WO2012039009A1 - Seawater desalination method, seawater desalination equipment and combined cycle power plant using same - Google Patents

Seawater desalination method, seawater desalination equipment and combined cycle power plant using same Download PDF

Info

Publication number
WO2012039009A1
WO2012039009A1 PCT/JP2010/005757 JP2010005757W WO2012039009A1 WO 2012039009 A1 WO2012039009 A1 WO 2012039009A1 JP 2010005757 W JP2010005757 W JP 2010005757W WO 2012039009 A1 WO2012039009 A1 WO 2012039009A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
warm
heat transfer
seawater desalination
flow
Prior art date
Application number
PCT/JP2010/005757
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 文夫
孝次 難波
千野 耕一
天洋 阿部
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2012534832A priority Critical patent/JP5742848B2/en
Priority to PCT/JP2010/005757 priority patent/WO2012039009A1/en
Publication of WO2012039009A1 publication Critical patent/WO2012039009A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0082Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a power plant that combines a seawater desalination method and a seawater desalination apparatus.
  • seawater desalination methods There are two types of seawater desalination methods: evaporation using heat and reverse osmosis using power. Usually, both are installed in the power plant, and the former uses exhaust heat from the power plant. The latter uses power to boost seawater above osmotic pressure.
  • the reverse osmosis method does not require the latent heat accompanying the phase change as in the evaporation method, so that the energy consumption is small. That is, the evaporation method is considered to consume too much energy (see Non-Patent Document 1). ).
  • Patent Document 1 discloses a method of evaporating steam extracted from a steam turbine in a nuclear power plant. An example of the heat source is shown.
  • Patent Document 2 discloses a multi-stage flash evaporation method which is one of evaporation methods.
  • These conventional technologies include a heat recovery unit that is divided into a plurality of stages and includes a condenser and an evaporator, and a heater that heats the seawater that has passed through the condenser, and the seawater heated by the heater is guided to the evaporator. Then, it is flash evaporated and condensed in a condenser to take out fresh water.
  • steam extracted from a steam turbine is used as a heat source for the heater, but the latent heat of the steam that has flashed and evaporated before the seawater introduced into the condenser is sent to the heater is recovered with seawater. Therefore, the amount of heat required for heating with the heater is reduced.
  • JP 55-127187 A Japanese Patent Laid-Open No. 9-117753
  • Non-Patent Document 1 Even with the methods shown in Patent Documents 1 and 2, as in Non-Patent Document 1, it is a general recognition that the evaporation method consumes too much energy. In addition, the use of bleed air from the steam turbine for heating the seawater is one factor that reduces the output of the steam turbine.
  • the evaporation method may be superior to the reverse osmosis method that requires power in that it uses exhaust heat. For this purpose, it is necessary to further reduce the amount of heat required for heating seawater.
  • the problem to be solved by the present invention is to reduce the amount of heat required for heating seawater in the seawater desalination method using the evaporation method.
  • a seawater desalination method using a multistage flash evaporation type seawater desalination apparatus cold seawater and warm seawater having a temperature higher than that of the cold seawater and the cold seawater flow oppositely to the seawater desalination apparatus. And adjust the flow rate of cold seawater into the seawater desalination device so that it is equal to the flow rate of warm seawater, or the flow rate of cold seawater into the seawater desalination device The flow rate is adjusted so that the temperature difference between the warm seawater and the cold seawater at the upstream and downstream ends of the cold seawater flow direction is maintained, and the steam generated by flash evaporation of the warm seawater is cooled by the cold seawater.
  • a seawater desalination method characterized by producing fresh water.
  • the introduction of warm seawater and cold seawater does not require heating energy for heating the cold seawater. Therefore, in the seawater desalination method using the evaporation method, the amount of heat required for heating the seawater can be reduced.
  • FIG. It is a block diagram of the basic module of the seawater desalination apparatus which concerns on Example 1.
  • FIG. It is a schematic diagram of the temperature change in the seawater desalination apparatus which concerns on Example 1.
  • FIG. It is a block diagram of the conventional multistage flash seawater desalination apparatus. It is a figure explaining the temperature distribution in the paragraph of the conventional multistage flash seawater desalination apparatus. It is a TS diagram showing the process of evaporation and condensation of the conventional multistage flash seawater desalination apparatus. It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 2.
  • FIG. It is a figure explaining the temperature change by a temperature swing.
  • FIG. 1 It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 3.
  • FIG. It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 4.
  • FIG. It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 5.
  • FIG. It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 6.
  • FIG. It is the block diagram which showed roughly the principal part of the seawater desalination combined power plant which concerns on Example 7.
  • FIG. It is a block diagram of the conventional seawater desalination combined power plant. It is the block diagram which showed roughly the principal part of the seawater desalination combined power plant which concerns on Example 8.
  • FIG. 1 It is the block diagram which showed roughly the principal part of the seawater desalination combined power plant which concerns on Example 8.
  • the basic module constituting the seawater desalination apparatus has a multi-stage structure in which a heat transfer pipe through which cold seawater circulates in the upper part, a liquid reservoir through which warm seawater circulates in the lower part, and a fresh water tray for receiving fresh water in the middle part.
  • a heat transfer pipe through which cold seawater circulates in the upper part
  • a liquid reservoir through which warm seawater circulates in the lower part
  • a fresh water tray for receiving fresh water in the middle part.
  • Warm seawater and cold seawater are made to face each other and guided to both ends of the basic module. Cold seawater flows into the heat transfer tube and warm seawater flows into the liquid pool. In one small room, warm seawater is hotter than cold seawater, so the warm seawater flashes and evaporates from the surface of the liquid pool, condenses the evaporated steam on the surface of the heat transfer tube, and collects freshwater in a freshwater tray.
  • the flow rate of the cold seawater introduced into the basic module is controlled to be the same as that of the warm seawater, and the temperature difference between the warm seawater and the cold seawater is kept small.
  • the generated warm seawater and cold seawater are guided to the next basic module to promote seawater desalination to obtain freshwater.
  • the introduction of warm seawater and cold seawater does not require heating energy for heating the cold seawater. Therefore, the amount of heat required for heating seawater can be reduced.
  • FIG. 3 is a block diagram showing an outline of the main part of a conventional multi-stage flash-type seawater desalination apparatus, in which 100 is a seawater desalination apparatus, 50 is a main body of the seawater desalination apparatus, and a basic module that is a freshwater generation unit, 1 is a small room constituting each paragraph of the basic module, 2 is a heat transfer tube, 3 is a liquid reservoir, 4 is a fresh water tray, 5 is a heater, 110 is a sea water tank, 120 is a cold sea water tank, 130 is a fresh water tank, Represent each.
  • the basic module 50 of the seawater desalination apparatus 100 is divided into a plurality of small rooms 1, and has a multistage structure in which the small rooms 1 are connected in one direction.
  • Each small chamber 1 is provided with a heat transfer tube 2 at the upper part, a liquid pool 3 at the lower part, and a fresh water tray 4 at the middle part.
  • the heat transfer tubes 2 in each small room 1 communicate with the heat transfer tubes 2 in the adjacent small rooms 1, respectively, and form one pipe line along the connecting direction of the small rooms.
  • One end of the pipe line by the heat transfer pipe 2 at the end of the basic module 50 in the paragraph connection direction is connected to the seawater tank 110 through a pipe, and the other end is connected to the heater 5.
  • the seawater tank 110 stores seawater collected from the ocean, and the seawater in the tank is introduced into the heat transfer tube 2 via a pipe.
  • the heat transfer tube 2 is a pipe for heat exchange. Seawater introduced into the heat transfer tube 2 from the seawater tank 110 is heated while flowing down the heat transfer tubes 2 of the small chambers 1 sequentially. The seawater discharged from the heat transfer tube 2 is then guided to the heater 5 that heats the seawater and is heated again by the heater 5. As a heat source of the heater 5, steam turbine extraction (not shown) is used.
  • the liquid reservoir 3 provided in each small room is a part that temporarily stores seawater and promotes flash evaporation of seawater.
  • the liquid reservoirs 3 in each small chamber 1 communicate with the liquid reservoirs 3 in the adjacent small chambers 1 to form a seawater flow path in which seawater flows down along the connecting direction of the paragraphs.
  • One end of the seawater channel is connected to the heater 5 through a pipe, and the other end is connected to the cold seawater tank 120 through the pipe.
  • the cold seawater tank 120 is a tank that stores seawater discharged from the liquid reservoir 3.
  • Seawater heated by the heater 5 is discharged into the liquid pool 3.
  • the seawater introduced from the heater 5 to the liquid reservoir 3 flows down the liquid reservoir 3 in each small chamber so as to face the flow direction of the seawater in the heat transfer tube 2 and is finally led to the cold seawater tank 120.
  • a part of the seawater led to the liquid pool 3 in each small chamber 1 is flash-evaporated from the free liquid surface of the seawater.
  • the vapor evaporated by flash moves to the upper part of the small room, is cooled and condensed by the seawater flowing in the heat transfer tube 2, and is condensed in the fresh water receiving tray 4 as condensed water.
  • the fresh water receiving tray 4 is also in communication with the fresh water receiving tray 4 in the adjacent small room, and forms one fresh water flow path along the connecting direction of the paragraphs.
  • the end of the fresh water flow path is connected to a fresh water tank 130 for storing fresh water through a pipe. Therefore, the fresh water collected in each fresh water receiving tray 4 is then sequentially flowed down the fresh water receiving tray 4 in each small room 1 and finally collected in the fresh water tank 130.
  • the fresh water tank 130 is connected to the end of the basic module on the same side as the sea water tank 110 and the cold sea water tank 120.
  • the condensation heat of the vapor flashed and evaporated from the liquid pool 3 is recovered into the seawater flowing down in the heat transfer tube 2. The amount of heat for heating is reduced.
  • FIG. 4 schematically shows the temperature distribution within one paragraph of the basic module 50 shown in FIG.
  • the relative position on the horizontal axis represents the position in the horizontal direction. It is considered that the steam is in a saturated state.
  • A When seawater flows into the liquid pool 3 in the paragraph, the pressure is reduced and the liquid is flashed and (B) the steam temperature is approached at the liquid pool 3 outlet. Fresh water is a collection of condensed water, but some will flash evaporate and the temperature will drop in the same way as seawater.
  • One condensing side seawater flows into (C) the heat transfer tube 2 and then receives condensation heat, and (D) the temperature rises.
  • FIG. 5 is a TS diagram showing the process of evaporation and condensation.
  • Saturated steam at temperature T s is generated by flash evaporation.
  • the evaporation side is deprived of latent heat and the temperature is decreased from T f1 to T f2 .
  • steam condenses on the surface of the heat transfer tube the seawater temperature in the tube increases from T c1 to T c2 .
  • the flash evaporation amount is proportional to the average temperature difference ⁇ T fm between seawater and steam on the evaporation side.
  • the condensation amount is proportional to the average temperature difference ⁇ T cm between the steam and the condensing seawater, and is equal to the flash evaporation amount.
  • C p is the constant pressure specific heat
  • q f is the combined flow rate of seawater and fresh water on the evaporation side
  • q c is the flow rate in the tube on the condensation side.
  • the average temperature differences ⁇ T fm and ⁇ T cm are approximated by the arithmetic average of the respective inflow and outflow temperatures.
  • the multi-stage flash chamber is on the steam heating type heater side, the amount of heat in the heater is proportional to the temperature difference T f1 -T c2 .
  • the flow rates q f and q c are equal. From equation (1)
  • FIG. 1 is a configuration diagram schematically showing main parts of a seawater desalination apparatus 101 according to a first embodiment of the present invention, in which 6 is a flow control valve, and 200 and 210 are warm seawater tanks.
  • 6 is a flow control valve
  • 200 and 210 are warm seawater tanks.
  • symbol is attached
  • a flow rate adjusting valve 6 for adjusting the amount of seawater to be supplied is provided in a pipe 7 for supplying seawater from the seawater tank 110 to the heat transfer pipe 2 of the basic module 50. Further, the downstream end of the heat transfer pipe 2 on the downstream side in the seawater flow direction is connected not to the heater 5 but to the warm seawater tank 210.
  • the warm seawater tank 210 is a tank that stores seawater heated in the heat transfer pipe 2.
  • the upstream end of the liquid reservoir 3 in the seawater flow direction is connected not to the heater 5 but to the warm seawater tank 200.
  • the warm seawater tank 200 is a tank that stores warm seawater.
  • the seawater supplied from the seawater tank 110 is flow-adjusted by the flow rate adjusting valve 6 and introduced into the heat transfer pipe 2, and the temperature is raised by condensation heat in the heat transfer pipe and introduced into the warm seawater tank 210. Is done.
  • the warm water is supplied to the liquid reservoir 3 separately from the sea water flowing down the heat transfer pipe 2 from the warm sea water tank 200. Since this warm seawater has a higher temperature than seawater flowing in the heat transfer tube 2, a part of the warm seawater is flash-evaporated in each liquid pool 3. And the warm seawater which repeated flash evaporation in each liquid pool 3 is concentrated, falling in temperature, and is stored in the cold seawater tank 120 as cold seawater.
  • cold seawater is introduced into the heat transfer pipe 2 from the seawater tank 110 and warm seawater is introduced into the liquid reservoir 3 from the warm seawater tank 200, and the warm seawater and the cold seawater are opposed to each other and guided to both ends of the basic module.
  • the flow direction of seawater and cold seawater is made to face each other.
  • the warm seawater is warmer than the cold seawater in the heat transfer pipe in one small chamber 1, so the warm seawater flashes and evaporates from the liquid surface of the liquid pool. Is condensed on the surface of the heat transfer tube 2, and the condensed water is collected in a fresh water tray.
  • the flow rate of the cold seawater is controlled by the flow rate adjustment valve 6 so as to be equal to the flow rate of the warm seawater.
  • the flow rate of the cold seawater is controlled by the flow rate adjustment valve 6 so that the temperature difference between the warm seawater and the cold seawater is maintained at both ends of the basic module 50.
  • fresh water can be obtained by introducing warm seawater and cold seawater instead of an external heat source such as extracted steam of a steam turbine.
  • Warm sea water can be supplied using waste heat from factories and heat sources such as hot springs. It can also be generated by exhaust heat from the power plant. For this reason, the heating energy from the outside for heaters is not required.
  • the efficiency of desalination is improved by setting the cold seawater flow rate to an appropriate amount with respect to the warm seawater flow rate. Therefore, according to the present Example, in the seawater desalination method using the evaporation method, the amount of heat required for heating the seawater can be reduced.
  • FIG. 6 is a configuration diagram schematically showing the main part of the seawater desalination apparatus 102 of the present embodiment.
  • a plurality of basic modules 50 are prepared and connected in series in the flow direction of seawater.
  • symbol is attached
  • the end of the heat transfer pipe line on the upstream side in the flow direction of the seawater flowing through the heat transfer pipe 2 connected to the seawater tank 110 is the heat transfer pipe inlet end. 2i
  • the pipe end of the heat transfer tube connected to the warm seawater tank 210 on the downstream side in the flow direction of the seawater flowing through the heat transfer tube 2 is referred to as a heat transfer tube outlet end 2e.
  • the seawater flow path upstream of the seawater flow direction in the liquid reservoir 3 connected to the warm seawater tank 200 is connected to the liquid inlet 3i and the cold seawater tank 120 downstream of the liquid reservoir 3. Is called the liquid pool outlet end 3e.
  • the heat transfer tube outlet end 2ae of the heat transfer tube 2a provided in the first basic module 50a is connected to the liquid pool 3b of the second basic module 50b. It was connected to the liquid pool inlet end 3bi via a pipe.
  • the liquid pool outlet end 3ae of the liquid pool 3a of the first basic module 50a was connected to the heat transfer pipe inlet end 2bi of the heat transfer pipe 2b provided in the second basic module 50b via a pipe.
  • the heat transfer tube outlet end 2be of the heat transfer tube 2b provided in the second basic module 50b is connected to the liquid pool inlet end 3ci of the liquid pool 3c of the third basic module 50c via a pipe.
  • the liquid pool outlet end 3be of the liquid pool 3b of the second basic module 50b is connected to the heat transfer pipe inlet end 2ci of the heat transfer pipe 2c of the third basic module 50c via a pipe.
  • the heat transfer tube outlet end 2ce of the heat transfer tube 2c of the third basic module 50c is connected to the liquid pool inlet end 3di of the liquid reservoir 3d of the fourth basic module 50d via a pipe.
  • the liquid pool outlet end 3ce of the liquid pool 3c of the third basic module 50c is connected to the heat transfer pipe inlet end 2di of the heat transfer pipe 2d of the fourth basic module 50d via a pipe.
  • the heat transfer tube outlet end 2de of the heat transfer tube 2d of the fourth basic module 50d was connected to the warm seawater tank 210.
  • the liquid pool outlet end 3de of the liquid pool 3d of the fourth basic module 50d was connected to the cold seawater tank 120.
  • the warm seawater introduced from the warm seawater tank 200 is repeatedly evaporated by flash evaporation while flowing down the liquid pool 3a, and then the concentrated seawater flows out from the basic module 50a. Then, it flows into the heat transfer tube 2b of the next basic module 50b as cold seawater. Seawater that has flowed into the heat transfer pipe 2b of the basic module 50b as cold seawater is heated by condensation heat, becomes warm seawater, flows out of the basic module 50b, and is introduced into the liquid pool 3c of the basic module 50c. Thereafter, the operations of the basic modules 50a and 50b are repeated in the basic modules 50c and 50d.
  • the cold seawater introduced from the seawater tank 110 is heated by condensation heat in the heat transfer pipe 2a of the basic module 50a, and becomes warm seawater and flows out of the basic module 50a.
  • the seawater that has become warm seawater flows into the pool 3b as warm seawater into the next basic module 50b, becomes cold water that has been concentrated while flowing down the pool 3b, flows out of the basic module 50b, and becomes the cold seawater. It is introduced into the heat transfer tube 2c of the third basic module 50c. Thereafter, the operations of the basic modules 50a and 50b are repeated in the basic modules 50c and 50d.
  • the temperature of the cold seawater and the warm seawater is swung by alternately flowing down the heat transfer pipe and the liquid pool while the warm seawater and the cold seawater flow down the plurality of basic modules facing each other.
  • the cooled fresh water obtained in each basic module is collected in a fresh water tank 130 provided in each basic module.
  • the flow rate of the cold seawater supplied to the heat transfer pipe 2 of the basic module a is controlled by the flow rate adjustment valve 6. Control to be equal to the flow rate.
  • the flow rate of the cold seawater is controlled by the flow rate adjustment valve 6 so that the temperature difference between the warm seawater and the cold seawater is maintained at both ends of the basic module 50.
  • FIG. 7 is a schematic diagram showing a temperature change accompanying a temperature swing. It is obtained from the equations (1)-(3) shown above. A dotted line shows a temperature change when the configuration of FIG. 6 is taken. Fresh water obtained in each basic module is collected in the fresh water tank 6 on the low temperature side. As a result, as the number of swings increases, the flow rate q c of the cold seawater supplied to the heat transfer tube 2 of the basic module a decreases, so the temperature of the warm seawater tends to be maintained, but the temperature of the cold seawater greatly increases. To do. Although it is a demerit that the temperature difference between warm seawater and cold seawater approaches rapidly and the progress of desalination is delayed, this is a basic embodiment that causes a temperature swing.
  • FIG. 8 is a configuration diagram schematically showing main parts of the seawater desalination apparatus of the present embodiment.
  • symbol is attached
  • the downstream end of the fresh water receiving tray 4 connected to the fresh water tank 130 in the fresh water flow direction is referred to as a fresh water outlet end 4 e.
  • the second heat transfer tubes 8b and 8d are provided in the even-numbered basic modules 50b and 50d on the downstream side, respectively.
  • the second heat transfer tube 8b is connected to each of the second heat transfer tubes in the adjacent small chambers 1 and forms a single pipe line.
  • the fresh water outlet ends 4ae, 4ce of the odd-numbered basic modules 50a, 50c on the upstream side are respectively connected to the heat transfer tube inlet ends 8bi of the second heat transfer tubes 8 provided in the even-numbered basic modules 50b, 50d on the downstream side, respectively. It was connected to 8di via a pipe.
  • the ends 8be and 8de of the second heat transfer tube 8 on the downstream side in the fresh water flow direction flowing in the heat transfer tube were connected to the fresh water tank 220.
  • the feature of the present embodiment is that the low-temperature fresh water obtained by the odd-numbered basic modules 50a and 50c on the upstream side is passed through the second heat transfer tubes 8b and 8d of the even-numbered basic modules 50b and 50d on the downstream side. It is in the point which can obtain the fresh water which raised the temperature newly by collect
  • the flow rates q f and q c of the warm seawater and the cold seawater are kept equal to each other. As a result, as shown in FIG. Rapid increase in cold seawater temperature can be suppressed. Therefore, according to the present Example, the progress of desalination can be suppressed.
  • FIG. 9 is a configuration diagram schematically showing main parts of the seawater desalination apparatus of the present embodiment.
  • symbol is attached
  • a second heat transfer tube 8c and a third heat transfer tube 9c are additionally provided in the third basic module 50c.
  • the second heat transfer tube 8c and the third heat transfer tube 9c are connected to the second and third heat transfer tubes in the adjacent small chambers 1 to form a single pipe line.
  • the heat transfer tube outlet end 8be of the second heat transfer tube 8b provided in the second basic module 50b is connected to the heat transfer tube inlet end 9ci of the third heat transfer tube of the third basic module 50c.
  • the fresh water outlet end 4be of the fresh water receiving tray 4 of the second basic module 50b was connected to the heat transfer tube inlet end 8ci of the second heat transfer tube of the third basic module 50c.
  • the fourth basic module 50d is also provided with a third heat transfer tube 9d, and its end 9di is connected to the heat transfer tube outlet end 8ce of the second heat transfer tube 8c of the third basic module 50c, The opposite end 9de communicates with the pipe 10 that connects the freshwater tray outlet end 4de of the fourth basic module 50d and the freshwater tank 130.
  • the heat transfer tube outlet end 9ce of the third heat transfer tube 9c of the third basic module 50c is the fresh water outlet end 4ce of the third basic module 50c and the heat transfer tube of the second heat transfer tube 8d of the fourth basic module 50d.
  • the pipe 11 communicates with the inlet end 8di.
  • the warm fresh water flowing down the heat transfer tube 2 of the second basic module 50b is not collected in the fresh water tank 220, but passed through the liquid pool 3 of the third basic module 50c on the downstream side.
  • To the heat transfer tube 9c Heat is transferred from the warm fresh water flowing down the third heat transfer tube 9c to the warm seawater in the liquid reservoir 3, and flash evaporation is accelerated.
  • the warm fresh water is merged with the fresh water collected in the basic module 50c and introduced into the second heat transfer tube 8d of the fourth basic module 50d downstream.
  • the fresh water led to the second heat transfer tube 8d of the fourth basic module 50d is heated by the condensation heat and is collected in the fresh water tank 220 as hot fresh water.
  • the fresh water recovered by the second basic module 50b is not recovered by the fresh water tank 130, but is led to the second heat transfer tube 2c provided in the third basic module 50c, and is heated by condensation heat. .
  • the heated fresh water is introduced into the third heat transfer pipe 9d provided in the liquid pool 3 of the fourth basic module 50d, and the warm water in the liquid pool 3 flows down the third heat transfer pipe 9d. Transfers heat to and accelerates flash evaporation.
  • the fresh water in the third heat transfer tube 9c is cooled and finally collected in the fresh water tank 130 together with the fresh water collected by the fourth basic module 50d as cold fresh water.
  • FIG. 10 is a system configuration diagram for that purpose. 300 is a cluster, and 20, 22, 23, and 25 are flow path switching valves.
  • the cluster 300 is the seawater desalination apparatuses 102, 103, and 104 shown in FIGS. 6, 8, and 9, or the basic module 50 (seawater desalination apparatus 101) itself.
  • a plurality of warm seawater tanks 200 are provided for storing concentrated warm seawater according to the degree of concentration.
  • a plurality of cold seawater tanks 120 for storing concentrated cold seawater according to the degree of concentration are also provided.
  • a plurality of clusters 300 are also provided, and desalination proceeds in a time-sharing manner for each enrichment degree while switching the flow path switching valves 20, 22, 23, 25.
  • the warm seawater is divided according to the concentration and stored in the warm seawater tank 200.
  • cold seawater is similarly divided according to the degree of concentration and stored in the cold seawater tank 120.
  • Each cold seawater tank 120 is connected to the cold seawater supply system 12, and the cold seawater supply system 12 is connected to the heat transfer pipe inlet end 2 ai provided in the first basic module of the seawater desalination apparatus constituting the cluster 300. ing.
  • the cold seawater supply system 12 and each cold seawater tank 120 are connected to each other via a pipe 13, and a switching valve 20 is provided in each pipe 13. By which the switching valve 20 is opened and closed, which of the cold seawater tanks 120 is controlled by which cold seawater tank is supplied.
  • Each warm seawater tank 200 is connected to the warm seawater supply system 14, and the warm seawater supply system 14 is connected to the liquid pool inlet end 3 ai provided in the first basic module of the seawater desalination apparatus constituting the cluster 300. ing.
  • the warm seawater supply system 14 and each warm seawater tank 200 are connected to each other via a pipe 15, and a switching valve 23 is provided in each pipe 15.
  • the hot seawater tank from which each of the hot seawater tanks 200 is supplied is controlled by opening and closing the switching valve 23 that is a flow path switching mechanism.
  • Each cold seawater tank 120 is connected via a pipe 27.
  • a switching valve 25 is provided in each pipe 27 that connects each cold seawater tank 120 and the cold seawater recovery system 24, and switching control of the cold seawater tank that collects the cold seawater by opening and closing the switching valve 25 is provided. I do.
  • the switching valve 22 is provided in the piping 21 which connects the warm seawater tank 200 and the warm seawater collection
  • the switching valve 20 of the cold seawater tank 120 in which the cold seawater having the concentration to be supplied is stored, and the warm seawater is warm seawater. It is only necessary to open the switching valve 23 of the warm seawater tank 200 in which water is stored and close the switching valves of other tanks.
  • Warm seawater and cold seawater are supplied to the seawater desalination apparatus from the tank in which the seawater of the concentration to be supplied is stored through the warm seawater supply system 14 and the cold seawater supply system 12, respectively.
  • warm seawater and cold seawater discharged from the seawater desalination device can be stored separately according to the degree of concentration. For example, the concentrations of warm seawater and cold seawater discharged from the seawater desalination device are checked, and the switching valves 22 and 25 of the warm seawater tank 120 and the warm seawater tank 200 in which warm seawater and cold seawater of the same concentration are stored are opened. By closing the switching valve of the other tank, the seawater desalination apparatus can collect the seawater of the same concentration through the cold seawater recovery system and the warm seawater recovery system, respectively.
  • the seawater desalination apparatus can be used in a time-sharing manner according to the concentration, and the amount of hardware can be reduced.
  • the present embodiment is an application example of the fifth embodiment described above.
  • 30 is a cooling tower
  • 31 and 32 are air
  • 33 is a fresh water spray.
  • a heat medium circulation system 34 that circulates in the cooling tower 30 and the cold seawater tank 120 is provided.
  • symbol is attached
  • the atmosphere 31 is guided to the cooling tower 30 and a part of fresh water obtained by desalination in the cluster 300 is sprayed from the fresh water spray 33 to the atmosphere.
  • the heat medium is cooled by the sensible heat of the atmosphere and the latent heat of evaporation of fresh water, and is circulated to the cold seawater tank 120 via the heat medium circulation system 34, and the concentrated cold seawater in the cold seawater tank 120 is cooled by the heat medium. Is done.
  • the temperature difference between the cold seawater and the warm seawater supplied to the seawater desalination apparatus constituting the cluster 300 can be increased, and the progress of desalination can be accelerated.
  • a present Example is a structural example of the combined power plant using the seawater desalination system of this invention.
  • FIG. 12 the block diagram which showed roughly the principal part of the combined power plant of a present Example is shown.
  • symbol is attached
  • 40 is a steam turbine
  • 41 is a condenser
  • 42 is a seawater heater
  • 43 and 44 are evaporators
  • 45 is a condenser
  • 46 is an auxiliary turbine
  • 400 is main steam
  • 401 and 402 are condensates. is there.
  • the high-temperature and high-pressure main steam 400 flows into the steam turbine 40, and the low-temperature and low-pressure steam is exhausted to the condenser 41 to obtain work by the heat drop of the steam.
  • the condensate is sent to the boiler as the condensate 401, and the main steam 400 is obtained again by the boiler.
  • seawater 500 is used as a cooling source used for condensing steam.
  • the seawater whose steam has been cooled by the condenser 41 is warmed by exchanging heat with the steam to become warm seawater.
  • Part of the warm seawater discharged from the condenser 41 is guided to the cluster 300 as warm seawater 403.
  • the warm seawater 403 is heated by the plurality of seawater heaters 42 while being introduced into the cluster 300.
  • the steam extracted from the stage of the steam turbine is used for heating, and the steam condensed in each seawater heater 42 becomes condensate 402 and is sent to the boiler.
  • the warm seawater 403 heated by the seawater heater 42 is sent to the liquid pool inlet end 3ai of the first basic module of the seawater desalination apparatus constituting the cluster 300.
  • cold seawater 404 is also introduced into the heat transfer tube inlet end 2ai of the seawater desalination apparatus of the cluster 300.
  • the seawater desalination apparatuses 102, 103, or 104 described in the second to fourth embodiments are used.
  • Concentrated warm seawater 405 and warm fresh water 406 generated from the cluster 300 are stored in one end tank, and then sent to the evaporators 43 and 44 to exchange heat with the working medium of the auxiliary turbine.
  • the working medium heated by the warm seawater 405 and the warm fresh water 406 in the evaporators 43 and 44 becomes steam and is sent to the auxiliary turbine 46 to drive the auxiliary turbine 46 and obtain an output by a generator or the like (not shown).
  • the working medium that has driven the auxiliary turbine 46 is sent to the condenser 45, cooled by the condenser 45, and condensed.
  • the working medium of the auxiliary turbine 46 is not limited to water vapor, and may be Freon, ammonia, or the like.
  • the warm seawater 405 and the warm fresh water 406 that have exchanged heat with the working medium in the evaporators 43 and 44 are then recovered in the fresh water tank 130 and the cold sea water tank 120.
  • a plurality of seawater heaters 42 are used to heat the warm seawater 403, and low-temperature and low-pressure steam is also used as the extraction steam.
  • the temperature of the initial seawater heater 42 is close to the temperature in the condenser 41, and is heated stepwise.
  • the steam extracted from the downstream stage of the steam turbine 40 does more work than the steam extracted from the upstream stage. For this reason, the warm seawater 403 acts as a cooling source for the steam turbine 40.
  • FIG. 13 shows a conventional combined seawater desalination combined power generation, in which heated steam is extracted from one point in the upstream stage, whereas in FIG. 12, it is extracted from the downstream stage and performs a lot of work. Furthermore, work can be obtained by the auxiliary turbine 46 using the temperature difference between the warm seawater 405 and the warm fresh water 406 obtained from the seawater desalination apparatus and the condenser 45 as a new cooling source.
  • FIG. 14 is a configuration diagram in which air is used as a cooling source for the condenser 45.
  • 30 is a cooling tower
  • 31, 32 are air
  • 33 is fresh water spray
  • 34 is a heat medium circulation system.
  • the atmosphere 31 is guided to the cooling tower 30, and a part of the fresh water obtained by seawater desalination is sprayed from the fresh water spray 33 to the atmosphere.
  • the cooling medium of the condenser 45 can be cooled by the sensible heat of the atmosphere and the latent heat of evaporation of fresh water through the heat medium circulating in the heat medium circulation system.
  • the present invention can be used for a seawater desalination plant, a seawater resource plant, and a combined steam turbine plant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The invention reduces the amount of heat required for heating seawater in seawater desalination methods that use evaporation. The seawater desalination equipment is multi-stage flash-evaporation seawater desalination equipment (101), which is provided with a plurality of stages that are configured from small rooms (1) having a heat-transfer pipe (2) down which the seawater flows, a liquid pool (3) down which warm seawater that is warmer than the seawater flows, and a desalinated water catch pan (4) that collects desalinated water obtained by flash-evaporating the warm seawater pooled in the liquid pool (3) and cooling the steam with the seawater flowing down the heat-transfer pipe (2); and is characterized in being configured so that the seawater introduced into the seawater desalination equipment (101) as warm sea water is different from the other seawater and the seawater and warm seawater are made to flow down each stage in opposite directions, and in providing a flow-adjusting valve (6) upstream from the inlet end of the heat-transfer tubes (2). The flow-adjusting valve adjusts the flow of seawater into the seawater desalination equipment (101) so as to equal the flow of the warm seawater into the seawater desalination equipment (101), or adjusts the flow so that the difference in temperature between the warm seawater and the seawater is maintained at both the upstream side and the downstream side of the direction of seawater flow in the seawater desalination equipment (101).

Description

海水淡水化方法,海水淡水化装置、およびそれを用いた複合発電プラントSeawater desalination method, seawater desalination apparatus, and combined power plant using the same
 本発明は、海水淡水化方法および海水淡水化装置を複合した発電プラントに関するものである。 The present invention relates to a power plant that combines a seawater desalination method and a seawater desalination apparatus.
 海水淡水化方法には、熱を用いる蒸発法と動力を用いる逆浸透法の二通りがある。通常、両者ともに発電プラントに併設され、前者は発電プラントからの排熱を利用する。後者は動力を利用し海水を浸透圧以上に昇圧する。一般的には、逆浸透法では蒸発法のような相変化に伴う潜熱を必要としないためエネルギー消費が小さい、すなわち、蒸発法はエネルギー消費が過大であるとされている(非特許文献1参照)。 There are two types of seawater desalination methods: evaporation using heat and reverse osmosis using power. Usually, both are installed in the power plant, and the former uses exhaust heat from the power plant. The latter uses power to boost seawater above osmotic pressure. Generally, the reverse osmosis method does not require the latent heat accompanying the phase change as in the evaporation method, so that the energy consumption is small. That is, the evaporation method is considered to consume too much energy (see Non-Patent Document 1). ).
 従来の蒸発法を用いた海水淡水化装置を備えた複合発電プラントの例としては、特開昭55-127187号公報(特許文献1)に、原子力発電プラントで蒸気タービンから抽気した蒸気を蒸発法の熱源とする例が示されている。また、特開平9-117753号公報(特許文献2)には蒸発法の一つである多段フラッシュ蒸発法が示されている。 As an example of a combined power plant equipped with a seawater desalination apparatus using a conventional evaporation method, Japanese Patent Application Laid-Open No. 55-127187 (Patent Document 1) discloses a method of evaporating steam extracted from a steam turbine in a nuclear power plant. An example of the heat source is shown. Japanese Patent Application Laid-Open No. 9-117753 (Patent Document 2) discloses a multi-stage flash evaporation method which is one of evaporation methods.
 これらの従来技術では、複数段に分かれ、凝縮器および蒸発器を備えた熱回収部と、凝縮器を経た海水を加熱する加熱器とを備え、加熱器で加熱された海水を蒸発器に導いてフラッシュ蒸発させ、凝縮器で凝縮して淡水を取り出している。この従来技術では、加熱器の熱源として蒸気タービンから抽気した蒸気を用いているが、凝縮器に導入した海水を加熱器に送るまでの間に、フラッシュ蒸発した蒸気の潜熱を海水で回収することによって、加熱器での加熱に要する熱量を低減している。 These conventional technologies include a heat recovery unit that is divided into a plurality of stages and includes a condenser and an evaporator, and a heater that heats the seawater that has passed through the condenser, and the seawater heated by the heater is guided to the evaporator. Then, it is flash evaporated and condensed in a condenser to take out fresh water. In this conventional technology, steam extracted from a steam turbine is used as a heat source for the heater, but the latent heat of the steam that has flashed and evaporated before the seawater introduced into the condenser is sent to the heater is recovered with seawater. Therefore, the amount of heat required for heating with the heater is reduced.
特開昭55-127187号公報JP 55-127187 A 特開平9-117753号公報Japanese Patent Laid-Open No. 9-117753
 だが、特許文献1,2に示された方法をもってしても、非特許文献1にあるように、蒸発法は、エネルギー消費が過大であるということが一般的な認識である。また、海水の加熱に蒸気タービンからの抽気を用いることは蒸気タービンの出力を低下させる一因である。 However, even with the methods shown in Patent Documents 1 and 2, as in Non-Patent Document 1, it is a general recognition that the evaporation method consumes too much energy. In addition, the use of bleed air from the steam turbine for heating the seawater is one factor that reduces the output of the steam turbine.
 しかしながら、蒸発法は排熱を利用する点で、動力を要する逆浸透法に勝る可能性がある。そのためには、海水の加熱に要する熱量のさらなる削減が必要である。 However, the evaporation method may be superior to the reverse osmosis method that requires power in that it uses exhaust heat. For this purpose, it is necessary to further reduce the amount of heat required for heating seawater.
 そこで本発明が解決しようとする課題は、蒸発法を用いた海水淡水化方法において、海水の加熱に要する熱量を低減することである。 Therefore, the problem to be solved by the present invention is to reduce the amount of heat required for heating seawater in the seawater desalination method using the evaporation method.
 多段フラッシュ蒸発方式の海水淡水化装置を用いた海水淡水化方法において、海水淡水化装置に、冷海水と、該冷海水と別の前記冷海水より温度が高い温海水とが対向して流れるように導入し、冷海水の海水淡水化装置への導入流量を、温海水の導入流量に等しくなるように流量調節する、あるいは、冷海水の海水淡水化装置への導入流量を、海水淡水化装置の冷海水流れ方向上流側と下流側の両端での温海水と冷海水との温度差が保たれるように流量調節し、温海水をフラッシュ蒸発させて生成した蒸気を前記冷海水で冷却して淡水を生成することを特徴とする海水淡水化方法。 In a seawater desalination method using a multistage flash evaporation type seawater desalination apparatus, cold seawater and warm seawater having a temperature higher than that of the cold seawater and the cold seawater flow oppositely to the seawater desalination apparatus. And adjust the flow rate of cold seawater into the seawater desalination device so that it is equal to the flow rate of warm seawater, or the flow rate of cold seawater into the seawater desalination device The flow rate is adjusted so that the temperature difference between the warm seawater and the cold seawater at the upstream and downstream ends of the cold seawater flow direction is maintained, and the steam generated by flash evaporation of the warm seawater is cooled by the cold seawater. A seawater desalination method characterized by producing fresh water.
 本発明によれば、温海水と冷海水の導入により、冷海水を加熱するための加熱エネルギーを必要としない。よって、蒸発法を用いた海水淡水化方法において、海水の加熱に要する熱量を低減することができる。 According to the present invention, the introduction of warm seawater and cold seawater does not require heating energy for heating the cold seawater. Therefore, in the seawater desalination method using the evaporation method, the amount of heat required for heating the seawater can be reduced.
実施例1に係る海水淡水化装置の基本モジュールの構成図である。It is a block diagram of the basic module of the seawater desalination apparatus which concerns on Example 1. FIG. 実施例1に係る海水淡水化装置内の温度変化の模式図である。It is a schematic diagram of the temperature change in the seawater desalination apparatus which concerns on Example 1. FIG. 従来の多段フラッシュ海水淡水化装置の構成図である。It is a block diagram of the conventional multistage flash seawater desalination apparatus. 従来の多段フラッシュ海水淡水化装置の段落内の温度分布を説明する図である。It is a figure explaining the temperature distribution in the paragraph of the conventional multistage flash seawater desalination apparatus. 従来の多段フラッシュ海水淡水化装置の蒸発と凝縮の過程を表すTS線図である。It is a TS diagram showing the process of evaporation and condensation of the conventional multistage flash seawater desalination apparatus. 実施例2に係る海水淡水化装置の主要部分を概略的に示した構成図である。It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 2. FIG. 温度スイングによる温度変化を説明した図である。It is a figure explaining the temperature change by a temperature swing. 実施例3に係る海水淡水化装置の主要部分を概略的に示した構成図である。It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 3. FIG. 実施例4に係る海水淡水化装置の主要部分を概略的に示した構成図である。It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 4. FIG. 実施例5に係る海水淡水化装置の主要部分を概略的に示した構成図である。It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 5. FIG. 実施例6に係る海水淡水化装置の主要部分を概略的に示した構成図である。It is the block diagram which showed roughly the principal part of the seawater desalination apparatus which concerns on Example 6. FIG. 実施例7に係る海水淡水化複合発電プラントの主要部分を概略的に示した構成図である。It is the block diagram which showed roughly the principal part of the seawater desalination combined power plant which concerns on Example 7. FIG. 従来の海水淡水化複合発電プラントの構成図である。It is a block diagram of the conventional seawater desalination combined power plant. 実施例8に係る海水淡水化複合発電プラントの主要部分を概略的に示した構成図である。It is the block diagram which showed roughly the principal part of the seawater desalination combined power plant which concerns on Example 8. FIG.
 本発明では、海水淡水化装置を構成する基本モジュールは、上部に冷海水が流通する伝熱管、下部に温海水が流通する液溜まり、中間部に淡水を受けるための淡水受け皿を設けた多段の小部屋に分割される。温海水と冷海水を対向させ基本モジュールの両端に導き、冷海水は伝熱管内に、温海水は液溜まりにそれぞれ流入させる。一つの小部屋の中では、温海水は冷海水より温度が高いため、温海水は液溜まりの液面からフラッシュ蒸発し、蒸発した蒸気を伝熱管表面で凝縮させ、淡水を淡水受け皿に集める。本発明では、基本モジュールに導入する冷海水の流量は温海水と同量になるように制御し、温海水と冷海水の温度差を小さく保つ。これにより、温海水は濃縮された冷海水および淡水に変わり、冷海水は温海水となる。生成された温海水と冷海水を次の基本モジュールに導き、海水淡水化を進め、淡水を得るものである。 In the present invention, the basic module constituting the seawater desalination apparatus has a multi-stage structure in which a heat transfer pipe through which cold seawater circulates in the upper part, a liquid reservoir through which warm seawater circulates in the lower part, and a fresh water tray for receiving fresh water in the middle part. Divided into small rooms. Warm seawater and cold seawater are made to face each other and guided to both ends of the basic module. Cold seawater flows into the heat transfer tube and warm seawater flows into the liquid pool. In one small room, warm seawater is hotter than cold seawater, so the warm seawater flashes and evaporates from the surface of the liquid pool, condenses the evaporated steam on the surface of the heat transfer tube, and collects freshwater in a freshwater tray. In the present invention, the flow rate of the cold seawater introduced into the basic module is controlled to be the same as that of the warm seawater, and the temperature difference between the warm seawater and the cold seawater is kept small. Thereby, warm seawater changes to the concentrated cold seawater and fresh water, and cold seawater turns into warm seawater. The generated warm seawater and cold seawater are guided to the next basic module to promote seawater desalination to obtain freshwater.
 本発明によれば、温海水と冷海水の導入により、冷海水を加熱するための加熱エネルギーを必要としない。よって、海水の加熱に要する熱量を低減することができる。 According to the present invention, the introduction of warm seawater and cold seawater does not require heating energy for heating the cold seawater. Therefore, the amount of heat required for heating seawater can be reduced.
 以下、本発明の実施例について、適宜図を用いて説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings as appropriate.
 本実施例の理解を容易にするため、まず始めに、従来のMSF(Multi-Stage Flash:多段フラッシュ)海水淡水化装置の構成と原理について図3を用いて説明する。 In order to facilitate understanding of this embodiment, first, the configuration and principle of a conventional MSF (Multi-Stage Flash) seawater desalination apparatus will be described with reference to FIG.
 図3は従来の多段フラッシュ式海水淡水化装置の主要部分の概略を示した構成図であり、100は海水淡水化装置、50は海水淡水化装置の本体で、淡水生成部である基本モジュール、1は基本モジュールの各段落を構成する小部屋、2は伝熱管、3は液溜まり、4は淡水受け皿、5は加熱器、110は海水タンク、120は冷海水タンク、130は淡水タンク、をそれぞれ表す。多段フラッシュ式海水淡水化装置においては、海水淡水化装置100の基本モジュール50は、複数の小部屋1に区割りされており、各小部屋1を一方向に連接して配置した多段構造を有する。各小部屋1には、それぞれ上部に伝熱管2,下部に液溜まり3,中間部に淡水受け皿4が設けられている。 FIG. 3 is a block diagram showing an outline of the main part of a conventional multi-stage flash-type seawater desalination apparatus, in which 100 is a seawater desalination apparatus, 50 is a main body of the seawater desalination apparatus, and a basic module that is a freshwater generation unit, 1 is a small room constituting each paragraph of the basic module, 2 is a heat transfer tube, 3 is a liquid reservoir, 4 is a fresh water tray, 5 is a heater, 110 is a sea water tank, 120 is a cold sea water tank, 130 is a fresh water tank, Represent each. In the multistage flash-type seawater desalination apparatus, the basic module 50 of the seawater desalination apparatus 100 is divided into a plurality of small rooms 1, and has a multistage structure in which the small rooms 1 are connected in one direction. Each small chamber 1 is provided with a heat transfer tube 2 at the upper part, a liquid pool 3 at the lower part, and a fresh water tray 4 at the middle part.
 図3に示すように、各小部屋1の伝熱管2はそれぞれ隣り合う小部屋1の伝熱管2と連通しており、小部屋の連接方向に沿って1つの管路を形成している。そして、基本モジュール50の段落連接方向端部にある、伝熱管2による管路の末端の一方は、海水タンク110に配管を介して繋がっており、もう一端は加熱器5に繋がっている。 As shown in FIG. 3, the heat transfer tubes 2 in each small room 1 communicate with the heat transfer tubes 2 in the adjacent small rooms 1, respectively, and form one pipe line along the connecting direction of the small rooms. One end of the pipe line by the heat transfer pipe 2 at the end of the basic module 50 in the paragraph connection direction is connected to the seawater tank 110 through a pipe, and the other end is connected to the heater 5.
 海水タンク110には、海洋から採取した海水が貯留されており、タンク内の海水が配管を介して伝熱管2に導入されるようになっている。伝熱管2は、熱交換用の配管である。海水タンク110から伝熱管2に導入された海水は、各小部屋1の伝熱管2を順次流下しながら加熱される。伝熱管2から排出された海水は、その後、海水を加熱する加熱器5へ導かれ、加熱器5で再度加熱される。加熱器5の熱源には、図示しない蒸気タービンの抽気が用いられる。 The seawater tank 110 stores seawater collected from the ocean, and the seawater in the tank is introduced into the heat transfer tube 2 via a pipe. The heat transfer tube 2 is a pipe for heat exchange. Seawater introduced into the heat transfer tube 2 from the seawater tank 110 is heated while flowing down the heat transfer tubes 2 of the small chambers 1 sequentially. The seawater discharged from the heat transfer tube 2 is then guided to the heater 5 that heats the seawater and is heated again by the heater 5. As a heat source of the heater 5, steam turbine extraction (not shown) is used.
 各小部屋に設けられた液溜まり3は、海水を一時的に貯留し、海水のフラッシュ蒸発を促進する部分である。各小部屋1の液溜まり3は、それぞれ隣り合う小部屋1の液溜まり3と連通しており、段落の連接方向に沿って海水が流下する海水流路を形成している。そして、その海水流路の末端の一方は、配管を介して加熱器5と繋がっており、もう一端は配管を介して冷海水タンク120と繋がっている。冷海水タンク120は、液溜まり3から排出された海水を貯留するタンクである。 The liquid reservoir 3 provided in each small room is a part that temporarily stores seawater and promotes flash evaporation of seawater. The liquid reservoirs 3 in each small chamber 1 communicate with the liquid reservoirs 3 in the adjacent small chambers 1 to form a seawater flow path in which seawater flows down along the connecting direction of the paragraphs. One end of the seawater channel is connected to the heater 5 through a pipe, and the other end is connected to the cold seawater tank 120 through the pipe. The cold seawater tank 120 is a tank that stores seawater discharged from the liquid reservoir 3.
 加熱器5で加熱された海水は、液溜まり3に放出される。加熱器5から液溜まり3に導入された海水は、伝熱管2内の海水の流れ方向と対向して各小部屋の液溜まり3を流下し、最終的に冷海水タンク120に導かれる。各小部屋1の液溜まり3に導かれた海水の一部は、海水の自由液面からフラッシュ蒸発する。フラッシュ蒸発した蒸気は小部屋上方に移動し、伝熱管2内を流れる海水で冷却されて凝縮し、凝縮水となって淡水受け皿4に集められる。 Seawater heated by the heater 5 is discharged into the liquid pool 3. The seawater introduced from the heater 5 to the liquid reservoir 3 flows down the liquid reservoir 3 in each small chamber so as to face the flow direction of the seawater in the heat transfer tube 2 and is finally led to the cold seawater tank 120. A part of the seawater led to the liquid pool 3 in each small chamber 1 is flash-evaporated from the free liquid surface of the seawater. The vapor evaporated by flash moves to the upper part of the small room, is cooled and condensed by the seawater flowing in the heat transfer tube 2, and is condensed in the fresh water receiving tray 4 as condensed water.
 なお、海水タンク110から加熱器5へ流れる海水の流れ方向と、加熱器5から冷海水タンク120へ流れる海水の流れ方向を対向させるため、基本モジュール50の段落連接方向の一方の端部と海水タンク110および冷海水タンク120とを接続し、反対側の端部と加熱器5とを接続している。 In addition, in order to make the flow direction of the seawater which flows from the seawater tank 110 to the heater 5 and the flow direction of the seawater which flows from the heater 5 to the cold seawater tank 120 face each other, one end portion of the basic connection direction of the basic module 50 and the seawater The tank 110 and the cold seawater tank 120 are connected, and the opposite end and the heater 5 are connected.
 淡水受け皿4も、隣り合う小部屋の淡水受け皿4と連通しており、段落の連接方向に沿って1つの淡水用流路を形成している。淡水用流路の末端は、配管を介して、淡水を貯留する淡水タンク130に繋がっている。よって、各淡水受け皿4に集められた淡水は、その後、各小部屋1の淡水受け皿4を順次流下して、最終的に淡水タンク130に集められる。なお淡水タンク130は、海水タンク110,冷海水タンク120と同じ側の基本モジュール端部と接続している。 The fresh water receiving tray 4 is also in communication with the fresh water receiving tray 4 in the adjacent small room, and forms one fresh water flow path along the connecting direction of the paragraphs. The end of the fresh water flow path is connected to a fresh water tank 130 for storing fresh water through a pipe. Therefore, the fresh water collected in each fresh water receiving tray 4 is then sequentially flowed down the fresh water receiving tray 4 in each small room 1 and finally collected in the fresh water tank 130. The fresh water tank 130 is connected to the end of the basic module on the same side as the sea water tank 110 and the cold sea water tank 120.
 この図3に示した従来の海水淡水化装置100では、液溜まり3からフラッシュ蒸発した蒸気の凝縮熱は伝熱管2内を流下する海水に回収されるため、回収した分、加熱器5での加熱用の熱量が低減される。 In the conventional seawater desalination apparatus 100 shown in FIG. 3, the condensation heat of the vapor flashed and evaporated from the liquid pool 3 is recovered into the seawater flowing down in the heat transfer tube 2. The amount of heat for heating is reduced.
 図4に図3に示した基本モジュール50の1段落内の温度分布を模式的に示す。横軸の相対位置は水平方向の位置を表している。蒸気は飽和状態にあると考えられ、(A)海水が段落の液溜まり3に流入すると減圧されフラッシュ蒸発し、(B)液溜まり3出口で蒸気温度に近づく。淡水は凝縮水が集められたものだが、一部はフラッシュ蒸発し温度が海水と同じように低下する。一方の凝縮側の海水は(C)伝熱管2に流入した後、凝縮熱を受け、(D)温度が上昇する。 FIG. 4 schematically shows the temperature distribution within one paragraph of the basic module 50 shown in FIG. The relative position on the horizontal axis represents the position in the horizontal direction. It is considered that the steam is in a saturated state. (A) When seawater flows into the liquid pool 3 in the paragraph, the pressure is reduced and the liquid is flashed and (B) the steam temperature is approached at the liquid pool 3 outlet. Fresh water is a collection of condensed water, but some will flash evaporate and the temperature will drop in the same way as seawater. One condensing side seawater flows into (C) the heat transfer tube 2 and then receives condensation heat, and (D) the temperature rises.
 蒸気温度は蒸発側と凝縮側の温度と蒸発量から決まる。図5は蒸発と凝縮の過程を表すTS線図である。フラッシュ蒸発により温度Tsの飽和蒸気が生成される。蒸発側は潜熱を奪われTf1からTf2に減温する。蒸気は伝熱管表面で凝縮するが、管内の海水温度はTc1からTc2に増加する。フラッシュ蒸発量は蒸発側の海水と蒸気の平均温度差ΔTfmに比例する。凝縮量は蒸気と凝縮側の海水の平均温度差ΔTcmに比例し、かつ、フラッシュ蒸発量に等しい。 The vapor temperature is determined by the evaporation side and condensation side temperatures and the evaporation amount. FIG. 5 is a TS diagram showing the process of evaporation and condensation. Saturated steam at temperature T s is generated by flash evaporation. The evaporation side is deprived of latent heat and the temperature is decreased from T f1 to T f2 . Although steam condenses on the surface of the heat transfer tube, the seawater temperature in the tube increases from T c1 to T c2 . The flash evaporation amount is proportional to the average temperature difference ΔT fm between seawater and steam on the evaporation side. The condensation amount is proportional to the average temperature difference ΔT cm between the steam and the condensing seawater, and is equal to the flash evaporation amount.
 蒸発側の熱伝達率をKf、面積をSf、凝縮側をそれぞれKc,Scとし、蒸発・凝縮の熱量をQとすれば、次式を得る。 If the heat transfer coefficient on the evaporation side is K f , the area is S f , the condensing side is K c and S c, and the heat quantity of evaporation / condensation is Q, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000001
 ここに、Cpは定圧比熱、qfは蒸発側の海水と淡水を合わせた流量、qcは凝縮側の管内流量である。平均温度差ΔTfmとΔTcmをそれぞれの流入流出温度の算術平均で近似する。
Figure JPOXMLDOC01-appb-M000001
Here, C p is the constant pressure specific heat, q f is the combined flow rate of seawater and fresh water on the evaporation side, and q c is the flow rate in the tube on the condensation side. The average temperature differences ΔT fm and ΔT cm are approximated by the arithmetic average of the respective inflow and outflow temperatures.
Figure JPOXMLDOC01-appb-M000002
 (2)式を変形し蒸発側の流入温度Tf1と凝縮側の流出温度の差Tf1-Tc2に書き下すと、
Figure JPOXMLDOC01-appb-M000002
(2) and the inlet temperature T f1 of modifying the evaporation side when writing down to a difference T f1 -T c2 outlet temperature of the condensation side,
Figure JPOXMLDOC01-appb-M000003
を得る。ここに、
Figure JPOXMLDOC01-appb-M000003
Get. here,
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
である。多段フラッシュの小部屋が蒸気加熱式の加熱器側とすれば、加熱器での熱量は温度差Tf1-Tc2に比例する。蒸気加熱式では流量qfとqcは等しくなる。(1)式より
Figure JPOXMLDOC01-appb-M000005
It is. If the multi-stage flash chamber is on the steam heating type heater side, the amount of heat in the heater is proportional to the temperature difference T f1 -T c2 . In the steam heating type, the flow rates q f and q c are equal. From equation (1)
Figure JPOXMLDOC01-appb-M000006
となる。この結果、全段落を通して、段落内で温海水と冷海水の温度差が保たれる。
Figure JPOXMLDOC01-appb-M000006
It becomes. As a result, the temperature difference between warm seawater and cold seawater is maintained within the paragraph throughout the entire paragraph.
 次に、本発明の第1の実施例に係る海水淡水化装置と、海水淡水化方法について説明する。 Next, the seawater desalination apparatus and the seawater desalination method according to the first embodiment of the present invention will be described.
 図1は、本発明の第1の実施例の海水淡水化装置101の主要部分を概略的に示した構成図であって、6は流量調整弁、200,210は温海水タンクである。なお、先に説明した従来の海水淡水化装置100と同等の構成要素については、同じ符号を付し、説明を省略する。 FIG. 1 is a configuration diagram schematically showing main parts of a seawater desalination apparatus 101 according to a first embodiment of the present invention, in which 6 is a flow control valve, and 200 and 210 are warm seawater tanks. In addition, about the component equivalent to the conventional seawater desalination apparatus 100 demonstrated previously, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 本実施例では、海水タンク110から基本モジュール50の伝熱管2へ海水を供給する配管7に、供給する海水量を調整する流量調整弁6を設けている。また、伝熱管2の管路の海水流れ方向下流側の末端は、加熱器5ではなく、温海水タンク210に繋がっている。温海水タンク210は、伝熱管2内で加熱された海水を貯留するタンクである。 In this embodiment, a flow rate adjusting valve 6 for adjusting the amount of seawater to be supplied is provided in a pipe 7 for supplying seawater from the seawater tank 110 to the heat transfer pipe 2 of the basic module 50. Further, the downstream end of the heat transfer pipe 2 on the downstream side in the seawater flow direction is connected not to the heater 5 but to the warm seawater tank 210. The warm seawater tank 210 is a tank that stores seawater heated in the heat transfer pipe 2.
 また、液溜まり3の海水流れ方向上流側の末端も、加熱器5ではなく、温海水タンク200に繋がっている。温海水タンク200は、温海水を貯留するタンクである。 Also, the upstream end of the liquid reservoir 3 in the seawater flow direction is connected not to the heater 5 but to the warm seawater tank 200. The warm seawater tank 200 is a tank that stores warm seawater.
 従って、本実施例では、海水タンク110から供給される海水は、流量調整弁6で流量調整されて伝熱管2に導入され、伝熱管内で凝縮熱により昇温し、温海水タンク210に導入される。一方、液溜まり3には、温海水タンク200から、伝熱管2を流下する海水とは別に、温海水が供給される。この温海水は、伝熱管2内を流れる海水よりも温度が高いため、各液溜まり3で一部がフラッシュ蒸発する。そして各液溜まり3でフラッシュ蒸発を繰り返した温海水は、温度低下しつつ濃縮され、冷海水として冷海水タンク120に貯留される。 Therefore, in the present embodiment, the seawater supplied from the seawater tank 110 is flow-adjusted by the flow rate adjusting valve 6 and introduced into the heat transfer pipe 2, and the temperature is raised by condensation heat in the heat transfer pipe and introduced into the warm seawater tank 210. Is done. On the other hand, the warm water is supplied to the liquid reservoir 3 separately from the sea water flowing down the heat transfer pipe 2 from the warm sea water tank 200. Since this warm seawater has a higher temperature than seawater flowing in the heat transfer tube 2, a part of the warm seawater is flash-evaporated in each liquid pool 3. And the warm seawater which repeated flash evaporation in each liquid pool 3 is concentrated, falling in temperature, and is stored in the cold seawater tank 120 as cold seawater.
 本実施例では、冷海水を海水タンク110より伝熱管2に、温海水を温海水タンク200より液溜まり3にそれぞれ流入させ、温海水と冷海水を対向させて基本モジュールの両端に導き、温海水と冷海水の流れ方向を対向させる。 In this embodiment, cold seawater is introduced into the heat transfer pipe 2 from the seawater tank 110 and warm seawater is introduced into the liquid reservoir 3 from the warm seawater tank 200, and the warm seawater and the cold seawater are opposed to each other and guided to both ends of the basic module. The flow direction of seawater and cold seawater is made to face each other.
 本実施例の構成によれば、一つの小部屋1の中で温海水は、伝熱管内の冷海水より温
 度が高いため、温海水は液溜まりの液面からフラッシュ蒸発し、蒸発した蒸気は伝熱管2の表面で凝縮され、凝縮水は淡水受け皿に集められる。
According to the configuration of the present embodiment, the warm seawater is warmer than the cold seawater in the heat transfer pipe in one small chamber 1, so the warm seawater flashes and evaporates from the liquid surface of the liquid pool. Is condensed on the surface of the heat transfer tube 2, and the condensed water is collected in a fresh water tray.
 ところで、温海水と冷海水とを別々に導入する場合、流量qfとqcが等しくなるとは限らない。図2に全段落を通じた温度変化を示すが、温海水の流量qfが冷海水の流量qcより大きいと、点線のように温海水の温度は流入温度に保たれようとし、冷海水の温度は温海水の流入温度に近づく。結果として、冷海水の流入側で温海水と冷海水の温度差が拡大する。 Incidentally, when introducing the warm seawater and cold sea water separately, not necessarily flow q f and q c are equal. Show a temperature change through the entire paragraph 2, the flow qf of warm seawater is a flow q c is greater than the cold sea water, and it temperature of the warm sea water as dotted lines recognize kept at inlet temperature, the temperature of the cold sea water Approaches the inflow temperature of warm seawater. As a result, the temperature difference between warm seawater and cold seawater increases on the cold seawater inflow side.
 そこで、先の温度差の拡大を防ぐために、冷海水の流量は流量調整弁6によって、温海水流量に等しくなるように制御する。あるいは、基本モジュール50の両端で、温海水と冷海水の温度差が保たれるように冷海水の流量を流量調整弁6によって制御する。このように制御することで、図2に実線で示したように、温海水と冷海水の温度差を小さく保つことができる。これにより、液溜まり3に供給された温海水は濃縮された冷海水および淡水に変わり、伝熱管2に供給された冷海水は、加熱されて温海水へ変わる。 Therefore, in order to prevent the temperature difference from expanding, the flow rate of the cold seawater is controlled by the flow rate adjustment valve 6 so as to be equal to the flow rate of the warm seawater. Alternatively, the flow rate of the cold seawater is controlled by the flow rate adjustment valve 6 so that the temperature difference between the warm seawater and the cold seawater is maintained at both ends of the basic module 50. By controlling in this way, the temperature difference between warm seawater and cold seawater can be kept small as shown by the solid line in FIG. Thereby, the warm seawater supplied to the liquid reservoir 3 is changed into concentrated cold seawater and fresh water, and the cold seawater supplied to the heat transfer pipe 2 is heated and changed into warm seawater.
 本実施例によれば、蒸気タービンの抽気蒸気等の外部熱源の代わりに、温海水と冷海水を導入することにより淡水を得ることができる。温海水は工場の廃熱および温泉等の熱源を利用して供給することが可能で有る。発電所の排熱で生成することもできる。このため加熱器用の外部からの加熱エネルギーを必要としない。さらに言えば、温海水流量に対して冷海水流量を適量とし、淡水化の効率を向上する。よって、本実施例によれば、蒸発法を用いた海水淡水化方法において、海水の加熱に要する熱量を低減することができる。 According to the present embodiment, fresh water can be obtained by introducing warm seawater and cold seawater instead of an external heat source such as extracted steam of a steam turbine. Warm sea water can be supplied using waste heat from factories and heat sources such as hot springs. It can also be generated by exhaust heat from the power plant. For this reason, the heating energy from the outside for heaters is not required. Furthermore, the efficiency of desalination is improved by setting the cold seawater flow rate to an appropriate amount with respect to the warm seawater flow rate. Therefore, according to the present Example, in the seawater desalination method using the evaporation method, the amount of heat required for heating the seawater can be reduced.
 次に、本発明の第2の実施例について説明する。図6は本実施例の海水淡水化装置102の主要部分を概略的に示した構成図である。本実施例は、基本モジュール50を複数個用意して、海水の流れ方向に直列に繋げた例である。なお、先に説明した実施例と同等の構成要素には同一に符号を付し説明を省略する。 Next, a second embodiment of the present invention will be described. FIG. 6 is a configuration diagram schematically showing the main part of the seawater desalination apparatus 102 of the present embodiment. In this embodiment, a plurality of basic modules 50 are prepared and connected in series in the flow direction of seawater. In addition, the same code | symbol is attached | subjected to the component equivalent to the Example demonstrated previously, and description is abbreviate | omitted.
 以下、実施例の説明のため、図1で説明した基本モジュール50において、海水タンク110と接続する、伝熱管2内を流れる海水の流れ方向上流側の伝熱管管路の末端を伝熱管入口端2iといい、温海水タンク210と接続する、伝熱管2内を流れる海水の流れ方向下流側の伝熱管の管路末端を伝熱管出口端2eと言う事にする。また、温海水タンク200と接続する、液溜まり3の液溜まり内の海水の流れ方向上流側の海水流路末端を液溜まり入口端3i,冷海水タンク120と接続する、液溜まり3の下流側の末端を液溜まり出口端3eと言う事にする。 Hereinafter, in order to describe the embodiment, in the basic module 50 described with reference to FIG. 1, the end of the heat transfer pipe line on the upstream side in the flow direction of the seawater flowing through the heat transfer pipe 2 connected to the seawater tank 110 is the heat transfer pipe inlet end. 2i, the pipe end of the heat transfer tube connected to the warm seawater tank 210 on the downstream side in the flow direction of the seawater flowing through the heat transfer tube 2 is referred to as a heat transfer tube outlet end 2e. Further, the seawater flow path upstream of the seawater flow direction in the liquid reservoir 3 connected to the warm seawater tank 200 is connected to the liquid inlet 3i and the cold seawater tank 120 downstream of the liquid reservoir 3. Is called the liquid pool outlet end 3e.
 本実施例では、直列に繋いだ複数の基本モジュールのうち、第1番目の基本モジュール50aに設けられた伝熱管2aの伝熱管出口端2aeを、第2番目の基本モジュール50bの液溜まり3bの液溜まり入口端3biに配管を介して繋げた。一方、第1番目の基本モジュール50aの液溜まり3aの液溜まり出口端3aeを第2番目の基本モジュール50bに設けられた伝熱管2bの伝熱管入口端2biに配管を介して繋げた。 In the present embodiment, among the plurality of basic modules connected in series, the heat transfer tube outlet end 2ae of the heat transfer tube 2a provided in the first basic module 50a is connected to the liquid pool 3b of the second basic module 50b. It was connected to the liquid pool inlet end 3bi via a pipe. On the other hand, the liquid pool outlet end 3ae of the liquid pool 3a of the first basic module 50a was connected to the heat transfer pipe inlet end 2bi of the heat transfer pipe 2b provided in the second basic module 50b via a pipe.
 また、第2番目の基本モジュール50bに設けられた伝熱管2bの伝熱管出口端2beを、第3番目の基本モジュール50cの液溜まり3cの液溜まり入口端3ciに配管を介して繋げる。一方、第2番目の基本モジュール50bの液溜まり3bの液溜まり出口端3beを第3番目の基本モジュール50cの伝熱管2cの伝熱管入口端2ciに配管を介して繋げる。 Further, the heat transfer tube outlet end 2be of the heat transfer tube 2b provided in the second basic module 50b is connected to the liquid pool inlet end 3ci of the liquid pool 3c of the third basic module 50c via a pipe. On the other hand, the liquid pool outlet end 3be of the liquid pool 3b of the second basic module 50b is connected to the heat transfer pipe inlet end 2ci of the heat transfer pipe 2c of the third basic module 50c via a pipe.
 さらに、第3番目の基本モジュール50cの伝熱管2cの伝熱管出口端2ceを、第4番目の基本モジュール50dの液溜まり3dの液溜まり入口端3diに配管を介して繋げる。一方、第3番目の基本モジュール50cの液溜まり3cの液溜まり出口端3ceを第4番目の基本モジュール50dの伝熱管2dの伝熱管入口端2diに配管を介して繋げる。 Furthermore, the heat transfer tube outlet end 2ce of the heat transfer tube 2c of the third basic module 50c is connected to the liquid pool inlet end 3di of the liquid reservoir 3d of the fourth basic module 50d via a pipe. On the other hand, the liquid pool outlet end 3ce of the liquid pool 3c of the third basic module 50c is connected to the heat transfer pipe inlet end 2di of the heat transfer pipe 2d of the fourth basic module 50d via a pipe.
 そして、第4番目の基本モジュール50dの伝熱管2dの伝熱管出口端2deを、温海水タンク210に繋げた。一方、第4番目の基本モジュール50dの液溜まり3dの液溜まり出口端3deを冷海水タンク120に繋げた。 Then, the heat transfer tube outlet end 2de of the heat transfer tube 2d of the fourth basic module 50d was connected to the warm seawater tank 210. On the other hand, the liquid pool outlet end 3de of the liquid pool 3d of the fourth basic module 50d was connected to the cold seawater tank 120.
 本実施例の構成によれば、温海水タンク200から導入された温海水は、液溜まり3aを流下しながらフラッシュ蒸発を繰り返して温度低下し、濃縮された冷海水となって基本モジュール50aから流出し、次の基本モジュール50bの伝熱管2bに冷海水として流入する。基本モジュール50bの伝熱管2bに冷海水として流入した海水は、凝縮熱によって昇温し、温海水となって基本モジュール50bから流出し、基本モジュール50cの液溜まり3cに導入される。以下、基本モジュール50c,50dにおいて、基本モジュール50a,50bの作業を繰り返す。 According to the configuration of the present embodiment, the warm seawater introduced from the warm seawater tank 200 is repeatedly evaporated by flash evaporation while flowing down the liquid pool 3a, and then the concentrated seawater flows out from the basic module 50a. Then, it flows into the heat transfer tube 2b of the next basic module 50b as cold seawater. Seawater that has flowed into the heat transfer pipe 2b of the basic module 50b as cold seawater is heated by condensation heat, becomes warm seawater, flows out of the basic module 50b, and is introduced into the liquid pool 3c of the basic module 50c. Thereafter, the operations of the basic modules 50a and 50b are repeated in the basic modules 50c and 50d.
 一方、海水タンク110から導入された冷海水は、基本モジュール50aの伝熱管2a中で凝縮熱によって昇温し、温海水となって基本モジュール50aから流出する。温海水となった海水は、次の基本モジュール50bに温海水として液溜まり3bに流入し、液溜まり3bを流下しつつ濃縮された冷海水となって基本モジュール50bから流出し、冷海水として第3番基本モジュール50cの伝熱管2cに導入される。以下、基本モジュール50c,50dにおいて、基本モジュール50a,50bの作業を繰り返す。 On the other hand, the cold seawater introduced from the seawater tank 110 is heated by condensation heat in the heat transfer pipe 2a of the basic module 50a, and becomes warm seawater and flows out of the basic module 50a. The seawater that has become warm seawater flows into the pool 3b as warm seawater into the next basic module 50b, becomes cold water that has been concentrated while flowing down the pool 3b, flows out of the basic module 50b, and becomes the cold seawater. It is introduced into the heat transfer tube 2c of the third basic module 50c. Thereafter, the operations of the basic modules 50a and 50b are repeated in the basic modules 50c and 50d.
 このように本実施例では、温海水と冷海水とが複数の基本モジュールを対向して流下しながら、交互に伝熱管と液溜まりを流下することで冷海水と温海水の温度がスイングするように変化する。本実施例では、各基本モジュールで得られた、冷たくなった淡水は、各基本モジュールに備えられた淡水タンク130に集められる。 As described above, in this embodiment, the temperature of the cold seawater and the warm seawater is swung by alternately flowing down the heat transfer pipe and the liquid pool while the warm seawater and the cold seawater flow down the plurality of basic modules facing each other. To change. In the present embodiment, the cooled fresh water obtained in each basic module is collected in a fresh water tank 130 provided in each basic module.
 本実施例においても、実施例1と同様に、温海水と冷海水の温度差の拡大を防ぐために、基本モジュールaの伝熱管2に供給する冷海水の流量を流量調整弁6によって、温海水流量に等しくなるように制御する。あるいは、基本モジュール50の両端で、温海水と冷海水の温度差が保たれるように冷海水の流量を流量調整弁6によって制御する。 Also in the present embodiment, as in the first embodiment, in order to prevent the temperature difference between the warm seawater and the cold seawater from expanding, the flow rate of the cold seawater supplied to the heat transfer pipe 2 of the basic module a is controlled by the flow rate adjustment valve 6. Control to be equal to the flow rate. Alternatively, the flow rate of the cold seawater is controlled by the flow rate adjustment valve 6 so that the temperature difference between the warm seawater and the cold seawater is maintained at both ends of the basic module 50.
 図7は温度スイングに伴う温度変化を示す模式図である。先に示した式(1)-(3)から求められる。点線は図6の構成をとった場合の温度変化を示す。各基本モジュールで得られた淡水を低温側で淡水タンク6に回収する。この結果、スイング回数が多くなる程、基本モジュールaの伝熱管2に供給した冷海水の流量qcが減少するため、温海水の温度は保たれる傾向にあるが冷海水の温度が大きく増加する。温海水と冷海水の温度差は急速に近づき、淡水化の進行も滞ることはデメリットであるが、温度スイングをさせる基本的な実施例である。 FIG. 7 is a schematic diagram showing a temperature change accompanying a temperature swing. It is obtained from the equations (1)-(3) shown above. A dotted line shows a temperature change when the configuration of FIG. 6 is taken. Fresh water obtained in each basic module is collected in the fresh water tank 6 on the low temperature side. As a result, as the number of swings increases, the flow rate q c of the cold seawater supplied to the heat transfer tube 2 of the basic module a decreases, so the temperature of the warm seawater tends to be maintained, but the temperature of the cold seawater greatly increases. To do. Although it is a demerit that the temperature difference between warm seawater and cold seawater approaches rapidly and the progress of desalination is delayed, this is a basic embodiment that causes a temperature swing.
 次に本発明の第3の実施例について説明する。本実施例は、前述した第2の実施例の応用例である。図8は、本実施例の海水淡水化装置の主要部分を概略的に示した構成図である。なお、先に説明した実施例と同等の構成要素には同一に符号を付し説明を省略する。 Next, a third embodiment of the present invention will be described. This embodiment is an application example of the second embodiment described above. FIG. 8 is a configuration diagram schematically showing main parts of the seawater desalination apparatus of the present embodiment. In addition, the same code | symbol is attached | subjected to the component equivalent to the Example demonstrated previously, and description is abbreviate | omitted.
 以下、実施例の説明のため、図1で説明した基本モジュール50において、淡水タンク130と接続する、淡水受け皿4の淡水流れ方向下流側の末端を淡水出口端4eということにする。 Hereinafter, for the description of the embodiment, in the basic module 50 described in FIG. 1, the downstream end of the fresh water receiving tray 4 connected to the fresh water tank 130 in the fresh water flow direction is referred to as a fresh water outlet end 4 e.
 本実施例では、下流側の偶数番目の基本モジュール50b,50dに第2の伝熱管8b,8dをそれぞれ設けた。第2の伝熱管8bは、伝熱管2bと同様に、隣り合う小部屋1の第2の伝熱管とそれぞれと繋がっており一本の管路となっている。そして、上流側の奇数番目の基本モジュール50a,50cの淡水出口端4ae,4ceを、それぞれ下流側の偶数番目の基本モジュール50b,50dに設けた第2の伝熱管8の伝熱管入口端8bi,8diに配管を介して繋げた。一方、第2の伝熱管8の、伝熱管内を流れる淡水流れ方向下流側の末端8be,8deは、淡水タンク220に繋げた。 In the present embodiment, the second heat transfer tubes 8b and 8d are provided in the even-numbered basic modules 50b and 50d on the downstream side, respectively. Similarly to the heat transfer tube 2b, the second heat transfer tube 8b is connected to each of the second heat transfer tubes in the adjacent small chambers 1 and forms a single pipe line. Then, the fresh water outlet ends 4ae, 4ce of the odd-numbered basic modules 50a, 50c on the upstream side are respectively connected to the heat transfer tube inlet ends 8bi of the second heat transfer tubes 8 provided in the even-numbered basic modules 50b, 50d on the downstream side, respectively. It was connected to 8di via a pipe. On the other hand, the ends 8be and 8de of the second heat transfer tube 8 on the downstream side in the fresh water flow direction flowing in the heat transfer tube were connected to the fresh water tank 220.
 本実施例の特徴点は、上流側の奇数番目の基本モジュール50a,50cで得られた低温の淡水を、下流の偶数番目の基本モジュール50b,50dの第2伝熱管8b,8dに通して、凝縮熱で加熱した後に淡水タンク220に回収することで、新たに温度を高めた淡水を得ることができる点にある。そして、本実施例によれば、温側と冷側の双方から淡水を回収するため温海水と冷海水の流量qf,qcが互いに等しく保たれ、その結果、図7に示したように冷海水温度の急増を抑制できる。よって、本実施例によれば、淡水化の進行の滞りを抑制することができる。 The feature of the present embodiment is that the low-temperature fresh water obtained by the odd-numbered basic modules 50a and 50c on the upstream side is passed through the second heat transfer tubes 8b and 8d of the even-numbered basic modules 50b and 50d on the downstream side. It is in the point which can obtain the fresh water which raised the temperature newly by collect | recovering in the fresh water tank 220 after heating with condensation heat. According to the present embodiment, since fresh water is recovered from both the warm side and the cold side, the flow rates q f and q c of the warm seawater and the cold seawater are kept equal to each other. As a result, as shown in FIG. Rapid increase in cold seawater temperature can be suppressed. Therefore, according to the present Example, the progress of desalination can be suppressed.
 次に本発明の第4の実施例について説明する。本実施例は、前述した第3の実施例の応用例である。図9は、本実施例の海水淡水化装置の主要部分を概略的に示した構成図である。なお、先に説明した実施例と同等の構成要素には同一に符号を付し説明を省略する。 Next, a fourth embodiment of the present invention will be described. The present embodiment is an application example of the third embodiment described above. FIG. 9 is a configuration diagram schematically showing main parts of the seawater desalination apparatus of the present embodiment. In addition, the same code | symbol is attached | subjected to the component equivalent to the Example demonstrated previously, and description is abbreviate | omitted.
 本実施例では、第3番目の基本モジュール50cに、第2の伝熱管8cと、第3の伝熱管9cを追設した。第2の伝熱管8c、および第3の伝熱管9cは、伝熱管2cと同様に、隣り合う小部屋1の第2,第3の伝熱管とそれぞれと繋がっており一本の管路となっている。そして、第2番目の基本モジュール50bに設けられた第2の伝熱管8bの伝熱管出口端8beを、第3基本モジュール50cの第3の伝熱管の伝熱管入口端9ciに繋げている。また、第2番目の基本モジュール50bの淡水受け皿4の淡水出口端4beを、第3基本モジュール50cの第2の伝熱管の伝熱管入口端8ciに繋げた。 In the present embodiment, a second heat transfer tube 8c and a third heat transfer tube 9c are additionally provided in the third basic module 50c. Similarly to the heat transfer tube 2c, the second heat transfer tube 8c and the third heat transfer tube 9c are connected to the second and third heat transfer tubes in the adjacent small chambers 1 to form a single pipe line. ing. Then, the heat transfer tube outlet end 8be of the second heat transfer tube 8b provided in the second basic module 50b is connected to the heat transfer tube inlet end 9ci of the third heat transfer tube of the third basic module 50c. Further, the fresh water outlet end 4be of the fresh water receiving tray 4 of the second basic module 50b was connected to the heat transfer tube inlet end 8ci of the second heat transfer tube of the third basic module 50c.
 また、第4番目の基本モジュール50dにも第3の伝熱管9dを設けており、その末端9diは、第3基本モジュール50cの第2の伝熱管8cの伝熱管出口端8ceと繋がっており、反対側の末端9deは、第4基本モジュール50dの淡水受け皿出口端4deと淡水タンク130とを繋ぐ配管10に連通している。 Further, the fourth basic module 50d is also provided with a third heat transfer tube 9d, and its end 9di is connected to the heat transfer tube outlet end 8ce of the second heat transfer tube 8c of the third basic module 50c, The opposite end 9de communicates with the pipe 10 that connects the freshwater tray outlet end 4de of the fourth basic module 50d and the freshwater tank 130.
 一方、第3番目の基本モジュール50cの第3の伝熱管9cの伝熱管出口端9ceは、第3基本モジュール50cの淡水出口端4ceと第4基本モジュール50dの第2の伝熱管8dの伝熱管入口端8diとを繋ぐ配管11に連通している。 On the other hand, the heat transfer tube outlet end 9ce of the third heat transfer tube 9c of the third basic module 50c is the fresh water outlet end 4ce of the third basic module 50c and the heat transfer tube of the second heat transfer tube 8d of the fourth basic module 50d. The pipe 11 communicates with the inlet end 8di.
 本実施例では、第2番目の基本モジュール50bの伝熱管2を流下した温淡水を、淡水タンク220に回収せず、下流側の3番目の基本モジュール50cの液溜まり3内に通した第3の伝熱管9cに導く。第3の伝熱管9cを流下する温淡水から、液溜まり3内の温海水へ熱を伝達し、フラッシュ蒸発を加速させる。その後、温淡水は、基本モジュール50c内で回収された淡水と合流させ、下流の第4番目の基本モジュール50dの第2の伝熱管8dに導入される。第4基本モジュール50dの第2の伝熱管8dに導かれた淡水は、凝縮熱によって、昇温し、温淡水として淡水タンク220に回収される。 In the present embodiment, the warm fresh water flowing down the heat transfer tube 2 of the second basic module 50b is not collected in the fresh water tank 220, but passed through the liquid pool 3 of the third basic module 50c on the downstream side. To the heat transfer tube 9c. Heat is transferred from the warm fresh water flowing down the third heat transfer tube 9c to the warm seawater in the liquid reservoir 3, and flash evaporation is accelerated. Thereafter, the warm fresh water is merged with the fresh water collected in the basic module 50c and introduced into the second heat transfer tube 8d of the fourth basic module 50d downstream. The fresh water led to the second heat transfer tube 8d of the fourth basic module 50d is heated by the condensation heat and is collected in the fresh water tank 220 as hot fresh water.
 一方、第2番目の基本モジュール50bで回収された淡水は、淡水タンク130で回収せず、第3番目の基本モジュール50cに設けられた第2の伝熱管2cに導き、凝縮熱で昇温させる。昇温した淡水は、第4番目の基本モジュール50dの液溜まり3内に設けられた第3の伝熱管9dに導入され、第3の伝熱管9dを流下しつつ、液溜まり3内の温海水へ熱を伝達し、フラッシュ蒸発を加速させる。第3の伝熱管9c内の淡水は、冷却され、冷淡水として第4基本モジュール50dで回収した淡水と共に最終的に淡水タンク130に回収される。 On the other hand, the fresh water recovered by the second basic module 50b is not recovered by the fresh water tank 130, but is led to the second heat transfer tube 2c provided in the third basic module 50c, and is heated by condensation heat. . The heated fresh water is introduced into the third heat transfer pipe 9d provided in the liquid pool 3 of the fourth basic module 50d, and the warm water in the liquid pool 3 flows down the third heat transfer pipe 9d. Transfers heat to and accelerates flash evaporation. The fresh water in the third heat transfer tube 9c is cooled and finally collected in the fresh water tank 130 together with the fresh water collected by the fourth basic module 50d as cold fresh water.
 よって、本実施例では、最終の4番目の基本モジュール50dから、温淡水と冷淡水および濃縮された温海水と濃縮された冷海水を得ることができる。 Therefore, in this embodiment, it is possible to obtain hot fresh water, cold fresh water, concentrated hot sea water, and concentrated cold sea water from the final fourth basic module 50d.
 以上説明した実施例では、温度スイングを増やせば淡水化が進行し、得られる淡水の量は増え、濃縮海水の塩分濃度が高まる。淡水を得るだけでなく濃縮海水からナトリウム,マグネシウム,ホウ素などの有価物を回収する場合、温度スイングの回数を著しく増やすことが求められる。一方で淡水化が進めば濃縮海水の流量は減少する。このような場合、海水淡水化装置を濃縮度に応じて時分割に使うことができれば、熱交換部を削減できる。図10はそのためのシステム構成図である。300はクラスター、20,22,23,25は流路切換弁である。クラスター300は図6,図8,図9に示した海水淡水化装置102,103,104、あるいは基本モジュール50(海水淡水化装置101)そのものとする。 In the embodiment described above, if the temperature swing is increased, desalination proceeds, the amount of fresh water obtained increases, and the salinity of the concentrated seawater increases. When not only obtaining fresh water but also recovering valuable materials such as sodium, magnesium, and boron from concentrated seawater, it is required to significantly increase the number of temperature swings. On the other hand, the flow rate of concentrated seawater decreases as desalination progresses. In such a case, if the seawater desalination apparatus can be used in a time-sharing manner according to the degree of concentration, the heat exchange section can be reduced. FIG. 10 is a system configuration diagram for that purpose. 300 is a cluster, and 20, 22, 23, and 25 are flow path switching valves. The cluster 300 is the seawater desalination apparatuses 102, 103, and 104 shown in FIGS. 6, 8, and 9, or the basic module 50 (seawater desalination apparatus 101) itself.
 図10において、濃縮された温海水を濃縮度に応じて貯留するための温海水タンク200を複数個設ける。濃縮された冷海水を濃縮度に応じて貯留するための冷海水タンク120も同様に、複数個設ける。クラスター300も複数個設け、流路切換弁20,22,23,25を切り換えながら濃縮度ごとに時分割に淡水化を進行させる。 In FIG. 10, a plurality of warm seawater tanks 200 are provided for storing concentrated warm seawater according to the degree of concentration. Similarly, a plurality of cold seawater tanks 120 for storing concentrated cold seawater according to the degree of concentration are also provided. A plurality of clusters 300 are also provided, and desalination proceeds in a time-sharing manner for each enrichment degree while switching the flow path switching valves 20, 22, 23, 25.
 本実施例では、温海水を濃縮度別に分けて、温海水タンク200に貯留する。一方、冷海水も同様に濃縮度別に分けて、冷海水タンク120に貯留する。 In this embodiment, the warm seawater is divided according to the concentration and stored in the warm seawater tank 200. On the other hand, cold seawater is similarly divided according to the degree of concentration and stored in the cold seawater tank 120.
 各冷海水タンク120は、それぞれ冷海水供給系統12に繋がっており、冷海水供給系統12は、クラスター300を構成する海水淡水化装置の第1基本モジュールに設けられた伝熱管入口端2aiに繋がっている。冷海水供給系統12と各冷海水タンク120とはそれぞれ配管13を介して繋がっており、各配管13に切換弁20が設けられている。切換弁20の開閉操作によって、各冷海水タンク120のうち、どの冷海水タンクから冷海水を供給するかを制御する。 Each cold seawater tank 120 is connected to the cold seawater supply system 12, and the cold seawater supply system 12 is connected to the heat transfer pipe inlet end 2 ai provided in the first basic module of the seawater desalination apparatus constituting the cluster 300. ing. The cold seawater supply system 12 and each cold seawater tank 120 are connected to each other via a pipe 13, and a switching valve 20 is provided in each pipe 13. By which the switching valve 20 is opened and closed, which of the cold seawater tanks 120 is controlled by which cold seawater tank is supplied.
 各温海水タンク200は、それぞれ温海水供給系統14に繋がっており、温海水供給系統14は、クラスター300を構成する海水淡水化装置の第1基本モジュールに設けられた液溜まり入口端3aiに繋がっている。温海水供給系統14と各温海水タンク200とはそれぞれ配管15を介して繋がっており、各配管15に切換弁23が設けられている。流路切換機構である切換弁23の開閉操作によって、各温海水タンク200のうち、どの温海水タンクから温海水を供給するかを制御する。 Each warm seawater tank 200 is connected to the warm seawater supply system 14, and the warm seawater supply system 14 is connected to the liquid pool inlet end 3 ai provided in the first basic module of the seawater desalination apparatus constituting the cluster 300. ing. The warm seawater supply system 14 and each warm seawater tank 200 are connected to each other via a pipe 15, and a switching valve 23 is provided in each pipe 15. The hot seawater tank from which each of the hot seawater tanks 200 is supplied is controlled by opening and closing the switching valve 23 that is a flow path switching mechanism.
 24は、冷海水回収系統で、その一端は、クラスター300を構成する海水淡水化装置の第4基本モジュールに設けられた液溜まり出口端3deに繋がっており、他方の一端は分岐してそれぞれ、配管27を介して各冷海水タンク120に繋がっている。また、各冷海水タンク120と冷海水回収系統24とを繋ぐ配管27には、それぞれ切換弁25が設けられており、切換弁25を開閉制御して冷海水を回収する冷海水タンクの切換制御を行う。 24 is a cold seawater recovery system, one end of which is connected to a liquid pool outlet end 3de provided in the fourth basic module of the seawater desalination apparatus constituting the cluster 300, and the other end is branched, Each cold seawater tank 120 is connected via a pipe 27. In addition, a switching valve 25 is provided in each pipe 27 that connects each cold seawater tank 120 and the cold seawater recovery system 24, and switching control of the cold seawater tank that collects the cold seawater by opening and closing the switching valve 25 is provided. I do.
 26は、温海水回収系統で、その一端は、クラスター300を構成する海水淡水化装置の第4基本モジュールに設けられた伝熱管出口端2deに繋がっており、他方の一端は分岐してそれぞれ、温海水タンク200に繋がっている。また、温海水タンク200と温海水回収系統26とを繋ぐ配管21には、それぞれ切換弁22が設けられており、流路切換機構を構成する切換弁22を開閉制御して温海水を回収する温海水タンクの切換制御を行う。 26 is a warm seawater recovery system, one end of which is connected to the heat transfer tube outlet end 2de provided in the fourth basic module of the seawater desalination apparatus constituting the cluster 300, and the other end is branched, It is connected to the warm seawater tank 200. Moreover, the switching valve 22 is provided in the piping 21 which connects the warm seawater tank 200 and the warm seawater collection | recovery system 26, respectively, and the switching valve 22 which comprises a flow-path switching mechanism is controlled by opening / closing, and warm seawater is collect | recovered. Switch control of the warm seawater tank.
 本実施例によれば、切換弁の開閉制御を行うことで、海水淡水化装置に供給する温海水と冷海水を、濃縮度に応じて切換可能である。例えば、ある特定の濃度の温海水と、冷海水を海水淡水化装置に供給したい場合は、供給したい濃度の冷海水が貯留されている冷海水タンク120の切換弁20と、温海水が温海水が貯留されている温海水タンク200の切換弁23を開け、その他のタンクの切換弁を閉めれば良い。供給したい濃度の海水が貯留されているタンクから、それぞれ温海水供給系統14,冷海水供給系統12を介して、温海水と冷海水が海水淡水化装置に供給される。 According to the present embodiment, it is possible to switch between warm seawater and cold seawater supplied to the seawater desalination apparatus according to the degree of enrichment by performing opening / closing control of the switching valve. For example, when it is desired to supply warm seawater having a specific concentration and cold seawater to the seawater desalination apparatus, the switching valve 20 of the cold seawater tank 120 in which the cold seawater having the concentration to be supplied is stored, and the warm seawater is warm seawater. It is only necessary to open the switching valve 23 of the warm seawater tank 200 in which water is stored and close the switching valves of other tanks. Warm seawater and cold seawater are supplied to the seawater desalination apparatus from the tank in which the seawater of the concentration to be supplied is stored through the warm seawater supply system 14 and the cold seawater supply system 12, respectively.
 また、切換弁を開閉制御することで、海水淡水化装置から排出された温海水と冷海水も、濃縮度に分けて貯留可能である。例えば、海水淡水化装置から排出された温海水と冷海水の濃度を調べ、同じ濃度の温海水,冷海水が貯留されている冷海水タンク120,温海水タンク200の切換弁22,25を開き、その他のタンクの切換弁を閉めることで、海水淡水化装置から冷海水回収系統,温海水回収系統を介してそれぞれ、同濃度の海水が貯留されているタンクに回収することができる。 Also, by controlling the opening and closing of the switching valve, warm seawater and cold seawater discharged from the seawater desalination device can be stored separately according to the degree of concentration. For example, the concentrations of warm seawater and cold seawater discharged from the seawater desalination device are checked, and the switching valves 22 and 25 of the warm seawater tank 120 and the warm seawater tank 200 in which warm seawater and cold seawater of the same concentration are stored are opened. By closing the switching valve of the other tank, the seawater desalination apparatus can collect the seawater of the same concentration through the cold seawater recovery system and the warm seawater recovery system, respectively.
 よって、本実施例によれば、海水淡水化装置を濃縮度に応じて時分割に使い回すことができ、ハードウェア量を低減できる。 Therefore, according to the present embodiment, the seawater desalination apparatus can be used in a time-sharing manner according to the concentration, and the amount of hardware can be reduced.
 次に本発明の第6の実施例について説明する。本実施例は、前述した第5の実施例の応用例である。図11において、30はクーリングタワー、31,32は大気、33は淡水スプレーである。また、クーリングタワー30内と冷海水タンク120内とを循環する熱媒体循環系統34を設けている。なお、先に説明した実施例と同等の構成要素には同一に符号を付し説明を省略する。 Next, a sixth embodiment of the present invention will be described. The present embodiment is an application example of the fifth embodiment described above. In FIG. 11, 30 is a cooling tower, 31 and 32 are air | atmosphere, 33 is a fresh water spray. Further, a heat medium circulation system 34 that circulates in the cooling tower 30 and the cold seawater tank 120 is provided. In addition, the same code | symbol is attached | subjected to the component equivalent to the Example demonstrated previously, and description is abbreviate | omitted.
 本実施例では、クーリングタワー30に、大気31を導き、クラスター300内での淡水化により得られた淡水の一部を淡水スプレー33から大気に噴霧する。大気の顕熱と淡水の蒸発潜熱により、熱媒体が冷却化され、熱媒体循環系統34を介して冷海水タンク120に循環し、熱媒体によって冷海水タンク120内の濃縮された冷海水が冷却される。 In this embodiment, the atmosphere 31 is guided to the cooling tower 30 and a part of fresh water obtained by desalination in the cluster 300 is sprayed from the fresh water spray 33 to the atmosphere. The heat medium is cooled by the sensible heat of the atmosphere and the latent heat of evaporation of fresh water, and is circulated to the cold seawater tank 120 via the heat medium circulation system 34, and the concentrated cold seawater in the cold seawater tank 120 is cooled by the heat medium. Is done.
 本実施例の構成によれば、クラスター300を構成する海水淡水化装置に供給する冷海水と温海水の温度差を大きくすることができ、淡水化の進行を加速できる。 According to the configuration of the present embodiment, the temperature difference between the cold seawater and the warm seawater supplied to the seawater desalination apparatus constituting the cluster 300 can be increased, and the progress of desalination can be accelerated.
 次に本発明の第7の実施例について説明する。本実施例は、本発明の海水淡水化方式を用いた複合発電プラントの構成例である。図12に、本実施例の複合発電プラントの主要部分を概略的に示した構成図を示す。なお、先に説明した実施例と同等の構成要素には同一に符号を付し説明を省略する。 Next, a seventh embodiment of the present invention will be described. A present Example is a structural example of the combined power plant using the seawater desalination system of this invention. In FIG. 12, the block diagram which showed roughly the principal part of the combined power plant of a present Example is shown. In addition, the same code | symbol is attached | subjected to the component equivalent to the Example demonstrated previously, and description is abbreviate | omitted.
 図12において、40は蒸気タービン、41は復水器、42は海水加熱器、43,44は蒸発器、45は凝縮器、46は補助タービン、400は主蒸気、401,402は復水である。蒸気タービン40には高温高圧の主蒸気400が流入し、低温低圧の蒸気が復水器41に排気され、この蒸気の熱落差により仕事を得る。復水器41での凝縮により低温低圧が維持されるが、凝縮液は復水401としてボイラーに送られ、ボイラーで再び主蒸気400を得る。 In FIG. 12, 40 is a steam turbine, 41 is a condenser, 42 is a seawater heater, 43 and 44 are evaporators, 45 is a condenser, 46 is an auxiliary turbine, 400 is main steam, and 401 and 402 are condensates. is there. The high-temperature and high-pressure main steam 400 flows into the steam turbine 40, and the low-temperature and low-pressure steam is exhausted to the condenser 41 to obtain work by the heat drop of the steam. Although the low temperature and low pressure are maintained by the condensation in the condenser 41, the condensate is sent to the boiler as the condensate 401, and the main steam 400 is obtained again by the boiler.
 復水器41には、蒸気の復水化に用いる冷却源として海水500が用いられている。復水器41で蒸気を冷却した海水は、蒸気と熱交換することにより温められ、温海水となる。復水器41より排出された温海水のうちの一部を温海水403としてクラスター300に導く。温海水403は、クラスター300に導入される途中で、複数の海水加熱器42で、加熱される。加熱には蒸気タービンの段落から抽気された蒸気を用い、各海水加熱器42で凝縮した蒸気は復水402となり、ボイラーへ送られる。海水加熱器42で加熱された温海水403は、クラスター300を構成する海水淡水化装置の第1基本モジュールの液溜まり入口端3aiに送られる。一方、クラスター300の海水淡水化装置の伝熱管入口端2aiには冷海水404も導入されている。 In the condenser 41, seawater 500 is used as a cooling source used for condensing steam. The seawater whose steam has been cooled by the condenser 41 is warmed by exchanging heat with the steam to become warm seawater. Part of the warm seawater discharged from the condenser 41 is guided to the cluster 300 as warm seawater 403. The warm seawater 403 is heated by the plurality of seawater heaters 42 while being introduced into the cluster 300. The steam extracted from the stage of the steam turbine is used for heating, and the steam condensed in each seawater heater 42 becomes condensate 402 and is sent to the boiler. The warm seawater 403 heated by the seawater heater 42 is sent to the liquid pool inlet end 3ai of the first basic module of the seawater desalination apparatus constituting the cluster 300. On the other hand, cold seawater 404 is also introduced into the heat transfer tube inlet end 2ai of the seawater desalination apparatus of the cluster 300.
 クラスター300には、実施例2乃至4で説明した海水淡水化装置102,103、または104が用いられる。クラスター300から生成される濃縮された温海水405と温淡水406は、一端タンクに貯留された後、蒸発器43,44に送られ、補助タービンの作動媒体と熱交換する。蒸発器43,44で温海水405と温淡水406によって加熱された作動媒体は、蒸気となって、補助タービン46に送られ、補助タービン46を駆動し、図示しない発電機等によって出力を得る。補助タービン46を駆動した作動媒体は、凝縮器45に送られ、凝縮器45で冷却されて凝縮する。なお、補助タービン46の作動媒体は水蒸気に限らず、フロンやアンモニアなどでも良い。 In the cluster 300, the seawater desalination apparatuses 102, 103, or 104 described in the second to fourth embodiments are used. Concentrated warm seawater 405 and warm fresh water 406 generated from the cluster 300 are stored in one end tank, and then sent to the evaporators 43 and 44 to exchange heat with the working medium of the auxiliary turbine. The working medium heated by the warm seawater 405 and the warm fresh water 406 in the evaporators 43 and 44 becomes steam and is sent to the auxiliary turbine 46 to drive the auxiliary turbine 46 and obtain an output by a generator or the like (not shown). The working medium that has driven the auxiliary turbine 46 is sent to the condenser 45, cooled by the condenser 45, and condensed. Note that the working medium of the auxiliary turbine 46 is not limited to water vapor, and may be Freon, ammonia, or the like.
 一方、蒸発器43,44で作動媒体と熱交換した温海水405と温淡水406は、その後淡水タンク130と冷海水タンク120に回収される。 On the other hand, the warm seawater 405 and the warm fresh water 406 that have exchanged heat with the working medium in the evaporators 43 and 44 are then recovered in the fresh water tank 130 and the cold sea water tank 120.
 図12において温海水403の加熱には複数の海水加熱器42が用いられ、抽気蒸気は低温低圧の蒸気も用いられる。初めの海水加熱器42の温度は復水器41内の温度に近く、段階的に加熱される。蒸気タービン40の下流段から抽気される蒸気は上流段で抽気される蒸気より多くの仕事をする。このため、蒸気タービン40に対して温海水403は冷却源として作用する。 In FIG. 12, a plurality of seawater heaters 42 are used to heat the warm seawater 403, and low-temperature and low-pressure steam is also used as the extraction steam. The temperature of the initial seawater heater 42 is close to the temperature in the condenser 41, and is heated stepwise. The steam extracted from the downstream stage of the steam turbine 40 does more work than the steam extracted from the upstream stage. For this reason, the warm seawater 403 acts as a cooling source for the steam turbine 40.
 図13に従来の海水淡水化複合発電を示すが、加熱蒸気を上流段の一点から抽気するのに対し、図12では下流段から抽気され多くの仕事をする。さらに、海水淡水化装置から得られた温海水405と温淡水406と新たな冷却源である凝縮器45との温度差を利用し、補助タービン46により仕事を得ることができる。 FIG. 13 shows a conventional combined seawater desalination combined power generation, in which heated steam is extracted from one point in the upstream stage, whereas in FIG. 12, it is extracted from the downstream stage and performs a lot of work. Furthermore, work can be obtained by the auxiliary turbine 46 using the temperature difference between the warm seawater 405 and the warm fresh water 406 obtained from the seawater desalination apparatus and the condenser 45 as a new cooling source.
 図14は凝縮器45の冷却源に大気を用いる構成図であり、新たに30はクーリングタワー、31,32は大気、33は淡水スプレー、34は熱媒体循環系統である。クーリングタワー30に、大気31を導き、海水淡水化により得られた淡水の一部を淡水スプレー33から大気に噴霧する。大気の顕熱と淡水の蒸発潜熱により、熱媒体循環系統を循環する熱媒体を介して凝縮器45の冷却媒体を冷却できる。 FIG. 14 is a configuration diagram in which air is used as a cooling source for the condenser 45. Newly, 30 is a cooling tower, 31, 32 are air, 33 is fresh water spray, and 34 is a heat medium circulation system. The atmosphere 31 is guided to the cooling tower 30, and a part of the fresh water obtained by seawater desalination is sprayed from the fresh water spray 33 to the atmosphere. The cooling medium of the condenser 45 can be cooled by the sensible heat of the atmosphere and the latent heat of evaporation of fresh water through the heat medium circulating in the heat medium circulation system.
 本発明は海水淡水化プラント,海水資源化プラント、および複合蒸気タービンプラントに利用できる。 The present invention can be used for a seawater desalination plant, a seawater resource plant, and a combined steam turbine plant.
1 小部屋
2 伝熱管
3 液溜まり
4 淡水受け皿
5 加熱器
6 流量調整弁
8 第2の伝熱管
9 第3の伝熱管
12 冷海水供給系統
14 温海水供給系統
20,23,25 切換弁
24 冷海水回収系統
26 温海水回収系統
30 クーリングタワー
34 熱媒体循環系統
40 蒸気タービン
41 復水器
42 海水加熱器
43,44 蒸発器
45 凝縮器
46 補助タービン
48 加熱器
50 基本モジュール
100,101 海水淡水化装置
110 海水タンク
120 冷海水タンク
130 淡水タンク
200,210 温海水タンク
300 クラスター
403,405 温海水
404 冷海水
406 温淡水
407 淡水
500 海水
DESCRIPTION OF SYMBOLS 1 Small room 2 Heat transfer tube 3 Liquid pool 4 Fresh water tray 5 Heater 6 Flow control valve 8 Second heat transfer tube 9 Third heat transfer tube 12 Cold seawater supply system 14 Hot seawater supply system 20, 23, 25 Switching valve 24 Cold Seawater recovery system 26 Warm seawater recovery system 30 Cooling tower 34 Heat medium circulation system 40 Steam turbine 41 Condenser 42 Seawater heaters 43 and 44 Evaporator 45 Condenser 46 Auxiliary turbine 48 Heater 50 Basic modules 100 and 101 Seawater desalination equipment 110 Sea water tank 120 Cold sea water tank 130 Fresh water tank 200, 210 Warm sea water tank 300 Cluster 403, 405 Warm sea water 404 Cold sea water 406 Warm fresh water 407 Fresh water 500 Sea water

Claims (7)

  1.  海水が流下する伝熱管と、前記海水より暖かい温海水が流下する液溜まりと、前記液溜まりに溜まった温海水からフラッシュ蒸発した蒸気を前記伝熱管を流下する海水で冷却して得た淡水を集める淡水受け皿と、を有する部屋からなる段落を複数段備えた多段フラッシュ蒸発方式の海水淡水化装置であって、
     前記海水と異なる海水を前記温海水として前記液溜まりに導入し、
     前記海水と前記温海水とが、前記各段落を互いに対向して流下するように構成され、
     前記海水の前記伝熱管への導入流量を、前記温海水の海水淡水化装置への導入流量に等しくなるように流量調節する、あるいは、前記海水淡水化装置の前記海水流れ方向上流側と下流側の両端での前記温海水と前記海水との温度差が保たれるように流量調節する、流量調節弁を前記伝熱管の入口上流側に設けたことを特徴とする海水淡水化装置。
    Fresh water obtained by cooling the heat transfer pipe through which the seawater flows, the liquid pool in which warm seawater warmer than the seawater flows down, and the steam flashed from the warm seawater accumulated in the liquid pool with the seawater flowing through the heat transfer pipe A multi-stage flash evaporation type seawater desalination apparatus comprising a plurality of stages consisting of a room having a fresh water receiving tray,
    Introducing seawater different from the seawater into the pool as the warm seawater;
    The sea water and the warm sea water are configured to flow down the paragraphs facing each other,
    The flow rate of the seawater introduced into the heat transfer pipe is adjusted so as to be equal to the flow rate of the warm seawater into the seawater desalination device, or the seawater flow direction upstream side and downstream side of the seawater desalination device A seawater desalination apparatus, characterized in that a flow rate adjusting valve is provided on the upstream side of the inlet of the heat transfer pipe to adjust the flow rate so as to maintain a temperature difference between the warm seawater and the seawater at both ends.
  2.  請求項1記載の海水淡水化装置であって、
     前記段落を複数段備えた基本モジュールを複数個備え、
     前記基本モジュールを前記海水の流れ方向に沿って直列に繋げ、
     前記海水を、前記基本モジュールを流下する毎に、交互に前記伝熱管と前記液溜まりを流下させるとともに、前記温海水を、前記各基本モジュールを流下する毎に、交互に前記液溜まりと前記伝熱管を流下させることを特徴とする海水淡水化装置。
    The seawater desalination apparatus according to claim 1,
    A plurality of basic modules comprising a plurality of the paragraphs described above,
    The basic modules are connected in series along the flow direction of the seawater,
    Each time the seawater flows down the basic module, the heat transfer pipe and the liquid pool are alternately flowed down, and each time the basic module is flowed down, the hot water seawater and the liquid pool are alternately transferred. A seawater desalination apparatus characterized by causing a heat pipe to flow down.
  3.  請求項2記載の海水淡水化装置であって、
     前記基本モジュールの少なくとも1つは、基本モジュールを構成する各段落に、前記フラッシュ蒸気を冷却する第2の伝熱管を備え、
     前記第2の伝熱管を備える基本モジュールの上流側に設けられた前記基本モジュールで生成した淡水を前記第2の伝熱管に冷熱源として導入することを特徴とする海水淡水化装置。
    A seawater desalination apparatus according to claim 2,
    At least one of the basic modules includes a second heat transfer tube for cooling the flash steam in each paragraph constituting the basic module,
    A seawater desalination apparatus, wherein fresh water generated by the basic module provided on the upstream side of the basic module including the second heat transfer tube is introduced into the second heat transfer tube as a cold heat source.
  4.  請求項3記載の海水淡水化装置であって、
     前記基本モジュールの少なくとも1つは、基本モジュールを構成する各段落に、前記液溜まりの中に第3の伝熱管を備え、
     前記第2の伝熱管に導入し、前記フラッシュ蒸気との熱交換によって昇温した淡水を前記第3の伝熱管に導入することを特徴とする海水淡水化装置。
    A seawater desalination apparatus according to claim 3,
    At least one of the basic modules includes a third heat transfer tube in the liquid reservoir in each paragraph constituting the basic module,
    A seawater desalination apparatus, wherein fresh water introduced into the second heat transfer tube and heated by heat exchange with the flash steam is introduced into the third heat transfer tube.
  5.  請求項2乃至4のいずれか1項に記載の海水淡水化装置であって、
     前記海水淡水化装置に前記海水を供給する海水供給系統と、
     前記海水淡水化装置に前記温海水を供給する温海水供給系統と、
     前記海水淡水化装置から排出された海水を回収する海水回収系統と、
     前記海水淡水化装置から排出された温海水を回収する温海水回収系統と、
     前記海水供給系統と前記海水回収系統とに連通し、濃度毎に海水を貯留する複数個の海水タンクと、
     前記温海水供給系統と前記温海水回収系統とに連通し、濃度毎に温海水を貯留する複数個の温海水タンクとを備え、
     前記複数個の海水タンクのうち、前記海水淡水化装置へ海水を供給する前記海水タンク、および前記複数個の温海水タンクのうち、前記海水淡水化装置へ温海水を供給する前記温海水タンクを時分割で切換制御する流路切換機構と、
     前記複数個の海水タンクのうち、前記海水淡水化装置から排出された海水を回収する前記海水タンク、および前記複数個の温海水タンクのうち、前記海水淡水化装置から排出された温海水を回収する前記温海水タンクを、排出された海水と温海水の濃度に応じて切換制御する流路切換機構とを備えることを特徴とする海水淡水化装置。
    A seawater desalination apparatus according to any one of claims 2 to 4,
    A seawater supply system for supplying the seawater to the seawater desalination device;
    A warm seawater supply system for supplying the warm seawater to the seawater desalination device;
    A seawater recovery system for recovering seawater discharged from the seawater desalination device;
    A warm seawater recovery system for recovering the warm seawater discharged from the seawater desalination device;
    A plurality of seawater tanks communicating with the seawater supply system and the seawater recovery system, and storing seawater for each concentration;
    A plurality of warm sea water tanks communicating with the warm sea water supply system and the warm sea water recovery system, and storing warm sea water for each concentration;
    Of the plurality of seawater tanks, the seawater tank that supplies seawater to the seawater desalination device, and of the plurality of warm seawater tanks, the warm seawater tank that supplies warm seawater to the seawater desalination device. A flow path switching mechanism that performs switching control in a time-sharing manner;
    Among the plurality of seawater tanks, the seawater tank that recovers seawater discharged from the seawater desalination device, and of the plurality of warm seawater tanks, recovers hot seawater discharged from the seawater desalination device A seawater desalination apparatus, comprising: a flow path switching mechanism that switches and controls the warm seawater tank according to the concentration of the discharged seawater and the warm seawater.
  6.  請求項1乃至4いずれか1項に記載の海水淡水化装置を備えた複合発電プラントであって、
     蒸気タービンと、該蒸気タービンの上流段落から下流段落までの複数箇所から抽気した蒸気を加熱源とする加熱器とを備え、
     前記海水を、前記加熱器で加熱して前記温海水を生成することを特徴とする複合発電プラント。
    A combined power plant comprising the seawater desalination apparatus according to any one of claims 1 to 4,
    A steam turbine, and a heater that uses steam extracted from a plurality of locations from an upstream stage to a downstream stage of the steam turbine as a heating source,
    A combined power plant, wherein the seawater is heated by the heater to produce the warm seawater.
  7.  多段フラッシュ蒸発方式の海水淡水化装置を用いた海水淡水化方法であって、
     前記海水淡水化装置に、海水と、該海水と別の前記海水より温度が高い温海水とが対向して流れるように導入し、
     前記海水の前記海水淡水化装置への導入流量を、前記温海水の導入流量に等しくなるように流量調節する、あるいは、前記海水の前記海水淡水化装置への導入流量を、前記海水淡水化装置の前記海水流れ方向上流側と下流側の両端での前記温海水と前記海水との温度差が保たれるように流量調節し、
     前記温海水をフラッシュ蒸発させて生成した蒸気を前記海水で冷却して淡水を生成することを特徴とする海水淡水化方法。
    A seawater desalination method using a multistage flash evaporation type seawater desalination apparatus,
    Introduced to the seawater desalination apparatus so that seawater and warm seawater having a temperature higher than that of the seawater and the seawater flow opposite to each other,
    The flow rate of the seawater introduced into the seawater desalination device is adjusted to be equal to the flow rate of the warm seawater, or the flow rate of the seawater introduced into the seawater desalination device is adjusted to the seawater desalination device. The flow rate is adjusted so that the temperature difference between the warm seawater and the seawater at both the upstream and downstream ends of the seawater flow direction is maintained,
    A seawater desalination method, wherein the steam generated by flash evaporation of the warm seawater is cooled with the seawater to produce freshwater.
PCT/JP2010/005757 2010-09-24 2010-09-24 Seawater desalination method, seawater desalination equipment and combined cycle power plant using same WO2012039009A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012534832A JP5742848B2 (en) 2010-09-24 2010-09-24 Seawater desalination method, seawater desalination apparatus, and combined power plant using the same
PCT/JP2010/005757 WO2012039009A1 (en) 2010-09-24 2010-09-24 Seawater desalination method, seawater desalination equipment and combined cycle power plant using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005757 WO2012039009A1 (en) 2010-09-24 2010-09-24 Seawater desalination method, seawater desalination equipment and combined cycle power plant using same

Publications (1)

Publication Number Publication Date
WO2012039009A1 true WO2012039009A1 (en) 2012-03-29

Family

ID=45873527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005757 WO2012039009A1 (en) 2010-09-24 2010-09-24 Seawater desalination method, seawater desalination equipment and combined cycle power plant using same

Country Status (2)

Country Link
JP (1) JP5742848B2 (en)
WO (1) WO2012039009A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209249A (en) * 2018-06-04 2019-12-12 オルガノ株式会社 Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269866A (en) * 1975-12-09 1977-06-10 Agency Of Ind Science & Technol Moltistage flash evaporation method
JPS5634598U (en) * 1979-08-28 1981-04-04
JPS56124482A (en) * 1980-03-05 1981-09-30 Hitachi Zosen Corp Harnessing device of geothermal hot water
JPH09108653A (en) * 1995-10-16 1997-04-28 Nkk Corp Seawater desalination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269866A (en) * 1975-12-09 1977-06-10 Agency Of Ind Science & Technol Moltistage flash evaporation method
JPS5634598U (en) * 1979-08-28 1981-04-04
JPS56124482A (en) * 1980-03-05 1981-09-30 Hitachi Zosen Corp Harnessing device of geothermal hot water
JPH09108653A (en) * 1995-10-16 1997-04-28 Nkk Corp Seawater desalination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209249A (en) * 2018-06-04 2019-12-12 オルガノ株式会社 Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility
JP7079151B2 (en) 2018-06-04 2022-06-01 オルガノ株式会社 Evaporation and concentration equipment and methods for power generation equipment and power generation equipment

Also Published As

Publication number Publication date
JPWO2012039009A1 (en) 2014-02-03
JP5742848B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
Saidur et al. An overview of different distillation methods for small scale applications
CN105923676B (en) High-efficiency solar sea water desalination and air conditioner refrigerating cooperation method and system
Choi On the brine re-utilization of a multi-stage flashing (MSF) desalination plant
Ortega-Delgado et al. Parametric study of a multi-effect distillation plant with thermal vapor compression for its integration into a Rankine cycle power block
US5346592A (en) Combined water purification and power of generating plant
US20170008776A1 (en) Facility and method for treating water pumped in a natural environment by evaporation/condensation
Choi Thermal type seawater desalination with barometric vacuum and solar energy
JP4698590B2 (en) Heat tempering system
US20170275190A1 (en) System using heat energy to produce power and pure water
JP2007309295A (en) Desalination power generation plant
KR20110099841A (en) Ways and a manufacturing device manufacturing a clean the ocean for eating and drinking as use seawater and heat pump system
US20190241444A1 (en) Solar humidifier and dehumidifier desalination method and system for the desalination of saline water
CN102381796A (en) Solar photovoltaic photothermal integrated device for seawater desalination
KR20190062802A (en) A Seawater Desalination Load Bank System and Its Control Method for Ocean Thermal Energy Conversion System Test and Surplus Power Utilization for Grid Stabilization
KR20120130403A (en) Desalination System Based on Mechanical Vapor Recompression and Desalination Method
CN104944492B (en) A kind of Winter-summer dual purpose air-conditioning and the method and system of flat flow desalinization coproduction
JP4139597B2 (en) Desalination equipment
JP5742848B2 (en) Seawater desalination method, seawater desalination apparatus, and combined power plant using the same
JP5975208B2 (en) Seawater desalination apparatus and seawater desalination method using the same
JP2001526959A (en) Desalination method and desalination apparatus
JP6090839B2 (en) Multistage flash type seawater desalination apparatus and method
CN104961182B (en) A kind of Trans-critical cycle air-conditioning of Winter-summer dual purpose and desalinization co-generation system
CN104944493B (en) A kind of air-conditioning of Winter-summer dual purpose and desalinization co-production and system
CN102992422A (en) Batch-type small-temperature difference heat-pump low-temperature seawater desalting system and method
Dzaky et al. The effect of water mass flow rate and pressure on specific energy consumption and aquades production using throttling process method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012534832

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857504

Country of ref document: EP

Kind code of ref document: A1