WO2012032813A1 - 油圧制御装置 - Google Patents

油圧制御装置 Download PDF

Info

Publication number
WO2012032813A1
WO2012032813A1 PCT/JP2011/061387 JP2011061387W WO2012032813A1 WO 2012032813 A1 WO2012032813 A1 WO 2012032813A1 JP 2011061387 W JP2011061387 W JP 2011061387W WO 2012032813 A1 WO2012032813 A1 WO 2012032813A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
flow path
temperature
control device
receiving surface
Prior art date
Application number
PCT/JP2011/061387
Other languages
English (en)
French (fr)
Inventor
宮地永治
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to EP11823292.5A priority Critical patent/EP2615268B1/en
Priority to US13/816,358 priority patent/US8640663B2/en
Priority to CN2011900007034U priority patent/CN203362253U/zh
Priority to JP2012532880A priority patent/JP5311165B2/ja
Publication of WO2012032813A1 publication Critical patent/WO2012032813A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34436Features or method for avoiding malfunction due to foreign matters in oil
    • F01L2001/3444Oil filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34466Locking means between driving and driven members with multiple locking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34473Lock movement perpendicular to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/02Lubrication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump

Definitions

  • the present invention relates to a hydraulic control device that controls the hydraulic pressure of oil discharged from a pump driven by engine rotation and supplied to each part of the engine.
  • Patent Literature 1 a pump that is driven by engine rotation to discharge oil (in the literature, “oil pump”), and a driving-side rotary member that rotates synchronously with the crankshaft (in literature, “external” Rotor ”), and a driven-side rotating member (“ inner rotor ”in the literature) that is arranged coaxially with the driving-side rotating member and rotates synchronously with the camshaft, and the relative of the driven-side rotating member to the driving-side rotating member
  • a hydraulic control device that includes a valve opening / closing timing control device that displaces the rotation phase by supplying or discharging oil, and an engine lubricating device that lubricates each part of the engine using oil supplied by a pump.
  • Patent Document 1 restricts the oil flow rate from the pump to the engine lubrication device when the hydraulic pressure acting on the valve timing control device is low, and gives priority to oil supply from the pump to the valve timing control device.
  • a road area adjustment unit (“priority valve” in the literature) is provided. Therefore, when the number of revolutions of the pump is low, the hydraulic pressure acting on the valve opening / closing timing control device is preferentially secured, and the valve opening / closing timing control device can be appropriately operated without an electric pump assisting the pump. Is possible.
  • the flow path area adjusting unit is configured to include a valve body and a retainer, and requires a space for the valve body and the retainer to slide. For this reason, an increase in the size of the flow path area adjusting portion is caused, and there is room for improvement in terms of mountability.
  • an object of the present invention is to provide a hydraulic control device that can reduce the size of the flow path area adjusting unit and improve the mountability to the engine.
  • a first characteristic configuration of a hydraulic control device includes a pump that is driven by engine rotation to discharge oil, a first flow path that communicates the pump and a first predetermined portion, and the first flow path.
  • a second flow path that branches from the second flow path and supplies oil to a second predetermined position other than the first predetermined position, and the second flow path is provided by increasing the hydraulic pressure of the second flow path.
  • a flow channel area adjusting unit that increases the flow channel area and reduces the flow channel area by reducing the hydraulic pressure, and the flow channel area adjusting unit is more than the first pressure receiving surface and the first pressure receiving surface.
  • a second pressure receiving surface having a small area is formed so as to face the second flow path, and the spool is movable in accordance with the hydraulic pressure of the second flow path, and the spool is moved from the first pressure receiving surface to the first pressure receiving surface.
  • a biasing member that biases in the direction of the second pressure receiving surface.
  • a force obtained by multiplying the hydraulic pressure of the second flow path by the area difference between the first pressure receiving surface and the second pressure receiving surface acts on the spool toward the first pressure receiving surface and is applied by the biasing member.
  • the force acts toward the second pressure receiving surface.
  • the hydraulic pressure of the second flow path is small, the urging force by the urging member is dominant, the spool moves to the second pressure receiving surface side, the flow area of the second flow path is reduced, and the hydraulic pressure of the second flow path is reduced.
  • the spool moves toward the first pressure-receiving surface against the biasing force, and the channel area of the second channel increases.
  • the flow passage area of the second flow passage is reduced, so that the amount of oil supplied to the second predetermined portion, for example, the main gallery (M / G) is reduced. Sufficient oil can be supplied to the first predetermined portion.
  • the hydraulic pressure of the oil supplied from the pump increases, sufficient oil is supplied to the first predetermined portion. Therefore, by increasing the amount of oil supplied to the main gallery, each part of the engine is cooled and lubricated. Can be performed reliably.
  • the function of adjusting the channel area of the second channel in the channel area adjusting unit is realized only by moving the spool. Therefore, compared with the conventional flow path area adjustment unit provided with the spool and the retainer, the flow area adjustment unit can be reduced in size, and as a result, the engine of the entire hydraulic control apparatus including the flow path area adjustment unit. Can be improved.
  • the second characteristic configuration is that a wall portion projecting toward the second pressure receiving surface is provided at a peripheral portion of the first pressure receiving surface.
  • the oil flowing on the upper side of the second flow path flows into the flow path space of the spool formed between the first pressure receiving surface and the second pressure receiving surface. It will flow out from the road space to the lower side of the second flow path.
  • the spool is narrowing the flow path area of the second flow path, if the oil flowing into the flow path space from the upper side of the second flow path has a velocity component toward the second pressure receiving surface, When the spool moves toward the first pressure receiving surface in order to increase the road area, the speed component may hinder the movement, and the spool may malfunction.
  • the wall part which protrudes toward the 2nd pressure receiving surface is provided in the peripheral part of the 1st pressure receiving surface, oil is between the wall part and the valve body from the upper side of the 2nd flow path.
  • a velocity component from the tip of the wall portion toward the first pressure receiving surface is also generated.
  • the velocity component toward the second pressure receiving surface is canceled out. Therefore, the spool can operate normally without being affected by the oil flow.
  • 3rd characteristic structure exists in the point which chamfered the internal peripheral corner
  • the oil flows from the upper side of the second flow path between the wall and the valve body and flows into the flow path space of the spool. In doing so, a velocity component from the tip of the wall portion toward the first pressure receiving surface is more likely to be generated. As a result, the velocity component toward the second pressure receiving surface is more reliably offset. Therefore, the spool can operate normally more reliably without being affected by the oil flow.
  • a fourth characteristic configuration is that a valve body that accommodates the spool is provided with an inclined portion that directs a flow direction of oil flowing through the second flow path toward the first pressure receiving surface.
  • the spool can operate normally without being affected by the oil flow.
  • the urging force of the urging member is greater than the pressing force in the direction of increasing the flow path area of the second flow path that is applied by the hydraulic pressure of the second flow path when the engine is idling. The big point.
  • the urging force of the urging member is superior to the pressing force due to the hydraulic pressure of the second flow path, and the oil is preferentially supplied to the first predetermined portion over the second predetermined portion. Can do. Therefore, it is suitable when the first predetermined portion needs to supply oil immediately after the engine is started.
  • the first predetermined portion includes a driving side rotating member that rotates synchronously with the crankshaft, and a driven side rotating member that is arranged coaxially with the driving side rotating member and rotates synchronously with the camshaft.
  • the valve opening / closing timing control device shifts the relative rotation phase of the driven side rotating member with respect to the driving side rotating member by supplying or discharging oil.
  • the hydraulic control device when the first predetermined portion is the valve opening / closing timing control device, by using the hydraulic control device according to the present invention, the amount of oil supplied to the valve opening / closing timing control device is changed to the hydraulic pressure of the second flow path. Can be adjusted according to. As a result, it is possible to control the valve opening / closing timing appropriately, and the engine efficiency is improved.
  • the seventh characteristic configuration switches the control valve of the valve opening / closing timing control device to a predetermined valve position when the temperature of the oil is lower than a predetermined first set temperature or higher than a predetermined second set temperature.
  • the oil is supplied from the first flow path to the back surface of the second pressure receiving surface, and the flow path area of the second flow path is maintained in the maximum state.
  • valve timing control device For example, immediately after starting the engine, the engine speed is low and the oil temperature is low, so the oil viscosity is high and the oil circulation is poor. Immediately after the engine is started, the temperature of the engine body is low and the intake air temperature is also low. Therefore, it is not always necessary to operate the valve timing control device. That is, immediately after the engine is started, the valve timing control device does not require much oil pressure, but the main gallery requires oil for lubrication.
  • valve timing control device When the temperature of the oil becomes high, the oil viscosity decreases and the amount of oil that leaks (exudes) from the minute gaps between the parts increases, so that the hydraulic pressure may not work efficiently on the valve timing control device.
  • the valve timing control device When the valve timing control device is operated in such a case, the pump must be enlarged to increase the pump discharge pressure. That is, the power for driving the pump is required, and conversely, the fuel consumption of the engine may be deteriorated.
  • control valve of the valve opening / closing timing control device is used to supply oil from the first flow path to the back surface of the second pressure receiving surface, a dedicated switching valve is unnecessary,
  • the hydraulic control device is advantageous in terms of cost and mounting.
  • a temperature-sensitive control unit including a thermowax that expands due to a temperature rise is activated, and the second pressure receiving pressure from the second flow path. Oil is supplied to the rear surface of the surface, and the flow passage area of the second flow passage is maintained in a maximum state.
  • the first predetermined portion is a valve opening / closing timing control device, as described above, it is desirable to minimize the amount of oil supplied to the valve opening / closing timing control device when the oil is at a high temperature.
  • the oil when the temperature of the oil is higher than the predetermined second set temperature, the oil is supplied from the second flow path to the back surface of the second pressure receiving surface, and the flow path area of the second flow path is maximized. By maintaining this state, it is possible to minimize the amount of oil supplied to the valve timing control device, and to suppress unnecessary work by the pump.
  • the configuration is not complicated and there are few failures compared to an electrical configuration such as a temperature sensor and an electric actuator. Further, since it depends on the material properties, the displacement is unambiguous to some extent, and the reliability of the displacement is high despite the simple configuration. Further, in this configuration, since the temperature-sensitive control unit only has a role of switching the oil passage, it is not necessary to generate a large displacement in the temperature-sensitive control unit, and the hydraulic control device can be downsized.
  • the ninth characteristic configuration includes a heat transfer oil passage for supplying oil from the second flow passage in a placement space in which the temperature sensitive main body portion in which the thermowax is accommodated is disposed in the temperature sensitive control portion. There is in point.
  • the oil is supplied from the second flow path to the arrangement space in which the thermosensitive main body portion in which the thermowax is accommodated is disposed, so that the temperature of the oil is easily transmitted to the thermowax.
  • the sensitivity of the temperature-sensitive control unit with respect to temperature changes is improved. Therefore, the temperature-sensitive control unit does not operate despite the oil temperature becoming higher than the second set temperature, so that the oil continues to be supplied to the first predetermined portion, and the pump performs useless work. Can be avoided.
  • the tenth characteristic configuration is that a return oil passage through which oil flows from the arrangement space to the lower side of the second flow path is provided.
  • a cup-shaped temperature-sensitive housing member is placed on the temperature-sensitive main body disposed on the mounting surface of the valve body, and the end surface of the temperature-sensitive housing member and the mounting surface described above The point is that the gap is formed between them.
  • the dimensional relationship between the temperature-sensitive housing member and the temperature-sensitive main body is appropriately set, and only by configuring the gap between the end surface and the mounting surface of the temperature-sensitive housing member, Oil can be supplied to the arrangement space through the gap. Therefore, it is not necessary to form a complicated oil passage for supplying oil to the arrangement space, and the configuration of the temperature sensitive control unit can be simplified.
  • the temperature-sensitive main body portion is provided with a movable member that supports the temperature-sensitive housing member and protrudes when the thermowax expands.
  • a movable member that supports the temperature-sensitive housing member and protrudes when the thermowax expands.
  • an annular oil passage formed on the outer peripheral surface of the temperature sensitive accommodating member communicates with the second channel and oil is supplied to the back surface of the second pressure receiving surface.
  • the temperature-sensitive housing member moves simultaneously, and oil is supplied to the back surface of the second pressure receiving surface. Therefore, when the oil rises above the second set temperature, the flow channel area of the second flow channel can be maintained at the maximum state more quickly. Moreover, since components such as a temperature sensor and an electric actuator are not required to realize this configuration, the configuration is advantageous in terms of mountability and cost.
  • the oil flowing on the upper side of the second flow path is formed between the first pressure receiving surface and the second pressure receiving surface.
  • the flow path space is configured to be able to flow in, and from the flow path space to the lower side of the second flow path.
  • the oil does not flow from the flow path space to the lower side of the second flow path. That is, in this state, the upper side and the lower side of the second flow path with respect to the flow path area adjusting unit communicate with each other through only one path passing through the heat transfer oil path, the arrangement space, and the return oil path. . Accordingly, it is easier to adjust the hydraulic pressure supplied to the second predetermined portion than in the case where there are a plurality of paths.
  • (A) is a figure which shows the relationship between the temperature of oil and the ON / OFF state of OCV
  • (b) is when the temperature of oil is lower than 1st preset temperature T1, or 2nd preset temperature T2
  • (c) is the time when the temperature of oil is the temperature between 1st preset temperature T1 and 2nd preset temperature T2.
  • (c) is the time when the temperature of oil is the temperature between 1st preset temperature T1 and 2nd preset temperature T2.
  • FIG. 12 is a cross-sectional view of the XII-XII plane in FIG.
  • FIG. 12 are sectional drawings which show the state of the hydraulic control apparatus in the middle of the temperature of oil being the temperature between 1st preset temperature T1 and 2nd preset temperature T2, and the engine speed increasing.
  • FIG. 12 shows the state of the hydraulic control apparatus when the temperature of oil is the temperature between 1st preset temperature T1 and 2nd preset temperature T2, and the rotation speed of an engine is high.
  • FIG. 1 is a figure which shows the relationship between the temperature of oil and the operation state of a flow-path area adjustment part
  • (b) is when the temperature of oil is lower than 1st setting temperature T1, or 2nd setting. It is a figure which shows the relationship between an engine speed when it is higher than temperature T2, and the oil_pressure
  • (c) is the temperature between the oil temperature of 1st preset temperature T1 and 2nd preset temperature T2. It is a figure which shows the relationship between the engine speed at the time, and the hydraulic pressure of each part.
  • FIG. 18 is a cross-sectional view of the XVIII-XVIII plane in FIG. These are sectional drawings when a temperature-sensitive control part is an operation state in another embodiment.
  • FIG. 20 is a cross-sectional view of the XX-XX plane in FIG.
  • the present invention is applied as a hydraulic control device for an automobile engine
  • the “first predetermined portion” in the present invention is described as the valve opening / closing timing control device on the intake valve side.
  • the hydraulic control device includes a pump 1 that is driven by the rotation of the engine and a valve opening / closing timing control device 2 that displaces the relative rotation phase by supplying or discharging oil.
  • the valve opening / closing timing control device 2 operates by supplying and discharging oil under the control of an OCV (oil control valve) 5 as a “control valve”.
  • the pump 1 and the OCV 5 are connected by a discharge oil passage 11A as a “first flow passage”, and the valve opening / closing timing control device 2 and the OCV 5 are connected by an advance oil passage 12A and a retard oil passage 12B.
  • a lubricating oil passage 13 as a “second flow passage” for supplying oil to the main gallery 8 as a “second predetermined portion” is branched.
  • the lubricating oil passage 13 is provided with a flow passage area adjusting section 3 that adjusts the flow passage area.
  • Each oil passage is formed in an engine cylinder case or the like.
  • the pump 1 is mechanically driven by the transmission of the rotational driving force of a crankshaft (not shown) to discharge oil. As shown in FIG. 1, the pump 1 sucks the oil stored in the oil pan 1a and discharges the oil to the discharge oil passage 11A.
  • An oil filter 6 is disposed in the discharge oil passage 11A and filters small dust and sludge that has not been filtered by the oil strainer. The oil filtered by the oil filter 6 is supplied to the valve opening / closing timing control device 2 and the main gallery 8.
  • the main gallery 8 indicates the whole sliding member such as a piston, a cylinder, a crankshaft bearing, etc. (not shown).
  • the oil discharged from the valve opening / closing timing control device 2 is returned to the oil pan 1a via the OCV 5 and the return oil passage 11B.
  • the oil supplied to the main gallery 8 is collected in the oil pan 1a through covers (not shown).
  • the oil leaked from the valve opening / closing timing control device 2 is also collected in the oil pan 1a through the covers.
  • Valve timing control device (outline) As shown in FIG. 1, the valve opening / closing timing control device 2 is disposed on a coaxial core X with respect to a housing 21 as a “drive-side rotating member” that rotates synchronously with a crankshaft of an engine (not shown). And an internal rotor 22 as a “driven rotation member” that rotates in synchronization with the camshaft 101. As shown in FIG. 2, the valve opening / closing timing control device 2 can restrain the relative rotational phase of the internal rotor 22 relative to the housing 21 to the most retarded angle phase by restraining the relative rotational movement of the internal rotor 22 relative to the housing 21. A lock mechanism 27 is provided.
  • the housing 21 includes a front plate 21a opposite to the side to which the camshaft 101 is connected, an external rotor 21b integrally provided with a timing sprocket 21d, a rear plate 21c on the side to which the camshaft 101 is connected, It has.
  • the external rotor 21b is externally mounted on the internal rotor 22, and is sandwiched between the front plate 21a and the rear plate 21c, and the front plate 21a, the external rotor 21b, and the rear plate 21c are fastened by bolts.
  • the crankshaft When the crankshaft is rotationally driven, the rotational driving force is transmitted to the timing sprocket 21d via the power transmission member 102, and the housing 21 is rotationally driven in the rotational direction S shown in FIG.
  • the internal rotor 22 rotates in the rotational direction S to rotate the camshaft 101, and the cam provided on the camshaft 101 pushes down the intake valve of the engine to open it.
  • three fluid pressure chambers 24 are formed by the outer rotor 21 b and the inner rotor 22.
  • a plurality of vanes 22 a projecting radially outward are formed on the inner rotor 22 so as to be positioned in the fluid pressure chamber 24 and spaced apart from each other along the rotational direction S.
  • the fluid pressure chamber 24 is partitioned into an advance chamber 24a and a retard chamber 24b along the rotation direction S by a vane 22a.
  • the advance chamber communication passage 25 is formed in the internal rotor 22 and the camshaft 101 so as to communicate with each advance chamber 24a.
  • a retard chamber communication passage 26 is formed in the internal rotor 22 and the camshaft 101 so as to communicate with each retard chamber 24b.
  • the advance chamber communication passage 25 is connected to the advance oil passage 12 ⁇ / b> A communicating with the OCV 5.
  • the retard chamber communication passage 26 is connected to the retard oil passage 12B that communicates with the OCV 5.
  • a torsion spring 23 is provided across the internal rotor 22 and the front plate 21a.
  • the torsion spring 23 biases the internal rotor 22 toward the advance side so as to resist the average displacement force in the retard direction based on the cam torque fluctuation. Thereby, it is possible to smoothly and quickly displace the relative rotation phase in the advance direction S1 described later.
  • the lock mechanism 27 restrains the relative rotation phase to the most retarded phase phase by holding the housing 21 and the internal rotor 22 at a predetermined relative position in a situation where the oil pressure of the oil is not stable immediately after the engine is started. As a result, it is possible to start the engine properly, and the internal rotor 22 does not flutter due to the displacement force based on cam torque fluctuations at the time of engine start or idling operation.
  • the lock mechanism 27 includes two plate-shaped lock members 27 a, a lock groove 27 b, and a lock mechanism communication path 28.
  • the lock groove 27b is formed on the outer peripheral surface of the inner rotor 22, and has a certain width in the relative rotation direction.
  • the lock member 27a is disposed in a housing portion formed in the external rotor 21b, and can be moved in and out in the radial direction with respect to the lock groove 27b.
  • the lock member 27a is constantly urged by a spring toward the radially inner side, that is, the lock groove 27b side.
  • the lock mechanism communication path 28 connects the lock groove 27 b and the advance chamber communication path 25. Accordingly, when oil is supplied to the advance chamber 24a, oil is also supplied to the lock groove 27b, and when oil is discharged from the advance chamber 24a, the oil is also discharged from the lock groove 27b.
  • each lock member 27a When the oil is discharged from the lock groove 27b, each lock member 27a can protrude into the lock groove 27b. As shown in FIG. 2, when both the lock members 27a enter the lock grooves 27b, the lock members 27a are simultaneously locked to both ends in the circumferential direction of the lock grooves 27b. As a result, the relative rotational movement of the inner rotor 22 with respect to the housing 21 is restricted, and the relative rotational phase is restricted to the most retarded phase.
  • both lock members 27a When oil is supplied to the lock groove 27b, as shown in FIG. 3, both lock members 27a are retracted from the lock groove 27b to release the restriction on the relative rotation phase, and the internal rotor 22 is relatively rotatable.
  • a state in which the lock mechanism 27 restrains the relative rotation phase to the most retarded phase is referred to as a “lock state”.
  • a state in which the locked state is released is referred to as a “lock released state”.
  • OCV control valve
  • the OCV 5 is an electromagnetic control type, and can control the supply, discharge, and supply / discharge shut-off of oil to the advance chamber communication passage 25 and the retard chamber communication passage 26.
  • the OCV 5 is configured as a spool type, and operates based on control of the amount of power supplied by the ECU 7 (engine control unit).
  • the control for supplying oil to the advance oil passage 12A and discharging oil from the retard oil passage 12B is "advance control".
  • advance angle control When the advance angle control is performed, the vane 22a moves relative to the external rotor 21b in the advance direction S1, and the relative rotation phase is displaced toward the advance side.
  • Control for discharging oil from the advance oil passage 12A and supplying oil to the retard oil passage 12B is "retard control”.
  • the retard control When the retard control is performed, the vane 22a relatively rotates in the retard direction S2 with respect to the external rotor 21b, and the relative rotation phase is displaced to the retard side.
  • the control for shutting off oil supply / discharge to the advance oil passage 12A and the retard oil passage 12B When the control for shutting off oil supply / discharge to the advance oil passage 12A and the retard oil passage 12B is performed, the relative rotation phase can be maintained at an arbitrary phase.
  • the advance angle control is enabled when the OCV 5 is supplied with power, and the retard angle control is enabled when the power supply to the OCV 5 is stopped.
  • the OCV 5 sets the opening degree by adjusting the duty ratio of the power supplied to the electromagnetic solenoid. Thereby, fine adjustment of the supply and discharge amount of oil is possible.
  • the oil is supplied to, discharged from, or held in the advance angle chamber 24a and the retard angle chamber 24b, and the oil pressure of the oil acts on the vane 22a.
  • the relative rotational phase is displaced in the advance angle direction or the retard angle direction, or held at an arbitrary phase.
  • valve opening / closing timing control device 2 Operation of the valve opening / closing timing control device
  • the internal rotor 22 can smoothly rotate relative to the housing 21 around the axis X within a certain range.
  • a certain range in which the housing 21 and the internal rotor 22 can move relative to each other, that is, a phase difference between the most advanced angle phase and the most retarded angle phase corresponds to a range in which the vane 22 a can be displaced inside the fluid pressure chamber 24.
  • the retardation angle chamber 24b has the largest volume in the most retarded angle phase
  • the advance angle chamber 24a has the largest volume in the most advanced angle phase.
  • a crank angle sensor that detects the rotation angle of the crankshaft of the engine and a camshaft angle sensor that detects the rotation angle of the camshaft 101 are provided.
  • the ECU 7 detects the relative rotation phase from the detection results of the crank angle sensor and the camshaft angle sensor, and determines which phase the relative rotation phase is in.
  • the ECU 7 is formed with a signal system for acquiring ignition key ON / OFF information, information from an oil temperature sensor for detecting the temperature of the oil, and the like.
  • control information on the optimum relative rotational phase corresponding to the operating state of the engine is stored.
  • the ECU 7 controls the relative rotation phase from the information on the operation state (engine rotation speed, cooling water temperature, etc.) and the control information described above.
  • the lock mechanism 27 Before the engine is started, the lock mechanism 27 is in the locked state as shown in FIG.
  • an ignition key (not shown) is turned on, cranking is started, and the engine is started in a state where the relative rotational phase is constrained to the most retarded phase. And it transfers to idling driving
  • an accelerator (not shown) is depressed, power is supplied to the OCV 5 and the advance angle control is performed to displace the relative rotation phase in the advance direction S1.
  • oil is supplied to the advance chamber 24a and the lock groove 27b, and as shown in FIG. 3, the lock member 27a is retracted from the lock groove 27b to enter the unlocked state.
  • the relative rotational phase In the unlocked state, the relative rotational phase is freely displaceable, and is displaced to the states shown in FIGS. 4 and 5 in accordance with the oil supply to the advance chamber 24a. Thereafter, the relative rotation phase is displaced between the most advanced angle phase and the most retarded angle phase in accordance with the engine load, the rotation speed, and the like.
  • the relative rotation phase is the most retarded phase.
  • the advance side lock member 27a enters the lock groove 27b.
  • the internal rotor 22 flutters due to the cam torque variation, and the retard-side lock member 27a also enters the lock groove 27b to be in the locked state. Therefore, the next engine start can be suitably performed.
  • the flow path area adjusting unit 3 includes a spool 31 that can move in a direction orthogonal to the lubricating oil path 13.
  • the spool 31 is formed such that the disk-shaped first pressure receiving surface 31 a and the second pressure receiving surface 31 b on which the oil pressure of the lubricating oil passage 13 acts are opposed to each other with the lubricating oil passage 13 interposed therebetween.
  • the first pressure receiving surface 31a and the second pressure receiving surface 31b are connected by a cylindrical connecting portion 31c, and the cross section of the spool 31 has a letter “D” shape.
  • the periphery of the connecting portion 31c is configured as a flow path space 34 through which oil in the lubricating oil path 13 can flow.
  • a spring accommodating space 35 is formed between the back surface of the first pressure receiving surface 31a and the valve body 33, in which a spring 32 is accommodated as an “urging member”, and the spool 31 is moved from the first pressure receiving surface 31a to the second pressure receiving surface.
  • the valve body 33 includes a body main body 33a and a plug member 33b.
  • the plug member 33b is screwed to one end of the body main body 33a in a state where the spool 31 and the spring 32 are accommodated in the body main body 33a.
  • the outer diameter of the spool 31 is substantially equal to the inner diameter of the body main body 33a.
  • a breathing hole 33d is formed on the first pressure receiving surface 31a side. If the spring accommodating space 35 is configured as a sealed space, the spool 31 may not be smoothly moved toward the first pressure receiving surface 31a, which may hinder the operation of the spool 31. Therefore, by providing the breathing hole 33d, the spool 31 can operate smoothly if the spring accommodating space 35 is opened to the outside.
  • An operation opening 33e is formed on the second pressure receiving surface 31b side of the both ends of the valve body 33.
  • the working oil passage 14 branched from the retarded oil passage 12B is connected to the working opening 33e, and the oil in the working oil passage 14 is supplied to the back surface of the second pressure receiving surface 31b.
  • the oil is supplied to the hydraulic oil passage 14 when the retard control is performed.
  • the spool 31 is configured such that the area of the first pressure receiving surface 31a is larger than the area of the second pressure receiving surface 31b. Accordingly, the spool 31 has the following relationship in the direction from the second pressure receiving surface 31b to the first pressure receiving surface 31a: [[hydraulic oil passage 13 oil pressure] ⁇ [area of the first pressure receiving surface 31a ⁇ area of the second pressure receiving surface 31b]].
  • the calculated force hereinafter referred to as “force Fs”
  • biasing force Fp the biasing force of the spring 32
  • the spool 31 is at a maximum by the action of the oil pressure in the lubricating oil passage 13, and the end of the spool 31 on the second pressure receiving surface 31b side comes into contact with the body main body 33a from the state shown in FIG.
  • the first pressure-receiving surface 31a is slidable until the end portion on the side of the first pressure-receiving surface 31a comes into contact with the plug member 33b.
  • the flow passage area of the lubricating oil passage 13 is most restricted, and in the state of FIG. 5, the lubricating oil passage 13 is fully open. 4 shows a state when the state of FIG. 3 is shifted to the state of FIG.
  • the spool 31 receives a force from the second pressure receiving surface 31b toward the first pressure receiving surface 31a on the back surface of the second pressure receiving surface 31b. Since the hydraulic pressure of the hydraulic oil passage 14 acts on the entire back surface of the second pressure receiving surface 31b, a large force can be easily generated. As shown in FIG. 2, the lubricating oil passage 13 is reliably prevented against the urging force Fp. It can be maintained in the fully open state.
  • the spool 31 slides inside the valve body 33 by the action of the oil pressure of the lubricating oil passage 13 or the action of the oil pressure of the lubricating oil passage 13 and the oil pressure of the hydraulic oil passage 14, and the lubricating oil passage 13
  • the flow area of the is adjusted. That is, the adjustment function of the flow passage area of the lubricating oil passage 13 in the flow passage area adjustment section 3 is realized only by the movement of the spool 31, so that it is compared with the conventional flow passage area adjustment section provided with the spool and the retainer.
  • the flow path area adjusting unit 3 can be reduced in size, and as a result, the mountability of the entire hydraulic control device to the engine can be improved.
  • a wall portion 31d that protrudes toward the second pressure receiving surface 31b is provided at the peripheral portion of the first pressure receiving surface 31a.
  • the inner peripheral corner portion at the tip of the wall portion 31d is chamfered to form the tapered surface 31e. For this reason, when oil passes between the wall portion 31d and the valve body 33 from the upper side of the lubricating oil passage 13 and flows into the flow path space 34, the oil heads toward the first pressure receiving surface 31a from the tip of the wall portion 31d. Speed component is more likely to occur. As a result, the velocity component toward the second pressure receiving surface 31b is more reliably offset. Therefore, the spool 31 can operate normally more reliably without being affected by the oil flow.
  • valve body 33 may be provided with an inclined portion 33f as shown in FIG. Since the oil flowing on the upper side of the lubricating oil passage 13 has a speed component toward the first pressure receiving surface 31a in the flow path space 34 by the inclined portion 33f, the speed component toward the second pressure receiving surface 31b is canceled out. Therefore, the spool 31 can operate normally without being affected by the oil flow.
  • the wall portion 31d and the inclined portion 33f shown in FIGS. 6 and 7 are formed in the entire circumferential direction with priority given to ease of processing.
  • the wall portion 31d and the inclined portion 33f are not necessarily formed in the entire circumferential direction, and may be formed only on the upper side of the lubricating oil passage 13, for example.
  • the wall portion 31d or the inclined portion 33f In the first place, if there is no risk of malfunction of the spool 31 due to the oil flow in the flow path space 34, it is not necessary to provide the wall portion 31d or the inclined portion 33f. The same applies to the second embodiment described later.
  • FIGS. 8A to 8C indicate that they correspond to the states of FIGS. 2, 3, 4, and 5, respectively. .
  • the valve timing control device 2 does not need to operate and does not require hydraulic pressure.
  • the main gallery 8 requires oil as lubricating oil to start operation. Therefore, when the oil temperature is lower than the first preset temperature T1, the OCV 5 is not energized (OFF) as shown in FIG. That is, as shown in FIG. 2, the OCV 5 is maintained in the retarded angle control state, the retarded oil passage 12B is connected to the discharge oil passage 11A, and the advanced oil passage 12A is connected to the return oil passage 11B. . Even if the cranking is started in this state and then the warm-up operation is started, the engine speed is low and the oil temperature is low immediately after the engine is started.
  • the oil pressure in the discharge passage is low, and naturally the oil pressure in the lubricating oil passage 13 is also low, so the spool 31 does not operate due to the oil pressure in the lubricating oil passage 13.
  • the valve opening / closing timing control device 2 is in the locked state, oil is supplied to the retard chamber 24b, and the hydraulic pressure in the retard oil passage 12B increases.
  • the increased hydraulic pressure is supplied to the back surface of the second pressure receiving surface 31b via the hydraulic oil passage 14, and the spool 31 moves to the first pressure receiving surface 31a side.
  • the lubricating oil passage 13 is fully opened, and oil is preferentially supplied to the main gallery 8.
  • FIG. 8B shows the relationship between the oil discharge pressure of the pump 1, the hydraulic pressure supplied to the valve opening / closing timing control device 2, and the hydraulic pressure supplied to the main gallery 8. As shown in the drawing, the hydraulic pressure supplied to the valve timing control device 2 and the hydraulic pressure supplied to the main gallery 8 both follow the increase in the oil discharge pressure of the pump 1.
  • the OCV 5 When the accelerator temperature is depressed after the temperature of the oil rises above the predetermined first set temperature T1 and the warm-up operation is completed, the OCV 5 is energized (ON), and the state proceeds to the advance angle control state. Therefore, in order to start the valve opening / closing timing control device 2 stably, hydraulic pressure is required. However, since the OCV 5 is in the advance state, the advance oil passage 12A is connected to the discharge oil passage 11A, and the retard oil passage 12B is connected to the return oil passage 11B. Accordingly, the hydraulic pressure in the hydraulic oil passage 14 is rapidly reduced, and even if the oil temperature increases, the engine speed is low, so that the oil discharge pressure of the pump 1 is still low and the hydraulic pressure acting on the lubricating oil passage 13 is small.
  • the spool 31 is biased by the spring 32 and moves toward the second pressure receiving surface 31b, and the flow passage area of the lubricating oil passage 13 is reduced to the minimum.
  • oil is preferentially supplied to the valve opening / closing timing control device 2.
  • the spool 31 is maintained in a state where the lubricating oil passage 13 is fully opened. That is, when the oil temperature is higher than the first set temperature T1, the spool 31 adjusts the flow passage area of the lubricating oil passage 13 depending only on the hydraulic pressure of the lubricating oil passage 13.
  • FIG. 8C shows the relationship between the oil discharge pressure of the pump 1, the hydraulic pressure supplied to the valve opening / closing timing control device 2, and the hydraulic pressure supplied to the main gallery 8.
  • the rate of increase of the hydraulic pressure of the main gallery 8 decreases and the rate of increase of the hydraulic pressure of the valve opening / closing timing control device 2 increases.
  • the spool 31 starts to enter the lubricating oil passage 13 (IV) in FIG. 4
  • the flow passage area of the lubricating oil passage 13 starts to increase, so that the rate of increase in the hydraulic pressure of the main gallery 8 increases.
  • the increase rate of the hydraulic pressure of the valve opening / closing timing control device 2 decreases.
  • valve opening / closing timing control device 2 has a slight gap between components, and when the oil viscosity is low, oil may leak (exude) from this minute gap, and the hydraulic pressure can be opened and closed efficiently. It is conceivable that it does not act on the timing control device 2.
  • the pump 1 When the valve timing control device 2 is operated in such a case, the pump 1 must be enlarged to increase the discharge pressure of the pump 1. That is, the power for driving the pump 1 is required, and conversely, the fuel consumption of the engine may be deteriorated.
  • the OCV 5 is not energized (OFF) as shown in FIG. That is, the OCV 5 is maintained in the retard angle control state, the retard oil passage 12B is connected to the discharge oil passage 11A, and the advance oil passage 12A is connected to the return oil passage 11B. Therefore, the relative rotational phase becomes the most retarded phase, and the locked state is established by the locking mechanism. As described above, when the oil temperature becomes higher than the second set temperature T2, the operation of the valve opening / closing timing control device 2 is stopped to suppress the necessary power of the pump.
  • the second set temperature T2 is a set temperature higher than the first set temperature T1.
  • the first set temperature T1 may be 55 to 65 ° C. and the second set temperature T2 may be 100 to 110 ° C.
  • other settings may be used.
  • the overall configuration of the hydraulic control device is substantially the same as that of the first embodiment, but differs from the first embodiment in that there is no hydraulic oil passage 14 connected to the flow path area adjustment unit 3. .
  • a temperature sensitive control unit 4 is provided instead of providing the hydraulic oil passage 14.
  • the temperature sensing control unit 4 includes a temperature sensing housing member 41 slidably disposed in the internal space of the valve body 33 and a temperature sensing body 42 accommodated so as to be covered by the temperature sensing housing member 41. I have.
  • the temperature sensitive main body 42 is fixed to the valve body 33.
  • the temperature-sensitive housing member 41 is slidable between the valve body 33 and the temperature-sensitive main body 42, but is always biased toward the lubricating oil passage 13 by a spring 43.
  • a thermowax (not shown) is accommodated in the temperature-sensitive main body 42, and is set so that the thermowax expands when the temperature of the oil becomes higher than the second set temperature T2.
  • the thermowax expands, as shown in FIG. 15, when the oil temperature is lower than the second set temperature T2, the movable member 42a accommodated inside the temperature-sensitive main body 42 lifts the temperature-sensitive accommodating member 41. It is configured to protrude as much as possible.
  • a supply oil passage 51 connected to the lubricating oil passage 13 and a hydraulic oil passage 53 for supplying oil to the back surface of the second pressure receiving surface 31b of the spool 31 are formed on the side wall of the valve body 33.
  • An annular oil passage 52 is formed on the outer peripheral surface of the temperature sensitive housing member 41.
  • the temperature sensitive accommodation member 41 is lifted by the movable member 42a, and the supply oil passage 51, the annular oil passage 52, and the hydraulic oil passage 53 are lifted. And communicate.
  • oil is supplied from the lubricating oil passage 13 to the back surface of the second pressure receiving surface 31b, the spool 31 moves to the first pressure receiving surface 31a side, and the lubricating oil passage 13 is maintained in a fully open state.
  • the valve body 33 has a first discharge hole 54 and a second discharge hole 55 formed therein.
  • the oil present on the back surface of the second pressure receiving surface 31b of the spool 31 is transferred to the hydraulic oil passage 53, the annular oil passage 52, the first discharge hole 54, and the discharge oil passage 56.
  • the gas is discharged from the discharge hole 63 through the second discharge hole 55. Since the discharge hole 63 allows oil and air to flow, the temperature-sensitive housing member 41 can be smoothly operated.
  • oil accumulated in the temperature-sensitive housing member 41 due to leakage between the valve body 33 and the temperature-sensitive housing member 41 is also discharged through the first discharge hole 54.
  • the spring accommodating space 35 communicates with the discharge hole 63 via the discharge oil passage 56, and is configured to allow air and oil in the spring accommodating space 35 to escape, so that the spool 31 operates smoothly. can do.
  • FIGS. 16A to 16C correspond to the states of FIGS. 10, 11, 13, 14, and 15, respectively. It shows that it is to do.
  • FIG. 16B shows the relationship between the oil discharge pressure of the pump 1 in the state (X) of FIG. 10, the hydraulic pressure supplied to the valve opening / closing timing control device 2, and the hydraulic pressure supplied to the main gallery 8. Show. Since the lubricating oil passage 13 is fully opened, both the hydraulic pressure of the main gallery 8 and the hydraulic pressure of the valve opening / closing timing control device 2 follow changes in the oil discharge pressure of the pump 1.
  • the spool 31 is biased by the spring 32 and moves to the second pressure receiving surface 31b side.
  • the accelerator is depressed after the warm-up operation is completed, power is supplied to the OCV 5, and the valve opening / closing timing control device 2 is advanced. Since the valve opening / closing timing control device 2 requires hydraulic pressure to start stably, the flow passage area of the lubricating oil passage 13 is most restricted, so that oil is preferentially supplied to the valve opening / closing timing control device 2. The valve opening / closing timing control device 2 is smoothly started.
  • FIG. 16C shows the relationship between the oil discharge pressure of the pump 1, the hydraulic pressure supplied to the valve opening / closing timing control device 2, and the hydraulic pressure supplied to the main gallery 8.
  • the change rate of the oil pressure of the main gallery 8 is reduced and the change rate of the oil pressure of the valve opening / closing timing control device 2 is increased.
  • the spool 31 starts to move toward the first pressure receiving surface 31a (XIII) in FIG. 13
  • the flow passage area of the lubricating oil passage 13 starts to increase, so the rate of change in the hydraulic pressure of the main gallery 8 is large.
  • the change rate of the hydraulic pressure of the valve timing control device 2 is reduced.
  • both the hydraulic pressure of the main gallery 8 and the hydraulic pressure of the valve opening / closing timing control device 2 follow changes in the oil discharge pressure of the pump 1.
  • the spool 31 adjusts the flow passage area of the lubricating oil passage 13 depending only on the hydraulic pressure of the lubricating oil passage 13.
  • the valve opening / closing timing control device 2 leaks oil from the minute gaps between the components (seepage). Occurs.
  • the supply oil passage 51, the annular oil passage 52, and the hydraulic oil passage 53 communicate with each other, and the lubricating oil passage 13 leads to the back surface of the second pressure receiving surface 31b. Oil is supplied.
  • the lubricating oil passage 13 is maintained in a fully open state, and the amount of oil supplied to the valve timing control device 2 can be minimized.
  • the temperature of the oil becomes higher than the second set temperature T2
  • useless work by the pump 1 can be suppressed in preference to the control of the valve opening / closing timing control device 2.
  • FIG. 16B shows the relationship between the oil discharge pressure of the oil, the hydraulic pressure supplied to the valve opening / closing timing control device 2, and the hydraulic pressure supplied to the main gallery 8. Since the lubricating oil passage 13 is fully opened, both the hydraulic pressure of the main gallery 8 and the hydraulic pressure of the valve opening / closing timing control device 2 follow changes in the oil discharge pressure of the pump 1.
  • the spool 31 is operable by the oil pressure of the lubricating oil passage 13 when the oil temperature is lower than the second set temperature T2, and the oil temperature When the temperature is higher than the second set temperature T2, the temperature-sensitive control unit 4 restricts the lubricating oil passage 13 to the fully open state and does not operate regardless of the hydraulic pressure of the lubricating oil passage 13.
  • FIGS. 17 and 18 show a state in which the spool 31 has moved most to the second pressure-receiving surface 31b side in the state where the temperature of the oil is lower than the second set temperature T2 and the temperature sensing control unit 4 is not operating ( This shows a state in which the lubricating oil passage 13 is most narrowed. 19 and 20, the temperature of the oil is higher than the second set temperature T2, the temperature sensing control unit 4 is activated, and the spool 31 has moved to the first pressure receiving surface 31a side (the lubricating oil passage 13). In the most open state). Since the series of controls and the overall configuration are the same as those in the second embodiment, differences from the second embodiment will be mainly described. The same members and parts as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment.
  • the temperature-sensitive main body 42 is disposed in an arrangement space 71 formed inside the body main body 33 a of the valve body 33, and is placed and fixed on a placement surface 33 g that constitutes the bottom surface of the arrangement space 71.
  • the temperature-sensitive main body 42 has a cylindrical shape, and a thermo wax (not shown) is accommodated therein.
  • the temperature-sensitive main body 42 is provided with a movable member 42 a configured to be able to move out of the temperature-sensitive main body 42.
  • the cup-shaped temperature-sensitive housing member 41 provided so as to cover the temperature-sensitive main body 42 moves upward in the figure against the urging force of the spring 43.
  • the movable member 42 a is retracted to the temperature-sensitive main body 42, and the temperature-sensitive housing member 41 is located closest to the mounting surface 33 g by the biasing force of the spring 43.
  • the gap 72 is secured between the end surface 41a of the temperature-sensitive housing member 41 and the mounting surface 33g. Oil is supplied from the lubricating oil passage 13 to the back surface of the second pressure receiving surface 31b of the spool 31 through the temperature sensing control unit 4 when the temperature sensing control unit 4 is in an operating state.
  • a supply oil passage 51 is formed.
  • the supply oil passage 51 is configured as a heat transfer oil passage 61 that branches in the middle and communicates with the gap 72.
  • the temperature sensitive accommodating member 41 is driven by the oil pressure of the oil supplied to the arrangement space 71.
  • the temperature-sensitive housing member 41 is provided with a through hole 41b.
  • the oil supplied to the arrangement space 71 is also supplied to the space in which the spring 43 is accommodated through the gap between the temperature-sensitive accommodating member 41 and the temperature-sensitive main body 42 and the through hole 41b.
  • the space accommodating the spring 43 is closed by the lid member 44. Further, in order to prevent oil from leaking from between the body main body 33a and the lid member 44 of the valve body 33, a ring-shaped seal member 45 that can be engaged with the body main body 33a is provided.
  • the body body 33 a of the valve body 33 has a working oil passage 53 that supplies oil to the back surface of the second pressure receiving surface 31 b of the spool 31 and an arrangement space 71.
  • a return oil path 62 for returning the oil to the lower side of the lubricating oil path 13, a first drain oil path 57 and a second drain oil path 58 for releasing the oil to the atmosphere are formed.
  • the return oil passage 62 is formed at a position 180 degrees from the supply oil passage 51 in a plan view, and at a position 90 degrees from the supply oil passage 51.
  • a hydraulic oil passage 53 and a first exhaust oil passage 57 are formed, and a second exhaust oil passage 58 is formed at a position 90 degrees from the supply oil passage 51 in the opposite direction. Since the heat transfer oil passage 61 and the return oil passage 62 are in a positional relationship facing each other by 180 degrees, they flow from the heat transfer oil passage 61 through the gap 72 into the installation space 71 and from the arrangement space 71 through the gap 72.
  • the oil flowing out to the return oil passage 62 flows uniformly around the temperature-sensitive main body 42 and can be uniformly transferred to the thermowax.
  • a first annular oil passage 59 that functions when oil is supplied to the back surface of the second pressure receiving surface 31 b of the spool 31 and a first discharge oil passage 57 are connected to the outer peripheral surface of the temperature-sensitive housing member 41.
  • a two annular oil passage 60 is formed.
  • the first annular oil passage 59 is configured not to communicate with the supply oil passage 51 and the hydraulic oil passage 53 when the temperature-sensitive control unit 4 is in an inoperative state (FIGS. 17 and 18).
  • the second annular oil passage 60 communicates with the hydraulic oil passage 53 and the first exhaust oil passage 57 (FIG. 18) when the temperature sensing control unit 4 is in an inoperative state, and the temperature sensing control unit 4 is in an inoperative state. At this time, it is configured to communicate with only the first discharged oil passage 57 (FIG. 20).
  • the spool 31 can operate smoothly even when the oil pressure in the lubricating oil passage 13 decreases and the spool 31 moves toward the second pressure receiving surface 31b. Further, when the oil pressure in the lubricating oil passage 13 increases and the spool 31 moves to the first pressure receiving surface 31 a side, the oil inside the spring accommodating space 35 is formed in the body main body 33 a of the valve body 33. 2 The air is released from the discharged oil passage 58 (FIG. 20). Therefore, the spool 31 can move smoothly also at this time.
  • the lower one is made smaller than the upper one, and the spool 31 is the most lubricating oil.
  • the passage space 34 and the lower side of the lubricating oil passage 13 are configured to be blocked by the spool 31. That is, in this state, the upper side and the lower side of the lubricating oil passage 13 with respect to the flow passage area adjusting unit 3 pass through the heat transfer oil passage 61, the gap 72, the arrangement space 71, the gap 72, and the return oil passage 62. Communicate with only one route. Therefore, the hydraulic pressure supplied to the main gallery 8 is determined only by how the minimum diameter in this one path is defined, and the hydraulic control becomes easy.
  • the gap 72 is formed over the entire circumference between the end surface 41a of the temperature-sensitive housing member 41 and the mounting surface 33g, but the heat transfer oil passage 61 and the return oil are formed. As long as it does not hinder the communication with the path 62 and does not hinder the temperature sensitivity of the thermowax, a part of the end surface 41a may be in contact with the placement surface 33g. Further, instead of providing the through hole 41b in the temperature sensitive accommodation member 41, or providing the through hole 41b and extending the supply oil passage 51, oil can be directly supplied to the space containing the spring 43. Is possible. Furthermore, the spool 31 may be configured to communicate with the flow path space 34 and the lower side of the lubricating oil path 13 in a state where the lubricating oil path 13 is most narrowed.
  • the first predetermined portion is the valve opening / closing timing control device 2 on the intake valve side.
  • the present invention is not limited to this.
  • an oil supply portion such as a valve opening / closing timing control device on the exhaust valve side, a piston jet, or a turbocharger can be applied.
  • the lock mechanism 27 constrains the relative rotation phase to the most retarded phase is shown, but the present invention is not limited to this.
  • an intermediate phase between the most retarded angle phase and the most advanced angle phase, or a lock mechanism that restricts the relative rotation phase to the most advanced angle phase may be used.
  • the lock mechanism 27 in the above-described embodiment is merely a form of restraining the relative rotational phase.
  • a lock mechanism including a lock member that moves in and out in the direction of the axis X, a lock member, It may be a lock mechanism in which the lock grooves have a one-to-one relationship.
  • a configuration may be adopted in which the lock mechanism is not provided, and the relative rotation phase is restrained by pressing the vane against the end face of the fluid pressure chamber by hydraulic pressure.
  • the torsion spring 23 that urges the internal rotor 22 toward the advance side is provided, but the present invention is not limited to this.
  • a torsion spring that biases the inner rotor 22 toward the retard side may be provided.
  • the hydraulic oil passage 14 is an oil passage branched from the retarded flow passage 12B is shown, but the present invention is not limited to this.
  • the hydraulic oil passage 14 may be connected to the advance oil passage 12A.
  • the OCV 5 is in a state in which the retard angle control is possible when the power is supplied, and the advanced angle control is in the state in which the advance angle control is possible when the power supply is stopped. It is not limited to.
  • the OCV may be configured to be in a state where advance angle control is possible when power is supplied, and to be in a state where retardation control is possible when power supply is stopped.
  • the temperature-sensitive control unit 4 displaces the spool 31 so as to fully open the lubricating oil passage 13, although it is configured to restrict to that state, it is not limited to this.
  • the degree of squeezing of the lubricating oil passage 13 by the spool 31 may be appropriately set as necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

 エンジンへの搭載性を向上させるため、油圧制御装置が、エンジンの回転によって駆動されてオイルを吐出するポンプと、ポンプと第1所定部位とを連通する第1流路と、第1流路から分岐して第2所定部位にオイルを供給する第2流路と、第2流路の油圧に応じて第2流路の流路面積を調節する流路面積調節部と、を備え、流路面積調節部は、第1受圧面とこれよりも面積の小さな第2受圧面とが第2流路を挟んで対向するように形成され、第2流路の油圧に応じて移動可能なスプールと、スプールを第1受圧面から第2受圧面の方向に付勢する付勢部材と、を有して構成される。

Description

油圧制御装置
 本発明は、エンジンの回転によって駆動されるポンプから吐出され、エンジン各部に供給されるオイルの油圧を制御する油圧制御装置に関する。
 従来、特許文献1に記載されているように、エンジンの回転によって駆動されてオイルを吐出するポンプ(文献では「オイルポンプ」)と、クランクシャフトと同期回転する駆動側回転部材(文献では「外部ロータ」)、及び、駆動側回転部材と同軸状に配置されてカムシャフトと同期回転する従動側回転部材(文献では「内部ロータ」)を有し、駆動側回転部材に対する従動側回転部材の相対回転位相をオイルの供給又は排出によって変位させる弁開閉時期制御装置と、ポンプによって供給されるオイルを用いてエンジン各部を潤滑するエンジン潤滑装置と、を備えた油圧制御装置があった。
 特許文献1に記載の発明は、弁開閉時期制御装置に作用する油圧が低い時に、ポンプからエンジン潤滑装置へのオイル流量を制限し、ポンプから弁開閉時期制御装置へのオイル供給を優先させる流路面積調節部(文献では「優先弁」)を備えている。従って、ポンプの回転数が低い時は、弁開閉時期制御装置に作用する油圧が優先的に確保され、ポンプを補助する電動式ポンプを備えなくとも、弁開閉時期制御装置を適切に作動させることが可能となる。
特開2009-299573号公報
 しかしながら、特許文献1に記載の発明においては、流路面積調節部が弁体とリテーナとを備えて構成されており、弁体とリテーナとが各々摺動するだけの空間を必要とする。このため、流路面積調節部の大型化を招来し、搭載性の点において改善の余地があった。
 そこで、本発明の目的は、流路面積調節部の小型化が可能であり、エンジンへの搭載性を向上させた油圧制御装置を提供することにある。
 本発明に係る油圧制御装置の第1特徴構成は、エンジンの回転によって駆動されてオイルを吐出するポンプと、前記ポンプと第1所定部位とを連通する第1流路と、前記第1流路から分岐して前記第1所定部位以外の第2所定部位にオイルを供給する第2流路と、前記第2流路に設けられ、前記第2流路の油圧の増大によって前記第2流路の流路面積を増大させ、前記油圧の減少によって前記流路面積を減少させる流路面積調節部と、を備え、前記流路面積調節部は、第1受圧面と当該第1受圧面よりも面積の小さな第2受圧面とが前記第2流路を挟んで対向するように形成され、前記第2流路の油圧に応じて移動可能なスプールと、前記スプールを前記第1受圧面から前記第2受圧面の方向に付勢する付勢部材と、を有して構成される点にある。
 本構成によると、スプールには、第2流路の油圧に第1受圧面と第2受圧面との面積差を乗じた力が第1受圧面に向かって作用すると共に、付勢部材による付勢力が第2受圧面に向かって作用する。第2流路の油圧が小さい時には、付勢部材による付勢力が優勢となりスプールが第2受圧面の側に移動して第2流路の流路面積が減少し、第2流路の油圧が増大するに従って、スプールが付勢力に抗して第1受圧面の側に移動して第2流路の流路面積が増大する。
 従って、ポンプから供給されるオイルの油圧が小さい時には、第2流路の流路面積が減少するので、第2所定部位、例えばメインギャラリ(M/G)に供給されるオイルの量を少なくし、第1所定部位に十分なオイルを供給することができる。一方、ポンプから供給されるオイルの油圧が大きくなると、第1所定部位には十分なオイルが供給されているので、メインギャラリに供給されるオイルの量を増やすことにより、エンジン各部の冷却や潤滑を確実に行うことができる。
 本構成によれば、流路面積調節部における第2流路の流路面積の調節機能は、スプールの移動のみで実現される。従って、スプールとリテーナとを備えていた従来の流路面積調節部と比較すると、流路面積調節部の小型化が可能であり、ひいては当該流路面積調節部を備えた油圧制御装置全体のエンジンへの搭載性を向上させることができる。
 第2特徴構成は、前記第1受圧面の周縁部に、前記第2受圧面に向かって突出する壁部を設けた点にある。
 本発明に係る油圧制御装置においては、第2流路の上手側を流れるオイルは第1受圧面と第2受圧面との間に形成されるスプールの流路空間に流入し、その後、この流路空間から第2流路の下手側に流出することになる。スプールが第2流路の流路面積を絞っている状態において、第2流路の上手側から流路空間に流入するオイルが、第2受圧面に向かう速度成分を有していると、流路面積を大きくすべくスプールが第1受圧面の側に移動する際に、上記速度成分が移動の妨げとなり、スプールの動作不良が発生する虞がある。
 本構成によると、第1受圧面の周縁部に、第2受圧面に向かって突出する壁部を設けてあるので、オイルが第2流路の上手側から壁部とバルブボディとの間を通過してスプールの流路空間に流入する際に、壁部の先端から第1受圧面に向かう速度成分も発生する。その結果、第2受圧面に向かう速度成分が相殺される。従って、オイルの流れの影響を受けることなく、スプールが正常に作動することができる。
 第3特徴構成は、前記壁部の先端の内周角部を面取りしてある点にある。
 本構成のごとく、壁部の先端の内周角部を面取りしておけば、オイルが第2流路の上手側から壁部とバルブボディとの間を通過してスプールの流路空間に流入する際に、壁部の先端から第1受圧面に向かう速度成分がより発生しやすくなる。その結果、第2受圧面に向かう速度成分がより確実に相殺される。従って、オイルの流れの影響を受けることなく、より確実にスプールが正常に作動することができる。
 第4特徴構成は、前記スプールを収容するバルブボディに、前記第2流路を流れるオイルの流れ方向を前記第1受圧面に向ける傾斜部を設けた点にある。
 本構成によれば、第2流路の上手側を流れるオイルは、傾斜部によってスプールの流路空間において第1受圧面に向かう速度成分を有するので、第2受圧面に向かう速度成分が相殺される。従って、オイルの流れの影響を受けることなく、スプールが正常に作動することができる。
 第5特徴構成は、前記付勢部材の付勢力は、前記エンジンのアイドリング時において前記第2流路の油圧により作用する前記第2流路の流路面積を増大させる方向への押圧力よりも大きい点にある。
 本構成によれば、エンジンのアイドリング時には付勢部材による付勢力が、第2流路の油圧による押圧力よりも勝り、第2所定部位よりも第1所定部位に優先的にオイルを供給することができる。従って、第1所定部位がエンジン始動後すぐにオイルの供給を必要とする場合に好適である。
 第6特徴構成は、前記第1所定部位が、クランクシャフトと同期回転する駆動側回転部材、及び、前記駆動側回転部材と同軸状に配置されてカムシャフトと同期回転する従動側回転部材を有し、前記駆動側回転部材に対する前記従動側回転部材の相対回転位相を、オイルの供給又は排出によって変位させる弁開閉時期制御装置である点にある。
 本構成のごとく、第1所定部位が弁開閉時期制御装置である場合、本発明に係る油圧制御装置を用いることにより、弁開閉時期制御装置に供給されるオイルの量を第2流路の油圧に応じて調整することができる。その結果、適切な弁開閉時期の制御を行うことが可能となり、エンジン効率が向上する。
 第7特徴構成は、オイルの温度が予め定めた第1設定温度よりも低い時又は予め定めた第2設定温度よりも高い時に、前記弁開閉時期制御装置の制御弁を所定の弁位置に切り換え、前記第1流路から前記第2受圧面の背面にオイルが供給され、前記第2流路の流路面積を最大の状態に維持するよう構成されている点にある。
 例えば、エンジン始動直後はエンジンの回転数が低く、オイルの温度が低いため、オイル粘度が高く、オイルの流通性が悪い。エンジン始動直後は、エンジン本体の温度が低く、吸気温度も低いため、必ずしも弁開閉時期制御装置を作動させる必要がない。即ち、エンジン始動直後は、弁開閉時期制御装置は油圧をあまり必要としないが、メインギャラリについては潤滑のためのオイルを必要とする。
 そこで、本構成のごとく、オイルの温度が予め定めた第1設定温度よりも低い時には、第1流路から第2受圧面の背面にオイルが供給され、第2流路の流路面積を最大の状態に維持することにより、優先的にメインギャラリにオイルを供給することができる。
 一方、オイルが高温となると、オイル粘度が低くなって部品間の微小隙間から漏れ出す(滲み出る)オイルの量が多くなり、油圧が効率良く弁開閉時期制御装置に作用しないことが考えられる。このような場合に弁開閉時期制御装置を作動させると、ポンプを大型化してポンプの吐出圧を高めなければならない。即ち、ポンプを駆動させる動力が必要となって、逆にエンジンの燃費悪化を招来し得る。
 そこで、本構成のごとく、オイルの温度が予め定めた第2設定温度よりも高い時には、第1流路から第2受圧面の背面にオイルが供給され、前記第2流路の流路面積を最大の状態に維持することにより、弁開閉時期制御装置へのオイル供給量を最小限に抑え、ポンプによる無駄な仕事を抑えることができる。
 又、本構成によれば、第1流路から第2受圧面の背面にオイルを供給するために、弁開閉時期制御装置の制御弁を用いているので、専用の切換弁が不要であり、コスト面や搭載面において有利な油圧制御装置となる。
 第8特徴構成は、オイルの温度が予め定めた第2設定温度よりも高い時に、温度上昇によって膨張するサーモワックスを備えた感温制御部が作動し、前記第2流路から前記第2受圧面の背面にオイルが供給され、前記第2流路の流路面積を最大の状態に維持するよう構成されている点にある。
 例えば第1所定部位が弁開閉時期制御装置の場合には、前述のごとく、オイルが高温の時には、弁開閉時期制御装置へのオイル供給量を最小限に抑えることが望ましい。本構成によれば、オイルの温度が予め定めた第2設定温度よりも高い時には、第2流路から第2受圧面の背面にオイルが供給され、第2流路の流路面積を最大の状態に維持することにより、弁開閉時期制御装置へのオイル供給量を最小限に抑え、ポンプによる無駄な仕事を抑えることができる。
 又、本構成によれば、感温制御部がサーモワックスによって作動するので、例えば温度センサと電動アクチュエータとのような電気的構成と比べて、構成が複雑とならず故障も少ない。又、物質特性に頼るものであるため、変位がある程度一義的であって、簡易な構成であるにも拘らず変位の信頼性が高い。さらに、本構成においては、感温制御部は油路を切り換える役割を有するだけなので、感温制御部において大きな変位を発生させる必要なく、油圧制御装置の小型化を図ることができる。
 第9特徴構成は、前記感温制御部のうち前記サーモワックスが収容された感温本体部が配置されている配設空間に、前記第2流路からオイルを供給する伝熱油路を備えた点にある。
 本構成によれば、サーモワックスが収容された感温本体部が配置されている配設空間に第2流路からオイルが供給されるため、オイルの温度がサーモワックスに伝わりやすくなり、オイルの温度変化に対する感温制御部の感度が向上する。従って、オイルの温度が第2設定温度よりも高くなったにもかかわらず感温制御部が作動せず、そのため第1所定部位にオイルが供給され続け、ポンプが無駄な仕事をしてしまうことを回避できる。
 第10特徴構成は、前記配設空間から前記第2流路の下手側にオイルが流通する戻り油路を備えた点にある。
 本構成によれば、オイルが第2流路から配設空間を経由し、再び第2流路の下手側に戻るという流れが確立される。従って、感温本体部に収容されたサーモワックスに伝熱する役割を有するオイルが、そのまま、第2所定部位に供給されることにもなるので、オイルの無駄が生じない。又、配設空間における油圧が過大となり、感温制御部の各部品に大きな負荷が発生することを防止できる。
 第11特徴構成は、カップ状の感温収容部材がバルブボディの載置面に配設された前記感温本体部に被せられており、前記感温収容部材の端面と前記載置面との間に間隙が生じるように構成されている点にある。
 本構成によれば、感温収容部材と感温本体部との寸法関係を適切に設定し、感温収容部材の端面と載置面との間に間隙を設けるように構成するだけで、この間隙を介して配設空間にオイルが供給可能となる。従って、配設空間にオイルを供給するために複雑な油路を形成する必要がなく、感温制御部の構成を簡易なものとすることができる。
 第12特徴構成は、前記感温本体部には、前記感温収容部材を支持するとともに、前記サーモワックスが膨張すると突出する可動部材が設けられており、前記可動部材の突出に伴って前記感温収容部材が移動すると、前記感温収容部材の外周面に形成された環状油路が前記第2流路と連通して前記第2受圧面の背面にオイルが供給されるよう構成されている点にある。
 本構成によれば、サーモワックスの膨張とともに可動部材が突出すると、同時に感温収容部材が移動し、第2受圧面の背面にオイルが供給される。従って、オイルが第2設定温度よりも上昇した場合には、より速やかに第2流路の流路面積を最大の状態に維持することができる。又、本構成を実現するために、温度センサや電動アクチュエータ等の部品が不要のため、搭載性やコスト面においても有利な構成となる。
 第13特徴構成は、前記スプールが最も前記第2流路を絞っている状態において、前記第2流路の上手側を流れるオイルは前記第1受圧面と前記第2受圧面との間に形成される流路空間に流入可能、且つ前記流路空間から前記第2流路の下手側には流出不可能に構成されている点にある。
 本構成によれば、スプールが最も第2流路を絞っている状態において、オイルは流路空間から第2流路の下手側には流れない。即ち、この状態においては、流路面積調節部に対する第2流路の上手側と下手側とは、伝熱油路、配設空間、及び戻り油路を経由した一経路のみで連通している。従って、複数の経路が存在する場合と比べて、第2所定部位に供給される油圧の調整が容易となる。
は、本発明の第1実施形態に係る油圧制御装置の全体構成を示す図である。 は、オイルの温度が第1設定温度T1よりも低い時、又は、第2設定温度T2よりも高い時の油圧制御装置の状態を示す断面図である。 は、オイルの温度が第1設定温度T1と第2設定温度T2との間の温度であり、且つ、エンジンの回転数が低い時の油圧制御装置の状態を示す断面図である。 は、オイルの温度が第1設定温度T1と第2設定温度T2との間の温度であり、且つ、エンジンの回転数が高まっている途中における油圧制御装置の状態を示す断面図である。 は、オイルの温度が第1設定温度T1と第2設定温度T2との間の温度であり、且つ、エンジンの回転数が高い時の油圧制御装置の状態を示す図である。 は、流路面積調節部の詳細を示す断面図である。 は、別実施形態における流路面積調節部の詳細を示す断面図である。 (a)は、オイルの温度とOCVのON/OFF状態との関係を示す図であり、(b)は、オイルの温度が第1設定温度T1よりも低い時、又は、第2設定温度T2よりも高い時のエンジン回転数と各部の油圧との関係を示す図であり、(c)は、オイルの温度が第1設定温度T1と第2設定温度T2との間の温度である時のエンジン回転数と各部の油圧との関係を示す図である。 は、本発明の第2実施形態に係る油圧制御装置の全体構成を示す図である。 は、オイルの温度が第1設定温度T1よりも低い時の油圧制御装置の状態を示す断面図である。 は、オイルの温度が第1設定温度T1と第2設定温度T2との間の温度であり、且つ、エンジンの回転数が低い時の油圧制御装置の状態を示す断面図である。 は、図11におけるXII-XII面の断面図である。 は、オイルの温度が第1設定温度T1と第2設定温度T2との間の温度であり、且つ、エンジンの回転数が高まっている途中における油圧制御装置の状態を示す断面図である。 は、オイルの温度が第1設定温度T1と第2設定温度T2との間の温度であり、且つ、エンジンの回転数が高い時の油圧制御装置の状態を示す図である。 は、オイルの温度が第2設定温度T2よりも高い時の油圧制御装置の状態を示す図である。 (a)は、オイルの温度と流路面積調節部の動作状態との関係を示す図であり、(b)は、オイルの温度が第1設定温度T1よりも低い時、又は、第2設定温度T2よりも高い時のエンジン回転数と各部の油圧との関係を示す図であり、(c)は、オイルの温度が第1設定温度T1と第2設定温度T2との間の温度である時のエンジン回転数と各部の油圧との関係を示す図である。 は、別実施形態において感温制御部が非作動状態の時の断面図である。 は、図17におけるXVIII-XVIII面の断面図である。 は、別実施形態において感温制御部が作動状態の時の断面図である。 は、図19におけるXX-XX面の断面図である。
 本発明を自動車用エンジンの油圧制御装置として適応した実施形態について、図に基づいて説明する。尚、本実施形態では、本発明における「第1所定部位」が吸気弁側の弁開閉時期制御装置であるとして説明する。
[第1実施形態]
1.全体構成
 油圧制御装置は、図1に示すごとく、エンジンの回転によって駆動されるポンプ1と、相対回転位相をオイルの供給又は排出によって変位させる弁開閉時期制御装置2と、を備えている。弁開閉時期制御装置2は、「制御弁」としてのOCV(オイルコントロールバルブ)5の制御によるオイルの供給及び排出によって動作する。ポンプ1とOCV5とは「第1流路」としての吐出油路11Aで接続され、弁開閉時期制御装置2とOCV5とは進角油路12A及び遅角油路12Bで接続される。吐出油路11Aからは、「第2所定部位」としてのメインギャラリ8にオイルを供給する「第2流路」としての潤滑油路13が分岐してある。潤滑油路13には、その流路面積を調節する流路面積調節部3が設けてある。尚、各油路は、エンジンのシリンダケース等に形成されている。
2.ポンプ
 ポンプ1は、図示しないクランクシャフトの回転駆動力が伝達されることにより機械的に駆動されてオイルを吐出する。ポンプ1は、図1に示すごとく、オイルパン1aに貯留されたオイルを吸入し、そのオイルを吐出油路11Aへ吐出する。吐出油路11Aには、オイルフィルタ6が配設されており、オイルストレーナで濾過されなかった小さなごみやスラッジを濾過する。オイルフィルタ6による濾過後のオイルは、弁開閉時期制御装置2及びメインギャラリ8へ供給される。尚、メインギャラリ8とは、不図示のピストン、シリンダ、クランクシャフトの軸受、等の摺動部材全体を示す。
 弁開閉時期制御装置2から排出されたオイルは、OCV5及び戻り油路11Bを介して、オイルパン1aに戻される。メインギャラリ8に供給されたオイルは、不図示のカバー類を伝ってオイルパン1aに回収される。又、弁開閉時期制御装置2から漏洩したオイルもカバー類を伝ってオイルパン1aに回収される。
3.弁開閉時期制御装置
〔概要〕
 弁開閉時期制御装置2は、図1に示すごとく、不図示のエンジンのクランクシャフトに対して同期回転する「駆動側回転部材」としてのハウジング21と、ハウジング21に対して同軸芯X上に配置され、カムシャフト101と同期回転する「従動側回転部材」としての内部ロータ22とを備えている。図2に示すごとく、弁開閉時期制御装置2は、ハウジング21に対する内部ロータ22の相対回転移動を拘束することにより、ハウジング21に対する内部ロータ22の相対回転位相を、最遅角位相に拘束可能なロック機構27を備えている。
〔ハウジング及び内部ロータ〕
 内部ロータ22は、図1に示すごとく、カムシャフト101の先端部に組み付けられている。ハウジング21は、カムシャフト101が接続される側とは反対側のフロントプレート21aと、タイミングスプロケット21dを一体的に備えた外部ロータ21bと、カムシャフト101が接続される側のリアプレート21cと、を備えている。外部ロータ21bを内部ロータ22に外装し、フロントプレート21aとリアプレート21cとで挟み込み、フロントプレート21aと外部ロータ21bとリアプレート21cとをボルトによって締結してある。
 クランクシャフトが回転駆動すると、動力伝達部材102を介してタイミングスプロケット21dにその回転駆動力が伝達され、ハウジング21が図2に示す回転方向Sに回転駆動する。ハウジング21の回転駆動に伴い、内部ロータ22が回転方向Sに回転駆動してカムシャフト101が回転し、カムシャフト101に設けられたカムがエンジンの吸気弁を押し下げて開弁させる。
 図2に示すごとく、外部ロータ21bと内部ロータ22とによって3箇所の流体圧室24を形成してある。流体圧室24内に位置するよう、内部ロータ22に径外方向に突出する複数個のベーン22aを回転方向Sに沿って互いに離間させて形成してある。流体圧室24は、ベーン22aによって回転方向Sに沿って進角室24aと遅角室24bとに仕切られている。
 図1及び図2に示すごとく、各進角室24aに連通するよう、進角室連通路25を内部ロータ22及びカムシャフト101に形成してある。又、各遅角室24bに連通するよう、遅角室連通路26を内部ロータ22及びカムシャフト101に形成してある。図1に示すごとく、進角室連通路25は、OCV5に連通する進角油路12Aに接続されている。遅角室連通路26は、OCV5に連通する遅角油路12Bに接続されている。
 図1に示すごとく、内部ロータ22とフロントプレート21aとに亘ってトーションスプリング23を設けてある。トーションスプリング23は、カムトルク変動に基づく遅角方向への平均変位力に抗するよう、内部ロータ22を進角側に付勢している。これにより、円滑かつ迅速に、相対回転位相を後述する進角方向S1へ変位させることが可能である。
〔ロック機構〕
 ロック機構27は、エンジンの始動直後においてオイルの油圧が安定しない状況において、ハウジング21と内部ロータ22とを所定の相対位置に保持することで、相対回転位相を最遅角位相に拘束する。その結果、適切なエンジン始動が可能であると共に、エンジン始動時やアイドリング運転時に、カムトルク変動に基づく変位力によって内部ロータ22がバタつくこともない。
 ロック機構27は、図2に示すごとく、プレート状の2つのロック部材27aと、ロック溝27bと、ロック機構連通路28と、を備えている。ロック溝27bは、内部ロータ22の外周面に形成されており、相対回転方向に一定の幅を有している。ロック部材27aは、外部ロータ21bに形成された収容部に配設され、ロック溝27bに対して径方向に出退可能である。ロック部材27aは径方向内側、即ち、ロック溝27bの側にスプリングによって常時付勢されている。ロック機構連通路28は、ロック溝27bと進角室連通路25とを接続している。これにより、進角室24aにオイルが供給されると、ロック溝27bにもオイルが供給され、進角室24aからオイルが排出されると、ロック溝27bからもオイルが排出される。
 ロック溝27bからオイルが排出されていると、各ロック部材27aはロック溝27bに突出可能である。図2に示すごとく、両方のロック部材27aがロック溝27bに突入すると、ロック溝27bの周方向の両端に各ロック部材27aが夫々同時に係止することとなる。その結果、内部ロータ22のハウジング21に対する相対回転移動が拘束され、相対回転位相が最遅角位相に拘束される。ロック溝27bにオイルが供給されると、図3に示すごとく、両方のロック部材27aがロック溝27bから引退して相対回転位相の拘束が解除され、内部ロータ22は相対回転移動自在となる。以下、ロック機構27が相対回転位相を最遅角位相に拘束している状態を「ロック状態」と称する。又、ロック状態が解除された状態を「ロック解除状態」と称する。
4.OCV(制御弁)
 OCV5は、電磁制御型であって、進角室連通路25及び遅角室連通路26に対するオイルの供給、排出、及び給排遮断の制御が可能である。OCV5は、スプール式に構成され、ECU7(エンジンコントロールユニット)による給電量の制御に基づいて動作する。OCV5によって、進角油路12Aへのオイル供給・遅角油路12Bからのオイル排出、進角油路12Aからのオイル排出・遅角油路12Bへのオイル供給、進角油路12A及び遅角油路12Bへのオイル給排遮断、といった制御が可能である。
 進角油路12Aへのオイル供給・遅角油路12Bからのオイル排出を行う制御が「進角制御」である。進角制御を行うと、ベーン22aは外部ロータ21bに対して進角方向S1に相対回転移動し、相対回転位相は進角側へ変位する。進角油路12Aからのオイル排出・遅角油路12Bへのオイル供給を行う制御が「遅角制御」である。遅角制御を行うと、ベーン22aは外部ロータ21bに対して遅角方向S2に相対回転移動し、相対回転位相は遅角側へ変位する。進角油路12A及び遅角油路12Bへのオイルの給排を遮断する制御を行うと、相対回転位相を任意の位相に保持できる。
 尚、OCV5に給電すると進角制御が可能な状態となり、OCV5への給電を停止すると遅角制御が可能な状態となるよう設定してある。又、OCV5は、電磁ソレノイドに供給する電力のデューティ比の調節により開度を設定するものである。これにより、オイルの給排量の微調節が可能である。
 このように、OCV5を制御することによって、進角室24a及び遅角室24bに対してオイルを供給、排出、又は給排量保持し、ベーン22aにそのオイルの油圧力を作用させる。このようにして、相対回転位相を進角方向又は遅角方向へ変位させ、或いは、任意の位相に保持する。
5.弁開閉時期制御装置の動作
 弁開閉時期制御装置2の動作を図2~図5に基づいて説明する。上述の構成により、内部ロータ22はハウジング21に対して軸芯Xの回りに一定の範囲内で円滑に相対回転移動可能である。ハウジング21と内部ロータ22とが相対回転移動可能な一定の範囲、即ち最進角位相と最遅角位相との位相差は、流体圧室24の内部でベーン22aが変位可能な範囲に対応する。尚、遅角室24bの容積が最大となるのが最遅角位相であり、進角室24aの容積が最大となるのが最進角位相である。
 図示はしていないが、エンジンのクランクシャフトの回転角を検出するクランク角センサと、カムシャフト101の回転角を検出するカムシャフト角センサとが設けられている。ECU7は、これらのクランク角センサとカムシャフト角センサとの検出結果から相対回転位相を検出し、相対回転位相がいずれの位相にあるかを判定する。又、ECU7には、イグニッションキーのON/OFF情報、オイルの温度を検出する油温センサからの情報、等を取得する信号系が形成されている。又、ECU7のメモリ内には、エンジンの運転状態に応じた最適の相対回転位相の制御情報が記憶されている。ECU7は、運転状態(エンジン回転速度、冷却水温等)の情報と、上述した制御情報とから、相対回転位相を制御する。
 エンジン始動前は、図2に示すごとく、ロック機構27によってロック状態となっている。不図示のイグニッションキーがON操作されると、クランキングが開始され、エンジンは相対回転位相が最遅角位相に拘束された状態で始動する。そして、アイドリング運転に移行し、触媒暖機が開始される。触媒暖機が終了し、不図示のアクセルが踏み込まれると、相対回転位相を進角方向S1に変位させるべく、OCV5に給電がなされて進角制御が行われる。これにより、進角室24a及びロック溝27bにオイルが供給され、図3に示すごとく、ロック部材27aがロック溝27bから引退し、ロック解除状態となる。ロック解除状態となると、相対回転位相は変位自在であり、進角室24aへのオイル供給に従って図4、図5の状態へと変位する。その後は、エンジンの負荷や回転速度等に応じて、相対回転位相を最進角位相と最遅角位相と間で変位させる。
 エンジン停止前にはアイドリング運転となるため、相対回転位相は最遅角位相となる。この時、少なくとも進角側のロック部材27aがロック溝27bに突入している。そして、イグニッションキーがOFF操作されると、カムトルクの変動によって内部ロータ22がバタつき、遅角側のロック部材27aもロック溝27bに突入し、ロック状態となる。従って、次回のエンジン始動が好適に行える。
6.流路面積調節部
 流路面積調節部3の詳細について、図6に基づいて説明する。流路面積調節部3は、潤滑油路13に対して直交する方向に移動可能なスプール31を備えて構成される。スプール31は、潤滑油路13の油圧が作用する円盤状の第1受圧面31aと第2受圧面31bとが潤滑油路13を挟んで対向するように形成される。第1受圧面31aと第2受圧面31bとは、円柱状の連結部31cによって連結されており、スプール31の断面は「エ」の字状である。連結部31cの周囲は、潤滑油路13のオイルが流通可能な流路空間34として構成される。
 第1受圧面31aの背面とバルブボディ33との間にはスプリング収容空間35が形成され、ここに「付勢部材」としてスプリング32が収容され、スプール31を第1受圧面31aから第2受圧面31bの方向に常時付勢する。バルブボディ33はボディ本体33aと栓部材33bとからなり、栓部材33bは、スプール31及びスプリング32をボディ本体33aの内部に収容した状態でボディ本体33aの一端部に螺着される。スプール31の外径は、ボディ本体33aの内径とほぼ等しい。ボディ本体33aの側壁には潤滑油路13と接続する流通開口部33cが2箇所に形成されており、バルブボディ33に収容されたスプール31が潤滑油路13に対して出退することにより、潤滑油路13の流路面積が調節される。
 バルブボディ33の両端部のうち、第1受圧面31aの側には呼吸孔33dが形成される。スプリング収容空間35が密閉空間として構成されていると、スプール31の第1受圧面31aの側への移動が円滑に行われず、スプール31の動作に支障をきたす虞がある。そこで、呼吸孔33dを設けることにより、スプリング収容空間35を外部に対して開放すれば、スプール31が円滑に作動することができる。
 バルブボディ33の両端部のうち、第2受圧面31bの側には作動開口部33eが形成される。図1~図5に示すように、作動開口部33eには、遅角油路12Bから分岐した作動油路14が接続され、作動油路14のオイルが第2受圧面31bの背面に供給される。作動油路14にオイルが供給されるのは、遅角制御を行っている場合である。
 スプール31は、第1受圧面31aの面積が第2受圧面31bの面積よりも大きくなるように構成されている。従って、スプール31は、第2受圧面31bから第1受圧面31aの方向に、「〔潤滑油路13の油圧〕×〔第1受圧面31aの面積-第2受圧面31bの面積〕」で計算される力(以下、「力Fs」と称する)と、第2受圧面31bから第1受圧面31aの方向にスプリング32の付勢力(以下、「付勢力Fp」と称する)と、を受ける。潤滑油路13の油圧が高まって、力Fsが付勢力Fpを上回ると、スプール31は第2受圧面31bから第1受圧面31aの方向に動き出す。
 このように、潤滑油路13の油圧の作用によって、スプール31は最大で、スプール31の第2受圧面31bの側の端部がボディ本体33aに当接する図3に示す状態から、スプール31の第1受圧面31aの側の端部が栓部材33bに当接する図5の状態までの間で摺動可能である。図3の状態において潤滑油路13の流路面積は最も絞られており、図5の状態において潤滑油路13は全開となっている。図4は、図3の状態から図5の状態に移行している時の状態を示す。
 又、スプール31は、作動油路14の油圧が作用すると、第2受圧面31bの背面に第2受圧面31bから第1受圧面31aの方向に力を受ける。作動油路14の油圧は第2受圧面31bの背面全体に作用するため容易に大きな力を発生させることができ、図2に示すごとく、付勢力Fpに抗して潤滑油路13を確実に全開状態で維持することができる。
 以上のように、潤滑油路13の油圧の作用、又は、潤滑油路13の油圧及び作動油路14の油圧の作用によって、スプール31がバルブボディ33の内部を摺動し、潤滑油路13の流路面積が調節される。即ち、流路面積調節部3における潤滑油路13の流路面積の調節機能は、スプール31の移動のみで実現されるので、スプールとリテーナとを備えていた従来の流路面積調節部と比較すると、流路面積調節部3の小型化が可能であり、ひいては油圧制御装置全体のエンジンへの搭載性を向上させることができる。
 図6に示すごとく、スプール31が潤滑油路13の流路面積を絞っている状態において、潤滑油路13の上手側から流路空間34に流入するオイルが、第2受圧面31bに向かう速度成分を有していると、流路面積を大きくすべくスプール31が第1受圧面31aの側に移動する際に、上記速度成分が移動の妨げとなり、スプール31の動作不良が発生する虞がある。
 そこで、本実施形態においては、図6に示すように、第1受圧面31aの周縁部に第2受圧面31bに向かって突出する壁部31dを設けている。このため、オイルが潤滑油路13の上手側から壁部31dとバルブボディ33との間を通過して流路空間34に流入する際に、第1受圧面31aに向かう速度成分と第2受圧面31bに向かう速度成分とが発生する。その結果、両速度成分が相殺される。
 さらに、本実施形態においては、壁部31dの先端の内周角部を面取り加工してテーパ面31eを形成している。このため、オイルが潤滑油路13の上手側から壁部31dとバルブボディ33との間を通過して流路空間34に流入する際に、壁部31dの先端から第1受圧面31aに向かう速度成分がより発生しやすくなる。その結果、第2受圧面31bに向かう速度成分がより確実に相殺される。従って、オイルの流れの影響を受けることなく、より確実にスプール31が正常に作動することができる。
 壁部31dを設ける代わりに、或いは、壁部31dを設けると共に、図7に示すようにバルブボディ33に傾斜部33fを設けても良い。潤滑油路13の上手側を流れるオイルは、傾斜部33fによって流路空間34において第1受圧面31aに向かう速度成分を有するので、第2受圧面31bに向かう速度成分が相殺される。従って、オイルの流れの影響を受けることなく、スプール31が正常に作動することができる。
 尚、図6及び図7に示した壁部31d及び傾斜部33fは、加工のしやすさを優先して周方向全体に形成してある。しかし、必ずしも壁部31d及び傾斜部33fを周方向全体に形成する必要はなく、例えば潤滑油路13の上手側のみに形成しても良い。又、そもそも流路空間34におけるオイルの流れによってスプール31の動作不良が発生する虞がない場合には、壁部31dや傾斜部33fを設ける必要はない。このことは、後述の第2実施形態においても同様である。
7.油圧制御装置の動作
 油圧制御装置の動作について図面に基づいて説明する。図8(a)~(c)における「II」、「III」、「IV」、「V」は、夫々図2、図3、図4、図5の状態に対応するものであることを示す。
 エンジン始動直後は、弁開閉時期制御装置2は作動する必要がなく、油圧を必要としない。一方で、メインギャラリ8は動作を開始するべく潤滑油としてのオイルを必要とする。そこで、オイルの温度が予め定めた第1設定温度T1よりも低い時は、図8(a)に示すごとく、OCV5に通電しない(OFF)。即ち、図2に示すごとく、OCV5は遅角制御の状態に維持されており、遅角油路12Bが吐出油路11Aに接続され、進角油路12Aは戻り油路11Bに接続されている。この状態で、クランキングが開始され、その後暖機運転が始まっても、エンジン始動直後は、エンジンの回転数が低く、オイルの温度も低い。よって、吐出流路の油圧は低く、当然潤滑油路13の油圧も低いため、潤滑油路13の油圧によってスプール31は作動しない。しかし、一方で、弁開閉時期制御装置2がロック状態であるにも拘らず、遅角室24bにはオイルが供給され、遅角油路12Bの油圧は高まる。この高まった油圧が作動油路14を介して第2受圧面31bの背面に供給され、スプール31が第1受圧面31aの側に移動する。その結果、潤滑油路13は全開となり、優先的にメインギャラリ8にオイルが供給される。
 この時のポンプ1のオイル吐出圧と、弁開閉時期制御装置2に供給される油圧と、メインギャラリ8に供給される油圧と、の関係を図8(b)に示す。図に示すように、弁開閉時期制御装置2に供給される油圧と、メインギャラリ8に供給される油圧と、は共にポンプ1のオイル吐出圧の上昇に追従する。
 オイルの温度が予め定めた第1設定温度T1よりも高まって暖機運転が完了した後、アクセルが踏み込まれると、OCV5に通電がなされ(ON)、進角制御の状態に移行する。よって、弁開閉時期制御装置2を安定して始動させるために、油圧が必要となっている。しかし、OCV5が進角状態となっているので、進角油路12Aが吐出油路11Aに接続され、遅角油路12Bは戻り油路11Bに接続されている。従って、作動油路14の油圧は急激に低下し、又、オイルの温度が高まってもエンジン回転数が低いので、未だポンプ1のオイル吐出圧が低く潤滑油路13に作用する油圧は小さい。すると、図3に示すごとく、スプール31はスプリング32によって付勢され第2受圧面31bの側に移動し、潤滑油路13の流路面積は最小に絞られる。その結果、優先的に弁開閉時期制御装置2にオイルが供給される。
 その後、エンジン回転数が高まるに従って、ポンプ1のオイル吐出圧が高まると、潤滑油路13の油圧も高まり、図3に示す状態から図4に示す状態へ、さらに図4に示す状態から図5に示す状態へと、スプール31が徐々に潤滑油路13を開放し、最終的に全開とする。これにより、エンジン回転数が高まって大量の潤滑油を必要とするメインギャラリ8にもオイルが十分に供給されることとなる。当然、エンジンの回転数が高まっている時は、弁開閉時期制御装置2にも油圧が必要となるが、絶対的にポンプ1の吐出圧が高まっているので、弁開閉時期制御装置2にも十分なオイルが供給される。この後、遅角制御を行って第2受圧面31bの背面に作動油路14の油圧が作用しても、スプール31は潤滑油路13を全開にした状態で維持される。即ち、オイルの温度が第1設定温度T1よりも高い時は、スプール31は潤滑油路13の油圧の高低にのみに依存して、潤滑油路13の流路面積を調節する。
 この時のポンプ1のオイル吐出圧と、弁開閉時期制御装置2に供給される油圧と、メインギャラリ8に供給される油圧と、の関係を図8(c)に示す。図3の状態(III)の時は、潤滑油路13が絞られているので、メインギャラリ8の油圧の上昇率が下がると共に弁開閉時期制御装置2の油圧の上昇率が上がる。スプール31が潤滑油路13に対して突入し始めた図4の状態(IV)の時は、潤滑油路13の流路面積が大きくなり出すため、メインギャラリ8の油圧の上昇率が上がると共に弁開閉時期制御装置2の油圧の上昇率が下がる。スプール31が潤滑油路13に対して最も突入した図5の状態(V)の時は、潤滑油路13が全開となるため、メインギャラリ8の油圧と、弁開閉時期制御装置2の油圧とは共に、ポンプ1のオイル吐出圧の上昇に追従する。
 ところで、弁開閉時期制御装置2は、僅かながら部品間に微小隙間があり、特にオイル粘度が低い場合にはこの微小隙間からオイルが漏れ出す(滲み出る)ことがあり、油圧が効率良く弁開閉時期制御装置2に作用しないことが考えられる。このような場合に弁開閉時期制御装置2を作動させると、ポンプ1を大型化してポンプ1の吐出圧を高めなければならない。即ち、ポンプ1を駆動させる動力が必要となって、逆にエンジンの燃費悪化を招来し得る。
 従って、オイルの温度がさらに上昇して第2設定温度T2よりも高くなり、オイル粘度が低くなった場合には、図8(a)に示すごとく、OCV5に通電しない(OFF)。即ち、OCV5は遅角制御の状態に維持されており、遅角油路12Bが吐出油路11Aに接続され、進角油路12Aは戻り油路11Bに接続されている。よって、相対回転位相は最遅角位相となり、ロック機構によりロック状態となる。このように、オイル温度が第2設定温度T2よりも高くなった時は、弁開閉時期制御装置2の作動を停止して、ポンプの必要動力を抑える。
 尚、第2設定温度T2は、第1設定温度T1よりも高い設定温度である。又、例示すると、第1設定温度T1は55~65℃、第2設定温度T2は100~110℃とすることが考えられるが、他の設定とすることも可能である。
[第2実施形態]
 次に、本発明の油圧制御装置の第2実施形態について、図9~図16に基づいて説明する。尚、ポンプ、弁開閉時期制御装置、OCV、弁開閉時期制御装置の動作については、第1実施形態と同様であるので説明は省略し、第1実施形態と異なる点について主に説明をする。第1実施形態と同じ部材や部位には、第1実施形態と同じ符号を付している。
 図9に示すように、油圧制御装置の全体構成は第1実施形態と概ね同様であるが、流路面積調節部3に接続される作動油路14が存在しない点において第1実施形態と異なる。本実施形態においては、図10に示すように、作動油路14を設ける代わりに感温制御部4を設けている。感温制御部4は、バルブボディ33の内部空間に摺動可能に配設される感温収容部材41と、感温収容部材41によって覆われるように収容される感温本体部42と、を備えている。
 感温本体部42は、バルブボディ33に対して固定される。感温収容部材41は、バルブボディ33と感温本体部42との間で摺動可能であるが、スプリング43によって潤滑油路13の側に常時付勢されている。感温本体部42の内部には、図示しないサーモワックスが収容されており、オイルの温度が第2設定温度T2よりも高くなるとサーモワックスが膨張するように設定されている。サーモワックスが膨張すると、図15に示すように、オイルの温度が第2設定温度T2よりも低い時には感温本体部42の内部に収容されている可動部材42aが、感温収容部材41を持ち上げるべく突出するように構成されている。
 バルブボディ33の側壁には潤滑油路13と接続する供給油路51と、スプール31の第2受圧面31bの背面にオイルを供給する作動油路53と、が形成される。又、感温収容部材41の外周面には環状油路52が形成される。オイルの温度が第2設定温度T2よりも低い時には、図10~図14に示すように、供給油路51と環状油路52とが連通せず、作動油路53にオイルが供給されることはない。一方、オイルの温度が第2設定温度T2よりも高い時には、図15に示すように、感温収容部材41が可動部材42aによって持ち上げられ、供給油路51と環状油路52と作動油路53とが連通する。その結果、潤滑油路13から第2受圧面31bの背面にオイルが供給され、スプール31は第1受圧面31aの側に移動し、潤滑油路13は全開状態で維持される。
 図11及び図12に示すように、バルブボディ33には、第1排出孔54及び第2排出孔55が形成される。オイルの温度が第2設定温度T2よりも低い時には、スプール31の第2受圧面31bの背面に存在するオイルが、作動油路53、環状油路52、第1排出孔54、排出油路56、第2排出孔55を介して、排出孔63から排出される。排出孔63がオイルや空気の流通を許容するため、感温収容部材41の円滑な動作が可能となる。又、バルブボディ33と感温収容部材41との間における漏れ等により、感温収容部材41の内部に溜まったオイルも第1排出孔54を介して排出される。さらに、スプリング収容空間35は排出油路56を介して排出孔63と連通しており、スプリング収容空間35の空気やオイルを逃がすことができるように構成されているので、スプール31が円滑に作動することができる。
 油圧制御装置の動作について図面に基づいて説明する。図16(a)~(c)における「X」、「XI」、「XIII」、「XIV」、「XV」は、夫々図10、図11、図13、図14、図15の状態に対応するものであることを示す。
 エンジン始動直後は、オイルの温度が低いため、オイル粘度が高く、オイルの漏れが少ない。このため、ポンプ1の吐出量は少ないものの、吐出油路11A及び潤滑油路13における油圧は高い。従って、図10に示すごとく、潤滑油路13の油圧によってスプール31が第1受圧面31aの側に移動し、潤滑油路13を開放するので、弁開閉時期制御装置2に優先してメインギャラリ8にオイルが供給される。その結果、ポンプ1は、エンジン始動直後であって動作する必要のない弁開閉時期制御装置2に対して、無駄に仕事をすることがない。
 図10の状態(X)の時のポンプ1のオイル吐出圧と、弁開閉時期制御装置2に供給される油圧と、メインギャラリ8に供給される油圧と、の関係を図16(b)に示す。潤滑油路13が全開となるため、メインギャラリ8の油圧と、弁開閉時期制御装置2の油圧とは共に、ポンプ1のオイル吐出圧の変化に追従する。
 ある程度暖機してオイルの温度が第1設定温度T1よりも高くなると、オイル粘度が低下して油圧は低下する。これにより、図11に示すように、スプール31がスプリング32によって付勢されて第2受圧面31bの側に移動する。暖機運転が完了した後、アクセルが踏み込まれると、OCV5に給電がなされ、弁開閉時期制御装置2は進角制御される。弁開閉時期制御装置2は、安定して始動するために油圧を必要とするところ、潤滑油路13の流路面積は最も絞られているので、優先的に弁開閉時期制御装置2にオイルが供給され、弁開閉時期制御装置2は円滑に始動する。
 その後、エンジン回転数が高まって、ポンプ1のオイル吐出圧が高まると、潤滑油路13の油圧も高まって、スプール31が図11に示す状態から図13に示す状態、さらに図13に示す状態から図14に示す状態へと変位し、徐々に潤滑油路13は開放され、最終的に図14に示すごとく全開とする。これにより、エンジン回転数が高まって大量の潤滑油を必要とするメインギャラリ8にもオイルが充分に供給されることとなる。エンジンの回転数が高まっている時は、同時に弁開閉時期制御装置2も油圧を必要とするが、絶対的にポンプ1の吐出圧が高まっているので、弁開閉時期制御装置2にも十分なオイルが供給される。
 この時のポンプ1のオイル吐出圧と、弁開閉時期制御装置2に供給される油圧と、メインギャラリ8に供給される油圧と、の関係を図16(c)に示す。図11の状態(XI)の時は、潤滑油路13が絞られているので、メインギャラリ8の油圧の変化率が小さくなると共に弁開閉時期制御装置2の油圧の変化率が大きくなる。スプール31が第1受圧面31aの側に移動し始めた図13の状態(XIII)の時は、潤滑油路13の流路面積が大きくなり出すため、メインギャラリ8の油圧の変化率が大きくなると共に弁開閉時期制御装置2の油圧の変化率が小さくなる。潤滑油路13が全開となる図14の状態(XIV)の時は、メインギャラリ8の油圧と、弁開閉時期制御装置2の油圧とは共に、ポンプ1のオイル吐出圧の変化に追従する。
 このように、オイルの温度が第2設定温度T2よりも低い時は、スプール31は、潤滑油路13の油圧の高低にのみに依存して潤滑油路13の流路面積を調節する。
 オイルの温度がさらに上昇して第2設定温度T2よりも高くなり、オイル粘度が過度に低くなると、弁開閉時期制御装置2においては、構成部材間の微小隙間からのオイルの漏れ(滲み出し)が生じる。しかし、図15に示すごとく、感温制御部4が作動するため、供給油路51と環状油路52と作動油路53とが連通し、潤滑油路13から第2受圧面31bの背面にオイルが供給される。その結果、潤滑油路13は全開状態で維持され、弁開閉時期制御装置2に対するオイル供給量を最小限に抑えることができる。このように、オイルの温度が第2設定温度T2よりも高くなった時は、弁開閉時期制御装置2の制御に優先して、ポンプ1による無駄な仕事を抑えることができる。
 この時のオイルのオイル吐出圧と、弁開閉時期制御装置2に供給される油圧と、メインギャラリ8に供給される油圧と、の関係を図16(b)に示す。潤滑油路13が全開となるため、メインギャラリ8の油圧と、弁開閉時期制御装置2の油圧とは共に、ポンプ1のオイル吐出圧の変化に追従する。
 以上をまとめると、図16(a)に示すごとく、スプール31は、オイルの温度が第2設定温度T2よりも低い時は、潤滑油路13の油圧によって動作可能な状態にあり、オイルの温度が第2設定温度T2よりも高い時は、感温制御部4の作用によって潤滑油路13を全開放する状態に規制され、潤滑油路13の油圧の大小に拘らず動作しない。
 感温制御部4の別実施形態について、図17~図20に基づいて説明する。図17及び図18は、オイルの温度が第2設定温度T2よりも低く、感温制御部4が作動していない状態のうち、スプール31が最も第2受圧面31bの側に移動した状態(潤滑油路13を最も絞っている状態)を示したものである。図19及び図20は、オイルの温度が第2設定温度T2よりも高く、感温制御部4が作動して、スプール31が最も第1受圧面31aの側に移動した状態(潤滑油路13を最も開放した状態)を示したものである。一連の制御や全体構成については第2実施形態と同様であるので、第2実施形態と異なる点について主に説明をする。第2実施形態と同じ部材や部位には、第2実施形態と同じ符号を付している。
 感温本体部42は、バルブボディ33のボディ本体33aの内部に形成された配設空間71に配置され、配設空間71の底面を構成する載置面33gに載置固定されている。感温本体部42は円筒状の形状を有しており、その内部には図示しないサーモワックスが収容される。感温本体部42には、感温本体部42から出退可能に構成された可動部材42aが設けられている。感温本体部42に被せるように設けられたカップ状の感温収容部材41は、サーモワックスが膨張し可動部材42aが突出すると、スプリング43の付勢力に抗して図中上方に移動する。
 本実施形態においては、可動部材42aが感温本体部42に引退しており、感温収容部材41がスプリング43の付勢力によって最も載置面33gの側に位置している非作動状態においても、感温収容部材41の端面41aと載置面33gとの間に間隙72が確保されるように構成されている。バルブボディ33のボディ本体33aには、感温制御部4が作動状態の時に、潤滑油路13から感温制御部4を経由してスプール31の第2受圧面31bの背面にオイルを供給する供給油路51が形成されている。この供給油路51は途中で分岐して間隙72と連通する伝熱油路61として構成されている。
 オイルの温度が第2設定温度T2よりも低く、感温制御部4が非作動状態の時には、図17に示すように、伝熱油路61及び間隙72を経由して、潤滑油路13から配設空間71にオイルが供給される。従って、オイルの温度が感温本体部42に収容されているサーモワックスに伝わりやすくなり、オイルの温度変化に対する感温制御部4の感度が向上する。
 オイルの温度が第2設定温度T2よりも低く、感温制御部4が非作動状態を維持すべき状況にもかかわらず、配設空間71に供給されるオイルの油圧により感温収容部材41が図中上方に移動して、感温制御部4が作動状態となるのを防止するために、感温収容部材41には貫通孔41bが設けられている。配設空間71に供給されたオイルは、感温収容部材41と感温本体部42との間の隙間及び貫通孔41bを通って、スプリング43を収容している空間にも供給される。その結果、感温収容部材41には両面から油圧が作用して相殺されるため、配設空間71に供給されるオイルの油圧により感温収容部材41が移動することを防止できる。
 本実施形態においては、スプリング43を収容している空間は、蓋部材44によって閉じられている。又、バルブボディ33のボディ本体33aと蓋部材44との間からオイルが漏れるのを抑制するため、ボディ本体33aに係合可能なリング状のシール部材45が設けられている。
 バルブボディ33のボディ本体33aには、供給油路51及び伝熱油路61の他にも、スプール31の第2受圧面31bの背面にオイルを供給する作動油路53、配設空間71から潤滑油路13の下手側にオイルを戻す戻り油路62、オイルを大気開放する第1排出油路57及び第2排出油路58が形成されている。
 供給油路51(或いは伝熱油路61)を基準とすると、平面視において供給油路51から180度の位置に戻り油路62が形成されており、供給油路51から90度の位置に作動油路53及び第1排出油路57が形成されており、これらと反対方向に供給油路51から90度の位置に第2排出油路58が形成されている。伝熱油路61と戻り油路62とが180度向かい合った位置関係にあるので、伝熱油路61から間隙72を通って配設空間71に流入し、配設空間71から間隙72を通って戻り油路62に流出するオイルは、感温本体部42の周囲を均一に流れ、サーモワックスにむらなく均一に伝熱することができる。
 感温収容部材41の外周面には、スプール31の第2受圧面31bの背面にオイルを供給する際に機能する第1環状油路59、及び第1排出油路57と接続している第2環状油路60が形成されている。第1環状油路59は、感温制御部4が非作動状態の時には、供給油路51及び作動油路53とは連通しないよう構成されている(図17及び図18)。又、第2環状油路60は、感温制御部4が非作動状態の時には、作動油路53及び第1排出油路57と連通し(図18)、感温制御部4が非作動状態の時には、第1排出油路57のみと連通するよう構成されている(図20)。
 以上の油路構成により、感温制御部4が非作動状態か作動状態かにかかわらず、配設空間71には伝熱油路61及び間隙72を経由して潤滑油路13からオイルが供給され、間隙72及び戻り油路62を経由して配設空間71から潤滑油路13にオイルが戻される。又、感温制御部4が非作動状態の時には、スプール31の第2受圧面31bの背面のオイルは、作動油路53、第2環状油路60、及び第1排出油路57を経由して、大気開放される(図18)。従って、潤滑油路13の油圧が減少し、スプール31が第2受圧面31bの側に移動する時にも、スプール31が円滑に作動することができる。又、潤滑油路13の油圧が増大し、スプール31が第1受圧面31aの側に移動する時は、スプリング収容空間35の内部のオイルは、バルブボディ33のボディ本体33aに形成された第2排出油路58から大気開放される(図20)。従って、この時にもスプール31が円滑に移動することができる。
 本実施形態においては、図17に示すように、バルブボディ33のボディ本体33aに形成した流通開口部33cのうち、下手側のものを上手側のものよりも小さくし、スプール31が最も潤滑油路13を絞っている状態においては、流路空間34と潤滑油路13の下手側とがスプール31によって遮断されるように構成してある。即ち、この状態において、流路面積調節部3に対する潤滑油路13の上手側と下手側とは、伝熱油路61、間隙72、配設空間71、間隙72、及び戻り油路62を経由する一経路のみで連通している。従って、この一経路における最小径をどのように規定するかのみで、メインギャラリ8に供給される油圧が決まり、油圧制御が容易となる。
 図19及び図20に示すように、オイルの温度が第2設定温度T2よりも高くなりサーモワックスが膨張すると、可動部材42aが突出し、感温収容部材41が持ち上げられる。この感温制御部4の作動状態においては、潤滑油路13のオイルが、供給油路51、第1環状油路59、及び作動油路53を経由してスプール31の第2受圧面31bの背面に供給される。その結果、スプール31がスプリング32の付勢力に抗して第1受圧面31aの側に移動し、流路面積調節部3は潤滑油路13を最も開放した状態に保持する。
 尚、本実施形態においては、感温収容部材41の端面41aと載置面33gとの間に間隙72が全周に亘って形成されるように構成したが、伝熱油路61及び戻り油路62との連通を妨げず、サーモワックスの感温性を妨げない形態であれば、端面41aの一部が載置面33gと接するように構成してもよい。又、感温収容部材41に貫通孔41bを設ける代わりに、或いは、貫通孔41bを設けるとともに、供給油路51を延長させて、直接スプリング43を収容している空間にオイルを供給することも可能である。さらに、スプール31が最も潤滑油路13を絞っている状態において、流路空間34と潤滑油路13の下手側と連通するように構成しても構わない。
[その他の実施形態]
(1)上述の実施形態においては、第1所定部位が吸気弁側の弁開閉時期制御装置2である場合について示したが、これに限られるものではない。第1所定部位として、排気弁側の弁開閉時期制御装置、ピストンジェット、ターボチャージャ等のオイル供給部位を適用することも可能である。
(2)上述の実施形態においては、ロック機構27が相対回転位相を最遅角位相に拘束する例を示したが、これに限られるものではない。例えば、最遅角位相と最進角位相との間の中間の位相や、最進角位相に相対回転位相を拘束するロック機構であっても良い。
(3)上述の実施形態におけるロック機構27は、相対回転位相を拘束する一形態を示したに過ぎず、例えば、軸芯X方向に出退するロック部材を備えたロック機構や、ロック部材とロック溝が一対一の関係であるロック機構であっても良い。さらには、ロック機構を備えず、油圧によって、ベーンを流体圧室の端面に押付けて相対回転位相を拘束する構成であっても良い。
(4)上述の実施形態においては、内部ロータ22を進角側に付勢するトーションスプリング23を備えたが、これに限られるものではない。例えば、内部ロータ22を遅角側に付勢するトーションスプリングを備えても良い。
(5)上述の実施形態においては、作動油路14が遅角流路12Bから分岐した油路である例を示したが、これに限られるものではない。例えば、排気弁用の弁開閉時期制御装置とする場合、ロック機構が最遅角位相以外の位相に相対回転位相を拘束する場合、カムトルク変動に基づく変位力とトーションスプリングの付勢力との関係を変更した場合や、ロック機構のロック解除方法を変更した場合には、作動油路14が進角油路12Aに接続されていても良い。又、進角油路と遅角油路との両方にリテーナ作動油路を接続することも考えられる。
(6)上述の実施形態においては、OCV5が、給電されることで遅角制御が可能な状態となり、給電が停止されることで進角制御が可能な状態となる例を示したが、これに限られるものではない。OCVは、給電されることで進角制御が可能な状態となり、給電が停止されることで遅角制御が可能な状態となるよう構成しても良い。
(7)上述の実施形態においては、感温制御部4は、オイルの温度が第2設定温度T2よりも高くなった時に、潤滑油路13を全開放する状態にスプール31を変位させて、その状態に規制するよう構成したが、これに限られるものではない。スプール31による潤滑油路13の絞り度合いは、必要に応じて適宜設定すれば良い。
  1   ポンプ
  2   弁開閉時期制御装置(第1所定部位)
  3   流路面積調節部
  4   感温制御部
  5   OCV(制御弁)
  8   メインギャラリ(第2所定部位)
  11A 吐出油路(第1流路)
  13  潤滑油路(第2流路)
  21  ハウジング(駆動側回転部材)
  22  内部ロータ(従動側回転部材)
  31  スプール
  31a 第1受圧面
  31b 第2受圧面
  31d 壁部
  31e テーパ面
  32  スプリング(付勢部材)
  33  バルブボディ
  33f 傾斜部
  33g 載置面
  41  感温収容部材
  41a 端面
  42  感温本体部
  42a 可動部材
  59  第1環状油路(環状油路)
  61  伝熱油路
  62  戻り油路
  71  配設空間
  72  間隙
  101 カムシャフト

Claims (13)

  1.  エンジンの回転によって駆動されてオイルを吐出するポンプと、
     前記ポンプと第1所定部位とを連通する第1流路と、
     前記第1流路から分岐して前記第1所定部位以外の第2所定部位にオイルを供給する第2流路と、
     前記第2流路に設けられ、前記第2流路の油圧の増大によって前記第2流路の流路面積を増大させ、前記油圧の減少によって前記流路面積を減少させる流路面積調節部と、を備え、
     前記流路面積調節部は、
     第1受圧面と当該第1受圧面よりも面積の小さな第2受圧面とが前記第2流路を挟んで対向するように形成され、前記第2流路の油圧に応じて移動可能なスプールと、
     前記スプールを前記第1受圧面から前記第2受圧面の方向に付勢する付勢部材と、を有して構成される油圧制御装置。
  2.  前記第1受圧面の周縁部に、前記第2受圧面に向かって突出する壁部を設けた請求項1に記載の油圧制御装置。
  3.  前記壁部の先端の内周角部を面取りしてある請求項2に記載の油圧制御装置。
  4.  前記スプールを収容するバルブボディに、前記第2流路を流れるオイルの流れ方向を前記第1受圧面に向ける傾斜部を設けた請求項1~3の何れか1項に記載の油圧制御装置。
  5.  前記付勢部材の付勢力は、前記エンジンのアイドリング時において前記第2流路の油圧により作用する前記第2流路の流路面積を増大させる方向への押圧力よりも大きい請求項1~4の何れか1項に記載の油圧制御装置。
  6.  前記第1所定部位が、クランクシャフトと同期回転する駆動側回転部材、及び、前記駆動側回転部材と同軸状に配置されてカムシャフトと同期回転する従動側回転部材を有し、前記駆動側回転部材に対する前記従動側回転部材の相対回転位相を、オイルの供給又は排出によって変位させる弁開閉時期制御装置である請求項1~5の何れか1項に記載の油圧制御装置。
  7.  オイルの温度が予め定めた第1設定温度よりも低い時又は予め定めた第2設定温度よりも高い時に、前記弁開閉時期制御装置の制御弁を所定の弁位置に切り換え、前記第1流路から前記第2受圧面の背面にオイルが供給され、前記第2流路の流路面積を最大の状態に維持するよう構成されている請求項6に記載の油圧制御装置。
  8.  オイルの温度が予め定めた第2設定温度よりも高い時に、温度上昇によって膨張するサーモワックスを備えた感温制御部が作動し、前記第2流路から前記第2受圧面の背面にオイルが供給され、前記第2流路の流路面積を最大の状態に維持するよう構成されている請求項1~6の何れか1項に記載の油圧制御装置。
  9.  前記感温制御部のうち前記サーモワックスが収容された感温本体部が配置されている配設空間に、前記第2流路からオイルを供給する供給油路を備えた請求項8に記載の油圧制御装置。
  10.  前記配設空間から前記第2流路の下手側にオイルが流通する戻り油路を備えた請求項9に記載の油圧制御装置。
  11.  カップ状の感温収容部材がバルブボディの載置面に配設された前記感温本体部に被せられており、前記感温収容部材の端面と前記載置面との間に間隙が生じるように構成されている請求項10に記載の油圧制御装置。
  12.  前記感温本体部には前記感温収容部材を支持するとともに、前記サーモワックスが膨張すると突出する可動部材が設けられており、前記可動部材の突出に伴って前記感温収容部材が移動すると、前記感温収容部材の外周面に形成された環状油路が前記第2流路と連通して前記第2受圧面の背面にオイルが供給されるよう構成されている請求項11に記載の油圧制御装置。
  13.  前記スプールが最も前記第2流路を絞っている状態において、前記第2流路の上手側を流れるオイルは前記第1受圧面と前記第2受圧面との間に形成される流路空間に流入可能、且つ前記流路空間から前記第2流路の下手側には流出不可能に構成されている請求項10~12の何れか1項に記載の油圧制御装置。
     
PCT/JP2011/061387 2010-09-06 2011-05-18 油圧制御装置 WO2012032813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11823292.5A EP2615268B1 (en) 2010-09-06 2011-05-18 oil pressure control apparatus
US13/816,358 US8640663B2 (en) 2010-09-06 2011-05-18 Oil pressure control apparatus
CN2011900007034U CN203362253U (zh) 2010-09-06 2011-05-18 油压控制装置
JP2012532880A JP5311165B2 (ja) 2010-09-06 2011-05-18 油圧制御装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-198790 2010-09-06
JP2010198790 2010-09-06
JP2010282879 2010-12-20
JP2010-282879 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012032813A1 true WO2012032813A1 (ja) 2012-03-15

Family

ID=45810420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061387 WO2012032813A1 (ja) 2010-09-06 2011-05-18 油圧制御装置

Country Status (5)

Country Link
US (1) US8640663B2 (ja)
EP (1) EP2615268B1 (ja)
JP (1) JP5311165B2 (ja)
CN (1) CN203362253U (ja)
WO (1) WO2012032813A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511535A3 (en) * 2011-04-14 2013-09-18 Aisin Seiki Kabushiki Kaisha Hydraulic control device
WO2014080686A1 (ja) * 2012-11-20 2014-05-30 アイシン精機株式会社 作動油供給装置
JP2015110907A (ja) * 2013-12-06 2015-06-18 大豊工業株式会社 ターボチャージャの潤滑油供給機構

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234824A (zh) * 2014-09-24 2014-12-24 南车成都机车车辆有限公司 一种内燃机车柴油机增压器供油***及其控制方法
CN105736083A (zh) * 2014-12-12 2016-07-06 舍弗勒技术股份两合公司 凸轮轴相位调节器
MX2018001285A (es) 2015-07-31 2018-04-30 Corning Optical Communications LLC Cinta de fibra optica enrollable.
EP3225799A1 (en) * 2016-04-01 2017-10-04 HUSCO Automotive Holdings LLC Pilot operated piston oil cooling jet control valve
SE541810C2 (en) 2016-05-24 2019-12-17 Scania Cv Ab Variable cam timing phaser having two central control valves
SE539977C2 (en) * 2016-06-08 2018-02-20 Scania Cv Ab Variable cam timing phaser utilizing hydraulic logic element
SE539979C2 (en) 2016-06-08 2018-02-20 Scania Cv Ab Rotational hydraulic logic device and variable cam timing phaser utilizing such a device
SE539980C2 (en) 2016-06-08 2018-02-20 Scania Cv Ab Variable cam timing phaser utilizing series-coupled check valves
DK179749B1 (en) * 2016-06-30 2019-05-07 Danfoss A/S CONTROL OF FLOW REGULATING DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378462U (ja) * 1976-11-30 1978-06-29
JPS55152973A (en) * 1979-05-16 1980-11-28 Toshiba Corp Oil hydraulic pressure control valve
JPS59180061U (ja) * 1983-05-18 1984-12-01 株式会社 広瀬製作所 温度補償付絞り弁
JPH06147353A (ja) * 1992-11-05 1994-05-27 Unisia Jecs Corp 液圧制御弁
JPH0742401U (ja) * 1993-12-27 1995-08-04 いすゞ自動車株式会社 動弁機構の潤滑装置
JPH119910A (ja) * 1997-06-24 1999-01-19 Nippon Soken Inc 内燃機関の潤滑油圧回路
JP2009299573A (ja) 2008-06-12 2009-12-24 Aisin Seiki Co Ltd 車両用オイル供給装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930266B2 (ja) 2007-08-08 2012-05-16 トヨタ自動車株式会社 内燃機関の油圧制御装置
WO2010143265A1 (ja) * 2009-06-09 2010-12-16 トヨタ自動車株式会社 内燃機関の制御装置
JP5582342B2 (ja) 2009-09-24 2014-09-03 アイシン精機株式会社 車両用オイル供給装置
JP5471231B2 (ja) * 2009-09-24 2014-04-16 アイシン精機株式会社 車両用オイル供給装置
JP2011080430A (ja) 2009-10-08 2011-04-21 Hitachi Automotive Systems Ltd 制御弁と該制御弁が用いられた可変容量形ポンプ、並びに内燃機関の油圧回路
JP5471675B2 (ja) 2010-03-23 2014-04-16 アイシン精機株式会社 オイル圧制御装置
JP5783407B2 (ja) 2011-04-14 2015-09-24 アイシン精機株式会社 油圧制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378462U (ja) * 1976-11-30 1978-06-29
JPS55152973A (en) * 1979-05-16 1980-11-28 Toshiba Corp Oil hydraulic pressure control valve
JPS59180061U (ja) * 1983-05-18 1984-12-01 株式会社 広瀬製作所 温度補償付絞り弁
JPH06147353A (ja) * 1992-11-05 1994-05-27 Unisia Jecs Corp 液圧制御弁
JPH0742401U (ja) * 1993-12-27 1995-08-04 いすゞ自動車株式会社 動弁機構の潤滑装置
JPH119910A (ja) * 1997-06-24 1999-01-19 Nippon Soken Inc 内燃機関の潤滑油圧回路
JP2009299573A (ja) 2008-06-12 2009-12-24 Aisin Seiki Co Ltd 車両用オイル供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615268A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511535A3 (en) * 2011-04-14 2013-09-18 Aisin Seiki Kabushiki Kaisha Hydraulic control device
US9291283B2 (en) 2011-04-14 2016-03-22 Aisin Seiki Kabushiki Kaisha Hydraulic control device
WO2014080686A1 (ja) * 2012-11-20 2014-05-30 アイシン精機株式会社 作動油供給装置
JP2014101809A (ja) * 2012-11-20 2014-06-05 Aisin Seiki Co Ltd 作動油供給装置
US9556765B2 (en) 2012-11-20 2017-01-31 Aisin Seiki Kabushiki Kaisha Hydraulic oil supply apparatus
JP2015110907A (ja) * 2013-12-06 2015-06-18 大豊工業株式会社 ターボチャージャの潤滑油供給機構

Also Published As

Publication number Publication date
US8640663B2 (en) 2014-02-04
JPWO2012032813A1 (ja) 2014-01-20
US20130139916A1 (en) 2013-06-06
JP5311165B2 (ja) 2013-10-09
CN203362253U (zh) 2013-12-25
EP2615268B1 (en) 2016-03-09
EP2615268A4 (en) 2013-08-21
EP2615268A1 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5311165B2 (ja) 油圧制御装置
US7444971B2 (en) Valve timing control apparatus of internal combustion engine
JP5471675B2 (ja) オイル圧制御装置
JP5516938B2 (ja) 弁開閉時期制御装置
JP5403341B2 (ja) 弁開閉時期制御装置
EP2472074B1 (en) Valve timing control apparatus
JP4459892B2 (ja) バルブタイミング調整装置
US8925506B2 (en) Valve timing control apparatus of internal combustion engine
JP5376227B2 (ja) 弁開閉時期制御装置
US8789504B2 (en) Camshaft adjuster
JP5783407B2 (ja) 油圧制御装置
JP4997182B2 (ja) 内燃機関のバルブタイミング制御装置
JP3807314B2 (ja) バルブタイミング調整装置
JP4950949B2 (ja) 内燃機関のバルブタイミング制御装置
JP5516970B2 (ja) 油圧制御装置
JP4932761B2 (ja) 内燃機関のバルブタイミング制御装置
JP5067628B2 (ja) 弁開閉時期制御装置
JP5780415B2 (ja) 油圧制御装置
JP5574205B2 (ja) 弁開閉時期制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000703.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13816358

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011823292

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012532880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE