WO2012046786A1 - 高ジルコニア質電鋳耐火物 - Google Patents

高ジルコニア質電鋳耐火物 Download PDF

Info

Publication number
WO2012046786A1
WO2012046786A1 PCT/JP2011/073015 JP2011073015W WO2012046786A1 WO 2012046786 A1 WO2012046786 A1 WO 2012046786A1 JP 2011073015 W JP2011073015 W JP 2011073015W WO 2012046786 A1 WO2012046786 A1 WO 2012046786A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
refractory
sro
content
glass
Prior art date
Application number
PCT/JP2011/073015
Other languages
English (en)
French (fr)
Inventor
戸村 信雄
弘法 佐藤
Original Assignee
旭硝子株式会社
Agcセラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社, Agcセラミックス株式会社 filed Critical 旭硝子株式会社
Priority to JP2012537748A priority Critical patent/JPWO2012046786A1/ja
Priority to CN201180048665.4A priority patent/CN103153912B/zh
Priority to EP11830718.0A priority patent/EP2626340A4/en
Priority to KR1020137006399A priority patent/KR20140000668A/ko
Publication of WO2012046786A1 publication Critical patent/WO2012046786A1/ja
Priority to US13/840,040 priority patent/US8563453B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/484Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • C04B35/657Processes involving a melting step for manufacturing refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a high zirconia electrocast refractory, and particularly when applied to a glass melting furnace, it has excellent durability, reusability, and high productivity. Related to things.
  • High zirconia electrocast refractories containing 80% by mass or more of ZrO 2 as chemical components have been conventionally used as refractories for glass melting furnaces.
  • High zirconia electrocast refractories are often used in molten glass contact portions of glass melting furnaces that require high quality such as substrate glass for flat panel displays because of their high corrosion resistance and low contamination to molten glass.
  • the microstructure of the high zirconia electrocast refractory is composed of few pores, a large amount of zirconia (ZrO 2 ) crystal grains, and a small amount of matrix glass filling the space between the grains.
  • This matrix glass is composed of SiO 2 as a main component and other oxides such as oxides such as Al 2 O 3 , Na 2 O, B 2 O 3 and P 2 O 5 .
  • High zirconia electrocast refractories have a temperature that depends on the cooling process during their production, the temperature during heating up in the glass melting furnace, the temperature during cooling down, and the erosion of the refractory itself during operation. Exposed to change. Due to these temperature changes, thermal stress and transformation stress generated by a reversible transformation of the zirconia crystal accompanied by a large volume change in a temperature range near 1000 ° C. are generated inside the refractory. If a matrix glass having appropriate thermomechanical properties and amount is contained in the refractory, the refractory becomes flexible with respect to the above-described stress and the stress is relieved, and cracks do not occur.
  • High zirconia electrocast refractories may produce zircon crystals (ZrO 2 ⁇ SiO 2 ) inside. Since the zircon crystal inside the refractory is formed by the reaction of ZrO 2 and SiO 2 in the matrix glass, the formation of the zircon crystal causes a decrease in the matrix glass in the refractory. The refractory in which zircon crystals are generated and the amount of the matrix glass that relaxes the thermal stress and transformation stress is embrittled and becomes brittle, and even a slight temperature fluctuation easily causes cracks.
  • a zircon crystal may be produced by reaction with molten glass. This is because one or both of chemical components that suppress the formation of zircon crystals in the refractory are eluted into the molten glass, and chemical components that promote the formation of zircon crystals into the refractory penetrate from the molten glass. For it to happen.
  • the tendency to produce zircon crystals by reaction with molten glass is remarkable when the refractory is in contact with low alkali glass or non-alkali glass such as liquid crystal substrate glass.
  • high zirconia electroformed refractories that do not produce zircon crystals while the glass melting furnace is in operation do not crack or, if they do, have fewer cracks than those that produce zircon crystals. It is relatively easy to reuse because there are few new cracks or propagation of existing cracks when the temperature is lowered when the operation of the glass melting furnace is stopped due to production adjustment.
  • high zirconia electrocast refractories that produced zircon crystals are prominent in the occurrence of new cracks and propagation of existing cracks during this heat reduction, and also when cracks are reheated. Is difficult to reuse. Even if it is reused, high durability is not obtained and the glass melting furnace is short-lived. In other words, high zirconia electrocast refractories that easily generate zircon crystals by reaction with a single or molten glass are not suitable for reuse after operation stoppage, even if they remain in service while the glass melting furnace is in operation. is there.
  • Patent Document 1 the chemical composition of a refractory is as follows: ZrO 2 is 85 to 97 mass%, SiO 2 is 2 to 10 mass%, Al 2 O 3 is 3 mass% at maximum, and P 2 O 5 is 0.1 to 0.1 mass%.
  • a high zirconia electroformed refractory in which cracks produced during production are suppressed is obtained by 3% by mass and containing substantially no rare earth oxide.
  • the high zirconia electrocast refractory contains P 2 O 5 that promotes the formation of zircon crystals, and there is a drawback in that zircon crystals are easily generated even with a refractory alone.
  • the chemical composition of the refractory is such that ZrO 2 is 90 to 98 mass%, Al 2 O 3 is 1 mass% or less, and Li 2 O, Na 2 O, CuO, CaO, and MgO are contained.
  • B 2 O 3 is contained in an amount of 0.5 to 1.5% by mass, or B 2 O 3 is contained in an amount of 0.5 to 1.5% by mass and K 2 O, SrO, BaO, Rb 2 O ,
  • one selected from Cs 2 O is 1.5% by mass or less, or the total of two or more types is 1.5% by mass or less, thereby suppressing cracks during production and having a cation radius of
  • the high zirconia electroformed refractory is characterized by using a large element component to increase electrical resistance.
  • the high zirconia electrocast refractory has a disadvantage that it has a high content of B 2 O 3 that promotes the formation of zircon crystals, and the refractory alone can easily form zircon crystals.
  • Patent Document 3 the chemical composition of the refractory is as follows: ZrO 2 is 90 to 95% by mass, SiO 2 is 3.5 to 7% by mass, Al 2 O 3 is 1 to 3% by mass, P 2 O 5 , B 2 It has been proposed that substantially no O 3 or CuO is contained. This describes that a high zirconia electroformed refractory excellent in heat cycle resistance can be obtained. The reason for the excellent heat cycle resistance is considered by the inventor because the viscosity of the matrix glass is appropriate and the formation of zircon crystals is difficult.
  • the chemical composition of the refractory is as follows: ZrO 2 is 90 to 95% by mass, SiO 2 is 3.5 to 7% by mass, Al 2 O 3 is 1.2 to 3% by mass, Na 2 O and / Or 0.1 to 0.35 mass% of K 2 O and substantially free of P 2 O 5 , B 2 O 3 and CuO, thereby improving heat cycle resistance and forming zircon crystals Has been achieved.
  • ZrO 2 is 90 to 95% by mass
  • SiO 2 is 3.5 to 7% by mass
  • Al 2 O 3 is 1.2 to 3% by mass
  • Na 2 O and / Or 0.1 to 0.35 mass% of K 2 O and substantially free of P 2 O 5 , B 2 O 3 and CuO thereby improving heat cycle resistance and forming zircon crystals Has been achieved.
  • the content of Na 2 O and K 2 O effective for suppressing the formation of zircon crystals is insufficient, and the contact condition with molten glass is zircon. The effect of suppressing crystal formation was insufficient.
  • the chemical composition of the refractory is as follows: ZrO 2 is 89 to 96 mass%, SiO 2 is 3.5 to 7 mass%, Al 2 O 3 is 0.2 to 1.5 mass%, Na 2 O + K 2 O 0.05 to 1.0 mass%, B 2 O 3 less than 1.2 wt%, P 2 O 5 less than 0.5 wt%, the B 2 O 3 + P 2 O 5 0.01 More than mass% and less than 1.7 mass%, CuO is less than 0.3 mass%, Fe 2 O 3 + TiO 2 is 0.3 mass% or less, BaO is 0.01 to 0.5 mass%, SnO 2 is 0 It is proposed to be 3 mass% or less.
  • the chemical composition of the refractory is as follows: ZrO 2 is 87 to 94% by mass, SiO 2 is 3.0 to 8.0% by mass, Al 2 O 3 is 1.2 to 3.0% by mass, Na 2 O is more than 0.35% by mass and 1.0% by mass, B 2 O 3 is more than 0.02% by mass and less than 0.05% by mass, P 2 O 5 , and CuO are substantially free, and to obtain the Al 2 O 3 and Na 2 O weight ratio from 2.5 5.0, and inhibiting the production of zircon crystals in refractory itself by, the effect of.
  • a high zirconia electrocast refractory based on the present invention contains only a low content of Na 2 O because Na 2 O, which has a high diffusion rate, is optimized for Al 2 O 3 .
  • preferential elution of Na 2 O occurs. That is, in the high zirconia electrocast refractory, the mass ratio of Na 2 O and Al 2 O 3 quickly deviates from the initial value of the unused state due to the elution as described above, and the effect of suppressing the formation of zircon crystals is early. There was a drawback of disappearing.
  • the present invention is highly resistant to high zirconia electroforming, which is less prone to cracking even during refractory production, heating up, temperature change during use and heat down during operation suspension, and high durability.
  • the purpose is to provide refractories.
  • the high zirconia electrocast refractory of the present invention has a chemical composition of ZrO 2 of 85 to 95% by mass, SiO 2 of 2.5% by mass or more, Na 2 O of 0.04% by mass or less, B 2 O 3 is 0.04 mass% or less, P 2 O 5 is 0.04 mass% or less, and contains SrO as an essential component, and further contains at least one of K 2 O and Cs 2 O, and SrO , K 2 O and Cs 2 O satisfy the following relations of the following expressions (1) and (2).
  • C K2 O is the content of K 2 O in electrocast refractory [mass%]
  • C Cs2 O is the content of Cs 2 O in electrocast refractory [mass%]
  • C SrO is electro SrO content [mass%] in the cast refractory
  • C SiO2 represents SiO 2 content [mass%] in the electrocast refractory, respectively
  • the high zirconia electrocast refractory of the present invention has no problem of cracking during refractory production, is excellent in productivity, and is difficult to produce zircon crystals even in the refractory alone or in contact with molten glass. It is hard to crack when heated, used and lowered, and has excellent durability and reusability.
  • the high zirconia electrocast refractory of the present invention is resistant to cracking even under molten glass contact and has high durability, so that a long furnace life can be obtained even when it is applied to a portion of a glass melting furnace in contact with molten glass. Therefore, the erosion amount of the refractory can be reduced to reduce the contamination of the molten glass. Furthermore, cracks are unlikely to occur when the temperature is lowered when the glass melting furnace is stopped due to production adjustment or when it is reheated, so that it is possible to reuse a refractory that has little erosion and has not reached its end of life. Further, the high zirconia electrocast refractory of the present invention has no problem of cracking that affects the yield during production, and therefore has excellent refractory productivity, and as a result, the product can be produced at a relatively low cost.
  • the high zirconia electrocast refractory of the present invention (hereinafter sometimes simply referred to as electrocast refractory or refractory) is composed of the above-described chemical components.
  • electrocast refractory or refractory The role each of these chemical components plays in the refractory will be described below.
  • the three components Na 2 O, B 2 O 3, and P 2 O 5 are set as an external display when the total of other components other than the three components is 100% by mass.
  • components other than the three components of Na 2 O, B 2 O 3 and P 2 O 5 are displayed in an inner manner.
  • the inner hook refers to the ratio of each component in 100% by mass when the entire electroformed refractory (excluding outer display components) is 100% by mass.
  • including 90% by mass of ZrO 2 on the inner side indicates that the entire electroformed refractory (excluding the outer display component) is 100% by mass, and 90% by mass of ZrO 2 is included in 100% by mass.
  • the entire electrocast refractory (excluding external display components) is defined as 100% by mass
  • the entire electrocast refractory (excluding external display components) that is not included in the 100% by mass The ratio is based on 100% by mass.
  • including 0.01% by mass of Na 2 O as an outer coating means that the entire refractory (excluding outer display components) is 100% by mass, and additionally 0.01% by mass of Na 2 O is included.
  • the zirconia raw material and the zircon raw material used for the production of high zirconia electrocast refractories inevitably contain 1 to 3% by mass of HfO 2 , and HfO 2 has almost no loss such as evaporation during the production. Therefore, the ordinary high zirconia electrocast refractories including the present invention contain 1 to 3% by mass of HfO 2 .
  • HfO 2 is high-zirconia electrocast refractories, because the same function as the ZrO 2 generally, have a value of ZrO 2 + HfO 2, merely customary to denoted as ZrO 2, ZrO in the present invention 2 + HfO 2 is represented as ZrO 2 .
  • the electrocast refractory of the present invention is a high zirconia electrocast refractory composed of a large amount of zirconia crystals, a small amount of matrix glass, and a few pores.
  • Zr 2 O has a strong resistance to erosion of molten glass and is contained as a main component of the refractory. Most of ZrO 2 exists as zirconia crystals having excellent corrosion resistance against molten glass, and only a very small amount is present in the matrix glass.
  • the content of ZrO 2 dominates the zirconia crystal content in the refractory of the present invention, and thus affects the corrosion resistance.
  • ZrO 2 needs to be 85% by mass or more, and preferably 88% by mass or more.
  • the amount of ZrO 2 exceeds 95% by mass, the amount of matrix glass that acts to relieve stress is relatively small, and cracks are likely to occur due to temperature changes during manufacturing, heating, use, and cooling. Become. Accordingly, the ZrO 2 content in the refractory of the present invention is 85 to 95% by mass.
  • SiO 2 is a main component forming the matrix glass. In order to ensure the amount of matrix glass that acts to relieve stress, 2.5 mass% or more of SiO 2 is required. On the other hand, if a large amount of SiO 2 is included in the refractory, it is inevitably impossible to include a large amount of ZrO 2, and the corrosion resistance of the refractory to the molten glass is impaired. Accordingly, the content of SiO 2 in the refractory of the present invention is preferably 2.5 to 7.5 wt%, more preferably from 3.0 to 7.0 mass%.
  • a feature of the present invention is that it contains K 2 O, Cs 2 O and SrO as particularly effective components for suppressing the formation of zircon crystals, and the suppression effect depends on the molar ratio of these components to SiO 2.
  • K 2 O, Cs 2 O, and SrO is included in a high molar ratio with respect to the content of SiO 2 , both the refractory and the contact condition with the molten glass, the zircon crystal Is difficult to generate.
  • the high zirconia electrocast refractory of the present invention has a large cation radius and a slow elution into the molten glass, and the cation radius is compared with the inhibitory effect on the formation of zircon crystals of K 2 O and Cs 2 O.
  • SrO-containing molten glass it is a combination of SrO that suppresses the formation of zircon crystals that are slow to dissolve, and either one or both of K 2 O and Cs 2 O are combined. And SrO as an essential component.
  • K 2 O is a component that lowers the viscosity of the matrix glass and at the same time suppresses the formation of zircon crystals.
  • K 2 O has the role of reducing the viscosity of the matrix glass.
  • K 2 O By including K 2 O in the refractory, it suppresses cracking of the refractory due to temperature changes during manufacturing, heating up, use, and cooling down. The effect which performs is obtained.
  • the cation radius of K is large, elution is slow even when it comes into contact with molten glass, giving an effect of suppressing the formation of zircon crystals over a long period.
  • the refractory does not contain Cs 2 O, but the molar ratio of SrO to SiO 2 (this is the content of SrO in the refractory [mass%] is the content of C SrO 2 , SiO 2 [mass%]. a case in terms of C SiO2, obtained at 0.580 ⁇ C SrO / C SiO2.
  • the molar ratio of K 2 O with respect to SiO 2 (which is contained in K 2 O in the refractory If the amount [wt%] expressed C K2 O, SiO 2 content of [mass%] in C SiO2, obtained at 0.638 ⁇ C K2 O / C SiO2 .) is, if it is 0.06 or more An excellent effect of suppressing the formation of zircon crystals is obtained, and it is more preferably 0.08 or more.
  • aluminosilicate crystals such as mullite are produced by heating during production or use, resulting in a decrease in the amount of matrix glass, during production, during heating, during use, or during heat reduction. Cracks are likely to occur due to temperature changes.
  • K 2 O is contained in a refractory with a particularly high content, potassium-containing aluminosilicate crystals such as leucite are produced during production or heating during use, resulting in a decrease in the amount of matrix glass. Thus, cracks are likely to occur due to temperature changes during manufacturing, heating, use, and heating.
  • Cs 2 O is also a component that suppresses the formation of zircon crystals, and the effect is exhibited even at a low content. Further, since the cation radius of Cs is very large, the elution from the refractory is extremely slow even when it comes into contact with the molten glass, and gives an effect of suppressing the formation of zircon crystals, particularly over a long period of time.
  • the refractory does not contain K 2 O, but the molar ratio of SrO to SiO 2 (this is the content of SrO in refractory [mass%] is the content of C SrO 2 and SiO 2 [mass%].
  • the molar ratio of K 2 O with respect to SiO 2 is 0.07 or more, more preferably 0.09 or more.
  • SrO like K 2 O and Cs 2 O, is a component that suppresses the formation of zircon crystals and is a component that lowers the viscosity of the matrix glass.
  • SrO is a component contained in low alkali glass, non-alkali glass, tube glass for cathode ray tubes, etc., and when the molten glass containing SrO comes into contact with a refractory, the concentration of SrO is contained. The elution of SrO from the refractory is slow without increasing the gradient. Therefore, when the refractory of the present invention is applied to melting of SrO-containing glass, the effect of suppressing the formation of SrO zircon crystals continues for a very long period of time.
  • a composition having a high molar ratio of SrO to SiO 2 is preferable for suppressing the formation of zircon crystals over a long period of time.
  • a composition satisfying the following formula (1) and satisfying the following formula (2) is preferable.
  • the formula (1) and (2) are those converted content in the refractory of each component (mass%) to the molar ratio of SiO 2.
  • C K2 O is the content of K 2 O in electrocast refractory [mass%]
  • C Cs2 O is the content of Cs 2 O in electrocast refractory [mass%]
  • C SrO is electro SrO content [mass%] in the cast refractory
  • C SiO2 represents SiO 2 content [mass%] in the electrocast refractory, respectively
  • the upper limit value of the formula (1) is 0.35
  • the lower limit value is preferably 0.25
  • the lower limit value of the formula (2) is preferably 0.12. If the value of the above formula (1) exceeds 0.35, crystals other than zirconia crystals may be generated from the matrix glass component during production or heating, and cracks may occur during production or heating. Since there exists a possibility of making it easy, it is preferable to set it as 0.35 or less. In order to obtain the effect of suppressing the formation of zircon crystals even under long-term contact conditions with molten glass, the value of formula (1) is preferably 0.25 or more.
  • the value of the above formula (2) is preferably 0.12 or more for the purpose of obtaining the effect of suppressing the formation of zircon crystals even under long-term contact conditions with molten glass.
  • the value of the formula (2) exceeds 0.25, the porosity of the refractory may increase, which causes a decrease in the corrosion resistance of the refractory, so the value of the formula (2) is The upper limit is preferably 0.25.
  • Na 2 O is a component having an effect of suppressing the formation of zircon crystals in a refractory alone, but the effect of reducing the viscosity of the matrix glass is particularly remarkable, and is effective in suppressing the formation of zircon crystals under the contact condition with molten glass. It accelerates the elution of the components Al 2 O 3 , K 2 O, Cs 2 O and SrO into the molten glass, and accelerates the penetration of components that promote the formation of zircon crystals such as B 2 O 3 from the molten glass. Furthermore, since Na cation has a small radius, it easily elutes into molten glass by contact with low alkali glass, non-alkali glass, etc.
  • B 2 O 3 is a component that promotes the formation of zircon crystals.
  • the refractory produces a zircon crystal only with a thermal history, and even a small amount may promote the formation of a zircon crystal under contact conditions with molten glass. Therefore, a low content of B 2 O 3 is preferable from the viewpoint of suppressing the formation of zircon crystals.
  • B 2 O 3 has an effect of suppressing cracking at the time of refractory production even at a low content, and Al 2 O 3 , K 2 O and Cs 2 O contribute greatly to suppression of zircon crystal formation.
  • the content of B 2 O 3 is allowed to be 0.04% by mass, preferably 0.03% by mass or less.
  • P 2 O 5 is a component that significantly promotes the formation of zircon crystals.
  • the refractory produces a zircon crystal only with a thermal history, and even a small amount may promote the formation of zircon crystal under the contact condition with molten glass. Therefore, the content of P 2 O 5 is preferably as low as possible in terms of suppressing the formation of zircon crystals.
  • P 2 O 5 has an effect of suppressing cracking during refractory production even at a low content, and is also a component that is inevitably mixed depending on the type of zirconia raw material or zircon raw material. If the inclusion of P 2 O 5 is not acceptable at all, it is necessary to use an expensive refining raw material or a relatively expensive zircon raw material or zirconia raw material whose production area is limited.
  • the content of P 2 O 5 is allowed to be 0.04% by mass. Preferably, it is 0.03 mass% or less. Therefore, the selection range of the zircon raw material and the zirconia raw material is not narrowed, and a relatively inexpensive raw material cost can be achieved.
  • Al 2 O 3 can also be added.
  • Al 2 O 3 is a component that lowers the viscosity of the matrix glass and at the same time suppresses the formation of zircon crystals to some extent. Even under contact conditions with low alkali glass or non-alkali glass where zircon crystal formation is significant, many of these glasses have a relatively high content of Al 2 O 3 , so there is a gap between refractory and molten glass. The difference in concentration gradient generated in the refractory is small, and the elution of Al 2 O 3 from the refractory is slow, so that the effect of suppressing the formation of the zircon crystals can be enjoyed over a long period of time.
  • Al 2 O 3 exceeds 2% by mass, aluminosilicate crystals such as mullite are produced at the time of production or in use, resulting in a decrease in the amount of matrix glass, and during production and heat increase. Cracks are likely to occur due to temperature changes during use, during use, and when the temperature is lowered. Further, when 0.4 to 2% by mass of Al 2 O 3 is contained, it becomes difficult to form a zircon crystal with a refractory alone. Accordingly, the content of Al 2 O 3 in the refractory according to the present invention is 0.4-2% by mass, preferably 0.5-1.8% by mass.
  • Fe 2 O 3 and TiO 2 contained as impurities in the raw materials are components that cause coloring and foaming of the molten glass, and it is not preferable to have a high content.
  • the total content of these Fe 2 O 3 and TiO 2 is 0.3% by mass or less, and there is no problem of coloring, and it is preferably an amount not exceeding 0.2% by mass.
  • Y 2 O 3 and CaO are contained as impurities in the raw material, these tend to increase the residual volume expansion coefficient in the thermal cycle test, and the combined content of these Y 2 O 3 and CaO There is no problem when the amount is 0.3% by mass or less, and preferably the amount does not exceed 0.2% by mass.
  • the CuO content is preferably 0.02% by mass or less, and more preferably 0.01% by mass or less.
  • alumina, zircon sand, silica, potassium carbonate, cesium carbonate, strontium carbonate, B 2 O 3 , P 2 O 5 are added to desiliconized zircon which is a zirconia raw material.
  • the raw materials were mixed to prepare a mixed raw material, and this mixed raw material was charged into a single-phase arc electric furnace having an output of 500 kVA equipped with two graphite electrodes and completely melted by electric heating.
  • the molten metal was cast by casting into a graphite mold having an internal volume of 160 mm ⁇ 200 mm ⁇ 350 mm embedded in a powder of buyer alumina that is a slow cooling material, and allowed to cool to a temperature near room temperature. After cooling, the ingot and the graphite mold were extracted from the slow cooling material, and the graphite mold and the ingot were further separated to produce the desired high zirconia electroformed refractory.
  • the raw material composition was adjusted to obtain high zirconia electroformed refractories having the chemical compositions shown in Tables 1 and 2.
  • Table 1 shows Examples (Examples 1 to 8), and Table 2 shows Comparative Examples (Examples 9 to 15).
  • ZrO 2 , SiO 2 , Al 2 O 3 , and SrO are quantitative analysis values determined by a wavelength dispersive X-ray fluorescence analyzer (manufactured by Rigaku Corporation, device name: ZSX Primus II).
  • the other components are quantitative analysis values determined by a high-frequency inductively coupled plasma optical emission spectrometer (manufactured by Seiko Instruments Inc., apparatus name: SPS 1100).
  • the quantification of each component is not limited to this analysis method, and can be carried out by other quantitative analysis methods.
  • cracks during manufacturing The presence or absence of cracks on the appearance of the ingot was evaluated as follows. First, the presence or absence of cracks is visually checked, and the refractory with cracks is ground on the entire surface of the ingot to a depth of 10 mm, and the crack length in the ingot after grinding is 10 mm or less. The crack at the time of manufacturing is “small”, the crack at the time of manufacturing exceeds 50 mm and is 50 mm or less, the crack at the time of manufacturing is “medium”, the crack at the time of manufacturing exceeds 50 mm, the crack at the time of manufacturing is “ Classified as “large”. If there are no cracks during production, there will be no problem in the production of refractories.
  • the crack at the time of manufacture is medium or less, it is easy to manufacture a refractory because it is only necessary to manufacture an ingot that is the same size as or slightly larger than the required refractory size and to perform light grinding on the surface.
  • the crack at the time of manufacture is large, after manufacturing a very large ingot for the required refractory dimensions, heavy grinding and cutting are required, so the refractory production is very Cost is high and not realistic.
  • the high zirconia electroformed refractory In this thermal cycle test, the high zirconia electroformed refractory generally exhibits residual volume expansion and, in some cases, cracks. Since this residual volume expansion is obtained by a test with a refractory alone against a heat cycle in a relatively low temperature range, when the refractory is applied to a glass melting furnace, a furnace that is relatively low temperature away from the molten glass. It shows crack resistance near the outer surface.
  • the residual volume expansion rate by this test is preferably less than 3% by volume, and more preferably less than 2% by volume.
  • the zircon crystal production rate under the contact condition with molten glass was determined by the following immersion test. That is, a 15 mm ⁇ 25 mm ⁇ 30 mm sample was cut out from the obtained electroformed refractory material, inserted into a 200 cc platinum crucible together with 250 g of alkali-free glass cullet, and the electric furnace (Motoyama) for a predetermined temperature and a predetermined time. (Product name: NH-2025D-SP). After cooling, the sample was taken out and crushed.
  • the peak area ratio of the zircon crystal and zirconia crystal is obtained from the diffraction pattern, and the mass% of the zircon crystal is determined by the ratio of zircon crystal amount / (zircon crystal amount + zirconia crystal amount). Were determined.
  • the glass used in this test has a chemical composition expressed in terms of oxide, SiO 2 is 60% by mass, B 2 O 3 is 8% by mass, Al 2 O 3 is 17% by mass, MgO is 3% by mass, and CaO is The alkali-free glass is 4% by mass and 8% by mass of SrO.
  • the test conditions for the immersion test were as follows. As the immersion test 1, a test was conducted at 1250 ° C. for 20 days. At this time, the heating from room temperature to 1250 ° C. is performed at 300 ° C. per hour, the temperature is maintained for 20 days after reaching 1250 ° C., then cooled to 700 ° C. at 500 ° C. per hour, and further cooled from 700 ° C. to room temperature at 60 ° C. per hour. did. In this test, the production rate of zircon crystals is preferably 4% by mass or less, and more preferably 2% by mass or less.
  • the immersion test 2 As the immersion test 2, a test was conducted at 1450 ° C. for 4 days. At this time, the heating from room temperature to 1450 ° C. is set to 300 ° C. per hour, the temperature is maintained for 4 days after reaching 1450 ° C., then cooled to 700 ° C. at 500 ° C. per hour, and further from 700 ° C. to room temperature at 60 ° C. per hour. did.
  • the production rate of zircon crystals is preferably 4% by mass or less, and more preferably 2% by mass or less.
  • the electroformed refractory of the present invention has high crack resistance against temperature changes in a refractory alone.
  • the production rate of zircon crystals in the immersion test 1 of the electrocast refractories of Examples 1 to 8 was less than 0.5% by mass. Furthermore, the rate of formation of zircon crystals in the immersion test 2 of the electrocast refractories of Examples 1 to 8 was also less than 0.5% by mass.
  • the electrocast refractories of Examples 1 to 8 have a zircon crystal production rate of less than 0.5% by mass, and the electrocast refractories of the present invention are very good even under glass contact conditions. It is difficult to produce zircon crystals.
  • the electrocast refractory of the present invention has no problem with cracks during production, the residual volume expansion rate due to the thermal cycle of the refractory alone is low, it is difficult to produce zircon crystals, and further in contact conditions with molten glass However, the formation of zircon crystals is suppressed, and it is a highly durable refractory that is excellent in productivity, temperature change during use, and reusability.
  • the electrocast refractory of Example 1 is free from cracks during production, has a small residual volume expansion coefficient in a thermal cycle test, and has a low rate of formation of zircon crystals in a glass immersion test. It is a refractory that is particularly excellent in change and reusability.
  • Table 2 shows comparative examples (Examples 9 to 15) of high zirconia electroformed refractories not applicable to the present invention.
  • Example 9 due to the shortage of SiO 2 , that is, due to the lack of the amount of matrix glass, the values of Formula 1 and Formula 2 are small in Example 10, and the viscosity of the matrix glass is too high, so that cracks during production are large. It is very difficult to produce a refractory.
  • Example 9 Example 12, Example 14, and Example 15, a shortage of SiO 2 , that is, a shortage of matrix glass, a shortage of SrO that does not satisfy Equation 2, an excess of B 2 O 3 , and an excess of P 2 O 5 ,
  • SiO 2 that is, a shortage of matrix glass
  • SrO that does not satisfy Equation 2
  • B 2 O 3 a shortage of SrO that does not satisfy Equation 2
  • P 2 O 5 an excess of P 2 O 5
  • the composition was inadequate, specifically either one or both of Formula 1 and Formula 2 were not satisfied, Na 2 O excess, B 2 O 3 excess, and P 2 O 5 excess, As a result, a high zircon crystal production rate was obtained in the immersion test. These refractories have insufficient suppression of zircon crystal formation under the contact conditions with molten glass.
  • the high zirconia electrocast refractory of the present invention is excellent in productivity, hardly cracks when heated up, hardly forms a zircon crystal even when subjected to a heat history alone, and melts. It is difficult to produce zircon crystals even when in contact with glass. Therefore, it is a highly zirconia electroformed refractory material that is resistant to cracking even during temperature changes during use and heat reduction during operation suspension, has high durability, and is excellent in reusability. It is suitable for melting furnaces of alkali glass and non-alkali glass.
  • the high zirconia electrocast refractories of the present invention have high durability and good reusability, extend the life of the glass melting furnace, reduce glass defects, and stop and restart the glass melting furnace. Since it becomes easy, it is particularly suitable as a refractory for a glass melting furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Glass Compositions (AREA)

Abstract

化学組成として、ZrO2 が85~95質量%、SiO2 が2.5質量%以上、Na2Oが0.04質量%以下、B23 が0.04質量%以下、P25 が0.04質量%以下、の範囲で含有され、かつ、SrOを必須成分とし、K2OおよびCs2Oの少なくとも一方を含有し、さらに、SrO、K2OおよびCs2Oが、次に示す式(1)および式(2)0.20≦{0.638×CK2O+0.213×CCs2O+0.580×CSrO}/CSiO2≦0.40・・・(1)0.10≦0.580×CSrO/CSiO2・・・(2)(式中、CK2Oは電鋳耐火物中のK2Oの含有量〔質量%〕、CCs2Oは電鋳耐火物中のCs2Oの含有量〔質量%〕、CSrOは電鋳耐火物中のSrOの含有量〔質量%〕、CSiO2 は電鋳耐火物中のSiO2 の含有量〔質量%〕をそれぞれ示す)の関係を同時に満たす範囲で含有することを特徴とする高ジルコニア質電鋳耐火物。

Description

高ジルコニア質電鋳耐火物
 本発明は高ジルコニア質電鋳耐火物に係り、特に、ガラス溶融炉に適用した際にも、優れた耐久性および再使用性を有し、かつ生産性にも優れた高ジルコニア質電鋳耐火物に関する。
 化学成分としてZrO2 を80質量%以上含む高ジルコニア質電鋳耐火物は、従来からガラス溶融炉用耐火物として使用されている。高ジルコニア質電鋳耐火物は溶融ガラスに対する高い耐食性と低汚染性ゆえに、フラットパネルディスプレー用基板ガラスなどの高い品質が要求されるガラス溶融炉の溶融ガラス接触部分に多用されている。
 高ジルコニア質電鋳耐火物の微細組織は、わずかな気孔、多量のジルコニア(ZrO2 )結晶粒、およびその粒間を充填する少量のマトリックスガラスから構成されている。このマトリックスガラスはSiO2 を主成分として、その他の酸化物、例えば、Al2 O3 、Na2 O、B2 O3 、P2 O5 などの酸化物から構成される。
 高ジルコニア質電鋳耐火物は、その製造時の冷却過程、ならびにガラス溶融炉での熱上げ時および稼働休止する際の熱下げ時、稼働中の運転操作や当該耐火物自身の侵食により、温度変化に曝される。これらの温度変化により、熱応力、および1000℃付近の温度域において大きな体積変化を伴うジルコニア結晶の可逆的な変態で生じる変態応力、が当該耐火物の内部に発生する。適切な熱機械特性と量を兼ね備えたマトリックスガラスが当該耐火物に含まれていれば、前述の応力に対して当該耐火物は柔軟となり応力が緩和されて、亀裂は発生しない。
 一方で、マトリックスガラスの熱機械特性が不適切である場合やマトリックスガラスの量が不足した場合、高ジルコニア質電鋳耐火物の製造時やガラス溶融炉に適用する際の熱上げ時に亀裂が生じる。当該耐火物を溶融ガラス接触部分へ適用する場合、亀裂があるとその部分は溶融ガラスにより激しい侵食を受けるため、当該耐火物の耐久性は大きく低下する。
 高ジルコニア質電鋳耐火物は、その内部にジルコン結晶(ZrO2 ・SiO2 )を生成する場合がある。当該耐火物内部でのジルコン結晶はZrO2 とマトリックスガラス中のSiO2 とが反応して生成するため、ジルコン結晶の生成は耐火物中のマトリックスガラスの減少をもたらす。ジルコン結晶が生成し、熱応力、および変態応力を緩和するマトリックスガラスの量が減少した当該耐火物は脆化し、わずかな温度変動によっても亀裂が生じやすくなる。
 さらに、耐火物単体ではジルコン結晶を生成し難い高ジルコニア質電鋳耐火物においても、溶融ガラスとの反応によりジルコン結晶を生成する場合がある。これは当該耐火物中のジルコン結晶の生成を抑制する化学成分が溶融ガラス中へ溶出する、当該耐火物中へジルコン結晶の生成を促進する化学成分が溶融ガラスから侵入する、の一方または双方が起こるためである。溶融ガラスとの反応によりジルコン結晶を生成する傾向は、液晶基板ガラスなどの低アルカリガラスまたは無アルカリガラスと当該耐火物が接触した場合に顕著である。
 したがって、耐火物単体で熱履歴によりジルコン結晶を生成しやすい高ジルコニア質電鋳耐火物、および耐火物単体ではジルコン結晶を生成し難くとも、溶融ガラスとの反応によりジルコン結晶を生成しやすい高ジルコニア質電鋳耐火物を、ガラス溶融炉の耐火物として用いた場合、製造時に亀裂がなく、かつ熱上げ時に亀裂が発生しなくても、稼働中に当該耐火物内部にジルコン結晶が生成して、稼働中の温度変動により亀裂が生じやすくなり、当該耐火物の耐久性が大きく低下する。
 一般に耐火物の耐久性はガラス溶融炉の寿命を決定する要因であるため、耐火物への亀裂発生はガラス製造原価を上昇させる1つの原因となる。
 また、ガラス溶融炉が稼働中の状態において、ジルコン結晶を生成していない高ジルコニア質電鋳耐火物は、亀裂が生じないか、生じたとしてもジルコン結晶を生成するものよりも亀裂が僅少で済み、生産調整などによりガラス溶融炉の稼働を休止させる際の熱下げ時に新たな亀裂の発生や既存亀裂の伝播が少ないため、比較的再使用しやすい。
 一方で、ジルコン結晶を生成した高ジルコニア質電鋳耐火物は、この熱下げ時における新たな亀裂の発生と既存亀裂の伝播が顕著であり、さらに再熱上げ時にも同様に亀裂の発生と伝播が生じるため再使用は困難である。仮に再使用しても、高い耐久性は得られずにガラス溶融炉は短命に終わる。すなわち、単体または溶融ガラスとの反応によりジルコン結晶を生成しやすい高ジルコニア質電鋳耐火物は、ガラス溶融炉稼働中の状態において寿命を残していても、稼働休止後の再使用には不適である。
 高ジルコニア質電鋳耐火物の、製造時、熱上げ時および稼働中の亀裂発生の抑制手段は従来から検討されている。
 特許文献1では、耐火物の化学組成を、ZrO2 が85~97質量%、SiO2 が2~10質量%、Al2 O3 が最大で3質量%、P2 O5 が0.1~3質量%、希土類酸化物を実質的に含有しない、とすることにより製造時に生ずる亀裂が抑制された高ジルコニア質電鋳耐火物が得られている。しかし、該高ジルコニア質電鋳耐火物中にはジルコン結晶の生成を促進するP2 O5 が含有されており、耐火物単体でもジルコン結晶を生成しやすいという欠点がある。
 特許文献2では、耐火物の化学組成を、ZrO2 が90~98質量%、Al2 O3 が1質量%以下であり、Li2 O、Na2 O、CuO、CaO、およびMgOを含有せず、B2 O3 が0.5~1.5質量%含有するか、または、B2 O3 が0.5~1.5質量%であるとともにK2 O、SrO、BaO、Rb2 O、およびCs2 Oから選ばれた1種が1.5質量%以下、若しくは2種以上の合計が1.5質量%以下、とすることにより製造時の亀裂を抑制し、かつ陽イオン半径が大きな元素の成分を用いて電気抵抗を高める、という特徴を高ジルコニア質電鋳耐火物に与えている。しかし、該高ジルコニア質電鋳耐火物はジルコン結晶の生成を促進するB2 O3の含有量が高く、耐火物単体でもジルコン結晶を生成しやすいという欠点がある。
 特許文献3では、耐火物の化学組成を、ZrO2 が90~95質量% 、SiO2 が3.5~7質量%、Al2 O3 が1~3質量%、P2 O5 、B2 O3 および、CuOのいずれも実質的に含有しない、とすることが提案されている。これにより、耐熱サイクル抵抗性に優れた高ジルコニア質電鋳耐火物が得られると記載している。優れた耐熱サイクル抵抗性が得られた理由としては、マトリックスガラスの粘度が適切であり、かつジルコン結晶が生成し難くなっているため、と発明者により考えられている。しかし、この発明に基づく高ジルコニア質電鋳耐火物といえども、ガラスとの接触条件においては、ジルコン結晶生成の抑制効果が不十分であり、また比較的大型の耐火物を製造する際には亀裂が生じやすいという難点がある。
 特許文献4では、耐火物の化学組成を、ZrO2 を90~95質量%、SiO2 を3.5~7質量%、Al2 O3 を1.2~3質量%と、Na2 Oおよび/またはK2 Oを0.1~0.35質量%、P2 O5 、B2 O3 およびCuOのいずれも実質的に含まない、とすることにより耐熱サイクル抵抗性の向上とジルコン結晶生成の抑制を実現している。しかし、この発明に基づく高ジルコニア質電鋳耐火物といえども、ジルコン結晶生成の抑制に有効なNa2 OとK2 Oの含有量が不十分であり、溶融ガラスとの接触条件においてはジルコン結晶生成の抑制効果が不十分であった。
 特許文献5では、耐火物の化学組成を、ZrO2 を89~96質量%、SiO2 を3.5~7質量%、Al2 O3 を0.2~1.5質量%と、Na2 O+K2 Oを0.05~1.0質量%、B2 O3 を1.2質量%未満、P2 O5 を0.5質量%未満、B2 O3 +P2 O5 を0.01質量%を超え1.7質量%未満、CuOを0.3質量%未満、Fe2 O3 +TiO2 を0.3質量%以下、BaOを0.01~0.5質量%、SnO2 を0.3質量%以下、とすることが提案されている。この特許文献4によれば、Na2 O、K2 O、およびBaOを添加することが、P2 O5 やB2 O3 が持っているジルコン結晶の生成を促進するという好ましくない特性を消失させる、としている。しかし、この発明に基づく高ジルコニア質電鋳耐火物といえども、溶融ガラスとの接触条件においては、ジルコン結晶生成の抑制効果が不十分であった。
 特許文献6では、耐火物の化学組成を、ZrO2 を87~94質量%、SiO2 を3.0~8.0質量%、Al2 O3 を1.2~3.0質量%、Na2 Oを0.35質量%を超え1.0質量%、B2 O3 を0.02質量%を超えて0.05質量%未満、P2 O5 、およびCuOは実質的に含まず、かつAl2 O3 とNa2 Oの質量比を2.5から5.0、とすることにより耐火物単体でのジルコン結晶の生成を抑制する、という効果を得ている。しかし、この発明に基づく高ジルコニア質電鋳耐火物といえども、拡散速度が速いNa2 OをAl2 O3 に対して最適化しているゆえに、Na2 Oを低含有量でしか含んでいない溶融ガラスとの接触条件においては、Na2 Oの優先的な溶出が生じてしまう。すなわち、当該高ジルコニア質電鋳耐火物は、上記のような溶出によりNa2 OとAl2 O3 との質量比は早々に未使用状態の初期値からずれ、ジルコン結晶生成の抑制効果が早期に消失してしまうという欠点があった。
日本特開昭56-129675号公報 日本特開昭63-285173号公報 日本特開平3-218980号公報 日本特開平6-72766号公報 日本特開平9-2870号公報 日本特開2007-176736号公報
 本発明は上記した問題を解決すべく、耐火物製造時、熱上げ時、使用中の温度変化や稼働休止時の熱下げにおいても亀裂を発生し難く、高い耐久性を有する高ジルコニア質電鋳耐火物の提供を目的とする。
 本発明者らは、鋭意検討を重ねた結果、耐火物単体でも溶融ガラスとの接触条件下でもジルコン結晶を生成し難く、温度サイクル条件下でも残存体積膨張が小さい高ジルコニア質電鋳耐火物が得られることを見出した。
 すなわち、本発明の高ジルコニア質電鋳耐火物は、化学組成として、ZrO2 が85~95質量%、SiO2 が2.5質量%以上、Na2 Oが0.04質量%以下、B2 O3 が0.04質量%以下、P2 O5 が0.04質量%以下、およびSrOを必須成分として含有し、さらに、K2 OおよびCs2 Oの少なくとも一方を含有し、かつ、SrO、K2 OおよびCs2 Oが、次に示す式(1)および式(2)の関係を同時に満たすことを特徴とする。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
(式中、CK2 は電鋳耐火物中のK2 Oの含有量〔質量%〕、CCs2 は電鋳耐火物中のCs2 Oの含有量〔質量%〕、CSrOは電鋳耐火物中のSrOの含有量〔質量%〕、CSiO2 は電鋳耐火物中のSiO2 の含有量〔質量%〕をそれぞれ示す。)
 本発明の高ジルコニア質電鋳耐火物は、耐火物製造時の亀裂の問題がなく、生産性に優れ、かつ耐火物単体でも溶融ガラス接触下でもジルコン結晶を生成し難く、耐火物製造時、熱上げ時、使用時、および熱下げ時に亀裂が生じ難く、耐久性と再使用性に富んでいる。
 また、本発明の高ジルコニア質電鋳耐火物は、溶融ガラス接触下でも亀裂が生じ難く、耐久性に富むため、ガラス溶融炉の溶融ガラスとの接触部分に適用しても長い炉寿命が得られ、耐火物の侵食量を少なくして溶融ガラスの汚染を少なくできる。さらには、生産調整などによるガラス溶融炉の稼働停止時による熱下げ時、再熱上げ時にも亀裂を生じ難いため、侵食が少なく寿命を迎えていない耐火物の再使用が可能である。また、本発明の高ジルコニア質電鋳耐火物は、製造時の歩留まりを左右する亀裂の問題がないため、耐火物の生産性に優れるものであり、結果として製品を比較的安価に製造できる。
 本発明の高ジルコニア質電鋳耐火物(以下、単に、電鋳耐火物または耐火物ということもある。)は、上記した化学成分から構成されるものである。これらの各化学成分が当該耐火物中で果たす役割について以下に説明する。なお、以下の説明中、Na2 O、B2 O3 およびP2 O5 の3成分については、前記3成分以外の他の成分の合計を100質量%とした場合の外掛表示とする。一方、Na2 O、B2 O3 およびP2 O5 の3成分以外の成分は、内掛表示とする。
 本明細書において、内掛とは、電鋳耐火物(外掛表示成分を除く)の全体を100質量%としたとき、100質量%の中でのそれぞれの成分割合をいう。例えば、ZrOを内掛で90質量%含むとは、電鋳耐火物(外掛表示成分を除く)の全体を100質量%とし、100質量%中、ZrOを90質量%含むことを示す。
 一方、外掛とは、電鋳耐火物(外掛表示成分を除く)の全体を100質量%としたとき、該100質量%に含まれていない成分の電鋳耐火物(外掛表示成分を除く)全体の100質量%を基準にした割合をいう。例えば、Na2 Oを外掛で0.01質量%含むとは、耐火物(外掛表示成分を除く)全体を100質量%とし、それ以外にNa2 Oを付加的に0.01質量%含むことをいう。
 高ジルコニア質電鋳耐火物の製造に用いられるジルコニア原料およびジルコン原料は不可避的に1~3質量%のHfO2 を含んでおり、HfO2 は製造時に蒸発などの損失はほとんどなく耐火物中に残存するため、本発明も含めた通常の高ジルコニア質電鋳耐火物、は1~3質量%のHfO2 を含んでいる。HfO2 は高ジルコニア質電鋳耐火物において、一般的にはZrO2 と同じ役割を果たすため、ZrO2 +HfO2 の値をもって、単にZrO2 と表記するのが通例であり、本発明においてもZrO2 +HfO2 の値をもってZrO2 と表記する。
 本発明の電鋳耐火物は、多量のジルコニア結晶と少量のマトリックスガラス、およびわずかの気孔により構成される高ジルコニア質電鋳耐火物である。Zr2 Oは、溶融ガラスの侵食に対する抵抗力が強く、耐火物の主要成分として含有される。そして、ZrO2 のほとんどは溶融ガラスに対して優れた耐食性を有するジルコニア結晶として存在し、ごくわずかだけがマトリックスガラス中に存在する。
 すなわち、ZrO2 の含有量は本発明の耐火物中のジルコニア結晶含有率を支配し、ひいては耐食性を左右する。溶融ガラスに対して高い耐食性を得るためにZrO2 は85質量%以上である必要があり、好ましくは88質量%以上である。一方、ZrO2 が95質量%より多くなると、応力緩和の働きをするマトリックスガラスの量が相対的に少なくなり、製造時や熱上げ時、使用時、熱下げ時の温度変化で亀裂が生じやすくなる。従って、本発明の耐火物におけるZrO2 の含有量は85~95質量%である。
 SiO2 はマトリックスガラスを形成する主成分である。応力緩和の働きをするマトリックスガラスの量を確保するためには2.5質量%以上のSiO2 が必要である。一方で、多量のSiO2 を耐火物に含ませると、必然としてZrO2 を多く含ませることができなくなり、耐火物の溶融ガラスに対する耐食性を損なう。従って、本発明の耐火物におけるSiO2 の含有量は2.5~7.5質量%が好ましく、より好ましくは3.0~7.0質量%である。
 また、本発明の特徴は、ジルコン結晶生成の抑制に特に有効な成分としてK2 O、Cs2 OおよびSrOを含有することであり、しかもこの抑制効果がこれら成分のSiO2 に対するモル比に依存する点にある。すなわち、K2 O、Cs2 OおよびSrOを合わせた含有量がSiO2 の含有量に対して、高いモル比で含まれている場合、耐火物単体でも溶融ガラスとの接触条件でも、ジルコン結晶が生成し難くなるのである。
 さらに、低アルカリガラスおよび無アルカリガラスでは、ガラスの溶解を容易にするアルカリ酸化物が含まれない分、SrOを比較的高い量で含有するガラスが多く存在する。それらのSrO含有溶融ガラスと本発明の耐火物が接触する場合、該溶融ガラスと耐火物の間に生ずる濃度勾配が小さいゆえにSrOの溶出が遅く、溶出しても該溶融ガラス中と耐火物中でのSrO濃度が均衡した時点で溶出は止まるため、ジルコン結晶生成の抑制効果は特に長期間にわたり持続する。
 すなわち、本発明の高ジルコニア質電鋳耐火物は、陽イオン半径が大であり溶融ガラスへの溶出が遅いK2 O、およびCs2 Oのジルコン結晶生成の抑制作用と、陽イオン半径が比較的大であり、SrO含有溶融ガラスに対しては、特に溶出が遅いSrOのジルコン結晶生成の抑制作用を複合的に組み合わせたものであり、K2 O、Cs2 Oのいずれか一方もしくは双方を含有し、かつSrOを必須成分として含有することを特徴とする。
 K2 Oはマトリックスガラスの粘度を低下させる成分であると同時にジルコン結晶の生成を抑制する成分である。K2 Oはマトリックスガラスの粘度を低下させる役割があり、K2 Oを耐火物に含ませることで、製造時や熱上げ時、使用時、熱下げ時の温度変化による耐火物の亀裂を抑制する作用効果が得られる。また、Kの陽イオン半径は大きいために溶融ガラスと接触しても溶出が遅く、長期にわたりジルコン結晶生成の抑制効果を与える。例えば、耐火物がCs2 Oを含有せずに、SiO2 に対するSrOのモル比(これは、耐火物中のSrOの含有量〔質量%〕をCSrO、SiO2 の含有量〔質量%〕をCSiO2 で表した場合、0.580×CSrO/CSiO2で求まる。)が0.10のとき、SiO2 に対するK2 Oのモル比(これは、耐火物中のK2 Oの含有量〔質量%〕をCK2 、SiO2 の含有量〔質量%〕をCSiO2 で表した場合、0.638×CK2 /CSiO2で求まる。)が、0.06以上であると、優れたジルコン結晶生成の抑制効果が得られて好ましく、0.08以上であるとより好ましい。
 K2 Oが不足すると、製造時や使用による加熱でムライトなどアルミノシリケート系の結晶を生成してしまい、マトリックスガラスの量の低下をもたらして、製造時や熱上げ時、使用時、熱下げ時の温度変化で亀裂が生じやすくなる。一方で、特に高い含有量でK2 Oが耐火物に含まれると、製造時あるいは使用による加熱でリューサイトなどカリウム含有のアルミノシリケート系の結晶を生成してしまい、マトリックスガラス量の低下をもたらして、製造時や熱上げ時、使用時、熱下げ時の温度変化で亀裂を生じやすくなる。
 Cs2 Oもジルコン結晶の生成を抑制する成分であり、低含有量においてもその効果は発現する。また、Csの陽イオン半径は非常に大きいために、溶融ガラスと接触しても耐火物からの溶出が極めて遅く、特に長期にわたりジルコン結晶生成の抑制効果を与える。例えば、耐火物がK2 Oを含有せずにSiO2 に対するSrOのモル比(これは、耐火物中のSrOの含有量〔質量%〕をCSrO、SiO2 の含有量〔質量%〕をCSiO2  で表した場合、0.580×CSrO/CSiO2で求まる。)が0.10のとき、SiO2 に対するCs2 Oのモル比(これは、電鋳耐火物中のCs2 Oの含有量〔質量%〕をCCs2 、SiO2 の含有量〔質量%〕をCSiO2  で表した場合、0.213×CCs2 /CSiO2で求まる。)が、0.03以上であると、優れたジルコン結晶生成の抑制効果が得られて好ましく、0.04以上であるとより好ましい。
 SiO2 に対するK2 Oのモル比と、SiO2 に対するCs2 Oのモル比の合計は0.07以上であることが好ましく、より好ましくは0.09以上である。
 SrOも、K2 OおよびCs2 Oと同様に、ジルコン結晶の生成を抑制する成分であり、かつマトリックスガラスの粘度を低下させる成分である。また、SrOは低アルカリガラスや無アルカリガラス、ブラウン管用管球ガラスなどに含まれる成分であり、これらのSrOを含有する溶融ガラスと耐火物が接した際に、SrOを含有していると濃度勾配が大とならずに耐火物からのSrOの溶出は遅い。そのため、SrO含有のガラスの溶融に本発明の耐火物を適用すると、SrOのジルコン結晶生成の抑制効果は非常に長期間に渡り継続する。一方で、過剰なSrOを耐火物へ含ませるとストロンチウムシリケートなどのストロンチウム含有の結晶を生成してしまい、マトリックスガラスの量の低下をもたらして、製造時や熱上げ時、使用時、熱下げ時の温度変化で亀裂を生じやすくなる。
 K2 O、Cs2 OおよびSrOを、SiO2 に対するモル比として高い濃度で耐火物中に含有させると、高いジルコン結晶生成の抑制効果が得られる一方、これらの成分は過剰に存在すると、マトリックスガラスが過度に軟化して製造時に亀裂が生じやすくなったり、前述のようにマトリックスガラスの結晶化を引き起こしたり、製造時や熱上げ時、使用時、熱下げ時の温度変化で亀裂を生じやすくなってしまう。これらの不都合なく高いジルコン結晶生成の抑制効果が得られる含有量の範囲は、下記式1を満たす範囲である。
 さらに、SrO含有の溶融ガラスとの接触条件においては、SrOのSiO2 に対するモル比の高い組成が、長期にわたるジルコン結晶生成の抑制には好ましい。具体的には下記式(1)を満たし、かつ、下記式(2)を満たす組成が好ましい。なお、式(1)および式(2)は、各成分の耐火物中の含有量(質量%)をSiOに対するモル比へと換算するものである。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
(式中、CK2 は電鋳耐火物中のK2 Oの含有量〔質量%〕、CCs2 は電鋳耐火物中のCs2 Oの含有量〔質量%〕、CSrOは電鋳耐火物中のSrOの含有量〔質量%〕、CSiO2 は電鋳耐火物中のSiO2 の含有量〔質量%〕をそれぞれ示す。)
 なお、上記式(1)および式(2)においては、上記式を満たすように各成分の含有量を決定すればよい。その中でも、式(1)の上限値は0.35であり、下限値は0.25が好ましい。また、式(2)の下限値は0.12が好ましい。
 上記式(1)の値が0.35を超えると、製造時や熱上げ時において、マトリックスガラス成分からジルコニア結晶以外の結晶が生成してしまうことがあり、製造時や熱上げ時に亀裂を生じやすくする恐れがあるため0.35以下とすることが好ましい。また、長期にわたる溶融ガラスとの接触条件においても、ジルコン結晶生成の抑制効果を得るためには、式(1)の値は0.25以上とすることが好ましい。
 また、上記式(2)の値は、長期にわたる溶融ガラスとの接触条件においても、ジルコン結晶生成の抑制効果を得る目的のために0.12以上であることが好ましい。しかし、式(2)の値が0.25を超えると、耐火物の気孔率が上昇してしまう場合があり、耐火物の耐食性を低下させる要因となるため、上記式(2)の値は0.25を上限とすることが好ましい。
 Na2 Oは、耐火物単体においてジルコン結晶生成の抑制効果を有する成分であるが、そのマトリックスガラスに対する粘度の低下効果は特に著しく、溶融ガラスとの接触条件において、ジルコン結晶生成の抑制に有効な成分であるAl2 O3 、K2 O、Cs2 OおよびSrOの溶融ガラスへの溶出を速め、かつB2 O3 などジルコン結晶生成を促進する成分の溶融ガラスからの侵入を速める。さらに、Na陽イオンはその半径が小であるため、低アルカリガラス、無アルカリガラスなどとの接触で容易に溶融ガラス中へ溶出するため、これらの溶融ガラスに接触する場合、ジルコン結晶生成の抑制効果は比較的短期間しか継続しない。なおかつ、Na2 Oによるマトリックスガラスの粘度の低下効果は特に著しいため、Al2 O3 やK2 Oを比較的高い濃度で含有する本発明の耐火物へNa2 Oを含ませると、マトリックスガラスの粘度を過剰に低下させて、耐火物製造時の保形性が低下し、鋳塊に変形や引き裂き状の亀裂を生じるために耐火物の生産性は著しく低下する。すなわち、Na2 Oは実質的に含有させないことが好ましい。ここで、Na2 Oを実質的に含まないとは、その含有量が0.04質量%以下を示す。さらに、不純物として混入してしまうNa2 Oの含有量は0.02質量%以下であることがより好ましい。
 B2 O3 はジルコン結晶生成を促進する成分である。B2 O3 が多量に含まれると耐火物は熱履歴のみでジルコン結晶を生成し、少量であっても溶融ガラスとの接触条件でのジルコン結晶生成を促進する場合がある。そのため、ジルコン結晶生成の抑制という点でB2 O3 は低含有量が好ましい。
 一方で、B2 O3 は、低含有量でも耐火物製造時の亀裂発生を抑制する効果があり、Al2 O3 、K2 OおよびCs2 Oがジルコン結晶生成の抑制に大きく貢献している本発明においては、B2 O3の含有量は0.04質量%までが許容され、好ましくは0.03質量%以下である。
 P2 O5 は、ジルコン結晶生成を顕しく促進する成分である。P2 O5 が多量に含まれると、耐火物は熱履歴のみでジルコン結晶を生成し、少量であっても溶融ガラスとの接触条件でのジルコン結晶生成を促進する場合がある。そのため、ジルコン結晶生成の抑制という点でP2 O5 はできるだけ低含有量が好ましい。
 一方で、P2 O5 は、低含有量でも耐火物製造時の亀裂発生を抑制する効果があり、さらに、ジルコニア原料やジルコン原料の種類によっては不可避的に混入してくる成分でもある。P2 O5 の含有が一切許容できない場合は、高価な精製原料や産地が限定された比較的高価なジルコン原料、ジルコニア原料を使用せねばならなくなる。しかし、Al2 O3 やK2 O、Cs2 OおよびSrOがジルコン結晶生成の抑制に大きく貢献している本発明においては、P2 O5 の含有量は0.04質量%までが許容され、好ましくは0.03質量%以下である。そのため、ジルコン原料、ジルコニア原料の選択幅は狭まらず、比較的安価な原料コストを達成できる。
 上記の成分に加えて、Al2 O3 を加えることもできる。Al2 O3 はマトリックスガラスの粘度を低下させる成分であると同時にジルコン結晶の生成をある程度抑制する成分である。ジルコン結晶生成が顕著となる低アルカリガラス、あるいは無アルカリガラスとの接触条件下においても、これらのガラスの多くはAl2 O3 が比較的高含有量であるため、耐火物と溶融ガラスの間に生じる濃度勾配差は小さく、耐火物からのAl2 O3 の溶出は遅いために、長期間にわたりそのジルコン結晶生成の抑制効果を享受できる。
 Al2 O3 が0.4質量%未満であると、マトリックスガラスの粘度が高くなりすぎてマトリックスガラスの応力緩和能力が低下することで製造時や熱上げ時、使用時、熱下げ時の温度変化で亀裂が生じやすくなる。一方で、高含有量にAl2 O3 を含ませると、必要以上にマトリックスガラスの粘度が低下し、ジルコン結晶生成の抑制に有効であるK2 O、Cs2 OおよびSrOの溶融ガラスへの流出を速めてしまうという不都合が生じる。さらに、Al2 O3 が2質量%を超えると、製造時や使用中の時点でムライトなどアルミノシリケート系の結晶を生成してしまい、マトリックスガラスの量の低下をもたらして、製造時や熱上げ時、使用時、熱下げ時の温度変化で亀裂が生じやすくなる。また、0.4~2質量%のAl2 O3 が含まれると、耐火物単体ではジルコン結晶を生成し難くなる。従って、本発明の耐火物におけるAl2 O3の含有量は0.4~2質量%であり、好ましくは0.5~1.8質量%である。
 原料(ジルコン原料、ジルコニア原料など)中に不純物として含まれるFe2 O3 とTiO2 は、溶融ガラスへの着色と発泡を生じさせる成分であり、高含有量となるのは好ましくない。これらFe2 O3 とTiO2 とを合わせた含有量は0.3質量%以下において着色の問題はなく、好ましくは0.2質量%を超えない量である。
 同様に、原料中には不純物としてYとCaOが含まれるが、これらは熱サイクル試験での残存体積膨張率を増加させる傾向があり、これらYとCaOとを合わせた含有量は0.3質量%以下において問題はなく、好ましくは0.2質量%を超えない量である。
 CuOは少量でも溶融ガラスを着色する成分であるため、着色が実質的に生じなくなる含有量の水準までしか許容できない。本発明の耐火物においては、CuOの含有量は0.02質量%以下が好ましく、より好ましくは0.01質量%以下にせしめるのが好適である。
 以下に、本発明の高ジルコニア質電鋳耐火物を実施例によって具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
 電融鋳造法で高ジルコニア質電鋳耐火物を得るために、ジルコニア原料である脱珪ジルコンにアルミナ、ジルコンサンド、シリカ、炭酸カリウム、炭酸セシウム、炭酸ストロンチウム、B2 O3 、P2 O5 などの原料を調合して混合原料とし、この混合原料を2本の黒鉛電極を備えた出力500kVAの単相アーク電気炉に装入して、通電加熱により完全に溶融した。
 この溶湯を徐冷材であるバイヤーアルミナの粉末中に予め埋めておいた内容積160mm×200mm×350mmの黒鉛鋳型中に流し込んで鋳造し、室温付近の温度になるまで放冷した。冷却後、鋳塊と黒鉛鋳型を徐冷材中から抜き出し、さらに黒鉛鋳型と鋳塊を分離して目的の高ジルコニア質電鋳耐火物を製造した。
 原料組成を調整し、表1および表2に示した化学組成を有する高ジルコニア質電鋳耐火物を得た。ここで、表1には実施例(例1~例8)を、表2には比較例(例9~例15)を示した。なお、耐火物中の化学組成について、ZrO2 、SiO2 、Al2 O3 、およびSrOは波長分散型蛍光X線分析装置(リガク社製、装置名:ZSX PrimusII)により決定した定量分析値であり、その他の成分は高周波誘導結合プラズマ発光分光分析装置(セイコーインスツル社製、装置名:SPS 1100)により決定した定量分析値である。しかし、各成分の定量はこの分析方法に限定されるものではなく、他の定量分析方法によっても実施できる。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
〔製造時の亀裂〕
 鋳塊の外観上の亀裂の有無について次のように評価した。
 まず、目視にて亀裂の有無を調べ、亀裂が生じた耐火物については鋳塊表面全面に各面深さ10mmの研削を行い、研削後の鋳塊における亀裂長さが10mm以下となった場合には製造時の亀裂を「小」、亀裂長さが10mmを超え50mm以下となった場合には製造時の亀裂を「中」、亀裂長さが50mmを超える場合は製造時の亀裂を「大」と分類した。製造時の亀裂がない場合、耐火物の製造に問題は生じない。また、製造時の亀裂が中以下であれば必要な耐火物寸法と同じかわずかに大きい鋳塊を製造し、表面に軽度の研削を行うだけで良いので耐火物の製造は容易である。一方で、製造時の亀裂が大であると、必要な耐火物寸法に対して非常に大きな鋳塊を製作した上で、重度の研削や切断が必要となるため、その耐火物製造は非常に原価が高くなり現実的でない。
〔熱サイクル試験での残存体積膨張率〕
 製造した電鋳耐火物から40mm×40mm×40mmの試料を切り出し、800℃と1250℃の間を40回往復させる加熱・冷却の繰り返しを電気炉中で実施した。この際、室温から800℃の間の加熱は毎時160℃にて行い、ここから、800℃到達後直ちに1250℃の加熱を毎時450℃にて行い、1250℃到達後直ちに800℃までの冷却を毎時450℃にて行って1回の熱サイクルとした、800℃と1250℃の熱サイクルを40回繰り返した。最終の熱サイクル後は毎時160℃にて800℃から室温まで冷却した。この試験前および試験後で試料の寸法を測定し、その寸法変化から残存体積膨張率を求めた。
 この熱サイクル試験において高ジルコニア質電鋳耐火物は、一般に残存体積膨張を示し、場合によっては亀裂を生じる。この残存体積膨張は比較的低温域での熱サイクルに対する耐火物単体での試験により得られるものであるため、ガラス溶融炉へ耐火物を適用した際に溶融ガラスから離れて比較的低温である炉外面付近の割れ耐性を示している。この試験による残存体積膨張率が3体積%未満であると好ましく、2体積%未満であるとさらに好ましい。
〔熱サイクル試験でのジルコン結晶の生成率〕
 さらに、この熱サイクル試験でジルコン結晶が生成する耐火物もある。上記熱サイクル試験を経た電鋳耐火物について、ジルコン結晶の生成率を粉末エックス線回折装置(リガク社製、装置名:RINT-TTR III)により求めた。すなわち、熱サイクル試験後の試料を粉砕した粉末でエックス線回折測定をし、その回折パターンからジルコン結晶、ジルコニア結晶のピーク面積比を求めて、ジルコン結晶量/(ジルコン結晶量+ジルコニア結晶量)の比によりジルコン結晶の質量%を決定した。
〔浸漬試験でのジルコン結晶の生成率〕
 溶融ガラスとの接触条件下におけるジルコン結晶生成率は次の浸漬試験により求めた。すなわち、得られた電鋳耐火物から15mm×25mm×30mmの試料を切り出して、これを200cc白金るつぼ中に250gの無アルカリガラスカレットとともに挿入し、所定の温度と所定の時間、電気炉(モトヤマ社製、装置名:NH-2025D-SP)中で加熱した。冷却後、試料を取り出し、試料を粉砕した。粉砕した試料粉末でエックス線回折測定をし、その回折パターンからジルコン結晶、ジルコニア結晶のピーク面積比を求めて、ジルコン結晶量/(ジルコン結晶量+ジルコニア結晶量)の比によりジルコン結晶の質量%を決定した。
 この試験に用いたガラスは、化学組成が酸化物換算表示で、SiO2 が60質量%、B2 O3 が8質量%、Al2 O3 が17質量%、MgOが3質量%、CaOが4質量%、およびSrOが8質量%、である無アルカリガラスである。
 なお、浸漬試験による試験条件は下記の通りとした。
 浸漬試験1としては1250℃にて20日間の試験を行った。このとき、室温から1250℃までの加熱は毎時300℃とし、1250℃到達後20日間の温度保持をした後、700℃まで毎時500℃で冷却、さらに700℃から室温まで毎時60℃の冷却をした。この試験において、ジルコン結晶の生成率が4質量%以下が好ましく、2質量%以下がより好ましい。
 浸漬試験2としては1450℃にて4日間の試験を行った。このとき、室温から1450℃までの加熱は毎時300℃とし、1450℃到達後4日間の温度保持をした後、700℃まで毎時500℃で冷却、さらに700℃から室温まで毎時60℃の冷却をした。この試験において、ジルコン結晶の生成率が4質量%以下が好ましく、2質量%以下がより好ましい。
 上記した試験結果については、表1および表2に併せて示した。
 表1から明らかなように、本発明による電鋳耐火物は製造時の亀裂がないか、亀裂があっても中以下であった。従って、本発明の電鋳耐火物は高い生産性で容易に製造できる。
 実施例である例1~8の電鋳耐火物は、どれも熱サイクル試験での残存体積膨張率は2体積%以下であった。さらに表1中には記載していないが、この試験ではどの実施例においても試料に亀裂は生じなかった。本発明の電鋳耐火物は耐火物単体での温度変化に対する割れ耐性が高い。
 例1~8の耐火物は、熱サイクル試験後の試料からはジルコン結晶が検出されなかった。この測定法によれば、ジルコン結晶量/(ジルコン結晶量+ジルコニア結晶量)、の値が0.5質量%以上であれば、ジルコン結晶が検出できるので、例1~8の電鋳耐火物は、熱サイクル試験においてジルコン結晶を生成する反応が実質的に皆無だといえる。すなわち、本発明の電鋳耐火物は耐火物単体でのジルコン結晶の生成が抑制されている。
 例1~8の電鋳耐火物の浸漬試験1でのジルコン結晶の生成率は0.5質量%未満であった。さらに、例1~8の電鋳耐火物の浸漬試験2でのジルコン結晶の生成率もまた0.5質量%未満であった。
 浸漬試験1および浸漬試験2の双方において、例1~8の電鋳耐火物はジルコン結晶生成率が0.5質量%未満であり、本発明の電鋳耐火物はガラス接触条件下においても非常にジルコン結晶を生成し難いといえる。
 すなわち、本発明の電鋳耐火物は、製造時の亀裂も問題なく、耐火物単体での熱サイクルによる残存体積膨張率も低く、ジルコン結晶も生成し難く、さらには溶融ガラスとの接触条件においても、ジルコン結晶の生成が抑制されており、生産性、使用時の温度変化、さらには再使用性にも優れた耐久性の高い耐火物である。
 とりわけ、例1の電鋳耐火物は、製造時の亀裂がなく、熱サイクル試験による残存体積膨張率も小さく、ガラス浸漬試験においてもジルコン結晶の生成率が小さいため、生産性、使用時の温度変化、さらには再使用性に特に優れた耐火物である。
 表2には、本発明に該当しない高ジルコニア質電鋳耐火物での比較例(例9~例15)を示した。
 例9ではSiO2 の不足により、すなわちマトリックスガラスの量の不足により、例10では式1および式2の値が小さく、マトリックスガラスの粘度が高すぎる故に製造時の亀裂が大であり、これらの耐火物を製造するのは非常に困難である。
 例9、例12、例14、および例15では、それぞれSiO2 の不足すなわちマトリックスガラス量の不足、式2を満たさずSrOの不足、B2 O3 の過剰、およびP2 O5 の過剰、により熱サイクル試験での残存体積膨張率が高くなっており、耐火物単体での温度変化に対する割れ耐性が乏しいことがわかる。
 例9~15では、組成の不適切、具体的には式1および式2の一方または両方を満足しないか、Na2 Oの過剰、B2 O3 の過剰、およびP2 O5 の過剰、により浸漬試験で高いジルコン結晶の生成率となった。これらの耐火物は溶融ガラスとの接触条件においては、ジルコン結晶生成の抑制が不十分である。
 以上の結果より、本発明の高ジルコニア質電鋳耐火物は、生産性に優れ、熱上げ時に亀裂が発生し難く、耐火物単体で熱履歴を受けてもジルコン結晶を生成し難く、かつ溶融ガラスと接触してもジルコン結晶の生成をし難い。そのため、使用中の温度変化や稼働休止時の熱下げにおいても亀裂を発生し難く、高い耐久性を有し、再使用性にも優れた高ジルコニア質電鋳耐火物であって、特に、低アルカリガラスおよび無アルカリガラスの溶融炉に好適である。
 本発明の高ジルコニア質電鋳耐火物は、高い耐久性および良好な再使用性を有し、ガラス溶融炉の寿命を延長し、ガラス欠陥を低減させ、ガラス溶融炉の稼働停止と再稼働が容易となるため、特にガラス溶融炉の耐火物として好適である。
 なお、2010年10月6日に出願された日本特許出願2010-227016号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  化学組成として、ZrO2 が85~95質量%、SiO2 が2.5質量%以上、Na2 Oが0.04質量%以下、B2 O3 が0.04質量%以下、P2 O5 が0.04質量%以下、およびSrOを必須成分として含有し、さらに、K2 OおよびCs2 Oの少なくとも一方を含有し、かつ、SrO、K2 OおよびCs2 Oが、次に示す式(1)および式(2)の関係を同時に満たすことを特徴とする高ジルコニア質電鋳耐火物。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    (式中、CK2 は電鋳耐火物中のK2 Oの含有量〔質量%〕、CCs2 は電鋳耐火物中のCs2 Oの含有量〔質量%〕、CSrOは電鋳耐火物中のSrOの含有量〔質量%〕、CSiO2 は電鋳耐火物中のSiO2 の含有量〔質量%〕をそれぞれ示す。)
  2.  さらに、Al2 O3が0.4~2質量%含有される請求項1に記載の高ジルコニア質電鋳耐火物。
  3.  前記式(1)の下限値が0.25であり、上限値が0.35である請求項1又は2に記載の高ジルコニア質電鋳耐火物。
  4.  前記式(2)の下限値が0.12であり、上限値が0.25である請求項1又は2に記載の高ジルコニア質電鋳耐火物。
  5.  SiOに対するKOのモル比と、SiOに対するCsOのモル比との合計が、0.07以上である請求項1~4のいずれかに記載の高ジルコニア質電鋳耐火物。
  6.  FeとTiOとの合計含有量が0.3質量%以下である請求項1~5のいずれかに記載の高ジルコニア質電鋳耐火物。
  7.  YとCaOとの合計含有量が0.3質量%以下である請求項1~6のいずれかに記載の高ジルコニア質電鋳耐火物。
  8.  CuOの含有量が0.02質量%以下である請求項1~7のいずれかに記載の高ジルコニア質電鋳耐火物。
  9.  ガラス溶融炉用である請求項1~8のいずれかに記載の高ジルコニア質電鋳耐火物。
PCT/JP2011/073015 2010-10-06 2011-10-05 高ジルコニア質電鋳耐火物 WO2012046786A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012537748A JPWO2012046786A1 (ja) 2010-10-06 2011-10-05 高ジルコニア質電鋳耐火物
CN201180048665.4A CN103153912B (zh) 2010-10-06 2011-10-05 高氧化锆质电熔耐火物
EP11830718.0A EP2626340A4 (en) 2010-10-06 2011-10-05 FIRE-RESISTANT PRODUCT WITH HIGH ZIRCONIUM SHARE
KR1020137006399A KR20140000668A (ko) 2010-10-06 2011-10-05 고지르코니아질 전기 주조 내화물
US13/840,040 US8563453B2 (en) 2010-10-06 2013-03-15 High zirconia fused cast refractory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010227016 2010-10-06
JP2010-227016 2010-10-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/840,040 Continuation US8563453B2 (en) 2010-10-06 2013-03-15 High zirconia fused cast refractory

Publications (1)

Publication Number Publication Date
WO2012046786A1 true WO2012046786A1 (ja) 2012-04-12

Family

ID=45927781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073015 WO2012046786A1 (ja) 2010-10-06 2011-10-05 高ジルコニア質電鋳耐火物

Country Status (7)

Country Link
US (1) US8563453B2 (ja)
EP (1) EP2626340A4 (ja)
JP (1) JPWO2012046786A1 (ja)
KR (1) KR20140000668A (ja)
CN (1) CN103153912B (ja)
TW (1) TW201223914A (ja)
WO (1) WO2012046786A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151106A1 (ja) * 2012-04-06 2013-10-10 旭硝子株式会社 高ジルコニア質電鋳耐火物
WO2013151107A1 (ja) * 2012-04-06 2013-10-10 旭硝子株式会社 高ジルコニア質電鋳耐火物
WO2015025901A1 (en) 2013-08-21 2015-02-26 Saint-Gobain Tm K.K. High zirconia fused cast refractory
US9896383B2 (en) 2014-10-07 2018-02-20 Saint-Gobain Tm K.K. High zirconia electrically fused cast refractory
JP2018509363A (ja) * 2015-02-20 2018-04-05 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン 高ジルコニウム含有量を有する溶融された製品
JP2019116406A (ja) * 2017-12-27 2019-07-18 AvanStrate株式会社 ガラス基板製造装置、及びガラス基板の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984878B1 (fr) * 2011-12-21 2014-02-28 Saint Gobain Ct Recherches Produit refractaire a forte teneur en zircone.
US11465940B2 (en) 2014-03-31 2022-10-11 Saint-Gobain Ceramics & Plastics, Inc. Sintered zircon material for forming block
US10308556B2 (en) 2014-03-31 2019-06-04 Saint-Gobain Ceramics & Plastics, Inc. Sintered zircon material for forming block
KR102108851B1 (ko) 2014-03-31 2020-05-12 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 성형 블록용 소결 지르콘 재료
US10407349B2 (en) 2015-04-24 2019-09-10 Corning Incorporated Bonded zirconia refractories and methods for making the same
EP3453689B1 (en) * 2017-09-08 2020-08-26 AGC Ceramics Co., Ltd. High-zirconia electrocast refractory and method for manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129675A (en) 1980-03-18 1981-10-09 Asahi Glass Co Ltd High zirconia heat molten refractories
JPS63285173A (ja) 1987-05-18 1988-11-22 Toshiba Monofuratsukusu Kk 高ジルコニア鋳造耐火物
JPH03218980A (ja) 1989-11-28 1991-09-26 Asahi Glass Co Ltd 高ジルコニア質熱溶融鋳造耐火物
JPH04193766A (ja) * 1990-11-27 1992-07-13 Asahi Glass Co Ltd 高ジルコニア質溶融鋳造耐火物
JPH0672766A (ja) 1992-06-26 1994-03-15 Asahi Glass Co Ltd 高ジルコニア質溶融鋳造耐火物
JPH08277162A (ja) * 1995-04-06 1996-10-22 Toshiba Monofrax Co Ltd 高ジルコニア溶融耐火物
JPH092870A (ja) 1995-06-20 1997-01-07 Toshiba Monofrax Co Ltd 高ジルコニア電鋳煉瓦
JP2007176736A (ja) 2005-12-28 2007-07-12 Saint-Gobain Tm Kk 高ジルコニア鋳造耐火物
JP2009527454A (ja) * 2006-02-24 2009-07-30 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン 高ジルコニア含有量を有する高抵抗率耐火物
JP2010227016A (ja) 2009-03-27 2010-10-14 Seiko Epson Corp 細胞分離装置および細胞分離方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632359A (en) * 1968-11-29 1972-01-04 Corhart Refractories Co ZrO{11 {13 Al{11 O{11 {13 SiO{11 {0 FUSION-CAST REFRACTORY
US5679612A (en) * 1994-08-10 1997-10-21 Toshiba Monofrax Co., Ltd. High-zirconia fused refractories
JP5270913B2 (ja) * 2007-12-26 2013-08-21 サンゴバン・ティーエム株式会社 高電気抵抗高ジルコニア鋳造耐火物
KR101706397B1 (ko) * 2009-04-06 2017-02-13 아사히 가라스 가부시키가이샤 고지르코니아질 내화물 및 용융 가마
JP5634699B2 (ja) * 2009-10-29 2014-12-03 Agcセラミックス株式会社 ガラス欠点発生源特定方法、溶融鋳造耐火物及びそれを用いたガラス溶融窯

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129675A (en) 1980-03-18 1981-10-09 Asahi Glass Co Ltd High zirconia heat molten refractories
JPS63285173A (ja) 1987-05-18 1988-11-22 Toshiba Monofuratsukusu Kk 高ジルコニア鋳造耐火物
JPH03218980A (ja) 1989-11-28 1991-09-26 Asahi Glass Co Ltd 高ジルコニア質熱溶融鋳造耐火物
JPH04193766A (ja) * 1990-11-27 1992-07-13 Asahi Glass Co Ltd 高ジルコニア質溶融鋳造耐火物
JPH0672766A (ja) 1992-06-26 1994-03-15 Asahi Glass Co Ltd 高ジルコニア質溶融鋳造耐火物
JPH08277162A (ja) * 1995-04-06 1996-10-22 Toshiba Monofrax Co Ltd 高ジルコニア溶融耐火物
JPH092870A (ja) 1995-06-20 1997-01-07 Toshiba Monofrax Co Ltd 高ジルコニア電鋳煉瓦
JP2007176736A (ja) 2005-12-28 2007-07-12 Saint-Gobain Tm Kk 高ジルコニア鋳造耐火物
JP2009527454A (ja) * 2006-02-24 2009-07-30 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン 高ジルコニア含有量を有する高抵抗率耐火物
JP2010227016A (ja) 2009-03-27 2010-10-14 Seiko Epson Corp 細胞分離装置および細胞分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626340A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151106A1 (ja) * 2012-04-06 2013-10-10 旭硝子株式会社 高ジルコニア質電鋳耐火物
WO2013151107A1 (ja) * 2012-04-06 2013-10-10 旭硝子株式会社 高ジルコニア質電鋳耐火物
US9242903B2 (en) 2012-04-06 2016-01-26 Asahi Glass Company, Limited High zirconia fused cast refractory
WO2015025901A1 (en) 2013-08-21 2015-02-26 Saint-Gobain Tm K.K. High zirconia fused cast refractory
JP2015040144A (ja) * 2013-08-21 2015-03-02 サンゴバン・ティーエム株式会社 高ジルコニア電気溶融鋳造耐火物
US9896383B2 (en) 2014-10-07 2018-02-20 Saint-Gobain Tm K.K. High zirconia electrically fused cast refractory
JP2018509363A (ja) * 2015-02-20 2018-04-05 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン 高ジルコニウム含有量を有する溶融された製品
JP2019116406A (ja) * 2017-12-27 2019-07-18 AvanStrate株式会社 ガラス基板製造装置、及びガラス基板の製造方法

Also Published As

Publication number Publication date
TW201223914A (en) 2012-06-16
EP2626340A1 (en) 2013-08-14
CN103153912A (zh) 2013-06-12
CN103153912B (zh) 2014-07-09
KR20140000668A (ko) 2014-01-03
EP2626340A4 (en) 2014-03-26
JPWO2012046786A1 (ja) 2014-02-24
US8563453B2 (en) 2013-10-22
US20130210607A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5894923B2 (ja) 高ジルコニア質電鋳耐火物
WO2012046786A1 (ja) 高ジルコニア質電鋳耐火物
JP6002283B2 (ja) 高いジルコニア含有量を有する耐火物
JP6140686B2 (ja) 高ジルコニア質電鋳耐火物
US9284208B2 (en) Refractory block and glass-melting furnace
EP2956428A1 (en) High zirconia fused cast refractory
KR20120139694A (ko) 높은 지르코니아 함량을 갖는 내화물
JP6140687B2 (ja) 高ジルコニア質電鋳耐火物
JP4630190B2 (ja) 高ジルコニア鋳造耐火物
WO2016013384A1 (ja) アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、ガラス溶融窯、およびガラス板の製造方法
WO2016006531A1 (ja) アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、ガラス溶融窯、およびガラス板の製造方法
WO2022114022A1 (ja) 高ジルコニア電気溶融鋳造耐火物
CN107438583B (zh) 耐火块体和玻璃熔炉
JP7274590B2 (ja) 高含量のジルコニアを有する耐火性製品
EP3453689B1 (en) High-zirconia electrocast refractory and method for manufacturing the same
TW201912610A (zh) 高氧化鋯質電鑄耐火物及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048665.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012537748

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137006399

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011830718

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE