WO2011155477A1 - Process and apparatus for producing solder-plated wire - Google Patents

Process and apparatus for producing solder-plated wire Download PDF

Info

Publication number
WO2011155477A1
WO2011155477A1 PCT/JP2011/063008 JP2011063008W WO2011155477A1 WO 2011155477 A1 WO2011155477 A1 WO 2011155477A1 JP 2011063008 W JP2011063008 W JP 2011063008W WO 2011155477 A1 WO2011155477 A1 WO 2011155477A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
wire
copper wire
plated
solder
Prior art date
Application number
PCT/JP2011/063008
Other languages
French (fr)
Japanese (ja)
Inventor
勝敏 若菜
高敏 上村
隆之 増井
智 富松
勝好 藤間
峻 塚野
孝政 林
Original Assignee
古河電気工業株式会社
理研電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 理研電線株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020157011359A priority Critical patent/KR101630309B1/en
Priority to KR1020127031634A priority patent/KR101541790B1/en
Priority to CN201180028866.8A priority patent/CN102939402B/en
Publication of WO2011155477A1 publication Critical patent/WO2011155477A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/003Regulation of tension or speed; Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • B21C47/10Winding-up or coiling by means of a moving guide
    • B21C47/12Winding-up or coiling by means of a moving guide the guide moving parallel to the axis of the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • B21C47/345Feeding or guiding devices not specially adapted to a particular type of apparatus for monitoring the tension or advance of the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method and apparatus for producing a solder plated wire used in electrical and electronic equipment and communication equipment, and more specifically, a method for producing a solder plated wire having low strength characteristics suitable for use as a lead wire of a solar cell, and It relates to a manufacturing apparatus.
  • Some plated wires used for electronic parts are required to have low proof stress characteristics such as a low 0.2% proof stress value.
  • the lead wire for solar cells is one of them.
  • Solar cells are required to be thin in order to reduce the cost of the silicon material constituting the solar cells and to mitigate the effects of insufficient material supply.
  • the strength is weakened, and the connecting portion where the solar cell lead wire in the solar cell is soldered is likely to be warped or damaged due to the difference in expansion coefficient. There was a problem.
  • the solar cell lead wire needs to follow the deformation of the solar cell at the connection portion with the solar cell, and it is important to reduce the 0.2% proof stress value. For this reason, a solder plated wire having a low yield strength characteristic is used as the lead wire for the solar cell.
  • Such a solder-plated wire is formed by forming a plating layer on the wire to be plated through a solder plating process as disclosed in Patent Document 1 regardless of whether or not it has low strength characteristics.
  • a metal wire as a wire to be plated is introduced into a plating solution containing molten solder plating solution through a metal wire introduction port, and is led out from a solder plating wire outlet. This is a step of plating the metal wires by cooling to the atmosphere.
  • solder plating wire manufacturing process in addition to the solder plating process described above, the surface of the metal element wire is subjected to a solder plating pretreatment process such as cleaning and annealing, A winding process for winding the plated wire is performed.
  • the proof strength of the plated wire (wire to be plated) is low, so the traveling speed of the plated wire cannot be increased, and it takes a lot of time to make continuous processing. On the contrary, there is a problem that the production efficiency may be lowered.
  • Patent Document 2 proposes a method for producing a flat conductor for solar cells.
  • the conductor is formed into a rectangular shape by a process such as rolling, and then a 0.2% proof stress value is reduced by a heat treatment process, or a solder plating film is formed on the surface of the conductor. It is a manufacturing method to be applied.
  • the cited document 2 includes specific descriptions such as temperature setting in performing heat treatment, components of atmospheric gas in the reduction furnace (softening annealing furnace), and processes other than the heat treatment process such as a cleaning process. There is no specific mention.
  • Cited Document 2 makes it difficult to ensure the quality as a lead wire of a solar cell as the 0.2% proof stress value of a flat conductor is reduced, while 0.2% No attention has been paid to two conflicting manufacturing problems that the manufacturing efficiency is lowered in order to ensure the quality of the plated wire having a reduced% proof stress value.
  • the present invention can obtain a plated wire of a desired quality with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire, the product yield can be improved. It is another object of the present invention to provide a method and apparatus for manufacturing a solder plated wire that can improve manufacturing efficiency.
  • the present invention comprises a plating pretreatment means for pre-plating a copper wire, a plating means for performing solder plating on the surface of the copper wire, and a winding means for winding up the copper wire plated on the surface.
  • a solder plated wire manufacturing apparatus comprising: a pre-plating processing means including a soft annealing means for softening and annealing a copper wire to reduce the yield strength, and the strength of the copper wire is reduced.
  • the winding means is configured to be wound by the winding means with a lower winding force, and the softening annealing means, the plating means, and the winding means are sequentially arranged in this order from the upstream side in the traveling direction of the copper wire.
  • the configuration in which the winding means winds with the winding force lower than the proof strength of the copper wire described above is not limited to the configuration in which the copper wire is wound only with the winding means, for example, the winding means.
  • a feed capstan for assisting winding by the above-described arrangement is disposed upstream of the winding means, and a configuration in which a copper wire is wound by the winding means and the feed capstan is also included.
  • the shape and size of the copper wire is not limited, but is preferably a flat wire.
  • the copper wire is preferably a rectangular wire with the above-described pure copper-based conductor material, by plating the surface, the lead wire for connection connected to a predetermined region of the silicon crystal wafer (Si cell), that is, It is because it can be used as a solder plating wire for solar cells.
  • the copper wire is formed of a pure copper-based material
  • the softening annealing means is configured by a softening annealing furnace whose inside is a reducing gas atmosphere that reduces the oxide layer on the surface of the copper wire,
  • the softening annealing furnace is inclined so that the downstream side is lower than the upstream side in the copper wire traveling direction, and a reducing gas is provided in the downstream portion in the copper wire traveling direction in the softening annealing furnace with respect to the softening annealing furnace.
  • a reducing gas supply unit that allows the supply of
  • the pure copper-based material is not particularly limited as long as it is a pure copper-based conductor material having few impurities and high conductivity.
  • impurities such as oxides such as oxygen-free copper (OFC), tough pitch copper, and phosphorus deoxidized copper are used.
  • the purity not containing is preferably 99.9% or more.
  • the reducing gas can be composed of a mixed gas of nitrogen gas and hydrogen gas.
  • the volume ratio between the nitrogen gas and the hydrogen gas can be set to 4: 1.
  • the plating pretreatment means includes a heat treatment means for performing a heat treatment on the copper wire, and the heat treatment means is disposed upstream of the softening annealing means in the copper wire traveling direction. be able to.
  • the copper wire is formed of a pure copper-based material
  • the plating pretreatment means includes a cleaning means for cleaning the copper wire, and the cleaning means is more in the copper wire traveling direction than the softening annealing means. It can arrange
  • the plating pretreatment means includes a heat treatment means for performing heat treatment on the copper wire upstream of the softening annealing means in the copper wire traveling direction, and the heat treatment means It can arrange
  • the cleaning unit is constituted by an acid cleaning unit and a water cleaning unit, and the heat treatment unit, the acid cleaning unit, the water cleaning unit, and the softening are used as the plating pretreatment unit.
  • Annealing means can be arranged in this order along the copper wire traveling direction.
  • the copper wire has a width in the range of 0.8 to 10 mm and a thickness in the range of 0.05 to 0.5 mm in the cross section orthogonal to the length direction.
  • the copper wire traveling speed is set to about 4.0 m / min
  • the acid cleaning time in the acid cleaning means is set to about 12.8 seconds
  • the water cleaning means is used.
  • the water wash time can be set to about 13.5 seconds.
  • the copper wire is formed of a pure copper-based material, and the copper wire feeding auxiliary means for assisting the winding of the copper wire by the winding means is more in the copper wire traveling direction than the winding means. It can be provided upstream.
  • the copper wire feeding auxiliary means can be disposed upstream of the softening annealing means in the copper wire traveling direction.
  • the copper wire feeding auxiliary means can be arranged downstream of the cleaning means in the copper wire traveling direction in the copper wire traveling direction.
  • the plating means is constituted by a molten solder plating tank in which a molten solder plating solution is stored, and a direction changing roller for changing the traveling direction of the copper wire is provided inside the molten solder plating tank.
  • a tank middle direction changing roller that changes the traveling direction of the copper wire before and after passing through the molten solder plating tank, and the tank middle direction changing roller is constituted by the copper wire feeding auxiliary means. be able to.
  • the copper wire is formed of a pure copper-based material
  • the plating means is constituted by a molten solder plating tank in which a molten solder plating solution is stored, and the direction change for changing the traveling direction of the copper wire is performed.
  • the roller is provided above the molten solder plating tank, and is constituted by a tank upper direction changing roller that changes the traveling direction of the copper wire after passing through the molten solder plating tank to the winding means side, Out of the fixed rollers that bridge the copper wire in the winding means, the upstream side of the winding means that guides the fixed roller disposed on the upstream side to the downstream side of the winding means after passing through the tank direction changing roller It is comprised with an arrangement
  • the tank upward direction changing roller can be disposed at a position where the height of the molten solder plating solution stored in the molten solder plating tank is about 3 m.
  • the plating means is constituted by a molten solder plating tank in which a molten solder plating solution is stored, and a direction changing roller for changing the traveling direction of the copper wire is provided inside the molten solder plating tank. And a tank middle direction changing roller that changes the traveling direction of the copper wire before and after passing through the molten solder plating tank, and the tank middle direction changing roller is formed of the copper wire by the winding means. It can be constituted by a copper wire feed assisting means for assisting winding.
  • the copper wire is formed of a pure copper-based material
  • the plating means has a thin plating setting for plating the copper wire with a thin plating, and a plating thickness larger than the plating thickness in the case of the thin plating setting.
  • the thin plating setting is set to perform plating on the copper wire under the low traveling speed, and the thin plating setting is performed with any setting of the thick plating setting to be
  • the copper wire is plated at a high speed that is higher than the low speed and the copper wire is plated at a high speed, and a predetermined solder temperature and plating thickness are set at the high speed. Based on the relationship, the copper wire can be plated with a plating thickness corresponding to the solder temperature.
  • a preheating unit for heating the copper wire immediately before passing through the softening annealing unit is provided between the cleaning unit and the softening annealing unit, and the setting in the plating unit is the thick plating.
  • the plating means can plate the copper wire after passing through the preheating means and the softening annealing means.
  • the present invention also includes a pre-plating process for pre-plating a copper wire, a plating process for solder plating the surface of the copper wire, and a winding process for winding the copper wire plated on the surface.
  • a method for producing a solder-plated wire manufactured through the above-described pre-plating process in which the copper wire is subjected to a softening annealing process for softening and annealing to reduce the yield strength, and the winding process is performed to reduce the yield strength of the copper wire.
  • the winding step is a step of winding with a winding force lower than the yield strength of the wire, and the softening annealing step and the plating step are continuously performed during the winding step.
  • the copper wire is made of a pure copper-based material, and in the softening annealing step, the softening annealing furnace is inclined so that the downstream side is lower than the upstream side in the traveling direction.
  • a reducing gas for reducing the oxidized layer on the surface of the copper wire is supplied from a reducing gas supply unit provided downstream in the traveling direction, and the inside of the softening annealing furnace is set as a reducing gas atmosphere, and the softening annealing furnace The copper wire can be run.
  • the reducing gas can be composed of a mixed gas of nitrogen gas and hydrogen gas.
  • the volume ratio between the nitrogen gas and the hydrogen gas can be set to 4: 1.
  • a heat treatment step can be performed on the copper wire before the softening annealing step.
  • the copper wire formed of a pure copper-based material can be used, and in the pre-plating treatment step, a washing step of washing the copper wire can be performed before the softening annealing step. .
  • the plating pretreatment step includes a heat treatment step of performing heat treatment on the copper wire before the softening annealing step, and the heat treatment step is performed before the cleaning step. Can do.
  • the cleaning step includes an acid cleaning step and a water cleaning step, and in the plating pretreatment step, the heat treatment step, the acid cleaning step, the water cleaning step, and the softening An annealing process can be performed in this order.
  • the copper wire has a width in the range of 0.8 to 10 mm and a thickness in the range of 0.05 to 0.5 mm in the cross section orthogonal to the length direction.
  • the copper wire traveling speed is set to about 4.0 m / min
  • the acid cleaning time in the acid cleaning step is set to about 12.8 seconds
  • the water cleaning step is used.
  • the water wash time can be set to about 13.5 seconds.
  • the copper wire is made of a pure copper-based material, and the copper wire feeding auxiliary step for assisting the winding of the copper wire performed in the winding step while performing the winding step. It can be performed.
  • the copper wire is made of a pure copper-based material, and after the plating step, is disposed above the molten solder plating tank and upstream of the winding means, The molten solder is moved by the tank upper direction changing roller disposed at a position higher than the arrangement height of the upstream arrangement roller of the winding means for guiding the copper wire after passing through the tank upper direction changing roller to the downstream side of the winding means.
  • the traveling direction of the copper wire after passing through the plating tank can be changed to the winding roller upstream side arrangement roller side.
  • the copper wire is made of a pure copper-based material, and in the plating step, a thin plating setting for plating the copper wire with a thin plating and a plating thickness in the case of the thin plating setting are used.
  • the thick plating setting is set to any one of the thick plating settings, and the thin plating setting is set so that the copper wire is plated under a low traveling speed, and the thickness of the thin plating is set.
  • the plating setting is such that the speed at which the copper wire travels is set to perform plating under a high speed traveling speed that is higher than the low speed traveling speed, and based on a predetermined relationship between the solder temperature and the plating thickness at the high speed traveling speed.
  • the copper wire can be plated with a plating thickness corresponding to the solder temperature.
  • the low speed traveling speed can be set to about 4 m / min, and the high speed traveling speed can be set to about 13 m / min.
  • the solder temperature can be set to about 240 ° C. at the high traveling speed.
  • a preheating step of heating the copper wire immediately before the softening annealing step is performed between the cleaning step and the softening annealing step.
  • the plating step can be performed on the copper wire that has been subjected to the softening annealing step after the preheating step.
  • Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment.
  • Schematic of a cleaning device The graph which shows the relationship with the 0.2% yield strength value of the plating wire according to the installation aspect of a feed capstan and a tank direction change roller.
  • a solder plated wire manufacturing apparatus 10 performs a plating pretreatment means 2 for performing a pretreatment for plating on a wire to be plated 1a, and performs solder plating on the surface of the wire to be plated 1a. It comprises a plating means 61 and a winding means 71 for winding the plated wire 1b plated on the surface.
  • the to-be-plated wire 1a is made of oxygen-free copper (OFC) having a thickness of 0.05 to 0.5 mm and a width of 0.8 to 10 mm, more preferably by a separately provided flat wire manufacturing machine (not shown). A rectangular copper wire rolled to a thickness of 0.08 to 0.24 mm and a width of 1 to 2 mm is used.
  • OFC oxygen-free copper
  • the plating pretreatment means 2 mainly comprises a supplier 12, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, and a softening annealing furnace 51.
  • the supplier 12 supplies the wire to be plated 1a that is wound around the drum to the production line while the drum rotates in order.
  • the supplier 12 may be configured with a dancer function as necessary, or may be configured to be fed out in a normal lateral feed.
  • the heat treatment furnace 22 has substantially the same configuration as a soft annealing furnace 51 described later, and has an external shape that is a rectangular parallelepiped shape that is long in the traveling direction with respect to the thickness direction.
  • the heat treatment furnace 22 is inclined and arranged along the traveling direction so that the downstream end in the traveling direction is lower than the upstream end.
  • the inside of the heat treatment furnace 22 is a steam atmosphere having a set temperature of 200 ° C.
  • a cooling water tank 23 for cooling the plated wire 1a that has passed through the inside of the heat treatment furnace 22 is installed on the downstream side of the heat treatment furnace 22 in the traveling direction.
  • the downstream end of the heat treatment furnace 22 and the cooling water tank 23 are connected to each other by a connecting pipe 24 that guides the plated wire 1a led out from the heat treatment furnace 22 to the cooling water tank 23 so as not to touch the air.
  • the acid cleaning tank 31 as the cleaning means 30 stores a phosphoric acid-based cleaning liquid 32 that acid-cleans the surface of the plated wire 1a.
  • the ultrasonic water cleaning tank 41 as the cleaning means 30, water 43 for cleaning the water-soluble lubricant and other impurities adhering to the surface of the wire to be plated 1a using an ultrasonic water cleaning machine separately provided. Reserved.
  • an ultrasonic vibration plate 42a constituting a part of the ultrasonic water cleaning machine 42 is disposed along the traveling direction of the wire to be plated 1a.
  • an air wiper 45 is provided above the ultrasonic water cleaning tank 41 to blow air from the side on the track on which the wire to be plated 1a travels toward the wire to be plated 1a.
  • the soft annealing furnace 51 is inclined so that the downstream end is gradually lower than the upstream end in the traveling direction.
  • the softening annealing furnace 51 is arranged so as to penetrate the softening annealing furnace main body 52 configured in a rectangular parallelepiped shape like the heat treatment furnace 22 and the softening annealing furnace main body 52, and allows the insertion of the wire to be plated 1a.
  • a heater 54 that heats the inside of the softening annealing furnace main body 52.
  • the sheath tube 53 is disposed along the traveling direction in the internal space of the soft annealing furnace main body 52, and both ends in the length direction (traveling direction) of the soft annealing furnace main body 52, that is, the upper end in the length direction, and Projects from the lower end.
  • An upper end opening 55u is formed at the upper end of the sheath tube upper projecting portion 55 projecting from the upper end of the softening annealing furnace main body 52 in the sheath tube 53.
  • the upper end opening 55u allows introduction of the wire to be plated 1a into the sheath tube 53 and discharges the reducing gas G filled in the sheath tube 53, as will be described later.
  • a lower end opening 55 d is formed at the lower end of the sheath pipe lower projecting portion 56 that projects from the lower end of the soft annealing furnace body 52 in the sheath pipe 53.
  • the lower end opening 55d allows the wire 1a to be plated out from the sheath tube 53.
  • the casing tube lower protruding portion 56 is connected to the connecting tube 55 in series. Further, a branch portion is formed in the middle portion of the sheath tube lower projecting portion 56, and the branch portion is configured as a reducing gas supply portion 57 that supplies the reducing gas G to the inside of the sheath tube 53.
  • the reducing gas supply unit 57 includes a pressure control valve, a pressure gauge, and the like.
  • the reducing gas supply unit 57 reduces the reducing gas G according to the concentration of the reducing gas G inside the softening annealing furnace 51. The amount of inflow can be adjusted.
  • the inside of the sheath tube 53 is made a reducing gas atmosphere by flowing the reducing gas G from the reducing gas supply unit 57.
  • the heater 54 includes a plurality of linear rods, and is arranged in an upper space and a lower space with respect to the sheath tube 53 so as to face each other with the sheath tube 53 in the internal space of the soft annealing furnace body 52. It is arranged.
  • the heater 54 is installed in a direction orthogonal to the traveling direction of the wire to be plated 1a, specifically, in a direction corresponding to a direction perpendicular to the paper surface of FIG. 2 when the paper surface of FIG.
  • the heaters 54 are arranged in parallel at predetermined intervals along the traveling direction in each of the upper space and the lower space.
  • the inside of the soft annealing furnace 51 is set to a temperature setting of 800 ° C. or higher by the heater 54.
  • the sheathed pipe lower projecting portion 56 is connected in series with the connecting pipe 55 so that the wire to be plated 1a that has passed through the softening annealing furnace 51 does not touch the air until it enters the molten solder plating solution 63. Can be made.
  • the plating means 61 is constituted by a molten solder plating tank 62 in which a molten solder plating solution 63 is stored.
  • the molten solder plating solution 63 is set at a set temperature of 260 ° C., and molten tin (Sn-3.0Ag-0.5Cu). Is used.
  • a tank middle direction changing roller 64 is disposed that changes the traveling direction of the plated wire 1b with the molten solder plating solution 63 attached to the surface vertically upward.
  • a tank upper direction changing roller 65 for changing the plating wire 1b from a traveling direction vertically upward to a direction toward the winding means 71 is provided vertically above the tank direction changing roller 64.
  • the tank middle direction changing roller 64 and the tank upper direction changing roller 65 are composed of, for example, a roller having a diameter of about 100 mm, which is larger than a normal roller having a diameter of about 20 mm. Further, the tank middle direction changing roller 64 and the tank upper direction changing roller 65 are substantially the same as the rotational speeds of dancer rollers 74 and bobbins 76, which will be described later, provided in the winding means 71 by drive motors not shown. The direction of the plated wire 1b is changed so as to actively rotate by itself at the rotational speed and to synchronize with the winding speed by the winding means 71.
  • the winding means 71 includes a winding tension adjusting machine 72 and a bobbin traverse type winding machine 75.
  • the winding tension adjuster 72 is provided with a dancer roller 74 that is movable in the vertical direction according to the tension applied to the plated wire 1b that is stretched over the fixed roller 73 to adjust the tension.
  • a control unit that controls the tension to be stable according to the tension detected by the tension detection sensor, and a command from the control unit And a roller moving machine for moving the dancer roller 74.
  • the bobbin traverse type winder 75 swings the bobbin 76 along the axial direction of the bobbin 76 and the bobbin 76 configured to be wider than the width of the plating wire 1b.
  • the bobbin traverse type winding machine 75 has a winding force detection sensor 79 for detecting the winding force by the bobbin 76, and the tension is stabilized according to the winding force detected by the winding tension detection sensor 79.
  • a motor 82 that rotates the bobbin 76 based on a command from the controller 81.
  • the solder plating wire manufacturing apparatus 10 thus configured includes a supplier 12 as a plating pretreatment means 2, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, a softening annealing furnace 51, a plating
  • a supplier 12 as a plating pretreatment means 2
  • a heat treatment furnace 22 as a heat treatment furnace 22
  • an acid cleaning tank 31 as a heat treatment furnace 22
  • an ultrasonic water cleaning tank 41 a softening annealing furnace 51
  • a plating Each of the molten solder plating tank 62 as the means 61 and the winding means 71 are arranged in tandem in this order from the upstream side in the traveling direction of the plated wire 1a and the plated wire 1b.
  • solder plated wire manufacturing apparatus 10 lowers the 0.2% proof stress value of the wire 1a to be plated before plating, and thereafter performs plating on the wire 1a having the reduced proof stress. While performing, it is set as the structure wound up by the said winding means 71 with the winding force lower than the yield strength of this plated wire 1b.
  • the above-described winding tension adjusting machine 72 and the bobbin traverse type winding machine 75 are adopted as the winding means 71, and the first feed capstan 91 assisting the winding of the winding means 71; A second feed capstan 92 is installed. Both the first feed capstan 91 and the second feed capstan 92 are installed on the upstream side of the soft annealing furnace 51 so as to feed and assist the traveling of the to-be-plated wire 1a before the reduction in yield strength.
  • the first feed capstan 91 is provided between the heat treatment furnace 22 and the acid cleaning tank 31, and the second feed capstan 92 is provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51. I have.
  • the first feed capstan 91 and the second feed capstan 92 are slightly lower than the winding speed of the winding means 71.
  • the to-be-plated wire 1a and the plated wire 1b are sent out to the downstream side at a very high speed, for example, a feed speed that is about +1 m / min faster than the winding speed.
  • winding means 71 is appropriately provided with a plurality of fixed rollers 73 that bridge the plated wire 1b in the vicinity of the above-described winding tension adjusting machine 72 and the bobbin traverse type winding machine 75.
  • the winding means upstream arrangement roller 73 ⁇ / b> A is a roller that first bridges the plated wire 1 b that has traveled to the winding means 71 side after the direction is changed by the tank upward direction changing roller 65 on the winding means 71 side.
  • the tank upper direction changing roller 65 is arranged at a position higher than the winding means upstream arrangement roller 73A.
  • the solder plating wire manufacturing method includes a pre-plating process for performing plating pre-treatment on the plated wire 1a, a plating process for performing solder plating on the surface of the plated wire 1a, and a plated wire 1b having a plated surface. It is manufactured through a winding process.
  • the plating pretreatment process is a process in which a heat treatment process, an acid washing process, a water washing process, and a softening annealing process are performed in this order.
  • the surface of the wire to be plated 1a is steam-washed by running the wire to be plated 1a inside the heat treatment furnace 22 in a steam atmosphere.
  • the water-soluble lubricant and other impurities adhering to the surface of the wire to be plated 1a can be separated from the surface so as to be easily removed.
  • the annealing temperature in the heat treatment furnace 22 is set to 200 ° C., which is lower than the general annealing temperature of about 650 ° C., the inside of the heat treatment furnace 22 set at this low temperature is made a steam atmosphere, The plating wire 1a is made to travel, and water vapor cleaning is performed on the wire to be plated 1a.
  • the wire to be plated 1a is annealed to reduce the yield strength.
  • the annealing temperature to a low temperature such as 200 ° C., for example, the degree of lowering the yield strength of the plated wire 1a is suppressed.
  • the to-be-plated wire 1a after passing through the heat treatment furnace 22 is cooled to a predetermined temperature by running the cooling water stored in the cooling water tank 23 after passing through the connecting pipe 24.
  • the surface of the to-be-plated wire 1a that has traveled through the phosphoric acid-based cleaning liquid 32 stored in the acid cleaning tank 31 is cleaned.
  • the surface of the wire to be plated 1a is ultrasonically washed in the ultrasonic water washing tank 41 to remove the water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1a.
  • the wire to be plated 1a is run inside the softening annealing furnace 51 in which the inside is a reducing gas atmosphere, thereby softening and annealing the wire 1a to be plated and reducing the strength, and the surface of the wire 1a to be plated.
  • This is a step of reducing the oxide layer.
  • the bottom of the sheath pipe projects into the inside of the sheath pipe 53 of the softening annealing furnace 51 that is inclined so that the downstream side is lower than the upstream side in the traveling direction.
  • the reducing gas G for example, a mixed gas obtained by mixing hydrogen gas with nitrogen gas is supplied from the reducing gas supply unit 57 provided in the portion 56, and the inside of the sheath tube 53 is set as a reducing gas atmosphere.
  • the heater 54 heats the internal space of the soft annealing furnace main body 52 to about 800 ° C.
  • the wire to be plated 1a introduced from the upper end opening 55u travels in a downward direction D that is opposite to the direction d1 in which the reducing gas G rises. (See arrows d1 and D shown in the partially enlarged view in FIG. 2).
  • the to-be-plated wire 1a travels in the molten solder plating solution 63 stored in the molten solder plating tank 62, thereby adhering molten tin to the surface of the to-be-plated wire 1a.
  • the to-be-plated wire 1a led out from the lower end opening 55d of the softening annealing furnace 51 is guided until it enters the molten solder plating solution 63 without being in contact with air by traveling inside the connecting pipe 55.
  • the to-be-plated wire 1 a that has entered the molten solder plating solution 63 becomes a plated wire 1 b in which the molten solder plating solution 63 adheres to the surface and the entire surface is coated with the molten solder plating solution 63.
  • the plating wire 1b is redirected vertically upward in the process of running through the molten solder plating tank 62 by the tank direction changing roller 64 provided in the molten solder plating tank 62 in the process of running inside the molten solder plating tank 62. Then, it is led out vertically from the molten solder plating tank 62.
  • the plated wire 1 b that has undergone these processes is plated by controlling the dancer roller 74 of the winding tension adjuster 72. While adjusting the tension of 1b, the bobbin traverse type winder 75 is aligned and wound around the bobbin 76.
  • the bobbin 76 of the bobbin traverse type winding machine 75 is swung in the axial direction of the bobbin 76 while rotating the bobbin 76 about the axis, thereby causing the plating wire 1b to move.
  • the bobbin 76 can be wound in parallel along the axial direction of the bobbin 76 and can be wound so as to overlap a plurality of layers.
  • the solder plated wire manufacturing apparatus 10 and the manufacturing method described above can obtain various actions and effects as follows.
  • the solder plating wire manufacturing apparatus 10 includes a supplier 12 as a plating pretreatment means 2, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, a softening annealing furnace 51, and a melting as a plating means 61.
  • the solder plating tank 62 and the winding means 71 are sequentially arranged in this order from the upstream side to the downstream side in the traveling direction of the plated wire 1b.
  • each means By arranging each means in series in this way, it is possible to prevent the plated wire 1b, whose strength has been reduced during manufacturing, from traveling a useless distance, and to reduce the load applied to the plated wire 1b during traveling. it can.
  • the heat treatment process, the acid washing process, the water washing process, the softening annealing process, the plating process, and the winding process as the plating pretreatment process are continuously performed. And do it.
  • the traveling of the plated wire 1b (wire to be plated 1a) is interrupted every time a predetermined step is performed, and plating is performed on another traveling line to perform the next step. Since there is no need to move the wire 1b (the wire to be plated 1a), the load applied to the plated wire 1b can be remarkably reduced, and a plated wire 1b having a desired quality can be stably obtained.
  • the plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress value can be efficiently produced, mass production of the low-proof proof plated wire 1b suitable as a lead wire for a solar cell is aimed at. be able to.
  • the solder plating wire manufacturing apparatus 10 is arranged so that the soft annealing furnace 51 is inclined so that the downstream side is lower than the upstream side in the traveling direction, and the downstream side in the traveling direction in the soft annealing furnace 51,
  • This is a configuration in which a reducing gas supply unit 57 that allows the supply of the reducing gas G to the sheath tube 53 that allows the traveling with the wire to be plated 1a inserted therein is provided.
  • the solder plating wire manufacturing method is provided in the softening annealing furnace 51 at the lower end side portion (downstream side portion) of the sheath tube 53, so that the reducing gas G is supplied to the sheath tube 53 through the reducing gas supply unit 57.
  • This is a manufacturing method in which the wire to be plated 1a travels from the upstream side to the downstream side in the traveling direction inside the sheath tube 53 that is supplied to the inside and has a reducing gas atmosphere.
  • the downward direction D which is opposite to the direction d1 in which the reducing gas G rises inside the sheath tube 53 in the reducing gas atmosphere.
  • the to-be-plated wire 1a can be made to travel toward.
  • the to-be-plated wire 1a running inside the sheath tube 53 can be positively exposed to the atmosphere of the reducing gas G to be raised, the reduction of the oxide layer on the surface of the to-be-plated wire 1a and the to-be-plated The low proof stress of the wire 1a can be promoted efficiently.
  • a traveling inside the sheath tube 53 is newly supplied to the inside of the sheath tube 53 through the reducing gas supply unit 57. It can be exposed to the atmosphere of the reducing gas G (see FIG. 2).
  • the lower the proof stress of the wire 1a to be plated and the reduction of the oxide layer on the surface can be actively promoted as the traveling wire 1a nears the reducing gas supply unit 57.
  • the yield strength of the plated wire 1a is reliably reduced and the oxide layer on the surface is reduced under heating by the heater 54. Can do.
  • the travel distance of the wire to be plated 1a that travels inside the softening annealing furnace 51. Can be shortened, and the traveling speed of the plated wire 1a can be improved.
  • the surface of the wire to be plated 1a is reduced by simultaneously reducing the yield strength of the wire to be plated 1a and removing the oxide layer on the surface by using the softening annealing furnace 51 in the softening annealing step. Reducing the travel distance of the wire to be plated 1a compared with the case where the reduction step of reducing the oxide film included in the wire and the softening annealing step of softening and annealing the wire to be plated 1a are performed in series in separate steps. Can do.
  • the heat treatment furnace 22 can remove deposits attached to the surface of the wire to be plated 1a by heating.
  • the deposit is a liquid deposit such as oil, it can be vaporized.
  • the deposit can be removed from the surface of the wire 1a to be plated.
  • the wire to be plated 1a is heated in the heat treatment step, and the acid cleaning is performed on the wire to be plated 1a heated in the acid cleaning step. Therefore, the acid cleaning effect can be further enhanced.
  • the 0.2% proof stress value is completely set to a predetermined value in the heat treatment furnace 22 arranged on the upstream side of the softening annealing furnace 51 in the heat treatment process.
  • the wire 1a is kept soft and annealed without being softened until the wire 1a is lowered.
  • the 0.2% proof stress value is set to a predetermined value in the softening annealing process performed immediately before the plating process. Softening annealing is performed on the to-be-plated wire 1a until it falls.
  • the heat treatment furnace 22 has a set temperature when annealing in a normal heat treatment furnace is about 650 ° C., for example, as a steam atmosphere set to a low temperature of about 200 ° C. as described above. Yes.
  • the softening annealing furnace 51 is set to a high temperature of about 800 ° C. as described above, for example, while the temperature setting in a normal softening annealing furnace is about 530 ° C.
  • the soft annealing furnace 51 is used for plating.
  • the wire 1a is reduced in proof strength until the 0.2% proof stress value decreases to a predetermined value.
  • the wire to be plated 1a can be softened and annealed depending on the heating temperature, but a steam cleaning effect can also be expected. Therefore, in the heat treatment furnace 22, steam cleaning is performed on the wire to be plated 1 a, and the surface layer can be formed so as to easily remove the deposits attached to the surface of the wire to be plated 1 a by the steam.
  • the water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1a in the acid cleaning step and the water cleaning step can be reliably removed.
  • annealing effect confirmation experiment A In the annealing effect confirmation experiment A, the heat treatment process was performed under a low temperature setting of 100 ° C., and then softening annealing was performed under various annealing temperatures in the softening annealing process. In this case, the relationship between the setting of the annealing temperature and the low proof stress value of the copper wire after the winding process is clarified, and based on this relationship, the softening annealing process is set to obtain a desired low proof stress value. The power annealing temperature was confirmed.
  • the annealing effect confirmation experiment A was performed under the experimental conditions shown in Table 1 using the manufacturing apparatus 10 described above.
  • Table 2 shows one of the tensile characteristics of the plated wire 1b after the wire is annealed in the softening annealing furnace 51 under the setting for each predetermined annealing temperature and wound in the winding process. The result of measuring a certain 0.2% proof stress is shown.
  • FIG. 4 is a graph based on Table 2 showing the relationship between the 0.2% proof stress value of the plated wire 1b after winding and the softening annealing temperature.
  • the heat treatment temperature in the heat treatment step is a low heat treatment temperature of 100 degrees
  • the annealing temperature in the softening annealing step is, for example, When the temperature was as low as about 550 ° C., annealing to the wire to be plated 1a was insufficient, and the 0.2% proof stress value tended to be a high value.
  • the heat treatment temperature in the heat treatment step is as low as 100 ° C.
  • the annealing temperature is 800 ° C. to 900 ° C. in the softening annealing step, the 0.2% yield strength of the plated wire 1b after winding is It was confirmed that the value could be reliably converged to a desired low proof stress value of 55 MPa or less.
  • annealing effect confirmation experiment B In the annealing effect confirmation experiment B, the heat treatment process is performed under various heat treatment temperatures, and the relationship between the 0.2% proof stress value of the wire to be plated 1a after the heat treatment process and the heat treatment temperature is clarified. A softening annealing process was performed on these wires 1a to be plated under a constant annealing temperature setting of 850 ° C., and the relationship between the 0.2% proof stress value after the softening annealing process and the heat treatment temperature was clarified.
  • Table 4 (a) shows that the 0.2% proof stress value of the wire to be plated 1a before the softening annealing step is performed on the wire to be plated 1a in the heat treatment step. The measurement results are shown for each temperature setting.
  • Table 4 (b) shows that for each setting of the predetermined heat treatment temperature described above, for each wire 1a subjected to the heat treatment step, the annealing temperature is 850 degrees in the softening annealing step under a common setting. It shows the result of annealing and measuring the 0.2% proof stress value of the solder plated wire 1b after winding.
  • FIG. 5 plots the relationship between the 0.2% proof stress value of the to-be-plated wire 1a after passing through the heat treatment furnace 22 and the heat treatment furnace temperature based on the results shown in Table 4 (a), and softens it. It is the graph which plotted the relationship between the 0.2% yield strength value of the to-be-plated wire 1a after passing through an annealing furnace, and the annealing temperature based on the result shown in 4 (b).
  • the 0.2% proof stress value can be reliably lowered to a low value of about 55 Mpa or less. It could be confirmed.
  • the to-be-plated wire 1a performing the softening annealing step has a sufficiently low yield strength.
  • it can be said that it is not always necessary to set the heat treatment temperature high, and it can be arbitrarily set according to the purpose from the heat treatment step side.
  • the heat treatment step by setting the heat treatment temperature to a low temperature of, for example, about 100 to 300 degrees, it is possible to suppress a reduction in the yield strength of the wire to be plated 1a in the heat treatment furnace 22. Thereby, even if a load is applied to the wire to be plated 1a after the heat treatment step and before the softening annealing step, the yield strength is reduced to such an extent that the wire to be plated 1a does not unexpectedly stretch or break. It was confirmed that it was possible in the heat treatment process.
  • the heat treatment temperature is set to about 100 to 300 degrees, for example, it is possible to promote the reduction in the yield strength of the plated wire 1a to some extent in the heat treatment process.
  • the heat treatment step by setting the heat treatment temperature to, for example, 100 to 300 degrees, the heat treatment step can serve as a pre-annealing for reducing the yield strength of the wire to be plated 1a.
  • the softening annealing step it is possible to shorten the annealing time required for full-scale annealing performed for sufficiently reducing the yield strength of the wire to be plated 1a to a level of about 55 MPa or less.
  • the annealing furnace hydrogen concentration verification experiment A As an experiment for verifying the influence of the 0.2% proof stress due to the difference in the concentration of hydrogen gas contained in the reducing gas G supplied into the softening annealing furnace 51, the annealing furnace hydrogen concentration verification experiment A And an annealing furnace hydrogen concentration verification experiment B were conducted.
  • the plating wire 1b of the example of the present invention and the plating wire of the comparative example were prepared through the above-described manufacturing steps as test specimens.
  • the plated wire 1b of the present invention example and the plated wire of the comparative example differ only in the softening annealing process, but all other processes are made through the same process.
  • the inside of the softening annealing furnace 51 is a reducing gas atmosphere, but the components of the reducing gas G are different. .
  • the reducing gas G in the case of producing the plated wire of the comparative example is composed only of nitrogen gas, whereas the reducing gas G in the case of producing the plated wire 1b of the present invention example includes nitrogen gas and hydrogen gas. It is a mixed gas.
  • oxygen-free copper was used as the plated wire 1a in the production of the plated wire 1b of the present invention and the plated wire of the comparative example, and the size of the plated wire 1a was 0.16 ⁇ 2 mm,
  • the temperature setting of the heat treatment furnace 22 was set to 200 ° C., and the respective winding linear speeds in the first feed capstan 91 and the second feed capstan 92 were set to +1 m / min.
  • an acid cleaning step and an ultrasonic water cleaning step are performed on the plated wire 1a before the softening annealing step.
  • the set temperature of the phosphoric acid-based cleaning liquid was set to 50 ° C.
  • the set temperature of the molten solder plating solution 63 is set to 260 ° C., and molten tin (Sn-3.0Ag-0.5Cu) is used as the molten solder plating solution 63.
  • the winding means 71 does not include the winding tension adjuster 72 but is directly wound by the bobbin traverse type winding machine 75.
  • the plating wire 1b of the present invention example and the plating wire of the comparative example were prepared with three types of plating thicknesses of 20 ⁇ m, 30 ⁇ m, and 40 ⁇ m under the above-described settings, respectively, and compared for 0.2% proof stress value, respectively.
  • the plated wire 1b of the example of the present invention has a 0.2% proof stress value lower than that of the comparative example regardless of whether the plating thickness is 20 ⁇ m, 30 ⁇ m, or 40 ⁇ m. It was. In particular, when the plating thickness was 40 ⁇ m, it was confirmed that the plating wire 1b of the example of the present invention had the highest rate of decrease in the 0.2% proof stress value compared to the plating wire of the comparative example.
  • the lowering of the yield strength of the wire to be plated 1a can be promoted more efficiently by running the wire to be plated 1a inside the softening annealing furnace 51 having a reducing gas atmosphere containing hydrogen gas. It could be confirmed.
  • the reducing gas G supplied from the reducing gas supply unit 57 to the inside of the softening annealing furnace 51 is a mixed gas with hydrogen containing at least nitrogen, and hydrogen gas is supplied to the mixed gas.
  • Table 6 shows that when the mixing ratio of the hydrogen gas to the reducing gas composed of at least nitrogen gas is set to 0, 10, 20, 30, 40, and 50%, the reducing gas is 4.0 l / min.
  • the result of having measured the 0.2% yield strength value of the plating wire 1b after the winding process in the case where the annealing process is performed while supplying the inside of the softening annealing furnace 51 at a flow rate of 3 mm is shown.
  • FIG. 7 is a graph in which the relationship between the mixing ratio of hydrogen gas in the mixed gas as the reducing gas and the 0.2% proof stress value of the solder plated wire 1b after the winding process is plotted based on Table 6.
  • the hydrogen gas is not limited to the effect of reducing the oxide film on the surface of the wire to be plated 1a, but the degree of the effect of reducing the 0.2% proof stress value according to the concentration of the hydrogen gas in the reducing gas. We were able to confirm that it could be increased.
  • the concentration of the hydrogen gas with respect to the reducing gas is controlled. It was possible to find a possibility that the degree to which the proof strength of the plated wire 1a is reduced can be controlled.
  • the solder plating wire manufacturing apparatus and the solder plating wire manufacturing method of the present invention are not limited to the configurations of the solder plating wire manufacturing apparatus 10 and the solder plating wire manufacturing method described above, and may be configured in various configurations. Can do.
  • a preheating furnace 51P may be provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51. it can.
  • the preheating furnace 51P is specially configured to rapidly increase the temperature of the wire to be plated 1a even when the travel time and travel distance of the wire to be plated 1a are short. is doing.
  • the preheating furnace 51P includes a sheath tube 53L in the preheating furnace main body 52P.
  • the sheath tube 53L is a hollow tube configured linearly along the traveling direction of the wire to be plated 1a, and when the wire to be plated 1a passes through the preheating furnace 51P and the softening annealing furnace 51, It is set as the arrangement
  • the pre heating furnace 51P includes a plurality of heaters 54P along the longitudinal direction of the sheath tube 53L in the pre heating furnace main body 52P. Are arranged at a narrower pitch than the arrangement interval of the heaters 54 arranged in FIG. Note that the number of heaters 54P is not limited to the number of heaters 54P of the soft annealing furnace 51, but the amount of power (wattage) may be increased.
  • the wire to be plated 1a can be heated in the preheating furnace 51P as a preheating step immediately before the softening annealing step, The plated wire 1a can be supplied to the softening annealing furnace 51.
  • the wire to be plated 1a can be surely and sufficiently lowered in strength in the softening annealing process.
  • a pre-reducing gas supply portion 57P that supplies a reducing gas to a portion corresponding to the pre-heating furnace 51P in the length direction of the sheath tube 53L is provided in a portion between the softening annealing furnace 51 and the pre-heating furnace 51P in the sheath tube 53L. Is configured.
  • a mixed gas of hydrogen and nitrogen is supplied as the reducing gas G to the sheath tube 53L, and the internal space corresponding to the softening annealing furnace 51 of the sheath tube 53L is used as a mixed gas atmosphere.
  • nitrogen gas or steam gas steam gas
  • the internal space is filled with a nitrogen gas atmosphere or A steam gas atmosphere is used.
  • the surface of the wire to be plated 1a can be prevented from oxidizing when passing through the preheating furnace 51P, and in the preheating furnace 51P, nitrogen gas or By using water vapor gas, it is safe and easy to handle the gas.
  • Table 7 (a) three types of rectangular wires having a size of 0.2 mm ⁇ 1.0 mm, 0.16 mm ⁇ 2.0 mm, and 0.2 mm ⁇ 2.0 mm are used as the plated wire 1a.
  • the wire speed is 4 m / min
  • the soldering temperatures are set to three types of 240 ° C., 260 ° C., and 280 ° C., respectively.
  • surface which shows the value of 2% yield strength value and plating thickness.
  • the line speed of the to-be-plated wire 1a is 13 m / min, which is a high speed setting, as shown in Table 7 (b)
  • plating is performed at any rectangular size and temperature setting.
  • the 0.2% proof stress value of the wire 1b was 50 Mpa or more in most settings, and was higher than that in the normal setting where the linear velocity was 4 m / min.
  • the wire speed of the wire to be plated 1a is set to a high speed so that the wire to be plated 1a passes through the softening annealing furnace 51 before the softening annealing furnace 51 has a sufficiently low yield strength. This is because a situation occurs in which a plated wire 1b that is not proof-proof is created.
  • Table 7 (b) shows 0.2% when the wire speed is set to 13 m / min and the flat wire size and the solder temperature are set under the same settings as in Table 7 (a). It is a table
  • the manufacturing apparatus 10A described above has a configuration in which a preheating furnace 51P is provided between the softening annealing furnace 51 and the ultrasonic water cleaning tank 41.
  • the wire to be plated 1a can be heated to a high temperature in a short time, and the wire to be plated in a heated state. 1 a can be supplied to the softening annealing furnace 51.
  • the wire 1a is surely reduced in yield strength in the soft annealing step. can do.
  • the preheating furnace 51P by setting the preheating furnace 51P and performing the preheating process, even if the linear speed is set to a high speed of 13 m / min, the normal setting of the linear speed of 4 m / min is set. Since the 0.2% proof stress value of the to-be-plated wire 1a can be reduced to the same extent as the case, a high quality plated wire 1b having a low 0.2% proof stress value can be obtained with excellent production efficiency.
  • the oxide layer on the surface of the wire 1a can be reliably reduced in the softening annealing furnace 51.
  • the preheating furnace 51P installed in the vicinity of the upstream side of the softening annealing furnace 51 has a configuration specialized for the heating performance of the wire to be plated 1a, and is supplied with nitrogen gas or water vapor gas.
  • the gas atmosphere is easy to handle. For this reason, as a means for ensuring the softening annealing time in the softening annealing furnace 51, for example, the installation space and cost are not increased as compared with a configuration in which the softening annealing furnace 51 is simply lengthened. It is possible to cope with higher line speeds by adding a simple configuration at the design change level.
  • the heat treatment furnace 22 is not an essential configuration, and as a manufacturing apparatus according to another embodiment, as shown in FIG. It is good also as a structure which does not install the heat processing furnace 22 in between.
  • the heat treatment furnace 22 is not limited to being installed between the supplier 12 and the acid cleaning tank 31 in the traveling direction, and may be installed in other parts as long as it is upstream of the softening annealing furnace 51. .
  • the inside of the softening annealing furnace 51 is a reducing gas atmosphere.
  • the reducing gas G is not limited to nitrogen gas or a mixed gas of nitrogen gas and hydrogen gas as described above. Other components may be contained. Moreover, you may comprise by reducing gas other than nitrogen gas and hydrogen gas.
  • the cleaning means 30 upstream of the softening annealing furnace 51 in the traveling direction, it is possible to clean the to-be-plated wire 1a before the strength reduction by the softening annealing furnace 51 by the cleaning means 30. It becomes. Therefore, the load applied to the to-be-plated wire 1a can be reduced compared with the case where the to-be-plated wire 1a whose strength is reduced by the soft annealing furnace 51 is cleaned by the cleaning means 30.
  • the load applied to the plated wire 1a can be reduced as compared with the case where the washed wire 30 is cleaned with respect to the plated wire 1a whose strength is reduced by the soft annealing furnace 51, the plated material There is no need to reduce the number of feed capstans installed in order to reduce the load during traveling of the line 1a, and it is not necessary to reduce the line speed more than necessary.
  • the measures for reducing the load applied to the wire 1a to be plated can be simplified in the configuration surface, the control surface, and the condition setting surface, the manufacturing efficiency of the plated wire 1b can be improved.
  • the cleaning means 30 in the arrangement as described above, impurities attached to the surface of the wire to be plated 1a are removed by the cleaning means, and the plating means 61 disposed on the downstream side of the wire to be plated 1a. It is possible to form an excellent quality solder plated wire 1b having a uniform plating thickness on the surface.
  • the plating pretreatment means 2 includes a heat treatment furnace 22 for performing heat treatment on the wire to be plated 1 a on the upstream side in the traveling direction from the softening annealing furnace 51, and the heat treatment furnace 22 is provided by the cleaning means 30.
  • the heat treatment furnace 22 can perform the heat treatment process on the wire to be plated 1a and then perform cleaning in the cleaning means 30.
  • the cleaning means 30 is composed of an acid cleaning tank 31 and an ultrasonic water cleaning tank 41.
  • the pre-plating processing means 2 the heat treatment furnace 22, the acid cleaning tank 31, the ultrasonic water cleaning tank 41, and the softening
  • the annealing furnace 51 By disposing the annealing furnace 51 in this order along the traveling direction, the heat treatment furnace 22, the acid cleaning tank 31, and the ultrasonic water are applied to the wire 1a to be plated before the strength is reduced by the softening annealing furnace 51.
  • a series of steps performed in the cleaning tank 41 can be completed.
  • the plating means 61 can perform a plating process.
  • the wire to be plated 1a is heated in the heat treatment furnace 22, and in the acid cleaning tank 31 while being heated with respect to the wire to be plated 1a.
  • Acid cleaning can be performed, and the acid cleaning effect can be remarkably improved as compared with the case where it is performed on the wire to be plated 1a at room temperature, and an excellent acid cleaning effect can be obtained.
  • the cooling water tank 23 is installed between the heat treatment furnace 22 and the acid cleaning tank 31.
  • the wire to be plated 1 a that has passed through the heat treatment furnace 22 travels to the acid cleaning tank 31 after being cooled by the cooling water tank 23.
  • the to-be-plated wire 1a heated by the heat treatment furnace 22 is heated while the surface temperature is high.
  • the cooling water tank 23 does not cool the surface of the wire to be plated 1a heated by the heat treatment furnace 22 until the room temperature reaches room temperature, but the cooling of the wire to be plated 1a in the cooling water tank 23 is not performed on the surface of the wire to be plated 1a. It is preferable to keep the temperature at least about 50 degrees.
  • the acid cleaning can be performed on the to-be-plated wire 1a having a surface temperature of at least 50 degrees in the acid cleaning tank 31, the acid cleaning effect by the phosphoric acid-based cleaning liquid 32 can be further exhibited. And since acid cleaning can be performed efficiently in this way, even when the traveling speed of the wire to be plated 1a is increased, an acid cleaning effect can be obtained reliably.
  • the wire to be plated 1a has a width in an orthogonal cross section orthogonal to the length direction of 0.8 to 10.
  • An excellent cleaning effect can be obtained by setting the acid cleaning time in the tank 31 to about 12.8 seconds and setting the ultrasonic water cleaning time in the ultrasonic water cleaning tank 41 to about 13.5 seconds. Can do.
  • the width of the wire to be plated 1a is in the range of 1.0 to 2.0 mm and the thickness is 0.16.
  • the traveling speed of the wire to be plated 1a, the acid cleaning time in the acid cleaning tank 31, and the ultrasonic water cleaning tank 41 By performing cleaning under the same setting as the setting of the ultrasonic water cleaning time, a more excellent cleaning effect could be obtained as is apparent from the results of the cleaning effect confirmation experiment 1 described later.
  • Cleaning effect confirmation experiment 1 In the cleaning effect confirmation experiment 1, when the plated wire 1b is manufactured by the manufacturing apparatus and the manufacturing method described above, as shown in Table 8, the wire to be plated 1a under the two setting examples of the present invention example and the comparative example. An experiment was conducted to verify the difference in cleaning effect when the heat treatment step, the acid washing step, and the water washing step were performed in this order.
  • the linear velocity is set to 1/5 of the comparative example. That is, as shown in Table 8, in the example of the present invention, each part of the heat treatment furnace 22, the acid cleaning tank 31, and the ultrasonic water cleaning tank 41 is set by setting the linear velocity to one fifth that of the conventional example. Is set to be five times longer.
  • the cleaning apparatus 10 used in this experiment has a configuration in which a heat treatment furnace 22 that performs a heat treatment process, an acid cleaning tank 31 in an acid cleaning process, and an ultrasonic water cleaning tank 41 in a water cleaning process are arranged in tandem.
  • the heat treatment furnace 22, the acid cleaning tank 31, and the ultrasonic water cleaning tank 41 are configured with the dimensions of each part as shown in FIG.
  • FIG. 10 schematically shows the cleaning apparatus used in this experiment and its peripheral part.
  • steam is used as a cleaning agent, and in particular, a cleaning effect against oil stains can be expected.
  • an acid cleaning liquid is used as a cleaning agent, and a cleaning effect on oxides and the like can be expected.
  • water is used as a cleaning agent, and a cleaning effect on the acid solution remaining on the surface of the plated wire 1a in the acid cleaning step can be expected.
  • the inside of the heat treatment furnace 22 is in a steam atmosphere, so that the heat treatment furnace 22 also functions as a steamer.
  • the heat treatment process since the effect of heating and removing the adhering matter adhering to the surface of the wire to be plated 1a due to heating can be expected, the heat treatment process is regarded as a part of the cleaning process and included in this experiment. .
  • the surface state of the plated wire 1a after the water cleaning step and the surface state of the plated wire 1b after the winding step in each of the present invention example and the comparative example are visually determined. This was done by comparing and confirming according to the criteria of
  • the surface state of the to-be-plated wire 1a after the water cleaning step in the setting of the linear speed of the present invention example, unlike the case of the setting of the linear speed of the comparative example,
  • the surface of the to-be-plated wire 1a cannot be confirmed at all, such as oil adhering to the surface of the to-be-plated wire 1a in a wide range such as a stain or a film, and dust or other dust adhering to the surface. It was confirmed that it was possible to purify.
  • the setting of the linear velocity in the example of the present invention is different from the setting of the linear velocity in the comparative example. As a result, no irregularities were observed on the surface, and it was confirmed that the thickness of the plating was made uniform in the length direction of the plating wire and in the circumferential direction.
  • the linear velocity is set to 20 m / min in the comparative example, whereas in the present invention example, the linear velocity is set to 4 m / min, which is 1/5 of the speed setting of the comparative example. Since a sufficient cleaning effect can be obtained by setting, it is conceivable to set the linear speed to be lower than 4 m / min in the hope of obtaining a more excellent cleaning effect.
  • the wire speed of the wire to be plated 1a is set to a speed lower than 4 m / min, the passing time for the wire to be plated 1a to pass through each process becomes longer correspondingly, and therefore there is a concern that the productivity is lowered. It will be. Therefore, it was possible to obtain a result that it is preferable to set the linear speed to about 4 m / min from the viewpoint that the cleaning effect is obtained in the cleaning process and the viewpoint of production efficiency.
  • Cleaning effect confirmation experiment 2 In the cleaning effect confirmation experiment 2, when the plated wire 1b is manufactured by the manufacturing apparatus 10 and the manufacturing method described above, acid cleaning is performed on the wire to be plated 1a under the two setting examples of the present invention and the comparative example. An experiment was conducted to verify the difference in cleaning effect between the process and the water cleaning process.
  • the acid cleaning step and the water cleaning step are performed in this order without performing the heat treatment step, whereas in the present invention example, the heat treatment step is performed immediately before the acid cleaning step, and thereafter In this cleaning step, the acid cleaning step and the water cleaning step are performed in this order.
  • the surface state of the plated wire 1a after the water cleaning step and the surface state of the plated wire 1b after the winding step in each of the present invention example and the comparative example are visually determined. This was done by comparing and confirming according to the criteria of
  • the plated wire 1a after performing the cleaning process was confirmed, and an oxide layer remained on the surface. Furthermore, when the plating state on the surface of the plated wire was confirmed, it was confirmed that the surface of the plated wire 1b was rough.
  • the acid cleaning effect can be remarkably improved as compared with the case where the acid cleaning step is performed on the plated wire 1a at room temperature. It was confirmed that an acid cleaning effect was obtained.
  • the solder-plated wire manufacturing apparatus 10 and the solder-plated wire manufacturing method described above are not limited to the above-described configuration and manufacturing method, and can be configured in various configurations and manufacturing methods.
  • the cooling water tank 23 installed between the heat treatment furnace 22 and the acid cleaning tank 31 is not an essential configuration, and as shown in FIG. 9B, these heat treatment furnace 22 and the acid cleaning tank It is not necessary to install the cooling water tank 23 between them.
  • the to-be-plated wire 1a whose surface is heated by the heat treatment furnace 22 can be caused to travel in the acid cleaning tank 31 with its surface temperature being high. A cleaning effect can be obtained.
  • the feeding capstans 91 and 92 assist the feeding by the winding means 71 on the upstream side in the traveling direction.
  • the winding force applied to the wire 1a to be plated by the winding means 71 can be distributed on the upstream side and the downstream side in the traveling direction with respect to the feed capstans 91 and 92. It is possible to reduce the load applied to the wire 1a to be plated.
  • the 0.2% proof stress value of the plated wire 1b can be sufficiently reduced, the elongation rate can be suppressed, and a plated wire of a desired quality can be obtained.
  • the feed capstans 91 and 92 are disposed upstream of the softening annealing furnace 51 in the traveling direction, so that the soft annealing furnace 51 can reduce the yield strength.
  • the to-be-plated wire 1a can be fed and assisted.
  • the wire to be plated 1 a is lowered by the soft annealing furnace 51 by being provided downstream of the cleaning means 30 and upstream of the soft annealing furnace 51.
  • the wire to be plated 1a can be fed and assisted immediately before the yield strength is increased. Accordingly, the traveling of the to-be-plated wire 1a (plated wire 1b) having passed through the softening annealing furnace 51 and having a reduced strength can be efficiently fed and assisted without imposing a burden on the to-be-plated wire 1a. .
  • the middle direction changing roller 64 provided inside the molten solder plating vessel 62 is driven by a motor as in the case of the feed capstans 91 and 92.
  • the tank direction changing roller 64 As a feed capstan, when changing the traveling direction of the plating wire 1b before and after passing through the molten solder plating tank 62, the tank direction changing roller 64 is plated. Since it actively rotates at a rotational speed that approximately matches the traveling speed of the wire 1b, in addition to changing the traveling direction of the plated wire 1b, the traveling of the plated wire 1b can be assisted.
  • the plated wire 1b is particularly loaded when changing its traveling direction, and thus changing the traveling direction of the plated wire 1b particularly increases the 0.2% proof stress value of the plated wire 1b. It becomes a factor.
  • the plated wire 1b is taken out from the state of being immersed in the molten solder plating solution 63, it is necessary to change the running direction in the molten solder plating tank 62.
  • the plated wire 1b travels while being immersed in the molten solder plating solution 63, and when the direction is changed, the plating wire 1b receives a viscous resistance from the molten solder plating solution 63.
  • the load applied at the time further increases, and the increase amount of the 0.2% proof stress value becomes remarkable.
  • the tank direction changing roller 64 as a feed capstan, even if the direction of the plated wire 1b is changed in the state of being immersed in the molten solder plating solution 63, the plating wire 1b The applied load can be suppressed as much as possible, and the plated wire 1b having a low 0.2% proof stress value can be manufactured.
  • the tension applied to the feed capstan affects the degree of tension applied.
  • the number of installations 91 and 92 and whether the shaft (direction changing roller 64 in the tank) inside the molten solder plating tank 62 is set to active rotation or passive rotation are parameters, and 0.2% depending on the setting of these parameters. Strength characteristics were verified.
  • the tension applied to the plated wire 1b until reaching the winding roller upstream side arrangement roller 73A was set in four stages from the first tension setting to the fourth tension setting. .
  • the number of installed feed capstans is only one of the first feed capstans 91, and the tank direction changing roller 64 is configured by a driven rotation roller.
  • the driven rotation roller is a free-rotating roller that passively rotates without a motor for driving the roller. In the first tension setting, the tension is the strongest among the four stages, and the plated wire 1b is tightly tensioned.
  • the number of feed capstans installed is only one of the first feed capstans 91, and the tank direction changing roller 64 is a drive rotation roller.
  • the drive rotation roller is a roller that actively rotates by driving a motor or the like. In the second tension setting, the tension is slightly weaker than the first tension setting.
  • the number of feed capstans installed is two, that is, the first feed capstan 91 and the second feed capstan 92, and the tank direction changing roller 64 is configured by a driven rotary roller. Yes, the tension is slightly weaker than the second tension setting.
  • the number of feed capstans installed is two, that is, the first feed capstan 91 and the second feed capstan 92, and the tank direction changing roller 64 is configured by a drive rotating roller.
  • the tension is slightly weaker than the third tension setting, the weakest of the four stages, and the plated wire 1b is in the most loose state.
  • the load characteristics of the plated wire 1b including the 0.2% proof stress characteristic of the plated wire 1b are as shown in Table 10 and FIG. 11 in each setting from the first tension setting to the fourth tension setting described above. It became a result. *
  • all the to-be-plated wires 1a are OFC, and it performed about each of two types of rectangular wires of a size of 0.16 mm x 2.0 mm and 0.2 mm x 1.0 mm.
  • the flat wire 1a has a size of 0.2 mm ⁇ 1.0 mm.
  • the 0.2% proof stress value was the same regardless of whether the tank direction changing roller 64 was a driving rotating roller or a driven rotating roller.
  • the 0.2% proof stress value is lower when the in-tank direction changing roller 64 is configured by a driving rotating roller than when it is configured by a driven rotating roller. became.
  • the tank direction changing roller 64 is constituted by a driving rotary roller shows a tendency that the 0.2% proof stress tends to be lower than the case where it is constituted by a driven rotary roller, It was confirmed that the tank direction changing roller 64 is composed of a driving rotary roller.
  • At least one of a configuration in which two feed capstans are installed and a configuration in which the tank direction changing roller 64 is configured by a driving rotary roller is used to wind the wire to be plated 1a (plating wire 1b). Is that the plated wire 1b is loosened until the plated wire 1b reaches the winding means 71 (winding means upstream arrangement roller 73A), and the 0.2% proof stress value is obtained. It was confirmed that it was effective in obtaining an excellent quality plated wire 1b having a reduced to a predetermined value.
  • the solder-plated wire manufacturing apparatus 10 and the solder-plated wire manufacturing method described above are not limited to the above-described configuration and manufacturing method, and can be configured in various configurations and manufacturing methods.
  • the first feed capstan 91 and the second feed capstan 92 are not limited to being arranged at the above-described arrangement positions, and may be arranged at any position in the traveling direction.
  • the feed capstan may be configured to include only one of the first feed capstan 91 and the second feed capstan 92.
  • the second feed capstan 92 may be omitted.
  • a plurality of feed capstans may be provided in addition to the first feed capstan 91 and the second feed capstan 92, and may be installed at appropriate locations.
  • the tank direction change roller 64 is configured as a drive rotation roller, and is not limited to be configured to actively rotate.
  • the tank direction change roller 65 is also configured as a drive rotation roller, You may comprise so that it may rotate actively.
  • the solder plated wire manufacturing apparatus 10 has the winding means 71 disposed on the winding means 71 on the upstream side of the winding means 71.
  • the tank upward direction changing roller 65 provided above the molten solder plating tank 62 is characterized by being arranged at a position higher than the arrangement height of the winding means upstream arrangement roller 73A.
  • the plating wire 1b that has traveled to the winding means 71 side after being changed in direction by the tank upper direction changing roller 65 is disposed at a position lower than the tank upper direction changing roller 65.
  • the take-up means 71 is arranged on the take-up means 71 first by the arranged take-up means upstream side roller 73A.
  • solder plating wire manufacturing apparatus 10 and manufacturing method it is possible to obtain a plating wire 1b of a desired quality with a sufficiently reduced 0.2% proof stress value, and to stabilize such a plating wire 1b. By obtaining, the product yield can be improved and the manufacturing efficiency can be improved.
  • the plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress can be efficiently produced, mass-produced low-proof plated wire 1b suitable as a lead wire for a solar cell is produced. Can also be realized.
  • FIG. 16 (a) in the case of the conventional configuration in which the tank upward direction changing roller 65 and the winding means upstream arrangement roller 73A are arranged at substantially the same height, FIG. As shown in the X partial enlarged view in (a), the gravity g acting on the plated wire 1b acts only in a direction substantially orthogonal to the traveling direction.
  • the plated wire 1b is melted as shown in FIG. After passing through the solder plating tank 62, the plating wire 1b whose direction has been changed by the tank upper direction changing roller 65 is lowered to the downstream side in the running direction while traveling to the winding means upstream arrangement roller 73A. It can be made to run while inclining.
  • the plated wire 1b By setting the plated wire 1b to such a traveling form, as shown in the enlarged view of the portion X in FIG. 13, the plated wire 1b is disposed between the tank upper direction changing roller 65 and the winding means upstream side arranged roller 73A.
  • the traveling direction component g2 of the plated wire 1b can be made to act as an auxiliary force for feeding the plated wire 1b toward the winding means upstream arrangement roller 73A.
  • the gravity g acting on the plated wire 1b itself is applied substantially evenly along the length direction of the plated wire 1b, and acts as a force that assists feeding without applying a local load to the plated wire 1b.
  • it does not assist feeding while physically contacting the plated wire 1b unlike a member for assisting feeding, such as a roller or a belt, and therefore frictional resistance is applied to the plated wire 1b. Therefore, the plating wire 1b can be efficiently and efficiently fed without load.
  • the winding force on the winding tension adjuster 72 side can be set small, so that the plating wire 1b itself can be assisted by using the gravity g acting on the plating wire 1b itself, and the structure is simplified. be able to.
  • the plated wire 1b whose 0.2% proof stress value has been lowered in the softening annealing process can be taken up by the winding means upstream arrangement roller 73A while maintaining the low 0.2% proof stress value. A uniform plating thickness can be ensured.
  • the plated wire 1b having a reduced 0.2% proof stress value when wound on the winding tension adjuster 72 side, the plated wire 1b can be wound without applying a load.
  • the product yield can be improved and the production efficiency can be improved.
  • the tank upward direction changing roller 65 at a position where the height of the molten solder plating solution 63 stored in the molten solder plating tank 62 is about 3 m with respect to the liquid surface.
  • the tank upper direction changing roller 65 By placing the tank upper direction changing roller 65 at a height of about 3 m with respect to the surface of the molten solder plating solution 63, plating is performed until the tank upper direction changing roller 65 reaches the tank upper direction changing roller 65 from the molten solder plating tank 62. Since the wire 1b can be traveled by a sufficient height of 3 m, the molten solder plating solution 63 adhering to the surface of the plated wire 1b can be solidified (solidified) during that time.
  • the plating wire 1b changes the direction by the tank upper direction changing roller 65, the plating wire 1b comes into contact with the tank upper direction changing roller 65, so that the plating thickness does not vary and the uniform plating thickness is obtained. Can be secured.
  • the tank upper direction change roller 65 when the arrangement height of the tank upper direction change roller 65 is arranged at a height higher than 3 m, for example, the tank upper direction change roller 65 will inadvertently travel a long distance to the plating wire 1b. The burden accompanying traveling of the plated wire 1b increases. Furthermore, the higher the arrangement height of the tank upper direction changing roller 65, the sharper the angle formed between the traveling direction of the plated wire 1b before the direction change and the traveling direction after the direction change. Moreover, a load is applied to the plated wire 1b due to an increase in the length of contact of the plated wire 1b with the tank upward direction change roller 65, which is not preferable.
  • the arrangement height of the tank direction changing roller 65 is set to about 3 m from the viewpoint of securing a uniform plating thickness on the plated wire 1b and from the viewpoint of reducing the load applied to the plated wire 1b.
  • an in-bath direction changing roller 64 is disposed inside the molten solder plating tank 62, and the in-bath direction changing roller 64 is actively rotated so as to change the traveling direction of the plating wire 1b vertically upward.
  • the plating wire 1b is actively sent and assisted downstream.
  • FIG. 14 is a schematic diagram showing a part of the apparatus used in this experiment.
  • the travel path indicated by a two-dot chain line indicates the travel path of the plated wire 1b in the present invention.
  • the travel route indicated by the alternate long and short dash line indicates the travel route of the plated wire 1b in the conventional example.
  • the arrangement height of the winding means upstream arrangement roller 73A is set to 0.9 m (H) with respect to the solder liquid surface.
  • each of the two types of flat wires of the cross section A and the cross section B was used for the plated wire 1b according to the cross section size.
  • the flatness dimension (vertical x horizontal) of each cross section of the cross section A and the cross section B is 0.2 * 1.0 mm and 0.16 * 2 mm, respectively.
  • the 0.2% proof stress value increases from 38 MPa to 42 MPa before and after the ceiling piece 65 passes. After winding in the take-up process, the 0.2% proof stress value further increased to 50 MPa.
  • the increase in 0.2% proof stress value before and after the passage of the ceiling piece 65 can be suppressed to an increase from 36 MPa to 38 MPa.
  • the increase in the 0.2% yield strength after winding in the winding process could be suppressed to 45 MPa. Therefore, it was confirmed that when the flat rectangular dimension is the cross section A, the rise in the 0.2% proof stress value can be remarkably suppressed as compared with the conventional example in which the height of the ceiling piece 65 is 1 m.
  • the 0.2% proof stress value is 39 MPa before and after the passage of the ceiling piece 65, and does not change.
  • the 0.2% proof stress value increased to 47 MPa.
  • the 0.2% proof stress value before and after the passage of the ceiling piece 65 is 39 MPa, and does not change. Although it was the same value, the raise of the 0.2% yield strength value after winding in the winding process was able to be suppressed to 44 MPa. Therefore, when the flat dimension is the cross section B, it is possible to suppress an increase in the 0.2% proof stress value after the final winding as compared to the case of the conventional example in which the height of the ceiling piece 65 is 1 m. It could be confirmed.
  • the plating means 61 has a thin plating setting for plating the plated wire 1a with a thin plating, and a plating thicker than the plating thickness in the case of the thin plating setting. It can be performed by any of the thick plating settings to be thick.
  • the thin plating setting is a setting for plating the plated wire 1a when the traveling speed of the plated wire 1a is the low traveling speed.
  • the thick plating setting is a setting for plating the plated wire 1a when the traveling speed of the plated wire 1a is a high traveling speed that is higher than the low traveling speed. It is characterized in that it is set so that the plated wire 1a is plated with a plating thickness determined based on a predetermined relationship between the temperature and the plating thickness.
  • the predetermined relationship between the solder temperature and the plating thickness is established only at a high traveling speed, and the plating thickness corresponding to the solder temperature can be selected based on this relationship.
  • solder plating wire 1b manufacturing apparatus 10 and the manufacturing method described above it is possible to obtain a plating wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress value. By obtaining, the product yield can be improved and the manufacturing efficiency can be improved.
  • the plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress can be efficiently produced, mass-produced low-proof plated wire 1b suitable as a lead wire for a solar cell is produced. Can also be realized.
  • the plated wire 1a is moved at a low speed or a high speed in the plating process. Depending on whether the traveling speed is any of the linear speeds, the plated wire 1a can be formed thicker or thinner.
  • the thin plating thickness is set, and a thin plating film can be formed on the plated wire 1a.
  • the thick plating thickness is set, and a plating film having a large plating thickness can be formed on the wire to be plated 1a.
  • the plating wire 1b having any plating thickness that is set to a thick plating setting or a thin plating setting according to the purpose and application of the plating wire 1b.
  • the solder temperature and the plating thickness show a predetermined relationship. Subtle thickness adjustments such as increasing the thickness or decreasing the thickness can be performed.
  • the 0.2% proof stress value is sufficiently reduced according to the setting of the wire speed and the solder temperature, and a plated wire 1b having a uniform and desired plating thickness can be obtained. Furthermore, since such a high-quality plated wire 1b can be obtained stably, the product yield can be improved and the production efficiency can be improved.
  • the low-speed traveling speed it is preferable to set the low-speed traveling speed to about 4 m / min.
  • a plating wire 1b having a thin plating thickness of about 14.0 to 24.0 ⁇ m can be obtained.
  • the high speed traveling speed is preferably set to about 13 m / min. In this way, by setting the high speed traveling speed to about 13 m / min, it is possible to form a plated wire 1b having a thick plating thickness of about 28.5 to 67 ⁇ m, for example.
  • the degree of plating thickness can be greatly varied depending on whether the linear speed is set to the low speed traveling speed or the high speed traveling speed described above.
  • a plated wire 1b having a corresponding desired plating thickness can be created.
  • the plating speed formed on the surface of the to-be-plated wire 1a can be increased by setting the wire speed to a high traveling speed and performing the plating process under the thick plating setting.
  • the surface of the plated wire 1b tends to be rougher than in the case of setting a thin plating.
  • the plating film on the surface of the plated wire 1b is not uneven, and the plated wire 1b having a smooth surface and a uniform plating thickness is formed. Obtainable.
  • the solder temperature is set to three types of 240 ° C., 260 ° C., and 280 ° C., and the copper wires are all OFC, and the size is 0.2 mm ⁇ 1.
  • Three types of rectangular wires of 0 mm, 0.16 mm ⁇ 2.0 mm, and 0.2 mm ⁇ 2.0 mm were used.
  • the plating process was performed at a low traveling speed with a linear speed set at a low speed of 4 m / min.
  • the plating process was performed under a high traveling speed with the linear speed set at a high speed of 13 m / min.
  • Tables 13 (a) and 13 (b) show the relationship between the solder temperature, the plating thickness, and the tensile characteristics under the above-described settings under the conditions of the thin plating setting and the thick plating setting.
  • Table 13 (a) shows the relationship between the solder temperature under the thin plating setting and the plating thickness and tensile characteristics
  • Table 13 (b) shows the solder temperature under the thick plating setting. The relationship between plating thickness and tensile properties is shown.
  • the plating film could be formed on the wire to be plated 1a so that the plating thickness was thinner at the low speed than at the high speed.
  • the plating thickness can be reduced as described above without being affected by the three types of flat angle sizes and the temperature setting, and 0.2% compared to the case of the thick plating setting. % Proof stress value could be lowered.
  • the 0.2% proof stress value could be lowered to a value of around 50 Mpa, regardless of the type of rectangular size and temperature setting.
  • the plating thickness in the case of the thick plating setting for example, when the solder temperature is 280 ° C. in a rectangular wire having a size of 0.2 mm ⁇ 1.0 mm, the plating thickness is 29.5 to 32.0 ⁇ m. . On the other hand, when the solder temperature was other than 240 ° C., the plating thickness was 31.5 to 38.0 ⁇ m.
  • the plating thickness is 44.0 to 47.0 ⁇ m.
  • the plating thickness was 47.5 to 73.5 ⁇ m.
  • the plating thickness can be finely adjusted in accordance with the setting of the solder temperature even in the thick plating setting.
  • the solder temperature should be set to 280 ° C, and conversely the thick plating setting Among these, when it is desired to set the plating thickness to be relatively thick, the solder temperature may be set to 240 ° C., and when it is desired to set the thickness between these, the solder temperature may be set to 260 ° C.
  • the solder temperature when the solder temperature is set to 260 ° C. or 280 ° C. in a rectangular wire having a size of, for example, 0.16 mm ⁇ 2.0 mm, the surface of the plated wire 1b is roughened. In order to avoid this, the solder temperature may be set to 240 ° C.
  • solder plated wire manufacturing apparatus and solder plated wire manufacturing method are not limited to the above-described configuration, and can be configured in various configurations.
  • a preheating furnace 51P is provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51. it can.
  • the preheating furnace 51P is configured to increase the temperature of the plated wire 1a rapidly even when the traveling time and traveling distance of the plated wire 1a are short. is doing.
  • the preheating furnace 51P includes a sheath tube 53L in the preheating furnace main body 52P.
  • the sheath tube 53L is a hollow tube configured linearly along the traveling direction of the wire to be plated 1a, and when the wire to be plated 1a passes through the preheating furnace 51P and the softening annealing furnace 51, It is set as the arrangement
  • the pre heating furnace 51P includes a plurality of heaters 54P along the longitudinal direction of the sheath tube 53L in the pre heating furnace main body 52P. Are arranged at a narrower pitch than the arrangement interval of the heaters 54 arranged in FIG.
  • the wire to be plated 1a can be heated in the preheating furnace 51P as a preheating step immediately before the softening annealing step, The plated wire 1a can be supplied to the softening annealing furnace 51.
  • the wire to be plated 1a can be surely and sufficiently lowered in strength in the softening annealing process.
  • the manufacturing apparatus 10A and the manufacturing method described above even if the plated wire 1b is manufactured under either the thick plating setting or the thin plating setting, the sun requiring low yield strength characteristics is required. It can be used as a lead wire for a battery.
  • a pre-reducing gas supply portion 57P that supplies a reducing gas to a portion corresponding to the pre-heating furnace 51P in the length direction of the sheath tube 53L is provided in a portion between the softening annealing furnace 51 and the pre-heating furnace 51P in the sheath tube 53L. Is configured.
  • a mixed gas of hydrogen and nitrogen is supplied as the reducing gas G to the sheath tube 53L, and the internal space corresponding to the softening annealing furnace 51 of the sheath tube 53L is used as a mixed gas atmosphere.
  • nitrogen gas or steam gas steam gas
  • the internal space is filled with a nitrogen gas atmosphere or A steam gas atmosphere is used.
  • the surface of the wire to be plated 1a can be prevented from oxidizing when passing through the preheating furnace 51P, and in the preheating furnace 51P, nitrogen gas or By using water vapor gas, it is safe and easy to handle the gas.
  • the reason for this is that when the line speed is set to a high traveling speed, thick plating can be set in the plating process.
  • the line speed increases, the wire to be plated 1a in the softening annealing process performed before the plating process.
  • the plating wire 1b passes through the softening annealing furnace 51 until the softening annealing is completely performed, and as a result, the softening annealing cannot be sufficiently performed on the plated wire 1a. It is.
  • the line speed is a high traveling speed, so compared with the case of the thin plating setting.
  • a plated wire 1b having a high 0.2% proof stress value is produced.
  • a preheating furnace 51P is provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51.
  • the softening annealing process can be performed after fully heating with respect to the to-be-plated wire 1a with the preheating furnace 51P at a preheating process.
  • the to-be-plated wire 1a is made to drive at high speed, in the softening annealing process, the to-be-plated wire 1a can be reliably reduced in yield strength. Therefore, finally, a plated wire 1b having a low 0.2% proof stress and a thick plating thickness corresponding to the thick plating setting can be obtained.
  • the preheating furnace 51P installed in the vicinity of the upstream side of the softening annealing furnace 51 increases the number of heaters 54 arranged and the amount of power, and further supplies nitrogen gas or water vapor gas instead of hydrogen gas inside.
  • the gas atmosphere is easy to handle, so that the heating performance of the wire 1a to be plated is more specialized than the soft annealing furnace 51.
  • the preheating furnace 51P is installed upstream of the softening annealing furnace 51 does not increase the installation space and cost as compared with the configuration in which the softening annealing furnace 51 is elongated.
  • the heat treatment furnace 22 is not limited to being installed between the supplier 12 and the acid cleaning tank 31 in the traveling direction, and may be installed in other parts as long as it is upstream of the softening annealing furnace 51.
  • the copper wire corresponds to the to-be-plated wire 1a and the plated wire 1b of the present invention.
  • the heat treatment means corresponds to the heat treatment furnace 22
  • the acid cleaning means corresponds to the acid cleaning tank 31
  • the water cleaning means corresponds to the ultrasonic water cleaning tank 41
  • the copper wire feed auxiliary process corresponds to the plated wire feed auxiliary process
  • the copper wire feed assisting means corresponds to the first feed capstan 91, the second feed capstan 92, and the tank direction changing roller 64 that actively rotates
  • the preheating means corresponds to the preheating furnace 51P,
  • the present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.
  • the present invention can be used in a method and an apparatus for producing a solder plated wire having low strength characteristics suitable for use as a lead wire of a solar cell.

Abstract

A process and apparatus for producing a solder-plated wire are provided with which it is possible to stably obtain a plated wire of desired quality including sufficiently lowered 0.2% proof stress and to thereby improve product yield and production efficiency. The apparatus (10) is configured of: a plating pretreatment means (2) in which a copper wire (1a) is pretreated in preparation for plating; a plating means (61) in which the surface of the copper wire (1a) is plated with a solder; and a winding means (71) for winding the copper wire (1a, 1b) having the plated surface. The plating pretreatment means (2) includes a softening/annealing means (51) in which the copper wire (1a) is softened by annealing to reduce the proof stress. The copper wire (1a, 1b) having the lowered proof stress is wound by the winding means (71) at winding force lower than the proof stress of the copper wire (1a, 1b). The softening/annealing means (51), plating means (61), and winding means (71) have been arranged in series in this order from the upstream side along the running direction of the copper wire (1a, 1b).

Description

半田メッキ線の製造方法及び製造装置Solder plated wire manufacturing method and manufacturing apparatus
 この発明は、電気電子機器や通信機器に用いられる半田メッキ線の製造方法及び製造装置に関し、詳しくは、太陽電池のリード線として用いるのに好適な低耐力特性を有する半田メッキ線の製造方法及び製造装置に関する。 The present invention relates to a method and apparatus for producing a solder plated wire used in electrical and electronic equipment and communication equipment, and more specifically, a method for producing a solder plated wire having low strength characteristics suitable for use as a lead wire of a solar cell, and It relates to a manufacturing apparatus.
 電子部品に用いられるメッキ線の中には、0.2%耐力値が低いという低耐力特性であることが要求されるものがある。例えば、太陽電池用リード線もその1つである。 Some plated wires used for electronic parts are required to have low proof stress characteristics such as a low 0.2% proof stress value. For example, the lead wire for solar cells is one of them.
 太陽電池セルは、該太陽電池セルを構成するシリコン材料のコストダウンを図るためや、材料供給不足の影響を緩和するため、薄型化が求められている。 
 しかし、太陽電池セルが薄型化すると強度が弱くなり、太陽電池セルにおける太陽電池用リード線を半田接続した接続部分は、互いの膨張率の違いにより太陽電池セルに反りや破損が発生し易くなるという問題があった。
Solar cells are required to be thin in order to reduce the cost of the silicon material constituting the solar cells and to mitigate the effects of insufficient material supply.
However, when the solar cell is thinned, the strength is weakened, and the connecting portion where the solar cell lead wire in the solar cell is soldered is likely to be warped or damaged due to the difference in expansion coefficient. There was a problem.
 よって、太陽電池用リード線は、太陽電池セルとの接続部分が太陽電池セルの変形に追従する必要があり、0.2%耐力値を低下させることが重要となる。このことから、太陽電池用リード線としては、低耐力特性を有する半田メッキ線が用いられる。 Therefore, the solar cell lead wire needs to follow the deformation of the solar cell at the connection portion with the solar cell, and it is important to reduce the 0.2% proof stress value. For this reason, a solder plated wire having a low yield strength characteristic is used as the lead wire for the solar cell.
 このような半田メッキ線は、低耐力特性を有しているか否かに関わらず特許文献1に開示するような半田メッキ工程を経て被メッキ線に対してメッキ層を形成して成る。 Such a solder-plated wire is formed by forming a plating layer on the wire to be plated through a solder plating process as disclosed in Patent Document 1 regardless of whether or not it has low strength characteristics.
 特許文献1に開示の半田メッキ工程は、被メッキ線としての金属素線を、金属素線導入口を通じて溶融半田メッキ液の入ったメッキ液部に導入し、半田メッキ線導出口から導出させ、大気冷却するなどして金属素線にメッキを施す工程である。 In the solder plating process disclosed in Patent Document 1, a metal wire as a wire to be plated is introduced into a plating solution containing molten solder plating solution through a metal wire introduction port, and is led out from a solder plating wire outlet. This is a step of plating the metal wires by cooling to the atmosphere.
 さらに、半田メッキ線の製造工程においては、上述した半田メッキ工程以外にも、金属素線の表面に対して洗浄や焼鈍などの半田メッキ前処理工程を施したり、半田メッキ工程の後工程では、メッキ線を巻取る巻取り工程が行われる。 Furthermore, in the solder plating wire manufacturing process, in addition to the solder plating process described above, the surface of the metal element wire is subjected to a solder plating pretreatment process such as cleaning and annealing, A winding process for winding the plated wire is performed.
 そして、このような工程を低耐力化した被メッキ線に対して連続して行おうとした場合には、被メッキ線に負荷がかかり易くなるため、連続加工することが困難になり、連続加工することができたとしても所望の品質のメッキ線を安定して得ることが困難であった。 And when it is going to perform such a process continuously with respect to the to-be-plated wire which carried out low yield strength, since it becomes easy to apply a load to a to-be-plated wire, it becomes difficult to carry out a continuous process and it carries out a continuous process. Even if it was possible, it was difficult to stably obtain a plated wire having a desired quality.
 例えば、低耐力化した被メッキ線にかかる負荷を抑制することに重点を置くあまり、被メッキ線の表面を十分に洗浄することができず、表面に不純物や酸化層が残留することがあった。 For example, too much emphasis is placed on suppressing the load applied to the plated wire whose strength has been lowered, and the surface of the plated wire cannot be sufficiently cleaned, and impurities and oxide layers may remain on the surface. .
 そうすると、その後の半田メッキ工程で被メッキ線の表面にメッキ層を形成する際に、メッキ層が剥離し易くなるなど所望の品質のメッキ線を安定して得ることが困難であった。 Then, when forming a plating layer on the surface of the wire to be plated in the subsequent solder plating process, it is difficult to stably obtain a plating wire of a desired quality such that the plating layer is easily peeled off.
 その他にも、メッキ線の製造途中に、メッキ線(被メッキ線)の耐力が低いために、メッキ線の走行速度を上げることができず、製造時間が大幅にかかり、連続加工を行おうとすると、かえって製造効率が低下する場合も生じるという難点を有していた。 In addition, during the production of plated wire, the proof strength of the plated wire (wire to be plated) is low, so the traveling speed of the plated wire cannot be increased, and it takes a lot of time to make continuous processing. On the contrary, there is a problem that the production efficiency may be lowered.
 低耐力特性を有する半田メッキ線の製造方法としては、例えば、特許文献2において太陽電池用平角導体の製造方法が提案されている。 
 特許文献2における太陽電池用平角導体の製造方法は、導体を圧延などの工程により平角状に成形した後、熱処理工程により0.2%耐力値を低減したり、導体の表面に半田メッキ膜を施す製造方法である。
As a method for producing a solder-plated wire having low yield strength characteristics, for example, Patent Document 2 proposes a method for producing a flat conductor for solar cells.
In the method of manufacturing a rectangular conductor for solar cell in Patent Document 2, the conductor is formed into a rectangular shape by a process such as rolling, and then a 0.2% proof stress value is reduced by a heat treatment process, or a solder plating film is formed on the surface of the conductor. It is a manufacturing method to be applied.
 しかし、引用文献2には、熱処理を行う上での温度設定や、還元炉(軟化焼鈍炉)の内部の雰囲気ガスの成分といった具体的な記載や、例えば、洗浄工程といった熱処理工程以外の工程についての具体的な言及がされていない。 However, the cited document 2 includes specific descriptions such as temperature setting in performing heat treatment, components of atmospheric gas in the reduction furnace (softening annealing furnace), and processes other than the heat treatment process such as a cleaning process. There is no specific mention.
 このため、仮に、洗浄工程を行うにしても、これら熱処理工程、洗浄工程、或いは、メッキ工程といった各工程を独立した生産ラインで行うか否かといった点や、仮に、これら複数の工程を連続して行うにしても、如何なる工程順で行うかについて定かではない。 For this reason, even if the cleaning process is performed, these processes such as the heat treatment process, the cleaning process, or the plating process are performed on an independent production line. Even if it is performed, it is not certain in what process order.
 すなわち、引用文献2は、上述したように、平角導体の0.2%耐力値を低下させたことに伴い太陽電池のリード線としての品質を確保することが困難となる一方で、0.2%耐力値を低下させたメッキ線の品質を確保するために製造効率が低下するという2つの相反する製造上の課題について何ら着目されていない。 That is, as described above, Cited Document 2 makes it difficult to ensure the quality as a lead wire of a solar cell as the 0.2% proof stress value of a flat conductor is reduced, while 0.2% No attention has been paid to two conflicting manufacturing problems that the manufacturing efficiency is lowered in order to ensure the quality of the plated wire having a reduced% proof stress value.
特開2000-80460号公報Japanese Patent Laid-Open No. 2000-80460 特開2006-54355号公報JP 2006-54355 A
 そこで本発明は、0.2%耐力値を十分に低下させた所望の品質のメッキ線を得ることができ、このようなメッキ線を安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる半田メッキ線の製造方法及び製造装置の提供を目的とする。 Therefore, the present invention can obtain a plated wire of a desired quality with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire, the product yield can be improved. It is another object of the present invention to provide a method and apparatus for manufacturing a solder plated wire that can improve manufacturing efficiency.
 本発明は、銅線に対してメッキ前処理を行うメッキ前処理手段と、銅線の表面に半田メッキを施すメッキ手段と、表面にメッキを施した銅線を巻取る巻取り手段とで構成される半田メッキ線の製造装置であって、前記メッキ前処理手段に、銅線を軟化焼鈍して低耐力化する軟化焼鈍手段を備え、低耐力化した前記銅線を、該銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とし、前記軟化焼鈍手段、前記メッキ手段、及び、前記巻取り手段を、銅線の走行方向の上流側からこの順に一連配置したことを特徴とする。 The present invention comprises a plating pretreatment means for pre-plating a copper wire, a plating means for performing solder plating on the surface of the copper wire, and a winding means for winding up the copper wire plated on the surface. A solder plated wire manufacturing apparatus comprising: a pre-plating processing means including a soft annealing means for softening and annealing a copper wire to reduce the yield strength, and the strength of the copper wire is reduced. The winding means is configured to be wound by the winding means with a lower winding force, and the softening annealing means, the plating means, and the winding means are sequentially arranged in this order from the upstream side in the traveling direction of the copper wire. Features.
 ここで、上述した銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とは、銅線を前記巻取り手段のみで巻取る構成に限定せず、例えば、該巻取り手段による巻取りを補助する送りキャプスタンを巻取り手段よりも上流側に配置し、前記巻取り手段と該送りキャプスタンとで銅線を巻取る構成も含むものとする。 Here, the configuration in which the winding means winds with the winding force lower than the proof strength of the copper wire described above is not limited to the configuration in which the copper wire is wound only with the winding means, for example, the winding means. A feed capstan for assisting winding by the above-described arrangement is disposed upstream of the winding means, and a configuration in which a copper wire is wound by the winding means and the feed capstan is also included.
 前記銅線は、形状、サイズは限定しないが、平角線であることが好ましい。前記銅線を、上述した純銅系導体材料により平角線で形成することにより、表面にメッキ処理を施すことで、シリコン結晶ウェハ(Siセル)の所定領域に接続する接続用リード線として、すなわち、太陽電池用はんだメッキ線として用いることができるためである。 The shape and size of the copper wire is not limited, but is preferably a flat wire. By forming the copper wire as a rectangular wire with the above-described pure copper-based conductor material, by plating the surface, the lead wire for connection connected to a predetermined region of the silicon crystal wafer (Si cell), that is, It is because it can be used as a solder plating wire for solar cells.
 前記一連配置したとは、走行方向の上流側から下流側に沿って連続的か断続的かに関わらず連なって、いわゆるタンデムで配置したことを示す。 The above-mentioned series of arrangements indicate that they are arranged in a so-called tandem, regardless of whether they are continuous or intermittent from the upstream side to the downstream side in the traveling direction.
 この発明の態様として、前記銅線を、純銅系材料で形成し、前記軟化焼鈍手段を、内部が前記銅線の表面の酸化層を還元する還元ガス雰囲気である軟化焼鈍炉で構成し、前記軟化焼鈍炉を、銅線走行方向の上流側よりも下流側が低位置になるよう傾斜配置し、前記軟化焼鈍炉における銅線走行方向の下流側部分に、該軟化焼鈍炉に対して還元性ガスの供給を許容する還元ガス供給部を設けることができる。 As an aspect of the present invention, the copper wire is formed of a pure copper-based material, and the softening annealing means is configured by a softening annealing furnace whose inside is a reducing gas atmosphere that reduces the oxide layer on the surface of the copper wire, The softening annealing furnace is inclined so that the downstream side is lower than the upstream side in the copper wire traveling direction, and a reducing gas is provided in the downstream portion in the copper wire traveling direction in the softening annealing furnace with respect to the softening annealing furnace. A reducing gas supply unit that allows the supply of
 前記純銅系材料とは、不純物が少なく、導電率が高い純銅系導体材料であれば特に限定せず、例えば、無酸素銅(OFC)、タフピッチ銅、リン脱酸銅といった酸化物などの不純物を含まない純度が99.9%以上であるものが好ましい。 The pure copper-based material is not particularly limited as long as it is a pure copper-based conductor material having few impurities and high conductivity. For example, impurities such as oxides such as oxygen-free copper (OFC), tough pitch copper, and phosphorus deoxidized copper are used. The purity not containing is preferably 99.9% or more.
 またこの発明の態様として、前記還元性ガスは、窒素ガスと水素ガスとの混合ガスで構成することができる。 As an aspect of the present invention, the reducing gas can be composed of a mixed gas of nitrogen gas and hydrogen gas.
 またこの発明の態様として、前記窒素ガスと前記水素ガスとの体積比率を、4:1に設定することができる。 As an aspect of the present invention, the volume ratio between the nitrogen gas and the hydrogen gas can be set to 4: 1.
 またこの発明の態様として、前記メッキ前処理手段に、銅線に対して加熱処理を行う加熱処理手段を備え、前記加熱処理手段を前記軟化焼鈍手段よりも銅線走行方向の上流側に配置することができる。 As an aspect of the present invention, the plating pretreatment means includes a heat treatment means for performing a heat treatment on the copper wire, and the heat treatment means is disposed upstream of the softening annealing means in the copper wire traveling direction. be able to.
 またこの発明の態様として、前記銅線を、純銅系材料で形成し、前記メッキ前処理手段に、銅線を洗浄する洗浄手段を備え、前記洗浄手段を前記軟化焼鈍手段よりも銅線走行方向の上流側に配置することができる。 Further, as an aspect of the present invention, the copper wire is formed of a pure copper-based material, and the plating pretreatment means includes a cleaning means for cleaning the copper wire, and the cleaning means is more in the copper wire traveling direction than the softening annealing means. It can arrange | position in the upstream.
 またこの発明の態様として、前記メッキ前処理手段には、前記軟化焼鈍手段よりも銅線走行方向の上流側に、銅線に対して加熱処理を行う加熱処理手段を備え、前記加熱処理手段を前記洗浄手段よりも銅線走行方向の上流側に配置することができる。 Further, as an aspect of the present invention, the plating pretreatment means includes a heat treatment means for performing heat treatment on the copper wire upstream of the softening annealing means in the copper wire traveling direction, and the heat treatment means It can arrange | position in the upstream of a copper wire traveling direction rather than the said washing | cleaning means.
 またこの発明の態様として、前記洗浄手段を、酸洗浄手段と水洗浄手段とで構成し、前記メッキ前処理手段として、前記加熱処理手段、前記酸洗浄手段、前記水洗浄手段、及び、前記軟化焼鈍手段を銅線走行方向に沿ってこの順に配置することができる。 Further, as an aspect of the present invention, the cleaning unit is constituted by an acid cleaning unit and a water cleaning unit, and the heat treatment unit, the acid cleaning unit, the water cleaning unit, and the softening are used as the plating pretreatment unit. Annealing means can be arranged in this order along the copper wire traveling direction.
 またこの発明の態様として、銅線には、長さ方向に対して直交する直交断面における幅が0.8~10mmの範囲内であり、厚みが0.05~0.5mmの範囲内のサイズである平角銅線を用い、銅線の走行速度を、約4.0m/minに設定し、前記酸洗浄手段での酸洗浄時間を約12.8秒に設定するとともに、水洗浄手段での水洗浄時間を約13.5秒に設定することができる。 As an aspect of the present invention, the copper wire has a width in the range of 0.8 to 10 mm and a thickness in the range of 0.05 to 0.5 mm in the cross section orthogonal to the length direction. The copper wire traveling speed is set to about 4.0 m / min, the acid cleaning time in the acid cleaning means is set to about 12.8 seconds, and the water cleaning means is used. The water wash time can be set to about 13.5 seconds.
 またこの発明の態様として、前記銅線を、純銅系材料で形成し、前記巻取り手段による銅線の巻取りを補助する銅線送り補助手段を、前記巻取り手段よりも銅線走行方向の上流側に備えることができる。 Further, as an aspect of the present invention, the copper wire is formed of a pure copper-based material, and the copper wire feeding auxiliary means for assisting the winding of the copper wire by the winding means is more in the copper wire traveling direction than the winding means. It can be provided upstream.
 またこの発明の態様として、前記銅線送り補助手段を、前記軟化焼鈍手段よりも銅線走行方向の上流側に配置することができる。 Also, as an aspect of the present invention, the copper wire feeding auxiliary means can be disposed upstream of the softening annealing means in the copper wire traveling direction.
 またこの発明の態様として、前記銅線送り補助手段を、銅線走行方向における前記洗浄手段よりも銅線走行方向の下流側に配置することができる。 Also, as an aspect of the present invention, the copper wire feeding auxiliary means can be arranged downstream of the cleaning means in the copper wire traveling direction in the copper wire traveling direction.
 またこの発明の態様として、前記メッキ手段を、溶融半田メッキ液が貯溜された溶融半田メッキ槽で構成し、銅線の走行方向を転換する方向転換ローラを、前記溶融半田メッキ槽の内部に備えられ、且つ、前記溶融半田メッキ槽を通過前と通過後とで銅線の走行方向を転換する槽中方向転換ローラで構成し、前記槽中方向転換ローラを前記銅線送り補助手段で構成することができる。 As an aspect of the present invention, the plating means is constituted by a molten solder plating tank in which a molten solder plating solution is stored, and a direction changing roller for changing the traveling direction of the copper wire is provided inside the molten solder plating tank. And a tank middle direction changing roller that changes the traveling direction of the copper wire before and after passing through the molten solder plating tank, and the tank middle direction changing roller is constituted by the copper wire feeding auxiliary means. be able to.
 またこの発明の態様として、前記銅線を、純銅系材料で形成し、前記メッキ手段を、溶融半田メッキ液が貯溜された溶融半田メッキ槽で構成し、銅線の走行方向を転換する方向転換ローラを、前記溶融半田メッキ槽の上方に備えられ、且つ、前記溶融半田メッキ槽を通過後の銅線の走行方向を前記巻取り手段の側へ転換する槽上方向転換ローラで構成し、前記巻取り手段において銅線を架け渡す固定ローラのうち、上流側に配置した固定ローラを、該槽上方向転換ローラ通過後の銅線を前記巻取り手段における下流側に案内する巻取り手段上流側配置ローラで構成し、前記槽上方向転換ローラを、前記巻取り手段上流側配置ローラの配置高さよりも高い位置に配置することができる。 Further, as an aspect of the present invention, the copper wire is formed of a pure copper-based material, and the plating means is constituted by a molten solder plating tank in which a molten solder plating solution is stored, and the direction change for changing the traveling direction of the copper wire is performed. The roller is provided above the molten solder plating tank, and is constituted by a tank upper direction changing roller that changes the traveling direction of the copper wire after passing through the molten solder plating tank to the winding means side, Out of the fixed rollers that bridge the copper wire in the winding means, the upstream side of the winding means that guides the fixed roller disposed on the upstream side to the downstream side of the winding means after passing through the tank direction changing roller It is comprised with an arrangement | positioning roller, and the said tank direction change roller can be arrange | positioned in the position higher than the arrangement | positioning height of the said winding means upstream arrangement roller.
 またこの発明の態様として、前記槽上方向転換ローラを、前記溶融半田メッキ槽に貯溜した溶融半田メッキ液の液面に対する高さが約3mとなる位置に配置することができる。 Further, as an aspect of the present invention, the tank upward direction changing roller can be disposed at a position where the height of the molten solder plating solution stored in the molten solder plating tank is about 3 m.
 またこの発明の態様として、前記メッキ手段を、溶融半田メッキ液が貯溜された溶融半田メッキ槽で構成し、銅線の走行方向を転換する方向転換ローラを、前記溶融半田メッキ槽の内部に備えられ、且つ、前記溶融半田メッキ槽を通過前と通過後とで銅線の走行方向を転換する槽中方向転換ローラで構成し、前記槽中方向転換ローラを、前記巻取り手段による銅線の巻取りを補助する銅線送り補助手段で構成することができる。 As an aspect of the present invention, the plating means is constituted by a molten solder plating tank in which a molten solder plating solution is stored, and a direction changing roller for changing the traveling direction of the copper wire is provided inside the molten solder plating tank. And a tank middle direction changing roller that changes the traveling direction of the copper wire before and after passing through the molten solder plating tank, and the tank middle direction changing roller is formed of the copper wire by the winding means. It can be constituted by a copper wire feed assisting means for assisting winding.
 またこの発明の態様として、前記銅線を、純銅系材料で形成し、前記メッキ手段では、銅線を薄メッキでメッキする薄メッキ設定と、薄メッキ設定の場合のメッキ厚よりも厚いメッキ厚となる厚メッキ設定とのうち、いずれかの設定で行い、前記薄メッキ設定を、銅線を走行させる速度を低速走行速度の下で銅線に対してメッキを施す設定とし、前記厚メッキ設定が銅線を走行させる速度が前記低速走行速度よりも高速である高速走行速度の下で銅線に対してメッキを施す設定にするとともに、前記高速走行速度において半田温度とメッキ厚との所定の関係に基づいて前記半田温度に応じたメッキ厚で銅線にメッキを施す設定とすることができる。 Further, as an aspect of the present invention, the copper wire is formed of a pure copper-based material, and the plating means has a thin plating setting for plating the copper wire with a thin plating, and a plating thickness larger than the plating thickness in the case of the thin plating setting. The thin plating setting is set to perform plating on the copper wire under the low traveling speed, and the thin plating setting is performed with any setting of the thick plating setting to be The copper wire is plated at a high speed that is higher than the low speed and the copper wire is plated at a high speed, and a predetermined solder temperature and plating thickness are set at the high speed. Based on the relationship, the copper wire can be plated with a plating thickness corresponding to the solder temperature.
 またこの発明の態様として、前記洗浄手段と前記軟化焼鈍手段との間に、該軟化焼鈍手段を通過する直前の銅線を加熱するプレ加熱手段を備え、前記メッキ手段での設定が前記厚メッキ設定において、前記メッキ手段は、前記プレ加熱手段と前記軟化焼鈍手段とを通過後の銅線に対してメッキを施すことができる。 Further, as an aspect of the present invention, a preheating unit for heating the copper wire immediately before passing through the softening annealing unit is provided between the cleaning unit and the softening annealing unit, and the setting in the plating unit is the thick plating. In setting, the plating means can plate the copper wire after passing through the preheating means and the softening annealing means.
 またこの発明は、銅線に対してメッキ前処理を行うメッキ前処理工程と、銅線の表面に半田メッキを施すメッキ工程と、表面にメッキを施した銅線を巻取る巻取り工程とを経て製造される半田メッキ線の製造方法であって、前記メッキ前処理工程では、銅線を軟化焼鈍して低耐力化する軟化焼鈍工程を行い、前記巻取り工程を、低耐力化した前記銅線の耐力よりも低い巻取り力で巻取る工程とし、前記巻取り工程の間、前記軟化焼鈍工程と前記メッキ工程とを連続して行うことを特徴とする。 The present invention also includes a pre-plating process for pre-plating a copper wire, a plating process for solder plating the surface of the copper wire, and a winding process for winding the copper wire plated on the surface. A method for producing a solder-plated wire manufactured through the above-described pre-plating process, in which the copper wire is subjected to a softening annealing process for softening and annealing to reduce the yield strength, and the winding process is performed to reduce the yield strength of the copper wire. The winding step is a step of winding with a winding force lower than the yield strength of the wire, and the softening annealing step and the plating step are continuously performed during the winding step.
 またこの発明の態様として、前記銅線には、純銅系材料で形成したものを用い、前記軟化焼鈍工程では、走行方向の上流側よりも下流側が低位置になるよう傾斜配置した軟化焼鈍炉に、走行方向の下流側に設けた還元ガス供給部から前記銅線の表面の酸化層を還元する還元性ガスを供給し、前記軟化焼鈍炉の内部を還元性ガス雰囲気とし、該軟化焼鈍炉に前記銅線を走行させることができる。 Moreover, as an aspect of the present invention, the copper wire is made of a pure copper-based material, and in the softening annealing step, the softening annealing furnace is inclined so that the downstream side is lower than the upstream side in the traveling direction. A reducing gas for reducing the oxidized layer on the surface of the copper wire is supplied from a reducing gas supply unit provided downstream in the traveling direction, and the inside of the softening annealing furnace is set as a reducing gas atmosphere, and the softening annealing furnace The copper wire can be run.
 またこの発明の態様として、前記還元性ガスは、窒素ガスと水素ガスとの混合ガスで構成することができる。 As an aspect of the present invention, the reducing gas can be composed of a mixed gas of nitrogen gas and hydrogen gas.
 またこの発明の態様として、前記窒素ガスと前記水素ガスとの体積比率を、4:1に設定することができる。 As an aspect of the present invention, the volume ratio between the nitrogen gas and the hydrogen gas can be set to 4: 1.
 またこの発明の態様として、前記メッキ前処理工程において、前記軟化焼鈍工程の前に銅線に対して加熱処理工程を行うことができる。 As an aspect of the present invention, in the plating pretreatment step, a heat treatment step can be performed on the copper wire before the softening annealing step.
 またこの発明の態様として、前記銅線には、純銅系材料で形成したものを用い、前記メッキ前処理工程において、前記軟化焼鈍工程の前に、銅線を洗浄する洗浄工程を行うことができる。 Moreover, as an aspect of the present invention, the copper wire formed of a pure copper-based material can be used, and in the pre-plating treatment step, a washing step of washing the copper wire can be performed before the softening annealing step. .
 またこの発明の態様として、前記メッキ前処理工程には、前記軟化焼鈍工程の前に銅線に対して加熱処理を行う加熱処理工程を含み、前記加熱処理工程を前記洗浄工程の前に行うことができる。 Moreover, as an aspect of the present invention, the plating pretreatment step includes a heat treatment step of performing heat treatment on the copper wire before the softening annealing step, and the heat treatment step is performed before the cleaning step. Can do.
 またこの発明の態様として、前記洗浄工程には、酸洗浄工程と水洗浄工程とを備え、前記メッキ前処理工程において、前記加熱処理工程、前記酸洗浄工程、前記水洗浄工程、及び、前記軟化焼鈍工程を、この順で行うことができる。 Further, as an aspect of the present invention, the cleaning step includes an acid cleaning step and a water cleaning step, and in the plating pretreatment step, the heat treatment step, the acid cleaning step, the water cleaning step, and the softening An annealing process can be performed in this order.
 またこの発明の態様として、銅線には、長さ方向に対して直交する直交断面における幅が0.8~10mmの範囲内であり、厚みが0.05~0.5mmの範囲内のサイズである平角銅線を用い、銅線の走行速度を、約4.0m/minに設定し、前記酸洗浄工程での酸洗浄時間を約12.8秒に設定するとともに、水洗浄工程での水洗浄時間を約13.5秒に設定することができる。 As an aspect of the present invention, the copper wire has a width in the range of 0.8 to 10 mm and a thickness in the range of 0.05 to 0.5 mm in the cross section orthogonal to the length direction. The copper wire traveling speed is set to about 4.0 m / min, the acid cleaning time in the acid cleaning step is set to about 12.8 seconds, and the water cleaning step is used. The water wash time can be set to about 13.5 seconds.
 またこの発明の態様として、前記銅線には、純銅系材料で形成したものを用い、前記巻取り工程を行う間、該巻取り工程で行う銅線の巻取りを補助する銅線送り補助工程を行うことができる。 Moreover, as an aspect of the present invention, the copper wire is made of a pure copper-based material, and the copper wire feeding auxiliary step for assisting the winding of the copper wire performed in the winding step while performing the winding step. It can be performed.
 またこの発明の態様として、前記銅線には、純銅系材料で形成したものを用い、前記メッキ工程後に、前記溶融半田メッキ槽の上方であって、前記巻取り手段の上流側に配置され、該槽上方向転換ローラを通過後の銅線を前記巻取り手段における下流側に案内する巻取り手段上流側配置ローラの配置高さよりも高い位置に配置した槽上方向転換ローラによって、前記溶融半田メッキ槽を通過後の銅線の走行方向を前記巻取り手段上流側配置ローラの側へ方向転換することができる。 Further, as an aspect of the present invention, the copper wire is made of a pure copper-based material, and after the plating step, is disposed above the molten solder plating tank and upstream of the winding means, The molten solder is moved by the tank upper direction changing roller disposed at a position higher than the arrangement height of the upstream arrangement roller of the winding means for guiding the copper wire after passing through the tank upper direction changing roller to the downstream side of the winding means. The traveling direction of the copper wire after passing through the plating tank can be changed to the winding roller upstream side arrangement roller side.
 またこの発明の態様として、前記銅線には、純銅系材料で形成したものを用い、前記メッキ工程では、銅線を薄メッキでメッキする薄メッキ設定と、薄メッキ設定の場合のメッキ厚よりも厚いメッキ厚となる厚メッキ設定とのうち、いずれかの設定で行い、前記薄メッキ設定を、銅線を走行させる速度を低速走行速度の下で銅線にメッキを施す設定とし、前記厚メッキ設定を、銅線を走行させる速度を、前記低速走行速度よりも高速である高速走行速度の下でメッキを施す設定とし、前記高速走行速度において半田温度とメッキ厚との所定の関係に基づいて、前記半田温度に応じたメッキ厚で銅線に対してメッキを施す設定とすることができる。 Further, as an aspect of the present invention, the copper wire is made of a pure copper-based material, and in the plating step, a thin plating setting for plating the copper wire with a thin plating and a plating thickness in the case of the thin plating setting are used. The thick plating setting is set to any one of the thick plating settings, and the thin plating setting is set so that the copper wire is plated under a low traveling speed, and the thickness of the thin plating is set. The plating setting is such that the speed at which the copper wire travels is set to perform plating under a high speed traveling speed that is higher than the low speed traveling speed, and based on a predetermined relationship between the solder temperature and the plating thickness at the high speed traveling speed. Thus, the copper wire can be plated with a plating thickness corresponding to the solder temperature.
 またこの発明の態様として、前記低速走行速度を約4m/min程度に設定し、高速走行速度を約13m/min程度に設定することができる。 As an aspect of the present invention, the low speed traveling speed can be set to about 4 m / min, and the high speed traveling speed can be set to about 13 m / min.
 またこの発明の態様として、前記高速走行速度において、前記半田温度を約240℃程度に設定することができる。 As an aspect of the present invention, the solder temperature can be set to about 240 ° C. at the high traveling speed.
 またこの発明の態様として、前記メッキ工程を、前記厚メッキ設定で行うとき、前記洗浄工程と前記軟化焼鈍工程との間に、該軟化焼鈍工程を行う直前の銅線を加熱するプレ加熱工程を行い、前記プレ加熱工程後に前記軟化焼鈍工程を行った銅線に対して前記メッキ工程を行うことができる。 Further, as an aspect of the present invention, when the plating step is performed with the thick plating setting, a preheating step of heating the copper wire immediately before the softening annealing step is performed between the cleaning step and the softening annealing step. And the plating step can be performed on the copper wire that has been subjected to the softening annealing step after the preheating step.
 この発明によれば、0.2%耐力値を十分に低下させた所望の品質のメッキ線を得ることができ、このようなメッキ線を安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる半田メッキ線の製造方法及び製造装置を提供することができる。 According to this invention, it is possible to obtain a plated wire of a desired quality with a sufficiently reduced 0.2% proof stress value, and to improve the product yield by stably obtaining such a plated wire. In addition, it is possible to provide a method and an apparatus for manufacturing a solder plated wire that can improve manufacturing efficiency.
半田メッキ線の製造装置の概略図。Schematic of a solder plating wire manufacturing apparatus. 軟化焼鈍炉の説明図。Explanatory drawing of a softening annealing furnace. ボビントラバース方式巻取り機の説明図。Explanatory drawing of a bobbin traverse type winder. 加熱処理温度を100℃とした場合の軟化焼鈍炉での軟化焼鈍温度と0.2%耐力値の関係を示すグラフ。The graph which shows the relationship between the softening annealing temperature and the 0.2% yield strength value in a softening annealing furnace when heat processing temperature is 100 degreeC. 加熱処理温度と0.2%耐力値の関係を示すグラフ。The graph which shows the relationship between heat processing temperature and a 0.2% yield strength value. 軟化焼鈍工程で水素含有の有無に応じた還元ガスをそれぞれ用いた場合における被メッキ線の0.2%耐力値を示すグラフ。The graph which shows the 0.2% yield strength value of the to-be-plated wire at the time of each using the reducing gas according to the presence or absence of hydrogen containing in a softening annealing process. 還元ガスの水素混合比と0.2%耐力値の関係を示すグラフ。The graph which shows the relationship between the hydrogen mixing ratio of reducing gas, and 0.2% yield strength value. 他の実施形態の半田メッキ線の製造装置の一部を示す概略図。Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment. 他の実施形態の半田メッキ線の製造装置の一部を示す概略図。Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment. 洗浄装置の概略図。Schematic of a cleaning device. 送りキャプスタン、及び槽中方向転換ローラの設置態様に応じたメッキ線の0.2%耐力値との関係を示すグラフ。The graph which shows the relationship with the 0.2% yield strength value of the plating wire according to the installation aspect of a feed capstan and a tank direction change roller. 他の実施形態の半田メッキ線の製造装置の一部を示す概略図。Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment. 半田メッキ線の製造装置の作用説明図。Action | operation explanatory drawing of the manufacturing apparatus of a solder plating wire. メッキ槽上ローラ配置高さ検証実験で用いた製造装置の概略図。Schematic of the manufacturing apparatus used in the plating tank upper roller arrangement height verification experiment. 半田メッキ線の製造装置の実験結果を示すグラフ。The graph which shows the experimental result of the manufacturing apparatus of a solder plating wire. 従来の半田メッキ線の製造装置の一部を示す概略図。Schematic which shows a part of manufacturing apparatus of the conventional solder plating wire. 他の実施形態の半田メッキ線の製造装置の一部を示す概略図。Schematic which shows a part of manufacturing apparatus of the solder plating wire of other embodiment.
 この発明の一実施形態を、以下図面を用いて説明する。 
 本実施形態の半田メッキ線の製造装置10は、図1に示すように、被メッキ線1aに対してメッキ前処理を行うメッキ前処理手段2と、被メッキ線1aの表面に半田メッキを施すメッキ手段61と、表面にメッキを施したメッキ線1bを巻取る巻取り手段71とで構成している。
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a solder plated wire manufacturing apparatus 10 according to the present embodiment performs a plating pretreatment means 2 for performing a pretreatment for plating on a wire to be plated 1a, and performs solder plating on the surface of the wire to be plated 1a. It comprises a plating means 61 and a winding means 71 for winding the plated wire 1b plated on the surface.
 被メッキ線1aには、別途備えた平角線製造機(図示せず)により、無酸素銅(OFC)を厚みが0.05~0.5mm、幅が0.8~10mmに、より好ましくは、厚みが0.08~0.24mm、幅が1~2mmに圧延した平角銅線を用いている。 The to-be-plated wire 1a is made of oxygen-free copper (OFC) having a thickness of 0.05 to 0.5 mm and a width of 0.8 to 10 mm, more preferably by a separately provided flat wire manufacturing machine (not shown). A rectangular copper wire rolled to a thickness of 0.08 to 0.24 mm and a width of 1 to 2 mm is used.
 前記メッキ前処理手段2は、主にサプライヤ12、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51で構成している。 The plating pretreatment means 2 mainly comprises a supplier 12, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, and a softening annealing furnace 51.
 サプライヤ12は、ドラムに巻き付けた状態の被メッキ線1aをドラムが回転することで、順に解いていきながら製造ラインに供給している。サプライヤ12は、必要に応じてダンサー機能付きの構成であってもよく、また、通常の横繰り出しで繰り出す構成であってもよい。 The supplier 12 supplies the wire to be plated 1a that is wound around the drum to the production line while the drum rotates in order. The supplier 12 may be configured with a dancer function as necessary, or may be configured to be fed out in a normal lateral feed.
 加熱処理炉22は、後述する軟化焼鈍炉51と略同様の構成であり、厚み方向に対して走行方向に長い直方体形状をした外観形状で構成している。加熱処理炉22は、走行方向に沿って走行方向の下流側端部が上流側端部よりも低位置になるよう傾斜配置している。加熱処理炉22の内部は、200℃の設定温度の蒸気雰囲気としている。 The heat treatment furnace 22 has substantially the same configuration as a soft annealing furnace 51 described later, and has an external shape that is a rectangular parallelepiped shape that is long in the traveling direction with respect to the thickness direction. The heat treatment furnace 22 is inclined and arranged along the traveling direction so that the downstream end in the traveling direction is lower than the upstream end. The inside of the heat treatment furnace 22 is a steam atmosphere having a set temperature of 200 ° C.
 また、加熱処理炉22に対して走行方向の下流側には、加熱処理炉22の内部を通過した被メッキ線1aを冷却する冷却水槽23を設置している。加熱処理炉22の下流側端部と冷却水槽23は、加熱処理炉22から導出した被メッキ線1aが空気に触れないよう冷却水槽23まで案内する連結管24で互いに連結されている。 Further, a cooling water tank 23 for cooling the plated wire 1a that has passed through the inside of the heat treatment furnace 22 is installed on the downstream side of the heat treatment furnace 22 in the traveling direction. The downstream end of the heat treatment furnace 22 and the cooling water tank 23 are connected to each other by a connecting pipe 24 that guides the plated wire 1a led out from the heat treatment furnace 22 to the cooling water tank 23 so as not to touch the air.
 洗浄手段30としての酸洗浄槽31は、被メッキ線1aの表面を酸洗浄するリン酸系洗浄液32を貯溜している。 The acid cleaning tank 31 as the cleaning means 30 stores a phosphoric acid-based cleaning liquid 32 that acid-cleans the surface of the plated wire 1a.
 洗浄手段30としての超音波水洗浄槽41では、被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を、別途備えた超音波水洗浄機を用いて洗浄するための水43を貯留している。超音波水洗浄槽41の底面には、被メッキ線1aの走行方向に沿って超音波水洗浄機42の一部を構成する超音波振動板42aを配置している。なお、超音波水洗浄槽41の上方には、被メッキ線1aの走行する軌道上の側方から被メッキ線1aに向けてエアを吹き付けるエアワイパ45を設置している。 In the ultrasonic water cleaning tank 41 as the cleaning means 30, water 43 for cleaning the water-soluble lubricant and other impurities adhering to the surface of the wire to be plated 1a using an ultrasonic water cleaning machine separately provided. Reserved. On the bottom surface of the ultrasonic water cleaning tank 41, an ultrasonic vibration plate 42a constituting a part of the ultrasonic water cleaning machine 42 is disposed along the traveling direction of the wire to be plated 1a. Note that an air wiper 45 is provided above the ultrasonic water cleaning tank 41 to blow air from the side on the track on which the wire to be plated 1a travels toward the wire to be plated 1a.
 前記軟化焼鈍炉51は、図2に示すように、走行方向の上流側端部よりも下流側端部が徐々に低位置になるよう傾斜配置している。前記軟化焼鈍炉51は、加熱処理炉22と同様に直方体形状で構成した軟化焼鈍炉本体52と、該軟化焼鈍炉本体52を貫通するように配置し、被メッキ線1aの挿入を許容する内径を有するパイプ状の鞘管53と、軟化焼鈍炉本体52の内部を加熱するヒータ54とで構成している。 As shown in FIG. 2, the soft annealing furnace 51 is inclined so that the downstream end is gradually lower than the upstream end in the traveling direction. The softening annealing furnace 51 is arranged so as to penetrate the softening annealing furnace main body 52 configured in a rectangular parallelepiped shape like the heat treatment furnace 22 and the softening annealing furnace main body 52, and allows the insertion of the wire to be plated 1a. And a heater 54 that heats the inside of the softening annealing furnace main body 52.
 鞘管53は、軟化焼鈍炉本体52の内部空間を走行方向に沿って配置され、軟化焼鈍炉本体52の長さ方向(走行方向)の両端部、すなわち、長さ方向の上端部、及び、下端部から突出している。鞘管53における軟化焼鈍炉本体52の上端部から突出した鞘管上側突出部分55の上端には、上端開口部55uを形成している。 The sheath tube 53 is disposed along the traveling direction in the internal space of the soft annealing furnace main body 52, and both ends in the length direction (traveling direction) of the soft annealing furnace main body 52, that is, the upper end in the length direction, and Projects from the lower end. An upper end opening 55u is formed at the upper end of the sheath tube upper projecting portion 55 projecting from the upper end of the softening annealing furnace main body 52 in the sheath tube 53.
 上端開口部55uは、鞘管53の内部へ被メッキ線1aの導入を許容するとともに、後述するが、鞘管53の内部に充填された還元ガスGを排出する。鞘管53における軟化焼鈍炉本体52の下端部から突出した鞘管下側突出部分56の下端には、下端開口部55dを形成している。 The upper end opening 55u allows introduction of the wire to be plated 1a into the sheath tube 53 and discharges the reducing gas G filled in the sheath tube 53, as will be described later. A lower end opening 55 d is formed at the lower end of the sheath pipe lower projecting portion 56 that projects from the lower end of the soft annealing furnace body 52 in the sheath pipe 53.
 下端開口部55dは、被メッキ線1aが鞘管53からの導出することを許容する。鞘管下側突出部分56は、連結管55に直列に連結されている。さらに、鞘管下側突出部分56の途中部分には、分岐部分を構成し、該分岐部分を鞘管53の内部に還元ガスGを供給する還元ガス供給部57として構成している。 The lower end opening 55d allows the wire 1a to be plated out from the sheath tube 53. The casing tube lower protruding portion 56 is connected to the connecting tube 55 in series. Further, a branch portion is formed in the middle portion of the sheath tube lower projecting portion 56, and the branch portion is configured as a reducing gas supply portion 57 that supplies the reducing gas G to the inside of the sheath tube 53.
 なお、還元ガス供給部57には、図示しないが、圧力調節バルブ、圧力計などを備え、還元ガス供給部57では、前記軟化焼鈍炉51の内部の還元ガスGの濃度に応じて還元ガスGの流入量を調節可能としている。 Although not shown, the reducing gas supply unit 57 includes a pressure control valve, a pressure gauge, and the like. The reducing gas supply unit 57 reduces the reducing gas G according to the concentration of the reducing gas G inside the softening annealing furnace 51. The amount of inflow can be adjusted.
 鞘管53の内部は、還元ガス供給部57から還元ガスGを流入することで内部を還元ガス雰囲気としている。 The inside of the sheath tube 53 is made a reducing gas atmosphere by flowing the reducing gas G from the reducing gas supply unit 57.
 ヒータ54は、直線の棒状に構成したものを複数本備え、軟化焼鈍炉本体52の内部空間において鞘管53を隔てて対向するように、鞘管53に対して上方側空間と下方側空間に配置している。ヒータ54は、被メッキ線1aの走行方向に対して直交方向、詳しくは、図2の紙面を正面視したとき図2の紙面に対して垂直な方向に相当する方向に設置し、複数本のヒータ54は、上方側空間と下方側空間とのそれぞれにおいて、走行方向に沿って所定間隔ごとに並列配置している。 The heater 54 includes a plurality of linear rods, and is arranged in an upper space and a lower space with respect to the sheath tube 53 so as to face each other with the sheath tube 53 in the internal space of the soft annealing furnace body 52. It is arranged. The heater 54 is installed in a direction orthogonal to the traveling direction of the wire to be plated 1a, specifically, in a direction corresponding to a direction perpendicular to the paper surface of FIG. 2 when the paper surface of FIG. The heaters 54 are arranged in parallel at predetermined intervals along the traveling direction in each of the upper space and the lower space.
 軟化焼鈍炉51の内部は、ヒータ54により、800℃またはそれ以上の温度設定に設定している。 The inside of the soft annealing furnace 51 is set to a temperature setting of 800 ° C. or higher by the heater 54.
 鞘管下側突出部分56を、連結管55に直列に連結することによって、軟化焼鈍炉51を通過した被メッキ線1aが、溶融半田メッキ液63中に浸入するまで空気に触れないように走行させることができる。 The sheathed pipe lower projecting portion 56 is connected in series with the connecting pipe 55 so that the wire to be plated 1a that has passed through the softening annealing furnace 51 does not touch the air until it enters the molten solder plating solution 63. Can be made.
 メッキ手段61は、溶融半田メッキ液63が貯溜された溶融半田メッキ槽62で構成し、溶融半田メッキ液63は、260℃の設定温度とし、溶融錫(Sn-3.0Ag-0.5Cu)を用いている。 The plating means 61 is constituted by a molten solder plating tank 62 in which a molten solder plating solution 63 is stored. The molten solder plating solution 63 is set at a set temperature of 260 ° C., and molten tin (Sn-3.0Ag-0.5Cu). Is used.
 溶融半田メッキ槽62の内部には、表面に溶融半田メッキ液63が付着したメッキ線1bの走行方向を鉛直上方へ方向転換する槽中方向転換ローラ64を配置している。 Inside the molten solder plating tank 62, a tank middle direction changing roller 64 is disposed that changes the traveling direction of the plated wire 1b with the molten solder plating solution 63 attached to the surface vertically upward.
 さらに、槽中方向転換ローラ64の鉛直上方には、メッキ線1bを鉛直上方への走行方向から巻取り手段71に向かう方向へ転換する槽上方向転換ローラ65を備えている。 Furthermore, a tank upper direction changing roller 65 for changing the plating wire 1b from a traveling direction vertically upward to a direction toward the winding means 71 is provided vertically above the tank direction changing roller 64.
 槽中方向転換ローラ64、及び、槽上方向転換ローラ65は、通常のφ20mm程度のローラよりも大径である例えば、φ100mm程度のローラで構成している。さらに、槽中方向転換ローラ64、及び、槽上方向転換ローラ65は、それぞれに備えた図示しない駆動モータによって、巻取り手段71に備えた後述するダンサーローラ74やボビン76の回転速度と略同じ回転速度で自ら積極的に能動回転し、巻取り手段71による巻取り速度と同調するように、メッキ線1bの方向転換を行う。 The tank middle direction changing roller 64 and the tank upper direction changing roller 65 are composed of, for example, a roller having a diameter of about 100 mm, which is larger than a normal roller having a diameter of about 20 mm. Further, the tank middle direction changing roller 64 and the tank upper direction changing roller 65 are substantially the same as the rotational speeds of dancer rollers 74 and bobbins 76, which will be described later, provided in the winding means 71 by drive motors not shown. The direction of the plated wire 1b is changed so as to actively rotate by itself at the rotational speed and to synchronize with the winding speed by the winding means 71.
 続いて巻取り手段71について説明する。 
 巻取り手段71は、巻取り張力調節機72、及び、ボビントラバース方式巻取り機75で構成している。
Next, the winding means 71 will be described.
The winding means 71 includes a winding tension adjusting machine 72 and a bobbin traverse type winding machine 75.
 巻取り張力調節機72は、固定ローラ73に掛け渡したメッキ線1bに加わる張力に応じて上下方向に可動させて張力の具合を調節するダンサーローラ74を備えている。さらに図示しないが、掛け渡したメッキ線1bの張力を検出する張力検出センサと、該張力検出センサが検出した張力に応じて張力が安定するように制御する制御部と、制御部の指令に基づいてダンサーローラ74を可動させるローラ可動機とで構成している。 The winding tension adjuster 72 is provided with a dancer roller 74 that is movable in the vertical direction according to the tension applied to the plated wire 1b that is stretched over the fixed roller 73 to adjust the tension. Although not shown, based on a tension detection sensor that detects the tension of the plated wire 1b that has been passed, a control unit that controls the tension to be stable according to the tension detected by the tension detection sensor, and a command from the control unit And a roller moving machine for moving the dancer roller 74.
 ボビントラバース方式巻取り機75は、図3(a)に示すように、メッキ線1bの幅に対して幅広に構成したボビン76と、該ボビン76の軸方向に沿って該ボビン76を揺動させるモータ77、及び、モータ77の駆動を伝達するボールネジなどの伝達手段78で構成している。さらに、ボビントラバース方式巻取り機75は、ボビン76による巻取り力を検出する巻取り力検出センサ79と、該巻取り張力検出センサ79で検出した巻取り力に応じて該張力が安定するように制御する制御部81と、制御部81の指令に基づいてボビン76を回転させるモータ82とで構成している。 As shown in FIG. 3A, the bobbin traverse type winder 75 swings the bobbin 76 along the axial direction of the bobbin 76 and the bobbin 76 configured to be wider than the width of the plating wire 1b. Motor 77 to be transmitted, and a transmission means 78 such as a ball screw for transmitting the drive of the motor 77. Further, the bobbin traverse type winding machine 75 has a winding force detection sensor 79 for detecting the winding force by the bobbin 76, and the tension is stabilized according to the winding force detected by the winding tension detection sensor 79. And a motor 82 that rotates the bobbin 76 based on a command from the controller 81.
 このように構成した半田メッキ線の製造装置10は、メッキ前処理手段2としてのサプライヤ12、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51と、メッキ手段61としての溶融半田メッキ槽62と、巻取り手段71とのそれぞれを、被メッキ線1a、及び、メッキ線1bの走行方向の上流側からこの順にタンデムで一連配置している。 The solder plating wire manufacturing apparatus 10 thus configured includes a supplier 12 as a plating pretreatment means 2, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, a softening annealing furnace 51, a plating Each of the molten solder plating tank 62 as the means 61 and the winding means 71 are arranged in tandem in this order from the upstream side in the traveling direction of the plated wire 1a and the plated wire 1b.
 さらに、半田メッキ線の製造装置10は、メッキを施す前に被メッキ線1aの0.2%耐力値を低下させ、その後、この低耐力化した被メッキ線1aにメッキを施し、これら工程を行う間、該メッキ線1bの耐力よりも低い巻取り力で前記巻取り手段71により巻取る構成としている。 Further, the solder plated wire manufacturing apparatus 10 lowers the 0.2% proof stress value of the wire 1a to be plated before plating, and thereafter performs plating on the wire 1a having the reduced proof stress. While performing, it is set as the structure wound up by the said winding means 71 with the winding force lower than the yield strength of this plated wire 1b.
 具体的には、巻取り手段71として上述した巻取り張力調節機72、及び、ボビントラバース方式巻取り機75を採用するとともに、巻取り手段71の巻取りを補助する第1送りキャプスタン91と第2送りキャプスタン92とを設置している。第1送りキャプスタン91と第2送りキャプスタン92とは、いずれも低耐力化する前の被メッキ線1aの走行を送り補助するように軟化焼鈍炉51の上流側に設置している。 Specifically, the above-described winding tension adjusting machine 72 and the bobbin traverse type winding machine 75 are adopted as the winding means 71, and the first feed capstan 91 assisting the winding of the winding means 71; A second feed capstan 92 is installed. Both the first feed capstan 91 and the second feed capstan 92 are installed on the upstream side of the soft annealing furnace 51 so as to feed and assist the traveling of the to-be-plated wire 1a before the reduction in yield strength.
 詳しくは、第1送りキャプスタン91は、加熱処理炉22と酸洗浄槽31との間に備えるとともに、第2送りキャプスタン92は、超音波水洗浄槽41と軟化焼鈍炉51との間に備えている。 Specifically, the first feed capstan 91 is provided between the heat treatment furnace 22 and the acid cleaning tank 31, and the second feed capstan 92 is provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51. I have.
 なお、メッキ線1bの巻取り速度が遅すぎたり、速すぎたりするとメッキ線1bにかかる負荷が大きくなる。特に、巻取り速度が速すぎると、線ブレという問題も生じることになるため、第1送りキャプスタン91、及び、第2送りキャプスタン92では、巻取り手段71での巻き取り速度よりも僅かに速い速度、例えば、巻き取り速度に対して+1m/min程度速い送り速度で被メッキ線1a及びメッキ線1bを下流側に送り出している。 If the winding speed of the plated wire 1b is too slow or too fast, the load applied to the plated wire 1b increases. In particular, if the winding speed is too high, a problem of line blurring also occurs. Therefore, the first feed capstan 91 and the second feed capstan 92 are slightly lower than the winding speed of the winding means 71. The to-be-plated wire 1a and the plated wire 1b are sent out to the downstream side at a very high speed, for example, a feed speed that is about +1 m / min faster than the winding speed.
 また、巻取り手段71には、上述した巻取り張力調節機72、及び、ボビントラバース方式巻取り機75の近傍においてメッキ線1bを架け渡す複数の固定ローラ73を適宜、備えている。 Further, the winding means 71 is appropriately provided with a plurality of fixed rollers 73 that bridge the plated wire 1b in the vicinity of the above-described winding tension adjusting machine 72 and the bobbin traverse type winding machine 75.
 巻取り手段71に配置した複数の固定ローラ73のうち、最も走行方向上流側に設置した固定ローラ73を巻取り手段上流側配置ローラ73Aに設定する。巻取り手段上流側配置ローラ73Aは、槽上方向転換ローラ65により方向転換後に、巻取り手段71の側へ走行してきたメッキ線1bを巻取り手段71の側で最初に架け渡すローラである。 
 槽上方向転換ローラ65は、巻取り手段上流側配置ローラ73Aよりも高い位置に配置している。
Of the plurality of fixed rollers 73 arranged in the winding means 71, the fixed roller 73 installed on the most upstream side in the running direction is set as the winding means upstream arrangement roller 73A. The winding means upstream arrangement roller 73 </ b> A is a roller that first bridges the plated wire 1 b that has traveled to the winding means 71 side after the direction is changed by the tank upward direction changing roller 65 on the winding means 71 side.
The tank upper direction changing roller 65 is arranged at a position higher than the winding means upstream arrangement roller 73A.
 続いて半田メッキ線の製造方法について説明する。 
 半田メッキ線の製造方法は、被メッキ線1aに対してメッキ前処理を行うメッキ前処理工程と、被メッキ線1aの表面に半田メッキを施すメッキ工程と、表面にメッキを施したメッキ線1bを巻取る巻取り工程とを経て製造される。
Then, the manufacturing method of a solder plating wire is demonstrated.
The solder plating wire manufacturing method includes a pre-plating process for performing plating pre-treatment on the plated wire 1a, a plating process for performing solder plating on the surface of the plated wire 1a, and a plated wire 1b having a plated surface. It is manufactured through a winding process.
 メッキ前処理工程は、加熱処理工程、酸洗浄工程、水洗浄工程、及び、軟化焼鈍工程をこの順で行う工程である。 The plating pretreatment process is a process in which a heat treatment process, an acid washing process, a water washing process, and a softening annealing process are performed in this order.
 加熱処理工程では、蒸気雰囲気とした加熱処理炉22の内部において被メッキ線1aを走行させることで、被メッキ線1aの表面を蒸気洗浄する工程である。この蒸気洗浄により、被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を除去し易いように表面から分離させることができる。 In the heat treatment step, the surface of the wire to be plated 1a is steam-washed by running the wire to be plated 1a inside the heat treatment furnace 22 in a steam atmosphere. By this steam cleaning, the water-soluble lubricant and other impurities adhering to the surface of the wire to be plated 1a can be separated from the surface so as to be easily removed.
 加熱処理工程では、加熱処理炉22内での焼鈍温度を、一般の650℃程度の焼鈍温度よりも低い200℃に設定し、この低い温度に設定した加熱処理炉22内を蒸気雰囲気とし、被メッキ線1aを走行させて、被メッキ線1aに対して水蒸気洗浄を行う。 In the heat treatment step, the annealing temperature in the heat treatment furnace 22 is set to 200 ° C., which is lower than the general annealing temperature of about 650 ° C., the inside of the heat treatment furnace 22 set at this low temperature is made a steam atmosphere, The plating wire 1a is made to travel, and water vapor cleaning is performed on the wire to be plated 1a.
 加熱処理工程では、上述したように、被メッキ線1aに対して水蒸気洗浄を行うことに加えて、被メッキ線1aを焼鈍することにより低耐力化させることも行っている。但し、加熱処理工程では、焼鈍温度を例えば、200℃などの低温に設定することで、被メッキ線1aを低耐力化する度合いを抑制している。 In the heat treatment process, as described above, in addition to performing steam cleaning on the wire to be plated 1a, the wire to be plated 1a is annealed to reduce the yield strength. However, in the heat treatment process, by setting the annealing temperature to a low temperature such as 200 ° C., for example, the degree of lowering the yield strength of the plated wire 1a is suppressed.
 また、加熱処理炉22を通過後の被メッキ線1aは、連結管24を通過後に冷却水槽23の内部に貯溜した冷却水を走行することにより、所定の温度まで冷却される。 Moreover, the to-be-plated wire 1a after passing through the heat treatment furnace 22 is cooled to a predetermined temperature by running the cooling water stored in the cooling water tank 23 after passing through the connecting pipe 24.
 酸洗浄工程では、酸洗浄槽31に貯留したリン酸系の洗浄液32中を走行させることでこの中を走行した被メッキ線1aの表面の酸洗浄を行う。 In the acid cleaning step, the surface of the to-be-plated wire 1a that has traveled through the phosphoric acid-based cleaning liquid 32 stored in the acid cleaning tank 31 is cleaned.
 水洗浄工程では、超音波水洗浄槽41において被メッキ線1aの表面を超音波水洗浄し、該被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を除去する。 In the water washing step, the surface of the wire to be plated 1a is ultrasonically washed in the ultrasonic water washing tank 41 to remove the water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1a.
 軟化焼鈍工程では、内部を還元ガス雰囲気とした軟化焼鈍炉51の内部に被メッキ線1aを走行させることで該被メッキ線1aを軟化焼鈍して低耐力化するとともに、被メッキ線1aの表面の酸化層を還元する工程である。 In the softening annealing step, the wire to be plated 1a is run inside the softening annealing furnace 51 in which the inside is a reducing gas atmosphere, thereby softening and annealing the wire 1a to be plated and reducing the strength, and the surface of the wire 1a to be plated. This is a step of reducing the oxide layer.
 詳しくは、図2に示すように、軟化焼鈍工程では、走行方向の上流側よりも下流側が低位置になるように傾斜配置した軟化焼鈍炉51の鞘管53の内部に、鞘管下側突出部分56に設けた還元ガス供給部57から還元ガスGとして、例えば、窒素ガスに水素ガスを混合した混合ガスを供給し、鞘管53の内部を還元性ガス雰囲気としておく。さらに、ヒータ54によって、軟化焼鈍炉本体52の内部空間を約800℃にまで加熱している。 Specifically, as shown in FIG. 2, in the softening annealing step, the bottom of the sheath pipe projects into the inside of the sheath pipe 53 of the softening annealing furnace 51 that is inclined so that the downstream side is lower than the upstream side in the traveling direction. As the reducing gas G, for example, a mixed gas obtained by mixing hydrogen gas with nitrogen gas is supplied from the reducing gas supply unit 57 provided in the portion 56, and the inside of the sheath tube 53 is set as a reducing gas atmosphere. Further, the heater 54 heats the internal space of the soft annealing furnace main body 52 to about 800 ° C.
 このような還元ガス雰囲気とした鞘管53の内部において、上端開口部55uから導入した被メッキ線1aを、還元ガスGが上昇してくる方向d1と逆方向である下方向Dへ向けて走行させている(図2中の一部拡大図に示した矢印d1、矢印D参照)。 Inside the sheath tube 53 having such a reducing gas atmosphere, the wire to be plated 1a introduced from the upper end opening 55u travels in a downward direction D that is opposite to the direction d1 in which the reducing gas G rises. (See arrows d1 and D shown in the partially enlarged view in FIG. 2).
 続くメッキ工程では、被メッキ線1aが、溶融半田メッキ槽62に貯溜された溶融半田メッキ液63中を走行することで、被メッキ線1aの表面に溶融錫を付着させる。 In the subsequent plating process, the to-be-plated wire 1a travels in the molten solder plating solution 63 stored in the molten solder plating tank 62, thereby adhering molten tin to the surface of the to-be-plated wire 1a.
 軟化焼鈍炉51の下端開口部55dから導出された被メッキ線1aは、連結管55の内部を走行することで空気に接触することがなく溶融半田メッキ液63中に浸入するまで案内される。 The to-be-plated wire 1a led out from the lower end opening 55d of the softening annealing furnace 51 is guided until it enters the molten solder plating solution 63 without being in contact with air by traveling inside the connecting pipe 55.
 溶融半田メッキ液63に浸入した被メッキ線1aは、表面に溶融半田メッキ液63が付着し、表面全体が溶融半田メッキ液63で被覆されたメッキ線1bとなる。メッキ線1bは、溶融半田メッキ槽62の内部を走行する過程で溶融半田メッキ槽62中に備えた槽中方向転換ローラ64により、溶融半田メッキ槽62を走行する過程で鉛直上方に方向転換され、溶融半田メッキ槽62から鉛直上方に向けて導出される。 The to-be-plated wire 1 a that has entered the molten solder plating solution 63 becomes a plated wire 1 b in which the molten solder plating solution 63 adheres to the surface and the entire surface is coated with the molten solder plating solution 63. The plating wire 1b is redirected vertically upward in the process of running through the molten solder plating tank 62 by the tank direction changing roller 64 provided in the molten solder plating tank 62 in the process of running inside the molten solder plating tank 62. Then, it is led out vertically from the molten solder plating tank 62.
 メッキ線1bは、溶融半田メッキ槽62から導出された後、槽上方向転換ローラ65により方向転換され、巻取り手段71側へ走行する。 After the plated wire 1b is led out from the molten solder plating tank 62, the direction is changed by the tank upward direction changing roller 65 and travels to the winding means 71 side.
 巻取り工程では、被メッキ線1aに対して上述したメッキ前工程及びメッキ工程を行っている間、これら工程を経たメッキ線1bを、巻取り張力調節機72のダンサーローラ74の制御によりメッキ線1bの張力の調節を行いながらボビントラバース方式巻取り機75に備えたボビン76に整列巻きしていく。 In the winding process, while the pre-plating process and the plating process described above are performed on the wire to be plated 1 a, the plated wire 1 b that has undergone these processes is plated by controlling the dancer roller 74 of the winding tension adjuster 72. While adjusting the tension of 1b, the bobbin traverse type winder 75 is aligned and wound around the bobbin 76.
 詳しくは、図3(a),(b)に示すように、ボビントラバース方式巻取り機75のボビン76を軸回りに回転させながら該ボビン76の軸方向へ揺動させることでメッキ線1bを、ボビン76の軸方向に沿って並列巻きすることができ、複数層に重なり合うようにして巻取ることができる。 Specifically, as shown in FIGS. 3A and 3B, the bobbin 76 of the bobbin traverse type winding machine 75 is swung in the axial direction of the bobbin 76 while rotating the bobbin 76 about the axis, thereby causing the plating wire 1b to move. The bobbin 76 can be wound in parallel along the axial direction of the bobbin 76 and can be wound so as to overlap a plurality of layers.
 上述した半田メッキ線の製造装置10および製造方法は、以下のように様々な作用、効果を得ることができる。 
 半田メッキ線の製造装置10は、メッキ前処理手段2としてのサプライヤ12、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51と、メッキ手段61としての溶融半田メッキ槽62と、巻取り手段71を、それぞれメッキ線1bの走行方向の上流側から下流側へこの順に一連配置している。
The solder plated wire manufacturing apparatus 10 and the manufacturing method described above can obtain various actions and effects as follows.
The solder plating wire manufacturing apparatus 10 includes a supplier 12 as a plating pretreatment means 2, a heat treatment furnace 22, an acid cleaning tank 31, an ultrasonic water cleaning tank 41, a softening annealing furnace 51, and a melting as a plating means 61. The solder plating tank 62 and the winding means 71 are sequentially arranged in this order from the upstream side to the downstream side in the traveling direction of the plated wire 1b.
 このように各手段を一連配置することで、製造中に低耐力化したメッキ線1bが無駄な距離を走行させることを防ぐことができ、走行中にメッキ線1bにかかる負荷を低減させることができる。 By arranging each means in series in this way, it is possible to prevent the plated wire 1b, whose strength has been reduced during manufacturing, from traveling a useless distance, and to reduce the load applied to the plated wire 1b during traveling. it can.
 従って、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、このようなメッキ線1bを安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。 Therefore, it is possible to obtain a desired quality plated wire 1b with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire 1b, the product yield can be improved, Moreover, manufacturing efficiency can be improved.
 さらにまた、半田メッキ線の製造方法では、メッキ前処理工程としての加熱処理工程、酸洗浄工程、水洗浄工程、及び、軟化焼鈍工程と、メッキ処理工程と、巻取り工程との各工程を連続して行う。 Furthermore, in the method for producing a solder plated wire, the heat treatment process, the acid washing process, the water washing process, the softening annealing process, the plating process, and the winding process as the plating pretreatment process are continuously performed. And do it.
 このように各工程を連続して行うことで、例えば、所定の工程を経る度にメッキ線1b(被メッキ線1a)の走行を中断し、次の工程を行うために別の走行ラインにメッキ線1b(被メッキ線1a)を移行するといった手間を要しないため、メッキ線1bにかかる負荷を大幅に緩和でき、所望の品質のメッキ線1bを安定して得ることができる。 By continuously performing each step in this manner, for example, the traveling of the plated wire 1b (wire to be plated 1a) is interrupted every time a predetermined step is performed, and plating is performed on another traveling line to perform the next step. Since there is no need to move the wire 1b (the wire to be plated 1a), the load applied to the plated wire 1b can be remarkably reduced, and a plated wire 1b having a desired quality can be stably obtained.
 従って、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、このようなメッキ線1bを安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。 Therefore, it is possible to obtain a desired quality plated wire 1b with a sufficiently reduced 0.2% proof stress value, and by stably obtaining such a plated wire 1b, the product yield can be improved, Moreover, manufacturing efficiency can be improved.
 さらに、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを、効率よく製造できるため、太陽電池用のリード線として好適な低耐力化したメッキ線1bの大量生産を図ることができる。 Furthermore, since the plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress value can be efficiently produced, mass production of the low-proof proof plated wire 1b suitable as a lead wire for a solar cell is aimed at. be able to.
 また、半田メッキ線の製造装置10は、前記軟化焼鈍炉51を、走行方向の上流側よりも下流側が低位置になるように傾斜配置し、前記軟化焼鈍炉51における走行方向の下流側に、被メッキ線1aが内部に挿入された状態での走行を許容する鞘管53に対して還元ガスGの供給を許容する還元ガス供給部57を設けた構成である。 In addition, the solder plating wire manufacturing apparatus 10 is arranged so that the soft annealing furnace 51 is inclined so that the downstream side is lower than the upstream side in the traveling direction, and the downstream side in the traveling direction in the soft annealing furnace 51, This is a configuration in which a reducing gas supply unit 57 that allows the supply of the reducing gas G to the sheath tube 53 that allows the traveling with the wire to be plated 1a inserted therein is provided.
 半田メッキ線の製造方法は、軟化焼鈍工程において、軟化焼鈍炉51の内部に、鞘管53の下端側部分(下流側部分)に設けたから還元ガス供給部57を通じて還元ガスGを鞘管53の内部に供給し、還元ガス雰囲気とした鞘管53の内部に被メッキ線1aを走行方向の上流側から下流側に向けて走行させる製造方法である。 In the softening annealing step, the solder plating wire manufacturing method is provided in the softening annealing furnace 51 at the lower end side portion (downstream side portion) of the sheath tube 53, so that the reducing gas G is supplied to the sheath tube 53 through the reducing gas supply unit 57. This is a manufacturing method in which the wire to be plated 1a travels from the upstream side to the downstream side in the traveling direction inside the sheath tube 53 that is supplied to the inside and has a reducing gas atmosphere.
 上述した半田メッキ線の製造装置10および製造方法により、図2に示すように、還元ガス雰囲気とした鞘管53の内部において還元ガスGが上昇してくる方向d1と逆方向である下方向Dへ向けて被メッキ線1aを走行させることができる。 As shown in FIG. 2, by the solder plating wire manufacturing apparatus 10 and the manufacturing method described above, the downward direction D, which is opposite to the direction d1 in which the reducing gas G rises inside the sheath tube 53 in the reducing gas atmosphere. The to-be-plated wire 1a can be made to travel toward.
 これにより、鞘管53の内部を走行する被メッキ線1aを、上昇しようとする還元ガスGの雰囲気に積極的に晒すことができるため、被メッキ線1aの表面の酸化層の還元および被メッキ線1aの低耐力を効率的に促進することができる。 Thereby, since the to-be-plated wire 1a running inside the sheath tube 53 can be positively exposed to the atmosphere of the reducing gas G to be raised, the reduction of the oxide layer on the surface of the to-be-plated wire 1a and the to-be-plated The low proof stress of the wire 1a can be promoted efficiently.
 しかも、鞘管53の内部において走行する被メッキ線1aの長さ方向における、より下端側部分(下流側部分)を、還元ガス供給部57を通じて鞘管53の内部に新たに供給された直後の還元ガスGの雰囲気に晒すことができる(図2参照)。 Moreover, immediately after the lower end side portion (downstream side portion) in the length direction of the wire to be plated 1 a traveling inside the sheath tube 53 is newly supplied to the inside of the sheath tube 53 through the reducing gas supply unit 57. It can be exposed to the atmosphere of the reducing gas G (see FIG. 2).
 すなわち、鞘管53の内部では、走行中の被メッキ線1aが還元ガス供給部57に近づく程、被メッキ線1aの低耐力化と表面の酸化層の還元を積極的に促進することができ、被メッキ線1aが還元ガス供給部57を通じて軟化焼鈍炉51から導出するまでの間にヒータ54による加熱の下で確実に被メッキ線1aの低耐力化と表面の酸化層の還元を行うことができる。 That is, in the sheath tube 53, the lower the proof stress of the wire 1a to be plated and the reduction of the oxide layer on the surface can be actively promoted as the traveling wire 1a nears the reducing gas supply unit 57. Before the plated wire 1a is led out from the soft annealing furnace 51 through the reducing gas supply part 57, the yield strength of the plated wire 1a is reliably reduced and the oxide layer on the surface is reduced under heating by the heater 54. Can do.
 また、このように被メッキ線1aの低耐力化と表面の酸化層の還元を確実、且つ、効率的に行うことができるため、軟化焼鈍炉51の内部を走行する被メッキ線1aの走行距離の短縮化を図ることができるとともに、被メッキ線1aの走行速度の向上を図ることもできる。 Further, since the low yield strength of the wire to be plated 1a and the reduction of the oxide layer on the surface can be reliably and efficiently performed, the travel distance of the wire to be plated 1a that travels inside the softening annealing furnace 51. Can be shortened, and the traveling speed of the plated wire 1a can be improved.
 さらに、メッキ前処理工程において、このように被メッキ線1aの低耐力化と表面の酸化層の除去とを、軟化焼鈍炉51を用いて軟化焼鈍工程で同時に行うことで被メッキ線1aの表面に有する酸化膜を還元する還元工程と、被メッキ線1aの軟化焼鈍を行う軟化焼鈍工程とを別々の工程で直列に行う場合と比較して被メッキ線1aの走行距離の短縮化を図ることができる。 Further, in the pre-plating process, the surface of the wire to be plated 1a is reduced by simultaneously reducing the yield strength of the wire to be plated 1a and removing the oxide layer on the surface by using the softening annealing furnace 51 in the softening annealing step. Reducing the travel distance of the wire to be plated 1a compared with the case where the reduction step of reducing the oxide film included in the wire and the softening annealing step of softening and annealing the wire to be plated 1a are performed in series in separate steps. Can do.
 従って、低耐力化した被メッキ線1aにかかる負荷を低減することができ、高品質な半田メッキ線1bを製造することができる。  Therefore, it is possible to reduce the load applied to the to-be-plated wire 1a having reduced strength, and to manufacture a high-quality solder-plated wire 1b. *
 また、軟化焼鈍工程の前に行う加熱処理工程において、加熱処理炉22では、被メッキ線1aの表面に付着した付着物を加熱により除去することができる。例えば、付着物が油などの液状付着物である場合には、気化することができる。このように固形状、液状といった付着物の性状に関わらず、被メッキ線1aの表面から付着物を除去することができる。 Further, in the heat treatment step performed before the softening annealing step, the heat treatment furnace 22 can remove deposits attached to the surface of the wire to be plated 1a by heating. For example, when the deposit is a liquid deposit such as oil, it can be vaporized. Thus, regardless of the nature of the deposit such as solid or liquid, the deposit can be removed from the surface of the wire 1a to be plated.
 特に、加熱処理工程を酸洗浄工程の直前に行うことで、加熱処理工程において被メッキ線1aを加熱しておき、酸洗浄工程において加熱した状態の被メッキ線1aに対して酸洗浄を行うことができるため、酸洗浄効果をより高めることができる。 In particular, by performing the heat treatment step immediately before the acid cleaning step, the wire to be plated 1a is heated in the heat treatment step, and the acid cleaning is performed on the wire to be plated 1a heated in the acid cleaning step. Therefore, the acid cleaning effect can be further enhanced.
 さらに、加熱処理炉22では、加熱温度によっては被メッキ線1aに対しての焼鈍効果も得ることができる。 
 但し、上述した半田メッキ線の製造装置10および製造方法によれば、加熱処理工程において、軟化焼鈍炉51の上流側に配置した加熱処理炉22で0.2%耐力値が所定の値に完全に低下するまで被メッキ線1aに対して軟化焼鈍せずに、軽度の軟化焼鈍に留めておく。そして、加熱処理工程後の洗浄工程において、被メッキ線1aに対して必要な洗浄を完了しておき、その後、メッキ工程の直前で行う軟化焼鈍工程において0.2%耐力値が所定の値に低下するまで被メッキ線1aに対して軟化焼鈍を行う。
Furthermore, in the heat treatment furnace 22, an annealing effect on the plated wire 1a can be obtained depending on the heating temperature.
However, according to the solder plating wire manufacturing apparatus 10 and the manufacturing method described above, the 0.2% proof stress value is completely set to a predetermined value in the heat treatment furnace 22 arranged on the upstream side of the softening annealing furnace 51 in the heat treatment process. The wire 1a is kept soft and annealed without being softened until the wire 1a is lowered. Then, in the cleaning process after the heat treatment process, the necessary cleaning for the plated wire 1a is completed, and then the 0.2% proof stress value is set to a predetermined value in the softening annealing process performed immediately before the plating process. Softening annealing is performed on the to-be-plated wire 1a until it falls.
 これにより、低耐力化した被メッキ線1aに対して洗浄工程を行う必要がないため、被メッキ線1aにかかる負荷を軽減することができる。 Thereby, since it is not necessary to perform the cleaning process on the plated wire 1a having reduced strength, the load applied to the plated wire 1a can be reduced.
 詳しくは、加熱処理炉22は、通常の加熱処理炉での焼鈍を行う際の設定温度が約650℃であるのに対し、例えば、上述したように約200℃という低温に設定した蒸気雰囲気としている。 Specifically, the heat treatment furnace 22 has a set temperature when annealing in a normal heat treatment furnace is about 650 ° C., for example, as a steam atmosphere set to a low temperature of about 200 ° C. as described above. Yes.
 さらに、軟化焼鈍炉51は、通常の軟化焼鈍炉での温度設定が約530℃であるのに対し、例えば、上述したように約800℃という高温に設定している。 Furthermore, the softening annealing furnace 51 is set to a high temperature of about 800 ° C. as described above, for example, while the temperature setting in a normal softening annealing furnace is about 530 ° C.
 これにより、加熱処理工程においては、被メッキ線1aの低耐力化を抑え、その後の酸洗浄、超音波水洗浄といった洗浄工程の後で行う軟化焼鈍工程において、軟化焼鈍炉51を用いて被メッキ線1aを0.2%耐力値が所定の値に低下するまで低耐力化する。 As a result, in the heat treatment process, the reduction in the yield strength of the wire to be plated 1a is suppressed, and in the softening annealing process performed after the subsequent cleaning process such as acid cleaning and ultrasonic water cleaning, the soft annealing furnace 51 is used for plating. The wire 1a is reduced in proof strength until the 0.2% proof stress value decreases to a predetermined value.
 よって、低耐力化する前の被メッキ線1aに対して酸洗浄、超音波水洗浄を行うことにより、例えば、従来のように、低耐力化した後の被メッキ線1aに対して、これらの工程を行う場合と比較して被メッキ線1aに及ぼす負荷の影響を軽減することができ、その分、メッキ線1bの品質向上を図ることができる。 Therefore, by performing acid cleaning and ultrasonic water cleaning on the to-be-plated wire 1a before the reduction in yield strength, for example, these to the to-be-plated wire 1a after the reduction in yield strength as in the prior art. Compared with the case of performing the process, the influence of the load on the plated wire 1a can be reduced, and the quality of the plated wire 1b can be improved accordingly.
 なお、加熱処理炉22では、内部を蒸気雰囲気としているため、加熱温度によっては被メッキ線1aの軟化焼鈍も可能であるが、蒸気洗浄効果も期待できる。よって、加熱処理炉22において、被メッキ線1aに対して蒸気洗浄するとともに、蒸気により被メッキ線1aの表面に付着した付着物が除去し易いように表層化することができるため、その後で行う酸洗浄工程、及び、水洗浄工程において被メッキ線1aの表面に付着した水溶性潤滑剤やその他の不純物を確実に除去することができる。 In addition, since the inside of the heat treatment furnace 22 has a steam atmosphere, the wire to be plated 1a can be softened and annealed depending on the heating temperature, but a steam cleaning effect can also be expected. Therefore, in the heat treatment furnace 22, steam cleaning is performed on the wire to be plated 1 a, and the surface layer can be formed so as to easily remove the deposits attached to the surface of the wire to be plated 1 a by the steam. The water-soluble lubricant and other impurities attached to the surface of the wire to be plated 1a in the acid cleaning step and the water cleaning step can be reliably removed.
 よって、均一なメッキ厚で被覆した高品質のメッキ線1bを製造することができる。 Therefore, a high-quality plated wire 1b coated with a uniform plating thickness can be manufactured.
 以下、効果確認実験について説明する。 Hereinafter, the effect confirmation experiment will be described.
 (効果確認実験) 
 まず、加熱処理工程、及び、軟化焼鈍工程に関する効果確認実験として行った焼鈍効果確認実験A,Bの2つの実験について説明する。 
 (焼鈍効果確認実験A) 
 焼鈍効果確認実験Aでは、加熱処理温度が100度という低い温度設定の下で加熱処理工程を行い、その後、軟化焼鈍工程において、様々な焼鈍温度の下で軟化焼鈍を行った。この場合において、焼鈍温度の設定と、巻き取り工程後の銅線の低耐力値との関係を明らかにし、この関係をもとに、所望の低耐力値を得るために軟化焼鈍工程において設定すべき焼鈍温度について確認した。
(Effect confirmation experiment)
First, two experiments of annealing effect confirmation experiments A and B performed as an effect confirmation experiment regarding the heat treatment process and the softening annealing process will be described.
(Annealing effect confirmation experiment A)
In the annealing effect confirmation experiment A, the heat treatment process was performed under a low temperature setting of 100 ° C., and then softening annealing was performed under various annealing temperatures in the softening annealing process. In this case, the relationship between the setting of the annealing temperature and the low proof stress value of the copper wire after the winding process is clarified, and based on this relationship, the softening annealing process is set to obtain a desired low proof stress value. The power annealing temperature was confirmed.
 なお、焼鈍効果確認実験Aは、上述した製造装置10を用いて、表1に示す実験条件で行った。 The annealing effect confirmation experiment A was performed under the experimental conditions shown in Table 1 using the manufacturing apparatus 10 described above.
Figure JPOXMLDOC01-appb-T000001
 また、焼鈍効果確認実験Aの結果を、表2、及び、図4に示す。 
Figure JPOXMLDOC01-appb-T000001
Moreover, the result of the annealing effect confirmation experiment A is shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
 ここで、表2は、軟化焼鈍炉51において所定の焼鈍温度ごとの設定の下で被メッキ線に対して焼鈍を行い、巻き取り工程で巻き取り後のメッキ線1bの引張特性の1つである0.2%耐力値を測定した結果を示している。図4は、巻き取り後のメッキ線1bの0.2%耐力値と、軟化焼鈍温度との関係を、表2をもとにグラフ化したものである。
Figure JPOXMLDOC01-appb-T000002
Here, Table 2 shows one of the tensile characteristics of the plated wire 1b after the wire is annealed in the softening annealing furnace 51 under the setting for each predetermined annealing temperature and wound in the winding process. The result of measuring a certain 0.2% proof stress is shown. FIG. 4 is a graph based on Table 2 showing the relationship between the 0.2% proof stress value of the plated wire 1b after winding and the softening annealing temperature.
 表2、及び、図4に示す結果のとおり、加熱処理工程での加熱処理温度が100度という低い温度の下で加熱処理工程を行った場合であって、軟化焼鈍工程での焼鈍温度が例えば、550℃程度の低い温度である場合、被メッキ線1aに対する焼鈍が不十分となり、0.2%耐力値が高い値となる傾向を示す結果となった。 As shown in Table 2 and FIG. 4, the heat treatment temperature in the heat treatment step is a low heat treatment temperature of 100 degrees, and the annealing temperature in the softening annealing step is, for example, When the temperature was as low as about 550 ° C., annealing to the wire to be plated 1a was insufficient, and the 0.2% proof stress value tended to be a high value.
 しかし、加熱処理工程での加熱処理温度が100度という低い温度であっても、軟化焼鈍工程において焼鈍温度が800℃から900℃であれば、巻き取り後のメッキ線1bの0.2%耐力値を55MPa以下という所望の低耐力値に確実に収束できることが確認できた。 However, even if the heat treatment temperature in the heat treatment step is as low as 100 ° C., if the annealing temperature is 800 ° C. to 900 ° C. in the softening annealing step, the 0.2% yield strength of the plated wire 1b after winding is It was confirmed that the value could be reliably converged to a desired low proof stress value of 55 MPa or less.
 (焼鈍効果確認実験B) 
 焼鈍効果確認実験Bでは、様々な加熱処理温度の下で加熱処理工程を行い、加熱処理工程後の被メッキ線1aの0.2%耐力値と加熱処理温度との関係を明らかにするとともに、これら被メッキ線1aに対して、850℃という一定の焼鈍温度の設定の下で軟化焼鈍工程を行い、軟化焼鈍工程後の0.2%耐力値と加熱処理温度との関係を明らかにした。
(Annealing effect confirmation experiment B)
In the annealing effect confirmation experiment B, the heat treatment process is performed under various heat treatment temperatures, and the relationship between the 0.2% proof stress value of the wire to be plated 1a after the heat treatment process and the heat treatment temperature is clarified. A softening annealing process was performed on these wires 1a to be plated under a constant annealing temperature setting of 850 ° C., and the relationship between the 0.2% proof stress value after the softening annealing process and the heat treatment temperature was clarified.
 なお、本効果確認実験Bは、上述した製造装置10を用いて、表3に示す実験条件で行った。 In addition, this effect confirmation experiment B was performed on the experimental conditions shown in Table 3 using the manufacturing apparatus 10 mentioned above.
Figure JPOXMLDOC01-appb-T000003
 焼鈍効果確認実験Bの結果を、表4、及び、図5に示す。 
Figure JPOXMLDOC01-appb-T000003
The results of the annealing effect confirmation experiment B are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000004
 ここで、表4(a)は、加熱処理工程において被メッキ線1aに対して加熱処理を行い、軟化焼鈍工程を行う前における被メッキ線1aの0.2%耐力値を、所定の加熱処理温度の設定ごとに測定した結果を示している。 
 表4(b)は、上述した所定の加熱処理温度の設定ごとに、加熱処理工程を行った各被メッキ線1aに対して、軟化焼鈍工程において焼鈍温度を850度という共通の設定の下で焼鈍を行い、巻取り後の半田メッキ線1bの0.2%耐力値を測定した結果を示している。
Figure JPOXMLDOC01-appb-T000004
Here, Table 4 (a) shows that the 0.2% proof stress value of the wire to be plated 1a before the softening annealing step is performed on the wire to be plated 1a in the heat treatment step. The measurement results are shown for each temperature setting.
Table 4 (b) shows that for each setting of the predetermined heat treatment temperature described above, for each wire 1a subjected to the heat treatment step, the annealing temperature is 850 degrees in the softening annealing step under a common setting. It shows the result of annealing and measuring the 0.2% proof stress value of the solder plated wire 1b after winding.
 図5は、加熱処理炉22を通過後の被メッキ線1aの0.2%耐力値と加熱処理炉温度との関係を、表4(a)に示す結果をもとにプロットするとともに、軟化焼鈍炉を通過後の被メッキ線1aの0.2%耐力値と焼鈍温度との関係を、4(b)に示す結果をもとにプロットしたグラフである。 FIG. 5 plots the relationship between the 0.2% proof stress value of the to-be-plated wire 1a after passing through the heat treatment furnace 22 and the heat treatment furnace temperature based on the results shown in Table 4 (a), and softens it. It is the graph which plotted the relationship between the 0.2% yield strength value of the to-be-plated wire 1a after passing through an annealing furnace, and the annealing temperature based on the result shown in 4 (b).
 表4(a),(b)、及び、図5に示すとおり、加熱処理工程において加熱処理温度が低いと焼鈍効果が少なく、0.2%耐力値が低下しなかった。しかし、その分、軟化焼鈍工程において焼鈍効果が大きくなり、0.2%耐力値を低下させることができた。 
 一方、加熱処理工程において加熱処理温度が高ければ、該加熱処理工程においても十分に焼鈍効果を得ることができ、その分、軟化焼鈍工程での焼鈍効果が小さくなった。
As shown in Tables 4 (a) and 4 (b) and FIG. 5, when the heat treatment temperature was low in the heat treatment step, the annealing effect was small and the 0.2% proof stress value did not decrease. However, the annealing effect increased in the softening annealing process, and the 0.2% proof stress value could be reduced.
On the other hand, if the heat treatment temperature is high in the heat treatment step, a sufficient annealing effect can be obtained also in the heat treatment step, and the annealing effect in the softening annealing step is reduced accordingly.
 すなわち、加熱処理工程における加熱処理温度に関わらず、軟化焼鈍工程での焼鈍温度を850℃という高温に設定することで、略55Mpa以下という低い値まで0.2%耐力値を確実に低下できることを確認できた。 That is, regardless of the heat treatment temperature in the heat treatment step, by setting the annealing temperature in the softening annealing step to a high temperature of 850 ° C., the 0.2% proof stress value can be reliably lowered to a low value of about 55 Mpa or less. It could be confirmed.
 このように、加熱処理工程での加熱処理温度に関わらず、加熱処理工程の後に行う軟化焼鈍工程において焼鈍温度を850℃にすることで、軟化焼鈍工程を行う被メッキ線1aを十分に低耐力化することができるという結果となった。この結果より、逆に、加熱処理工程の側からみれば、加熱処理温度を必ずしも高く設定する必要はなく、目的に応じて任意に設定できるともいえる。 In this way, regardless of the heat treatment temperature in the heat treatment step, by setting the annealing temperature to 850 ° C. in the softening annealing step performed after the heat treatment step, the to-be-plated wire 1a performing the softening annealing step has a sufficiently low yield strength. As a result, On the contrary, from this result, it can be said that it is not always necessary to set the heat treatment temperature high, and it can be arbitrarily set according to the purpose from the heat treatment step side.
 詳しくは、加熱処理工程において、加熱処理温度を例えば、100~300度程度の低温に設定することで、加熱処理炉22での被メッキ線1aの低耐力化を抑制することができる。これにより、加熱処理工程後であって、軟化焼鈍工程前に行う洗浄工程において被メッキ線1aに負荷が加わっても、被メッキ線1aが不測に伸びたり、破断したりしない程度に低耐力化できることが加熱処理工程において可能であることを確認できた。 Specifically, in the heat treatment step, by setting the heat treatment temperature to a low temperature of, for example, about 100 to 300 degrees, it is possible to suppress a reduction in the yield strength of the wire to be plated 1a in the heat treatment furnace 22. Thereby, even if a load is applied to the wire to be plated 1a after the heat treatment step and before the softening annealing step, the yield strength is reduced to such an extent that the wire to be plated 1a does not unexpectedly stretch or break. It was confirmed that it was possible in the heat treatment process.
 加熱処理工程において、加熱処理温度を例えば、100度~300程度に設定した場合にも、加熱処理工程において被メッキ線1aの低耐力化の促進をある程度は図ることができる。 In the heat treatment process, even when the heat treatment temperature is set to about 100 to 300 degrees, for example, it is possible to promote the reduction in the yield strength of the plated wire 1a to some extent in the heat treatment process.
 すなわち、加熱処理工程において、加熱処理温度を例えば、100~300度に設定することで、加熱処理工程を、被メッキ線1aを低耐力化する上での予備焼鈍としての機能を果たすことができ、軟化焼鈍工程において、被メッキ線1aを約55MPa以下というレベルまで十分に低耐力化するために行う本格的な焼鈍に要する焼鈍時間の短縮化を図ることができる。 That is, in the heat treatment step, by setting the heat treatment temperature to, for example, 100 to 300 degrees, the heat treatment step can serve as a pre-annealing for reducing the yield strength of the wire to be plated 1a. In the softening annealing step, it is possible to shorten the annealing time required for full-scale annealing performed for sufficiently reducing the yield strength of the wire to be plated 1a to a level of about 55 MPa or less.
 このため、太陽電池用はんだメッキ線の生産性向上のため、被メッキ線1aの線速を高めた場合にも、軟化焼鈍炉51の長さを長尺に構成するなどの必要もなく、線速の向上の要求にもスムーズに対応することができる。 For this reason, in order to improve the productivity of the solder-plated wire for solar cells, it is not necessary to configure the length of the softening annealing furnace 51 to be long even when the wire speed of the wire to be plated 1a is increased. It can respond smoothly to demands for speed improvements.
 続いて、軟化焼鈍工程において、軟化焼鈍炉51内部に供給する還元ガスGに含有する水素ガスの濃度の違いによる0.2%耐力値の影響を検証する実験として、焼鈍炉水素濃度検証実験Aと焼鈍炉水素濃度検証実験Bの2つの実験を行った。 Subsequently, in the softening annealing step, as an experiment for verifying the influence of the 0.2% proof stress due to the difference in the concentration of hydrogen gas contained in the reducing gas G supplied into the softening annealing furnace 51, the annealing furnace hydrogen concentration verification experiment A And an annealing furnace hydrogen concentration verification experiment B were conducted.
 (焼鈍炉水素濃度検証実験A) 
 焼鈍炉水素濃度検証実験Aでは、本発明例のメッキ線1bと比較例のメッキ線とを供試体として上述した製造工程を経て作成した。 
 本発明例のメッキ線1bと比較例のメッキ線とは、軟化焼鈍工程のみが異なるが、その他の工程は全て同じ工程を経てそれぞれ作成している。
(Annealing furnace hydrogen concentration verification experiment A)
In the annealing furnace hydrogen concentration verification experiment A, the plating wire 1b of the example of the present invention and the plating wire of the comparative example were prepared through the above-described manufacturing steps as test specimens.
The plated wire 1b of the present invention example and the plated wire of the comparative example differ only in the softening annealing process, but all other processes are made through the same process.
 本発明例のメッキ線1b、及び、比較例のメッキ線を作成するために行う軟化焼鈍工程では、いずれも軟化焼鈍炉51の内部を還元性ガス雰囲気としているが、還元ガスGの成分が異なる。 In the softening annealing process performed in order to create the plating wire 1b of the present invention example and the plating wire of the comparative example, the inside of the softening annealing furnace 51 is a reducing gas atmosphere, but the components of the reducing gas G are different. .
 すなわち、比較例のメッキ線を作成する場合における還元ガスGは、窒素ガスのみからなるのに対して、本発明例のメッキ線1bを作成する場合における還元ガスGは、窒素ガスと水素ガスとの混合ガスとしている。 That is, the reducing gas G in the case of producing the plated wire of the comparative example is composed only of nitrogen gas, whereas the reducing gas G in the case of producing the plated wire 1b of the present invention example includes nitrogen gas and hydrogen gas. It is a mixed gas.
 なお、本実験では、本発明例のメッキ線1bと比較例のメッキ線の製造に際して被メッキ線1aとして無酸素銅(OFC)を用い、被メッキ線1aのサイズを0.16×2mmとし、加熱処理炉22の温度設定を200℃とし、第1送りキャプスタン91および第2送りキャプスタン92での各巻き取り線速を+1m/minとして行った。 In this experiment, oxygen-free copper (OFC) was used as the plated wire 1a in the production of the plated wire 1b of the present invention and the plated wire of the comparative example, and the size of the plated wire 1a was 0.16 × 2 mm, The temperature setting of the heat treatment furnace 22 was set to 200 ° C., and the respective winding linear speeds in the first feed capstan 91 and the second feed capstan 92 were set to +1 m / min.
 また、これらメッキ線1bの製造に際して、軟化焼鈍工程の前に被メッキ線1aに対して酸洗浄工程、及び、超音波水洗浄工程を行っている。なお、酸洗浄工程では、リン酸系の洗浄液の設定温度を50℃として行った。メッキ工程では、溶融半田メッキ液63の設定温度を260℃として行い、溶融半田メッキ液63として溶融錫(Sn-3.0Ag-0.5Cu)を用いている。また、巻き取り手段71は、巻き取り張力調節機72を備えずに、ボビントラバース方式巻取り機75により直接巻き取りする構成としている。 Moreover, when manufacturing these plated wires 1b, an acid cleaning step and an ultrasonic water cleaning step are performed on the plated wire 1a before the softening annealing step. In the acid cleaning step, the set temperature of the phosphoric acid-based cleaning liquid was set to 50 ° C. In the plating process, the set temperature of the molten solder plating solution 63 is set to 260 ° C., and molten tin (Sn-3.0Ag-0.5Cu) is used as the molten solder plating solution 63. Further, the winding means 71 does not include the winding tension adjuster 72 but is directly wound by the bobbin traverse type winding machine 75.
 本発明例のメッキ線1bと比較例のメッキ線とは、それぞれ上述した設定の下、メッキ厚が20μm、30μm、40μmの3種類ずつ作成し、それぞれ0.2%耐力値について比較したところ図6に示すグラフのような結果となった。 The plating wire 1b of the present invention example and the plating wire of the comparative example were prepared with three types of plating thicknesses of 20 μm, 30 μm, and 40 μm under the above-described settings, respectively, and compared for 0.2% proof stress value, respectively. The result shown in the graph of FIG.
 図6に示すグラフのように、メッキ厚が20μm、30μm、40μmのいずれの場合においても本発明例のメッキ線1bは、比較例のメッキ線と比較して、0.2%耐力値が低かった。中でもメッキ厚が40μmのとき、本発明例のメッキ線1bは、比較例のメッキ線と比較して0.2%耐力値の低下率が最も高いことが確認できた。 As shown in the graph of FIG. 6, the plated wire 1b of the example of the present invention has a 0.2% proof stress value lower than that of the comparative example regardless of whether the plating thickness is 20 μm, 30 μm, or 40 μm. It was. In particular, when the plating thickness was 40 μm, it was confirmed that the plating wire 1b of the example of the present invention had the highest rate of decrease in the 0.2% proof stress value compared to the plating wire of the comparative example.
 従って、焼鈍工程において、水素ガスを含む還元性ガス雰囲気とした軟化焼鈍炉51の内部に被メッキ線1aを走行させることで、より効率的に被メッキ線1aの低耐力化を促進することを確認できた。 Therefore, in the annealing process, the lowering of the yield strength of the wire to be plated 1a can be promoted more efficiently by running the wire to be plated 1a inside the softening annealing furnace 51 having a reducing gas atmosphere containing hydrogen gas. It could be confirmed.
 (焼鈍炉水素濃度検証実験B) 
 焼鈍炉水素濃度検証実験Bでは、軟化焼鈍炉51の内部に対して還元ガス供給部57から供給する還元ガスGを、少なくとも窒素を含有する水素との混合ガスとし、混合ガスに対して水素ガスが占める体積比率であらわれる混合率の違いによるメッキ線1b(被メッキ線1a)の0.2%耐力値の影響について検証する実験を、上述した製造装置10を用いて表5に示す実験条件の下で行った。 
(Annealing furnace hydrogen concentration verification experiment B)
In the annealing furnace hydrogen concentration verification experiment B, the reducing gas G supplied from the reducing gas supply unit 57 to the inside of the softening annealing furnace 51 is a mixed gas with hydrogen containing at least nitrogen, and hydrogen gas is supplied to the mixed gas. An experiment for verifying the influence of the 0.2% proof stress value of the plated wire 1b (plated wire 1a) due to the difference in the mixing ratio represented by the volume ratio occupied by the Went under.
Figure JPOXMLDOC01-appb-T000005
 焼鈍炉水素濃度検証実験Bの結果を、表6、及び、図7に示す。 
Figure JPOXMLDOC01-appb-T000005
The results of the annealing furnace hydrogen concentration verification experiment B are shown in Table 6 and FIG.
Figure JPOXMLDOC01-appb-T000006
 ここで、表6は、少なくとも窒素ガスからなる還元ガスに対する水素ガスの占める混合比率が0、10、20、30、40、50%のそれぞれの設定の場合において、還元ガスを4.0l/minの流量で軟化焼鈍炉51の内部に供給しながら焼鈍工程を行った場合における巻取り工程後のメッキ線1bの0.2%耐力値を測定した結果を示している。
Figure JPOXMLDOC01-appb-T000006
Here, Table 6 shows that when the mixing ratio of the hydrogen gas to the reducing gas composed of at least nitrogen gas is set to 0, 10, 20, 30, 40, and 50%, the reducing gas is 4.0 l / min. The result of having measured the 0.2% yield strength value of the plating wire 1b after the winding process in the case where the annealing process is performed while supplying the inside of the softening annealing furnace 51 at a flow rate of 3 mm is shown.
 図7は、還元ガスとしての混合ガスに占める水素ガスの混合率と巻取り工程後の半田メッキ線1bの0.2%耐力値との関係を表6をもとにプロットしたグラフである。 FIG. 7 is a graph in which the relationship between the mixing ratio of hydrogen gas in the mixed gas as the reducing gas and the 0.2% proof stress value of the solder plated wire 1b after the winding process is plotted based on Table 6.
 図7、及び、表6に示す結果のとおり、水素ガス混合比率を高めるに従って、0.2%耐力値は、同等、或いは、低くなることを確認できた。このことから、水素ガス混合比率が高い方が、0.2%耐力値は少なくとも低くなる傾向を示すことを確認できた。 As shown in FIG. 7 and the results shown in Table 6, it was confirmed that the 0.2% proof stress value was equal or decreased as the hydrogen gas mixing ratio was increased. From this, it was confirmed that the higher the hydrogen gas mixing ratio, the lower the 0.2% proof stress value tends to decrease.
 よって、水素ガスは、被メッキ線1aの表面の酸化膜を還元するという効果に留まらず、還元ガス中における水素ガスの濃度に応じて、0.2%耐力値を低下するという効果の度合いを高めることができることを確認できた。 Therefore, the hydrogen gas is not limited to the effect of reducing the oxide film on the surface of the wire to be plated 1a, but the degree of the effect of reducing the 0.2% proof stress value according to the concentration of the hydrogen gas in the reducing gas. We were able to confirm that it could be increased.
 そして、還元ガス中における水素ガスの濃度と半田メッキ線1bの0.2%耐力値との図7に示すような関係をもとに、還元ガスに対する水素ガスの濃度を制御することにより、被メッキ線1aが低耐力化される度合いを制御することができるという可能性を見出すことができた。 Then, based on the relationship as shown in FIG. 7 between the concentration of hydrogen gas in the reducing gas and the 0.2% proof stress value of the solder plating wire 1b, the concentration of the hydrogen gas with respect to the reducing gas is controlled. It was possible to find a possibility that the degree to which the proof strength of the plated wire 1a is reduced can be controlled.
 また、本発明の半田メッキ線の製造装置および半田メッキ線の製造方法は、上述した半田メッキ線の製造装置10および半田メッキ線の製造方法の構成に限定せず、様々な構成で構成することができる。 
 例えば、他の実施形態における製造装置10Aには、図8(a),(b)に示すように、超音波水洗浄槽41と軟化焼鈍炉51との間にプレ加熱炉51Pを設けることができる。 
 プレ加熱炉51Pは、図8(b)に示すように、被メッキ線1aの走行時間、及び、走行距離が短い場合においても、被メッキ線1aの温度を急激に高めることに特化して構成している。
The solder plating wire manufacturing apparatus and the solder plating wire manufacturing method of the present invention are not limited to the configurations of the solder plating wire manufacturing apparatus 10 and the solder plating wire manufacturing method described above, and may be configured in various configurations. Can do.
For example, in the manufacturing apparatus 10A according to another embodiment, as shown in FIGS. 8A and 8B, a preheating furnace 51P may be provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51. it can.
As shown in FIG. 8 (b), the preheating furnace 51P is specially configured to rapidly increase the temperature of the wire to be plated 1a even when the travel time and travel distance of the wire to be plated 1a are short. is doing.
 具体的には、プレ加熱炉51Pは、プレ加熱炉本体52Pに鞘管53Lを備えている。該鞘管53Lは、被メッキ線1aの走行方向に沿って直線状に構成した中空管であり、被メッキ線1aがプレ加熱炉51Pと軟化焼鈍炉51とを通過する際に、該被メッキ線1aが空気に触れて酸化しないようにプレ加熱炉本体52Pと軟化焼鈍炉本体52とのそれぞれの内部に連通した配置形態としている。 Specifically, the preheating furnace 51P includes a sheath tube 53L in the preheating furnace main body 52P. The sheath tube 53L is a hollow tube configured linearly along the traveling direction of the wire to be plated 1a, and when the wire to be plated 1a passes through the preheating furnace 51P and the softening annealing furnace 51, It is set as the arrangement | positioning form connected to each inside of the preheating furnace main body 52P and the soft annealing furnace main body 52 so that the plating wire 1a may not be oxidized by touching air.
 プレ加熱炉51Pの内部には、軟化焼鈍炉51と同様に、プレ加熱炉本体52Pの内部に、鞘管53Lの長手方向に沿って複数本のヒータ54Pを備えているが、軟化焼鈍炉51において配置したヒータ54の配置間隔よりも狭ピッチで配置している。なお、ヒータ54Pは、その配置数を軟化焼鈍炉51のヒータ54Pの数よりも増やすことに限らず、電力量(ワット数)を高めるなどしてもよい。 Like the soft annealing furnace 51, the pre heating furnace 51P includes a plurality of heaters 54P along the longitudinal direction of the sheath tube 53L in the pre heating furnace main body 52P. Are arranged at a narrower pitch than the arrangement interval of the heaters 54 arranged in FIG. Note that the number of heaters 54P is not limited to the number of heaters 54P of the soft annealing furnace 51, but the amount of power (wattage) may be increased.
 これにより、線速を速めて被メッキ線1aを走行させても、軟化焼鈍工程の直前にプレ加熱工程として、プレ加熱炉51Pで被メッキ線1aを加熱することができ、加熱した状態の被メッキ線1aを軟化焼鈍炉51に供給することができる。 As a result, even if the wire to be plated 1a is run at an increased wire speed, the wire to be plated 1a can be heated in the preheating furnace 51P as a preheating step immediately before the softening annealing step, The plated wire 1a can be supplied to the softening annealing furnace 51.
 よって、被メッキ線1aの線速の高速化に対応して、軟化焼鈍工程において、被メッキ線1aを確実、且つ、十分に低耐力化した状態とすることができる。 Therefore, in response to the increase in the wire speed of the wire to be plated 1a, the wire to be plated 1a can be surely and sufficiently lowered in strength in the softening annealing process.
 また、鞘管53Lにおける軟化焼鈍炉51とプレ加熱炉51Pとの間部分には、鞘管53Lの長さ方向におけるプレ加熱炉51Pに相当する部分に還元ガスを供給するプレ還元ガス供給部57Pを構成している。 Further, a pre-reducing gas supply portion 57P that supplies a reducing gas to a portion corresponding to the pre-heating furnace 51P in the length direction of the sheath tube 53L is provided in a portion between the softening annealing furnace 51 and the pre-heating furnace 51P in the sheath tube 53L. Is configured.
 上述した還元ガス供給部57では、還元ガスGとして水素と窒素との混合ガスを鞘管53Lに供給し、鞘管53Lの軟化焼鈍炉51に相当する内部空間を混合ガス雰囲気としたが、プレ還元ガス供給部57Pでは、還元ガスGとして窒素ガス、或いは、水蒸気ガス(スチームガス)を、鞘管53Lのプレ加熱炉51Pに相当する内部空間に供給し、該内部空間を窒素ガス雰囲気、或いは、水蒸気ガス雰囲気としている。 In the reducing gas supply unit 57 described above, a mixed gas of hydrogen and nitrogen is supplied as the reducing gas G to the sheath tube 53L, and the internal space corresponding to the softening annealing furnace 51 of the sheath tube 53L is used as a mixed gas atmosphere. In the reducing gas supply unit 57P, nitrogen gas or steam gas (steam gas) is supplied as the reducing gas G to the internal space corresponding to the preheating furnace 51P of the sheath tube 53L, and the internal space is filled with a nitrogen gas atmosphere or A steam gas atmosphere is used.
 これにより、プレ加熱炉51Pを通過する際に被メッキ線1aの表面が酸化することを防ぐことができるとともに、プレ加熱炉51Pでは、還元ガスGとして水素ガスを用いずに、窒素ガス、或いは、水蒸気ガスを用いることで、安全であり、ガスの扱いが容易となる。 As a result, the surface of the wire to be plated 1a can be prevented from oxidizing when passing through the preheating furnace 51P, and in the preheating furnace 51P, nitrogen gas or By using water vapor gas, it is safe and easy to handle the gas.
 詳述すると、被メッキ線1aの走行時の線速が通常設定の4m/minである場合には、表7(a)に示すように、いずれの平角サイズ、温度設定においても、メッキ工程を通過後において、メッキ線1bの0.2%耐力値を45Mpa以下にまで低い値とすることができることを確認できた。 More specifically, when the line speed during traveling of the wire 1a to be plated is the normal setting of 4 m / min, as shown in Table 7 (a), the plating process is performed at any rectangular size and temperature setting. After passing, it was confirmed that the 0.2% proof stress value of the plated wire 1b could be lowered to 45 Mpa or less.
Figure JPOXMLDOC01-appb-T000007
 なお、表7(a)は、サイズが0.2mm×1.0mm、0.16mm×2.0mm、0.2mm×2.0mmの3種類の平角線を被メッキ線1aとして用い、これら被メッキ線1aのそれぞれに対して、線速が4m/minであり、半田温度が240℃、260℃、280℃の3種類のそれぞれに設定の下で、メッキ線1bを作成したときの0.2%耐力値とメッキ厚との値を示す表である。
Figure JPOXMLDOC01-appb-T000007
In Table 7 (a), three types of rectangular wires having a size of 0.2 mm × 1.0 mm, 0.16 mm × 2.0 mm, and 0.2 mm × 2.0 mm are used as the plated wire 1a. For each of the plated wires 1a, the wire speed is 4 m / min, and the soldering temperatures are set to three types of 240 ° C., 260 ° C., and 280 ° C., respectively. It is a table | surface which shows the value of 2% yield strength value and plating thickness.
 これに対して、被メッキ線1aの走行時の線速が高速設定である13m/minである場合には、表7(b)に示すように、いずれの平角サイズ、温度設定においても、メッキ線1bの0.2%耐力値が殆どの設定において50Mpa以上の値となり、線速が4m/minである通常設定の場合と比較して高い値となった。 On the other hand, when the line speed of the to-be-plated wire 1a is 13 m / min, which is a high speed setting, as shown in Table 7 (b), plating is performed at any rectangular size and temperature setting. The 0.2% proof stress value of the wire 1b was 50 Mpa or more in most settings, and was higher than that in the normal setting where the linear velocity was 4 m / min.
 これは、被メッキ線1aの線速を高速設定にすることで、軟化焼鈍炉51において被メッキ線1aを十分に低耐力化するまでに、軟化焼鈍炉51を通過してしまい、十分に低耐力化されないメッキ線1bが作成されるという事態が生じるためである。 This is because the wire speed of the wire to be plated 1a is set to a high speed so that the wire to be plated 1a passes through the softening annealing furnace 51 before the softening annealing furnace 51 has a sufficiently low yield strength. This is because a situation occurs in which a plated wire 1b that is not proof-proof is created.
 なお、表7(b)は、線速を13m/minの高速設定とし、平角サイズ、半田温度を表7(a)と同様の設定の下でメッキ線1bを作成したときの0.2%耐力値とメッキ厚との値を示す表である。 Table 7 (b) shows 0.2% when the wire speed is set to 13 m / min and the flat wire size and the solder temperature are set under the same settings as in Table 7 (a). It is a table | surface which shows the value of a proof stress value and plating thickness.
 すなわち、被メッキ線1aの線速を単純に高速に設定した場合、十分に低耐力化を図ることができず、線速の高速化に対応することができないという問題があった。 That is, when the wire speed of the wire 1a to be plated is simply set to a high speed, there is a problem that the strength cannot be sufficiently lowered and the speed of the wire cannot be increased.
 これに対して、上述した製造装置10Aは、軟化焼鈍炉51と超音波水洗浄槽41との間にプレ加熱炉51Pを設けた構成である。 On the other hand, the manufacturing apparatus 10A described above has a configuration in which a preheating furnace 51P is provided between the softening annealing furnace 51 and the ultrasonic water cleaning tank 41.
 プレ加熱炉51Pにより、被メッキ線1aが軟化焼鈍炉51に供給される直前において、該被メッキ線1aを短時間で加熱して高温にすることができ、その高温化した状態の被メッキ線1aを、軟化焼鈍炉51に供給することができる。 Immediately before the wire to be plated 1a is supplied to the soft annealing furnace 51 by the preheating furnace 51P, the wire to be plated 1a can be heated to a high temperature in a short time, and the wire to be plated in a heated state. 1 a can be supplied to the softening annealing furnace 51.
 よって、線速を前記高速走行速度とし、軟化焼鈍炉51に対して被メッキ線1aを高速に通過させた場合であっても、前記軟化焼鈍工程において、被メッキ線1aを確実に低耐力化することができる。 Therefore, even when the wire speed is set to the high speed and the wire to be plated 1a is passed through the soft annealing furnace 51 at a high speed, the wire 1a is surely reduced in yield strength in the soft annealing step. can do.
 具体的には、上述したように、プレ加熱炉51Pを設置し、プレ加熱工程を行うことにより、線速を13m/minという高速設定にしても、線速が4m/minである通常設定の場合と同程度まで、被メッキ線1aの0.2%耐力値を低下させることができるため、0.2%耐力値が低い高品質のメッキ線1bを優れた生産効率で得ることができる。 Specifically, as described above, by setting the preheating furnace 51P and performing the preheating process, even if the linear speed is set to a high speed of 13 m / min, the normal setting of the linear speed of 4 m / min is set. Since the 0.2% proof stress value of the to-be-plated wire 1a can be reduced to the same extent as the case, a high quality plated wire 1b having a low 0.2% proof stress value can be obtained with excellent production efficiency.
 さらに、被メッキ線1aを線速が13m/minという高速設定で走行させても、軟化焼鈍炉51において被メッキ線1aの表面の酸化層を確実に還元処理することができる。 Furthermore, even if the wire 1a to be plated is run at a high speed of 13 m / min, the oxide layer on the surface of the wire 1a can be reliably reduced in the softening annealing furnace 51.
 軟化焼鈍炉51の上流側近傍に設置したプレ加熱炉51Pは、上述したように、被メッキ線1aの加熱性能に特化した構成とし、内部に、窒素ガス、或いは、水蒸気ガスを供給した安全で扱い易いガス雰囲気としている。このため、軟化焼鈍炉51において軟化焼鈍時間を確保する手段として、例えば、軟化焼鈍炉51を単に、長尺化した構成と比較して、設置スペースやコストが増大することがなく、既存設備を活かした設計変更レベルの簡易な構成の追加によって線速の高速化に対応することができる。 As described above, the preheating furnace 51P installed in the vicinity of the upstream side of the softening annealing furnace 51 has a configuration specialized for the heating performance of the wire to be plated 1a, and is supplied with nitrogen gas or water vapor gas. The gas atmosphere is easy to handle. For this reason, as a means for ensuring the softening annealing time in the softening annealing furnace 51, for example, the installation space and cost are not increased as compared with a configuration in which the softening annealing furnace 51 is simply lengthened. It is possible to cope with higher line speeds by adding a simple configuration at the design change level.
 また、他の実施形態として、加熱処理炉22は必須の構成ではなく、他の実施形態の製造装置として、図9(a)に示すように、走行方向におけるサプライヤ12と酸洗浄槽31との間に加熱処理炉22を設置しない構成としてもよい。さらにまた、加熱処理炉22は、走行方向におけるサプライヤ12と酸洗浄槽31との間に設置するに限らず、軟化焼鈍炉51よりも上流側であれば、他の部位に設置してもよい。 Further, as another embodiment, the heat treatment furnace 22 is not an essential configuration, and as a manufacturing apparatus according to another embodiment, as shown in FIG. It is good also as a structure which does not install the heat processing furnace 22 in between. Furthermore, the heat treatment furnace 22 is not limited to being installed between the supplier 12 and the acid cleaning tank 31 in the traveling direction, and may be installed in other parts as long as it is upstream of the softening annealing furnace 51. .
 例えば、酸洗浄槽31の上流側に加熱処理炉22を設置せずに、上述したプレ加熱炉51Pのみを設置し、プレ加熱炉51Pの内部に供給する還元ガスとして水蒸気ガスを用いた構成としてもよい。 For example, without installing the heat treatment furnace 22 on the upstream side of the acid cleaning tank 31, only the above-described preheating furnace 51P is installed, and steam gas is used as the reducing gas supplied to the inside of the preheating furnace 51P. Also good.
 この構成により、プレ加熱炉51Pでは、上述したように、軟化焼鈍炉51の直前でプレ加熱を行うという機能に加えて、上述した加熱処理炉22により行う機能の双方を兼ね備えることができる。 With this configuration, in the preheating furnace 51P, as described above, in addition to the function of performing preheating immediately before the soft annealing furnace 51, it is possible to have both of the functions performed by the heat treatment furnace 22 described above.
 よって、設備コストの削減を図ることができることは勿論、被メッキ線1aの走行距離の短縮化をより一層、図ることができ、0.2%耐力値が低い高品質のメッキ線1bを生産することができる。 Therefore, not only can the equipment cost be reduced, but also the travel distance of the plated wire 1a can be further shortened, and a high quality plated wire 1b having a low 0.2% proof stress value is produced. be able to.
 なお、上述したように、軟化焼鈍炉51の内部を還元ガス雰囲気としているが、この還元ガスGには、上述したように、窒素ガス、或いは、窒素ガスと水素ガスとの混合ガスに限らず、他の成分を含有してもよい。また、窒素ガスや水素ガス以外の還元ガスで構成してもよい。 As described above, the inside of the softening annealing furnace 51 is a reducing gas atmosphere. However, the reducing gas G is not limited to nitrogen gas or a mixed gas of nitrogen gas and hydrogen gas as described above. Other components may be contained. Moreover, you may comprise by reducing gas other than nitrogen gas and hydrogen gas.
 また、洗浄手段30を軟化焼鈍炉51よりも走行方向の上流側に配置することにより、軟化焼鈍炉51により低耐力化する前の被メッキ線1aに対して洗浄手段30で洗浄することが可能となる。よって、軟化焼鈍炉51により低耐力化した被メッキ線1aに対して洗浄手段30で洗浄する場合と比較して被メッキ線1aに加わる負荷を軽減することができる。 Further, by arranging the cleaning means 30 upstream of the softening annealing furnace 51 in the traveling direction, it is possible to clean the to-be-plated wire 1a before the strength reduction by the softening annealing furnace 51 by the cleaning means 30. It becomes. Therefore, the load applied to the to-be-plated wire 1a can be reduced compared with the case where the to-be-plated wire 1a whose strength is reduced by the soft annealing furnace 51 is cleaned by the cleaning means 30.
 従って、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、特に、太陽電池用はんだメッキ線として好適なメッキ線1bを得ることができる。 Therefore, it is possible to obtain a plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress value, and in particular, it is possible to obtain a plated wire 1b suitable as a solder plated wire for solar cells.
 さらに、このように、軟化焼鈍炉51により低耐力化した被メッキ線1aに対して洗浄手段30で洗浄する場合と比較して被メッキ線1aに加わる負荷を軽減することができるため、被メッキ線1aの走行時に負荷を軽減するために送りキャプスタンの設置数を軽減できることや、線速を必要以上に低下させる必要がない。 Furthermore, since the load applied to the plated wire 1a can be reduced as compared with the case where the washed wire 30 is cleaned with respect to the plated wire 1a whose strength is reduced by the soft annealing furnace 51, the plated material There is no need to reduce the number of feed capstans installed in order to reduce the load during traveling of the line 1a, and it is not necessary to reduce the line speed more than necessary.
 従って、構成面、制御面、さらには条件設定面において、被メッキ線1aに加わる負荷の軽減を図るための対策を簡略化できるため、メッキ線1bの製造効率を向上させることができる。 Therefore, since the measures for reducing the load applied to the wire 1a to be plated can be simplified in the configuration surface, the control surface, and the condition setting surface, the manufacturing efficiency of the plated wire 1b can be improved.
 さらにまた、上述したような配置で洗浄手段30を備えることで、被メッキ線1aの表面に付着した不純物を洗浄手段によって除去し、その下流側に配置したメッキ手段61により、被メッキ線1aの表面に対してメッキ厚が均一である優れた品質の半田メッキ線1bを形成することができる。 Furthermore, by providing the cleaning means 30 in the arrangement as described above, impurities attached to the surface of the wire to be plated 1a are removed by the cleaning means, and the plating means 61 disposed on the downstream side of the wire to be plated 1a. It is possible to form an excellent quality solder plated wire 1b having a uniform plating thickness on the surface.
 また、メッキ前処理手段2には、軟化焼鈍炉51よりも走行方向の上流側に、被メッキ線1aに対して加熱処理を行う加熱処理炉22を備え、加熱処理炉22を洗浄手段30よりも走行方向の上流側に配置することにより、加熱処理炉22で被メッキ線1aに対して加熱処理工程を行った後に洗浄手段30において洗浄することができる。 Further, the plating pretreatment means 2 includes a heat treatment furnace 22 for performing heat treatment on the wire to be plated 1 a on the upstream side in the traveling direction from the softening annealing furnace 51, and the heat treatment furnace 22 is provided by the cleaning means 30. In addition, by arranging it on the upstream side in the traveling direction, the heat treatment furnace 22 can perform the heat treatment process on the wire to be plated 1a and then perform cleaning in the cleaning means 30.
 これにより、加熱処理炉22によって被メッキ線1aの表面に付着した付着物を加熱した際に、付着物が焼け焦げた煤などの残留物が被メッキ線1aの表面に残留した場合であっても、その後に通過する洗浄手段30において残留物を洗浄により確実に除去することができる。 As a result, even when a deposit adhered to the surface of the wire to be plated 1 is heated by the heat treatment furnace 22, even if a residue such as a burnt burnt residue remains on the surface of the wire to be plated 1 a. The residue can be reliably removed by washing in the washing means 30 that passes thereafter.
 さらに、洗浄手段30を、酸洗浄槽31と超音波水洗浄槽41とで構成し、メッキ前処理手段2として、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41、及び、軟化焼鈍炉51を走行方向に沿ってこの順に配置することにより、軟化焼鈍炉51によって低耐力化する前の被メッキ線1aに対して、加熱処理炉22、酸洗浄槽31、及び、超音波水洗浄槽41で行う一連の工程を完了させることができる。 Further, the cleaning means 30 is composed of an acid cleaning tank 31 and an ultrasonic water cleaning tank 41. As the pre-plating processing means 2, the heat treatment furnace 22, the acid cleaning tank 31, the ultrasonic water cleaning tank 41, and the softening By disposing the annealing furnace 51 in this order along the traveling direction, the heat treatment furnace 22, the acid cleaning tank 31, and the ultrasonic water are applied to the wire 1a to be plated before the strength is reduced by the softening annealing furnace 51. A series of steps performed in the cleaning tank 41 can be completed.
 すなわち、このように、加熱処理炉22や洗浄手段30を軟化焼鈍炉51の上流側であるメッキ前処理手段2として配置することで、軟化焼鈍炉51において被メッキ線1aを低耐力化し、被メッキ線1aを低耐力化した直後にメッキ手段61においてメッキ処理工程を施すことができる。 That is, by arranging the heat treatment furnace 22 and the cleaning means 30 as the plating pretreatment means 2 on the upstream side of the softening annealing furnace 51 in this way, the strength of the wire to be plated 1a is reduced in the softening annealing furnace 51, Immediately after reducing the yield strength of the plated wire 1a, the plating means 61 can perform a plating process.
 このため、低耐力化したメッキ線1bに対して極力負荷が加わることを回避することができ、品質に優れたメッキ線1bを得ることができる。 For this reason, it is possible to avoid applying a load as much as possible to the plated wire 1b having reduced strength, and it is possible to obtain a plated wire 1b having excellent quality.
 特に、加熱処理炉22の下流側に酸洗浄槽31を配置することで、加熱処理炉22において被メッキ線1aを加熱し、被メッキ線1aに対して温まった状態のまま酸洗浄槽31において酸洗浄を行うことができ、常温の被メッキ線1aに対して行う場合と比較して酸洗浄効果を格段に向上させることができ、優れた酸洗浄効果を得ることができる。 In particular, by disposing the acid cleaning tank 31 on the downstream side of the heat treatment furnace 22, the wire to be plated 1a is heated in the heat treatment furnace 22, and in the acid cleaning tank 31 while being heated with respect to the wire to be plated 1a. Acid cleaning can be performed, and the acid cleaning effect can be remarkably improved as compared with the case where it is performed on the wire to be plated 1a at room temperature, and an excellent acid cleaning effect can be obtained.
 また、加熱処理炉22と酸洗浄槽31との間には、上述したように、冷却水槽23を設置している。加熱処理炉22を通過した被メッキ線1aは、冷却水槽23により冷却された後で酸洗浄槽31まで走行することになる。 Further, as described above, the cooling water tank 23 is installed between the heat treatment furnace 22 and the acid cleaning tank 31. The wire to be plated 1 a that has passed through the heat treatment furnace 22 travels to the acid cleaning tank 31 after being cooled by the cooling water tank 23.
 このように、加熱処理炉22を通過直後の被メッキ線1aを冷却水槽23により冷却することで、加熱処理炉22によって加熱された状態の被メッキ線1aが、表面温度が高い状態のまま加熱処理炉22と酸洗浄槽31との間を走行する場合のように、再度、被メッキ線1aの表面に酸化膜が形成されることを防ぐことができる。 Thus, by cooling the to-be-plated wire 1a immediately after passing through the heat treatment furnace 22 by the cooling water tank 23, the to-be-plated wire 1a heated by the heat treatment furnace 22 is heated while the surface temperature is high. As in the case of traveling between the processing furnace 22 and the acid cleaning tank 31, it is possible to prevent an oxide film from being formed again on the surface of the wire to be plated 1a.
 但し、冷却水槽23によって、加熱処理炉22によって加熱された被メッキ線1aの表面が常温になるまで冷却するのではなく、冷却水槽23における被メッキ線1aの冷却は、被メッキ線1aの表面温度が少なくとも50度程度にまで留めておくことが好ましい。 However, the cooling water tank 23 does not cool the surface of the wire to be plated 1a heated by the heat treatment furnace 22 until the room temperature reaches room temperature, but the cooling of the wire to be plated 1a in the cooling water tank 23 is not performed on the surface of the wire to be plated 1a. It is preferable to keep the temperature at least about 50 degrees.
 これにより、酸洗浄槽31において、少なくとも50度の表面温度を有する被メッキ線1aに対して酸洗浄を行うことができるため、リン酸系洗浄液32による酸洗浄効果をより発揮することができる。そして、このように効率的に酸洗浄を行うことができるため、被メッキ線1aの走行を高速化した場合でも、確実に酸洗浄効果を得ることができる。 Thereby, since the acid cleaning can be performed on the to-be-plated wire 1a having a surface temperature of at least 50 degrees in the acid cleaning tank 31, the acid cleaning effect by the phosphoric acid-based cleaning liquid 32 can be further exhibited. And since acid cleaning can be performed efficiently in this way, even when the traveling speed of the wire to be plated 1a is increased, an acid cleaning effect can be obtained reliably.
 また、上述した半田メッキ線の製造装置10、及び、半田メッキ線の製造方法によれば、被メッキ線1aには、長さ方向に対して直交する直交断面における幅が0.8~10.0mmの範囲内であり、厚みが0.05~0.5mmの範囲内のサイズである平角銅線を用い、被メッキ線1aの走行速度を、約4.0m/minに設定し、酸洗浄槽31での酸洗浄時間を約12.8秒に設定するとともに、超音波水洗浄槽41での超音波水洗浄時間を約13.5秒に設定することにより、優れた洗浄効果を得ることができる。 Further, according to the solder plating wire manufacturing apparatus 10 and the solder plating wire manufacturing method described above, the wire to be plated 1a has a width in an orthogonal cross section orthogonal to the length direction of 0.8 to 10. Use a rectangular copper wire with a thickness in the range of 0 mm and a thickness in the range of 0.05 to 0.5 mm, set the traveling speed of the wire to be plated 1 a to about 4.0 m / min, and perform acid cleaning. An excellent cleaning effect can be obtained by setting the acid cleaning time in the tank 31 to about 12.8 seconds and setting the ultrasonic water cleaning time in the ultrasonic water cleaning tank 41 to about 13.5 seconds. Can do.
 特に、上述した半田メッキ線の製造装置10、及び、半田メッキ線の製造方法によれば、被メッキ線1aの前記幅が1.0~2.0mmの範囲内であり、厚みが0.16~0.2mmの範囲内のサイズである平角銅線を用いた場合において、上述した被メッキ線1aの走行速度、酸洗浄槽31での酸洗浄時間、及び、超音波水洗浄槽41での超音波水洗浄時間の設定と同様の設定の下で洗浄を行うことで後述する洗浄効果確認実験1の結果からも明らかなとおり、より優れた洗浄効果を得ることができた。 In particular, according to the solder plating wire manufacturing apparatus 10 and the solder plating wire manufacturing method described above, the width of the wire to be plated 1a is in the range of 1.0 to 2.0 mm and the thickness is 0.16. In the case of using a flat copper wire having a size within a range of up to 0.2 mm, the traveling speed of the wire to be plated 1a, the acid cleaning time in the acid cleaning tank 31, and the ultrasonic water cleaning tank 41 By performing cleaning under the same setting as the setting of the ultrasonic water cleaning time, a more excellent cleaning effect could be obtained as is apparent from the results of the cleaning effect confirmation experiment 1 described later.
 次に、洗浄効果確認実験について説明する。 Next, a cleaning effect confirmation experiment will be described.
 (洗浄効果確認実験1) 
 洗浄効果確認実験1では、上述した製造装置、及び製造方法によりメッキ線1bを製造する際において、表8に示すように、本発明例と比較例の2つの設定例の下で被メッキ線1aに対して加熱処理工程、酸洗浄工程、水洗浄工程をこの順で行った場合の洗浄効果の違いについて検証する実験を行った。
(Cleaning effect confirmation experiment 1)
In the cleaning effect confirmation experiment 1, when the plated wire 1b is manufactured by the manufacturing apparatus and the manufacturing method described above, as shown in Table 8, the wire to be plated 1a under the two setting examples of the present invention example and the comparative example. An experiment was conducted to verify the difference in cleaning effect when the heat treatment step, the acid washing step, and the water washing step were performed in this order.
Figure JPOXMLDOC01-appb-T000008
 本発明例では、比較例に対して線速を5分の1に設定している。すなわち、表8に示すように、本発明例では、従来例に対して線速を5分の1に設定することで、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41の各部の通過時間が5倍となるように設定している。
Figure JPOXMLDOC01-appb-T000008
In the present invention example, the linear velocity is set to 1/5 of the comparative example. That is, as shown in Table 8, in the example of the present invention, each part of the heat treatment furnace 22, the acid cleaning tank 31, and the ultrasonic water cleaning tank 41 is set by setting the linear velocity to one fifth that of the conventional example. Is set to be five times longer.
 また、比較例では被メッキ線1aとして直径が0.76mm、0.65mm、0.53mmの3種類のサイズの丸線を用いたのに対して、本発明例では被メッキ線1aとして縦(厚み)と横(幅)の寸法が0.2mm×2.0mm、0.16mm×2.0mm、0.2mm×1.0mmの3種類のサイズの平角線を用いた。 
 なお、洗浄効果確認実験では、被メッキ線1aの形状と線速以外の設定は、本発明例と比較例とで互いに同じ設定としている。
Further, in the comparative example, three types of round wires having diameters of 0.76 mm, 0.65 mm, and 0.53 mm were used as the plated wire 1a, whereas in the present invention example, vertical ( Three types of rectangular wires having thickness (thickness) and lateral (width) dimensions of 0.2 mm × 2.0 mm, 0.16 mm × 2.0 mm, and 0.2 mm × 1.0 mm were used.
In the cleaning effect confirmation experiment, settings other than the shape of the wire to be plated 1a and the linear velocity are set to be the same in the inventive example and the comparative example.
 ここで、本実験で用いる洗浄装置10は、加熱処理工程を行う加熱処理炉22と、酸洗浄工程における酸洗浄槽31と、水洗浄工程における超音波水洗浄槽41とをタンデムで配置した構成であり、加熱処理炉22、酸洗浄槽31、超音波水洗浄槽41を、図10に示すような各部の寸法で構成している。 
 なお、図10は、本実験で用いる洗浄装置、及び、その周辺部分を模式的に示している。
Here, the cleaning apparatus 10 used in this experiment has a configuration in which a heat treatment furnace 22 that performs a heat treatment process, an acid cleaning tank 31 in an acid cleaning process, and an ultrasonic water cleaning tank 41 in a water cleaning process are arranged in tandem. The heat treatment furnace 22, the acid cleaning tank 31, and the ultrasonic water cleaning tank 41 are configured with the dimensions of each part as shown in FIG.
FIG. 10 schematically shows the cleaning apparatus used in this experiment and its peripheral part.
 加熱処理炉22では、洗浄剤としてスチームが用いられ、特に、油汚れ等に対しての洗浄効果が期待できる。酸洗浄槽31では、洗浄剤として酸洗浄液が用いられ、酸化物等に対しての洗浄効果が期待できる。超音波水洗浄槽41では、洗浄剤として水が用いられ、特に酸洗浄工程で被メッキ線1aの表面に残留した酸液等に対しての洗浄効果が期待できる。 
 なお、加熱処理工程では、加熱処理炉22の内部を蒸気雰囲気としているため、加熱処理炉22は、スチーマーとしても機能する。このため、加熱処理工程では、加熱により被メッキ線1aの表面に付着した付着物を加熱除去する効果も期待できるため、加熱処理工程を洗浄工程の一部と見なして本実験対象に含めている。
In the heat treatment furnace 22, steam is used as a cleaning agent, and in particular, a cleaning effect against oil stains can be expected. In the acid cleaning tank 31, an acid cleaning liquid is used as a cleaning agent, and a cleaning effect on oxides and the like can be expected. In the ultrasonic water cleaning tank 41, water is used as a cleaning agent, and a cleaning effect on the acid solution remaining on the surface of the plated wire 1a in the acid cleaning step can be expected.
In the heat treatment step, the inside of the heat treatment furnace 22 is in a steam atmosphere, so that the heat treatment furnace 22 also functions as a steamer. For this reason, in the heat treatment process, since the effect of heating and removing the adhering matter adhering to the surface of the wire to be plated 1a due to heating can be expected, the heat treatment process is regarded as a part of the cleaning process and included in this experiment. .
 洗浄効果確認実験の評価は、本発明例と比較例とのそれぞれにおける水洗浄工程後の被メッキ線1aの表面の状態、及び、巻き取り工程後のメッキ線1bの表面の状態を目視による所定の基準に従って比較、確認することにより行った。 In the evaluation of the cleaning effect confirmation experiment, the surface state of the plated wire 1a after the water cleaning step and the surface state of the plated wire 1b after the winding step in each of the present invention example and the comparative example are visually determined. This was done by comparing and confirming according to the criteria of
 上述した条件の下で行った結果、まず、水洗浄工程後の被メッキ線1aの表面の状態については、本発明例の線速の設定では、比較例の線速の設定の場合と異なり、被メッキ線1aの表面に染みや膜のように広い範囲で付着している油や、離散状、点状に付着している粉塵などの付着物が全く確認できず、被メッキ線1aの表面の清浄化を図ることができることを確認できた。 As a result of performing under the above-mentioned conditions, first, for the surface state of the to-be-plated wire 1a after the water cleaning step, in the setting of the linear speed of the present invention example, unlike the case of the setting of the linear speed of the comparative example, The surface of the to-be-plated wire 1a cannot be confirmed at all, such as oil adhering to the surface of the to-be-plated wire 1a in a wide range such as a stain or a film, and dust or other dust adhering to the surface. It was confirmed that it was possible to purify.
 さらに、最終的に巻取り工程後のメッキ線1bの表面のメッキ状態を目視による所定の基準に従って確認したところ、本発明例の線速の設定では、比較例の線速の設定の場合と異なり、表面に凹凸が確認されず、メッキの厚みをメッキ線の長さ方向、及び、周方向において均一化することを確認できた。 Further, when the plating state of the surface of the plated wire 1b after the winding process is finally confirmed according to a predetermined standard by visual observation, the setting of the linear velocity in the example of the present invention is different from the setting of the linear velocity in the comparative example. As a result, no irregularities were observed on the surface, and it was confirmed that the thickness of the plating was made uniform in the length direction of the plating wire and in the circumferential direction.
 また、このように線速に関して、比較例では、20m/minに設定しているのに対して、本発明例では、比較例の速度設定に対して5分の1の速度の4m/minに設定することで、十分な洗浄効果を得ることができていることから、より優れた洗浄効果を得ることを期待して線速を4m/minよりもさらに低速に設定することも考えられる。 Further, in this way, the linear velocity is set to 20 m / min in the comparative example, whereas in the present invention example, the linear velocity is set to 4 m / min, which is 1/5 of the speed setting of the comparative example. Since a sufficient cleaning effect can be obtained by setting, it is conceivable to set the linear speed to be lower than 4 m / min in the hope of obtaining a more excellent cleaning effect.
 しかし、線速を4m/minよりも低い速度設定の下で同様の実験を試みたが、4m/minの速度設定の際の洗浄効果以上の効果を得ることができず、低速に設定すればする程、洗浄効果を向上できるわけではないことが明らかとなった。 However, a similar experiment was attempted under a linear speed set lower than 4 m / min. However, an effect higher than the cleaning effect when the speed was set at 4 m / min could not be obtained. As a result, it has become clear that the cleaning effect cannot be improved.
 さらに、被メッキ線1aの線速を4m/minよりも低い速度設定とした場合、被メッキ線1aが各工程を通過する通過時間がその分、長くなるため、生産性の低下が懸念されることになる。よって、洗浄工程で洗浄効果が得られるという観点と生産効率の観点から線速は、上述した実験条件の下では、約4m/minに設定することが好ましいという結果を得ることができた。 Furthermore, when the wire speed of the wire to be plated 1a is set to a speed lower than 4 m / min, the passing time for the wire to be plated 1a to pass through each process becomes longer correspondingly, and therefore there is a concern that the productivity is lowered. It will be. Therefore, it was possible to obtain a result that it is preferable to set the linear speed to about 4 m / min from the viewpoint that the cleaning effect is obtained in the cleaning process and the viewpoint of production efficiency.
 (洗浄効果確認実験2) 
 洗浄効果確認実験2では、上述した製造装置10、及び製造方法によりメッキ線1bを製造する際において、本発明例と比較例の2つの設定例の下で被メッキ線1aに対してそれぞれ酸洗浄工程、水洗浄工程を行った場合の洗浄効果の違いについて検証する実験を行った。
(Cleaning effect confirmation experiment 2)
In the cleaning effect confirmation experiment 2, when the plated wire 1b is manufactured by the manufacturing apparatus 10 and the manufacturing method described above, acid cleaning is performed on the wire to be plated 1a under the two setting examples of the present invention and the comparative example. An experiment was conducted to verify the difference in cleaning effect between the process and the water cleaning process.
 比較例では、加熱処理工程を行わずに酸洗浄工程、水洗浄工程をこの順で行う洗浄工程であるのに対して、本発明例では、酸洗浄工程の直前に加熱処理工程を行い、その後、酸洗浄工程、水洗浄工程をこの順で行う洗浄工程である。 In the comparative example, the acid cleaning step and the water cleaning step are performed in this order without performing the heat treatment step, whereas in the present invention example, the heat treatment step is performed immediately before the acid cleaning step, and thereafter In this cleaning step, the acid cleaning step and the water cleaning step are performed in this order.
 洗浄効果確認実験の評価は、本発明例と比較例とのそれぞれにおける水洗浄工程後の被メッキ線1aの表面の状態、及び、巻き取り工程後のメッキ線1bの表面の状態を目視による所定の基準に従って比較し、確認することにより行った。 In the evaluation of the cleaning effect confirmation experiment, the surface state of the plated wire 1a after the water cleaning step and the surface state of the plated wire 1b after the winding step in each of the present invention example and the comparative example are visually determined. This was done by comparing and confirming according to the criteria of
 比較例の設定の下、洗浄工程を行った後の被メッキ線1aを確認したところ、表面に酸化層が残留していた。さらに、メッキ線表面のメッキ状態を確認したところ、メッキ線1bの表面が粗くなっていることを確認できた。 Under the setting of the comparative example, the plated wire 1a after performing the cleaning process was confirmed, and an oxide layer remained on the surface. Furthermore, when the plating state on the surface of the plated wire was confirmed, it was confirmed that the surface of the plated wire 1b was rough.
 これに対して、本発明例の設定の下、洗浄工程を行った後の被メッキ線を確認したところ、表面に油汚れ等の汚れを確認できず、酸化層も残留してなかった。さらに、メッキ線表面のメッキ状態を確認したところ、表面に凹凸がなく、均一なメッキ厚が形成されていることを確認できた。 On the other hand, when the wire to be plated after performing the cleaning process was confirmed under the setting of the example of the present invention, dirt such as oil stains could not be confirmed on the surface, and no oxide layer remained. Furthermore, when the plating state on the surface of the plated wire was confirmed, it was confirmed that there was no unevenness on the surface and a uniform plating thickness was formed.
 以上により、酸洗浄工程の直前に加熱処理工程を行うことで、常温の被メッキ線1aに対して酸洗浄工程を行う場合と比較して酸洗浄効果を格段に向上させることができ、優れた酸洗浄効果を得ることを確認できた。 As described above, by performing the heat treatment step immediately before the acid cleaning step, the acid cleaning effect can be remarkably improved as compared with the case where the acid cleaning step is performed on the plated wire 1a at room temperature. It was confirmed that an acid cleaning effect was obtained.
 上述した半田メッキ線の製造装置10、及び、半田メッキ線の製造方法は、上述した構成、及び、製造方法に限定せず、様々な構成、及び、製造方法で構成することができる。 
 他の実施形態として加熱処理炉22と酸洗浄槽31との間に設置した冷却水槽23は、必須の構成ではなく、図9(b)に示すように、これら加熱処理炉22と酸洗浄槽31との間に冷却水槽23を設置しなくてもよい。
The solder-plated wire manufacturing apparatus 10 and the solder-plated wire manufacturing method described above are not limited to the above-described configuration and manufacturing method, and can be configured in various configurations and manufacturing methods.
As another embodiment, the cooling water tank 23 installed between the heat treatment furnace 22 and the acid cleaning tank 31 is not an essential configuration, and as shown in FIG. 9B, these heat treatment furnace 22 and the acid cleaning tank It is not necessary to install the cooling water tank 23 between them.
 冷却水槽23を設置しない場合、加熱処理炉22によって、表面が加熱された被メッキ線1aを、その表面温度が高い状態のまま酸洗浄槽31において走行させることができるため、より効果的に酸洗浄効果を得ることができる。 When the cooling water tank 23 is not installed, the to-be-plated wire 1a whose surface is heated by the heat treatment furnace 22 can be caused to travel in the acid cleaning tank 31 with its surface temperature being high. A cleaning effect can be obtained.
 また、上述した半田メッキ線の製造装置10、及び、半田メッキ線の製造方法によれば、送りキャプスタン91,92によって、巻取り手段71による巻き取りを、走行方向の上流側で送り補助することにより、巻取り手段71によって被メッキ線1aに加わる巻き取り力を、送りキャプスタン91,92に対して走行方向の上流側と下流側とで分散することができ、巻取り手段71による巻き取りによって被メッキ線1aに加わる負荷を軽減することができる。 Moreover, according to the solder plating wire manufacturing apparatus 10 and the solder plating wire manufacturing method described above, the feeding capstans 91 and 92 assist the feeding by the winding means 71 on the upstream side in the traveling direction. As a result, the winding force applied to the wire 1a to be plated by the winding means 71 can be distributed on the upstream side and the downstream side in the traveling direction with respect to the feed capstans 91 and 92. It is possible to reduce the load applied to the wire 1a to be plated.
 これにより、メッキ線1bの0.2%耐力値を十分に低下させることができるとともに、伸び率を抑えることができ、所望の品質のメッキ線を得ることができる。 Thereby, the 0.2% proof stress value of the plated wire 1b can be sufficiently reduced, the elongation rate can be suppressed, and a plated wire of a desired quality can be obtained.
 また、上述した半田メッキ線の製造装置10によれば、送りキャプスタン91,92を、軟化焼鈍炉51よりも走行方向の上流側に配置したことにより、軟化焼鈍炉51で低耐力化する前の被メッキ線1aを送り補助することができる。 In addition, according to the solder plating wire manufacturing apparatus 10 described above, the feed capstans 91 and 92 are disposed upstream of the softening annealing furnace 51 in the traveling direction, so that the soft annealing furnace 51 can reduce the yield strength. The to-be-plated wire 1a can be fed and assisted.
 このため、例えば、能動的に回転する送りキャプシタンによって、被メッキ線1aを送り補助する際に、低耐力化した被メッキ線1aに対して引張り張力などの負荷が加わることがなく、メッキ線1bの品質を確保した上で、確実に送り補助することができる。 For this reason, for example, when assisting the feeding of the wire 1a to be plated by the actively rotating feed capitan, a load such as a tensile tension is not applied to the wire 1a having a reduced strength, and the plated wire 1b The feed can be reliably assisted while ensuring the quality.
 特に、第2送りキャプスタン92のように、洗浄手段30よりも走行方向の下流側であって、軟化焼鈍炉51よりも上流側に備えることにより、軟化焼鈍炉51により被メッキ線1aを低耐力化する直前において被メッキ線1aを送り補助することができる。これにより、被メッキ線1aに負担をかけずに、しかも、軟化焼鈍炉51を通過し、低耐力化された被メッキ線1a(メッキ線1b)の走行を効率的に送り補助することができる。 In particular, as in the case of the second feed capstan 92, the wire to be plated 1 a is lowered by the soft annealing furnace 51 by being provided downstream of the cleaning means 30 and upstream of the soft annealing furnace 51. The wire to be plated 1a can be fed and assisted immediately before the yield strength is increased. Accordingly, the traveling of the to-be-plated wire 1a (plated wire 1b) having passed through the softening annealing furnace 51 and having a reduced strength can be efficiently fed and assisted without imposing a burden on the to-be-plated wire 1a. .
 また、メッキ線1bの走行方向を転換する方向転換ローラのうち、溶融半田メッキ槽62の内部に備えた槽中方向転換ローラ64を、送りキャプスタン91,92と同様に、モータ駆動によってローラが能動的に回転し、メッキ線1bの送り補助を行う送りキャプスタンとして構成してもよい。 Also, among the direction changing rollers for changing the traveling direction of the plated wire 1b, the middle direction changing roller 64 provided inside the molten solder plating vessel 62 is driven by a motor as in the case of the feed capstans 91 and 92. You may comprise as a feed capstan which rotates actively and assists the feeding of the plating wire 1b.
 槽中方向転換ローラ64を送りキャプスタンとして構成することにより、溶融半田メッキ槽62を通過前と通過後とでメッキ線1bの走行方向を転換する際に、槽中方向転換ローラ64は、メッキ線1bの走行速度と略一致する回転速度で能動的に回転するため、メッキ線1bの走行方向を転換することに加えて、メッキ線1bの走行を補助することができる。 By configuring the tank direction changing roller 64 as a feed capstan, when changing the traveling direction of the plating wire 1b before and after passing through the molten solder plating tank 62, the tank direction changing roller 64 is plated. Since it actively rotates at a rotational speed that approximately matches the traveling speed of the wire 1b, in addition to changing the traveling direction of the plated wire 1b, the traveling of the plated wire 1b can be assisted.
 よって、メッキ線1bが槽中方向転換ローラ64に接触することにより、回転方向の摩擦抵抗による負荷がメッキ線1bに加わることがなく、メッキ線1bをスムーズに送り出すことができる。 Therefore, when the plated wire 1b comes into contact with the in-tank direction changing roller 64, the load due to the frictional resistance in the rotation direction is not applied to the plated wire 1b, and the plated wire 1b can be smoothly fed out.
 詳しくは、メッキ線1bは、その走行方向を転換する際に特に、負荷が加わるため、メッキ線1bの走行方向の転換は、該メッキ線1bの0.2%耐力値が特に増加してしまう要因となる。そして、メッキ線1bを溶融半田メッキ液63に漬かった状態から取り出す際には、溶融半田メッキ槽62中おいて、このような走行方向の転換を必然的に行う必要がある。 Specifically, the plated wire 1b is particularly loaded when changing its traveling direction, and thus changing the traveling direction of the plated wire 1b particularly increases the 0.2% proof stress value of the plated wire 1b. It becomes a factor. When the plated wire 1b is taken out from the state of being immersed in the molten solder plating solution 63, it is necessary to change the running direction in the molten solder plating tank 62.
 このため、メッキ線1bは、溶融半田メッキ液63に漬かった状態で走行するとともに、方向転換を行った場合、溶融半田メッキ液63からの粘性抵抗を受けることになるため、走行方向の転換の際に加わる負荷がより一層増大し、0.2%耐力値の増加量が顕著になってしまう。 For this reason, the plated wire 1b travels while being immersed in the molten solder plating solution 63, and when the direction is changed, the plating wire 1b receives a viscous resistance from the molten solder plating solution 63. The load applied at the time further increases, and the increase amount of the 0.2% proof stress value becomes remarkable.
 このため、上述したように、槽中方向転換ローラ64を送りキャプスタンとして構成することにより、溶融半田メッキ液63に漬かった状態でのメッキ線1bの方向転換であっても、メッキ線1bに加わる負荷を極力、抑制することができ、0.2%耐力値の低いメッキ線1bを製造することができる。 For this reason, as described above, by configuring the tank direction changing roller 64 as a feed capstan, even if the direction of the plated wire 1b is changed in the state of being immersed in the molten solder plating solution 63, the plating wire 1b The applied load can be suppressed as much as possible, and the plated wire 1b having a low 0.2% proof stress value can be manufactured.
 次に、効果確認実験としてメッキ線1bを巻き取る直前に加わる張力を検証する張力検証実験について説明する。 Next, a tension verification experiment for verifying the tension applied immediately before winding the plated wire 1b will be described as an effect confirmation experiment.
 (張力検証実験)
 張力検証実験では、メッキ線1bが槽上方向転換ローラ65から巻取り手段71(巻取り手段上流側配置ローラ73A)に達するまでの間においてメッキ線1bに対して加わる張力の加わり具合、すなわちメッキ線1bの弛み具合に応じて0.2%耐力値の影響について検証を行った。
(Tension verification experiment)
In the tension verification experiment, the tension applied to the plated wire 1b until the plated wire 1b reaches the winding means 71 (winding means upstream side arrangement roller 73A) from the tank upward direction changing roller 65, that is, plating. The influence of the 0.2% proof stress value was verified according to the slackness of the line 1b.
 巻取り手段上流側配置ローラ73Aに達するまでにおけるメッキ線1bに加わる張力の加わり具合を数値化することは困難であるため、張力の加わり具合は、該張力の加わり具合に影響を及ぼす送りキャプスタン91,92の設置数と溶融半田メッキ槽62の内部のシャフト(槽中方向転換ローラ64)を能動回転とするか受動回転とするかをパラメータとし、これらパラメータの設定に応じて0.2%耐力特性を検証した。 Since it is difficult to quantify the amount of tension applied to the plated wire 1b until reaching the upstream arrangement roller 73A of the winding means, the tension applied to the feed capstan affects the degree of tension applied. The number of installations 91 and 92 and whether the shaft (direction changing roller 64 in the tank) inside the molten solder plating tank 62 is set to active rotation or passive rotation are parameters, and 0.2% depending on the setting of these parameters. Strength characteristics were verified.
 詳しくは、表9に示すとおり、巻取り手段上流側配置ローラ73Aに達するまでにおけるメッキ線1bに対しての張力の加わり具合を、第1張力設定から第4張力設定までの4段階に設定した。 Specifically, as shown in Table 9, the tension applied to the plated wire 1b until reaching the winding roller upstream side arrangement roller 73A was set in four stages from the first tension setting to the fourth tension setting. .
Figure JPOXMLDOC01-appb-T000009
 第1張力設定では、送りキャプスタンの設置数が第1送りキャプスタン91のみの1つであり、槽中方向転換ローラ64を、従動回転ローラで構成した場合の設定である。なお、従動回転ローラとは、ローラを駆動するモータなどを備えず、受動的に回転するフリー回転自在なローラである。第1張力設定は、張力が4段階のうち最も強く、メッキ線1bがぴんと張った状態となる。
Figure JPOXMLDOC01-appb-T000009
In the first tension setting, the number of installed feed capstans is only one of the first feed capstans 91, and the tank direction changing roller 64 is configured by a driven rotation roller. The driven rotation roller is a free-rotating roller that passively rotates without a motor for driving the roller. In the first tension setting, the tension is the strongest among the four stages, and the plated wire 1b is tightly tensioned.
 第2張力設定では、送りキャプスタンの設置数が第1送りキャプスタン91のみの1つであり、槽中方向転換ローラ64を駆動回転ローラで構成した場合の設定である。 
 なお、駆動回転ローラとは、モータなどの駆動によって能動的に回転するローラである。第2張力設定は、張力が第1張力設定に対してやや弱い状態となる。
In the second tension setting, the number of feed capstans installed is only one of the first feed capstans 91, and the tank direction changing roller 64 is a drive rotation roller.
The drive rotation roller is a roller that actively rotates by driving a motor or the like. In the second tension setting, the tension is slightly weaker than the first tension setting.
 第3張力設定では、送りキャプスタンの設置数が第1送りキャプスタン91と第2送りキャプスタン92との2つであり、槽中方向転換ローラ64を従動回転ローラで構成した場合の設定であり、張力が第2張力設定に対してやや弱い状態となる。 In the third tension setting, the number of feed capstans installed is two, that is, the first feed capstan 91 and the second feed capstan 92, and the tank direction changing roller 64 is configured by a driven rotary roller. Yes, the tension is slightly weaker than the second tension setting.
 第4張力設定では、送りキャプスタンの設置数が第1送りキャプスタン91と第2送りキャプスタン92との2つであり、槽中方向転換ローラ64を駆動回転ローラで構成した場合の設定であり、張力が第3張力設定に対してやや弱く、4段階のうち最も弱く、メッキ線1bが最も弛んだ状態となる。 In the fourth tension setting, the number of feed capstans installed is two, that is, the first feed capstan 91 and the second feed capstan 92, and the tank direction changing roller 64 is configured by a drive rotating roller. Yes, the tension is slightly weaker than the third tension setting, the weakest of the four stages, and the plated wire 1b is in the most loose state.
 メッキ線1bの0.2%耐力特性などを含めたメッキ線1bの荷重特性は、上述した第1張力設定から第4張力設定の各設定の場合において、表10、及び、図11に示すような結果となった。  The load characteristics of the plated wire 1b including the 0.2% proof stress characteristic of the plated wire 1b are as shown in Table 10 and FIG. 11 in each setting from the first tension setting to the fourth tension setting described above. It became a result. *
Figure JPOXMLDOC01-appb-T000010
 なお、被メッキ線1aは、いずれもOFCであり、0.16mm×2.0mm、0.2mm×1.0mmのサイズの2種類の平角線のそれぞれについて行った。
Figure JPOXMLDOC01-appb-T000010
In addition, all the to-be-plated wires 1a are OFC, and it performed about each of two types of rectangular wires of a size of 0.16 mm x 2.0 mm and 0.2 mm x 1.0 mm.
 表10、及び、図4の結果より、2種類のサイズの被メッキ線1aのいずれの場合にも、送りキャプスタンの設置数が1つよりも2つである方が、0.2%耐力値をより低く設定できた。これにより、送りキャプスタンの設置数が1つの場合よりも2つである場合の有効性を確認できた。 From the results shown in Table 10 and FIG. 4, 0.2% proof stress is achieved when the number of feed capstans is two rather than one in both cases of the two types of plated wires 1a. The value could be set lower. Thereby, the effectiveness in the case where the number of installed feed capstans is two than the case of one was confirmed.
 また、送りキャプスタンの設置数が2つである場合、すなわち、第4張力設定、及び、第3張力設定の場合であって、被メッキ線1aが0.2mm×1.0mmのサイズの平角線の場合、図11(b)に示すように、槽中方向転換ローラ64が駆動回転ローラであるか従動回転ローラであるかに関わらず、0.2%耐力値が同じ値となった。一方、それ以外の全ての設定では、槽中方向転換ローラ64を駆動回転ローラで構成した場合の方が、従動回転ローラで構成した場合と比較して、0.2%耐力値が低い値となった。 Further, when the number of feed capstans is two, that is, in the case of the fourth tension setting and the third tension setting, the flat wire 1a has a size of 0.2 mm × 1.0 mm. In the case of a line, as shown in FIG. 11B, the 0.2% proof stress value was the same regardless of whether the tank direction changing roller 64 was a driving rotating roller or a driven rotating roller. On the other hand, in all other settings, the 0.2% proof stress value is lower when the in-tank direction changing roller 64 is configured by a driving rotating roller than when it is configured by a driven rotating roller. became.
 このことから槽中方向転換ローラ64を駆動回転ローラで構成した場合の方が、従動回転ローラで構成した場合と比較して、0.2%耐力値が低くなる傾向を示すことが明らかとなり、槽中方向転換ローラ64を駆動回転ローラで構成する有効性を確認できた。 From this, it is clear that the case where the tank direction changing roller 64 is constituted by a driving rotary roller shows a tendency that the 0.2% proof stress tends to be lower than the case where it is constituted by a driven rotary roller, It was confirmed that the tank direction changing roller 64 is composed of a driving rotary roller.
 特に、表10、及び、図11の結果より、第1張力設定から第4張力設定のうち、第4張力設定の場合、すなわち、メッキ線1bが巻取り手段71(巻取り手段上流側配置ローラ73A)に達するまでにおいて該メッキ線1bを最も線を弛ませた状態で巻き取る場合がメッキ線1bへの負荷を低減でき、0.2%耐力値を特に低下することを確認できた。 In particular, from the results shown in Table 10 and FIG. 11, in the case of the fourth tension setting among the first tension setting to the fourth tension setting, that is, the plated wire 1 b is taken up by the winding means 71 (winding means upstream arrangement roller). It was confirmed that when the plated wire 1b was wound in the most slackened state until reaching 73A), the load on the plated wire 1b could be reduced and the 0.2% proof stress value was particularly lowered.
 さらに、送りキャプスタンを2つ設置した構成、及び、槽中方向転換ローラ64を駆動回転ローラで構成した構成のうち、少なくともいずれかの構成とし、被メッキ線1a(メッキ線1b)の巻き取りを送り補助することは、メッキ線1bが巻取り手段71(巻取り手段上流側配置ローラ73A)に達するまでにおいて該メッキ線1bを弛ませた状態とすることができ、0.2%耐力値が所定の値まで低下した優れた品質のメッキ線1bを得る上で有効であることが確認できた。 Further, at least one of a configuration in which two feed capstans are installed and a configuration in which the tank direction changing roller 64 is configured by a driving rotary roller is used to wind the wire to be plated 1a (plating wire 1b). Is that the plated wire 1b is loosened until the plated wire 1b reaches the winding means 71 (winding means upstream arrangement roller 73A), and the 0.2% proof stress value is obtained. It was confirmed that it was effective in obtaining an excellent quality plated wire 1b having a reduced to a predetermined value.
 上述した半田メッキ線の製造装置10および半田メッキ線の製造方法は、上述した構成、及び、製造方法に限定せず、様々な構成、及び、製造方法で構成することができる。 
 例えば、第1送りキャプスタン91、第2送りキャプスタン92は、上述した配置位置に配置するに限らず、走行方向におけるいずれの位置に配置してもよい。また、送りキャプスタンは、第1送りキャプスタン91、第2送りキャプスタン92のうち、いずれか一方のみを備えた構成であってもよい。 
 具体的には、例えば、図12に示すように、第2送りキャプスタン92を設置せずに構成してもよい。
The solder-plated wire manufacturing apparatus 10 and the solder-plated wire manufacturing method described above are not limited to the above-described configuration and manufacturing method, and can be configured in various configurations and manufacturing methods.
For example, the first feed capstan 91 and the second feed capstan 92 are not limited to being arranged at the above-described arrangement positions, and may be arranged at any position in the traveling direction. Further, the feed capstan may be configured to include only one of the first feed capstan 91 and the second feed capstan 92.
Specifically, for example, as shown in FIG. 12, the second feed capstan 92 may be omitted.
 さらに、送りキャプスタンは、第1送りキャプスタン91、第2送りキャプスタン92以外に複数備え、適宜の箇所に設置してもよい。 Furthermore, a plurality of feed capstans may be provided in addition to the first feed capstan 91 and the second feed capstan 92, and may be installed at appropriate locations.
 さらにまた、槽中方向転換ローラ64を、上述したように、駆動回転ローラとして構成し、能動回転するように構成するに限らず、槽上方向転換ローラ65についても、駆動回転ローラとして構成し、能動回転するように構成してもよい。 Furthermore, as described above, the tank direction change roller 64 is configured as a drive rotation roller, and is not limited to be configured to actively rotate. The tank direction change roller 65 is also configured as a drive rotation roller, You may comprise so that it may rotate actively.
 また、半田メッキ線の製造装置10は、上述したように、巻取り手段71に、巻取り手段上流側配置ローラ73Aを配置している。 
 溶融半田メッキ槽62の上方に備えた槽上方向転換ローラ65は、巻取り手段上流側配置ローラ73Aの配置高さよりも高い位置に配置したことを特徴とする。
In addition, as described above, the solder plated wire manufacturing apparatus 10 has the winding means 71 disposed on the winding means 71 on the upstream side of the winding means 71.
The tank upward direction changing roller 65 provided above the molten solder plating tank 62 is characterized by being arranged at a position higher than the arrangement height of the winding means upstream arrangement roller 73A.
 換言すると、上述した半田メッキ線の製造方法は、槽上方向転換ローラ65により方向転換後に、巻取り手段71の側まで走行したメッキ線1bを、槽上方向転換ローラ65よりも低い位置に配置された巻取り手段上流側配置ローラ73Aによって巻取り手段71において最初に架け渡すことを特徴とする。 In other words, in the solder plating wire manufacturing method described above, the plating wire 1b that has traveled to the winding means 71 side after being changed in direction by the tank upper direction changing roller 65 is disposed at a position lower than the tank upper direction changing roller 65. The take-up means 71 is arranged on the take-up means 71 first by the arranged take-up means upstream side roller 73A.
 このような半田メッキ線の製造装置10および製造方法により、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、このようなメッキ線1bを安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。 With such a solder plating wire manufacturing apparatus 10 and manufacturing method, it is possible to obtain a plating wire 1b of a desired quality with a sufficiently reduced 0.2% proof stress value, and to stabilize such a plating wire 1b. By obtaining, the product yield can be improved and the manufacturing efficiency can be improved.
 さらに、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを、効率よく製造できるため、太陽電池用のリード線として好適な低耐力化したメッキ線1bを大量生産することも実現することができる。 Furthermore, since the plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress can be efficiently produced, mass-produced low-proof plated wire 1b suitable as a lead wire for a solar cell is produced. Can also be realized.
 詳述すると、例えば、図16(a)に示すように、槽上方向転換ローラ65と巻取り手段上流側配置ローラ73Aとを略同じ高さで配置した従来の構成の場合には、図16(a)中のX部分拡大図に示すように、メッキ線1bに作用する重力gが走行方向に対して略直交方向のみ作用することになる。 More specifically, for example, as shown in FIG. 16 (a), in the case of the conventional configuration in which the tank upward direction changing roller 65 and the winding means upstream arrangement roller 73A are arranged at substantially the same height, FIG. As shown in the X partial enlarged view in (a), the gravity g acting on the plated wire 1b acts only in a direction substantially orthogonal to the traveling direction.
 また、図16(b)に示すように、槽上方向転換ローラ65が巻取り手段上流側配置ローラ73Aの高さよりも低い配置とした従来の場合には、図16(b)中のX部分拡大図に示すように、メッキ線1bに作用する重力gは、メッキ線1bの走行方向と逆方向の成分g2がメッキ線1bに対して作用することになる。 Further, as shown in FIG. 16 (b), in the conventional case where the tank upper direction changing roller 65 is arranged lower than the height of the winding means upstream arrangement roller 73A, the portion X in FIG. 16 (b). As shown in the enlarged view, in the gravity g acting on the plated wire 1b, the component g2 in the direction opposite to the traveling direction of the plated wire 1b acts on the plated wire 1b.
 上述したいずれの場合も、メッキ線1bを巻取り手段上流側配置ローラ73Aまで走行させる間に、メッキ線1bは、該メッキ線1b自体に作用する重力gによる負荷を受け易くなり、巻取り張力調節機72側での巻取り力を大きく設定する必要が生じ、その分、メッキ線1bに加わる負荷もより一層、大きくなるという問題が生じる。 In any of the cases described above, while the plated wire 1b travels to the winding unit upstream-side arranged roller 73A, the plated wire 1b is easily subjected to a load due to gravity g acting on the plated wire 1b itself, and the winding tension is increased. It becomes necessary to set the winding force on the adjuster 72 side to be large, and accordingly, there is a problem that the load applied to the plated wire 1b is further increased.
 これに対して、槽上方向転換ローラ65を巻取り手段上流側配置ローラ73Aの配置高さよりも高い位置に配置した相対高さ関係である場合、図13に示すように、メッキ線1bが溶融半田メッキ槽62を通過後において、槽上方向転換ローラ65により方向転換したメッキ線1bを、巻取り手段上流側配置ローラ73Aまで走行させる間に、走行方向の下流側へ進むに連れ、下降するように傾斜しながら走行させることができる。 On the other hand, in the case of the relative height relationship in which the tank upper direction changing roller 65 is arranged at a position higher than the arrangement height of the winding means upstream arrangement roller 73A, the plated wire 1b is melted as shown in FIG. After passing through the solder plating tank 62, the plating wire 1b whose direction has been changed by the tank upper direction changing roller 65 is lowered to the downstream side in the running direction while traveling to the winding means upstream arrangement roller 73A. It can be made to run while inclining.
 メッキ線1bをこのような走行形態とすることで、図13中のX部拡大図に示すように、槽上方向転換ローラ65と巻取り手段上流側配置ローラ73Aとの間においてメッキ線1bに作用する重力gのうちメッキ線1bの走行方向成分g2を、巻取り手段上流側配置ローラ73Aへ向けてメッキ線1bを送り出す補助力として作用させることができる。 By setting the plated wire 1b to such a traveling form, as shown in the enlarged view of the portion X in FIG. 13, the plated wire 1b is disposed between the tank upper direction changing roller 65 and the winding means upstream side arranged roller 73A. Of the acting gravity g, the traveling direction component g2 of the plated wire 1b can be made to act as an auxiliary force for feeding the plated wire 1b toward the winding means upstream arrangement roller 73A.
 このように、メッキ線1b自体に作用する重力gは、メッキ線1bの長さ方向に沿って略均等に加わり、メッキ線1bに局所的な負荷が作用することなく送り補助する力として作用させることができ、しかも、ローラやベルトといった送り補助するための部材のように、メッキ線1bに対して物理的に接触しながら送り補助するものではないため、メッキ線1bに対して摩擦抵抗が加わることがなく、メッキ線1bを効率的、且つ、負荷をかけずに送り補助することができる。 In this way, the gravity g acting on the plated wire 1b itself is applied substantially evenly along the length direction of the plated wire 1b, and acts as a force that assists feeding without applying a local load to the plated wire 1b. In addition, it does not assist feeding while physically contacting the plated wire 1b unlike a member for assisting feeding, such as a roller or a belt, and therefore frictional resistance is applied to the plated wire 1b. Therefore, the plating wire 1b can be efficiently and efficiently fed without load.
 しかも、メッキ線1b自体に作用する重力gを利用して該メッキ線1b自体を送り出し補助できる分、巻取り張力調節機72側での巻取り力も小さく設定することができ、簡素な構成とすることができる。 In addition, the winding force on the winding tension adjuster 72 side can be set small, so that the plating wire 1b itself can be assisted by using the gravity g acting on the plating wire 1b itself, and the structure is simplified. be able to.
 よって、軟化焼鈍工程で0.2%耐力値を低下させたメッキ線1bは、その低い0.2%耐力値を保った状態で、巻取り手段上流側配置ローラ73Aで引き取ることができるとともに、均一なメッキ厚を確保することができる。 Therefore, the plated wire 1b whose 0.2% proof stress value has been lowered in the softening annealing process can be taken up by the winding means upstream arrangement roller 73A while maintaining the low 0.2% proof stress value. A uniform plating thickness can be ensured.
 従って、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができる。 Therefore, it is possible to obtain a plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress value.
 さらに、0.2%耐力値を低下させたメッキ線1bを巻取り張力調節機72側で巻き取る際に、メッキ線1bに対して負荷をかけずに巻き取ることができるため、メッキ線1bが破断等せず、製品歩留まりを向上させることができるとともに、製造効率を向上させることができる。 Furthermore, when the plated wire 1b having a reduced 0.2% proof stress value is wound on the winding tension adjuster 72 side, the plated wire 1b can be wound without applying a load. However, the product yield can be improved and the production efficiency can be improved.
 特に、槽上方向転換ローラ65を、溶融半田メッキ槽62に貯溜した溶融半田メッキ液63の液面に対する高さが約3mとなる位置に配置することが好ましい。 In particular, it is preferable to arrange the tank upward direction changing roller 65 at a position where the height of the molten solder plating solution 63 stored in the molten solder plating tank 62 is about 3 m with respect to the liquid surface.
 槽上方向転換ローラ65を、溶融半田メッキ液63の液面に対して約3mとなる高さに配置することにより、溶融半田メッキ槽62から槽上方向転換ローラ65に達するまでの間、メッキ線1bを、3mという十分な高さ分だけ走行させることができるため、その間、メッキ線1bの表面に付着した溶融半田メッキ液63をしっかりと凝固(固体化)させることができる。 By placing the tank upper direction changing roller 65 at a height of about 3 m with respect to the surface of the molten solder plating solution 63, plating is performed until the tank upper direction changing roller 65 reaches the tank upper direction changing roller 65 from the molten solder plating tank 62. Since the wire 1b can be traveled by a sufficient height of 3 m, the molten solder plating solution 63 adhering to the surface of the plated wire 1b can be solidified (solidified) during that time.
 よって、槽上方向転換ローラ65によりメッキ線1bが方向転換する際に、メッキ線1bが槽上方向転換ローラ65に接触することによって、メッキ厚に変動をきたすことがなく、均一なメッキ厚を確保することができる。 Therefore, when the plating wire 1b changes the direction by the tank upper direction changing roller 65, the plating wire 1b comes into contact with the tank upper direction changing roller 65, so that the plating thickness does not vary and the uniform plating thickness is obtained. Can be secured.
 一方、槽上方向転換ローラ65の配置高さを、例えば、3mよりも高い高さに配置した場合、槽上方向転換ローラ65を不用意に長い距離をメッキ線1bに走行させることになり、メッキ線1bの走行に伴う負担が増大する。さらに、槽上方向転換ローラ65の配置高さが高くなればなるほど、メッキ線1bの方向転換前の走行方向と方向転換後の走行方向との成す角度が鋭角状になるため、方向転換の際に、メッキ線1bが槽上方向転換ローラ65に対して接触する長さが長くなるなどしてメッキ線1bに対して負荷が加わることになり、好ましくない。 On the other hand, when the arrangement height of the tank upper direction change roller 65 is arranged at a height higher than 3 m, for example, the tank upper direction change roller 65 will inadvertently travel a long distance to the plating wire 1b. The burden accompanying traveling of the plated wire 1b increases. Furthermore, the higher the arrangement height of the tank upper direction changing roller 65, the sharper the angle formed between the traveling direction of the plated wire 1b before the direction change and the traveling direction after the direction change. Moreover, a load is applied to the plated wire 1b due to an increase in the length of contact of the plated wire 1b with the tank upward direction change roller 65, which is not preferable.
 従って、槽上方向転換ローラ65の配置高さを、3m程度に設定することが、メッキ線1bに均一なメッキ厚を確保する観点と、メッキ線1bに加わる負担を軽減する観点から好ましい。 Therefore, it is preferable to set the arrangement height of the tank direction changing roller 65 to about 3 m from the viewpoint of securing a uniform plating thickness on the plated wire 1b and from the viewpoint of reducing the load applied to the plated wire 1b.
 また、溶融半田メッキ槽62の内部には、槽中方向転換ローラ64を配置し、該槽中方向転換ローラ64は、メッキ線1bの走行方向を鉛直上方へ方向転換するように能動的に回転し、メッキ線1bを下流側へ積極的に送り補助している。 In addition, an in-bath direction changing roller 64 is disposed inside the molten solder plating tank 62, and the in-bath direction changing roller 64 is actively rotated so as to change the traveling direction of the plating wire 1b vertically upward. In addition, the plating wire 1b is actively sent and assisted downstream.
 このような槽中方向転換ローラ64により、槽中方向転換ローラ64による方向転換の後で、槽上方向転換ローラ65に向けて上昇するメッキ線1bに加わる負荷を大幅に軽減することができ、0.2%耐力値の増加を抑制することができる。 By such a tank direction change roller 64, the load applied to the plating wire 1b rising toward the tank upper direction change roller 65 after the direction change by the tank direction change roller 64 can be greatly reduced. An increase in the 0.2% proof stress value can be suppressed.
 次に、効果確認実験として行ったメッキ槽上ローラ配置高さ検証実験について説明する。 Next, a description will be given of an experiment for verifying the arrangement height of the roller on the plating tank, which was performed as an effect confirmation experiment.
 (メッキ槽上ローラ配置高さ検証実験) 
 本実験では、溶融半田メッキ槽62に貯溜した半田液面に対して鉛直上方に備えた槽上方向転換ローラ65の配置高さの違いにより、巻き取り工程で巻き取り後のメッキ線1bの0.2%耐力値の影響について検証する実験を行った。
(Verification experiment of roller placement height on plating tank)
In this experiment, due to the difference in the arrangement height of the tank upward direction changing roller 65 provided vertically above the solder liquid level stored in the molten solder plating tank 62, the 0 of the plated wire 1b after winding in the winding process. An experiment was conducted to verify the effect of the 2% proof stress value.
 詳しくは、図14に示すように、溶融半田メッキ槽62に貯溜した溶融半田メッキ液63の液面に対して槽上方向転換ローラ65(以下、「天井コマ65」という。)の配置高さが本発明例として3m(h1)に設定した場合と、従来例として1m(h2)に設定した場合のそれぞれの場合において、巻き取り工程で巻き取り後のメッキ線1bの0.2%耐力値との関係を検証した。 
 なお、図14は、本実験で用いた装置の一部を示す概略図であり、図14中、二点鎖線で示した走行経路は、本発明例におけるメッキ線1bの走行経路を示し、図14中、一点鎖線で示した走行経路は、従来例におけるメッキ線1bの走行経路を示す。また、本発明例、従来例のいずれの場合も、巻取り手段上流側配置ローラ73Aの配置高さは、半田液面に対して0.9m(H)に設定している。
Specifically, as shown in FIG. 14, the arrangement height of the tank upward direction change roller 65 (hereinafter referred to as “ceiling piece 65”) with respect to the liquid surface of the molten solder plating solution 63 stored in the molten solder plating tank 62. Is set to 3 m (h1) as an example of the present invention, and is set to 1 m (h2) as a conventional example, 0.2% proof stress value of the plated wire 1b after winding in the winding process And verified the relationship.
FIG. 14 is a schematic diagram showing a part of the apparatus used in this experiment. In FIG. 14, the travel path indicated by a two-dot chain line indicates the travel path of the plated wire 1b in the present invention. 14, the travel route indicated by the alternate long and short dash line indicates the travel route of the plated wire 1b in the conventional example. Further, in both cases of the present invention example and the conventional example, the arrangement height of the winding means upstream arrangement roller 73A is set to 0.9 m (H) with respect to the solder liquid surface.
 表11に示す実験条件の下、メッキ線1bには、断面サイズに応じて、断面A、断面Bの2種類の平角線のそれぞれを用いて行った。なお、断面A、及び、断面Bの各断面の平角寸法(縦×横)は、それぞれ0.2×1.0mm、0.16×2mmである。 Under the experimental conditions shown in Table 11, each of the two types of flat wires of the cross section A and the cross section B was used for the plated wire 1b according to the cross section size. In addition, the flatness dimension (vertical x horizontal) of each cross section of the cross section A and the cross section B is 0.2 * 1.0 mm and 0.16 * 2 mm, respectively.
Figure JPOXMLDOC01-appb-T000011
 本実験結果を、表12、及び、図15に示す。 
Figure JPOXMLDOC01-appb-T000011
The results of this experiment are shown in Table 12 and FIG.
Figure JPOXMLDOC01-appb-T000012
 平角寸法が断面Aである場合に着目すると、天井コマ65の配置高さが1mである従来例の場合、天井コマ65の通過前後において0.2%耐力値が38MPaから42MPaまで上昇し、巻取り工程で巻き取り後は、さらに0.2%耐力値が50MPaまで上昇した。
Figure JPOXMLDOC01-appb-T000012
When attention is paid to the case where the rectangular dimension is the cross section A, in the case of the conventional example in which the arrangement height of the ceiling piece 65 is 1 m, the 0.2% proof stress value increases from 38 MPa to 42 MPa before and after the ceiling piece 65 passes. After winding in the take-up process, the 0.2% proof stress value further increased to 50 MPa.
 これに対して、天井コマ65の配置高さが3mである本発明例の場合、天井コマ65の通過前後において0.2%耐力値の上昇を36MPaから38MPaまでの上昇に抑制することができ、巻き取り工程で巻き取り後の0.2%耐力値の上昇を45MPaまで抑制することができた。よって、平角寸法が断面Aである場合、天井コマ65の配置高さが1mである従来例の場合と比較して、格段に0.2%耐力値の上昇を抑制できることを確認できた。 On the other hand, in the case of the present invention example in which the height of the ceiling piece 65 is 3 m, the increase in 0.2% proof stress value before and after the passage of the ceiling piece 65 can be suppressed to an increase from 36 MPa to 38 MPa. The increase in the 0.2% yield strength after winding in the winding process could be suppressed to 45 MPa. Therefore, it was confirmed that when the flat rectangular dimension is the cross section A, the rise in the 0.2% proof stress value can be remarkably suppressed as compared with the conventional example in which the height of the ceiling piece 65 is 1 m.
 続いて平角寸法が断面Bである場合、天井コマ65の配置高さが1mである従来例の場合、天井コマ65の通過前後において0.2%耐力値はいずれも39MPaであり、変化しなかったが、巻き取り工程で巻き取り後は、0.2%耐力値が47MPaまで上昇した。 Subsequently, in the case of the conventional example in which the flat dimension is the cross section B and the arrangement height of the ceiling piece 65 is 1 m, the 0.2% proof stress value is 39 MPa before and after the passage of the ceiling piece 65, and does not change. However, after winding in the winding process, the 0.2% proof stress value increased to 47 MPa.
 これに対して、天井コマ65の配置高さが3mである本発明例の場合、天井コマ65の通過前後において0.2%耐力値はいずれも、39MPaであり、変化せず、従来例と同様の値であったが、巻き取り工程で巻き取り後の0.2%耐力値の上昇を44MPaまで抑制することができた。よって、平角寸法が断面Bである場合も天井コマ65の配置高さが1mである従来例の場合と比較して、最終的に巻取り後において0.2%耐力値の上昇を抑制できることを確認できた。 On the other hand, in the case of the present invention example in which the height of the ceiling piece 65 is 3 m, the 0.2% proof stress value before and after the passage of the ceiling piece 65 is 39 MPa, and does not change. Although it was the same value, the raise of the 0.2% yield strength value after winding in the winding process was able to be suppressed to 44 MPa. Therefore, when the flat dimension is the cross section B, it is possible to suppress an increase in the 0.2% proof stress value after the final winding as compared to the case of the conventional example in which the height of the ceiling piece 65 is 1 m. It could be confirmed.
 以上より、天井コマ65の配置高さが3mである本発明例の場合、天井コマ65の配置高さが1mである従来例の場合と比較して、0.2%耐力値が増加したサイズのものはなく、殆どのサイズで低下させることを確認できた。 From the above, in the example of the present invention in which the arrangement height of the ceiling frame 65 is 3 m, the size in which the 0.2% proof stress value is increased compared to the case of the conventional example in which the arrangement height of the ceiling frame 65 is 1 m. It was confirmed that it decreased at almost all sizes.
 また、半田メッキ線の製造装置10、及び、製造方法によれば、メッキ手段61では、被メッキ線1aを薄メッキでメッキする薄メッキ設定と、薄メッキ設定の場合のメッキ厚よりも厚いメッキ厚となる厚メッキ設定とのうち、いずれかの設定で行うことができる。 Also, according to the solder plating wire manufacturing apparatus 10 and the manufacturing method, the plating means 61 has a thin plating setting for plating the plated wire 1a with a thin plating, and a plating thicker than the plating thickness in the case of the thin plating setting. It can be performed by any of the thick plating settings to be thick.
 ここで、前記薄メッキ設定は、被メッキ線1aを走行させる速度が低速走行速度である場合に被メッキ線1aに対してメッキを施す設定とする。 
 一方、前記厚メッキ設定は、被メッキ線1aを走行させる速度が、前記低速走行速度よりも高速となる高速走行速度である場合に、被メッキ線1aに対してメッキを施す設定であり、半田温度とメッキ厚との所定の関係に基づいて定まるメッキ厚で被メッキ線1aにメッキを施す設定とすることを特徴としている。
Here, the thin plating setting is a setting for plating the plated wire 1a when the traveling speed of the plated wire 1a is the low traveling speed.
On the other hand, the thick plating setting is a setting for plating the plated wire 1a when the traveling speed of the plated wire 1a is a high traveling speed that is higher than the low traveling speed. It is characterized in that it is set so that the plated wire 1a is plated with a plating thickness determined based on a predetermined relationship between the temperature and the plating thickness.
 ここで、半田温度とメッキ厚との所定の関係は、高速走行速度においてのみ成立する関係であり、この関係を基に半田温度に応じたメッキ厚を選択することができる。 Here, the predetermined relationship between the solder temperature and the plating thickness is established only at a high traveling speed, and the plating thickness corresponding to the solder temperature can be selected based on this relationship.
 上述した半田メッキ線1bの製造装置10および製造方法により、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを得ることができ、このようなメッキ線1bを安定して得ることで、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。 With the solder plating wire 1b manufacturing apparatus 10 and the manufacturing method described above, it is possible to obtain a plating wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress value. By obtaining, the product yield can be improved and the manufacturing efficiency can be improved.
 さらに、0.2%耐力値を十分に低下させた所望の品質のメッキ線1bを、効率よく製造できるため、太陽電池用のリード線として好適な低耐力化したメッキ線1bを大量生産することも実現することができる。 Furthermore, since the plated wire 1b having a desired quality with a sufficiently reduced 0.2% proof stress can be efficiently produced, mass-produced low-proof plated wire 1b suitable as a lead wire for a solar cell is produced. Can also be realized.
 詳述すると、例えば、巻取り手段71や送りキャプスタン91,92によってメッキ線1bの巻き取り速度を調節するなどして、メッキ工程において、被メッキ線1aを、低速走行速度、或いは、高速走行速度のいずれかの線速で走行させるかによって、被メッキ線1aに対してメッキ厚を厚く形成したり薄く形成したりすることが可能となる。 More specifically, for example, by adjusting the winding speed of the plated wire 1b by the winding means 71 and the feed capstans 91 and 92, the plated wire 1a is moved at a low speed or a high speed in the plating process. Depending on whether the traveling speed is any of the linear speeds, the plated wire 1a can be formed thicker or thinner.
 具体的には、低速走行速度に設定した場合には、薄メッキ厚設定となり、被メッキ線1aに対してメッキ厚の薄いメッキ膜を形成することができる。高速走行速度に設定した場合には、厚メッキ厚設定となり、被メッキ線1aに対してメッキ厚の厚いメッキ膜を形成することができる。 Specifically, when the low traveling speed is set, the thin plating thickness is set, and a thin plating film can be formed on the plated wire 1a. When the high traveling speed is set, the thick plating thickness is set, and a plating film having a large plating thickness can be formed on the wire to be plated 1a.
 これにより、メッキ線1bの使用目的、用途に応じて厚メッキ設定、或いは、薄メッキ設定とするいずれかのメッキ厚のメッキ線1bを構成することも可能となる。 Thus, it is possible to configure the plating wire 1b having any plating thickness that is set to a thick plating setting or a thin plating setting according to the purpose and application of the plating wire 1b.
 特に、高速走行速度に設定した場合においては、半田温度とメッキ厚とが所定の関係を示すことを見出したため、この関係に基づいて半田温度を変更することによって、厚メッキの中でも、メッキ厚の厚みをより厚くしたり、より薄くしたりといった微妙な厚み調節を行うことが可能となる。 In particular, in the case of setting to a high traveling speed, it has been found that the solder temperature and the plating thickness show a predetermined relationship. Subtle thickness adjustments such as increasing the thickness or decreasing the thickness can be performed.
 以上により、線速や半田温度の設定に応じて、0.2%耐力値が十分に低下し、均一、且つ、所望のメッキ厚を有するメッキ線1bを得ることができる。さらに、このような高品質なメッキ線1bを安定して得ることができるため、製品歩留まりを向上させることができ、また、製造効率を向上させることができる。 As described above, the 0.2% proof stress value is sufficiently reduced according to the setting of the wire speed and the solder temperature, and a plated wire 1b having a uniform and desired plating thickness can be obtained. Furthermore, since such a high-quality plated wire 1b can be obtained stably, the product yield can be improved and the production efficiency can be improved.
 また、低速走行速度は、約4m/min程度に設定することが好ましい。 
 このように、低速走行速度を約4m/min程度に設定することで、例えば、約14.0~24.0μm程度の薄いメッキ厚のメッキ線1bを得ることができる。
Moreover, it is preferable to set the low-speed traveling speed to about 4 m / min.
Thus, by setting the low-speed traveling speed to about 4 m / min, for example, a plating wire 1b having a thin plating thickness of about 14.0 to 24.0 μm can be obtained.
 一方、高速走行速度は、約13m/min程度に設定することが好ましい。 
 このように、高速走行速度を約13m/min程度に設定することで、例えば、約28.5~67μm程度の厚いメッキ厚のメッキ線1bを形成することができる。
On the other hand, the high speed traveling speed is preferably set to about 13 m / min.
In this way, by setting the high speed traveling speed to about 13 m / min, it is possible to form a plated wire 1b having a thick plating thickness of about 28.5 to 67 μm, for example.
 すなわち、線速を上述した低速走行速度、或いは、高速走行速度のいずれかの速度に設定するかに応じて、メッキ厚の度合いを大きく異ならせることができるため、メッキ線1bの用途、仕様に対応する所望のメッキ厚を有するメッキ線1bを作成することができる。 That is, the degree of plating thickness can be greatly varied depending on whether the linear speed is set to the low speed traveling speed or the high speed traveling speed described above. A plated wire 1b having a corresponding desired plating thickness can be created.
 さらにまた、線速を高速走行速度とし、厚メッキ設定の下でメッキ工程を行うことで、被メッキ線1aの表面に形成するメッキ厚を厚くすることができるが、メッキ工程での半田温度が高い場合、薄メッキ設定の場合と比較してメッキ線1bの表面の外観荒れが生じ易くなる傾向がある。 Furthermore, the plating speed formed on the surface of the to-be-plated wire 1a can be increased by setting the wire speed to a high traveling speed and performing the plating process under the thick plating setting. When it is high, the surface of the plated wire 1b tends to be rougher than in the case of setting a thin plating.
 このため、メッキ工程における半田温度を約240℃程度に設定することで、メッキ線1bの表面のメッキ膜に凹凸などが生じることがなく、表面が滑らかで、均一なメッキ厚のメッキ線1bを得ることができる。 For this reason, by setting the solder temperature in the plating process to about 240 ° C., the plating film on the surface of the plated wire 1b is not uneven, and the plated wire 1b having a smooth surface and a uniform plating thickness is formed. Obtainable.
 次に、効果確認実験として行った半田工程の条件の違いによる低耐力特性確認試験について説明する。 Next, a description will be given of a low proof stress characteristic confirmation test performed as a result of an effect confirmation experiment based on differences in soldering process conditions.
 (半田工程の条件の違いによる低耐力特性確認試験) 
 本実験では、薄メッキ設定、及び、厚メッキ設定のそれぞれの条件とした場合の半田温度と、メッキ厚及び引張特性との関係を明らかにし、本実施形態の製造方法の有効性を確認した。
(Low yield strength confirmation test based on differences in soldering process conditions)
In this experiment, the relationship between the solder temperature, the plating thickness, and the tensile characteristics under the conditions of the thin plating setting and the thick plating setting was clarified, and the effectiveness of the manufacturing method of this embodiment was confirmed.
 薄メッキ設定、及び、厚メッキ設定のそれぞれにおいて、半田温度は、240℃、260℃、280℃の3種類に設定し、銅線は、いずれもOFCであり、サイズが0.2mm×1.0mm、0.16mm×2.0mm、0.2mm×2.0mmの3種類の平角線を用いた。 In each of the thin plating setting and the thick plating setting, the solder temperature is set to three types of 240 ° C., 260 ° C., and 280 ° C., and the copper wires are all OFC, and the size is 0.2 mm × 1. Three types of rectangular wires of 0 mm, 0.16 mm × 2.0 mm, and 0.2 mm × 2.0 mm were used.
 薄メッキ設定の場合は、線速を4m/minの低速設定とした低速走行速度の下でメッキ工程を行った。一方、厚メッキ設定の場合は、線速を13m/minの高速設定とした高速走行速度の下でメッキ工程を行った。 In the case of thin plating setting, the plating process was performed at a low traveling speed with a linear speed set at a low speed of 4 m / min. On the other hand, in the case of the thick plating setting, the plating process was performed under a high traveling speed with the linear speed set at a high speed of 13 m / min.
 本実験結果として、上述した設定の下、薄メッキ設定、及び、厚メッキ設定のそれぞれの条件における半田温度と、メッキ厚及び引張特性との関係を表13(a)、(b)に示す。 As a result of this experiment, Tables 13 (a) and 13 (b) show the relationship between the solder temperature, the plating thickness, and the tensile characteristics under the above-described settings under the conditions of the thin plating setting and the thick plating setting.
Figure JPOXMLDOC01-appb-T000013
 なお、表13(a)は、薄メッキ設定の下での半田温度と、メッキ厚及び引張特性との関係を示すとともに、表13(b)は、厚メッキ設定の下での半田温度と、メッキ厚及び引張特性との関係を示す。
Figure JPOXMLDOC01-appb-T000013
Table 13 (a) shows the relationship between the solder temperature under the thin plating setting and the plating thickness and tensile characteristics, and Table 13 (b) shows the solder temperature under the thick plating setting. The relationship between plating thickness and tensile properties is shown.
 線速の設定が4m/minである低速走行速度の下でメッキ工程を行った場合と、線速の設定が13m/minである高速走行速度の下でメッキ工程を行った場合とで、それぞれ対応する平角サイズ、温度の条件ごとにメッキ厚について比較した。 When the plating process is performed under a low traveling speed with a linear speed setting of 4 m / min, and when the plating process is performed under a high traveling speed with a linear speed setting of 13 m / min, respectively. The plating thickness was compared for each of the corresponding rectangular size and temperature conditions.
 その結果、いずれも低速走行速度の方が高速走行速度の場合と比較してメッキ厚が薄くなるように被メッキ線1aに対してメッキ膜を形成できることを確認できた。 As a result, it was confirmed that the plating film could be formed on the wire to be plated 1a so that the plating thickness was thinner at the low speed than at the high speed.
 薄メッキ設定の場合の結果に着目すると、3種類の平角サイズや、温度の設定に影響されず、上述したようにメッキ厚を薄くでき、また、厚メッキ設定の場合と比較して0.2%耐力値を低くすることができた。 Focusing on the results in the case of the thin plating setting, the plating thickness can be reduced as described above without being affected by the three types of flat angle sizes and the temperature setting, and 0.2% compared to the case of the thick plating setting. % Proof stress value could be lowered.
 しかも、3種類の平角サイズや半田温度との組み合わせがいずれの場合においても、メッキ膜の表面に外観荒れが生じることなく、高品質のメッキ線1bを得られることを確認できた。 Moreover, it was confirmed that high-quality plated wire 1b can be obtained without any rough appearance on the surface of the plating film, regardless of the combination of three types of flat size and solder temperature.
 一方、厚メッキ設定の場合の結果に着目すると、種類の平角サイズや、温度の設定に影響されず、いずれも50Mpa前後の値にまで0.2%耐力値を低くすることができた。 On the other hand, paying attention to the result in the case of thick plating setting, the 0.2% proof stress value could be lowered to a value of around 50 Mpa, regardless of the type of rectangular size and temperature setting.
 厚メッキ設定の場合のメッキ厚については、例えば、サイズが0.2mm×1.0mmの平角線において、半田温度が280℃の場合には、メッキ厚は29.5~32.0μmとなった。一方、半田温度が240℃以外の場合には、メッキ厚は31.5~38.0μmとなった。 As for the plating thickness in the case of the thick plating setting, for example, when the solder temperature is 280 ° C. in a rectangular wire having a size of 0.2 mm × 1.0 mm, the plating thickness is 29.5 to 32.0 μm. . On the other hand, when the solder temperature was other than 240 ° C., the plating thickness was 31.5 to 38.0 μm.
 さらに、サイズが0.16mm×2.0mmの平角線において、半田温度が280℃の場合には、メッキ厚は44.0~47.0μmとなった。一方、半田温度が240℃の場合には、メッキ厚は47.5~73.5μmとなった。 Furthermore, in the case of a rectangular wire having a size of 0.16 mm × 2.0 mm, when the solder temperature is 280 ° C., the plating thickness is 44.0 to 47.0 μm. On the other hand, when the solder temperature was 240 ° C., the plating thickness was 47.5 to 73.5 μm.
 このような結果より、特に、厚メッキ設定の場合には、メッキ温度が低い方が、メッキ厚が厚くなる傾向を示すという半田温度とメッキ厚との関係を見出すことができた。 From these results, it was possible to find a relationship between the solder temperature and the plating thickness, in particular, in the case of thick plating setting, the lower the plating temperature, the higher the plating thickness tends to be.
 よって、このような半田温度とメッキ厚との関係により、厚メッキ設定の中でも、半田温度の設定に応じてメッキ厚の微妙な調節ができることを確認できた。 Therefore, from the relationship between the solder temperature and the plating thickness, it was confirmed that the plating thickness can be finely adjusted in accordance with the setting of the solder temperature even in the thick plating setting.
 例えば、サイズが0.2mm×1.0mmの平角線において、厚メッキ設定の中でも、メッキ厚を比較的薄く設定したい場合は、半田温度を280℃に設定すればよく、逆に、厚メッキ設定の中でも、メッキ厚を比較的厚く設定したい場合は、半田温度を240℃に設定すればよく、これらの間の厚みに設定したい場合は、半田温度を260℃に設定すればよい。 For example, in the case of a flat wire with a size of 0.2 mm x 1.0 mm, if you want to set the plating thickness relatively thin among the thick plating settings, the solder temperature should be set to 280 ° C, and conversely the thick plating setting Among these, when it is desired to set the plating thickness to be relatively thick, the solder temperature may be set to 240 ° C., and when it is desired to set the thickness between these, the solder temperature may be set to 260 ° C.
 また、サイズが例えば、0.16mm×2.0mmの平角線において、半田温度が260℃や280℃の設定の場合には、メッキ線1bの表面に外観荒れが生じるため、このような事態を回避するために、半田温度を240℃に設定すればよいことになる。 In addition, when the solder temperature is set to 260 ° C. or 280 ° C. in a rectangular wire having a size of, for example, 0.16 mm × 2.0 mm, the surface of the plated wire 1b is roughened. In order to avoid this, the solder temperature may be set to 240 ° C.
 このように、半田温度とメッキ厚との所定の関係に基づいて、半田温度を設定することで、所望のメッキ厚、及び、外観となる高品質なメッキ線1bを得ることができる。 As described above, by setting the solder temperature based on the predetermined relationship between the solder temperature and the plating thickness, it is possible to obtain a high-quality plated wire 1b having a desired plating thickness and appearance.
 また、上述した半田メッキ線の製造装置および半田メッキ線の製造方法は、上述した構成に限定せず、様々な構成で構成することができる。 
 例えば、他の実施形態における製造装置10Aには、図17(a),(b)に示すように、超音波水洗浄槽41と軟化焼鈍炉51との間にプレ加熱炉51Pを設けることができる。 
 プレ加熱炉51Pは、図17(b)に示すように、被メッキ線1aの走行時間、及び、走行距離が短い場合においても、被メッキ線1aの温度を急激に高めることに特化して構成している。
Further, the above-described solder plated wire manufacturing apparatus and solder plated wire manufacturing method are not limited to the above-described configuration, and can be configured in various configurations.
For example, in the manufacturing apparatus 10A according to another embodiment, as shown in FIGS. 17A and 17B, a preheating furnace 51P is provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51. it can.
As shown in FIG. 17B, the preheating furnace 51P is configured to increase the temperature of the plated wire 1a rapidly even when the traveling time and traveling distance of the plated wire 1a are short. is doing.
 具体的には、プレ加熱炉51Pは、プレ加熱炉本体52Pに鞘管53Lを備えている。該鞘管53Lは、被メッキ線1aの走行方向に沿って直線状に構成した中空管であり、被メッキ線1aがプレ加熱炉51Pと軟化焼鈍炉51とを通過する際に、該被メッキ線1aが空気に触れて酸化しないようにプレ加熱炉本体52Pと軟化焼鈍炉本体52とのそれぞれの内部に連通した配置形態としている。 Specifically, the preheating furnace 51P includes a sheath tube 53L in the preheating furnace main body 52P. The sheath tube 53L is a hollow tube configured linearly along the traveling direction of the wire to be plated 1a, and when the wire to be plated 1a passes through the preheating furnace 51P and the softening annealing furnace 51, It is set as the arrangement | positioning form connected to each inside of the preheating furnace main body 52P and the soft annealing furnace main body 52 so that the plating wire 1a may not be oxidized by touching air.
 プレ加熱炉51Pの内部には、軟化焼鈍炉51と同様に、プレ加熱炉本体52Pの内部に、鞘管53Lの長手方向に沿って複数本のヒータ54Pを備えているが、軟化焼鈍炉51において配置したヒータ54の配置間隔よりも狭ピッチで配置している。 Like the soft annealing furnace 51, the pre heating furnace 51P includes a plurality of heaters 54P along the longitudinal direction of the sheath tube 53L in the pre heating furnace main body 52P. Are arranged at a narrower pitch than the arrangement interval of the heaters 54 arranged in FIG.
 これにより、線速を速めて被メッキ線1aを走行させても、軟化焼鈍工程の直前にプレ加熱工程として、プレ加熱炉51Pで被メッキ線1aを加熱することができ、加熱した状態の被メッキ線1aを軟化焼鈍炉51に供給することができる。 As a result, even if the wire to be plated 1a is run at an increased wire speed, the wire to be plated 1a can be heated in the preheating furnace 51P as a preheating step immediately before the softening annealing step, The plated wire 1a can be supplied to the softening annealing furnace 51.
 よって、被メッキ線1aの線速の高速化に対応して、軟化焼鈍工程において、被メッキ線1aを確実、且つ、十分に低耐力化した状態とすることができる。 Therefore, in response to the increase in the wire speed of the wire to be plated 1a, the wire to be plated 1a can be surely and sufficiently lowered in strength in the softening annealing process.
 従って、上述した製造装置10A、及び、製造方法によれば、厚メッキ設定、或いは、薄メッキ設定のいずれの設定の下で製造したメッキ線1bであっても、低耐力特性が要求される太陽電池のリード線として用いることができる。 Therefore, according to the manufacturing apparatus 10A and the manufacturing method described above, even if the plated wire 1b is manufactured under either the thick plating setting or the thin plating setting, the sun requiring low yield strength characteristics is required. It can be used as a lead wire for a battery.
 また、鞘管53Lにおける軟化焼鈍炉51とプレ加熱炉51Pとの間部分には、鞘管53Lの長さ方向におけるプレ加熱炉51Pに相当する部分に還元ガスを供給するプレ還元ガス供給部57Pを構成している。 Further, a pre-reducing gas supply portion 57P that supplies a reducing gas to a portion corresponding to the pre-heating furnace 51P in the length direction of the sheath tube 53L is provided in a portion between the softening annealing furnace 51 and the pre-heating furnace 51P in the sheath tube 53L. Is configured.
 上述した還元ガス供給部57では、還元ガスGとして水素と窒素との混合ガスを鞘管53Lに供給し、鞘管53Lの軟化焼鈍炉51に相当する内部空間を混合ガス雰囲気としたが、プレ還元ガス供給部57Pでは、還元ガスGとして窒素ガス、或いは、水蒸気ガス(スチームガス)を、鞘管53Lのプレ加熱炉51Pに相当する内部空間に供給し、該内部空間を窒素ガス雰囲気、或いは、水蒸気ガス雰囲気としている。 In the reducing gas supply unit 57 described above, a mixed gas of hydrogen and nitrogen is supplied as the reducing gas G to the sheath tube 53L, and the internal space corresponding to the softening annealing furnace 51 of the sheath tube 53L is used as a mixed gas atmosphere. In the reducing gas supply unit 57P, nitrogen gas or steam gas (steam gas) is supplied as the reducing gas G to the internal space corresponding to the preheating furnace 51P of the sheath tube 53L, and the internal space is filled with a nitrogen gas atmosphere or A steam gas atmosphere is used.
 これにより、プレ加熱炉51Pを通過する際に被メッキ線1aの表面が酸化することを防ぐことができるとともに、プレ加熱炉51Pでは、還元ガスGとして水素ガスを用いずに、窒素ガス、或いは、水蒸気ガスを用いることで、安全であり、ガスの扱いが容易となる。 As a result, the surface of the wire to be plated 1a can be prevented from oxidizing when passing through the preheating furnace 51P, and in the preheating furnace 51P, nitrogen gas or By using water vapor gas, it is safe and easy to handle the gas.
 詳述すると、上述した低耐力特性確認試験で用いた表13(a),(b)中における0.2%耐力値に着目すると、厚メッキ設定の場合は、薄メッキ設定の場合と比較して、いずれの平角サイズ、温度においても0.2%耐力値が高い結果となった。 Specifically, focusing on the 0.2% proof stress value in Tables 13 (a) and 13 (b) used in the low proof stress characteristic confirmation test described above, the thick plating setting is compared with the thin plating setting. Thus, the 0.2% proof stress value was high at any flat size and temperature.
 その理由として、線速を高速走行速度とした場合、メッキ工程において厚メッキ設定とすることができる一方で、線速が速くなるため、メッキ工程の前に行う軟化焼鈍工程において、被メッキ線1aに対して軟化焼鈍を完全に行うまでにメッキ線1bが軟化焼鈍炉51を通過してしまい、結果的に、被メッキ線1aに対して軟化焼鈍を十分に行うことができないといった事態が生じるためである。 The reason for this is that when the line speed is set to a high traveling speed, thick plating can be set in the plating process. On the other hand, since the line speed increases, the wire to be plated 1a in the softening annealing process performed before the plating process. In contrast, the plating wire 1b passes through the softening annealing furnace 51 until the softening annealing is completely performed, and as a result, the softening annealing cannot be sufficiently performed on the plated wire 1a. It is.
 この場合、メッキ工程を、厚メッキ設定で行うことで、被メッキ線1aの表面に厚いメッキ厚を形成できても、線速が高速走行速度であるため、薄メッキ設定の場合と比較して0.2%耐力値が高いメッキ線1bが作成されることになる。 In this case, even if a thick plating thickness can be formed on the surface of the to-be-plated wire 1a by performing the plating process with a thick plating setting, the line speed is a high traveling speed, so compared with the case of the thin plating setting. A plated wire 1b having a high 0.2% proof stress value is produced.
 これに対して、上述した製造装置10Aのように、すなわち、図17(a),(b)に示すように、超音波水洗浄槽41と軟化焼鈍炉51との間にプレ加熱炉51Pを設けた構成とすることにより、プレ加熱工程でプレ加熱炉51Pによって被メッキ線1aに対して十分に加熱した上で、軟化焼鈍工程を行うことができる。 On the other hand, like the manufacturing apparatus 10A described above, that is, as shown in FIGS. 17A and 17B, a preheating furnace 51P is provided between the ultrasonic water cleaning tank 41 and the softening annealing furnace 51. By setting it as the structure provided, the softening annealing process can be performed after fully heating with respect to the to-be-plated wire 1a with the preheating furnace 51P at a preheating process.
 このため、被メッキ線1aを高速走行させた場合であっても、軟化焼鈍工程において、被メッキ線1aを確実に低耐力化することができる。 
 従って、最終的に、0.2%耐力値が低く、厚メッキ設定に対応する厚いメッキ厚を有するメッキ線1bを得ることができる。
For this reason, even if it is a case where the to-be-plated wire 1a is made to drive at high speed, in the softening annealing process, the to-be-plated wire 1a can be reliably reduced in yield strength.
Therefore, finally, a plated wire 1b having a low 0.2% proof stress and a thick plating thickness corresponding to the thick plating setting can be obtained.
 軟化焼鈍炉51の上流側近傍に設置したプレ加熱炉51Pは、ヒータ54の配置数や電力量を増加させ、さらに、内部に、水素ガスではなく、窒素ガス、或いは、水蒸気ガスを供給した安全で扱い易いガス雰囲気とするなどして、軟化焼鈍炉51よりも被メッキ線1aの加熱性能に特化した構成としている。 The preheating furnace 51P installed in the vicinity of the upstream side of the softening annealing furnace 51 increases the number of heaters 54 arranged and the amount of power, and further supplies nitrogen gas or water vapor gas instead of hydrogen gas inside. The gas atmosphere is easy to handle, so that the heating performance of the wire 1a to be plated is more specialized than the soft annealing furnace 51.
 このため、被メッキ線1aを高速走行させた場合であっても、軟化焼鈍炉51において軟化焼鈍時間を確保する手段として、例えば、軟化焼鈍炉51を長尺化して構成するといった対策を講じる必要がなく、軟化焼鈍炉51の上流側手前にプレ加熱炉51Pを設置する構成は、軟化焼鈍炉51を長尺化する構成と比較して、設置スペースやコストが増大することがない。 For this reason, even when the to-be-plated wire 1a is run at high speed, as a means for ensuring the softening annealing time in the softening annealing furnace 51, for example, it is necessary to take measures such as making the softening annealing furnace 51 longer. The configuration in which the preheating furnace 51P is installed upstream of the softening annealing furnace 51 does not increase the installation space and cost as compared with the configuration in which the softening annealing furnace 51 is elongated.
 従って、既存設備を活かした設計変更レベルの簡易な構成の追加によって線速の高速化を図ることができ、厚メッキ設定、或いは、薄メッキ設定のいずれの設定の下で製造したメッキ線1bであっても、十分な低耐力化を図ることができ、低耐力特性が要求される太陽電池のリード線として用いることができる。 Therefore, it is possible to increase the line speed by adding a simple configuration at a design change level utilizing existing equipment, and with the plated wire 1b manufactured under either the thick plating setting or the thin plating setting. Even if it exists, it can aim at sufficient low yield strength, and can be used as a lead wire of a solar cell in which low yield strength characteristics are required.
 また、加熱処理炉22は、走行方向におけるサプライヤ12と酸洗浄槽31との間に設置するに限らず、軟化焼鈍炉51よりも上流側であれば、他の部位に設置してもよい。 Further, the heat treatment furnace 22 is not limited to being installed between the supplier 12 and the acid cleaning tank 31 in the traveling direction, and may be installed in other parts as long as it is upstream of the softening annealing furnace 51.
 例えば、他の実施形態の製造装置として、上述した加熱処理炉22を設置せずに、上述したプレ加熱炉51Pのみを設置し、プレ加熱炉51Pの内部に供給する還元ガスとして水蒸気ガスを用いた構成としてもよい。 For example, as a manufacturing apparatus according to another embodiment, only the preheating furnace 51P described above is installed without installing the above-described heat treatment furnace 22, and steam gas is used as a reducing gas supplied to the inside of the preheating furnace 51P. It is good also as the structure which was.
 この構成により、プレ加熱炉51Pでは、上述したように、軟化焼鈍炉51の直前でプレ加熱を行うという機能に加えて、上述した加熱処理炉22により行う機能の双方を兼ね備えることができる。 With this configuration, in the preheating furnace 51P, as described above, in addition to the function of performing preheating immediately before the soft annealing furnace 51, it is possible to have both of the functions performed by the heat treatment furnace 22 described above.
 よって、設備コストの削減を図ることができることは勿論、被メッキ線1aの走行距離の短縮化をより一層、図ることができ、0.2%耐力値が低い高品質のメッキ線1bを生産することができる。 Therefore, not only can the equipment cost be reduced, but also the travel distance of the plated wire 1a can be further shortened, and a high quality plated wire 1b having a low 0.2% proof stress value is produced. be able to.
 この発明の構成と、上述した実施形態との対応において、銅線は、この発明の被メッキ線1a、及び、メッキ線1bに対応し、以下同様に、
加熱処理手段は、加熱処理炉22に対応し、
酸洗浄手段は、酸洗浄槽31に対応し、
水洗浄手段は、超音波水洗浄槽41に対応し、
銅線送り補助工程は、被メッキ線送り補助工程に対応し、
銅線送り補助手段は、第1送りキャプスタン91、第2送りキャプスタン92、及び、能動回転する槽中方向転換ローラ64に対応し、
プレ加熱手段は、プレ加熱炉51Pに対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the above-described embodiment, the copper wire corresponds to the to-be-plated wire 1a and the plated wire 1b of the present invention.
The heat treatment means corresponds to the heat treatment furnace 22,
The acid cleaning means corresponds to the acid cleaning tank 31,
The water cleaning means corresponds to the ultrasonic water cleaning tank 41,
The copper wire feed auxiliary process corresponds to the plated wire feed auxiliary process,
The copper wire feed assisting means corresponds to the first feed capstan 91, the second feed capstan 92, and the tank direction changing roller 64 that actively rotates,
The preheating means corresponds to the preheating furnace 51P,
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.
 この発明は、太陽電池のリード線として用いるのに好適な低耐力特性を有する半田メッキ線の製造方法及び製造装置に利用することができる。 The present invention can be used in a method and an apparatus for producing a solder plated wire having low strength characteristics suitable for use as a lead wire of a solar cell.

Claims (33)

  1.  銅線に対してメッキ前処理を行うメッキ前処理手段と、
    銅線の表面に半田メッキを施すメッキ手段と、
    表面にメッキを施した銅線を巻取る巻取り手段とで構成される半田メッキ線の製造装置であって、
    前記メッキ前処理手段に、銅線を軟化焼鈍して低耐力化する軟化焼鈍手段を備え、
    低耐力化した前記銅線を、該銅線の耐力よりも低い巻取り力で前記巻取り手段により巻取る構成とし、
    前記軟化焼鈍手段、前記メッキ手段、及び、前記巻取り手段を、銅線の走行方向の上流側からこの順に一連配置した
    半田メッキ線の製造装置。
    Plating pretreatment means for performing plating pretreatment on copper wire;
    Plating means for performing solder plating on the surface of the copper wire;
    A solder plated wire manufacturing apparatus comprising winding means for winding a copper wire plated on the surface,
    The plating pretreatment means includes a softening annealing means for softening and annealing the copper wire to reduce the strength.
    The copper wire having a reduced yield strength is configured to be wound by the winding means with a winding force lower than the yield strength of the copper wire,
    A solder plated wire manufacturing apparatus in which the softening annealing means, the plating means, and the winding means are sequentially arranged in this order from the upstream side in the traveling direction of the copper wire.
  2.  前記銅線を、純銅系材料で形成し、
    前記軟化焼鈍手段を、内部が前記銅線の表面の酸化層を還元する還元ガス雰囲気である軟化焼鈍炉で構成し、
    前記軟化焼鈍炉を、銅線走行方向の上流側よりも下流側が低位置になるように傾斜配置し、
    前記軟化焼鈍炉における銅線走行方向の下流側部分に、該軟化焼鈍炉に対して還元性ガスの供給を許容する還元ガス供給部を設けた
    請求項1に記載の半田メッキ線の製造装置。
    Forming the copper wire with a pure copper-based material;
    The softening annealing means comprises a softening annealing furnace whose inside is a reducing gas atmosphere that reduces the oxide layer on the surface of the copper wire,
    The softening annealing furnace is inclined so that the downstream side is at a lower position than the upstream side in the copper wire traveling direction,
    The apparatus for manufacturing a solder plated wire according to claim 1, wherein a reducing gas supply unit that allows a reducing gas to be supplied to the softening annealing furnace is provided in a downstream portion of the softening annealing furnace in a running direction of the copper wire.
  3.  前記還元性ガスは、窒素ガスと水素ガスとの混合ガスで構成する
    請求項2に記載の半田メッキ線の製造装置。
    3. The solder plated wire manufacturing apparatus according to claim 2, wherein the reducing gas is composed of a mixed gas of nitrogen gas and hydrogen gas.
  4.  前記窒素ガスと前記水素ガスとの体積比率を、4:1に設定した
    請求項3に記載の半田メッキ線の製造装置。
    The solder plating wire manufacturing apparatus according to claim 3, wherein a volume ratio of the nitrogen gas to the hydrogen gas is set to 4: 1.
  5.  前記メッキ前処理手段に、銅線に対して加熱処理を行う加熱処理手段を備え、
    前記加熱処理手段を前記軟化焼鈍手段よりも銅線走行方向の上流側に配置した
    請求項1から請求項4のうちいずれか1項に記載の半田メッキ線の製造装置。
    The plating pretreatment means includes a heat treatment means for performing a heat treatment on the copper wire,
    The apparatus for manufacturing a solder plated wire according to any one of claims 1 to 4, wherein the heat treatment means is arranged upstream of the softening annealing means in a copper wire traveling direction.
  6.  前記銅線を、純銅系材料で形成し、
    前記メッキ前処理手段に、銅線を洗浄する洗浄手段を備え、
    前記洗浄手段を前記軟化焼鈍手段よりも銅線走行方向の上流側に配置した
    請求項1に記載の半田メッキ線の製造装置。
    Forming the copper wire with a pure copper-based material;
    The plating pretreatment means includes a cleaning means for cleaning the copper wire,
    The apparatus for manufacturing a solder-plated wire according to claim 1, wherein the cleaning means is arranged upstream of the softening annealing means in the copper wire traveling direction.
  7.  前記メッキ前処理手段には、
    前記軟化焼鈍手段よりも銅線走行方向の上流側に、銅線に対して加熱処理を行う加熱処理手段を備え、
    前記加熱処理手段を前記洗浄手段よりも銅線走行方向の上流側に配置した
    請求項6に記載の半田メッキ線の製造装置。
    In the plating pretreatment means,
    On the upstream side of the copper wire running direction from the softening annealing means, provided with a heat treatment means for performing heat treatment on the copper wire,
    The apparatus for manufacturing a solder plated wire according to claim 6, wherein the heat treatment unit is disposed upstream of the cleaning unit in the copper wire traveling direction.
  8.  前記洗浄手段を、酸洗浄手段と水洗浄手段とで構成し、
    前記メッキ前処理手段として、前記加熱処理手段、前記酸洗浄手段、前記水洗浄手段、及び、前記軟化焼鈍手段を銅線走行方向に沿ってこの順に配置した
    請求項7に記載の半田メッキ線の製造装置。
    The cleaning means comprises an acid cleaning means and a water cleaning means,
    The solder plating wire according to claim 7, wherein the heat treatment means, the acid cleaning means, the water cleaning means, and the softening annealing means are arranged in this order along the copper wire traveling direction as the plating pretreatment means. Manufacturing equipment.
  9.  銅線には、長さ方向に対して直交する直交断面における幅が0.8~10mmの範囲内であり、厚みが0.05~0.5mmの範囲内のサイズである平角銅線を用い、銅線の走行速度を、約4.0m/minに設定し、
    前記酸洗浄手段での酸洗浄時間を12.8秒に設定するとともに、水洗浄手段での水洗浄時間を13.5秒に設定した
    請求項7、又は、8に記載の半田メッキ線の製造装置。
    As the copper wire, a rectangular copper wire having a width in the range of 0.8 to 10 mm and a thickness in the range of 0.05 to 0.5 mm in the cross section orthogonal to the length direction is used. Set the traveling speed of the copper wire to about 4.0 m / min,
    9. The method of manufacturing a solder plated wire according to claim 7, wherein the acid cleaning time in the acid cleaning means is set to 12.8 seconds, and the water cleaning time in the water cleaning means is set to 13.5 seconds. apparatus.
  10.  前記銅線を、純銅系材料で形成し、
    前記巻取り手段による銅線の巻取りを補助する銅線送り補助手段を、
    前記巻取り手段よりも銅線走行方向の上流側に備えた
    請求項1に記載の半田メッキ線の製造装置。
    Forming the copper wire with a pure copper-based material;
    Copper wire feed assisting means for assisting winding of the copper wire by the winding means,
    The apparatus for manufacturing a solder-plated wire according to claim 1, which is provided upstream of the winding means in the copper wire traveling direction.
  11.  前記銅線送り補助手段を、
    前記軟化焼鈍手段よりも銅線走行方向の上流側に配置した
    請求項10に記載の半田メッキ線の製造装置。
    The copper wire feeding auxiliary means,
    The apparatus for manufacturing a solder plated wire according to claim 10, wherein the apparatus is disposed upstream of the softening annealing means in a copper wire traveling direction.
  12.  前記銅線送り補助手段を、
    銅線走行方向における前記洗浄手段よりも銅線走行方向の下流側に配置した
    請求項10、又は、11に記載の半田メッキ線の製造装置。
    The copper wire feeding auxiliary means,
    The apparatus for manufacturing a solder plated wire according to claim 10, wherein the solder plated wire is disposed downstream of the cleaning means in the copper wire traveling direction in the copper wire traveling direction.
  13.  前記メッキ手段を、溶融半田メッキ液が貯溜された溶融半田メッキ槽で構成し、
    銅線の走行方向を転換する方向転換ローラを、前記溶融半田メッキ槽の内部に備え、且つ、前記溶融半田メッキ槽を通過前と通過後とで銅線の走行方向を転換する槽中方向転換ローラで構成し、
    前記槽中方向転換ローラを前記銅線送り補助手段で構成した
    請求項10から請求項12のうちいずれか1項に記載の半田メッキ線の製造装置。
    The plating means comprises a molten solder plating tank in which a molten solder plating solution is stored,
    A direction change roller for changing the traveling direction of the copper wire is provided in the molten solder plating tank, and the direction of the copper wire is changed before and after passing through the molten solder plating tank. Composed of rollers,
    The apparatus for manufacturing a solder plated wire according to any one of claims 10 to 12, wherein the tank direction changing roller is constituted by the copper wire feeding auxiliary means.
  14.  前記銅線を、純銅系材料で形成し、
    前記メッキ手段を、溶融半田メッキ液が貯溜された溶融半田メッキ槽で構成し、
    銅線の走行方向を転換する方向転換ローラを、
    前記溶融半田メッキ槽の上方に備えられ、且つ、前記溶融半田メッキ槽を通過後の銅線の走行方向を前記巻取り手段の側へ転換する槽上方向転換ローラで構成し、
    前記巻取り手段において銅線を架け渡す固定ローラのうち、上流側に配置した固定ローラを、該槽上方向転換ローラを通過後の銅線を前記巻取り手段における下流側に案内する巻取り手段上流側配置ローラで構成し、
    前記槽上方向転換ローラを、前記巻取り手段上流側配置ローラの配置高さよりも高い位置に配置した
    請求項1に記載の半田メッキ線の製造装置。
    Forming the copper wire with a pure copper-based material;
    The plating means comprises a molten solder plating tank in which a molten solder plating solution is stored,
    A direction change roller that changes the traveling direction of the copper wire,
    It is provided above the molten solder plating tank, and comprises a tank upper direction changing roller that changes the traveling direction of the copper wire after passing through the molten solder plating tank to the winding means side,
    Of the fixed rollers that bridge the copper wire in the winding means, the winding means that guides the fixed roller disposed on the upstream side to the downstream side of the winding means after passing through the tank upward direction changing roller. Consists of rollers arranged upstream,
    The apparatus for producing a solder plated wire according to claim 1, wherein the tank direction changing roller is disposed at a position higher than the arrangement height of the upstream arrangement roller on the winding means.
  15.  前記槽上方向転換ローラを、前記溶融半田メッキ槽に貯溜した溶融半田メッキ液の液面に対する高さが約3mとなる位置に配置した
    請求項14に記載の半田メッキ線の製造装置。
    15. The apparatus for producing a solder plated wire according to claim 14, wherein the tank direction changing roller is disposed at a position where the height of the molten solder plating solution stored in the molten solder plating tank is about 3 m with respect to the liquid surface.
  16.  前記メッキ手段を、溶融半田メッキ液が貯溜された溶融半田メッキ槽で構成し、
    銅線の走行方向を転換する方向転換ローラを、前記溶融半田メッキ槽の内部に備えられ、且つ、前記溶融半田メッキ槽を通過前と通過後とで銅線の走行方向を転換する槽中方向転換ローラで構成し、
    前記槽中方向転換ローラを、前記巻取り手段による銅線の巻取りを補助する銅線送り補助手段で構成した
    請求項14、又は、15に記載の半田メッキ線の製造装置。
    The plating means comprises a molten solder plating tank in which a molten solder plating solution is stored,
    A direction change roller for changing the traveling direction of the copper wire is provided inside the molten solder plating tank, and the inside direction of the tank changes the traveling direction of the copper wire before and after passing through the molten solder plating tank. Composed of conversion rollers,
    16. The apparatus for producing a solder plated wire according to claim 14, wherein the tank direction changing roller is constituted by a copper wire feeding auxiliary means for assisting winding of the copper wire by the winding means.
  17.  前記銅線を、純銅系材料で形成し、
    前記メッキ手段では、
    銅線を薄メッキでメッキする薄メッキ設定と、薄メッキ設定の場合のメッキ厚よりも厚いメッキ厚となる厚メッキ設定とのうち、いずれかの設定で行い、
    前記薄メッキ設定を、銅線を走行させる速度を低速走行速度の下で銅線に対してメッキを施す設定とし、
    前記厚メッキ設定を、銅線を走行させる速度が前記低速走行速度よりも高速である高速走行速度の下で銅線に対してメッキを施す設定とするとともに、
    前記高速走行速度において半田温度とメッキ厚との所定の関係に基づいて前記半田温度に応じたメッキ厚で銅線にメッキを施す設定にすることを特徴とする
    請求項1に記載の半田メッキ線の製造装置。
    Forming the copper wire with a pure copper-based material;
    In the plating means,
    It is done by either setting of thin plating setting to plate copper wire with thin plating or thick plating setting that is thicker than the plating thickness in the case of thin plating setting,
    The thin plating setting is a setting for plating a copper wire under a low traveling speed at a traveling speed of the copper wire,
    The thick plating setting is set to perform plating on the copper wire under a high speed traveling speed in which the speed of traveling the copper wire is higher than the low speed traveling speed,
    2. The solder plated wire according to claim 1, wherein the copper wire is plated with a plating thickness corresponding to the solder temperature based on a predetermined relationship between the solder temperature and the plating thickness at the high-speed traveling speed. Manufacturing equipment.
  18.  前記洗浄手段と前記軟化焼鈍手段との間に、該軟化焼鈍手段を通過する直前の銅線を加熱するプレ加熱手段を備え、
    前記メッキ手段での設定が前記厚メッキ設定において、
    前記メッキ手段は、前記プレ加熱手段と前記軟化焼鈍手段とを通過後の銅線に対してメッキを施すことを特徴とする
    請求項17に記載の半田メッキ線の製造装置。
    A preheating means for heating the copper wire immediately before passing through the softening annealing means is provided between the cleaning means and the softening annealing means,
    The setting in the plating means is the thick plating setting,
    The solder plating wire manufacturing apparatus according to claim 17, wherein the plating means performs plating on the copper wire after passing through the preheating means and the softening annealing means.
  19.  銅線に対してメッキ前処理を行うメッキ前処理工程と、
    銅線の表面に半田メッキを施すメッキ工程と、
    表面にメッキを施した銅線を巻取る巻取り工程とを経て製造される半田メッキ線の製造方法であって、
    前記メッキ前処理工程では、銅線を軟化焼鈍して低耐力化する軟化焼鈍工程を行い、
    前記巻取り工程を、
    低耐力化した前記銅線の耐力よりも低い巻取り力で巻取る工程とし、
    前記巻取り工程の間、前記軟化焼鈍工程と前記メッキ工程とを連続して行う
    半田メッキ線の製造方法。
    A pre-plating process for pre-plating copper wires;
    A plating process for solder plating on the surface of the copper wire;
    A method of manufacturing a solder plated wire manufactured through a winding step of winding a copper wire plated on the surface,
    In the plating pretreatment process, a softening annealing process is performed in which the copper wire is softened and annealed to reduce strength.
    The winding step,
    As a process of winding with a lower winding strength than the strength of the copper wire having reduced strength,
    A method for producing a solder plated wire, wherein the softening annealing step and the plating step are continuously performed during the winding step.
  20.  前記銅線には、純銅系材料で形成したものを用い、
    前記軟化焼鈍工程では、
    走行方向の上流側よりも下流側が低位置になるように傾斜配置した軟化焼鈍炉に、走行方向の下流側に設けた還元ガス供給部から前記銅線の表面の酸化層を還元する還元性ガスを供給し、
    前記軟化焼鈍炉の内部を還元性ガス雰囲気とし、該軟化焼鈍炉に前記銅線を走行させる
    請求項19に記載の半田メッキ線の製造方法。
    For the copper wire, one made of a pure copper-based material is used,
    In the softening annealing step,
    A reducing gas that reduces the oxide layer on the surface of the copper wire from a reducing gas supply section provided on the downstream side in the traveling direction in a soft annealing furnace that is inclined so that the downstream side is lower than the upstream side in the traveling direction. Supply
    The method for producing a solder-plated wire according to claim 19, wherein the softening annealing furnace has a reducing gas atmosphere, and the copper wire runs in the softening annealing furnace.
  21.  前記還元性ガスは、窒素ガスと水素ガスとの混合ガスで構成する
    請求項20に記載の半田メッキ線の製造方法。
    21. The method of manufacturing a solder plated wire according to claim 20, wherein the reducing gas is composed of a mixed gas of nitrogen gas and hydrogen gas.
  22.  前記窒素ガスと前記水素ガスとの体積比率を、4:1に設定した
    請求項21に記載の半田メッキ線の製造方法。
    The method for manufacturing a solder plated wire according to claim 21, wherein a volume ratio of the nitrogen gas to the hydrogen gas is set to 4: 1.
  23.  前記メッキ前処理工程において、
    前記軟化焼鈍工程の前に銅線に対して加熱処理工程を行う
    請求項19から請求項22のうちいずれか1項に記載の半田メッキ線の製造方法。
    In the plating pretreatment step,
    The method for manufacturing a solder plated wire according to any one of claims 19 to 22, wherein a heat treatment step is performed on the copper wire before the softening annealing step.
  24.  前記銅線には、純銅系材料で形成したものを用い、
    前記メッキ前処理工程において、前記軟化焼鈍工程の前に、銅線を洗浄する洗浄工程を行う
    請求項19に記載の半田メッキ線の製造方法。
    For the copper wire, one made of a pure copper-based material is used,
    The method for manufacturing a solder plated wire according to claim 19, wherein, in the plating pretreatment step, a washing step of washing the copper wire is performed before the softening annealing step.
  25.  前記メッキ前処理工程には、前記軟化焼鈍工程の前に銅線に対して加熱処理を行う加熱処理工程を含み、
    前記加熱処理工程を前記洗浄工程の前に行う
    請求項24に記載の半田メッキ線の製造方法。
    The plating pretreatment step includes a heat treatment step of performing heat treatment on the copper wire before the softening annealing step,
    The method for manufacturing a solder plated wire according to claim 24, wherein the heat treatment step is performed before the cleaning step.
  26.  前記洗浄工程には、酸洗浄工程と水洗浄工程とを備え、
    前記メッキ前処理工程において、前記加熱処理工程、前記酸洗浄工程、前記水洗浄工程、及び、前記軟化焼鈍工程を、この順で行う
    請求項25に記載の半田メッキ線の製造方法。
    The washing step includes an acid washing step and a water washing step,
    26. The method for manufacturing a solder plated wire according to claim 25, wherein in the pre-plating process, the heat treatment process, the acid cleaning process, the water cleaning process, and the softening annealing process are performed in this order.
  27.  銅線には、長さ方向に対して直交する直交断面における幅が0.8~10mmの範囲内であり、厚みが0.05~0.5mmの範囲内のサイズである平角銅線を用い、銅線の走行速度を、約4.0m/minに設定し、
    前記酸洗浄工程での酸洗浄時間を約12.8秒に設定するとともに、水洗浄工程での水洗浄時間を約13.5秒に設定した
    請求項25、又は、26に記載の半田メッキ線の製造方法。
    As the copper wire, a rectangular copper wire having a width in the range of 0.8 to 10 mm and a thickness in the range of 0.05 to 0.5 mm in the cross section orthogonal to the length direction is used. Set the traveling speed of the copper wire to about 4.0 m / min,
    27. The solder plated wire according to claim 25 or 26, wherein the acid cleaning time in the acid cleaning step is set to about 12.8 seconds, and the water cleaning time in the water cleaning step is set to about 13.5 seconds. Manufacturing method.
  28.  前記銅線には、純銅系材料で形成したものを用い、
    前記巻取り工程を行う間、該巻取り工程で行う銅線の巻取りを補助する銅線送り補助工程を行う
    請求項19に記載の半田メッキ線の製造方法。
    For the copper wire, one made of a pure copper-based material is used,
    The method of manufacturing a solder plated wire according to claim 19, wherein a copper wire feeding assisting step for assisting winding of the copper wire performed in the winding step is performed during the winding step.
  29.  前記銅線には、純銅系材料で形成したものを用い、
    前記メッキ工程後に、前記溶融半田メッキ槽の上方であって、前記巻取り手段の上流側に配置され、該槽上方向転換ローラを通過後の銅線を前記巻取り手段における下流側に案内する巻取り手段上流側配置ローラの配置高さよりも高い位置に配置した槽上方向転換ローラによって、前記溶融半田メッキ槽を通過後の銅線の走行方向を前記巻取り手段上流側配置ローラの側へ方向転換する
    請求項19に記載の半田メッキ線の製造方法。
    For the copper wire, one made of a pure copper-based material is used,
    After the plating step, the copper wire is disposed above the molten solder plating tank and upstream of the winding means, and guides the copper wire after passing through the tank upward direction changing roller to the downstream side of the winding means. The traveling direction of the copper wire after passing through the molten solder plating tank is moved toward the winding means upstream arrangement roller by the tank upward direction changing roller arranged at a position higher than the arrangement height of the winding arrangement upstream arrangement roller. 20. The method for manufacturing a solder plated wire according to claim 19, wherein the direction is changed.
  30.  前記銅線には、純銅系材料で形成したものを用い、
    前記メッキ工程では、
    銅線を薄メッキでメッキする薄メッキ設定と、薄メッキ設定の場合のメッキ厚よりも厚いメッキ厚となる厚メッキ設定とのうち、いずれかの設定で行い、
    前記薄メッキ設定を、銅線を走行させる速度を低速走行速度の下で銅線にメッキを施す設定とし、
    前記厚メッキ設定を、銅線を走行させる速度を、前記低速走行速度よりも高速である高速走行速度の下でメッキを施す設定とし、
    前記高速走行速度において半田温度とメッキ厚との所定の関係に基づいて、前記半田温度に応じたメッキ厚で銅線に対してメッキを施す設定とすることを特徴とする
    請求項19に記載の半田メッキ線の製造方法。
    For the copper wire, one made of a pure copper-based material is used,
    In the plating step,
    It is done by either setting of thin plating setting to plate copper wire with thin plating or thick plating setting that is thicker than the plating thickness in the case of thin plating setting,
    The thin plating setting is a setting for plating the copper wire under a low traveling speed at a speed for running the copper wire,
    The thick plating setting, the speed at which the copper wire travels is set to perform plating under a high speed traveling speed that is higher than the low speed traveling speed,
    The copper wire is set to be plated with a plating thickness corresponding to the solder temperature based on a predetermined relationship between the solder temperature and the plating thickness at the high-speed traveling speed. A method for producing solder plated wires.
  31.  前記低速走行速度を約4m/min程度に設定し、
    高速走行速度を約13m/min程度に設定した
    請求項30に記載の半田メッキ線の製造方法。
    Set the low-speed running speed to about 4 m / min,
    The method for manufacturing a solder plated wire according to claim 30, wherein the high-speed running speed is set to about 13 m / min.
  32.  前記高速走行速度において、前記半田温度を約240℃程度に設定した
    請求項30、又は31に記載の半田メッキ線の製造方法。
    32. The method of manufacturing a solder plated wire according to claim 30, wherein the solder temperature is set to about 240 ° C. at the high traveling speed.
  33.  前記メッキ工程を、前記厚メッキ設定で行うとき、
    前記洗浄工程と前記軟化焼鈍工程との間に、該軟化焼鈍工程を行う直前の銅線を加熱するプレ加熱工程を行い、
    前記プレ加熱工程後に前記軟化焼鈍工程を行った銅線に対して前記メッキ工程を行う
    請求項30から請求項32のうちいずれか1項に記載の半田メッキ線の製造方法。
    When performing the plating step at the thick plating setting,
    Between the washing step and the softening annealing step, a preheating step of heating the copper wire immediately before the softening annealing step is performed,
    The method for producing a solder plated wire according to any one of claims 30 to 32, wherein the plating step is performed on the copper wire that has been subjected to the soft annealing step after the preheating step.
PCT/JP2011/063008 2010-06-11 2011-06-07 Process and apparatus for producing solder-plated wire WO2011155477A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157011359A KR101630309B1 (en) 2010-06-11 2011-06-07 Process and apparatus for producing solder-plated wire
KR1020127031634A KR101541790B1 (en) 2010-06-11 2011-06-07 Process and apparatus for producing solder-plated wire
CN201180028866.8A CN102939402B (en) 2010-06-11 2011-06-07 Process and apparatus for producing solder-plated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010133533 2010-06-11
JP2010-133533 2010-06-11

Publications (1)

Publication Number Publication Date
WO2011155477A1 true WO2011155477A1 (en) 2011-12-15

Family

ID=45098082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063008 WO2011155477A1 (en) 2010-06-11 2011-06-07 Process and apparatus for producing solder-plated wire

Country Status (5)

Country Link
JP (5) JP5367752B2 (en)
KR (2) KR101541790B1 (en)
CN (1) CN102939402B (en)
TW (1) TWI558847B (en)
WO (1) WO2011155477A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147721A (en) * 2012-01-23 2013-08-01 Mitsubishi Cable Ind Ltd Method for producing lead wire for solar cell and lead wire for solar cell
EP3428304A4 (en) * 2016-03-11 2019-11-27 Nisshin Steel Co., Ltd. Production method for molten-aluminum-plated copper wire
CN113930592A (en) * 2021-09-22 2022-01-14 江西腾江铜业有限公司 Annealing device is used in tinned wire processing
CN114807585A (en) * 2022-06-28 2022-07-29 常州九天新能源科技有限公司 Ultra-thin welding strip annealing equipment for laminated tile assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367752B2 (en) * 2010-06-11 2013-12-11 古河電気工業株式会社 Solder plated wire manufacturing method and manufacturing apparatus
WO2016157357A1 (en) 2015-03-30 2016-10-06 千住金属工業株式会社 Flux coating device and solder
JP6750263B2 (en) * 2016-03-18 2020-09-02 富士電機株式会社 Power semiconductor module
JP6476227B2 (en) * 2017-03-31 2019-02-27 Jx金属株式会社 Copper or copper alloy strip, traverse coil and manufacturing method thereof
CN107904367A (en) * 2017-11-29 2018-04-13 苏州金钜松机电有限公司 A kind of filament annealing component
WO2022085207A1 (en) * 2020-10-24 2022-04-28 アートビーム有限会社 Solder coating device and solder coating method
JP7409580B1 (en) 2022-07-25 2024-01-09 Jfeスチール株式会社 Furnace temperature control device, furnace temperature control method, and coke manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138891Y2 (en) * 1972-10-03 1976-09-24
JPS6267124A (en) * 1985-09-18 1987-03-26 Hitachi Cable Ltd Annealing apparatus for wire rod
JPH0397841A (en) * 1989-09-11 1991-04-23 Mitsubishi Electric Corp Soldered product for copper alloy
JPH055169A (en) * 1990-09-20 1993-01-14 Totoku Electric Co Ltd Production of hot-dip coated wire
JPH0533109A (en) * 1991-07-30 1993-02-09 Furukawa Electric Co Ltd:The Production of hot-dipped material
JPH05115902A (en) * 1991-10-28 1993-05-14 Kawasaki Steel Corp Method for cold rolling shutter material for disk cassette
JPH083713A (en) * 1994-06-14 1996-01-09 Totoku Electric Co Ltd Manufacture of hot-dip coated wire
JPH11179422A (en) * 1997-12-22 1999-07-06 Nkk Corp Method for controlling shape of thin steel strip
JP2000282206A (en) * 1999-03-30 2000-10-10 Hitachi Cable Ltd Production of metal-plated wire rod and apparatus therefor
JP2004313881A (en) * 2003-04-14 2004-11-11 Toyobo Co Ltd Winding method for hollow fiber membrane and hollow fiber membrane
JP2006054355A (en) * 2004-08-13 2006-02-23 Hitachi Cable Ltd Rectangular conductor for solar cell, its manufacturing method and lead wire for solar cell

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114138A (en) * 1974-07-25 1976-02-04 Chugai Ro Kogyo Kaisha Ltd RENZOKUAENMETSUKISETSUBINIOKERU AENJOKINO JOKYOHOHOOYOBISONO SOCHI
FR2280920A1 (en) * 1974-08-03 1976-02-27 Philips Nv RADIOSCOPIC FILM CASSETTE
JPS5187436A (en) * 1975-01-30 1976-07-31 Nippon Steel Corp NETSUSEKI KINZOKUMETSUKIHO
JPS6164862A (en) * 1984-09-04 1986-04-03 Hitachi Cable Ltd Continuous wire drawing, annealing and plating method and device therefor
JPH0615709B2 (en) * 1984-11-15 1994-03-02 日立電線株式会社 Thickening method for metal materials
JPH02129355A (en) * 1988-11-08 1990-05-17 Furukawa Electric Co Ltd:The Hot dipping method for wire
JPH02185958A (en) * 1989-01-13 1990-07-20 Furukawa Electric Co Ltd:The Production of wire plated with metal by hot dipping
JPH07106412B2 (en) * 1990-03-20 1995-11-15 株式会社フジクラ High conductivity copper coated steel trolley wire manufacturing method
US5472739A (en) * 1990-09-20 1995-12-05 Totoku Electric Co., Ltd. Process of producing a hot dipped wire from a base wire, with the absence of iron-based, iron oxide-based and iron hydroxide-based minute particles on surfaces of the base wire
JPH04293757A (en) * 1991-03-23 1992-10-19 Totoku Electric Co Ltd Production of flat square coated wire
JPH05315502A (en) * 1992-05-07 1993-11-26 Hitachi Cable Ltd Method and device for plating slender rod of irregular shape
JP3005742B2 (en) * 1995-01-27 2000-02-07 東京特殊電線株式会社 Method for manufacturing tin-covered rectangular copper wire
JPH11302811A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp In-furnace atmosphere gas controller for continuous galvanizing equipment
JP2000080460A (en) 1998-06-29 2000-03-21 Totoku Electric Co Ltd Soldered wire
JP2953660B1 (en) * 1998-10-16 1999-09-27 川崎重工業株式会社 Drive structure of sink roll for hot-dip plating
US7754973B2 (en) * 2004-05-21 2010-07-13 Neomax Materials Co., Ltd. Electrode wire for solar cell
JP2006144104A (en) * 2004-11-24 2006-06-08 Nippon Steel Corp Apparatus and method for continuously annealing steel sheet for hot dip galvanizing
JP4780008B2 (en) * 2006-12-14 2011-09-28 日立電線株式会社 Plating wire for solar cell and manufacturing method thereof
JP5038765B2 (en) * 2006-12-14 2012-10-03 日立電線株式会社 Solder-plated wire for solar cell and manufacturing method thereof
JP5073386B2 (en) * 2007-07-05 2012-11-14 株式会社Neomaxマテリアル ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
KR100924317B1 (en) * 2009-03-09 2009-11-02 주식회사 월드비씨 Wire making apparatus for pv module and making method
JP5367752B2 (en) * 2010-06-11 2013-12-11 古河電気工業株式会社 Solder plated wire manufacturing method and manufacturing apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138891Y2 (en) * 1972-10-03 1976-09-24
JPS6267124A (en) * 1985-09-18 1987-03-26 Hitachi Cable Ltd Annealing apparatus for wire rod
JPH0397841A (en) * 1989-09-11 1991-04-23 Mitsubishi Electric Corp Soldered product for copper alloy
JPH055169A (en) * 1990-09-20 1993-01-14 Totoku Electric Co Ltd Production of hot-dip coated wire
JPH0533109A (en) * 1991-07-30 1993-02-09 Furukawa Electric Co Ltd:The Production of hot-dipped material
JPH05115902A (en) * 1991-10-28 1993-05-14 Kawasaki Steel Corp Method for cold rolling shutter material for disk cassette
JPH083713A (en) * 1994-06-14 1996-01-09 Totoku Electric Co Ltd Manufacture of hot-dip coated wire
JPH11179422A (en) * 1997-12-22 1999-07-06 Nkk Corp Method for controlling shape of thin steel strip
JP2000282206A (en) * 1999-03-30 2000-10-10 Hitachi Cable Ltd Production of metal-plated wire rod and apparatus therefor
JP2004313881A (en) * 2003-04-14 2004-11-11 Toyobo Co Ltd Winding method for hollow fiber membrane and hollow fiber membrane
JP2006054355A (en) * 2004-08-13 2006-02-23 Hitachi Cable Ltd Rectangular conductor for solar cell, its manufacturing method and lead wire for solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147721A (en) * 2012-01-23 2013-08-01 Mitsubishi Cable Ind Ltd Method for producing lead wire for solar cell and lead wire for solar cell
EP3428304A4 (en) * 2016-03-11 2019-11-27 Nisshin Steel Co., Ltd. Production method for molten-aluminum-plated copper wire
CN113930592A (en) * 2021-09-22 2022-01-14 江西腾江铜业有限公司 Annealing device is used in tinned wire processing
CN114807585A (en) * 2022-06-28 2022-07-29 常州九天新能源科技有限公司 Ultra-thin welding strip annealing equipment for laminated tile assembly

Also Published As

Publication number Publication date
JP2012017518A (en) 2012-01-26
JP2012017517A (en) 2012-01-26
KR20150055098A (en) 2015-05-20
TWI558847B (en) 2016-11-21
KR101541790B1 (en) 2015-08-05
JP5367753B2 (en) 2013-12-11
JP2012017516A (en) 2012-01-26
JP5367752B2 (en) 2013-12-11
JP5367754B2 (en) 2013-12-11
JP2012017523A (en) 2012-01-26
CN102939402B (en) 2014-12-10
JP5255668B2 (en) 2013-08-07
KR101630309B1 (en) 2016-06-14
JP2012017515A (en) 2012-01-26
JP5255673B2 (en) 2013-08-07
TW201211309A (en) 2012-03-16
KR20130040899A (en) 2013-04-24
CN102939402A (en) 2013-02-20

Similar Documents

Publication Publication Date Title
WO2011155477A1 (en) Process and apparatus for producing solder-plated wire
CN101820000B (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
JP5976434B2 (en) Method for producing oxygen-free copper rod
US20180240930A1 (en) Method and apparatus for manufacturing lead wire for solar cell
JP2010027867A (en) Lead wire for solar cell, and method of manufacturing same
JP2007070729A (en) Apparatus for manufacturing steel pipe, and manufacturing method
JP2010016320A (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
JPWO2012111185A1 (en) Solder-plated copper wire and manufacturing method thereof
JP2011231342A (en) Heat treatment method of conductor for cable
JP2019049077A (en) Method of producing carbon nanotube wire
JP5831104B2 (en) Apparatus and method for removing surface deposits on roll in molten metal plating bath
JP4570581B2 (en) Metal plating material reflow processing method, metal plating material and metal plating material reflow processing apparatus
US11835294B2 (en) Heat treatment furnace, heating device, manufacturing method of wire electrode and heat diffusion treatment method
JP2717920B2 (en) Manufacturing method of tin-plated copper alloy spring wire
WO2012063396A1 (en) Plated wire material, production method for same, and production device
JP2013179031A (en) Lead wire for solar cell, manufacturing method of the same, and solar cell using the same
JP2013201182A (en) Method for manufacturing palladium coated copper bonding wire
JPH07252540A (en) Manufacture of bonding wire and manufacturing device therefor
JP2013000835A (en) Wire for wire saw

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028866.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127031634

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792434

Country of ref document: EP

Kind code of ref document: A1