WO2012001845A1 - 非水電解質二次電池用負極およびその製造方法 - Google Patents

非水電解質二次電池用負極およびその製造方法 Download PDF

Info

Publication number
WO2012001845A1
WO2012001845A1 PCT/JP2011/001753 JP2011001753W WO2012001845A1 WO 2012001845 A1 WO2012001845 A1 WO 2012001845A1 JP 2011001753 W JP2011001753 W JP 2011001753W WO 2012001845 A1 WO2012001845 A1 WO 2012001845A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
particles
secondary battery
electrolyte secondary
carbon material
Prior art date
Application number
PCT/JP2011/001753
Other languages
English (en)
French (fr)
Inventor
慶一 高橋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800033512A priority Critical patent/CN102668196A/zh
Priority to JP2012522421A priority patent/JPWO2012001845A1/ja
Priority to US13/390,468 priority patent/US20120148922A1/en
Publication of WO2012001845A1 publication Critical patent/WO2012001845A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery including a core material and a negative electrode mixture layer attached to the core material, and more particularly to improvement of a negative electrode including a carbon material.
  • non-aqueous electrolyte secondary batteries are widely used as driving power sources for portable electronic devices such as mobile phones, notebook computers, and video camcorders as secondary batteries having high operating voltage and high energy density.
  • the nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • a carbon material capable of inserting and extracting lithium ions is generally used for the negative electrode of the nonaqueous electrolyte secondary battery.
  • graphite materials are widely used because they can realize a flat discharge potential and a high capacity density (Patent Documents 1 and 2).
  • I the ratio of the peak intensity I (101) attributed to the (101) plane obtained by the wide-angle X-ray diffraction method to the peak intensity I (100) attributed to the (100) plane:
  • I A material in which (101) / I (100) satisfies 0.7 ⁇ I (101) / I (100) ⁇ 2.2 has been proposed.
  • This peak ratio is an indicator of the degree of graphitization.
  • a carbon material having an I (101) / I (100) ratio of 0.8 or more or 1.0 or more is recommended (Patent Document 3).
  • non-aqueous electrolyte secondary batteries for high-power applications such as power storage, electric vehicles, and hybrid electric vehicles (HEV) has also been developed. It is progressing rapidly. Large nonaqueous electrolyte secondary batteries and small non-aqueous electrolyte secondary batteries for consumer use have greatly different applications and required characteristics.
  • a battery serving as a driving source needs to contribute to power assist (output) and regeneration (input) of an engine or an electric motor instantaneously with a limited capacity. Therefore, these batteries are required to have high capacity and high input / output characteristics.
  • the internal resistance of the battery can be reduced by improving the current collecting structure of the electrode, increasing the electrode reaction area by making the electrode thin and long, and making the battery component a material with low resistance.
  • selection and reforming of active materials are effective for increasing the battery input / output in a low temperature environment.
  • the charge acceptance property of the carbon material used for a negative electrode has big influence on the input / output characteristic of a battery. That is, using a carbon material that easily inserts and desorbs lithium ions is effective for increasing the input / output of the battery.
  • Patent Document 4 a negative electrode containing a low crystalline carbon material such as a non-graphitizable carbon material has been studied (Patent Document 4).
  • the non-graphitizable carbon material has low orientation, and sites where lithium ions are inserted and desorbed are randomly located. Therefore, the charge acceptance is high, which is advantageous for improving the input / output characteristics.
  • an electrode including the conventional carbon material as described above tends to deteriorate charge / discharge characteristics in a low temperature environment and cycle characteristics at a high current density. Such a battery is difficult to use for a long time.
  • the graphite materials as described in Patent Documents 1 to 3 have a layered structure, and a high capacity density is obtained.
  • the layer spacing is increased.
  • the graphite material expands.
  • the stress associated with such expansion gradually increases with repeated charging with a large current. Therefore, the charge acceptability of the graphite material is gradually reduced, and the cycle life is reduced.
  • the graphite tends to be oriented in the c-axis direction perpendicular to the electrode surface during rolling, and the insertion site of lithium ions tends to decrease.
  • the negative electrode containing graphite is likely to be deteriorated in charge acceptability.
  • the charge / discharge reaction mechanism is different from that of the graphite material, and lithium ions are hardly inserted between the layers during charging. Since most of the lithium ions are inserted into the voids of the carbon material, it is considered that the stress due to expansion and contraction associated with charge / discharge is less than that of the graphite material as described above. However, since the non-graphitizable carbon material has lower conductivity than the graphite material, the internal resistance tends to increase. This tendency is remarkable when large current discharge is repeated.
  • One aspect of the present invention includes a core material and a negative electrode mixture layer attached to the core material, the negative electrode mixture layer includes carbon material particles, the fracture strength of the carbon material particles is 100 MPa or more, and a wide angle
  • the peak intensity I (101) attributed to the (101) plane and the peak intensity I (100) attributed to the (100) plane Of the peak satisfies the relationship of 1.0 ⁇ I (101) / I (100) ⁇ 3.0
  • the peak intensity I (110) attributed to the (110) plane and the peak attributed to the (004) plane Relates to a negative electrode for a nonaqueous electrolyte secondary battery in which the ratio of the strength to I (004) satisfies 0.25 ⁇ I (110) / I (004) ⁇ 0.45.
  • Another aspect of the present invention is a step of mixing natural graphite particles and pitch to obtain a first precursor, heating the first precursor at 600 to 1000 ° C., and using the pitch as a polymerization pitch, the second precursor.
  • a body, a second precursor is heated at 1100-1500 ° C. to carbonize the polymerization pitch to obtain a third precursor, and a third precursor is heated at 2200-2800 ° C. to be carbonized.
  • graphitizing the polymerized pitch to obtain a lump of composite carbon particles, and a method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
  • the negative electrode for nonaqueous electrolyte secondary batteries which has a high capacity
  • the negative electrode for a non-aqueous electrolyte secondary battery includes a core material and a negative electrode mixture layer attached to the core material.
  • the negative electrode mixture layer contains carbon material particles as an essential component and a binder as an optional component.
  • the carbon material particles have a high breaking strength of 100 MPa or more. For this reason, even after pulverization to obtain a desired average particle diameter, the surface of the carbon material particles is not excessively smooth and has a certain degree of surface roughness. Many carbon layer layers (edge surfaces) are easily exposed on the surface of such carbon material particles, and excellent input / output characteristics can be obtained.
  • the breaking strength of the carbon material particles is more preferably 120 to 180 MPa.
  • the breaking strength of the carbon material particles is obtained, for example, by the following method.
  • As measurement particles carbon material particles having a particle size of 17 to 23 ⁇ m and a sphericity of 85% or more are prepared.
  • the carbon material particles are compressed with an indenter while gradually increasing the weight.
  • the load when the carbon material particles are broken is defined as the breaking strength of the particles.
  • the breaking strength of the carbon material particles can be measured using a commercially available microcompression tester (for example, MCT-W500 manufactured by Shimadzu Corporation).
  • MCT-W500 manufactured by Shimadzu Corporation
  • the fracture strength of the carbon material particles is measured using a flat indenter having a tip diameter of 50 ⁇ m and a displacement speed of 5 ⁇ m / sec.
  • the carbon material particles are preferably composite carbon particles having a natural graphite portion and an artificial graphite portion.
  • the composite carbon particles are not simply a mixture of natural graphite particles and artificial graphite particles, but have natural graphite portions and artificial graphite portions in one particle. Although details are unknown, such composite carbon particles have high fracture strength (for example, 100 MPa or more) due to the interaction between the natural graphite portion and the artificial graphite portion. Since composite carbon particles are difficult to break, even if rolling is performed to increase the density, orientation is difficult. That is, by using the composite carbon particles, it is possible to achieve both high density of the negative electrode and charge acceptance with an excellent balance.
  • the composite carbon particles need not all be graphitized. For example, a carbon portion that is in the process of graphitization may be included.
  • Composite carbon particles are difficult to orient even when rolled. This is because the composite carbon particles have a high breaking strength and the breakage of the particles is suppressed. Since the particles are not easily oriented, the reaction resistance component in the internal resistance can be mainly reduced. That is, the composite carbon particles are unlikely to deteriorate with respect to a charge / discharge cycle at a high current density that requires high charge acceptance. Therefore, a nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics can be obtained.
  • the composite carbon particles have a dense structure because graphite crystals are continuously bonded from the natural graphite portion to the artificial graphite portion. Moreover, since artificial graphite and natural graphite are compounded, it has a fine crystal structure.
  • the boundary between the natural graphite portion and the artificial graphite portion can be recognized, for example, by observing the cross section of the particle. However, it may be difficult to visually recognize the boundary between the natural graphite portion and the artificial graphite portion. In this case, for example, by performing micro part X-ray crystal structure analysis and confirming the presence of particles having different crystallite sizes, it can be confirmed that the particles are composite carbon particles. It is preferable that graphite crystals are continuous at the boundary. Since the graphite crystal continuously extends from the natural graphite portion to the artificial graphite portion, the fracture strength of the particles is easily improved and a dense structure is easily obtained.
  • the artificial graphite portion is disposed on the surface of the natural graphite portion.
  • Composite carbon particles having such a structure have a relatively uniform shape (for example, sphericity of 80 to 95%). Therefore, the stress applied to the composite carbon particles becomes uniform, and the breakage of the particles is suppressed.
  • the surface of the natural graphite portion may be completely covered with the artificial graphite portion, or the natural graphite portion may be partially exposed. In the composite carbon particles, it is only necessary that the proportion of the artificial graphite portion exposed on the surface is increased on average.
  • the sphericity refers to the ratio of the circumference of an equivalent circle to the circumference of a two-dimensional projection image of particles.
  • the equivalent circle is a circle having an area equal to the projected area of the particles. For example, the sphericity of 10 particles may be measured and the average value obtained.
  • the weight ratio of the artificial graphite portion in the composite carbon particles is preferably 60 to 90% by weight, and more preferably 80 to 90% by weight.
  • the weight ratio of the artificial graphite part is less than 60% by weight, the weight ratio of the natural graphite part is relatively increased, and it may be difficult to obtain a dense structure.
  • the weight ratio of the artificial graphite portion exceeds 90% by weight, the fracture strength of the composite carbon particles may be reduced.
  • the weight ratio of the artificial graphite portion in the composite carbon particles can be estimated from, for example, the ratio of the area of the artificial graphite portion in the cross section of the entire composite carbon particle by observing the cross section of the composite carbon particle with an electron microscope.
  • the surface of natural graphite particles after pulverization becomes smooth when pulverized to a desired particle size. It is considered that the basal surface of the carbon layer is exposed more on the surface of the pulverized natural graphite particles than the layer (edge surface) of the carbon layer. At this time, the surface roughness Ra of the natural graphite particles after pulverization is, for example, 0.05 ⁇ m or less.
  • the basal plane does not contribute to lithium ion insertion and desorption. That is, when the graphite particles are pulverized with a large stress as in the prior art, the charge acceptability of the negative electrode tends to decrease.
  • Composite carbon particles are synthesized using a core of natural graphite and a raw material of artificial graphite as starting materials. Specifically, for example, it can be obtained by the following method. First, natural graphite particles and pitch are mixed to obtain a first precursor. Here, it is preferable to pulverize natural graphite particles as a raw material so as to have a sharp particle size distribution. If many natural graphite particles having an excessively small particle size are contained, the particle size distribution of the composite carbon particles after pulverization may be broad. In addition, if there are many natural graphite particles having an excessively large particle size relative to the desired composite carbon particle size, it is necessary to pulverize the natural graphite part. The input / output characteristics may be difficult to improve.
  • the first precursor is heated at 600 to 1000 ° C. to melt the pitch, and held in an inert atmosphere for a predetermined time. Thereby, a 2nd precursor is obtained by making a pitch into a polymerization pitch. Thereafter, the second precursor is heated at 1100 to 1500 ° C. to carbonize the polymerization pitch, whereby the third precursor is obtained.
  • the third precursor is heated at 2200 ° C. to 2800 ° C. in an inert gas atmosphere.
  • the carbonized polymerization pitch is graphitized, and a mass of composite carbon particles is obtained.
  • Graphitization can be confirmed, for example, by improving the sharpness of the peak in XRD.
  • the carbonization and graphitization are preferably performed in an inert atmosphere, for example, in an atmosphere containing at least one gas selected from the group consisting of nitrogen and argon.
  • the mass of composite carbon particles is treated so as to have a desired average particle size.
  • pulverization and classification may be performed. Since the lump has the property of being easily pulverized, the desired average particle diameter can be easily controlled even if the pulverization stress is reduced. Therefore, the composite carbon particles after pulverization have the carbon layer edge surface sufficiently exposed on the surface, and exhibit excellent charge acceptability.
  • the surface roughness Ra of the pulverized carbon material particles is preferably 0.2 to 0.6 ⁇ m.
  • the lump of the composite carbon particles has a discontinuous structure and is easily pulverized. Therefore, even if the pulverization stress is relatively small, the composite carbon particles can be easily controlled to a desired particle size. Since the pulverization stress can be reduced, the surface of the composite carbon particles is not excessively smooth, and a state having a certain degree of surface roughness is maintained. It is considered that the edge surface of the carbon layer is sufficiently exposed on the surface of the composite carbon particle having such surface roughness. Therefore, lithium ions are quickly inserted during charging, and lithium ions are rapidly desorbed during discharging.
  • the surface roughness of the carbon material particles can be determined by, for example, SPM (Scanning Probe Microscope). The surface roughness may be measured for particles having a particle size of 10 to 20 ⁇ m and the average of 10 to 20 particles may be obtained.
  • the average particle diameter of the carbon material particles (cumulative 50% diameter in the volume-based particle size distribution: D50) is not particularly limited, but is preferably 5 to 25 ⁇ m.
  • the carbon material particles preferably have a sharp particle size distribution. Specifically, the content ratio of particles of 5 ⁇ m or less is preferably 5% by weight or less.
  • the value of the cumulative 50% diameter in the volume-based particle size distribution of the carbon material particles is 2 to 3.5 times the value of the cumulative 10% diameter (D10), and the cumulative 90% diameter (D90) is It is preferably 2 to 2.7 times the value of 50% cumulative diameter. Since such carbon material particles have small variations in particle size, the filling property when rolling the negative electrode mixture layer is improved.
  • the BET specific surface area of the carbon material particles is desirably 1 to 5 m 2 / g. As a result, both excellent charge / discharge cycle characteristics and high input / output characteristics can be achieved. When the BET specific surface area of the carbon material particles is less than 1 m 2 / g, it may be difficult to improve the input / output characteristics. On the other hand, when the BET specific surface area exceeds 5 m 2 / g, the influence of a side reaction between the non-aqueous electrolyte and the carbon material particles may be manifested.
  • the BET specific surface area of the carbon material particles is more preferably 1.5 to 3 m 2 / g.
  • the BET specific surface area of the carbon material particles is determined from the amount of nitrogen adsorbed on the carbon material particles.
  • the carbon material particles preferably have an amorphous carbon layer on the surface.
  • the carbon material particles are composite carbon particles, it is preferable to have an amorphous carbon layer on at least one surface of the artificial graphite portion and the natural graphite portion.
  • the amorphous carbon layer is amorphous and lithium ions are easily occluded. Therefore, the charge acceptability of the negative electrode is further improved.
  • the method for arranging the amorphous carbon layer on the surface of the carbon material particles is not particularly limited.
  • the method of coating the surface of the carbon material particles with the amorphous carbon layer may be a gas phase method or a liquid phase method. After attaching an organic substance such as pitch to the surface, it may be amorphized by reducing it, and the surface is covered with an amorphous carbon layer by heating the carbon material particles in a reducing atmosphere such as acetylene gas. May be.
  • the negative electrode includes a core material and a negative electrode mixture layer attached to the surface thereof.
  • the negative electrode mixture layer contains carbon material particles as an essential component and a binder as an optional component.
  • the negative electrode current collector is not particularly limited, and for example, a sheet made of stainless steel, nickel, copper, or the like can be used.
  • the negative electrode mixture layer preferably contains 90 to 99% by weight of carbon material particles, and more preferably 98 to 99% by weight. By including the carbon material particles in the above range, a high capacity and high strength negative electrode mixture layer can be obtained.
  • the negative electrode mixture layer is obtained by preparing a negative electrode mixture paste, applying it to one or both sides of the core material, and drying it.
  • the negative electrode mixture paste is, for example, a mixture of carbon material particles, a binder, a thickener, and a dispersion medium. Thereafter, the negative electrode mixture layer is rolled using a roller or the like to obtain a negative electrode having a high active material density and a high strength.
  • Information on the crystallinity of the carbon material particles contained in the negative electrode can be obtained from the diffraction pattern of the negative electrode measured by the wide-angle X-ray diffraction method.
  • a negative electrode including carbon material particles has a peak attributed to the (101) plane and a peak attributed to the (100) plane in a diffraction image measured by a wide-angle X-ray diffraction method.
  • the ratio of the peak intensity I (101) attributed to the (101) plane to the peak intensity I (100) attributed to the (100) plane is 1.0 ⁇ I (101 ) / I (100) ⁇ 3.0.
  • the peak intensity means the peak height. If I (101) / I (100) is 1 or less, it can be said that the three-dimensional development of the graphite structure is insufficient. In this case, a sufficiently high capacity cannot be obtained. On the other hand, when I (101) / I (100) is 3 or more, the properties of natural graphite are increased and the basal plane is easily oriented. Therefore, it becomes the structure where the acceptability of Li fell.
  • a more preferable range of the I (101) / I (100) value is 2.6 or less, and particularly preferably 2.5 or less. Further, the I (101) / I (100) value is more preferably 2.2 or more, and more preferably 2.3 or more.
  • the negative electrode including carbon material particles further has a peak attributed to the (110) plane and a peak attributed to the (004) plane in the X-ray diffraction image.
  • the ratio of the peak intensity I (110) attributed to the (110) plane to the peak intensity I (004) attributed to the (004) plane is 0.25 ⁇ I (110 ) / I (004) ⁇ 0.45.
  • the I (110) / I (004) value is particularly preferably 0.29 or more and 0.37 or less.
  • the thickness Lc (004) of the crystallite in the c-axis direction of the carbon material particles used in the present invention is preferably 20 nm or more and less than 60 nm from the viewpoint of charge acceptability and capacity.
  • the length La of the crystallite in the a-axis direction is preferably 50 nm or more and 200 nm or less from the viewpoint of increasing the capacity.
  • Both Lc and La can be expressed as a function of the half width of the peak observed in the X-ray diffraction image.
  • the half width of the peak is obtained, for example, by the following method. High purity silicon powder is mixed with carbon material particles as an internal standard substance. The X-ray diffraction image of the mixture is measured, and the thickness of the crystallite is determined from the half-value width values of the peaks of both carbon and silicon.
  • Lc is obtained from a peak attributed to the (004) plane.
  • La is obtained from a peak attributed to the (110) plane.
  • the packing density refers to the weight of the negative electrode mixture layer per unit volume.
  • the capacity density of the negative electrode mixture layer is 315 to 350 Ah / kg.
  • the theoretical capacity of graphite is 372 Ah / kg, but when general graphite is used as the negative electrode material, it is difficult to design the capacity density of the negative electrode mixture layer to be 315 Ah / kg or more.
  • the capacity density of the negative electrode mixture layer can be increased to, for example, 315 to 350 Ah / kg.
  • the capacity density of the negative electrode mixture layer is obtained by dividing the fully charged battery capacity by the weight of the carbon material particles contained in the negative electrode mixture layer portion facing the positive electrode mixture layer.
  • the fully charged state means a state where the battery is charged to a predetermined charging upper limit voltage.
  • a battery charged over a predetermined charge upper limit voltage is overcharged.
  • the charging upper limit voltage is generally set in the range of battery voltage 4.1 to 4.4V.
  • the total thickness of the negative electrode mixture layer excluding the core material is preferably 50 to 250 ⁇ m. If the total thickness of the negative electrode mixture layer is less than 50 ⁇ m, a sufficiently high capacity may not be obtained. On the other hand, when the total thickness of the negative electrode mixture layer exceeds 250 ⁇ m, the charge acceptability is lowered, and Li may be deposited.
  • a non-aqueous electrolyte secondary battery includes the above-described negative electrode, positive electrode, and non-aqueous electrolyte.
  • a positive electrode consists of a positive electrode core material and the positive mix layer adhering to the surface.
  • the positive electrode mixture layer generally includes a positive electrode active material, a conductive material, and a binder made of a lithium-containing composite oxide.
  • a well-known thing can be used for a electrically conductive material and a binder, without specifically limiting.
  • As the positive electrode current collector for example, a sheet made of stainless steel, aluminum, titanium, or the like can be used.
  • the total thickness of the two attached positive electrode mixture layers is preferably 50 ⁇ m to 250 ⁇ m.
  • the total thickness of the two attached positive electrode mixture layers is preferably 50 to 250 ⁇ m. If the total thickness of the positive electrode mixture layer is less than 50 ⁇ m, a sufficiently high capacity may not be obtained. On the other hand, when the total thickness of the positive electrode mixture layer exceeds 250 ⁇ m, the internal resistance of the battery tends to increase.
  • a well-known thing can be especially used for lithium containing complex oxide which is a positive electrode active material without limitation.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 having a spinel structure can be exemplified.
  • a part of the transition metal contained in the composite oxide can be substituted with another element.
  • a lithium nickel composite oxide in which a part of Ni element of LiNiO 2 is substituted with Co or another element (Al, Mn, Ti, etc.) has charge / discharge cycle life characteristics and input / output characteristics at a high current density. Can be balanced.
  • Examples of the conductive material include carbon blacks such as graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, carbon fiber, and metal fiber.
  • Examples of the positive electrode binder and the negative electrode binder include polyolefin-based binders, fluorinated resins, and particulate binders having rubber elasticity.
  • Examples of the polyolefin binder include polyethylene and polypropylene.
  • Examples of the fluorinated resin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and vinylidene fluoride-hexafluoropropylene copolymer.
  • Examples of the particulate binder having rubber elasticity include a copolymer (SBR) containing a styrene unit and a butadiene unit.
  • a liquid electrolyte comprising a non-aqueous solvent and a lithium salt dissolved therein is preferable.
  • the non-aqueous solvent include mixed solvents of cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Further, ⁇ -butyrolactone, dimethoxyethane, and the like can be used.
  • lithium salts include inorganic lithium fluorides and lithium imide compounds. Examples of the inorganic lithium fluoride include LiPF 6 and LiBF 4 , and examples of the lithium imide compound include LiN (CF 3 SO 2 ) 2 .
  • a separator is interposed between the positive electrode and the negative electrode.
  • the separator include microporous membranes made of polyolefin such as polypropylene and polyethylene, woven fabrics, and nonwoven fabrics. Polyolefin is preferable from the viewpoint of improving the safety of the secondary battery because it is excellent in durability and has a shutdown function.
  • Example 1 Production of positive electrode 100 parts by weight of lithium-containing composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 , average particle size 12 ⁇ m) as a positive electrode active material, polyvinylidene fluoride as a binder (manufactured by Kureha Chemical Co., Ltd.) 5 parts by weight of PVDF # 1320 (N-methyl-2-pyrrolidone (NMP) solution having a solid content of 12% by weight), 4 parts by weight of acetylene black as a conductive material and an appropriate amount of NMP as a dispersion medium
  • the mixture was mixed using a combination machine to prepare a positive electrode mixture paste, which was applied to both sides of an aluminum foil (positive electrode core material) having a thickness of 20 ⁇ m, and the coating film was dried.
  • the coating film was rolled with a roller so as to have a thickness of 160 ⁇ m to produce a positive electrode, and the obtained positive electrode was cut into a width that could be inserted into a cylindrical 18650
  • Natural graphite is mixed to a weight ratio shown in Table 1 with respect to 100 parts by weight of a pitch (variety AR24Z, softening point 293.9 ° C.) manufactured by Mitsubishi Gas Chemical Co., Ltd. Part by weight and 5 parts by weight of boric acid as a graphitization catalyst were mixed.
  • the obtained mixture (first precursor) was heated to 600 ° C. in a nitrogen atmosphere under normal pressure, held in a molten state for 2 hours, and polymerized to obtain a pitch as a polymerization pitch.
  • the second precursor containing the polymerization pitch was heated at 1200 ° C. for 1 hour in a nitrogen atmosphere to carbonize the polymerization pitch. Thereafter, the carbonized third precursor containing the polymerized pitch was heated at 2800 ° C. in an argon atmosphere to obtain a lump of composite carbon particles as carbon material particles. The obtained mass of composite carbon particles was pulverized and classified. Next, the obtained composite carbon particles were heated in an ethylene gas stream at 1200 ° C. to form an amorphous carbon layer on at least one surface of the natural graphite portion and the artificial graphite portion. When confirmed by TEM (transmission electron microscope), the thickness of the amorphous carbon layer was 10 to 15 nm.
  • Table 1 shows the average particle diameter (D50) and BET specific surface area of the composite carbon particles after the formation of the amorphous carbon layer. Further, the fracture strength of the composite carbon particles was measured using a micro compression tester (MCT-W500 manufactured by Shimadzu Corporation). The breaking strength of 10 particles having a particle diameter of 20 ⁇ m was measured, and the average value was obtained. The results are shown in Table 1.
  • the sphericity of the composite carbon particles was obtained from the perimeter of the two-dimensional projection image of the composite carbon particles and the perimeter of the equivalent circle.
  • the sphericity was an average value of 10 particles. The results are shown in Table 1.
  • the composite carbon particles When the cross section of the obtained composite carbon particles was observed with an SEM, the composite carbon particles had a natural graphite portion and an artificial graphite portion arranged on the surface of the natural graphite portion. From the proportion of the area of the artificial graphite portion in the cross section of the entire composite carbon particle having a particle size of 20 ⁇ m, the weight proportion of the artificial graphite portion in the composite carbon particle was determined. The weight ratio of the artificial graphite portion in the composite carbon particles was an average value of 10 particles. The results are shown in Table 1.
  • the surface roughness of the composite carbon particles was measured using a scanning probe microscope (SPM, E-Sweep manufactured by SII Nanotechnology Co., Ltd.). The results are shown in Table 1.
  • BM-400B dispenser of modified styrene-butadiene rubber (SBR) having a solid content of 40% by weight) manufactured by Nippon Zeon Co., Ltd., which is a binder, a thickener.
  • CMC carboxymethylcellulose
  • the negative electrode mixture paste was applied to both sides of a 10 ⁇ m thick copper foil (negative electrode core material), and the coating film was dried. Thereafter, the coating film was rolled with a roller so that the total thickness of the negative electrode was 160 ⁇ m, thereby producing a negative electrode.
  • the obtained negative electrode was cut into a width that could be inserted into a cylindrical 18650 battery case.
  • the particle orientation in the obtained negative electrode was analyzed by wide-angle X-ray diffraction. The results are shown in Table 1.
  • a wide-angle X-ray diffraction image of the negative electrode was measured using Cu-K ⁇ rays.
  • non-aqueous electrolyte (Iii) Preparation of non-aqueous electrolyte
  • the non-aqueous electrolyte was prepared by mixing 2% by weight of vinylene carbonate, 2% by weight of vinyl ethylene carbonate and 5% by weight of fluorobenzene in a mixed solvent having a volume ratio of ethylene carbonate and methyl ethyl carbonate of 1: 3. % And 5% by weight of phosphazene.
  • 1.5 mol / L LiPF 6 was dissolved to prepare a nonaqueous electrolyte.
  • a nonaqueous electrolyte secondary battery shown in FIG. 1 was produced. One end of the positive electrode lead was connected to the exposed portion of the positive electrode core material, and one end of the negative electrode lead was connected to the exposed portion of the negative electrode core material.
  • a positive electrode 6 and a negative electrode 8 are spirally wound through a separator 7 made of a polyethylene microporous film having a thickness of 27 ⁇ m and a width of 50 mm between them, and a cylindrical electrode group having a substantially circular cross section is formed. Configured.
  • the upper insulating ring and the lower insulating ring (not shown) were respectively arranged on the upper and lower portions of the electrode group.
  • the electrode group was accommodated in a cylindrical battery case 1 having a diameter of 18 mm and a height of 61.5 mm.
  • the other end of the negative electrode lead was welded to the inner bottom surface of the battery case 1.
  • a non-aqueous electrolyte was injected into the battery case 1, and the electrode group was impregnated with the non-aqueous electrolyte by a decompression method.
  • the battery case 1 was sealed with the sealing body 4 via the gasket 3 to produce a battery.
  • Examples 2 to 4 A negative electrode was produced in the same manner as in Example 1 except that the weight ratio of the natural graphite portion and the artificial graphite portion was changed as shown in Table 1. Batteries of Examples 2 to 4 were produced in the same manner as Example 1 except that the obtained negative electrode was used.
  • Comparative Example 1 To 100 parts by weight of a pitch (variety AR24Z, softening point 293.9 ° C.) manufactured by Mitsubishi Gas Chemical Co., Ltd., 5 parts by weight of paraxylene glycol as a cross-linking material and 5 parts by weight of boric acid as a graphitization catalyst were mixed. The obtained mixture (first precursor) was heated to 300 ° C. in a nitrogen atmosphere under normal pressure, held in a molten state for 2 hours, and polymerized to obtain a pitch as a polymerization pitch.
  • a pitch variety AR24Z, softening point 293.9 ° C.
  • boric acid as a graphitization catalyst
  • the second precursor containing the polymerization pitch was heated at 800 ° C. for 1 hour in a nitrogen atmosphere to carbonize the polymerization pitch. Thereafter, the third precursor containing the carbonized polymerization pitch was heated at 2800 ° C. in an argon atmosphere to obtain a block of artificial graphite particles.
  • the obtained mass of artificial graphite particles was pulverized and classified so that the average particle diameter (D50) was 20 ⁇ m.
  • the fracture strength, surface roughness, sphericity and BET specific surface area of the obtained artificial graphite particles were determined in the same manner as in Example 1.
  • a negative electrode was produced in the same manner as in Example 1 except that the artificial graphite particles were used, and a battery was produced.
  • the batteries of Examples 1 to 4 and Comparative Example 1 were evaluated as follows. [Initial capacity] Under an environment of 25 ° C., charging / discharging with a constant current of 400 mA, a charge upper limit voltage of 4.2 V, and a discharge lower limit voltage of 2.5 V was performed for 3 cycles. The discharge capacity at the third cycle was taken as the initial capacity of the battery. The results are shown in Table 2.
  • the batteries of Examples 1 to 4 all exhibited excellent low-temperature charge / discharge cycle characteristics.
  • the batteries of Examples 1 to 4 all include composite carbon particles. Since the composite carbon particles have high breaking strength, it is difficult to break, and it is considered that the orientation of the negative electrode is reduced. As a result, it is considered that the charge acceptability is improved and the low temperature charge / discharge cycle characteristics are improved. Further, since the composite carbon particles of Examples 1 to 4 have properties that are easy to grind, it was found that the surface does not become excessively smooth even after the grind and has a certain degree of surface roughness.
  • the carbon material having a large orientation that is, the battery of Comparative Example 1 having a small I (110) / I (004) value of 0.187, had a large DC-IR in an environment of 0 ° C. and 25 ° C. That is, the battery of Comparative Example 1 had low temperature output characteristics. This is considered to be because when the orientation is large, the rate of insertion and desorption of lithium ions becomes low at low temperatures.
  • the batteries of Examples 1 to 4 using a composite carbon material having an I (110) / I (004) value of 0.28 or more and a lower orientation than Comparative Example 1 showed good low-temperature output characteristics. It was. This result is considered to suggest that the orientation of the carbon material affects the low-temperature output characteristics rather than the degree of graphitization of the carbon material.
  • the particle size distribution of the composite carbon particles of Example 3 was analyzed in detail, the content ratio of the particles of 5 ⁇ m or less was 5% by weight or less, D50 was about 3 times D10, and D90 was about 2.5 of D50. It was twice.
  • Batteries of Examples 5 to 8 and Comparative Example 2 were produced in the same manner as in Example 1 except that the above positive electrode and negative electrode were used.
  • the obtained battery was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • the composite carbon particles had a natural graphite portion and an artificial graphite portion arranged on the surface of the natural graphite portion.
  • the weight ratio of the artificial graphite portion in the composite carbon particles was determined. The results are shown in Table 4.
  • a negative electrode was produced in the same manner as in Example 1 except that the obtained composite carbon particles were used. About the obtained negative electrode, it carried out similarly to Example 1, and calculated
  • Comparative Example 3 Like Example 1 ⁇ Comparative Example 3 >> Other than using boron oxide instead of boric acid as a graphitization catalyst, and making the amount of boron oxide 6 parts by weight with respect to 100 parts by weight of a pitch (variety AR24Z, softening point 293.9 ° C.) manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • a pitch variety AR24Z, softening point 293.9 ° C.
  • artificial graphite particles were obtained.
  • the obtained artificial graphite particles were pulverized and classified so that the average particle diameter (D50) was 20 ⁇ m.
  • a negative electrode was produced in the same manner as in Example 1 except that the artificial graphite particles were used, and a battery was produced.
  • the fracture strength, surface roughness, sphericity and BET specific surface area of the obtained artificial graphite particles were determined in the same manner as in Example 1. The results are shown in Table 4.
  • the BET specific surface area of the composite carbon particles is preferably 1 to 5 m 2 / g.
  • the battery of Comparative Example 3 having a BET specific surface area of 6.4 m 2 / g had deteriorated charge / discharge cycle characteristics. This is presumably because the BET specific surface area is excessively large and the negative electrode surface easily reacts (side reaction) with the nonaqueous electrolyte.
  • lithium nickel composite oxide is used as the positive electrode active material.
  • lithium-containing composite oxides such as lithium manganese composite oxide and lithium cobalt composite oxide are used.
  • a substantially similar effect can be obtained.
  • the amorphous layer is not formed, even when the composite carbon particles synthesized in the same manner as in Example 1 are used, the effect tends to be small, but the same effect as described above can be obtained.
  • a mixed solvent of ethylene carbonate and methyl ethyl carbonate was used as the non-aqueous solvent of the non-aqueous electrolyte.
  • the non-aqueous electrolyte having a known 4V class oxidation-reduction potential is used. If it is a solvent (for example, diethyl carbonate (DEC), butylene carbonate (BC), methyl propionate, etc.), almost the same effect can be obtained. Further, even when a known solute such as LiBF 4 or LiClO 4 is used as the solute dissolved in the non-aqueous solvent, substantially the same effect can be obtained.
  • the negative electrode for nonaqueous electrolyte secondary batteries of the present invention can be used as a power source for equipment that requires high input / output. While this invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高容量であり、かつ、低温環境下および高電流密度での充放電において、高出入力特性を有する非水電解質二次電池用負極を提供する。芯材と、芯材に付着した負極合剤層とを含み、負極合剤層が、炭素材料粒子を含み、炭素材料粒子の破壊強度が、100MPa以上であり、広角X線回折法で測定される負極合剤層の回折像において、I(101)と、I(100)との比が、1.0<I(101)/I(100)<3.0を満たし、I(110)と、I(004)との比が、0.25≦I(110)/I(004)≦0.45を満たす、非水電解質二次電池用負極。

Description

非水電解質二次電池用負極およびその製造方法
 本発明は、芯材と、芯材に付着した負極合剤層とを含む非水電解質二次電池用負極に関し、詳しくは、炭素材料を含む負極の改良に関する。
 近年、非水電解質二次電池は、高い作動電圧および高エネルギー密度を有する二次電池として、携帯電話、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源として広く普及している。非水電解質二次電池は、正極、負極および非水電解質を具備する。
 非水電解質二次電池の負極には、リチウムイオンを挿入および脱離し得る炭素材料が一般に用いられている。なかでも黒鉛材料は、フラットな放電電位と高容量密度を実現できることから、広く用いられている(特許文献1、2)。具体的には、広角X線回折法で得られる(101)面に帰属されるピークの強度I(101)と、(100)面に帰属されるピークの強度I(100)との比:I(101)/I(100)が、0.7≦I(101)/I(100)≦2.2を満たす材料が提案されている。このピーク比は、黒鉛化度の指標となる。特に、I(101)/I(100)比が、0.8以上もしくは1.0以上の炭素材料が推奨されている(特許文献3)。
 最近では、上記のような小型民生用途だけでなく、電力貯蔵用、電気自動車用、ハイブリッド電気自動車(HEV)用などの高出力用途に利用する、大容量の非水電解質二次電池の開発も急速に進められている。大型の非水電解質二次電池と小型民生用の非水電解質二次電池とでは、その用途や要求特性が大きく異なる。上記の電気自動車において、駆動源になる電池は、限られた容量で瞬時にエンジンまたは電動機のパワーアシスト(出力)と回生(入力)に寄与する必要がある。よって、これらの電池には、高容量および高い出入力特性が求められる。
 電池の高出入力化のためには、電池の内部抵抗を小さくすることが重要である。そこで、そのような観点から、電極構造、電池構成部品、電極活物質、電解質などについて種々の検討が行われている。例えば、電極の集電構造の改良、電極の薄型長尺化による電極反応面積の増加、電池構成部品を抵抗の小さい材料にすることなどで、電池の内部抵抗を小さくできる。
 また、低温環境下における電池の高出入力化には、活物質の選定および改質が有効である。なかでも、負極に用いる炭素材料の充電受入性は、電池の出入力特性に大きな影響を及ぼす。すなわち、リチウムイオンを挿入および脱離しやすい炭素材料を用いることが、電池の高出入力化に有効である。
 そこで、難黒鉛化性炭素材料などの低結晶性の炭素材料を含む負極が検討されている(特許文献4)。難黒鉛化性炭素材料は配向性が低く、リチウムイオンが挿入および脱離されるサイトがランダムに位置している。そのため、充電受入性が高く、出入力特性の向上に有利である。
特開2000-260479号公報 特開2000-260480号公報 特開平6-275321号公報 特開2000-200624号公報
 しかし、上記のような従来の炭素材料を含む電極は、特に低温環境での充放電特性や、高電流密度でのサイクル特性が低下する傾向がある。このような電池は、長期間の使用が困難である。
 特許文献1~3のような黒鉛材料は、層状構造を有し、高い容量密度が得られる。しかし、充電時に黒鉛の層間にリチウムイオンが挿入されると、層面間隔が押し広げられる。そのため、黒鉛材料が膨張する。このような膨張に伴うストレスは、大電流での充電を繰り返すことで次第に大きくなる。よって、黒鉛材料の充電受入性が徐々に低下し、サイクル寿命が低下する。また、粒子形状等にも依存するが、黒鉛は圧延などの際に、c軸方向が電極面と垂直に配向しやすく、リチウムイオンの挿入サイトが減少する傾向がある。よって、黒鉛を含む負極は、充電受入性が低下しやすい。
 特許文献4の難黒鉛化性炭素材料は、充放電反応の機構が黒鉛材料のそれとは異なり、充電時にリチウムイオンが層間へほとんど挿入されない。リチウムイオンの大半は炭素材料の空隙に挿入されるため、上記のような黒鉛材料に比べて、充放電に伴う膨張および収縮によるストレスは少なくなると考えられる。しかし、難黒鉛化性炭素材料は、黒鉛材料に比べて導電性が低いため、内部抵抗が大きくなりやすい。この傾向は、大電流放電を繰り返す場合に顕著である。
 以上のように、従来の炭素材料を負極に用いた非水電解質二次電池は、低温環境下や高電流密度での充放電時に、高出入力に対応することが困難である。この傾向は、負極を高容量化することで顕著となる。
 本発明の一局面は、芯材と、芯材に付着した負極合剤層とを含み、負極合剤層が、炭素材料粒子を含み、炭素材料粒子の破壊強度が、100MPa以上であり、広角X線回折法で測定される負極合剤層の回折像において、(101)面に帰属されるピークの強度I(101)と、(100)面に帰属されるピークの強度I(100)との比が、1.0<I(101)/I(100)<3.0を満たし、(110)面に帰属されるピークの強度I(110)と、(004)面に帰属されるピークの強度I(004)との比が、0.25≦I(110)/I(004)≦0.45を満たす、非水電解質二次電池用負極に関する。
 本発明の別の一局面は、天然黒鉛粒子とピッチとを混合して、第1前駆体を得る工程と、第1前駆体を600~1000℃で加熱し、ピッチを重合ピッチとして第2前駆体を得る工程と、第2前駆体を1100~1500℃で加熱し、重合ピッチを炭素化して第3前駆体を得る工程と、第3前駆体を2200~2800℃で加熱して、炭素化した重合ピッチを黒鉛化し、複合炭素粒子の塊状物を得る工程と、を有する、非水電解質二次電池用負極の製造方法に関する。
 本発明によれば、高容量であり、かつ、低温環境下および高電流密度での充放電においても、優れた出入力特性を有する非水電解質二次電池用負極が得られる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の円筒型リチウム二次電池の構造を示す一部を展開した断面図である。
 非水電解質二次電池用負極は、芯材と、芯材に付着した負極合剤層とを含む。負極合剤層は、必須成分として炭素材料粒子を含み、任意成分として結着剤などを含む。
 炭素材料粒子は、100MPa以上の高い破壊強度を有する。そのため、所望の平均粒径になるように粉砕した後も、炭素材料粒子の表面は過度に平滑にならず、ある程度の表面粗さを有する。このような炭素材料粒子の表面には、炭素層の層間(エッジ面)が多く露出し易く、優れた出入力特性が得られる。炭素材料粒子の破壊強度は、120~180MPaであることがより好ましい。
 炭素材料粒子の破壊強度は、例えば以下の方法で求められる。
 測定用の粒子として、粒径17~23μm、球形度85%以上の炭素材料粒子を準備する。加重を徐々に大きくしながら、圧子で炭素材料粒子を圧縮する。炭素材料粒子が破壊に至るときの加重を、その粒子の破壊強度とする。炭素材料粒子の破壊強度は、市販の微小圧縮試験器(例えば、(株)島津製作所製のMCT-W500)を用いて測定できる。例えば、先端径が50μmであるフラット圧子を用い、変位速度を5μm/secとして、炭素材料粒子の破壊強度を測定する。
 炭素材料粒子は、天然黒鉛部分および人造黒鉛部分を有する複合炭素粒子であることが好ましい。複合炭素粒子は、単なる天然黒鉛粒子と人造黒鉛粒子との混合物ではなく、1つの粒子内に天然黒鉛部分と人造黒鉛部分とを有する。詳細は不明であるが、このような複合炭素粒子は、天然黒鉛部分および人造黒鉛部分が相互に作用することで、高い破壊強度(例えば100MPa以上)を有する。複合炭素粒子は割れにくいため、高密度化のために圧延を行っても配向しにくい。すなわち、複合炭素粒子を用いることで、負極の高密度化と充電受入性とを優れたバランスで両立することができる。なお、複合炭素粒子は、全てが黒鉛化している必要はない。例えば、黒鉛化過程の途上にある炭素部分を含んでもよい。
 複合炭素粒子は圧延を行っても配向しにくい。これは、複合炭素粒子が高い破壊強度を有し、粒子の破断が抑制されるからである。粒子が配向しにくいことから、主に、内部抵抗中の反応抵抗成分を低減することができる。すなわち、複合炭素粒子は、高い充電受入性を必要とする高電流密度での充放電サイクルに対して劣化しにくい。よって、充放電サイクル特性に優れた非水電解質二次電池が得られる。
 複合炭素粒子は、天然黒鉛部分から人造黒鉛部分にかけて黒鉛結晶が連続的に結合しているため、緻密な構造を有する。また、人造黒鉛と天然黒鉛が複合化しているため、微細な結晶構造を有する。
 複合炭素粒子において、天然黒鉛部分と人造黒鉛部分との境界は、例えば、粒子の断面観察により認識できる。ただし、天然黒鉛部分と人造黒鉛部分との境界は、目視での認識が困難な場合がある。この場合、例えば微小部X線結晶構造解析を行い、異なる結晶子サイズを有する粒子の存在を確認することにより、複合炭素粒子であることを確認できる。境界において黒鉛の結晶は連続していることが好ましい。天然黒鉛部分から人造黒鉛部分にかけて黒鉛結晶が連続的に伸びていることで、粒子の破壊強度が向上しやすく、かつ緻密な構造が得られやすい。
 複合炭素粒子においては、人造黒鉛部分が、天然黒鉛部分の表面に配されていることが好ましい。このような構造を有する複合炭素粒子は、比較的均一な形状(例えば、球形度80~95%)を有する。そのため、複合炭素粒子に印加される応力が均一になり、粒子の破断が抑制される。天然黒鉛部分の表面は、完全に人造黒鉛部分に覆われていてもよく、天然黒鉛部分が部分的に露出していてもよい。複合炭素粒子において、平均的に人造黒鉛部分が表面に露出する割合が多くなっていればよい。
 球形度とは、粒子の二次元投影像の周囲長に対する、相当円の周囲長の比のことをいう。相当円とは、粒子の投影面積と等しい面積を有する円である。例えば、10個の粒子の球形度を測定し、その平均値を求めればよい。
 複合炭素粒子に占める人造黒鉛部分の重量割合は、60~90重量%であることが好ましく、80~90重量%であることがより好ましい。人造黒鉛部分の重量割合が60重量%未満であると、天然黒鉛部分の重量割合が相対的に増加し、緻密な構造が得られにくい場合がある。一方、人造黒鉛部分の重量割合が90重量%を超えると、複合炭素粒子の破壊強度が低下する場合がある。複合炭素粒子に占める人造黒鉛部分の重量割合は、例えば、複合炭素粒子の断面を電子顕微鏡で観察し、複合炭素粒子全体の断面に占める人造黒鉛部分の面積の割合から推測できる。具体的には、粒径10~20μmの複合炭素粒子の断面を観察し、複合炭素粒子全体の断面に占める人造黒鉛部分の面積の割合を求め、例えば10~20個の粒子の平均を求めればよい。
 天然黒鉛粒子はへき壊しやすいため、所望の粒径に粉砕する場合、粉砕後の天然黒鉛粒子の表面は滑らかになる。粉砕後の天然黒鉛粒子の表面には、炭素層の層間(エッジ面)よりも、炭素層のベーサル面が多く露出していると考えられる。このとき、粉砕後の天然黒鉛粒子の表面粗さRaは、例えば0.05μm以下である。しかし、ベーサル面はリチウムイオンの挿入および脱離に寄与しない。すなわち、従来のように黒鉛粒子を大きい応力で粉砕すると、負極の充電受入性が低下する傾向がある。
 複合炭素粒子は、天然黒鉛の核と人造黒鉛の原料とを出発材料として用いて合成される。具体的には、例えば以下の方法で得ることができる。
 まず、天然黒鉛粒子とピッチとを混合して、第1前駆体を得る。ここで、原料である天然黒鉛粒子を、シャープな粒度分布となるように粉砕することが好ましい。過度に粒径の小さい天然黒鉛粒子が多く含まれると、粉砕後の複合炭素粒子の粒度分布もブロードな分布になる場合がある。また、所望の複合炭素粒子の粒径に対して過度に粒径の大きい天然黒鉛粒子が多く含まれると、天然黒鉛部分で粉砕する必要が生じるため、複合炭素粒子において天然黒鉛の性質が顕在化し、出入力特性が向上しにくくなる場合がある。
 具体的には、粉砕後の天然黒鉛粒子は、5μm以下の粒子の含有割合が3重量%以下であることが好ましい。5μm以下の粒子の含有割合を3重量%以下とすることで、シャープな粒度分布を有する複合炭素粒子が得られる。粉砕後の天然黒鉛粒子の体積基準の粒度分布における累積50%径の値は累積10%径の値の1.5~3倍であり、かつ累積90%径の値は前記累積50%径の値の1.1~1.5倍であることが好ましい。このような天然黒鉛粒子は粒径のバラツキが小さいことから、シャープな粒度分布を有する複合炭素粒子が得られる。その結果、圧延時の充填性が向上するため好ましい。
 次に、第1前駆体を600~1000℃で加熱してピッチを溶融させ、不活性雰囲気中で所定の時間保持する。これにより、ピッチを重合ピッチとすることで、第2前駆体が得られる。その後、第2前駆体を1100~1500℃で加熱し、重合ピッチを炭素化させることで、第3前駆体が得られる。
 第3前駆体を、不活性ガス雰囲気下において2200℃~2800℃で加熱する。この加熱によって、炭素化した重合ピッチが黒鉛化し、複合炭素粒子の塊状物が得られる。黒鉛化は、例えば、XRDにおけるピークの先鋭度の向上により確認できる。上記の炭素化および黒鉛化は、不活性雰囲気中で行うことが好ましく、例えば窒素およびアルゴンよりなる群から選ばれる少なくとも1種のガスを含む雰囲気中で行うことが好ましい。
 その後、所望の平均粒径になるように、複合炭素粒子の塊状物を処理する。例えば粉砕および分級を行えばよい。塊状物は粉砕しやすい性状を有するため、粉砕の応力を小さくしても、容易に所望の平均粒径に制御できる。そのため、粉砕後の複合炭素粒子は、表面に炭素層のエッジ面が十分に露出しており、優れた充電受入性を示す。
 粉砕後の炭素材料粒子の表面粗さRaは、0.2~0.6μmであることが好ましい。例えば、上記の複合炭素粒子の塊状物は不連続な構造であることから、粉砕しやすい。そのため、粉砕の応力を比較的小さくしても、複合炭素粒子を容易に所望の粒径に制御できる。粉砕の応力を小さくできることから、複合炭素粒子の表面は過度に滑らかにならず、ある程度の表面粗さを有する状態が維持される。このような表面粗さを有する複合炭素粒子の表面には、炭素層のエッジ面が十分に露出していると考えられる。そのため、充電の際はリチウムイオンが速やかに挿入され、放電の際はリチウムイオンが速やかに脱離される。すなわち、複合炭素粒子を用いることで、負極の充電受入性が向上する。
 炭素材料粒子の表面粗さは、例えばSPM(走査型プローブ顕微鏡、Scanning Probe Microscope)で求められる。表面粗さは、粒径10~20μmの粒子について測定し、10~20個の粒子の平均を求めればよい。
 炭素材料粒子の平均粒径(体積基準の粒度分布における累積50%径:D50)は、特に限定されないが、5~25μmが好適である。炭素材料粒子は、シャープな粒度分布を有することが好ましい。具体的には、5μm以下の粒子の含有割合が5重量%以下であることが好ましい。また、炭素材料粒子の体積基準の粒度分布における累積50%径の値は累積10%径(D10)の値の2~3.5倍であり、かつ累積90%径(D90)の値は前記累積50%径の値の2~2.7倍であることが好ましい。このような炭素材料粒子は粒径のバラツキが小さいことから、負極合剤層を圧延する際の充填性が向上する。
 炭素材料粒子のBET比表面積は、1~5m2/gであることが望ましい。これにより、優れた充放電サイクル特性および高出入力特性を両立できる。炭素材料粒子のBET比表面積が1m2/g未満であると、出入力特性の向上が困難になる場合がある。一方、BET比表面積が5m2/gを超えると、非水電解質と炭素材料粒子との副反応による影響が顕在化する場合がある。炭素材料粒子のBET比表面積は、1.5~3m2/gとすることが更に望ましい。炭素材料粒子のBET比表面積は、炭素材料粒子に対する窒素の吸着量から求められる。
 炭素材料粒子は、表面にアモルファスカーボン層を有することが好ましい。炭素材料粒子が複合炭素粒子である場合、人造黒鉛部分および天然黒鉛部分の少なくとも一方の表面にアモルファスカーボン層を有することが好ましい。アモルファスカーボン層は不定形であり、リチウムイオンが吸蔵されやすい。そのため、負極の充電受入性が更に向上する。
 炭素材料粒子の表面にアモルファスカーボン層を配する方法は特に限定されない。炭素材料粒子の表面をアモルファスカーボン層で被覆する方法は、気相法であってもよく、液相法であってもよい。ピッチなどの有機物を表面に付着させた後、これを還元処理することでアモルファス化させてもよく、アセチレンガスなどの還元雰囲気で炭素材料粒子を加熱することにより、表面をアモルファスカーボン層で被覆してもよい。
 負極は、芯材と、その表面に付着した負極合剤層とを含む。負極合剤層は、必須成分として炭素材料粒子を含み、任意成分として結着剤などを含む。
 負極集電体は特に限定されないが、例えば、ステンレス鋼、ニッケル、銅などからなるシートを用いることができる。
 負極合剤層は、炭素材料粒子を90~99重量%含むことが好ましく、98~99重量%含むことがより好ましい。炭素材料粒子を上記の範囲で含むことで、高容量であり、かつ高強度の負極合剤層が得られる。
 負極合剤層は、負極合剤ペーストを調製し、これを芯材の片面または両面に塗布し、乾燥させることで得られる。負極合剤ペーストは、例えば、炭素材料粒子と、結着剤と、増粘剤と、分散媒とを混合したものである。その後、ローラなどを用いて負極合剤層を圧延することで、活物質密度が高く、高強度の負極が得られる。
 広角X線回折法で測定される負極の回折像から、負極に含まれる炭素材料粒子の結晶性に関する情報を得ることができる。炭素材料粒子を含む負極は、広角X線回折法で測定される回折像において、(101)面に帰属されるピークと、(100)面に帰属されるピークとを有する。
 Cu-Kα線を用いて負極のX線回折像を測定すると、2θ=42°付近に(100)面に帰属されるピークが認められる。一方、2θ=44°付近には、(101)面に帰属されるピークが観測される。(101)面に帰属されるピークにより、三次元的な黒鉛構造の発達が示唆される。すなわち、I(101)/I(100)が大きいほど、黒鉛構造が発達しているといえる。
 本発明の負極において、(101)面に帰属されるピークの強度I(101)と、(100)面に帰属されるピークの強度I(100)との比は、1.0<I(101)/I(100)<3.0を満たす。なお、ピークの強度とは、ピークの高さを意味する。I(101)/I(100)が1以下であると、黒鉛構造の三次元的な発達が不十分であるといえる。この場合、十分な高容量が得られない。一方、I(101)/I(100)が3以上であると、天然黒鉛の性質が大きくなり、ベーサル面が配向しやすくなる。そのため、Liの受入れ性が低下した構造となる。
 I(101)/I(100)値のより好ましい範囲は、2.6以下であり、特に好ましくは2.5以下である。また、I(101)/I(100)値は、2.2以上がより好ましく、2.3以上であることがより好ましい。
 また、炭素材料粒子を含む負極は、上記X線回折像において、更に(110)面に帰属されるピークと、(004)面に帰属されるピークとを有する。
 (110)面に帰属されるピークは、2θ=78°付近に観測される。このピークは、c軸方向と平行な面による回折を示すピークである。よって、負極中の黒鉛のベーサル面が電極の面方向に配向するほど、ピークの強度I(110)は小さくなる傾向がある。
 (004)面に帰属されるピークは、2θ=54°付近に観測される。このピークは、a軸方向と平行な面による回折を示すピークである。よって、負極中の黒鉛のベーサル面が電極の面方向に配向するほど、ピークの強度I(004)は大きくなる傾向がある。
 すなわち、I(110)/I(004)が小さいほど、ベーサル面が電極の面方向に配向していることになる。
 本発明の負極において、(110)面に帰属されるピークの強度I(110)と、(004)面に帰属されるピークの強度I(004)との比は、0.25≦I(110)/I(004)≦0.45を満たす。I(110)/I(004)値が0.25未満である場合、複合炭素粒子の配向性が大きすぎるため、リチウムイオンの挿入および脱離の速度が遅くなる。よって、負極の出入力特性が低下するおそれがある。
 なお、I(110)/I(004)値は、0.29以上、0.37以下が特に好ましい。
 本発明で用いる炭素材料粒子のc軸方向の結晶子の厚みLc(004)は、充電受入性や容量の観点から、20nm以上、60nm未満であることが好ましい。また、a軸方向の結晶子の長さLaは、高容量化の観点から、50nm以上、200nm以下であることが好ましい。
 LcおよびLaは、いずれもX線回折像で観測されるピークの半価幅の関数で表すことができる。ピークの半価幅は、例えば以下の方法で求められる。
 高純度ケイ素粉末を、内部標準物質として炭素材料粒子と混合する。混合物のX線回折像を測定して、炭素とケイ素の両者のピークの半価幅の値から結晶子の厚みが求められる。Lcは、(004)面に帰属されるピークから求められる。Laは、(110)面に帰属されるピークから求められる。
 本発明に係る炭素材料粒子は配向しにくいため、負極合剤層の充填密度を1.6~1.8g/cm3まで高くしても、良好な充電受入性が得られる。すなわち、高エネルギー密度と高出入力特性とを優れたバランスで両立できる。充填密度とは、単位体積あたりの負極合剤層の重量をいう。
 負極合剤層の容量密度は、315~350Ah/kgである。黒鉛の理論容量は372Ah/kgであるが、一般的な黒鉛を負極材料として用いる場合、負極合剤層の容量密度を315Ah/kg以上に設計することは困難である。一方、本発明によれば、上記のような炭素材料粒子を用いることから、優れた充電受入性が得られる。そのため、負極合剤層の容量密度を、例えば315~350Ah/kgにまで高くすることができる。
 負極合剤層の容量密度は、満充電状態の電池容量を、正極合剤層と対向する負極合剤層部分に含まれる炭素材料粒子の重量で除することによって求められる。
 満充電状態とは、電池が所定の充電上限電圧まで充電された状態をいう。所定の充電上限電圧をこえて充電された電池は、過充電状態となる。充電上限電圧は、一般に電池電圧4.1~4.4Vの範囲に設定される。
 負極芯材の両面に負極合剤層を付着させる場合、芯材を除いた負極合剤層の合計厚みは、50~250μmであることが好ましい。負極合剤層の合計厚みが50μm未満であると、十分な高容量が得られない場合がある。一方、負極合剤層の合計厚みが250μmを超えると、充電受入性が低下し、Liが析出する場合がある。
 非水電解質二次電池は、上記の負極と、正極と、非水電解質とを具備する。正極は、正極芯材およびその表面に付着した正極合剤層からなる。
 正極合剤層は、一般に、リチウム含有複合酸化物からなる正極活物質、導電材および結着剤を含んでいる。導電材や結着剤には、公知のものを特に限定することなく用いることができる。
 正極集電体としては、例えば、ステンレス鋼、アルミニウム、チタンなどからなるシートを用いることができる。
 正極芯材の両面に正極合剤層を付着させる場合、付着した2つの正極合剤層の合計厚みは、50μm~250μmであることが好ましい。
 正極芯材の両面に正極合剤層を付着させる場合、付着した2つの正極合剤層の合計厚みは、50~250μmであることが好ましい。正極合剤層の合計厚みが50μm未満であると、十分な高容量が得られない場合がある。一方、正極合剤層の合計厚みが250μmを超えると、電池の内部抵抗が大きくなる傾向がある。
 正極活物質であるリチウム含有複合酸化物には、公知のものを特に限定なく用いることができる。例えば、LiCoO2、LiNiO2、スピネル構造を有するLiMn24などを例示することができる。また、サイクル寿命特性を向上させるために、複合酸化物に含まれる遷移金属の一部を、他の元素で置換することもできる。例えば、LiNiO2のNi元素の一部を、Coや他の元素(Al、Mn、Tiなど)で置換したリチウムニッケル複合酸化物は、高い電流密度での充放電サイクル寿命特性と出入力特性とをバランスよく両立させることができる。
 導電材としては、例えば、黒鉛類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維等が挙げられる。
 正極用結着剤および負極用結着剤としては、例えば、ポリオレフィン系結着剤、フッ素化樹脂、ゴム弾性を有する粒子状の結着剤などが挙げられる。ポリオレフィン系結着剤としては、ポリエチレン、ポリプロピレンなどが挙げられる。フッ素化樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体などが挙げられる。ゴム弾性を有する粒子状の結着剤としては、スチレン単位およびブタジエン単位を含む共重合体(SBR)などが挙げられる。
 非水電解質としては、非水溶媒およびこれに溶解するリチウム塩からなる液状の電解質が好ましい。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート類と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類との混合溶媒が挙げられる。また、γ-ブチロラクトンやジメトキシエタンなども用いることができる。リチウム塩としては、無機リチウムフッ化物やリチウムイミド化合物などが挙げられる。無機リチウムフッ化物としては、LiPF6、LiBF4等が挙げられ、リチウムイミド化合物としてはLiN(CF3SO22等が挙げられる。
 一般に、正極と負極との間にはセパレータを介在させる。セパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィン製の微多孔膜、織布、不織布等が挙げられる。ポリオレフィンは、耐久性に優れ、かつシャットダウン機能を有するため、二次電池の安全性を向上させる観点から好ましい。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
《実施例1》
(i)正極の作製
 正極活物質であるリチウム含有複合酸化物(LiNi0.8Co0.15Al0.052、平均粒径12μm)100重量部、結着剤であるポリフッ化ビニリデン(呉羽化学(株)製のPVDF#1320(固形分12重量%のN-メチル-2-ピロリドン(NMP)溶液)5重量部、導電材であるアセチレンブラック4重量部および分散媒である適量のNMPを、双腕式練合機を用いて混合し、正極合剤ペーストを調製した。正極合剤ペーストを厚さ20μmのアルミニウム箔(正極芯材)の両面に塗布し、塗膜を乾燥させた。その後、正極の合計厚さが160μmとなるように、塗膜をローラで圧延し、正極を作製した。得られた正極は、円筒型18650の電池ケースに挿入可能な幅に裁断した。
(ii)負極の作製
 天然黒鉛(関西熱化学(株)製、平均粒径25μm)を、ジェットミル((株)セイシン企業製のCo-Jet)により3μm以上15μm以下の範囲になるように粉砕した。
 三菱ガス化学(株)製のピッチ(品種AR24Z、軟化点293.9℃)100重量部に対し、表1に示す重量割合になるように天然黒鉛を混合し、架橋材であるパラキシレングリコール5重量部および黒鉛化触媒であるホウ酸5重量部を混合した。得られた混合物(第1前駆体)を常圧下、窒素雰囲気で600℃まで昇温させ、ピッチを溶融状態として2時間保持し、重合させて、ピッチを重合ピッチとした。
 重合ピッチを含む第2前駆体を、窒素雰囲気下、1200℃で1時間加熱し、重合ピッチを炭素化させた。その後、炭素化させた重合ピッチを含む第3前駆体を、アルゴン雰囲気下、2800℃で加熱し、炭素材料粒子である複合炭素粒子の塊状物を得た。得られた複合炭素粒子の塊状物を粉砕し、分級した。
 次に、得られた複合炭素粒子をエチレンガス気流中で、1200℃で加熱して、天然黒鉛部分および人造黒鉛部分の少なくとも一方の表面にアモルファスカーボン層を形成した。TEM(透過型電子顕微鏡)で確認したところ、アモルファスカーボン層の厚さは10~15nmであった。
 アモルファスカーボン層形成後の複合炭素粒子の平均粒径(D50)およびBET比表面積を表1に示す。
また、微小圧縮試験器((株)島津製作所製のMCT-W500)を用いて、複合炭素粒子の破壊強度を測定した。粒径20μmの粒子10個の破壊強度を測定し、平均値を求めた。結果を表1に示す。
 画像解析ソフトを用いて、複合炭素粒子の二次元投影像の周囲長と、相当円の周囲長から、複合炭素粒子の球形度を求めた。球形度は、10個の粒子の平均値とした。結果を表1に示す。
 得られた複合炭素粒子の断面をSEMで観察したところ、複合炭素粒子は、天然黒鉛部分および天然黒鉛部分の表面に配された人造黒鉛部分を有していた。粒径20μmの複合炭素粒子全体の断面に占める人造黒鉛部分の面積の割合から、複合炭素粒子に占める人造黒鉛部分の重量割合を求めた。複合炭素粒子に占める人造黒鉛部分の重量割合は、10個の粒子の平均値とした。結果を表1に示す。
 走査型プローブ顕微鏡(SPM、SIIナノテクノロジー(株)製のE-Sweep)を用いて、複合炭素粒子の表面粗さを測定した。結果を表1に示す。
 粉末X線回折法により、得られた複合炭素粒子の配向性を分析した。Lc(004)およびLa(110)は、高純度ケイ素粉末を内部標準物質として求めた。結果を表1に示す。
 複合炭素粒子100重量部、結着剤である日本ゼオン(株)製のBM-400B(固形分40重量%の変性スチレン-ブタジエンゴム(SBR)の分散液)1重量部、増粘剤であるカルボキシメチルセルロース(CMC)1重量部および分散媒である適量の水を、双腕式練合機を用いて混合し、負極合剤ペーストを調製した。負極合剤ペーストを厚さ10μmの銅箔(負極芯材)の両面に塗布し、塗膜を乾燥させた。その後、負極の合計厚さが160μmとなるように、塗膜をローラで圧延し、負極を作製した。得られた負極は、円筒型18650の電池ケースに挿入可能な幅に裁断した。
 広角X線回折法により、得られた負極における粒子の配向性を分析した。結果を表1に示す。
 Cu-Kα線を用いて、負極の広角X線回折像を測定した。2θ=42°付近に(100)面に帰属されるピークが観察され、44°付近に(101)面に帰属されるピークが観察された。さらに、2θ=78°付近に(110)面に帰属されるピークが観察され、2θ=54°付近に(004)面に帰属されるピークが観察された。
 回折像からバックグラウンドを除去し、ピークの強度(ピークの高さ)から、I(101)/I(100)値およびI(110)/I(004)値を求めた。結果を表2に示す。
(iii)非水電解質の調製
 非水電解質は、エチレンカーボネートとメチルエチルカーボネートとの体積割合が1:3である混合溶媒に、ビニレンカーボネート2重量%、ビニルエチレンカーボネート2重量%、フルオロベンゼン5重量%およびフォスファゼン5重量%を混合した。得られた混合溶媒に対して、1.5mol/LのLiPF6を溶解させ、非水電解質を調製した。
(iv)電池の作製
 図1に示す非水電解質二次電池を作製した。
 正極芯材の露出部に正極リードの一端を接続し、負極芯材の露出部に負極リードの一端を接続した。正極6と負極8とを、これらの間に厚み27μm、幅50mmのポリエチレン製の微多孔膜からなるセパレータ7を介して渦巻状に捲回し、横断面が略円形である円筒型の電極群を構成した。
 電極群の上部および下部に、上部絶縁リングおよび下部絶縁リング(図示せず)をそれぞれ配置した。電極群を、直径18mm、高さ61.5mmである円筒型の電池ケース1に収容した。負極リードの他端を電池ケース1の内底面に溶接した。非水電解質を電池ケース1に注入し、減圧法により電極群に非水電解質を含浸させた。正極リードの他端を封口体4の下面に溶接した後、ガスケット3を介して電池ケース1を封口体4で封口し、電池を作製した。
《実施例2~4》
 天然黒鉛部分および人造黒鉛部分の重量割合を表1に示すように変化させたこと以外、実施例1と同様にして負極を作製した。得られた負極を用いたこと以外、実施例1と同様にして実施例2~4の電池を作製した。
《比較例1》
 三菱ガス化学(株)製のピッチ(品種AR24Z、軟化点293.9℃)100重量部に、架橋材であるパラキシレングリコール5重量部、黒鉛化触媒であるホウ酸5重量部を混合した。得られた混合物(第1前駆体)を常圧下、窒素雰囲気で300℃まで昇温させ、ピッチを溶融状態として2時間保持し、重合させて、ピッチを重合ピッチとした。
 重合ピッチを含む第2前駆体を、窒素雰囲気下、800℃で、1時間加熱し、重合ピッチを炭素化させた。その後、炭素化させた重合ピッチを含む第3前駆体を、アルゴン雰囲気下、2800℃で加熱し、人造黒鉛粒子の塊状物を得た。得られた人造黒鉛粒子の塊状物は、平均粒径(D50)が20μmになるように粉砕および分級を行った。得られた人造黒鉛粒子の破壊強度、表面粗さ、球形度およびBET比表面積を、実施例1と同様にして求めた。この人造黒鉛粒子を用いたこと以外、実施例1と同様にして負極を作製し、電池を作製した。
 実施例1~4および比較例1の電池について、以下の評価を行った。
[初期容量]
 25℃の環境下で、400mAの定電流、充電上限電圧4.2V、放電下限電圧2.5Vの充放電を3サイクル行った。3サイクル目の放電容量を電池の初期容量とした。結果を表2に示す。
[内部抵抗]
 25℃環境下において、50%の充電状態(SOC)となるように400mAの定電流で充電した。その後、100mA、200mA、400mAおよび1000mAでそれぞれ10秒間、パルス放電とパルス充電を繰り返し、各パルス放電における10秒目の電圧を測定し、電流-電圧特性プロットを作成した。得られたプロットに最小二乗法を適用して、近似直線の傾きを直流内部抵抗(DC-IR)とした。さらに、0℃環境下においても、同様の方法でDC-IRを測定した。結果を表2に示す。
[低温充放電サイクル特性]
 DC-IR測定後の電池について、以下の方法で評価を行った。
 実施例1~4および比較例1の電池を、それぞれ1セルずつ用いた。0℃の環境下で、400mAの定電流、充電上限電圧4.2V、放電下限電圧2.5Vの充放電を100サイクル行った。100サイクル経過毎に、電池を25℃環境下に戻し、放電容量の測定と、DC-IRの測定を行った。この工程を繰り返して、500サイクルの充放電を行い、上記の初期容量に対する500サイクル経過時の低温容量維持率を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例1~4の電池は、いずれも優れた低温充放電サイクル特性を示していた。実施例1~4の電池は、いずれも複合炭素粒子を含む。複合炭素粒子は高い破壊強度を有することから割れにくく、負極の配向性が小さくなったと考えられる。その結果、充電受入性が高くなり、低温充放電サイクル特性が向上したと考えられる。また、実施例1~4の複合炭素粒子は粉砕しやすい性状を有することから、粉砕後も表面が過度に滑らかにならず、ある程度の表面粗さを有することがわかった。
 一方、比較例1の電池は、低温充放電サイクル特性の低下が顕著であった。これは、比較例1の炭素材料粒子の破壊強度が小さいため、粉砕後において、粒子の表面に炭素層のベーサル面が多く露出し、充電受入性が不十分になったためと考えられる。
 配向性の大きい炭素材料、すなわちI(110)/I(004)値が0.187と小さい比較例1の電池は、0℃および25℃環境下でのDC-IRが大きくなっていた。すなわち、比較例1の電池は低温出力特性が低下していた。これは、配向性が大きいと、低温でリチウムイオンの挿入および脱離の速度が小さくなるためであると考えられる。
 一方、I(110)/I(004)値が0.28以上と比較例1よりも配向性の小さい複合炭素材料を用いた実施例1~4の電池は、良好な低温出力特性を示していた。この結果は、炭素材料の黒鉛化度よりも、炭素材料の配向性が低温出力特性に影響することを示唆していると考えられる。
 なお、実施例3の複合炭素粒子の粒度分布を詳細に分析したところ、5μm以下の粒子の含有割合は5重量%以下であり、D50はD10の約3倍、D90はD50の約2.5倍であった。
《実施例5~8および比較例2》
(i)正極の作製
 組成式LiNi0.4Co0.3Mn0.32で表されるリチウムニッケル複合酸化物を用いたこと以外、実施例1と同様にして正極を作製した。
(ii)負極の作製
 圧延の際のローラの線圧を変化させて、充填密度を表3に示すように変化させたこと以外、実施例3の電池と同様にして、実施例5~8および比較例2の負極を作製した。得られた負極について、実施例1と同様にして広角X線回折法による測定を行った。I(101)/I(100)値およびI(110)/I(004)値を表3に示す。
 上記の正極および負極を用いたこと以外、実施例1と同様にして、実施例5~8および比較例2の電池をそれぞれ作製した。得られた電池について、実施例1と同様の評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 複合炭素粒子を含む実施例5~8は、充填密度を1.65~1.8g/cm3としても、I(110)/I(004)値が0.2以上であり、優れた低温充放電サイクル特性を示していた。複合炭素粒子を含む負極は、充填密度を1.8g/cm3まで高密度化しても粒子が配向しにくく、優れた低温充放電サイクル特性を得られることがわかった。一方、充填密度が1.8g/cm3を超える比較例2の電池は、低温充放電サイクル特性がやや低下していた。
《実施例9~12》
 黒鉛化触媒としてホウ酸の代わりに酸化ホウ素を用い、三菱ガス化学(株)製のピッチ(品種AR24Z、軟化点293.9℃)100重量部に対する酸化ホウ素の量を表4に示すように変化させたこと以外、実施例1と同様にして、複合炭素粒子を得た。得られた複合炭素粒子の破壊強度、表面粗さ、球形度およびBET比表面積を、実施例1と同様にして求めた。結果を表4に示す。
 得られた複合炭素粒子の断面をSEMで観察したところ、複合炭素粒子は、天然黒鉛部分および天然黒鉛部分の表面に配された人造黒鉛部分を有していた。実施例1と同様にして、複合炭素粒子に占める人造黒鉛部分の重量割合を求めた。結果を表4に示す。
 得られた複合炭素粒子を用いたこと以外、実施例1と同様にして負極を作製した。得られた負極について、実施例1と同様にしてI(101)/I(100)値およびI(110)/I(004)値を求めた。結果を表5に示す。
 上記の負極を用いたこと以外、実施例1と同様にして、実施例9~12および比較例3の電池をそれぞれ作製した。得られた電池について、実施例1と同様の評価を行った。結果を表5に示す。
《比較例3》
 黒鉛化触媒としてホウ酸の代わりに酸化ホウ素を用い、三菱ガス化学(株)製のピッチ(品種AR24Z、軟化点293.9℃)100重量部に対する酸化ホウ素の量を6重量部としたこと以外、比較例1と同様にして、人造黒鉛粒子を得た。得られた人造黒鉛粒子は、平均粒径(D50)が20μmになるように粉砕および分級を行った。この人造黒鉛粒子を用いたこと以外、実施例1と同様にして負極を作製し、電池を作製した。得られた人造黒鉛粒子の破壊強度、表面粗さ、球形度およびBET比表面積を、実施例1と同様にして求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 複合炭素粒子の表面粗さが0.2~0.6μmである実施例9~12の電池は、いずれも優れた低温充放電サイクル特性を示していた。一方、表面粗さが0.2μm未満である比較例3の電池は、低温充放電サイクル特性がやや低下していた。実施例9~12に係る複合炭素粒子は粉砕しやすい性状を有するため、表面に炭素層のエッジ面が十分に露出した状態が維持され、優れた出入力特性が得られたと考えられる。
 上記の結果から、複合炭素粒子のBET比表面積は、1~5m2/gであることが好ましいことがわかった。BET比表面積が6.4m2/gである比較例3の電池は、充放電サイクル特性が低下していた。これは、BET比表面積が過度に大きく、負極表面が非水電解質と反応(副反応)しやすいためと考えられる。
 なお、上述の実施例および比較例では、正極活物質にリチウムニッケル複合酸化物を用いたが、例えば、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物などのリチウム含有複合酸化物を用いる場合にも、ほぼ同様の効果が得られる。
 また、アモルファス層を形成しない点以外は、実施例1と同様に合成した複合炭素粒子を用いた場合にも、その効果は小さくなる傾向があるが、上記とほぼ同様の効果が得られる。
 また、上述の実施例および比較例では、非水電解液の非水溶媒には、エチレンカーボネートとメチルエチルカーボネートとの混合溶媒を用いたが、公知の4V級の耐酸化還元電位を有する非水溶媒(例えばジエチルカーボネート(DEC)、ブチレンカーボネート(BC)、メチルプロピオネートなど)であれば、ほぼ同様の効果が得られる。さらに、非水溶媒に溶解させる溶質に、公知の溶質、例えばLiBF4、LiClO4などを用いても、ほぼ同様の効果が得られる。
 本発明の非水電解質二次電池用負極は、高出入力が要求される機器の電源として利用できる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1 電池ケース
 3 ガスケット
 4 封口体
 6 正極
 7 セパレータ
 8 負極

Claims (10)

  1.  芯材と、前記芯材に付着した負極合剤層とを含み、
     前記負極合剤層が、炭素材料粒子を含み、
     前記炭素材料粒子の破壊強度が、100MPa以上であり、
     広角X線回折法で測定される前記負極合剤層の回折像において、
     (101)面に帰属されるピークの強度I(101)と、(100)面に帰属されるピークの強度I(100)との比が、1.0<I(101)/I(100)<3.0を満たし、
     (110)面に帰属されるピークの強度I(110)と、(004)面に帰属されるピークの強度I(004)との比が、0.25≦I(110)/I(004)≦0.45を満たす、非水電解質二次電池用負極。
  2.  前記炭素材料粒子が、天然黒鉛部分および人造黒鉛部分を有する複合炭素粒子であり、
     前記人造黒鉛部分が、前記天然黒鉛部分の表面に配されており、
     前記複合炭素粒子に占める前記人造黒鉛部分の重量割合が、60~90重量%である、請求項1記載の非水電解質二次電池用負極。
  3.  前記炭素材料粒子の表面粗さRaが、0.2~0.6μmである、請求項1または2記載の非水電解質二次電池用負極。
  4.  前記炭素材料粒子が、表面にアモルファスカーボン層を有する、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極。
  5.  前記炭素材料粒子において、
     5μm以下の粒子の含有割合が5重量%以下であり、
     体積基準の粒度分布における累積50%径の値が、累積10%径の値の2~3.5倍であり、かつ
     累積90%径の値が、前記累積50%径の値の2~2.7倍である、請求項1~4のいずれか1項に記載の非水電解質二次電池用負極。
  6.  前記負極合剤層の充填密度が、1.6~1.8g/cm3である、請求項1~5のいずれか1項に記載の非水電解質二次電池用負極。
  7.  前記炭素材料粒子のBET比表面積が、1~5m2/gである、請求項1~6のいずれか1項に記載の非水電解質二次電池用負極。
  8.  天然黒鉛粒子とピッチとを混合して、第1前駆体を得る工程と、
     前記第1前駆体を600~1000℃で加熱し、前記ピッチを重合ピッチとして第2前駆体を得る工程と、
     前記第2前駆体を1100~1500℃で加熱し、前記重合ピッチを炭素化して第3前駆体を得る工程と、
     前記第3前駆体を2200~2800℃で加熱して、前記炭素化した重合ピッチを黒鉛化し、複合炭素粒子の塊状物を得る工程と、を有する、非水電解質二次電池用負極の製造方法。
  9.  表面粗さRaが0.2~0.6μmとなるように、前記複合炭素粒子の塊状物を処理する、請求項8記載の非水電解質二次電池用負極の製造方法。
  10.  正極と、請求項1~7のいずれか1項に記載の負極と、これらの間に介在するセパレータと、非水電解質とを具備する、非水電解質二次電池。
PCT/JP2011/001753 2010-06-30 2011-03-25 非水電解質二次電池用負極およびその製造方法 WO2012001845A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800033512A CN102668196A (zh) 2010-06-30 2011-03-25 非水电解质二次电池用负极及其制造方法
JP2012522421A JPWO2012001845A1 (ja) 2010-06-30 2011-03-25 非水電解質二次電池用負極およびその製造方法
US13/390,468 US20120148922A1 (en) 2010-06-30 2011-03-25 Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-149405 2010-06-30
JP2010149405 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012001845A1 true WO2012001845A1 (ja) 2012-01-05

Family

ID=45401597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001753 WO2012001845A1 (ja) 2010-06-30 2011-03-25 非水電解質二次電池用負極およびその製造方法

Country Status (5)

Country Link
US (1) US20120148922A1 (ja)
JP (1) JPWO2012001845A1 (ja)
KR (1) KR20120035213A (ja)
CN (1) CN102668196A (ja)
WO (1) WO2012001845A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225501A (ja) * 2012-03-22 2013-10-31 Mitsubishi Chemicals Corp 非水系二次電池用複合炭素材、負極及び、非水系二次電池
WO2014024525A1 (ja) * 2012-08-06 2014-02-13 トヨタ自動車株式会社 非水電解質二次電池の負極および非水電解質二次電池、ならびにこれらの製造方法
JP2014229517A (ja) * 2013-05-23 2014-12-08 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2015051229A1 (en) 2013-10-03 2015-04-09 Baker Hughes Incorporated Wavelength-selective, high temperature, near infrared photodetectors for downhole applications
US9627682B2 (en) 2012-12-26 2017-04-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same
JP2019508839A (ja) * 2016-07-04 2019-03-28 エルジー・ケム・リミテッド 二次電池用負極
WO2021002384A1 (ja) * 2019-07-01 2021-01-07 昭和電工株式会社 リチウムイオン二次電池
JP2022537926A (ja) * 2020-05-28 2022-08-31 貝特瑞新材料集団股▲ふん▼有限公司 負極材料、その調製方法及びリチウムイオン電池
JP2022548276A (ja) * 2019-09-30 2022-11-17 エルジー エナジー ソリューション リミテッド 負極活物質、負極活物質の製造方法、それを含む負極、及びリチウム二次電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032922A (ja) * 2012-08-06 2014-02-20 Toyota Motor Corp 非水電解質二次電池の負極および非水電解質二次電池、ならびにこれらの製造方法
US20140085773A1 (en) * 2012-09-25 2014-03-27 Yunasko Limited Hybrid electrochemical energy storage device
CN103259002A (zh) * 2013-05-28 2013-08-21 宁德新能源科技有限公司 锂离子电池及其电极片
KR102231209B1 (ko) * 2014-05-22 2021-03-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
KR102449847B1 (ko) * 2015-10-27 2022-09-29 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
EP3324467B1 (en) * 2016-02-05 2019-09-11 LG Chem, Ltd. Negative electrode active material and secondary battery comprising same
US10710094B2 (en) 2016-05-18 2020-07-14 Syrah Resources Ltd. Method and system for precision spheroidisation of graphite
US10710882B2 (en) 2016-06-27 2020-07-14 Syrah Resources Ltd. Purification process modeled for shape modified natural graphite particles
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10615406B2 (en) * 2017-03-17 2020-04-07 Tdk Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery
PL3641029T3 (pl) * 2017-10-30 2023-01-16 Lg Energy Solution, Ltd. Materiał czynny elektrody ujemnej dla urządzenia elektrochemicznego, elektroda ujemna zawierająca materiał czynny elektrody ujemnej i zawierające ją urządzenie elektrochemiczne
KR102425002B1 (ko) * 2017-11-06 2022-07-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167920A (ja) * 1997-12-05 1999-06-22 Kansai Coke & Chem Co Ltd 非水系二次電池用負極材の製造法
JP2000138061A (ja) * 1998-08-27 2000-05-16 Nec Corp 非水電解液二次電池、その製造法および炭素材料組成物
JP2004273424A (ja) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp リチウム二次電池負極及びリチウム二次電池
JP2006044969A (ja) * 2004-08-02 2006-02-16 Sumitomo Metal Ind Ltd 炭素粉末とその製造方法
JP2006269361A (ja) * 2005-03-25 2006-10-05 Hitachi Cable Ltd リチウムイオン二次電池用負極及びその製造方法
JP2007157538A (ja) * 2005-12-06 2007-06-21 Sony Corp 電池
WO2007072858A1 (ja) * 2005-12-21 2007-06-28 Showa Denko K. K. 複合黒鉛粒子及びそれを用いたリチウム二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573266B1 (en) * 1992-06-01 1999-12-08 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US6686094B2 (en) * 1996-07-30 2004-02-03 Sony Corporation Non-acqueous electrolyte secondary cell
KR101106966B1 (ko) * 2004-08-30 2012-01-20 도까이 카본 가부시끼가이샤 비수계 2 차 전지용 부극 재료, 비수계 2 차 전지용 부극,및 비수계 2 차 전지
JP4297133B2 (ja) * 2006-05-15 2009-07-15 ソニー株式会社 リチウムイオン電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167920A (ja) * 1997-12-05 1999-06-22 Kansai Coke & Chem Co Ltd 非水系二次電池用負極材の製造法
JP2000138061A (ja) * 1998-08-27 2000-05-16 Nec Corp 非水電解液二次電池、その製造法および炭素材料組成物
JP2004273424A (ja) * 2003-02-20 2004-09-30 Mitsubishi Chemicals Corp リチウム二次電池負極及びリチウム二次電池
JP2006044969A (ja) * 2004-08-02 2006-02-16 Sumitomo Metal Ind Ltd 炭素粉末とその製造方法
JP2006269361A (ja) * 2005-03-25 2006-10-05 Hitachi Cable Ltd リチウムイオン二次電池用負極及びその製造方法
JP2007157538A (ja) * 2005-12-06 2007-06-21 Sony Corp 電池
WO2007072858A1 (ja) * 2005-12-21 2007-06-28 Showa Denko K. K. 複合黒鉛粒子及びそれを用いたリチウム二次電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225501A (ja) * 2012-03-22 2013-10-31 Mitsubishi Chemicals Corp 非水系二次電池用複合炭素材、負極及び、非水系二次電池
WO2014024525A1 (ja) * 2012-08-06 2014-02-13 トヨタ自動車株式会社 非水電解質二次電池の負極および非水電解質二次電池、ならびにこれらの製造方法
JP2014032923A (ja) * 2012-08-06 2014-02-20 Toyota Motor Corp 非水電解質二次電池の負極および非水電解質二次電池、ならびにこれらの製造方法
US9627682B2 (en) 2012-12-26 2017-04-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same
JP2014229517A (ja) * 2013-05-23 2014-12-08 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2015051229A1 (en) 2013-10-03 2015-04-09 Baker Hughes Incorporated Wavelength-selective, high temperature, near infrared photodetectors for downhole applications
JP2019508839A (ja) * 2016-07-04 2019-03-28 エルジー・ケム・リミテッド 二次電池用負極
JP2021048142A (ja) * 2016-07-04 2021-03-25 エルジー・ケム・リミテッド 二次電池用負極
JP7246810B2 (ja) 2016-07-04 2023-03-28 エルジー エナジー ソリューション リミテッド 二次電池用負極
US11777080B2 (en) 2016-07-04 2023-10-03 Lg Energy Solution, Ltd. Negative electrode for secondary battery
WO2021002384A1 (ja) * 2019-07-01 2021-01-07 昭和電工株式会社 リチウムイオン二次電池
JP2022548276A (ja) * 2019-09-30 2022-11-17 エルジー エナジー ソリューション リミテッド 負極活物質、負極活物質の製造方法、それを含む負極、及びリチウム二次電池
JP7331252B2 (ja) 2019-09-30 2023-08-22 エルジー エナジー ソリューション リミテッド 負極活物質、負極活物質の製造方法、それを含む負極、及びリチウム二次電池
JP2022537926A (ja) * 2020-05-28 2022-08-31 貝特瑞新材料集団股▲ふん▼有限公司 負極材料、その調製方法及びリチウムイオン電池
JP7317147B2 (ja) 2020-05-28 2023-07-28 貝特瑞新材料集団股▲ふん▼有限公司 負極材料、その調製方法及びリチウムイオン電池

Also Published As

Publication number Publication date
CN102668196A (zh) 2012-09-12
KR20120035213A (ko) 2012-04-13
US20120148922A1 (en) 2012-06-14
JPWO2012001845A1 (ja) 2013-08-22

Similar Documents

Publication Publication Date Title
WO2012001845A1 (ja) 非水電解質二次電池用負極およびその製造方法
CN107528053B (zh) 锂离子二次电池用负极材料、锂离子二次电池用负极以及锂离子二次电池
JP4331155B2 (ja) 高出力型の非水電解質二次電池
WO2012001844A1 (ja) 非水電解質二次電池用負極およびその製造方法
EP3683871B1 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
KR20130094853A (ko) 리튬 이온 2차 전지용 부극 재료, 리튬 이온 2차 전지 부극 및 리튬 이온 2차 전지
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
JP7480284B2 (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
KR20160141676A (ko) 리튬 이온 이차전지
JP4933092B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2012127548A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2005243431A (ja) 非水電解質二次電池
WO2017085907A1 (ja) 負極活物質、負極電極、リチウムイオン二次電池、非水電解質二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP2004299944A (ja) 黒鉛質粒子、その製造方法、リチウムイオン二次電池およびその負極材料
WO2020110942A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5021979B2 (ja) リチウムイオン二次電池負極材料用メソカーボン小球体黒鉛化物およびその製造方法、リチウムイオン二次電池負極材料、リチウムイオン二次電池負極ならびにリチウムイオン二次電池
KR101847769B1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2020110943A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7471738B2 (ja) 負極活物質、これを含む負極および二次電池
JP2013171825A (ja) 正極活物質
EP4007017B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5001977B2 (ja) 黒鉛質粒子、リチウムイオン二次電池およびその負極材料
KR102161026B1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
JP2017183236A (ja) リチウムイオン二次電池用負極及びこれを用いたリチウムイオン二次電池
EP3813160A1 (en) Anode active material, method for preparing anode active material, anode, and secondary battery including anode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012522421

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127003888

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13390468

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800324

Country of ref document: EP

Kind code of ref document: A1