WO2012033114A1 - 表面撥水処理用組成物及びこれを用いた半導体基板表面の撥水処理方法 - Google Patents

表面撥水処理用組成物及びこれを用いた半導体基板表面の撥水処理方法 Download PDF

Info

Publication number
WO2012033114A1
WO2012033114A1 PCT/JP2011/070328 JP2011070328W WO2012033114A1 WO 2012033114 A1 WO2012033114 A1 WO 2012033114A1 JP 2011070328 W JP2011070328 W JP 2011070328W WO 2012033114 A1 WO2012033114 A1 WO 2012033114A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
water
repellent treatment
base
Prior art date
Application number
PCT/JP2011/070328
Other languages
English (en)
French (fr)
Inventor
水田 浩徳
洋治 浦野
政彦 柿沢
Original Assignee
和光純薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和光純薬工業株式会社 filed Critical 和光純薬工業株式会社
Priority to EP11823588.6A priority Critical patent/EP2615633A1/en
Priority to US13/821,815 priority patent/US20130171835A1/en
Priority to CN2011800430432A priority patent/CN103098178A/zh
Priority to KR1020137007051A priority patent/KR20130129360A/ko
Priority to SG2013016779A priority patent/SG188437A1/en
Priority to JP2012532992A priority patent/JPWO2012033114A1/ja
Publication of WO2012033114A1 publication Critical patent/WO2012033114A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment

Definitions

  • the present invention relates to a composition for water repellent treatment of a semiconductor substrate surface having a pattern structure with a high aspect ratio, and a method of water repellent treatment of a semiconductor substrate surface using the same.
  • Patent Document 1 As a conventional water-repellent treatment method, for example, for an insulating layer containing Si such as a SiO 2 layer or a silicon wafer, a solution containing various fluorine compounds is used (Patent Document 1, etc.), or a gas of various fluorine compounds is used. (Patent Document 2, Patent Document 3, etc.) and the like are known. However, since the insulating layer containing Si, such as SiO 2 layer, and the metal layer have different surface properties, there is no known composition capable of efficiently and simultaneously performing water-repellent treatment on these two layers. Its development is desired.
  • the present invention has been made to solve the above-described problems, and once the entire surface of a semiconductor substrate having a pattern formed by laminating an insulating layer containing Si such as a SiO 2 layer and a metal layer is formed.
  • a composition used for water-repellent treatment and a method for water-repellent treatment of the surface of a semiconductor substrate having a pattern formed by laminating an insulating layer containing Si and a metal layer using the composition are provided. The purpose is to do.
  • the present invention has the following configuration. (1) a) at least one compound selected from the group consisting of long-chain alkyl tertiary amines and long-chain alkylammonium salts, b) having a condensed ring structure or generating a base or acid to form a condensed ring structure A composition for water repellent treatment of a semiconductor substrate surface, comprising a base or acid generator and c) a polar organic solvent to be formed. (2) Treating a semiconductor substrate having a pattern formed by laminating an insulating layer containing Si and a metal layer with the composition of (1) above under irradiation with light having a wavelength of 200 nm or more or under heating. A water repellent treatment method for a surface of a semiconductor substrate, which is characterized.
  • the present inventors have a pattern having a high height compared to the line width, a so-called high aspect ratio pattern, and the same layer is formed by laminating an insulating layer containing Si such as a SiO 2 layer and a metal layer.
  • an insulating layer containing Si such as a SiO 2 layer and a metal layer.
  • the pattern has a high height compared to the line width, a so-called aspect ratio, and Since the surface of a semiconductor substrate having the same pattern formed by laminating an insulating layer containing Si, such as a SiO 2 layer, and a metal layer can be subjected to water repellent treatment in one treatment, For example, it is possible to prevent the occurrence of the problem that the pattern collapses due to the surface tension of water in the pure water rinsing process.
  • R 1 to R 3 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms, provided that R 1 to R 3 Of which at least one is an alkyl group having 4 to 20 carbon atoms.
  • R 1 to R 4 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 12 carbon atoms
  • X ⁇ represents an anion.
  • at least one of R 1 to R 4 is an alkyl group having 4 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms represented by R 1 to R 4 is preferably a linear or branched alkyl group.
  • a linear alkyl group is preferable, among which a linear alkyl group having 4 to 14 carbon atoms is more preferable, and a linear alkyl group having 6 to 14 carbon atoms is preferable. More preferred is an alkyl group.
  • the aryl group having 6 to 10 carbon atoms represented by R 1 to R 4 may be monocyclic or condensed polycyclic, specifically Examples thereof include a phenyl group, a naphthyl group, and azulenyl. Among them, a phenyl group having 6 carbon atoms is preferable.
  • the aralkyl group having 7 to 12 carbon atoms represented by R 1 to R 4 may be monocyclic or condensed polycyclic, specifically, For example, benzyl group, phenethyl group, ⁇ -methylbenzyl group, 3-phenylpropyl group, 1-methyl-1-phenylethyl group, 4-phenylbutyl group, 2-methyl-2-phenylpropyl group, 1,2, Examples thereof include 3,4-tetrahydronaphthyl group, naphthylmethyl group, 2-naphthylethyl group, and the like. Among them, a benzyl group having 7 carbon atoms is preferable.
  • the anion represented by X ⁇ in the general formula (2) is not particularly limited as long as it is usually used for this purpose in this field.
  • fluoride ion, chloride ion, bromide ion, iodide ion Preferred examples include halide ions such as methanesulfonic acid and ethanesulfonic acid, anions derived from carboxylic acids such as formic acid, acetic acid, propionic acid, and butyric acid, hydroxide ions, and the like.
  • R 1 to R 3 are all linear alkyl groups having 4 to 14 carbon atoms are preferable, and among them, R 1 to R 3 are all What is a C6-C14 linear alkyl group is more preferable.
  • quaternary ammonium salts represented by the general formula (2) those in which at least one of R 1 to R 4 is a linear alkyl group having 4 to 14 carbon atoms are preferable, and among them, R 1 to R 4 More preferably, at least one of 4 is a linear alkyl group having 6 to 14 carbon atoms.
  • the quaternary ammonium salt represented by the general formula (2) is preferable.
  • tertiary amine represented by the general formula (1) for example, tri-n-butylamine, tri-n-octylamine, tri-n-dodecylamine and the like are particularly preferable.
  • Examples of the quaternary ammonium salt represented by the general formula (2) include tri-n-octylmethylammonium chloride, tri-n-octylmethylammonium bromide, tri-n-octylmethylammonium iodide, tetra-n-octyl.
  • Ammonium chloride tetra-n-octylammonium bromide, tetra-n-octylammonium iodide, benzyldimethyl-n-tetradecylammonium chloride, benzyldimethyl-n-tetradecylammonium bromide, benzyldimethyl-n-tetradecylammonium iodide are particularly preferred.
  • long-chain alkyl tertiary amines and long-chain alkyl ammonium salts only one of them may be used, or two or more may be used in combination as appropriate.
  • concentration of these long-chain alkyl tertiary amine and long-chain alkyl ammonium salt in the composition is usually 0.3 to 0.001 mol / L, preferably 0.1 to 0.001 mol / L, more preferably. Is 0.05 to 0.001 mol / L.
  • commercially available products may be used, or those synthesized appropriately according to conventional methods usually used in this field may be used.
  • the base or acid generator according to the present invention which has a condensed ring structure or generates a base or an acid to form a condensed ring structure, is more specifically (i) light (active energy ray) having a wavelength of 200 nm or more.
  • a base or an acid is generated by irradiation with light (active energy rays) of 200 nm to 500 nm, or a base or an acid is generated by heating, and (ii) a base or an acid generated by light irradiation or heating
  • Condensed ring structure It has ⁇ .
  • the condensed ring structure has a planar structure such as an anthracene ring, naphthalene ring, pyrene ring, anthraquinone ring, thioxanthone ring, acenaphthene ring, coumarin ring, xanthone ring.
  • bases or acid generators base generators are preferred.
  • a base generator represented by the following general formula (3) is more preferable.
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 7 and R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, or These represent those forming a nitrogen-containing aliphatic ring or nitrogen-containing aromatic ring having 3 to 8 carbon atoms which may have a substituent together with the nitrogen atom to which they are bonded
  • m R 9 s are each independently A halogen atom or an alkyl group having 1 to 10 carbon atoms, and m represents an integer of 0 to 9.
  • examples of the alkyl group having 1 to 10 carbon atoms represented by R 5 to R 9 include a linear, branched or cyclic alkyl group. Specifically, for example, a methyl group , Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group , Neopentyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, 2-methyl Pentyl group, 1,2-dimethylbuty
  • these nitrogen-containing fat are combined to 3 carbon atoms which may have a substituent together with the nitrogen atom 1-8
  • the aromatic ring or nitrogen-containing aromatic ring include azetidine, pyrrolidine, piperidine, hexamethyleneimine (azepan), heptamethyleneimine (azocan), octamethyleneimine (azonan), 2, 5-dimethylpyrrolidine, 2,6-dimethylpiperidine, 2,4,6-trimethylpiperidine, 4-hydroxypiperidine, 4-mercaptopiperidine, 4-nitropiperidine, 4-cyanopiperidine, oxazolidine, thiazolidine, morpholine, thiomorpholine, 2,3,5,6-tetramethylmorpholine, 2,3,5,6-tetramethylthiomorpholine, etc.
  • Optionally substituted nitrogen-containing aliphatic ring having 3 to 8 carbon atoms such as pyrrole, imidazole, pyrazole, 2,5-dimethylpyrrole, 2,5-diethylpyrrole, 2,5-dimethylimidazole, 2 , 5-diethylimidazole, 3,5-dimethylpyrazole, 3,5-diethylpyrazole and the like, optionally containing a nitrogen-containing aromatic ring having 3 to 8 carbon atoms, and the like.
  • piperidine, 4-hydroxypiperidine and imidazole are preferred.
  • halogen atom represented by R 9 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a chlorine atom and a bromine atom are preferable, and a bromine atom. Is more preferable.
  • m is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, and even more preferably 0.
  • the base generator having a condensed ring structure represented by the general formula (3) or generating a base to form a condensed ring structure include, for example, 9-anthrylmethyl-1-piperidinecarboxylate, Etc.
  • Such bases or acid generators have been synthesized by Wako Pure Chemical Industries, Ltd., to which the present inventors belong, and patent applications have been filed. What is appropriately synthesized based on the above may be used.
  • a base generator having a remaining condensed ring structure selected from an anthraquinone ring, a pyrene ring, an anthracene ring and a naphthalene ring after the base is released by light irradiation or heating.
  • An anthraquinone ring, a pyrene ring, and a condensed ring structure selected from an anthracene ring are disclosed in International Publication No. WO2010 / 064631.
  • a ring structure are disclosed in International Publication No. WO2010 / 064632.
  • those having a condensed ring structure consisting of a xanthone ring may be synthesized according to the methods described in Synthesis Examples 1 to 3 and Examples 1 to 7 of International Publication WO2010 / 064632.
  • Japanese Patent Application No. 2010-135818 discloses a base generator having a condensed ring structure composed of an alkoxyanthracene ring in the balance after the base is liberated by light irradiation or heating.
  • Japanese Patent Application No. 2010-168117 discloses a base generator having a remaining condensed ring structure selected from an acenaphthene ring and a coumarin ring after light release or heating to release the base.
  • an acid generator preferably has a condensed ring structure similar to that of the above-described base generator.
  • bases or acid generators having a condensed ring structure or generating a base or acid to form a condensed ring structure according to the present invention may be used alone or in combination of two kinds as appropriate. A combination of the above may also be used.
  • the concentration in these compositions is usually 0.5 to 0.001 mol / L, preferably 0.2 to 0.001 mol / L, more preferably 0.06 to 0.001 mol / L.
  • the base generator having an anthracene ring has an amount of 0.2 to 1 w / w%, preferably 0.3 to 0.7 w / w%. .2 to 0.6 w / w%, preferably 0.2 to 0.5 w / w%.
  • Examples of the c) polar organic solvent according to the present invention include alcoholic protic polar organic solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1-methoxy-2-propanol, and ethylene glycol.
  • alcoholic protic polar organic solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1-methoxy-2-propanol, and ethylene glycol.
  • Solvents for example, ester solvents such as ethyl acetate, n-propyl acetate, ethyl lactate, and ⁇ -butyrolactone, amide solvents such as dimethylformamide and N-methylpyrrolidone, sulfoxide solvents such as dimethyl sulfoxide, and nitriles such as acetonitrile System solvents, aprotic polar organic solvents such as cyclic ketones such as cyclohexanone, and the like. These polar organic solvents may be appropriately selected depending on the purpose.
  • HMDS hexamethyldisilazane
  • Substrates whose surface can be rendered water repellent by the water repellent treatment composition of the present invention include SiO 2 films (including TEOS films and thermal oxide films), SiN films, and boron phosphorus-doped silicon films (BPSG films). If it is a semiconductor substrate in which the insulating layer containing various Si used by 1 was formed, it will not specifically limit.
  • the composition for water repellent treatment of the present invention is a pattern having a high height compared to the line width, a so-called high aspect ratio pattern, and the pattern contains Si such as a SiO 2 layer.
  • tungsten (W) film for example, a tungsten-titanium (W / Ti) film, an aluminum (Al) film, a titanium (Ti) film, a hafnium (Hf) film, a film formed of an alloy containing these metals, for example,
  • a metal layer such as a high-k film formed of hafnium (Hf) oxide or hafnium-yttrium (Hf / Y) oxide
  • the metal layer can be subjected to water repellent treatment at the same time.
  • the order of stacking and the number of stacks of the Si-containing insulating layer and the metal layer in the stacked pattern are not
  • the water repellent treatment composition of the present invention and the semiconductor substrate to be water repellent treated can be contacted under light irradiation or heating.
  • the method is not particularly limited, and there are no particular problems with methods usually employed in this field, such as an immersion method and a single wafer method.
  • the temperature at the time of water repellent treatment is not particularly limited, but is preferably 10 ° C. to 30 ° C. when generating a base or acid by light irradiation, and 40 ° C. to 80 ° C. when generating a base or acid by heating. Is preferred.
  • the treatment time is not particularly limited, 1 to 10 minutes is preferable when a base or acid is generated by light irradiation, and 1 to 30 minutes is preferable when a base or acid is generated by heat treatment. is there.
  • the light source used for light irradiation is not particularly limited as long as it can irradiate light (active energy rays) having a wavelength of 200 nm or more, more specifically, light (active energy rays) having a wavelength of 200 nm to 500 nm.
  • a mercury lamp, a xenon (Xe) lamp, etc. are mentioned.
  • the light irradiation energy at this time is not particularly limited as long as the base or acid is liberated from the base or acid generator according to the present invention, but usually 40 to 100 mmJ / cm 2 , 365 nm in the vicinity of 254 nm. Irradiation is performed so that the distance is 800 to 1500 mmJ / cm 2 in the vicinity. Moreover, after using the water-repellent treatment composition of the present invention to generate a base or an acid by light irradiation or heating, the water-repellent treatment is similarly performed even if it is brought into contact with a semiconductor substrate to be subjected to the water-repellent treatment. be able to.
  • the amount of light energy in the case of light irradiation in advance may be set as appropriate according to the time of light irradiation at the same time, and the heating temperature and heating time in the case of heating in advance are also set appropriately based on the processing method described above. Just do it.
  • the mechanism by which the substrate surface can be subjected to water repellent treatment is not clear, but the following possibilities are high. That is, two or more cationic (or anionic) or radical units, which are generated by light irradiation or heating (which generates an acid or a base) and the structure of the compound changes (or the compound decomposes). Those formed by a condensed ring compound condensed with a ring (aliphatic ring or aromatic ring) and a long-chain alkyl tertiary amine or long-chain alkyl ammonium salt are involved in water repellency on the substrate it is conceivable that. Therefore, it is considered that the object of the present invention can be achieved by using a combination of compounds capable of generating such a mechanism other than the specific combinations described above.
  • Experimental Example 1 A composition in which various chemicals were combined was prepared, and it was examined whether the surface of a thermally oxidized film wafer (that is, a silicon wafer having a SiO 2 layer) could be subjected to water repellent treatment.
  • a thermally oxidized film wafer that is, a silicon wafer having a SiO 2 layer
  • Method for Producing Evaluation Substrate 280 mL of an aqueous solution prepared by mixing 28% ammonia water, 35% hydrogen peroxide water and ion exchange water in a volume ratio of 1: 1: 5 to an 8-inch thermal oxide film wafer placed in a poly beaker. It was put in and immersed for 2 hours. After that, rinsing was performed while rotating at 800 rpm for 2 minutes with a single wafer washer (Caijo multispinner), and then spin drying was performed at 3000 rpm for 3 minutes. Thereafter, the wafer was cut into 2 cm ⁇ 2 cm and used as an evaluation substrate.
  • aqueous solution prepared by mixing 28% ammonia water, 35% hydrogen peroxide water and ion exchange water in a volume ratio of 1: 1: 5 to an 8-inch thermal oxide film wafer placed in a poly beaker. It was put in and immersed for 2 hours. After that, rinsing was performed while rotating at 800 rpm for 2 minutes with a
  • composition for study was prepared by dissolving 0.5 w / w% of each of the compounds shown in Table 1 in ⁇ -butyrolactone.
  • the composition for study was prepared under a yellow lamp (FLR40SY-IC: manufactured by Mitsubishi Electric OSRAM Co., Ltd.). Moreover, in the following Examples, all% are described in w / w%.
  • Method of processing the composition for examination 20 ml of the composition for examination was placed in a 30 ml poly beaker, and the composition for examination was stirred under irradiation with an ultra-high pressure mercury lamp REX-250 (center wavelength: 350 nm) manufactured by Asahi Spectroscope. The substrate for evaluation was immersed for 1 minute. Thereafter, the substrate was taken out, rinsed with running pure water for 1 minute, and dried with compressed air.
  • REX-250 center wavelength: 350 nm
  • Table 2 shows the structural formulas of the compounds indicated by abbreviations in Table 1.
  • Example 1 Generation of a base having a condensed ring structure consisting of zephyramine (benzyldimethyl-n-tetradecylammonium chloride), which is a long-chain alkylammonium salt, and the anthracene ring, in which thermal oxide film wafer surface is the most water-repellent in Experimental Example 1 Of ⁇ -butyrolactone solution containing 9-anthrylmethyl-1-piperidinecarboxylate (WPBG-015) as a water repellent composition and the effect of immersion time It was investigated.
  • the method for producing the evaluation substrate used, the treatment of the substrate with the water repellent treatment composition, and the measurement of the contact angle of pure water were carried out in accordance with Experimental Example 1. The results are shown in Table 3.
  • the substrate surface is water repellent by using the composition for water repellent treatment of the present invention
  • the composition for water repellent treatment of the present invention in order to confirm what properties the water repellent layer has, How the water repellency changes when the substrate for evaluation obtained by immersing under irradiation for 10 minutes is washed with isopropyl alcohol (IPA) and / or pure water, in other words, the purity of the substrate surface It was confirmed how the contact angle of water changes.
  • IPA isopropyl alcohol
  • Example 2 Effects of Zephyramine (benzyldimethyl-n-tetradecylammonium chloride) and 9-anthrylmethyl-1-piperidinecarboxylate (WPBG-015) in the composition for water repellent treatment
  • Zephyramine in the composition for water repellent treatment The influence of the concentrations of (benzyldimethyl-n-tetradecylammonium chloride) and 9-anthrylmethyl-1-piperidinecarboxylate (WPBG-015) was examined. The results are shown in Table 5.
  • concentration in Table 5 shows the density
  • the method for producing the evaluation substrate used, the treatment of the substrate with the composition for water repellent treatment, and the measurement of the contact angle of pure water were performed according to Experimental Example 1.
  • Example 3 Examination of influence of light irradiation time The influence of light irradiation time in water repellent treatment was examined. The results are shown in Table 6. The concentration in Table 6 indicates the concentration (w / w%) in ⁇ -butyrolactone. Further, the method for producing the evaluation substrate used, the treatment of the substrate with the composition for water repellent treatment, and the measurement of the contact angle of pure water were performed according to Experimental Example 1.
  • the concentration in Table 7 indicates the concentration in ⁇ -butyrolactone, and “no light” means that the silicon wafer was immersed in the composition for water repellent treatment of the present invention for 1 minute without light irradiation, “With light” means that the silicon wafer was immersed in the composition for water repellent treatment of the present invention for 1 minute after being irradiated with light for 1 minute.
  • the water-repellent treatment composition of the present invention serves as a key for light irradiation to function as a water-repellent treatment composition. Therefore, the water-repellent composition of the present invention can be stored in the dark. Long-term storage is possible.
  • the Si-containing insulating layer and the metal layer are laminated easily and efficiently by a single treatment. Since the surface of the semiconductor substrate having the pattern thus formed can be subjected to water repellent treatment, for example, it can be prevented that the pattern collapses due to the surface tension of water in the pure water rinsing process.
  • the composition for water repellent treatment and the method for water repellent treatment of a semiconductor substrate surface using the composition of the present invention can be suitably used for a semiconductor substrate having these structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 Siを含有する絶縁層と金属層とが積層されて形成されたパターンを有する半導体基板表面全体を一度に撥水処理するために用いられる組成物、並びにその組成物を用いた、当該半導体基板表面の撥水処理方法を提供することを目的とし、本発明は、(1)a)長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩からなる群から選ばれる少なくとも1種の化合物、b)縮環構造を有するか又は塩基若しくは酸を発生して縮環構造を形成する、塩基若しくは酸発生剤、及びc)極性有機溶媒を含む、半導体基板表面撥水処理用組成物、並びに(2)当該組成物を用いた、Siを含有する絶縁層と金属層とが積層されて形成されたパターンを有する半導体基板表面の撥水処理方法に関する発明である。

Description

表面撥水処理用組成物及びこれを用いた半導体基板表面の撥水処理方法
 本発明は、アスペクト比の高いパターン構造を有する半導体基板表面の撥水処理用組成物及びこれを用いた半導体基板表面の撥水処理方法に関する。
 半導体基板製造過程においては、近年の配線微細化に伴い、線幅に比較して高さが高い、いわゆるアスペクト比の高いパターンを形成する必要が出てきている。このようなアスペクト比の高いパターンの場合、純水リンスの工程で水の表面張力の影響でパターンが倒壊する問題が発生している。この傾向は、特にSiO2層等のSiを含有する絶縁層と金属層とを積層させたパターンを形成する際に大きくなっている。
 従来の撥水処理方法としては、例えばSiO2層等のSiを含有する絶縁層やシリコンウエハについて、各種フッ素化合物を含む溶液を用いたり(特許文献1等)、各種フッ素化合物のガスを用いたり(特許文献2、特許文献3等)することによって撥水処理する方法、等が知られている。
 しかしながら、SiO2層等のSiを含有する絶縁層と金属層とはその表面の性質が異なるため、これら2つの層を同時に効率良く撥水処理し得る組成物は知られておらず、従って、その開発が望まれている状況にある。
特開平9-203803号公報 WO99/48339号再公表公報 特開2003-257655号公報
 本発明は、上述した如き問題を解決するためになされたものであり、SiO2層等のSiを含有する絶縁層と金属層とが積層されて形成されたパターンを有する半導体基板表面全体を一度に撥水処理するために用いられる組成物、並びにその組成物を用いた、Siを含有する絶縁層と金属層とが積層されて形成されたパターンを有する半導体基板表面の撥水処理方法を提供することを目的とする。
 上記課題を解決するため、本発明は以下の構成からなる。
 (1)a)長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩からなる群から選ばれる少なくとも1種の化合物、b)縮環構造を有するか又は塩基若しくは酸を発生して縮環構造を形成する、塩基若しくは酸発生剤、及びc)極性有機溶媒を含む、半導体基板表面撥水処理用組成物。
 (2)Siを含有する絶縁層と金属層とが積層されて形成されたパターンを有する半導体基板を、波長200nm以上の光照射下又は加熱下、上記(1)の組成物で処理することを特徴とする、当該半導体基板表面の撥水処理方法。
 即ち、本発明者等は、線幅に比較して高さが高い、いわゆるアスペクト比の高いパターンであって、且つ同パターンがSiO2層等のSiを含有する絶縁層と金属層とが積層されて形成されたものを有する半導体基板の表面を、一度の処理で撥水処理し得る組成物を見出すべく鋭意検討を行った結果、上述の(1)の組成物を用いれば、簡便に且つ効率良く、当該半導体基板表面のSiO2層等のSiを含有する絶縁層と金属層とが積層されて形成されたパターンの表面を撥水処理し得ることを見出し、本発明を完成するに至った。
 本発明の撥水処理用組成物及び当該組成物を用いた半導体基板表面の撥水処理方法を用いれば、線幅に比較して高さが高い、いわゆるアスペクト比の高いパターンであって、且つ同パターンがSiO2層等のSiを含有する絶縁層と金属層とが積層されて形成されたものを有する半導体基板の表面を、一度の処理で撥水処理し得るので、このような基板について問題となっていた、例えば純水リンスの工程で水の表面張力の影響でパターンが倒壊するといった問題が発生するのを防止することができる。
 本発明に係るa)長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩からなる群から選ばれる少なくとも1種の化合物としては、下記一般式(1)又は一般式(2)で示されるものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-I000001
(式中、R~Rはそれぞれ独立して炭素数1~20のアルキル基、炭素数6~10のアリール基又は炭素数7~12のアラルキル基を示す。但し、R~Rの内、少なくとも1つは炭素数4~20のアルキル基である。)
Figure JPOXMLDOC01-appb-I000002
(式中、R~Rはそれぞれ独立して炭素数1~20のアルキル基、炭素数6~10のアリール基又は炭素数7~12のアラルキル基を示し、X-はアニオンを示す。但し、R~Rの内、少なくとも1つは炭素数4~20のアルキル基である。)
 一般式(1)又は(2)において、R~Rで示される炭素数1~20のアルキル基としては、直鎖状又は分枝状のアルキル基が好ましく、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、ネオヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、ネオオクチル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、sec-ノニル基、tert-ノニル基、ネオノニル基、n-デシル基、イソデシル基、sec-デシル基、tert-デシル基、ネオデシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基、等が挙げられ、中でも直鎖状アルキル基が好ましく、その中でも炭素数4~14の直鎖状アルキル基がより好ましく、炭素数6~14の直鎖状アルキル基が更に好ましい。
 一般式(1)又は(2)において、R~Rで示される炭素数6~10のアリール基としては、単環式、縮合多環式のいずれであってもよく、具体的には、例えばフェニル基、ナフチル基、アズレニル、等が挙げられ、中でも炭素数6のフェニル基が好ましい。
 一般式(1)又は(2)において、R~Rで示される炭素数7~12のアラルキル基としては、単環式、縮合多環式のいずれであってもよく、具体的には、例えばベンジル基、フェネチル基、α-メチルベンジル基、3-フェニルプロピル基、1-メチル-1-フェニルエチル基、4-フェニルブチル基、2-メチル-2-フェニルプロピル基、1,2,3,4-テトラヒドロナフチル基、ナフチルメチル基、2-ナフチルエチル基、等が挙げられ、中でも炭素数7のベンジル基が好ましい。
 一般式(2)においてX-で示されるアニオンとしては、通常この分野でこのような目的で用いられるものであれば特に限定されないが、例えばフッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物イオン、例えばメタンスルホン酸、エタンスルホン酸等のスルホン酸、例えばギ酸、酢酸、プロピオン酸、酪酸等のカルボン酸等に由来するアニオン、水酸化物イオン、等が好ましく挙げられる。
 一般式(1)で示される第3級アミンの中でも、R~Rがいずれも炭素数4~14の直鎖状アルキル基であるものが好ましく、その中でもR~Rがいずれも炭素数6~14の直鎖状アルキル基であるものがより好ましい。
 一般式(2)で示される第4級アンモニウム塩の中でも、R~Rの少なくとも1個以上が炭素数4~14の直鎖状アルキル基であるものが好ましく、その中でもR~Rの少なくとも1個以上が炭素数6~14の直鎖状アルキル基であるものがより好ましい。
 一般式(1)で示される第3級アミンと一般式(2)で示される第4級アンモニウム塩とでは、一般式(2)で示される第4級アンモニウム塩が好ましい。
 一般式(1)で示される第3級アミンとしては、例えばトリ-n-ブチルアミン、トリ-n-オクチルアミン、トリ-n-ドデシルアミン、等が特に好ましい。
 一般式(2)で示される第4級アンモニウム塩としては、例えばトリ-n-オクチルメチルアンモニウムクロリド、トリ-n-オクチルメチルアンモニウムブロミド、トリ-n-オクチルメチルアンモニウムヨージド、テトラ-n-オクチルアンモニウムクロリド、テトラ-n-オクチルアンモニウムブロミド、テトラ-n-オクチルアンモニウムヨージド、ベンジルジメチル-n-テトラデシルアンモニウムクロリド、ベンジルジメチル-n-テトラデシルアンモニウムブロミド、ベンジルジメチル-n-テトラデシルアンモニウムヨージド、等が特に好ましい。
 これら長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩は、これらの内の1種のみを用いても良いし適宜2種以上を組み合わせて用いても良い。また、これら長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩の組成物中の濃度としては、通常0.3~0.001mol/L、好ましくは0.1~0.001mol/L、より好ましくは0.05~0.001mol/Lである。
 これら長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩は、市販品を用いても良いし、通常この分野で用いられる常法に従って適宜合成したものを用いても良い。
 本発明に係る、縮環構造を有するか又は塩基若しくは酸を発生して縮環構造を形成する、塩基若しくは酸発生剤は、(i)波長200nm以上の光(活性エネルギー線)、より具体的には200nm~500nmの光(活性エネルギー線)の照射によって塩基若しくは酸を発生するもの、又は加熱することによって塩基若しくは酸を発生するものであって、(ii)光照射又は加熱により生じる塩基若しくは酸となる部分以外に2個以上の単環(脂肪族環又は芳香族環)が縮合した縮環構造を有するものか、あるいは塩基を発生して2個以上の単環(脂肪族環又は芳香族環)が縮合した縮環構造を形成するもの{言い換えれば、光照射又は加熱により塩基若しくは酸が遊離した後の残部に2個以上の単環(脂肪族環又は芳香族環)が縮合した縮環構造を有するもの}である。当該縮環構造とは、アントラセン環、ナフタレン環、ピレン環、アントラキノン環、チオキサントン環、アセナフテン環、クマリン環、キサントン環、等の平面構造を有するものである。これら塩基若しくは酸発生剤の中でも、塩基発生剤が好ましい。
 これら本発明に係る、縮環構造を有するか又は塩基若しくは酸を発生して縮環構造を形成する、塩基若しくは酸発生剤としては、下記一般式(3)で示される塩基発生剤がより好ましく挙げられる。
Figure JPOXMLDOC01-appb-I000003
(R及びRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基を示し、R及びRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基を示す、あるいはこれらが結合している窒素原子と共に置換基を有していても良い炭素数3~8の含窒素脂肪族環又は含窒素芳香族環を形成するものを示し、m個のRはそれぞれ独立してハロゲン原子又は炭素数1~10のアルキル基を示し、mは0~9の整数を示す。)
 一般式(3)において、R~Rで示される炭素数1~10のアルキル基としては、直鎖状、分枝状又は環状のアルキル基が挙げられ、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、n-ノニル基、イソノニル基、sec-ノニル基、tert-ノニル基、ネオノニル基、シクロノニル基、n-デシル基、イソデシル基、sec-デシル基、tert-デシル基、ネオデシル基、シクロデシル基、等が挙げられ、中でも炭素数1~6の直鎖状又は環状のアルキル基が好ましく、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、シクロブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基が好ましい。
 一般式(3)において、R及びRで示される、これら(R及びR)が結合している窒素原子と共に置換基を有していても良い炭素数3~8の含窒素脂肪族環又は含窒素芳香族環を形成するものとしては、具体的には、例えばアゼチジン、ピロリジン、ピペリジン、ヘキサメチレンイミン(アゼパン)、ヘプタメチレンイミン(アゾカン)、オクタメチレンイミン(アゾナン)、2,5-ジメチルピロリジン、2,6-ジメチルピペリジン、2,4,6-トリメチルピペリジン、4-ヒドロキシピペリジン、4-メルカプトピペリジン、4-ニトロピペリジン、4-シアノピペリジン、オキサゾリジン、チアゾリジン、モルホリン、チオモルホリン、2,3,5,6-テトラメチルモルホリン、2,3,5,6-テトラメチルチオモルホリン等の置換基を有していても良い炭素数3~8の含窒素脂肪族環、例えばピロール、イミダゾール、ピラゾール、2,5-ジメチルピロール、2,5-ジエチルピロール、2,5-ジメチルイミダゾール、2,5-ジエチルイミダゾール、3,5-ジメチルピラゾール、3,5-ジエチルピラゾール等の置換基を有していても良い炭素数3~8の含窒素芳香族環、等が挙げられ、中でもピペリジン、4-ヒドロキシピペリジン、イミダゾールが好ましい。
 一般式(3)において、Rで示されるハロゲン原子としては、具体的には、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でも塩素原子、臭素原子が好ましく、臭素原子がより好ましい。
 一般式(3)において、mとしては、0~5の整数が好ましく、中でも0~3の整数がより好ましく、0が更に好ましい。
 一般式(3)で示される縮環構造を有するか又は塩基を発生して縮環構造を形成する、塩基発生剤の好ましい具体例としては、例えば9-アントリルメチル-1-ピペリジンカルボキシレート、等が挙げられる。
 このような塩基若しくは酸発生剤は、本件発明者等の所属する和光純薬工業株式会社により各種のものが合成されており、特許出願もされているので、該当する特許出願明細書中の記載に基づいて適宜合成したものを用いれば良い。
 例えば塩基発生剤についての具体例としては以下の通りである。
 1)アントラキノン環、ピレン環、アントラセン環及びナフタレン環から選ばれるいずれかの縮環構造を、光照射又は加熱により塩基が遊離した後の残部に有する塩基発生剤について
 このような塩基発生剤の内、アントラキノン環、ピレン環及びアントラセン環から選ばれるいずれかの縮環構造を有するものについては、国際公開公報WO2010/064631号公報に開示されている。
 また、ナフタレン環からなる縮環構造を有するものについては、国際公開公報WO2010/064631号公報の合成例1及び実施例1に記載の方法に準じて合成すれば良い。即ち、先ず、同合成例1の9-アントラセンメタノールに代えて1-ナフタレンメタノール又は2-ナフタレンメタノールを用いる以外は、合成例1と同じ試薬を用い同様の操作を行って、1-(又は2-)ナフチルメチル-4’-ニトロフェニルカルボナートを得、次いでこれを同実施例1の9-アントリルメチル-4’-ニトロフェニルカルボナートの代わりに用い、それ以外は実施例1と同じ試薬を用い同様の操作を行って、1-(又は2-)ナフチルメチル-1-ピペリジンカルボキシレートを合成する、等すれば良い。
 2)チオキサントン環及びキサントン環から選ばれるいずれかの縮環構造を、光照射又は加熱により塩基が遊離した後の残部に有する塩基発生剤について
 このような塩基発生剤の内、チオキサントン環からなる縮環構造を有するものについては、国際公開公報WO2010/064632号公報に開示されている。
 また、キサントン環からなる縮環構造を有するものについては、国際公開公報WO2010/064632号公報の合成例1~3及び実施例1~7に記載の方法に準じて合成すれば良い。即ち、先ず、同合成例1の2,4-ジエチル-9H-チオキサンテン-9-オンに代えて2,4-ジエチル-9H-キサンテン-9-オンを用いる以外は、合成例1と同じ試薬を用い同様の操作を行って、7-ブロモ-2,4-ジエチル-9H-キサンテン-9-オンを得、次いでこれを同合成例2の7-ブロモ-2,4-ジエチル-9H-キサンテン-9-オンの代わりに用い、それ以外は実施例1と同じ試薬を用い同様の操作を行って、2,4-ジエチル-7-(3-ヒドロキシ-プロピル-1-イル)-9H-キサンテン-9-オンとし、更にこれを同実施例1の2,4-ジエチル-7-(3-ヒドロキシ-プロピル-1-イル)-9H-チオキサンテン-9-オンの代わりに用い、それ以外は実施例1と同じ試薬を用い同様の操作を行って、2,4-ジエチル-7[3-(N,N-ジエチルカルバモイルオキシ)-1-プロピル-1-イル]-9H-キサンテン-9-オンを合成する、等すれば良い。
 3)アルコキシアントラセン環からなる縮環構造を、光照射又は加熱により塩基が遊離した後の残部に有する塩基発生剤について
 日本特願2010-135818号に開示されている。
 4)アセナフテン環及びクマリン環から選ばれるいずれかの縮環構造を、光照射又は加熱により塩基が遊離した後の残部に有する塩基発生剤について
 日本特願2010-168117号に開示されている。
 このような塩基発生剤の具体例を以下に例示するが、これらのみが本発明に使用できるものではなく、上述の4件の出願明細書に記載された範囲内のものも同様に本発明に使用可能である。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
 また、例えば酸発生剤も上述した塩基発生剤と同様の縮環構造を有するものが好ましく挙げられる。
 これら本発明に係る、縮環構造を有するか又は塩基若しくは酸を発生して縮環構造を形成する、塩基若しくは酸発生剤は、これらの内の1種のみを用いても良いし適宜2種以上を組み合わせて用いても良い。また、これらの組成物中の濃度としては、通常0.5~0.001mol/L、好ましくは0.2~0.001mol/L、より好ましくは0.06~0.001mol/Lである。
 また、重量比で示すと、塩基発生剤の内アントラセン環のものについては、0.2~1w/w%、好ましくは0.3~0.7w/w%、アントラキノン環のものについては、0.2~0.6w/w%、好ましくは0.2~0.5w/w%である。
 本発明に係るc)極性有機溶媒としては、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、1-メトキシ-2-プロパノール、エチレングリコール等のアルコール系のプロトン性極性有機溶媒、例えば酢酸エチル、酢酸n-プロピル、乳酸エチル、γ-ブチロラクトン等のエステル系溶媒、例えばジメチルホルムアミド、N-メチルピロリドン等のアミド系溶媒、例えばジメチルスルホキシド等のスルホキシド系溶媒、アセトニトリル等のニトリル系溶媒、シクロヘキサノン等の環状ケトン等の非プロトン性極性有機溶媒、等が挙げられる。
 これらの極性有機溶媒は、目的に応じて適宜選択すれば良いが、例えばヘキサメチルジシラザン[HMDS:ビス(トリメチルシリル)アミン]を用いたSiO2層等のSiを含有する絶縁層の撥水処理と併用する目的で本発明の撥水処理用組成物を使用する場合には非プロトン性極性有機溶媒を用いるのが望ましく、γ-ブチロラクトンを用いるのがより望ましい。
 これら本発明に係る極性有機溶媒は、これらの内の1種のみを用いても良いし適宜2種以上を組み合わせて用いても良い。
 本発明の撥水処理用組成物により、表面を撥水化できる基板としては、SiO2膜(TEOS膜や熱酸化膜を含む)、SiN膜、ホウ素リンドープシリコン膜(BPSG膜)といったこの分野で用いられる各種のSiを含有する絶縁層が形成された半導体基板であれば特に限定されない。本発明の撥水処理用組成物は、これらの中でも、線幅に比較して高さが高い、いわゆるアスペクト比の高いパターンであって、且つ同パターンがSiO2層等のSiを含有する絶縁層と、例えばタングステン(W)膜、タングステン-チタン(W/Ti)膜、アルミニウム(Al)膜、チタン(Ti)膜、ハフニウム(Hf)膜、これら金属を含む合金により形成された膜、例えばハフニウム(Hf)酸化物、ハフニウム-イットリウム(Hf/Y)酸化物により形成されたHigh-k膜等の金属層とが積層されて形成されたものを有する半導体基板の、Siを含有する絶縁層と金属層の両方を同時に撥水処理し得るという効果を奏するものである。尚、積層されて形成されたパターンにおけるSiを含有する絶縁層と金属層の積層順序や積層数等は、通常この分野で形成されるものであれば特に限定されない。
 本発明の撥水処理用組成物を用いた半導体基板表面の撥水処理方法としては、光照射下又は加熱下で本発明の撥水処理用組成物と撥水処理したい半導体基板とが接触できる方法であれば特に限定されず、浸漬法、枚葉法等、この分野で通常採用されている方式で特に問題は無い。撥水処理時の温度は特に限定されないが、光照射により塩基若しくは酸を発生させる場合には、10℃~30℃が好ましく、加熱により塩基若しくは酸を発生させる場合には、40℃~80℃が好ましい。処理時間も特に限定されないが、光照射により塩基若しくは酸を発生させる場合には、1~10分が好適であり、加熱処理により塩基若しくは酸を発生させる場合には、1~30分が好適である。また、光照射をするために用いられる光源も、波長200nm以上の光(活性エネルギー線)、より具体的には200nm~500nmの光(活性エネルギー線)を照射できるものであれば特に限定されない。例えば、水銀ランプ、キセノン(Xe)ランプ等が挙げられる。尚、この際の光照射エネルギーとしては、本発明に係る塩基若しくは酸発生剤から塩基若しくは酸が遊離する量であれば特に限定されないが、通常254nm付近であれば40~100mmJ/cm、365nm付近であれば800~1500mmJ/cmとなるように照射される。また、本発明の撥水処理用組成物を使用する前に光照射又は加熱して塩基若しくは酸を発生させた後に、撥水処理する半導体基板と接触させても同様に撥水処理を行わせることができる。このように予め光照射する場合の光エネルギー量も、同時に光照射するときに準じて適宜設定すれば良いし、予め加熱する場合の加熱温度と加熱時間も、上述した処理方法に基づいて適宜設定すれば良い。
 本発明の撥水処理用組成物を用いた場合、どのような機構により基板表面を撥水処理し得るのかについては明確ではないが、以下のような可能性が高い。即ち、光照射又は加熱により、(酸又は塩基を発生すると共に、)化合物の構造が変化(あるいは化合物が分解)することによって生じる、カチオン性(又はアニオン性)あるいはラジカル性の2個以上の単環(脂肪族環又は芳香族環)が縮合した縮環化合物と、長鎖アルキル第3級アミン又は長鎖アルキルアンモニウム塩とで形成されるものが、基板上の撥水性に関与しているものと考えられる。従って、上述した具体的な組合せのもの以外でも、このような機構を生じさせ得る化合物を組み合わせて用いれば、本発明の目的を達成できる、と考えられる。
 以下に、実験例及び実施例に基づいて本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 実験例1.
 各種薬剤を組み合わせた組成物を調製し、熱酸化膜ウエハ(即ちSiO2層を有するシリコンウエハ)表面を撥水処理し得るかについて検討を行った。
 1.評価用基板の作製方法
 ポリビーカー中に置いた8インチの熱酸化膜ウエハに、28%アンモニア水、35%過酸化水素水及びイオン交換水を容積比1:1:5で混合した水溶液280mLを投入し、2時間浸漬した。その後、枚葉式洗浄機(カイジョー製マルチスピナー)で2分間、800rpmで回転させながらリンスし、次いで3000rpmで3分間スピンドライした。その後、ウエハを2cm×2cmに切断し、これを評価用基板として用いた。
 2.検討用組成物の調製
 γ-ブチロラクトンに、表1記載の化合物を各々0.5w/w%ずつ溶解したものを検討用組成物とした。尚、検討用組成物の調製は、イエローランプ(FLR40SY-IC:三菱電機オスラム株式会社製)の下で行った。また、以下の実施例において、%は全てw/w%で記載してある。
 3.検討用組成物の処理方法
 20mLの検討用組成物を30mLのポリビーカーに入れ、朝日分光製、超高圧水銀ランプREX-250(中心波長350nm)を照射しながら、攪拌下、検討用組成物中に評価用基板を1分間浸漬した。その後、該基板を取り出し、純水の流水で1分間リンスして圧縮空気で乾燥した。
 4.評価方法
 検討用組成物で処理した基板について、接触角計(協和界面科学製、ドロップマスターDM-501)を用い、純水を1μL自動滴下して接触角を測定した。
 5.結果
 接触角の測定結果を表1に合わせて示す。尚、表1中に略号で示した化合物の構造式を表2に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表1の結果から、長鎖アルキルアンモニウム塩であるゼフィラミン(ベンジルジメチル-n-テトラデシルアンモニウムクロリド)と、アントラセン環からなる縮環構造を有する塩基発生剤である9-アントリルメチル-1-ピペリジンカルボキシレート(WPBG-015)とを含有するγ-ブチロラクトン溶液を用いると、熱酸化膜ウエハ表面が最も撥水性となることが分かった。尚、従来技術であるヘキサメチルジシラザン[HMDS:ビス(トリメチルシリル)アミン]処理後の表面の接触角が60度であったことから、これ以上の接触角が得られる組成物は、本発明の目的の接触角を付与し得るものと判断した。
 尚、表1には示していないが、9-アントリルメチル-1-ピペリジンカルボキシレート(WPBG-015)の代わりにアントラセンメタノールを用いて検討を行ってみたが、ゼフィラミン(ベンジルジメチル-n-テトラデシルアンモニウムクロリド)と組み合わせて用いても基板表面に撥水性を付与することはできなかった。
 実施例1.
 実験例1で、熱酸化膜ウエハ表面が最も撥水性となった、長鎖アルキルアンモニウム塩であるゼフィラミン(ベンジルジメチル-n-テトラデシルアンモニウムクロリド)と、アントラセン環からなる縮環構造を有する塩基発生剤である9-アントリルメチル-1-ピペリジンカルボキシレート(WPBG-015)とを含有するγ-ブチロラクトン溶液を撥水処理用組成物として用いた場合の、光照射の要否並びに浸漬時間の影響を検討した。尚、用いた評価用基板の作製方法、撥水処理用組成物による該基板の処理及び純水の接触角の測定は、実験例1に準じて行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000013
 表3の結果から、(i)光照射なし(OFF)では、基板表面の撥水化は達成できない、(ii)光照射しながら浸漬1分以上で撥水処理は完了し、その効果はヘキサメチルジシラザン[HMDS:ビス(トリメチルシリル)アミン]処理を行った場合よりも高い、等が分かった。
 本発明の撥水処理用組成物を用いることにより、基板表面が撥水化されることは分かったが、撥水化層がどのような性質を持つものであるのかを確認するために、光照射下で10分間浸漬して得られた評価用基板を、イソプロピルアルコール(IPA)又は/及び純水を用いて洗浄した場合に、撥水性がどのように変化するか、言い換えれば基板表面の純水の接触角がどのように変化するかを確認した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014
 表4の結果から、(i)撥水化した表面にイソプロピルアルコール(IPA)で除去できる膜があること、(ii)その膜は純水でも溶解すること、等が分かった。
 これらのことから、基板表面に形成された撥水化膜は、基板と化学結合しておらず、ファンデルワールス力程度の力で基板表面に吸着されていると推定される。
 実施例2.撥水処理用組成物中のゼフィラミン(ベンジルジメチル-n-テトラデシルアンモニウムクロリド)及び9-アントリルメチル-1-ピペリジンカルボキシレート(WPBG-015)の濃度による影響
 撥水処理用組成物中のゼフィラミン(ベンジルジメチル-n-テトラデシルアンモニウムクロリド)及び9-アントリルメチル-1-ピペリジンカルボキシレート(WPBG-015)の濃度による影響について検討を行った。結果を表5に示す。尚、表5中の濃度はγ-ブチロラクトン中の濃度(w/w%)を示す。また、用いた評価用基板の作製方法、撥水処理用組成物による該基板の処理及び純水の接触角の測定は、実験例1に準じて行った。
Figure JPOXMLDOC01-appb-T000015
 表5の結果から、ゼフィラミン(ベンジルジメチル-n-テトラデシルアンモニウムクロリド)は0.5%含有されていれば十分と思われる。また、9-アントリルメチル-1-ピペリジンカルボキシレート(WPBG-015)の投入量が多くなると基板表面に斑点(マダラ)が生じるようになることを考慮すると、9-アントリルメチル-1-ピペリジンカルボキシレート(WPBG-015)の最適な投入濃度は0.5%前後と思われる。
 実施例3.光照射時間の影響の検討
 撥水処理における光照射時間の影響の検討を行った。結果を表6に示す。尚、表6中の濃度はγ-ブチロラクトン中の濃度(w/w%)を示す。また、用いた評価用基板の作製方法、撥水処理用組成物による該基板の処理及び純水の接触角の測定は、実験例1に準じて行った。
Figure JPOXMLDOC01-appb-T000016
 表6の結果から、浸漬前に光を十分に照射した溶液を用いた場合でも、光照射しながらの場合と同様の撥水処理効果が得られることが分かった。
 実施例4.金属膜表面の撥水処理
 基板としてW/Ti=9:1膜が形成されたシリコンウエハを用い、本発明の撥水処理用組成物で撥水処理が可能かを検討した。結果を表7に示す。尚、表7中の濃度はγ-ブチロラクトン中の濃度を示し、「光なし」は光照射なしで上記シリコンウエハを本発明の撥水処理用組成物に1分間浸漬させたことを意味し、「光あり」は、1分間光照射してから上記シリコンウエハを本発明の撥水処理用組成物に1分間浸漬させたことを意味し、「光あてながら」は、上記シリコンウエハを本発明の撥水処理用組成物に浸漬し、その直後からシリコンウエハに直接光を1分間照射したことを意味する。また、基板としてW/Ti=9:1膜が形成されたシリコンウエハを用いた以外は、評価用基板の作製方法、撥水処理用組成物による該基板の処理及び純水の接触角の測定は、実験例1に準じて行った。
Figure JPOXMLDOC01-appb-T000017
 表7の結果から、本発明の撥水処理用組成物を用いてW/Ti膜の撥水化も行えることが分かった。
 以上の実験例及び実施例の結果から、以下のようなことが分かる。
1.9-アントリルメチル-1-ピペリジンカルボキシレート(WPBG-015)と長鎖アルキル4級アンモニウム塩の組み合わせで、SiO2膜等のSiを含有する絶縁層とW膜(実験はW/Ti膜で実施)等の金属層の同時撥水化が可能である。
2.本発明の撥水処理用組成物を用いれば、1液でSiを含有する絶縁層と金属層の両層の撥水化ができるので、従来技術に比較して簡便な工程で、Siを含有する絶縁層と金属層とが積層されて形成されたパターンを有する半導体基板表面を撥水処理できる。
3.本発明の撥水処理用組成物は、光照射が撥水処理用組成物として機能を発揮するカギの役割をしているので、本発明の撥水処理用組成物は、遮光して保存すれば長期間の保存も可能である。
 本発明の撥水処理用組成物及び当該組成物を用いた半導体基板表面の撥水処理方法を用いれば、一度の処理で簡便に且つ効率良く、Siを含有する絶縁層と金属層とが積層されて形成されたパターンを有する半導体基板表面を撥水処理し得、例えば純水リンスの工程で水の表面張力の影響でパターンが倒壊するといった問題が発生するのを防止することができるので、本発明の撥水処理用組成物及び当該組成物を用いた半導体基板表面の撥水処理方法は、これらの構成を有する半導体基板に好適に使用することができるものである。

Claims (12)

  1. a)長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩からなる群から選ばれる少なくとも1種の化合物、b)縮環構造を有するか又は塩基若しくは酸を発生して縮環構造を形成する、塩基若しくは酸発生剤、及びc)極性有機溶媒を含む、半導体基板表面撥水処理用組成物。
  2. 長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩が、炭素数4~20のアルキル基を少なくとも1個以上有するものである、請求項1記載の組成物。
  3. a)長鎖アルキル第3級アミン及び長鎖アルキルアンモニウム塩からなる群から選ばれる少なくとも1種の化合物が、長鎖アルキルアンモニウム塩である、請求項1記載の組成物。
  4. 長鎖アルキルアンモニウム塩が、トリ-n-オクチルメチルアンモニウムクロリド、テトラ-n-オクチルアンモニウムブロミド又はベンジルジメチル-n-テトラデシルアンモニウムクロリドである、請求項3記載の組成物。
  5. b)縮環構造を有する塩基若しくは酸発生剤が、光照射又は加熱により、塩基若しくは酸となる部分以外に縮環構造を有するか又は塩基若しくは酸を発生して縮環構造を形成するものである、請求項1記載の組成物。
  6. 縮環構造が、アントラセン環、ナフタレン環、ピレン環、アントラキノン環、チオキサントン環、アセナフテン環、クマリン環又はキサントン環である、請求項5記載の組成物。
  7. 縮環構造が、アントラセン環である、請求項5記載の組成物。
  8. b)縮環構造を有するか又は塩基若しくは酸を発生して縮環構造を形成する、塩基若しくは酸発生剤が、9-アントリルメチル-1-ピペリジンカルボキシレートである、請求項1記載の組成物。
  9. c)極性有機溶媒が非プロトン性である、請求項1記載の組成物。
  10. c)極性有機溶媒が、γ-ブチロラクトンである、請求項1記載の組成物。
  11. Siを含有する絶縁層と金属層とが積層されて形成されたパターンを有する半導体基板を、波長200nm以上の光照射下又は加熱下、請求項1記載の組成物で処理することを特徴とする、当該半導体基板表面の撥水処理方法。
  12. 金属層が、タングステン、アルミニウム、チタン、ハフニウム、これら金属を含む合金、ハフニウム酸化物又はハフニウム-イットリウム酸化物で形成されたものである、請求項11記載の方法。
PCT/JP2011/070328 2010-09-08 2011-09-07 表面撥水処理用組成物及びこれを用いた半導体基板表面の撥水処理方法 WO2012033114A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11823588.6A EP2615633A1 (en) 2010-09-08 2011-09-07 Composition for water-repellent treatment of surface, and method for water-repellent treatment of surface of semiconductor substrate using same
US13/821,815 US20130171835A1 (en) 2010-09-08 2011-09-07 Composition for water-repellent treatment of surface, and method for water-repellent treatment of surface of semiconductor substrate using same
CN2011800430432A CN103098178A (zh) 2010-09-08 2011-09-07 表面防水处理用组合物以及使用该组合物的半导体基板表面的防水处理方法
KR1020137007051A KR20130129360A (ko) 2010-09-08 2011-09-07 표면 발수처리용 조성물 및 이를 사용한 반도체 기판표면의 발수처리 방법
SG2013016779A SG188437A1 (en) 2010-09-08 2011-09-07 Composition for water-repellent treatment of surface, and method for water-repellent treatment of surface of semiconductor substrate using same
JP2012532992A JPWO2012033114A1 (ja) 2010-09-08 2011-09-07 表面撥水処理用組成物及びこれを用いた半導体基板表面の撥水処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-201276 2010-09-08
JP2010201276 2010-09-08

Publications (1)

Publication Number Publication Date
WO2012033114A1 true WO2012033114A1 (ja) 2012-03-15

Family

ID=45810711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070328 WO2012033114A1 (ja) 2010-09-08 2011-09-07 表面撥水処理用組成物及びこれを用いた半導体基板表面の撥水処理方法

Country Status (8)

Country Link
US (1) US20130171835A1 (ja)
EP (1) EP2615633A1 (ja)
JP (1) JPWO2012033114A1 (ja)
KR (1) KR20130129360A (ja)
CN (1) CN103098178A (ja)
SG (1) SG188437A1 (ja)
TW (1) TW201217508A (ja)
WO (1) WO2012033114A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161834A (ja) * 2012-02-01 2013-08-19 Central Glass Co Ltd 撥水性保護膜形成用薬液、撥水性保護膜形成用薬液キット、及びウェハの洗浄方法
JP2013161833A (ja) * 2012-02-01 2013-08-19 Central Glass Co Ltd 撥水性保護膜形成用薬液、撥水性保護膜形成用薬液キット、及びウェハの洗浄方法
JP2019114600A (ja) * 2017-12-21 2019-07-11 東京応化工業株式会社 表面処理液、表面処理方法、及びパターン倒れの抑制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203803A (ja) 1996-01-25 1997-08-05 Asahi Glass Co Ltd カラーフィルタの製造方法及びそれを用いた液晶表示素子
WO1999048339A1 (fr) 1998-03-17 1999-09-23 Seiko Epson Corporation Substrat de formation de motifs sur film mince et son traitement de surface
JP2003257655A (ja) 2001-12-26 2003-09-12 Seiko Epson Corp 撥水化処理の方法、薄膜形成方法及びこの方法を用いた有機el装置の製造方法、有機el装置、電子機器
JP2008089766A (ja) * 2006-09-29 2008-04-17 Jsr Corp 液浸露光用感放射線性樹脂組成物およびレジストパターン形成方法
JP2008205490A (ja) * 2008-03-24 2008-09-04 Nec Corp デバイス基板用の洗浄組成物及び該洗浄組成物を用いた洗浄方法並びに洗浄装置
WO2010064631A1 (ja) 2008-12-02 2010-06-10 和光純薬工業株式会社 光塩基発生剤
WO2010064632A1 (ja) 2008-12-02 2010-06-10 和光純薬工業株式会社 光塩基発生剤
JP2010135818A (ja) 2008-04-22 2010-06-17 Fujifilm Corp 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物
JP2010168117A (ja) 2008-12-26 2010-08-05 Yupo Corp ラベル付き容器とその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897056B2 (ja) * 2008-02-22 2012-03-14 ルネサスエレクトロニクス株式会社 被露光基板用撥水化剤組成物、レジストパターンの形成方法及び該形成方法を用いた電子デバイスの製造方法、被露光基板の撥水化処理方法、被露光基板用撥水化剤セット及びそれを用いた被露光基板の撥水化処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203803A (ja) 1996-01-25 1997-08-05 Asahi Glass Co Ltd カラーフィルタの製造方法及びそれを用いた液晶表示素子
WO1999048339A1 (fr) 1998-03-17 1999-09-23 Seiko Epson Corporation Substrat de formation de motifs sur film mince et son traitement de surface
JP2003257655A (ja) 2001-12-26 2003-09-12 Seiko Epson Corp 撥水化処理の方法、薄膜形成方法及びこの方法を用いた有機el装置の製造方法、有機el装置、電子機器
JP2008089766A (ja) * 2006-09-29 2008-04-17 Jsr Corp 液浸露光用感放射線性樹脂組成物およびレジストパターン形成方法
JP2008205490A (ja) * 2008-03-24 2008-09-04 Nec Corp デバイス基板用の洗浄組成物及び該洗浄組成物を用いた洗浄方法並びに洗浄装置
JP2010135818A (ja) 2008-04-22 2010-06-17 Fujifilm Corp 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物
WO2010064631A1 (ja) 2008-12-02 2010-06-10 和光純薬工業株式会社 光塩基発生剤
WO2010064632A1 (ja) 2008-12-02 2010-06-10 和光純薬工業株式会社 光塩基発生剤
JP2010168117A (ja) 2008-12-26 2010-08-05 Yupo Corp ラベル付き容器とその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161834A (ja) * 2012-02-01 2013-08-19 Central Glass Co Ltd 撥水性保護膜形成用薬液、撥水性保護膜形成用薬液キット、及びウェハの洗浄方法
JP2013161833A (ja) * 2012-02-01 2013-08-19 Central Glass Co Ltd 撥水性保護膜形成用薬液、撥水性保護膜形成用薬液キット、及びウェハの洗浄方法
JP2019114600A (ja) * 2017-12-21 2019-07-11 東京応化工業株式会社 表面処理液、表面処理方法、及びパターン倒れの抑制方法
JP7053247B2 (ja) 2017-12-21 2022-04-12 東京応化工業株式会社 表面処理液、表面処理方法、及びパターン倒れの抑制方法

Also Published As

Publication number Publication date
EP2615633A1 (en) 2013-07-17
US20130171835A1 (en) 2013-07-04
KR20130129360A (ko) 2013-11-28
SG188437A1 (en) 2013-04-30
JPWO2012033114A1 (ja) 2014-01-20
TW201217508A (en) 2012-05-01
CN103098178A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
Shih et al. Amino‐acid‐induced preferential orientation of perovskite crystals for enhancing interfacial charge transfer and photovoltaic performance
CN104737277B (zh) 蚀刻液、使用其的蚀刻方法及半导体元件的制造方法
EP1970421B1 (en) Coating liquid for forming low dielectric constant amorphous silica coating film and low dielectric constant amorphous silica coating film obtained from such coating liquid
ES2373299T3 (es) Utilización de una sal de diazonio en un procedimiento de modificación de superficies aislantes o semiconductoras, y productos así obtenidos.
US8623236B2 (en) Titanium nitride-stripping liquid, and method for stripping titanium nitride coating film
EP2386623A1 (en) Cleaning composition, method for producing semiconductor device, and cleaning method
KR102499429B1 (ko) 세정 제형
WO2012033114A1 (ja) 表面撥水処理用組成物及びこれを用いた半導体基板表面の撥水処理方法
WO2014039186A1 (en) Etching composition
Kim et al. Alkylammonium bis (trifluoromethylsulfonyl) imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells
CN104781915A (zh) 半导体基板的蚀刻液、使用其的蚀刻方法及半导体元件的制造方法
Muleta et al. Small molecule-doped organic crystals towards long-persistent luminescence in water and air
JP7507309B2 (ja) 窒化物エッチング剤組成物及び方法
Cardiano et al. POSS–tetraalkylammonium salts: a new class of ionic liquids
US11708273B2 (en) Aluminum-containing silica sol dispersed in nitrogen-containing solvent and resin composition
EP3787008B1 (en) Aqueous composition and cleaning method using same
TWI677031B (zh) 基板中間體、貫通介層窗電極基板及貫通介層窗電極形成方法
JP5379389B2 (ja) チタン除去液及びチタン被膜の除去方法
TWI660427B (zh) 密封組成物及半導體裝置的製造方法
TWI819063B (zh) 蝕刻液組合物
JP2015052101A (ja) 膜形成用材料
JP6438747B2 (ja) 複合体の製造方法
JP4989571B2 (ja) 多孔質膜の前駆体組成物の溶液
JPWO2020246566A1 (ja) 主鎖分解型レジスト材料およびこれを含む組成物
Zhan et al. Organic Functionalized Nano-Fe 3 O 4 Hybrid Inhibitor for Enhancing the Anticorrosion Performance of Carbon Steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043043.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012532992

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011823588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 225072

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13821815

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137007051

Country of ref document: KR

Kind code of ref document: A