WO2012014671A1 - 中性子線照射装置及び中性子線照射装置の制御方法 - Google Patents

中性子線照射装置及び中性子線照射装置の制御方法 Download PDF

Info

Publication number
WO2012014671A1
WO2012014671A1 PCT/JP2011/065885 JP2011065885W WO2012014671A1 WO 2012014671 A1 WO2012014671 A1 WO 2012014671A1 JP 2011065885 W JP2011065885 W JP 2011065885W WO 2012014671 A1 WO2012014671 A1 WO 2012014671A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron beam
charged particle
neutron
irradiation
particle beam
Prior art date
Application number
PCT/JP2011/065885
Other languages
English (en)
French (fr)
Inventor
俊典 密本
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45529887&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012014671(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2012526410A priority Critical patent/JP5410608B2/ja
Priority to CN201180034103.4A priority patent/CN102985981B/zh
Priority to EP11812263.9A priority patent/EP2600356B1/en
Publication of WO2012014671A1 publication Critical patent/WO2012014671A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1078Fixed beam systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/068Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements specially adapted for particle beams

Definitions

  • the present invention relates to a neutron beam irradiation apparatus and a control method thereof.
  • boron neutron capture therapy (BNCT: BoronNCT) which performs cancer treatment by irradiation of neutron rays as one of the radiotherapy in cancer treatment.
  • BNCT apparatus a neutron beam irradiation apparatus for performing this boron neutron capture therapy.
  • a proton beam charged particle beam
  • an accelerator such as a cyclotron, and beryllium or the like.
  • a neutron beam is generated by irradiating a target with a proton beam, and the irradiated object such as a patient is irradiated with the generated neutron beam.
  • the neutron beam irradiation apparatus for example, a gold wire for neutron beam measurement is attached in advance to the irradiated object, and the gold wire is removed during irradiation of the neutron beam to measure the activation amount of the gold wire.
  • the irradiation dose of the neutron beam during the irradiation is measured.
  • the neutron beam irradiation apparatus is controlled (for example, stopped) so that the irradiated object is irradiated with the neutron beam with the planned irradiation dose.
  • the neutron irradiation dose rate fluctuates after measuring the activation amount of the gold wire for some reason, the fluctuation cannot be sufficiently dealt with, and the neutron beam can be used at the planned irradiation dose. May be difficult to irradiate the irradiated object. Therefore, in the said neutron beam irradiation apparatus, improving the precision of the irradiation dose of the neutron beam irradiated to a to-be-irradiated body is calculated
  • an object of the present invention is to provide a neutron beam irradiation apparatus that can improve the accuracy of the neutron beam irradiation dose, and a control method thereof.
  • the present inventors have conducted intensive studies.As a result, in the neutron beam irradiation apparatus, when irradiating the irradiated object with neutron beams, if the irradiation dose of neutron beams can be grasped online, for example, It was found that the accuracy of the neutron dose can be improved by adapting to changes in the neutron dose rate. Since there is a certain correlation between the charged particle beam dose rate and the neutron beam dose rate, the dose of the charged particle beam to the target can be measured sequentially during the neutron beam irradiation. Thus, the present inventors have completed the present invention by conceiving that the irradiation dose of neutron beams can be suitably grasped online using such correlation.
  • a neutron beam irradiation apparatus is a neutron beam irradiation apparatus that irradiates an irradiated object with a neutron beam, a charged particle beam generating unit that generates a charged particle beam, and a charged particle beam target Neutron beam generating means for generating a neutron beam by irradiating and a measuring means for measuring the irradiation dose of the charged particle beam in real time during irradiation of the neutron beam.
  • the irradiation dose of charged particle beam is measured in real time during the irradiation of neutron beam. Therefore, for the reasons described above, it becomes possible to properly grasp the irradiation dose of neutron beam online. As a result, it becomes possible to improve the accuracy of the neutron irradiation dose.
  • the neutron irradiation is controlled in accordance with the neutron irradiation dose obtained online.
  • a conversion unit that converts the irradiation dose of the charged particle beam measured by the measuring means into the irradiation dose of the neutron beam.
  • a display that displays the irradiation dose of the neutron beam converted by the conversion unit
  • There may be a means. By providing the display means, a doctor or an operator can grasp the irradiation dose of the neutron beam being irradiated.
  • a neutron beam irradiation apparatus is a neutron beam irradiation apparatus that irradiates an irradiated object with a neutron beam, and includes a charged particle beam generating unit that generates a charged particle beam, and a charged particle beam.
  • a neutron beam generating means for generating a neutron beam by irradiating the target, and a measuring means for measuring the irradiation dose of the neutron beam in real time during the neutron beam irradiation are provided.
  • a control method for a neutron beam irradiation apparatus includes a charged particle beam generating unit that generates a charged particle beam, and a neutron beam that generates a neutron beam by irradiating the target with the charged particle beam.
  • a control step of controlling irradiation of the neutron beam to the irradiated object based on the irradiation dose of the charged particle beam measured in the measurement step is preferable to include a control step of controlling irradiation of the neutron beam to the irradiated object based on the irradiation dose of the charged particle beam measured in the measurement step.
  • the irradiation of neutron beams is controlled according to the irradiation dose of neutron beams that is suitably grasped online.
  • it may include a conversion process that converts the irradiation dose of the charged particle beam measured in the measurement process into the irradiation dose of the neutron beam. At this time, the irradiation dose of the neutron beam converted in the conversion process is displayed.
  • a display process may be included. Through the display process, the doctor or operator can grasp the irradiation dose of the neutron beam being irradiated.
  • upstream and downstream mean upstream (cyclotron side) and downstream (irradiated body side) of the emitted charged particle beam and neutron beam, respectively.
  • FIG. 1 is a diagram illustrating a configuration of a neutron beam irradiation apparatus according to an embodiment
  • FIG. 2 is a schematic perspective view illustrating a neutron beam generation unit in the neutron beam irradiation apparatus of FIG.
  • the neutron beam irradiation apparatus 1 is an apparatus used for performing cancer treatment using neutron capture therapy, for example, and irradiates an irradiated body 40 such as a patient with a neutron beam N. .
  • the neutron beam irradiation apparatus 1 includes a cyclotron 10, and the cyclotron 10 accelerates charged particles such as protons to generate a proton beam (proton beam) as a charged particle beam P.
  • the charged particle beam P emitted from the cyclotron 10 includes a horizontal steering 12, a four-direction slit 14, a horizontal vertical steering 16, a quadrupole electromagnet 18, 19, 20, a 90-degree deflection electromagnet 22, a quadrupole electromagnet 24,
  • the light passes through the horizontal / vertical steering 26, the quadrupole electromagnet 28, the four-direction slit 30, the current monitor 32, and the charged particle beam scanning unit 34 sequentially, and is guided to the neutron beam generation unit 36.
  • the charged particle beam P is irradiated to the target T in the neutron beam generation unit 36, whereby a neutron beam N is generated.
  • the neutron beam N is irradiated to the to-be-irradiated body 40 on the treatment table 38.
  • the horizontal steering 12 and the horizontal / vertical steering 16 and 26 suppress the divergence of the beam of the charged particle beam P using, for example, an electromagnet.
  • the quadrupole electromagnets 18, 19, 20, 24, and 28 adjust the beam axis of the charged particle beam P using, for example, an electromagnet.
  • the four-direction slits 14 and 30 perform beam shaping of the charged particle beam P by cutting off the end beam.
  • the 90 degree deflection electromagnet 22 deflects the traveling direction of the charged particle beam P by 90 degrees.
  • the 90-degree deflection electromagnet 22 is provided with a switching unit 42, and the switching unit 42 can remove the charged particle beam P from the normal trajectory and guide it to the beam dump 44.
  • the beam dump 44 confirms the output of the charged particle beam P before treatment or the like.
  • the current monitor 32 measures the current value of the charged particle beam P irradiated to the target T (that is, charge, irradiation dose rate) in real time.
  • a non-destructive DCCT DC Current Transformer
  • a controller 100 described later is connected to the current monitor 32.
  • Dose rate means a dose per unit time (the same applies hereinafter).
  • the charged particle beam scanning unit 34 scans the charged particle beam P and controls irradiation of the charged particle beam P to the target T.
  • the charged particle beam scanning unit 34 here controls, for example, the irradiation position of the charged particle beam P with respect to the target T, the beam diameter of the charged particle beam P, and the like.
  • the neutron beam generator 36 generates a neutron beam N by irradiating the target T with a charged particle beam P, and emits the neutron beam N through a collimator 46.
  • the neutron beam generating unit 36 covers the target T disposed at the downstream end of the beam duct 48 through which the charged particle beam P passes, the moderator 50 that decelerates the neutron beam N generated by the target T, and so on.
  • a shielding body 52 provided in the housing.
  • the target T generates a neutron beam N when irradiated with the charged particle beam P.
  • the target T here is made of beryllium (Be), for example, and has a disk shape with a diameter of 160 mm.
  • the moderator 50 decelerates the energy of the neutron beam N, and has, for example, a laminated structure made of a plurality of different materials.
  • the shield 52 shields the generated neutron beam N and gamma rays generated by the generation of the neutron beam N so as not to be emitted to the outside, and is attached to the floor 54.
  • the neutron beam irradiation apparatus 1 includes the current monitor 32 capable of measuring the current value of the charged particle beam P in real time as described above, and the controller 100 is connected to the current monitor 32. Yes.
  • the current monitor 32 is provided between the cyclotron 10 and the neutron beam generator 36 in the beam path of the charged particle beam P. Specifically, the current monitor 32 here measures the irradiation dose of the charged particle beam P irradiated to the target T with high accuracy, so that the adverse effect of the 90-degree deflecting electromagnet 22 is eliminated. It is provided between the 90-degree deflection electromagnet 22 and the neutron beam generator 36 in the beam path.
  • the current monitor 32 of the present embodiment is more preferably disposed downstream of the beam path of the charged particle beam P (that is, on the neutron beam generation unit 36 side) and immediately before the charged particle beam scanning unit 34. ing.
  • the charged particle beam scanning unit 34 scans the target T with the charged particle beam P
  • a large current monitor 32 is required to dispose the current monitor 32 on the downstream side of the charged particle beam scanning unit 34.
  • the current monitor 32 can be reduced in size by disposing the current monitor 32 upstream of the charged particle beam scanning unit 34.
  • the controller 100 includes a control unit 102 and a display unit 104.
  • the control unit 102 obtains the irradiation dose of the neutron beam N from the current value of the charged particle beam P measured by the current monitor 32, and controls the irradiation of the neutron beam N based on the irradiation dose.
  • the display unit 104 displays the irradiation dose of the neutron beam N obtained by the control unit 102. For example, a display or a monitor is used.
  • the current monitor 32 and the controller 100 cause a proportional relationship between the current value of the charged particle beam P and the irradiation dose rate of the neutron beam N (see FIG. 3).
  • control control method
  • the charged particle beam P is detected by the current monitor 32. Measure the current value in real time.
  • the control unit 102 sequentially integrates the measured current value of the charged particle beam P with respect to time, and measures the irradiation dose of the charged particle beam P in real time.
  • the irradiation dose of the charged particle beam P is converted into the irradiation dose of the neutron beam N according to the following equation (1).
  • the irradiation dose of the neutron beam N is calculated from the irradiation dose of the charged particle beam P. Thereby, during irradiation with the neutron beam N, the irradiation dose is measured online.
  • I Current value of charged particle beam
  • the irradiation dose of the converted neutron beam N is displayed on the display unit 104, and the irradiation dose of the neutron beam N is notified to an operator such as a doctor.
  • the control unit 102 stops the function of the cyclotron 10, for example, and stops the generation of the charged particle beam P. Then, the generation of the neutron beam N and the irradiation to the irradiated object 40 are stopped.
  • the irradiation dose of the neutron beam N is measured online in real time by measuring the irradiation dose of the charged particle beam P before irradiating the target T instead of directly measuring the neutron beam N itself. It becomes possible to measure and grasp suitably (in real time). As a result, for example, even if the irradiation dose rate fluctuates during irradiation with the neutron beam N, it is possible to reliably and accurately irradiate the irradiated object 40 with the neutron beam N having an irradiation dose corresponding to the planned value in response to the fluctuation. It becomes possible.
  • the irradiation time is lengthened, and conversely, when it has been detected that the irradiation dose rate has increased during irradiation with the neutron beam N
  • the accuracy of the irradiation dose of the neutron beam N can be improved.
  • the irradiation dose of the neutron beam N can be grasped online, there is no need to temporarily stop the irradiation of the neutron beam N in grasping the irradiation dose of the neutron beam N as in the prior art. Moreover, since the irradiation dose of the neutron beam N is insufficient, re-irradiation can be suppressed. Therefore, according to the present embodiment, it is possible to shorten the treatment time (time until the end of irradiation) and improve the apparatus operating efficiency.
  • the function of the cyclotron 10 is stopped by the control unit 102.
  • the control unit 102 not only performs control to stop the irradiation of the neutron beam N, but also applies the irradiation of the neutron beam N according to the irradiation dose of the charged particle beam P measured on-line and, consequently, the irradiation dose of the neutron beam N. You may control irradiation of the neutron beam N so that a dose rate may become large or may become small. In short, the control unit 102 may control irradiation of the irradiated object 40 with the neutron beam N based on the irradiation dose of the charged particle beam P.
  • the charged particle beam scanning unit 34 in the charged particle beam scanning unit 34 ensures that the charged particle beam P hits the target T, for example, before actually irradiating the irradiated body 40 with the neutron beam N.
  • the above proportional relationship (linear relationship) between the current value of the charged particle beam P and the irradiation dose rate of the neutron beam N may be calibrated in advance.
  • the cyclotron 10 constitutes charged particle beam generation means
  • the neutron beam generation unit 36 constitutes neutron beam generation means.
  • the current monitor 32 and the control unit 102 constitute a measurement unit
  • the control unit 102 constitutes a control unit and a conversion unit
  • the display unit 104 constitutes a display unit.
  • the target T is not limited to beryllium, and tantalum (Ta), tungsten (W), or the like may be used.
  • the current value of the charged particle beam P is measured in real time using the current monitor 32.
  • the present invention is not limited to this.
  • the current value of the charged particle beam P is changed as follows. Real-time measurement may be performed.
  • the beam duct 48 (see FIG. 2) connected to the neutron beam generation unit 36 is connected to the downstream (target T side) beam duct 48x and the upstream side. It is divided into a beam duct 48y.
  • An annular spacer 56 formed of an insulator such as ceramic is interposed between the beam ducts 48x and 48y, whereby the downstream beam duct 48x is electrically insulated from other parts. It has become.
  • the charged particle beam P is irradiated on the target T, and the current generated in the target T and flowing from the target T to the downstream beam duct 48x is measured by the ammeter 58, whereby the target T is irradiated.
  • the irradiation dose of the charged particle beam P may be measured in real time. Note that the relationship between the current flowing through the downstream beam duct 48x and the irradiation dose of the charged particle beam P irradiated to the target T is obtained in advance.
  • the irradiation dose of the charged particle beam P is measured in real time, and the irradiation dose of this charged particle beam P according to said (1) Formula.
  • the irradiation value of the charged particle beam P may be calculated by converting the current value of the charged particle beam P into the irradiation dose rate of the neutron beam N and integrating the irradiation dose rate of the neutron beam N with respect to time. .
  • the current value of the charged particle beam P is substantially integrated, and the irradiation dose of the charged particle beam P is measured in real time.
  • the charged particles are accelerated using the cyclotron 10, but the accelerator is not limited to the cyclotron, and other accelerators such as a synchrotron, a synchrocyclotron, and a linac may be used.
  • the charged particle beam P is deflected by 90 degrees using the 90-degree deflecting electromagnet 22, but the 90-degree deflecting magnet is not used and the neutron beam is transmitted from the cyclotron 10 on the beam path of the charged particle beam P.
  • Each part may be installed in a straight line up to the generation unit 36.
  • the irradiation of the neutron beam N is automatically stopped by the control unit 102 when the calculated irradiation dose of the neutron beam N reaches the planned value.
  • the irradiation dose of the neutron beam N displayed in the above may be confirmed, and the operator may manually operate to stop the irradiation of the neutron beam N.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

 被照射体へ中性子線を照射する中性子線照射装置であって、荷電粒子線を生成する荷電粒子線生成手段と、荷電粒子線をターゲットに照射することにより、中性子線を生成する中性子線生成手段と、中性子線の照射中に荷電粒子線の照射線量をリアルタイムで測定するための測定手段と、を備えている。

Description

中性子線照射装置及び中性子線照射装置の制御方法
 本発明は、中性子線照射装置及びその制御方法に関する。
 がん治療等における放射線治療の1つとして、中性子線の照射によりがん治療を行う硼素中性子捕捉療法(BNCT:BoronNCT)がある。従来、この硼素中性子捕捉療法を行うための中性子線照射装置(BNCT装置)が開発されており、例えば特許文献1には、サイクロトロン等の加速器で陽子線(荷電粒子線)を生成し、ベリリウム等のターゲットに陽子線を照射することにより中性子線を生成し、生成した中性子線を患者等の被照射体へ照射するものが開示されている。
特開2004-233168号公報
 ここで、上記中性子線照射装置では、例えば被照射体に対して中性子線測定用の金線を予め貼り付け、中性子線の照射途中に金線を取り外して当該金線の放射化量を測定することにより、照射途中での中性子線の照射線量を測定する。そして、この測定した照射線量に基づき、計画通りの照射線量で中性子線が被照射体に照射されるよう中性子線照射装置を制御(例えば、停止等)することが図られている。
 しかしこの場合、例えば、何らかの理由によって金線の放射化量測定後に中性子線の照射線量率が変動してしまうと、かかる変動に充分に対応することができず、計画通りの照射線量で中性子線を被照射体に照射することが困難となるおそれがある。そのため、上記中性子線照射装置においては、被照射体に照射する中性子線の照射線量の精度を向上させることが求められている。
 そこで、本発明は、中性子線の照射線量の精度を向上できる中性子線照射装置、及びその制御方法を提供することを課題とする。
 上記課題を解決するため、本発明者らは鋭意検討を重ねた結果、上記中性子線照射装置においては、被照射体に中性子線を照射する際、中性子線の照射線量をオンラインで把握できれば、例えば中性子線の照射線量率の変動にも対応させ、中性子線の照射線量の精度を向上可能となることを見出した。そして、荷電粒子線の照射線量率と中性子線の照射線量率との間には一定の相関関係があることから、中性子線の照射中にて荷電粒子線のターゲットへの照射線量を逐次測定すれば、かかる相関関係を利用して中性子線の照射線量をオンラインで好適に把握できることに想到し、本発明を完成するに至った。
 すなわち、本発明の一側面に係る中性子線照射装置は、被照射体へ中性子線を照射する中性子線照射装置であって、荷電粒子線を生成する荷電粒子線生成手段と、荷電粒子線をターゲットに照射することにより、中性子線を生成する中性子線生成手段と、中性子線の照射中に荷電粒子線の照射線量をリアルタイムで測定するための測定手段と、を備えたことを特徴とする。
 この中性子線照射装置では、中性子線の照射中に荷電粒子線の照射線量がリアルタイムで測定されるため、上述した理由から、中性子線の照射線量をオンラインで好適に把握することが可能となり、その結果、中性子線の照射線量の精度を向上することが可能となる。
 また、測定手段により測定された荷電粒子線の照射線量に基づいて、被照射体への中性子線の照射を制御することが好ましい。この場合、オンラインで把握された中性子線の照射線量に応じて、中性子線の照射が制御されることとなる。
 また、測定手段により測定された荷電粒子線の照射線量を中性子線の照射線量に変換する変換部を備えた場合があり、このとき、変換部により変換された中性子線の照射線量を表示する表示手段を備えた場合がある。表示手段を備えることにより、医師やオペレータが照射中の中性子線の照射線量を把握することができる。
 また、本発明の他の側面に係る中性子線照射装置は、被照射体へ中性子線を照射する中性子線照射装置であって、荷電粒子線を生成する荷電粒子線生成手段と、荷電粒子線をターゲットに照射することにより、中性子線を生成する中性子線生成手段と、中性子線の照射中に当該中性子線の照射線量をリアルタイムで測定するための測定手段と、を備えたことを特徴とする。
 この中性子線照射装置では、中性子線の照射線量がオンラインで好適に把握されるため、上述した理由から、中性子線の照射線量の精度を向上することが可能となる。
 また、本発明のさらに他の側面に係る中性子線照射装置の制御方法は、荷電粒子線を生成する荷電粒子線生成手段と、荷電粒子線をターゲットに照射することにより中性子線を生成する中性子線生成手段と、を備え、被照射体へ中性子線を照射する中性子線照射装置の制御方法であって、荷電粒子線の照射線量をリアルタイムで測定する測定工程を含むことを特徴とする。
 この中性子線照射装置の制御方法においても、荷電粒子線の照射線量がリアルタイムで測定されるため、上述した理由から、中性子線の照射線量をオンラインで好適に把握することが可能となり、その結果、中性子線の照射線量の精度を向上することが可能となる。
 また、測定工程にて測定された荷電粒子線の照射線量に基づいて、被照射体への中性子線の照射を制御する制御工程を含むことが好ましい。この場合、オンラインで好適に把握された中性子線の照射線量に応じて、中性子線の照射が制御されることとなる。
 また、測定工程にて測定された荷電粒子線の照射線量を中性子線の照射線量に変換する変換工程を含む場合があり、このとき、変換工程にて変換された中性子線の照射線量を表示する表示工程を含む場合がある。表示工程により、医師やオペレータが照射中の中性子線の照射線量を把握することができる。
 本発明によれば、中性子線の照射線量の精度を向上することが可能となる。
一実施形態に係る中性子線照射装置の構成を示す図である。 図1の中性子線照射装置における中性子線生成部を示す概略斜視図である。 荷電粒子線の照射線量率と中性子線の照射線量率との関係を示すグラフである。 変形例に係る測定手段を示す図である。
 以下、図面を参照して好適な実施形態について詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を付し、重複する説明を省略する。また、「上流」「下流」の語は、出射する荷電粒子線及び中性子線の上流(サイクロトロン側)、下流(被照射体側)をそれぞれ意味している。
 図1は、一実施形態に係る中性子線照射装置の構成を示す図であり、図2は、図1の中性子線照射装置における中性子線生成部を示す概略斜視図である。図1に示すように、中性子線照射装置1は、例えば、中性子捕捉療法を用いたがん治療などを行うために用いられる装置であり、患者等の被照射体40へ中性子線Nを照射する。
 この中性子線照射装置1は、サイクロトロン10を備え、サイクロトロン10は、陽子等の荷電粒子を加速して、陽子線(陽子ビーム)を荷電粒子線Pとして作り出す。ここでのサイクロトロン10は、例えば、ビーム半径40mm、60kW(=30MeV×2mA)の荷電粒子線Pを生成する能力を有している。
 サイクロトロン10から出射された荷電粒子線Pは、水平型ステアリング12、4方向スリット14、水平垂直型ステアリング16、四重極電磁石18,19,20、90度偏向電磁石22、四重極電磁石24、水平垂直型ステアリング26、四重極電磁石28、4方向スリット30、電流モニタ32、荷電粒子線走査部34を順次に通過し、中性子線生成部36に導かれる。この荷電粒子線Pは、中性子線生成部36においてターゲットTに照射され、これにより、中性子線Nが発生される。そして、中性子線Nは、治療台38上の被照射体40へ照射される。
 水平型ステアリング12、水平垂直型ステアリング16,26は、例えば電磁石を用いて荷電粒子線Pのビームの発散を抑制するものである。同様に、四重極電磁石18,19,20,24,28は、例えば電磁石を用いて荷電粒子線Pのビーム軸調整を行うものである。4方向スリット14,30は、端のビームを切ることにより、荷電粒子線Pのビーム整形を行うものである。
 90度偏向電磁石22は、荷電粒子線Pの進行方向を90度偏向するものである。なお、90度偏向電磁石22には、切替部42が設けられており、切替部42によって荷電粒子線Pを正規の軌道から外してビームダンプ44に導くことが可能になっている。ビームダンプ44は、治療前などにおいて荷電粒子線Pの出力確認を行う。
 電流モニタ32は、ターゲットTに照射される荷電粒子線Pの電流値(つまり、電荷,照射線量率)をリアルタイムで測定するものである。電流モニタ32は、荷電粒子線Pに影響を与えずに電流測定可能な非破壊型のDCCT(DC Current Transformer)が用いられている。この電流モニタ32には、後述のコントローラ100が接続されている。なお、「線量率」とは、単位時間当たりの線量を意味する(以下、同じ)。
 荷電粒子線走査部34は、荷電粒子線Pを走査し、ターゲットTに対する荷電粒子線Pの照射制御を行うものである。ここでの荷電粒子線走査部34は、例えば、荷電粒子線PのターゲットTに対する照射位置や、荷電粒子線Pのビーム径等を制御する。
 中性子線生成部36は、図2に示すように、荷電粒子線PをターゲットTに照射することにより中性子線Nを発生させ、該中性子線Nをコリメータ46を介して出射する。中性子線生成部36は、荷電粒子線Pを通すビームダクト48の下流端部に配設されたターゲットTと、ターゲットTで発生された中性子線Nを減速させる減速材50と、これらを覆うように設けられた遮蔽体52と、を含んで構成されている。
 ターゲットTは、荷電粒子線Pの照射を受けて中性子線Nを発生するものである。ここでのターゲットTは、例えば、ベリリウム(Be)により形成され、直径160mmの円板状を成している。減速材50は、中性子線Nのエネルギを減速させるものであり、例えば異なる複数の材料から成る積層構造とされている。遮蔽体52は、発生させた中性子線N、及び当該中性子線Nの発生に伴って生じたガンマ線等を外部へ放出されないよう遮蔽するものであり、床54に取り付けられている。
 図1に戻り、中性子線照射装置1にあっては、上述したように、荷電粒子線Pの電流値をリアルタイムで測定可能な電流モニタ32を備え、この電流モニタ32にコントローラ100が接続されている。
 電流モニタ32は、荷電粒子線Pのビーム経路において、サイクロトロン10と中性子線生成部36との間に設けられている。具体的には、ここでの電流モニタ32は、ターゲットTに照射される荷電粒子線Pの照射線量を精度よく測定するため、90度偏向電磁石22による悪影響を排除すべく、荷電粒子線Pのビーム経路において90度偏向電磁石22と中性子線生成部36との間に設けられている。特に、本実施形態の電流モニタ32は、より好ましいとして、荷電粒子線Pのビーム経路の下流側(つまり、中性子線生成部36側)であって荷電粒子線走査部34の直前に配設されている。荷電粒子線走査部34はターゲットTに対して荷電粒子線Pを走査するため、電流モニタ32を荷電粒子線走査部34よりも下流側に配設するには大型の電流モニタ32が必要となる。これに対し、電流モニタ32を荷電粒子線走査部34よりも上流側に配設することで、電流モニタ32を小型化することができる。
 コントローラ100は、制御部102と、表示部104と、を含んで構成されている。制御部102は、電流モニタ32により測定された荷電粒子線Pの電流値から中性子線Nの照射線量を求め、該照射線量に基づき中性子線Nの照射を制御するものであり、例えばCPU、ROM及びRAM等により構成されている。表示部104は、制御部102で求められた中性子線Nの照射線量を表示するものであり、例えばディスプレイやモニタが用いられている。
 ここで、本実施形態の中性子線照射装置1では、電流モニタ32及びコントローラ100により、例えば荷電粒子線Pの電流値と中性子線Nの照射線量率との間の比例関係(図3参照)を利用し、以下の制御(制御方法)を実行する。
 すなわち、サイクロトロン10から出射された荷電粒子線PがターゲットTへ照射され、ターゲットTで生成された中性子線Nが被照射体40に照射されている最中において、電流モニタ32によって荷電粒子線Pの電流値をリアルタイムで測定する。これと共に、制御部102によって、測定された荷電粒子線Pの電流値を時間に関して逐次積分し、荷電粒子線Pの照射線量をリアルタイムで測定する。併せて、この荷電粒子線Pの照射線量を、下記(1)式に従って中性子線Nの照射線量へ変換する。つまり、荷電粒子線Pの照射線量から中性子線Nの照射線量を算出する。これにより、中性子線Nの照射中に、その照射線量がオンラインで測定されることとなる。
       中性子線の照射線量 ∝ ∫I(t)dt  …(1)
 但し、I:荷電粒子線の電流値
 続いて、変換された中性子線Nの照射線量を表示部104にて表示させ、当該中性子線Nの照射線量を医師等のオペレータに報知する。そして、算出された中性子線Nの照射線量が計画値(照射を予定する所定の照射線量)に達したとき、制御部102により例えばサイクロトロン10の機能を停止させて荷電粒子線Pの生成を停止し、中性子線Nの生成及び被照射体40への照射を停止させる。
 以上、本実施形態においては、中性子線Nそのものを直接測定するのではなく、ターゲットTに照射する前の荷電粒子線Pの照射線量をリアルタイムで測定することで、中性子線Nの照射線量をオンライン(リアルタイム)で好適に測定し把握することが可能となる。その結果、例えば中性子線Nの照射中に照射線量率が変動したとしても、かかる変動に対応させ、計画値分の照射線量の中性子線Nを被照射体40に確実且つ精度よく照射することが可能となる。すなわち、中性子線Nの照射中に照射線量率が低くなったことを検出した場合には照射時間を長くし、逆に中性子線Nの照射中に照射線量率が高くなったことを検出した場合には照射時間を短くすることで、計画値分の照射線量の中性子線Nを確実且つ精度よく照射することが可能となる。よって、本実施形態によれば、中性子線Nの照射線量の精度を向上させることができる。
 また、このように本実施形態では、中性子線Nの照射線量をオンラインで把握できることから、従来のように、中性子線Nの照射線量を把握するに当たって中性子線Nの照射を一旦停止させる必要もなく、また、中性子線Nの照射線量が足りないために再照射することも抑制できる。よって、本実施形態によれば、治療時間(照射終了に至るまでの時間)を短縮させることが可能となり、装置稼動効率を向上させることができる。
 なお、本実施形態では、制御部102によってサイクロトロン10の機能を停止させたが、荷電粒子線Pのビーム経路上に設けられたシャッタ等を可動して荷電粒子線Pの照射を遮断してもよく、中性子線Nの照射を停止できればよい。さらに、制御部102は、中性子線Nの照射を停止させる制御を行うだけでなく、オンラインで測定された荷電粒子線Pの照射線量ひいては中性子線Nの照射線量に応じて、中性子線Nの照射線量率を大きくなるように又は小さくなるように中性子線Nの照射を制御してもよい。要は、制御部102は、荷電粒子線Pの照射線量に基づいて、被照射体40への中性子線Nの照射を制御すればよい。
 ちなみに、本実施形態では、好ましいとして、中性子線Nを実際に被照射体40に照射する前に、例えばターゲットTに対し荷電粒子線Pが確実に当たるよう荷電粒子線走査部34で荷電粒子線Pを走査する等によって、荷電粒子線Pの電流値と中性子線Nの照射線量率との上記比例関係(線形関係)を予め校正する場合がある。
 以上において、サイクロトロン10が荷電粒子線生成手段を構成し、中性子線生成部36が中性子線生成手段を構成する。電流モニタ32及び制御部102が測定手段を構成し、制御部102が制御手段及び変換部を構成し、表示部104が表示手段を構成する。
 以上、本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。
 例えば、ターゲットTとしては、ベリリウムに限定されず、タンタル(Ta)やタングステン(W)等を用いてもよい。また、上記実施形態では、電流モニタ32を用いて荷電粒子線Pの電流値をリアルタイム測定しているが、これに限定されるものではなく、例えば以下のように荷電粒子線Pの電流値をリアルタイム測定してもよい。
 図4に示すように、変形例に係る中性子線照射装置では、中性子線生成部36に接続される上記ビームダクト48(図2参照)が、下流側(ターゲットT側)ビームダクト48xと上流側ビームダクト48yとに分けられている。そして、これらビームダクト48x,48yの間には、セラミック等の絶縁体で形成された環状のスペーサ56が介在され、これにより、下流側ビームダクト48xは、他の部位に対して電気的に絶縁化されている。この状態において、荷電粒子線PがターゲットTに照射されることでターゲットTにて生じ当該ターゲットTから下流側ビームダクト48xに流れる電流を電流計58で測定することにより、ターゲットTに照射される荷電粒子線Pの照射線量をリアルタイムで測定してもよい。なお、下流側ビームダクト48xに流れる電流とターゲットTに照射される荷電粒子線Pの照射線量との関係は、予め求めておく。
 また、上記実施形態では、荷電粒子線Pの電流値を時間に関して積分することで荷電粒子線Pの照射線量をリアルタイムで測定すると共に、この荷電粒子線Pの照射線量を上記(1)式に従って中性子線Nの照射線量へ変換したが、これに限定されるものではない。例えば、荷電粒子線Pの電流値を中性子線Nの照射線量率へ変換すると共に、この中性子線Nの照射線量率を時間に関して積分することで荷電粒子線Pの照射線量を算出してもよい。この場合においても、実質的に、荷電粒子線Pの電流値が積分されることになり、荷電粒子線Pの照射線量がリアルタイムで測定されることとなる。
 また、上記実施形態では、サイクロトロン10を用いて荷電粒子を加速しているが、サイクロトロンに限らず、例えばシンクロトロン、シンクロサイクロトロン、ライナック等の他の加速器を用いてもよい。
 また、上記実施形態では、90度偏向電磁石22を用いて荷電粒子線Pを90度偏向しているが、90度偏向磁石を用いず、荷電粒子線Pのビーム経路上におけるサイクロトロン10から中性子線生成部36まで各部位を一直線状に設置してもよい。
 また、上記実施形態では、算出された中性子線Nの照射線量が計画値に達したとき制御部102により自動的に中性子線Nの照射を停止しているが、医師等のオペレータが表示部104に表示させた中性子線Nの照射線量を確認して、オペレータが手動操作して中性子線Nの照射を停止してもよい。
 本発明によれば、中性子線の照射線量の精度を向上することが可能となる。
 1…中性子線照射装置、10…サイクロトロン(荷電粒子線生成手段)、32…電流モニタ(測定手段)、36…中性子線生成部(中性子線生成手段)、40…被照射体、102…制御部(制御手段,測定手段,変換部)、104…表示部(表示手段)、N…中性子線、P…荷電粒子線、T…ターゲット。

Claims (9)

  1.  被照射体へ中性子線を照射する中性子線照射装置であって、
     荷電粒子線を生成する荷電粒子線生成手段と、
     前記荷電粒子線をターゲットに照射することにより、前記中性子線を生成する中性子線生成手段と、
     前記中性子線の照射中に前記荷電粒子線の照射線量をリアルタイムで測定するための測定手段と、を備えた中性子線照射装置。
  2.  前記測定手段により測定された前記荷電粒子線の照射線量に基づいて、前記被照射体への前記中性子線の照射を制御する制御手段を備えた請求項1記載の中性子線照射装置。
  3.  前記測定手段により測定された前記荷電粒子線の照射線量を前記中性子線の照射線量に変換する変換部を備えた請求項1又は2記載の中性子線照射装置。
  4.  前記変換部により変換された前記中性子線の照射線量を表示する表示手段を備えた請求項3記載の中性子線照射装置。
  5.  被照射体へ中性子線を照射する中性子線照射装置であって、
     荷電粒子線を生成する荷電粒子線生成手段と、
     前記荷電粒子線をターゲットに照射することにより、前記中性子線を生成する中性子線生成手段と、
     前記中性子線の照射中に当該中性子線の照射線量をリアルタイムで測定するための測定手段と、を備えた中性子線照射装置。
  6.  荷電粒子線を生成する荷電粒子線生成手段と、前記荷電粒子線をターゲットに照射することにより中性子線を生成する中性子線生成手段と、を備え、被照射体へ前記中性子線を照射する中性子線照射装置の制御方法であって、
     前記荷電粒子線の照射線量をリアルタイムで測定する測定工程を含む中性子線照射装置の制御方法。
  7.  前記測定工程にて測定された前記荷電粒子線の照射線量に基づいて、前記被照射体への前記中性子線の照射を制御する制御工程を含む請求項6記載の中性子線照射装置の制御方法。
  8.  前記測定工程にて測定された前記荷電粒子線の照射線量を前記中性子線の照射線量に変換する変換工程を含む請求項6又は7記載の中性子線照射装置の制御方法。
  9.  前記変換工程にて変換された前記中性子線の照射線量を表示する表示工程を含む請求項8記載の中性子線照射装置の制御方法。
PCT/JP2011/065885 2010-07-28 2011-07-12 中性子線照射装置及び中性子線照射装置の制御方法 WO2012014671A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012526410A JP5410608B2 (ja) 2010-07-28 2011-07-12 中性子線照射装置及び中性子線照射装置の制御方法
CN201180034103.4A CN102985981B (zh) 2010-07-28 2011-07-12 中子线照射装置及中子线照射装置的控制方法
EP11812263.9A EP2600356B1 (en) 2010-07-28 2011-07-12 Neutron ray irradiation device, and method for control of neutron ray irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-169210 2010-07-28
JP2010169210 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014671A1 true WO2012014671A1 (ja) 2012-02-02

Family

ID=45529887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065885 WO2012014671A1 (ja) 2010-07-28 2011-07-12 中性子線照射装置及び中性子線照射装置の制御方法

Country Status (5)

Country Link
EP (1) EP2600356B1 (ja)
JP (1) JP5410608B2 (ja)
CN (1) CN102985981B (ja)
TW (1) TWI480892B (ja)
WO (1) WO2012014671A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002304A1 (ja) * 2011-06-30 2013-01-03 株式会社Quan Japan 中性子線発生装置及び中性子線発生方法
WO2014156245A1 (ja) 2013-03-29 2014-10-02 住友重機械工業株式会社 中性子捕捉療法装置
EP2805745A1 (en) * 2013-05-22 2014-11-26 Sumitomo Heavy Industries, Ltd. Neutron capture therapy apparatus and neutron beam measuring method
JP2014226331A (ja) * 2013-05-22 2014-12-08 住友重機械工業株式会社 中性子捕捉療法装置、及び被照射体の位置補正方法
EP2946809A1 (en) 2014-05-20 2015-11-25 Sumitomo Heavy Industries, Ltd. Neutron capture therapy apparatus and nuclear transformation apparatus
CN105917251A (zh) * 2014-01-14 2016-08-31 住友重机械工业株式会社 中子射线检测装置及中子捕捉疗法装置
JP2016191621A (ja) * 2015-03-31 2016-11-10 住友重機械工業株式会社 中性子捕捉療法装置
JP2018528034A (ja) * 2015-09-28 2018-09-27 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. 中性子捕捉療法システム用のビーム診断システム
JP2023530015A (ja) * 2020-07-03 2023-07-12 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法装置及びその監視システムの動作ステップ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053601A1 (en) * 2014-10-01 2016-04-07 Illinois Tool Works Inc. Protection devices for gamma radiography
CN108042930B (zh) * 2014-12-08 2020-04-14 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
JP6565113B2 (ja) * 2015-03-05 2019-08-28 住友重機械工業株式会社 中性子捕捉療法装置
CN107427694B (zh) * 2015-03-30 2020-01-07 住友重机械工业株式会社 带电粒子束治疗装置
EP3395404B1 (en) * 2016-01-08 2020-08-19 Neuboron Medtech Ltd. Beam shaper for neutron capture therapy
RU2697763C1 (ru) 2016-01-15 2019-08-19 Нойборон Медтех Лтд. Система детектирования излучения для системы нейтрон-захватной терапии и способ детектирования излучения
CN109464749B (zh) * 2017-09-07 2024-02-23 南京中硼联康医疗科技有限公司 中子捕获治疗***
EP3922307A1 (en) 2017-09-07 2021-12-15 Neuboron Medtech Ltd. Neutron capture therapy system
RU2739171C1 (ru) 2017-12-15 2020-12-21 Нойборон Медтех Лтд. Система нейтронозахватной терапии
WO2019119835A1 (zh) * 2017-12-18 2019-06-27 南京中硼联康医疗科技有限公司 中子捕获治疗***
CN110320547A (zh) * 2018-03-30 2019-10-11 中国辐射防护研究院 集成式宽量程伽玛中子探测装置
JP7465697B2 (ja) * 2020-03-24 2024-04-11 住友重機械工業株式会社 荷電粒子の照射制御装置
DE102022115598A1 (de) 2022-06-22 2023-12-28 Stefan Schmidt Protonentherapieanlage zum Behandeln eines Patienten mittels Protonenstrahlung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233168A (ja) 2003-01-29 2004-08-19 Japan Science & Technology Agency 中性子捕捉療法に用いる中性子遮蔽板、およびヒト以外の哺乳動物に対して行なう中性子捕捉療法、ならびに治療用中性子照射装置
JP2004337268A (ja) * 2003-05-14 2004-12-02 Atsushi Hata モノクローナル抗体を用いた抗体利用中性子捕捉治療装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112306A (en) * 1976-12-06 1978-09-05 Varian Associates, Inc. Neutron irradiation therapy machine
US5392319A (en) * 1992-12-22 1995-02-21 Eggers & Associates, Inc. Accelerator-based neutron irradiation
US5898279A (en) * 1997-01-08 1999-04-27 Kettering Medical Center Cyclotron monitoring system and method
US6314152B2 (en) * 1997-09-16 2001-11-06 Trustees Of Tufts College Body composition detection using neutron inelastic scattering to detect carbon-to-oxygen ratio in tissue
US7231015B2 (en) * 2001-09-19 2007-06-12 Muradin Abubekirovich Kumakhov Device for radiation therapy
TW523813B (en) * 2002-03-21 2003-03-11 Inst Nuclear Energy Res Radiation-enhanced particle beams and related applications
JP2005095640A (ja) * 2004-10-28 2005-04-14 Hitachi Ltd 放射線照射方法及び放射線照射装置
FR2897502B1 (fr) * 2006-02-14 2008-04-11 Aima Eps Cible, installation de neutrontherapie et procede de production de neutrons.
JP5143606B2 (ja) * 2008-03-28 2013-02-13 住友重機械工業株式会社 荷電粒子線照射装置
TW201034530A (en) * 2009-03-03 2010-09-16 Sumitomo Heavy Industries Neutron beam rotary irradiation apparatus
JP2012064403A (ja) * 2010-09-15 2012-03-29 Hitachi Ltd 荷電粒子ビーム照射装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233168A (ja) 2003-01-29 2004-08-19 Japan Science & Technology Agency 中性子捕捉療法に用いる中性子遮蔽板、およびヒト以外の哺乳動物に対して行なう中性子捕捉療法、ならびに治療用中性子照射装置
JP2004337268A (ja) * 2003-05-14 2004-12-02 Atsushi Hata モノクローナル抗体を用いた抗体利用中性子捕捉治療装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2600356A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016283A (ja) * 2011-06-30 2013-01-24 Quan Japan Inc 中性子線発生装置及び中性子線発生方法
WO2013002304A1 (ja) * 2011-06-30 2013-01-03 株式会社Quan Japan 中性子線発生装置及び中性子線発生方法
CN105120952A (zh) * 2013-03-29 2015-12-02 住友重机械工业株式会社 中子捕捉疗法装置
WO2014156245A1 (ja) 2013-03-29 2014-10-02 住友重機械工業株式会社 中性子捕捉療法装置
JP2014195505A (ja) * 2013-03-29 2014-10-16 住友重機械工業株式会社 中性子捕捉療法装置
EP2805745A1 (en) * 2013-05-22 2014-11-26 Sumitomo Heavy Industries, Ltd. Neutron capture therapy apparatus and neutron beam measuring method
JP2014226331A (ja) * 2013-05-22 2014-12-08 住友重機械工業株式会社 中性子捕捉療法装置、及び被照射体の位置補正方法
JP2014228401A (ja) * 2013-05-22 2014-12-08 住友重機械工業株式会社 中性子捕捉療法装置、及び中性子線の測定方法
CN105917251A (zh) * 2014-01-14 2016-08-31 住友重机械工业株式会社 中子射线检测装置及中子捕捉疗法装置
EP2946809A1 (en) 2014-05-20 2015-11-25 Sumitomo Heavy Industries, Ltd. Neutron capture therapy apparatus and nuclear transformation apparatus
JP2015217207A (ja) * 2014-05-20 2015-12-07 住友重機械工業株式会社 中性子捕捉療法装置及び核変換装置
JP2016191621A (ja) * 2015-03-31 2016-11-10 住友重機械工業株式会社 中性子捕捉療法装置
JP2018528034A (ja) * 2015-09-28 2018-09-27 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. 中性子捕捉療法システム用のビーム診断システム
JP2023530015A (ja) * 2020-07-03 2023-07-12 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法装置及びその監視システムの動作ステップ
JP2023531287A (ja) * 2020-07-03 2023-07-21 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法装置及びその監視システムの動作ステップ
JP2023532541A (ja) * 2020-07-03 2023-07-28 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法装置及びその監視システムの動作ステップ

Also Published As

Publication number Publication date
CN102985981A (zh) 2013-03-20
JP5410608B2 (ja) 2014-02-05
JPWO2012014671A1 (ja) 2013-09-12
EP2600356A4 (en) 2014-01-22
CN102985981B (zh) 2016-08-24
TW201225112A (en) 2012-06-16
EP2600356A1 (en) 2013-06-05
TWI480892B (zh) 2015-04-11
EP2600356B1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP5410608B2 (ja) 中性子線照射装置及び中性子線照射装置の制御方法
TWI520758B (zh) Neutron capture therapy apparatus and method for measuring the neutron beam
JP5850362B2 (ja) 中性子線照射装置および当該装置の作動方法
EP2946809B1 (en) Neutron capture therapy apparatus and nuclear transformation apparatus
JP2014195505A (ja) 中性子捕捉療法装置
WO2017073683A1 (ja) 中性子捕捉療法システム
JP5193132B2 (ja) 荷電粒子ビーム照射システム
JP2013062193A (ja) 中性子線照射装置
JP2015082376A (ja) 中性子発生装置及び医療用加速器システム
JP2012099354A (ja) 粒子加速器及びbnct装置
JP5393564B2 (ja) 荷電粒子ビーム輸送装置及び粒子線治療システム
US11246209B2 (en) Radiation treatment apparatus
US10535441B1 (en) Method of irradiating a target
JP6532008B2 (ja) 中性子線測定用ファントム装置
JP6266399B2 (ja) 中性子捕捉療法装置
JP6266092B2 (ja) 粒子線治療装置
JP2017176438A (ja) 中性子捕捉療法システム及びガンマ線反応素子
WO2020012688A1 (ja) 放射線治療システムおよび治療計画データの検証方法
JP2014164874A (ja) 加速器及び中性子捕捉療法装置
JP2020130573A (ja) 中性子捕捉療法システム
JPH10277170A (ja) 放射線治療装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034103.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526410

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011812263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011812263

Country of ref document: EP