 10 to 20 m 2 / g, The nonaqueous electrolyte secondary battery according to claim 1, wherein the substance contains 300 to 1000 ppm of water.
  3.  ビニレンカーボネートの含有量が非水電解質の0.5~3重量%である、請求項1または2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the content of vinylene carbonate is 0.5 to 3% by weight of the non-aqueous electrolyte.
  4.  xが0である、請求項1~3のいずれかに記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein x is 0.
  5.  リチウムイオンを吸蔵放出可能な負極活物質が黒鉛である、請求項1~4のいずれかに記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the negative electrode active material capable of inserting and extracting lithium ions is graphite.
  6.  支持塩がLiPFである、請求項1~5のいずれかに記載の非水電解質二次電池。 Supporting salt is LiPF 6, a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5.
  7.  有機溶媒がエチレンカーボネートと鎖状カーボネートとの混合溶媒であり、前記鎖状カーボネートの含有量が前記混合溶媒の70~80体積%である、請求項1~6のいずれかに記載の非水電解質二次電池。 The nonaqueous electrolyte according to any one of claims 1 to 6, wherein the organic solvent is a mixed solvent of ethylene carbonate and chain carbonate, and the content of the chain carbonate is 70 to 80% by volume of the mixed solvent. Secondary battery.
PCT/JP2010/067841 2010-10-12 2010-10-12 Nonaqueous electrolyte secondary battery WO2012049723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/067841 WO2012049723A1 (en) 2010-10-12 2010-10-12 Nonaqueous electrolyte secondary battery
JP2012538484A JP5528564B2 (en) 2010-10-12 2010-10-12 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067841 WO2012049723A1 (en) 2010-10-12 2010-10-12 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2012049723A1 true WO2012049723A1 (en) 2012-04-19

Family

ID=45937975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067841 WO2012049723A1 (en) 2010-10-12 2010-10-12 Nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP5528564B2 (en)
WO (1) WO2012049723A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072135A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Electrode material and manufacturing method thereof, electrode, and lithium ion battery
JP2016134198A (en) * 2015-01-15 2016-07-25 株式会社デンソー Electrode and nonaqueous electrolyte secondary battery
CN108390021A (en) * 2017-02-02 2018-08-10 丰田自动车株式会社 Active material particle, anode, all-solid-state lithium-ion battery and their manufacturing method
CN109742322A (en) * 2018-12-05 2019-05-10 江苏海四达电源股份有限公司 A kind of high power lithium iron phosphate cell and preparation method thereof
JP2019091690A (en) * 2017-11-15 2019-06-13 三星電子株式会社Samsung Electronics Co., Ltd. Lithium battery electrolyte additive, organic electrolyte solution containing the same and lithium battery
WO2019239924A1 (en) * 2018-06-13 2019-12-19 株式会社村田製作所 Lithium ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079848B1 (en) 2015-09-30 2017-02-15 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110162A (en) * 2000-09-29 2002-04-12 Sony Corp Positive electrode active material and nonaqueous electrolytic battery
JP4183403B2 (en) * 2001-08-22 2008-11-19 三菱重工業株式会社 Nonaqueous electrolyte secondary battery
JP2010086681A (en) * 2008-09-29 2010-04-15 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110162A (en) * 2000-09-29 2002-04-12 Sony Corp Positive electrode active material and nonaqueous electrolytic battery
JP4183403B2 (en) * 2001-08-22 2008-11-19 三菱重工業株式会社 Nonaqueous electrolyte secondary battery
JP2010086681A (en) * 2008-09-29 2010-04-15 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072135A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Electrode material and manufacturing method thereof, electrode, and lithium ion battery
US9716270B2 (en) 2014-09-30 2017-07-25 Sumitomo Osaka Cement Co., Ltd Electrode material, electrode, and lithium ion battery
JP2016134198A (en) * 2015-01-15 2016-07-25 株式会社デンソー Electrode and nonaqueous electrolyte secondary battery
US10439209B2 (en) 2015-01-15 2019-10-08 Denso Corporation Electrode and non-aqueous electrolyte secondary battery
CN108390021A (en) * 2017-02-02 2018-08-10 丰田自动车株式会社 Active material particle, anode, all-solid-state lithium-ion battery and their manufacturing method
JP2019091690A (en) * 2017-11-15 2019-06-13 三星電子株式会社Samsung Electronics Co., Ltd. Lithium battery electrolyte additive, organic electrolyte solution containing the same and lithium battery
WO2019239924A1 (en) * 2018-06-13 2019-12-19 株式会社村田製作所 Lithium ion secondary battery
JPWO2019239924A1 (en) * 2018-06-13 2021-02-12 株式会社村田製作所 Lithium ion secondary battery
JP7078112B2 (en) 2018-06-13 2022-05-31 株式会社村田製作所 Lithium ion secondary battery
CN109742322A (en) * 2018-12-05 2019-05-10 江苏海四达电源股份有限公司 A kind of high power lithium iron phosphate cell and preparation method thereof
CN109742322B (en) * 2018-12-05 2023-01-06 江苏海四达电源有限公司 High-power lithium iron phosphate battery and preparation method thereof

Also Published As

Publication number Publication date
JPWO2012049723A1 (en) 2014-02-24
JP5528564B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP6428647B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN104577197B (en) Rechargeable nonaqueous electrolytic battery
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
KR20190042102A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP5528564B2 (en) Nonaqueous electrolyte secondary battery
JP6304746B2 (en) Lithium ion secondary battery
JPWO2011162169A1 (en) Lithium ion secondary battery
JP5783029B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2006344509A (en) Lithium secondary battery
JPWO2015115025A1 (en) Nonaqueous electrolyte secondary battery
JPWO2017056364A1 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2007109633A (en) Nonaqueous electrolyte secondary battery
WO2012111545A1 (en) Non-aqueous electrolyte secondary battery
WO2020003595A1 (en) Nonaqueous electrolyte secondary battery
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP2014179206A (en) Nonaqueous electrolyte secondary battery
JP6697377B2 (en) Lithium ion secondary battery
WO2018150843A1 (en) Nonaqueous electrolyte secondary battery
JP2008112595A (en) Lithium secondary battery
JP2005093414A (en) Lithium cell
JP6481907B2 (en) Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016103592A1 (en) Positive electrode active material and nonaqueous electrolyte secondary battery
CN109792048B (en) Positive electrode for nonaqueous electrolyte secondary battery
WO2012147929A1 (en) Lithium secondary cell
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858379

Country of ref document: EP

Kind code of ref document: A1