JPH0633165A - Manufacture of sintered titanium alloy - Google Patents

Manufacture of sintered titanium alloy

Info

Publication number
JPH0633165A
JPH0633165A JP4194319A JP19431992A JPH0633165A JP H0633165 A JPH0633165 A JP H0633165A JP 4194319 A JP4194319 A JP 4194319A JP 19431992 A JP19431992 A JP 19431992A JP H0633165 A JPH0633165 A JP H0633165A
Authority
JP
Japan
Prior art keywords
powder
titanium
alloy
sintering
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4194319A
Other languages
Japanese (ja)
Inventor
Tatsuo Yamazaki
達夫 山崎
Hideki Fujii
秀樹 藤井
Kazuhiro Takahashi
一浩 高橋
Michio Tamura
道夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4194319A priority Critical patent/JPH0633165A/en
Publication of JPH0633165A publication Critical patent/JPH0633165A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered titanium alloy at an inexpensive manufacturing cost without deteriorating the characteristics of the alloy. CONSTITUTION:At the time of manufacturing the sintered titanium alloy by a powder stock mixing method, instead of Ti powder, the one obtd. by blending Ti powder, (Ti-H) alloy powder and TiH2 powder so as to regulate the mass ratio of H to Ti to 0.002 to <0.030 is added and mixed with the powder of alloy components, and the compacting of a green compact is executed by CIP (cold isotropic pressing) or the like. Next, the green compact is subjected to vacuum sintering or sintering in an inert atmosphere. Or, after the sintering, furthermore, HIP treatment is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は焼結チタン合金の製造方
法に関する。さらに詳しくは、素粉末混合法による焼結
チタン合金の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing a sintered titanium alloy. More specifically, the present invention relates to a method for producing a sintered titanium alloy by the elementary powder mixing method.

【0002】[0002]

【従来の技術】粉末冶金法は、材料を最終形状に近い形
状にまで造形できるため、加工性や成形性あるいは被削
性の乏しいチタン合金等の製品を得るための製造法とし
て適している。とりわけ、純チタン粉末と合金化用添加
粉末を機械的に混合して、プレスもしくはCIP(冷間
等方圧成形)にて所定形状に成形し、真空もしくは不活
性ガス雰囲気中で焼結および合金化熱処理を同時に行
い、その後必要に応じてHIP(熱間等方圧成形)や鍛
造等の高密度化処理を行う素粉末混合法は、焼結以前
には軟質なチタン粉末が原料の大部分を占めるので良好
な成形性を有し、室温において精密な形状の圧粉体を製
造し得る。素材粉末の混合比を変えて、組成の異なる
各種の合金を製造することができる。などの利点を持っ
ている。
2. Description of the Related Art The powder metallurgy method is suitable as a manufacturing method for obtaining a product such as a titanium alloy having poor workability, formability, or machinability, since the material can be formed into a shape close to the final shape. In particular, pure titanium powder and additive powder for alloying are mechanically mixed and formed into a predetermined shape by press or CIP (cold isotropic pressure forming), and sintered and alloyed in a vacuum or an inert gas atmosphere. The raw powder mixing method, in which the chemical heat treatment is performed at the same time, and then the densification treatment such as HIP (hot isostatic pressing) and forging is performed if necessary, is that soft titanium powder is used as a raw material in most of the raw materials before sintering. Since it has a good moldability, it is possible to produce a green compact having a precise shape at room temperature. Various alloys having different compositions can be manufactured by changing the mixing ratio of the raw material powders. Have such advantages.

【0003】原料であるチタン粉末としては、廉価なも
のとして、ハンター法によるスポンジチタンの製造時に
発生する粉末である、いわゆるスポンジファインの使用
が考えられる。しかしスポンジファインは多量の塩素を
含有しており、真空熱処理工程では十分な塩素の除去が
できないため、製品中に残留する塩素に起因する多量の
空孔が発生し、その結果、焼結チタン合金の機械的特性
の劣化を招く。したがって素粉末混合法においてスポン
ジファイン粉末を原料粉末として使用することは、チタ
ン合金の優れた特性を活かしているとは言えない。この
ように、原料であるチタン粉末は塩素含有量が低いこと
が必須であり、現状ではチタン粉末は純チタンインゴッ
トの粉砕により得られている。
As the titanium powder as a raw material, it is possible to use, as an inexpensive material, so-called sponge fine, which is a powder generated during the production of titanium sponge by the Hunter method. However, sponge fine contains a large amount of chlorine and cannot be removed sufficiently in the vacuum heat treatment process, so a large amount of vacancies are generated due to residual chlorine in the product. Causes deterioration of mechanical properties of the. Therefore, the use of sponge fine powder as a raw material powder in the elementary powder mixing method cannot be said to take advantage of the excellent properties of titanium alloys. As described above, it is essential that the titanium powder as a raw material has a low chlorine content, and at present, the titanium powder is obtained by crushing a pure titanium ingot.

【0004】しかしながら、純チタンは延性が良好で、
通常の機械的な方法では粉砕が困難である。そこで、チ
タン粉末の製造には、チタンの脆化を目的として水素化
処理を行い、所定粒子径に粉砕を行った後、さらに脱水
素熱処理を行うというHDH処理を施す必要がある。こ
のHDH処理は、チタン粉末の水素量を通常のチタン合
金の水素含有量である、0.02重量%以下にまで脱水
素するのに、6〜20時間にわたる長時間の真空熱処理
が必要であり、非常に高価な原料となっている。
However, pure titanium has good ductility,
Grinding is difficult with normal mechanical methods. Therefore, in the production of titanium powder, it is necessary to perform an HDH treatment in which hydrogenation treatment is performed for the purpose of embrittlement of titanium, pulverization is performed to a predetermined particle size, and then dehydrogenation heat treatment is further performed. This HDH treatment requires a long-time vacuum heat treatment for 6 to 20 hours in order to dehydrogenate the hydrogen content of the titanium powder to 0.02% by weight or less, which is the hydrogen content of a normal titanium alloy. , Is a very expensive raw material.

【0005】したがって、このような原料粉末を使用し
ている素粉末混合法によるチタン合金の製造コストは極
めて高価であり、コストの低減が要請されている。
Therefore, the production cost of the titanium alloy by the elementary powder mixing method using such raw material powder is extremely high, and it is required to reduce the cost.

【0006】一方、「Powder Metallurgy Internationa
l 誌」(1974年発行)No.2、第66頁に記載されている
ように、焼結純チタン材においては原料粉末に水素化チ
タン粉末や水素化チタン粉末とチタン粉末の混合粉末を
使用し、脱水素工程と焼結工程を同時に行う方法があ
る。この方法では、脱水素工程を行わない安価な水素化
チタン粉末を使用でき、なお熱処理工程が1工程省略で
きるのでチタン合金の特性に悪影響を及ぼす酸素による
汚染が軽減される利点がある。さらに、水素化チタン粉
末に含まれる多量の転位によりチタンの拡散が活性化さ
れ、チタン粉末のみを使用した場合より低温短時間で焼
結が進行する利点がある。
On the other hand, "Powder Metallurgy Internationa
As described in “L Magazine” (issued in 1974), No. 2, p. 66, titanium hydride powder or mixed powder of titanium hydride powder and titanium powder is used as raw material powder in sintered pure titanium material. However, there is a method of simultaneously performing the dehydrogenation step and the sintering step. In this method, an inexpensive titanium hydride powder that does not undergo a dehydrogenation step can be used, and since one heat treatment step can be omitted, there is an advantage that contamination by oxygen that adversely affects the characteristics of the titanium alloy can be reduced. Further, there is an advantage that the diffusion of titanium is activated by a large amount of dislocations contained in the titanium hydride powder, and the sintering proceeds at a low temperature in a short time as compared with the case where only the titanium powder is used.

【0007】しかしながら、この方法は、素粉末混合法
による焼結チタン合金の製造方法には直接的用はできな
い。その理由は以下に述べる通りである。まず、チタン
合金は、Al,V,Fe,MoなどのTi以外の元素を
多量に含み、これらの合金元素は水素と強く相互作用す
る。このため、水素を含む原料粉末を使用した焼結チタ
ン合金の製造は、焼結純チタンの製造に比べ、脱水素熱
処理に非常に長い時間が必要となる。この時一部の水素
は焼結の進行に従って、素材内部に残存する空孔にガス
として閉じ込められる。素材中に閉じ込められた水素ガ
スは、昇温および脱水素によるガス圧力の上昇に伴い、
再び素材に溶け込み、材料表面から抜け出るという過程
を経なくては素材の外部に排出されないため、脱水素に
さらに時間がかかることになる。同時に水素ガスの圧力
のため素材内部の空孔の消滅が遅れ、焼結の進行が阻害
される。さらに焼結時に抜けきれず素材中に残留した水
素は、チタン合金を脆化させるなど特性に悪影響を及ぼ
す。
However, this method cannot be directly applied to the method for producing a sintered titanium alloy by the elementary powder mixing method. The reason is as described below. First, the titanium alloy contains a large amount of elements other than Ti such as Al, V, Fe and Mo, and these alloy elements interact strongly with hydrogen. Therefore, in the production of a sintered titanium alloy using a raw material powder containing hydrogen, the dehydrogenation heat treatment requires a very long time as compared with the production of sintered pure titanium. At this time, a part of hydrogen is confined as gas in the pores remaining inside the material as the sintering progresses. The hydrogen gas trapped in the material increases with increasing gas pressure due to temperature rise and dehydrogenation.
It takes more time to dehydrogenate because it is not discharged to the outside of the material unless it goes through the process of melting into the material again and escaping from the surface of the material. At the same time, the pressure of hydrogen gas delays the disappearance of pores inside the material, which hinders the progress of sintering. Further, hydrogen that cannot be completely removed during sintering and remains in the material has an adverse effect on properties such as embrittlement of the titanium alloy.

【0008】[0008]

【発明が解決しようとする課題】本発明は、素粉末混合
法により焼結チタン合金を製造するにあたり、本来チタ
ン合金の有する優れた特性を損なうことなく、なおかつ
安価な製造コストで製造するための方法を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION In producing a sintered titanium alloy by the elementary powder mixing method, the present invention is intended to produce it at a low production cost without deteriorating the excellent characteristics originally possessed by the titanium alloy. The purpose is to provide a method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明は、 (1)素粉末混合法によって焼結チタン合金を製造する
方法において、チタン粉末の代わりに、チタン粉末及び
(Ti−H)合金粉末及び水素化チタン粉末を用いて水
素:チタンが質量比で0.002以上で0.030未満
となるように配合した粉末を原料粉末として使用するこ
とを特徴とする。 (2)上記(1)の処理により配合された粉末を原料粉
末として使用し、圧粉体の成形を300MPa 以上で60
0MPa 以下の圧力でCIP(冷間等方圧成形)により行
うことを特徴とする。 (3)上記(2)の処理により作製された圧粉体を、焼
結後HIP(熱間等方圧成形)処理を行うことを特徴と
するものである。
In order to achieve the above object, the present invention provides (1) a method for producing a sintered titanium alloy by an elemental powder mixing method, wherein titanium powder and (Ti- H) An alloy powder and a titanium hydride powder are used as a raw material powder, which is a mixture of hydrogen and titanium in a mass ratio of 0.002 or more and less than 0.030. (2) Using the powder compounded by the above process (1) as the raw material powder, the green compact is molded at a pressure of 300 MPa or more at 60 MPa.
It is characterized by performing CIP (cold isotropic pressure forming) at a pressure of 0 MPa or less. (3) The method is characterized in that the green compact produced by the treatment of (2) above is subjected to HIP (hot isostatic pressing) treatment after sintering.

【0010】本発明において、水素化チタン粉末とは、
チタン中に3.0重量%以上の水素を含有する粉末であ
り、この粉末の大部分はTiH2 が占める。また(Ti
−H)合金粉末とは、チタン中の水素含有量が0.2重
量%以上3.0重量%未満の粉末で、α−Ti相とTi
2 相の2相を主相とする粉末であり、例えばTi−1
%H,Ti−2%H等の合金粉末をいう。配合した粉末
とはチタン粉末および水素化チタン粉末および(Ti−
H)合金粉末のうち1種類もしくは2種類以上を混合
し、チタン以外に水素を含んだ状態の混合粉末であり、
本発明中においては、(Ti−H)合金1種類のみを使
用した場合や、チタンと(Ti−H)合金、チタンと水
素化チタン粉末などの2種類の粉末を配合した場合や、
さらにチタンと(Ti−H)合金と水素化チタン粉末と
3種類以上の粉末を配合した場合など、いずれの配合を
使用しても良い。なお、水素:チタンの質量比0.00
2とは、水素量で換算した場合0.2重量%に相当し、
0.030とは2.6重量%に相当する。
In the present invention, the titanium hydride powder means
It is a powder containing 3.0% by weight or more of hydrogen in titanium, and TiH 2 occupies most of this powder. Also (Ti
-H) alloy powder is a powder in which the hydrogen content in titanium is 0.2% by weight or more and less than 3.0% by weight, and the α-Ti phase and Ti
It is a powder having two phases of H 2 phase as a main phase, for example, Ti-1
% H, Ti-2% H, and other alloy powders. The blended powders are titanium powder, titanium hydride powder and (Ti-
H) a mixed powder in which hydrogen is contained in addition to titanium by mixing one kind or two or more kinds of the alloy powder,
In the present invention, when only one type of (Ti-H) alloy is used, when two types of powder such as titanium and (Ti-H) alloy, and titanium and titanium hydride powder are blended,
Further, any combination may be used, such as a case where three or more kinds of powders are mixed with titanium, (Ti-H) alloy, titanium hydride powder. The hydrogen: titanium mass ratio is 0.00
2 corresponds to 0.2% by weight when converted to the amount of hydrogen,
0.030 corresponds to 2.6% by weight.

【0011】また、本発明において焼結チタン合金とは
Tiと、Al,V,Feやこれら以外の合金成分および
0.7重量%未満のO,N,C,Hといった不純物から
なるチタン合金であり、例えばTi−6Al−4V合
金,Ti−3Al−2.5V合金,Ti−5Al−2.
5Fe合金等の合金である。このような焼結チタン合金
を素粉末混合法により製造するに際して、Al,V,F
eその他の合金成分は、例えばAl−V,Al−Fe,
Ti−Al,Ti−Fe,Ti−Al−Fe,などのよ
うな母合金粉末を混合することによって添加しても良い
し、Al粉末,V粉末,Fe粉末などの金属元素粉末を
それぞれ所定成分に混合しても良い。
In the present invention, the sintered titanium alloy is a titanium alloy composed of Ti, Al, V, Fe and alloy components other than these and impurities such as O, N, C and H of less than 0.7% by weight. , Ti-6Al-4V alloy, Ti-3Al-2.5V alloy, Ti-5Al-2.
It is an alloy such as a 5Fe alloy. When manufacturing such a sintered titanium alloy by the elementary powder mixing method, Al, V, F
e Other alloy components include, for example, Al-V, Al-Fe,
It may be added by mixing master alloy powders such as Ti-Al, Ti-Fe, Ti-Al-Fe, etc., or metal element powders such as Al powder, V powder, Fe powder and the like may be added as predetermined components. You may mix in.

【0012】[0012]

【作用】以下、本発明を詳細に説明する。本発明者ら
は、水素化チタン粉末の利用に関して研究を重ねた結
果、素粉末混合法において焼結チタン合金を製造するに
あたり、原料粉末に水素化チタン粉末および(Ti−
H)合金粉末とチタン粉末を特定量混合した粉末を使用
すると、合金元素の拡散が著しく速くなり、焼結時の合
金化が促進されることを見出した。本発明はこの新規知
見に基づくものである。すなわち、素粉末混合法の焼結
熱処理工程の2大目的である粉末の焼結と合金化におい
て、前者の遅延を後者で補おうとするものである。
The present invention will be described in detail below. As a result of repeated studies on the use of titanium hydride powder, the present inventors have used titanium hydride powder and (Ti-
It has been found that the use of a powder obtained by mixing H) alloy powder and titanium powder in a specific amount makes the diffusion of alloying elements significantly faster and promotes alloying during sintering. The present invention is based on this new finding. That is, in the sintering and alloying of powders, which are the two main purposes of the sintering heat treatment step of the elementary powder mixing method, the latter delay is intended to be supplemented by the latter.

【0013】原料粉末中に水素が含まれる場合、水素を
含まないチタン粉末を使用する場合と比べ、合金元素の
拡散が速くなるのは次の理由による。すなわち、水素は
β相安定化元素であるので、チタン中に水素を含有させ
ることにより、高温相であるβ相がより低温で出現す
る。このβ相中では、α相と比べAl,V,Fe,Mo
等の金属合金元素は著しく速くなり、焼結の早期段階に
β相が低温から生じ、合金化が著しく加速される。
When the raw material powder contains hydrogen, the diffusion of alloying elements becomes faster than when titanium powder containing no hydrogen is used for the following reason. That is, since hydrogen is a β-phase stabilizing element, the inclusion of hydrogen in titanium causes the β-phase, which is a high temperature phase, to appear at a lower temperature. In this β phase, Al, V, Fe, Mo are compared with the α phase.
Metal alloying elements such as, etc. become significantly faster, β-phase is generated from low temperature in the early stage of sintering, and alloying is significantly accelerated.

【0014】この効果を十分活用するには、H:Tiの
質量比で0.002以上、0.030未満とする必要が
ある。すなわち、H:Tiの質量比を0.002以上に
限定したのは、これに満たない量しか添加しなかった場
合、水素添加による合金元素の拡散の活性化が十分でな
く、合金化促進効果が十分に現れないからである。ま
た、大部分の原料が既に脱水素工程を経たチタン粉末を
使用することになり、省工程による低コスト化の利点が
少ない。水素量の上限値をH:Tiを質量比で0.03
0未満としたのは、これ以上の水素含有量では合金化の
活性化よりも素材中の空孔内の水素ガス圧の増加による
焼結の遅延効果が勝り、本発明の効果が十分でなくなる
ためである。さらに、水素量を上限値より多くした場
合、急激に成形性が悪化し、成形体の密度が十分でな
く、さらには割れのために成形体が得られないこともあ
る。
In order to fully utilize this effect, the H: Ti mass ratio must be 0.002 or more and less than 0.030. That is, the mass ratio of H: Ti is limited to 0.002 or more because when the amount added is less than this, activation of the diffusion of alloying elements by hydrogen addition is not sufficient and the alloying promoting effect is obtained. Is not enough to appear. In addition, most of the raw materials use titanium powder that has already undergone the dehydrogenation process, and there is little advantage of cost reduction due to process saving. The upper limit of the amount of hydrogen is 0.03 by mass ratio of H: Ti.
When the hydrogen content is more than 0, the effect of the present invention becomes insufficient because the effect of delaying the sintering due to the increase of the hydrogen gas pressure in the voids in the raw material is superior to the activation of the alloying. This is because. Further, when the amount of hydrogen is more than the upper limit value, the formability is rapidly deteriorated, the density of the molded body is insufficient, and further, the molded body may not be obtained due to cracking.

【0015】本発明の請求項2の発明では、粉体の成形
をCIPで行うこととした。CIPは、ダイプレス等の
1軸方向で圧縮成形する方法と異なり、素材に均一な圧
力を付与でき疎密の無い均質な成形体が得られるため、
脱水素がスムーズになり、有利な成形方法である。
In the second aspect of the present invention, the powder is molded by CIP. Unlike the method of compression molding in a uniaxial direction such as die press, CIP can apply a uniform pressure to the material and can obtain a homogeneous molded body with no density.
Dehydrogenation becomes smooth, which is an advantageous molding method.

【0016】本発明の請求項3では、真空焼結後にHI
P処理を行う。これは焼結後わずかに残留する空孔を消
滅させ、さらにチタン合金の特性を向上させるためであ
り、焼結チタン合金の製造では通常900℃から100
0℃の間で行われる。
According to claim 3 of the present invention, after vacuum sintering, the HI
P processing is performed. This is to eliminate slightly remaining holes after sintering and further improve the properties of the titanium alloy, and in the production of the sintered titanium alloy, it is usually from 900 ° C to 100 ° C.
It is carried out between 0 ° C.

【0017】[0017]

【実施例】Ti−6Al−4V(Al:6重量%,V:
4重量%,残部:実質的にTi、少量の不純物を含む)
に対して本発明を適用した場合を例に基づいて、さらに
詳しく説明する。
EXAMPLES Ti-6Al-4V (Al: 6% by weight, V:
4% by weight, balance: substantially Ti, containing a small amount of impurities)
The present invention will be described in more detail based on an example.

【0018】原料粉末は、平均粒径は75μm、最大粒
径150μmのTi粉末および平均粒径75μm、最大
粒径150μmのTiH2 粉末(水素量4重量%)およ
び、平均粒径75μm、最大粒径150μmの(H−T
i)合金粉末を使用した。添加合金成分であるAlおよ
びVは、平均粒径30μm、最大粒径45μmのAlV
母合金粉末(Al:60重量%,V:40重量%)を使
用し、Ti対母合金の重量比を9:1となるように混合
した。
The raw material powder has an average particle size of 75 μm, a Ti powder having a maximum particle size of 150 μm and a TiH 2 powder having an average particle size of 75 μm and a maximum particle size of 150 μm (hydrogen content 4% by weight), and an average particle size of 75 μm and a maximum particle size. 150 μm diameter (HT
i) Alloy powder was used. Al and V as additive alloy components are AlV having an average particle size of 30 μm and a maximum particle size of 45 μm.
Mother alloy powders (Al: 60% by weight, V: 40% by weight) were used and mixed so that the weight ratio of Ti to the mother alloy was 9: 1.

【0019】表1は、種々のチタン粉末混合体の圧粉体
を成形し、さらに毎分40℃で昇温し、保持温度を12
50℃として真空焼結した場合、95%以上の相対密度
を得るのに必要な焼結時間を測定した結果である。ここ
でいう相対密度とは、同じ組成の合金を溶解法により製
造した場合に得られる試料の密度を100%とした場合
の比であり、粉末冶金法では経験的に95%以上の相対
密度を有する焼結体は、その後のHIP処理により10
0%相対密度になることが知られている。
Table 1 shows that compacts of various titanium powder mixtures were molded, further heated at 40 ° C./min, and held at a temperature of 12.
This is the result of measuring the sintering time required to obtain a relative density of 95% or more when vacuum sintering is performed at 50 ° C. The relative density here is a ratio when the density of a sample obtained when an alloy having the same composition is manufactured by a melting method is set to 100%, and in the powder metallurgy method, a relative density of 95% or more is empirically determined. The sintered body has a HIP treatment of 10
It is known to be 0% relative density.

【0020】[0020]

【表1】 [Table 1]

【0021】表1にて試験番号1はHDH−Ti粉末と
60Al−40V母合金粉末を9:1の割合で混合した
粉末を原料とした場合で、従来法に相当する。この混合
粉末をCIPにより490MPa で成形し、1250℃で
真空焼結を行うと、95%以上の相対密度を得るには2
時間の焼結時間が必要である。
In Table 1, Test No. 1 is a case where a powder obtained by mixing HDH-Ti powder and 60Al-40V mother alloy powder at a ratio of 9: 1 is used as a raw material and corresponds to the conventional method. When this mixed powder was molded by CIP at 490 MPa and vacuum-sintered at 1250 ° C., it was 2 to obtain a relative density of 95% or more.
Time sintering time is required.

【0022】試験番号4は原料粉末を試験番号1で使用
したHDH−Ti粉末の代わりにHDH−Ti粉末とT
iH2 粉末を6:3の比率で配合し、H:Tiの質量比
を0.014と本発明の請求範囲内の水素量を含む混合
粉末を用いた試験である。試験番号1と同様に成形をC
IPにて490MPa で行い、1250℃で真空焼結し
た。この場合、95%以上の相対密度を得るには1時間
40分の焼結時間で可能であり、原料粉末への水素添加
効果のβ相の低温発生による合金元素拡散の活性化効果
が、水素ガスの発生による焼結の阻害する効果より勝る
ため、従来法より短時間での終結が可能となっている。
Test No. 4 is the same as the HDH-Ti powder used in Test No. 1 except that the raw material powder was HDH-Ti powder and T.
In this test, iH 2 powder was mixed in a ratio of 6: 3, and a mixed powder containing H: Ti at a mass ratio of 0.014 and an amount of hydrogen within the scope of the present invention was used. Mold C as in Test No. 1.
It was performed at IP of 490 MPa and vacuum-sintered at 1250 ° C. In this case, it is possible to obtain a relative density of 95% or more with a sintering time of 1 hour and 40 minutes, and the activation effect of alloying element diffusion due to the low temperature generation of β phase of the hydrogen addition effect to the raw material powder is Since it outweighs the effect of inhibiting the sintering due to the generation of gas, it can be completed in a shorter time than the conventional method.

【0023】試験番号3および5の原料チタン粉末の水
素量をそれぞれ本発明請求範囲内の下限値および上限値
近くに設定した配合粉末を使用している。これらの場合
95%以上の相対密度に到達する焼結時間は従来法より
若干長めであるが、これは水素添加による合金拡散の活
性化の効果がガス発生による焼結阻害の効果を相殺した
ためであり、十分実用的な範囲にある。
Blended powders were used in which the hydrogen contents of the raw material titanium powders of Test Nos. 3 and 5 were set close to the lower and upper limits, respectively, within the scope of the claims of the present invention. In these cases, the sintering time to reach the relative density of 95% or more is slightly longer than that of the conventional method, but this is because the effect of activation of alloy diffusion by hydrogen addition cancels the effect of sintering inhibition by gas generation. Yes, it is within a practical range.

【0024】一方、本発明の比較例である、試験番号2
では、表1に示すように95%以上の焼結密度を得るに
は3時間以上という長時間の熱処理が必要となる。この
理由は、H:Tiの質量比が0.001と本発明の請求
範囲の下限値より少ないため、水素添加による合金元素
拡散の活性化が十分でなく、焼結の促進効果が現れず、
ガス閉じ込めによる焼結の遅延が顕著になったためであ
る。また、試験番号6は本発明の請求範囲の水素量の上
限値の0.030以上であるため、合金化の活性化より
も素材中の空孔中の水素ガス圧の増加による焼結の遅延
効果が勝り、本発明の効果が十分でなくなるためであ
る。
On the other hand, test number 2 which is a comparative example of the present invention
Then, as shown in Table 1, long-term heat treatment of 3 hours or more is required to obtain a sintered density of 95% or more. The reason for this is that the H: Ti mass ratio is 0.001, which is less than the lower limit of the claims of the present invention, so activation of alloying element diffusion by hydrogen addition is not sufficient, and the effect of promoting sintering does not appear.
This is because the sintering delay due to the gas confinement became remarkable. Further, since the test number 6 is 0.030 or more, which is the upper limit of the amount of hydrogen in the claims of the present invention, the sintering delay due to the increase of hydrogen gas pressure in the pores of the material rather than activation of alloying This is because the effect is superior and the effect of the present invention is not sufficient.

【0025】試験番号7は(Ti−1%H)合金粉末を
試験番号8は(Ti−2%H)合金粉末をそれぞれ原料
粉末として使用した実施例である。これらの場合も95
%以上の相対密度に到達するために必要な焼結時間は約
2時間程度あり、水素添加の効果が十分に現れている。
試験番号9は(Ti−2%H)粉末とTiH2 粉末の2
種類の粉末を配合した場合で試験番号11は(Ti−2
%H)粉末とTiH2 粉末およびTi粉末の3種類の粉
末を配合した場合の実施例である。両者とも十分実用的
な焼結時間内で95%の相対密度に到達している。この
ように原料粉末中の水素の含有状態が異なる場合でも、
水素添加による合金拡散の活性化が脱水素反応の遅れや
水素ガス発生による焼結の遅延を補い、十分に本発明の
効果が達成される。
Test number 7 is an example using (Ti-1% H) alloy powder and test number 8 is an example using (Ti-2% H) alloy powder as raw material powders. 95 in these cases
The sintering time required to reach the relative density of not less than about 2% is about 2 hours, and the effect of hydrogen addition is sufficiently exhibited.
Test number 9 is (Ti-2% H) powder and TiH 2 powder 2
Test No. 11 is (Ti-2
% H) powder, TiH 2 powder, and Ti powder. Both have reached a relative density of 95% within a sufficiently practical sintering time. In this way, even when the content of hydrogen in the raw material powder is different,
Activation of alloy diffusion by hydrogen addition compensates for delay of dehydrogenation reaction and sintering due to generation of hydrogen gas, and the effect of the present invention is sufficiently achieved.

【0026】一方、試験番号10は試験番号9と同様に
(Ti−2%H)粉末とTiH2 粉末の2種類の粉末を
配合した場合の比較例であるが、本発明の請求範囲の水
素量の上限値の0.030以上であるため、本発明の効
果が十分でなく、95%の相対密度を得るために6時間
と長時間の焼結が必要である。
On the other hand, Test No. 10 is a comparative example in which two kinds of powders (Ti-2% H) powder and TiH 2 powder are blended as in Test No. 9, but hydrogen in the claims of the present invention is used. Since the upper limit of the amount is 0.030 or more, the effect of the present invention is not sufficient, and sintering for 6 hours and a long time is required to obtain a relative density of 95%.

【0027】試験番号12は、原料粉末を試験番号4と
同様の配合比率にしたものを使用し、成形をCIPの代
わりにダイプレスにて行った試料に対して真空焼結を施
した結果である。この場合では、焼結時間が2時間で9
5%以上の相対密度に到達しており、本発明の効果は十
分である。しかし、CIP成形を行った試験番号4より
長時間の焼結が必要である。この理由は、ダイプレスが
1軸方向での圧縮成形であるため、成形された試料の位
置により密度に粗密ができるのと比べ、CIPは素材に
均一な圧力を付与し均質な成形体が得られるので、CI
Pで成形した試料の方が焼結時に発生した水素ガスを素
材外へよりスムーズに排出するためである。このように
ダイプレス法で成形を行っても、本発明の効果は期待で
きるが、CIP法で成形を行うことにより効果は更なる
ものとなる。
Test No. 12 is the result of vacuum sintering of a sample obtained by using a raw material powder having the same mixing ratio as in Test No. 4 and performing molding by a die press instead of CIP. . In this case, the sintering time is 2 hours and 9
The relative density of 5% or more is reached, and the effect of the present invention is sufficient. However, sintering for a longer time than that of test No. 4 in which CIP molding was performed is necessary. The reason for this is that since the die press is compression molding in the uniaxial direction, the density can be varied depending on the position of the molded sample, whereas CIP applies uniform pressure to the material to obtain a homogeneous molded body. So CI
This is because the sample molded with P discharges the hydrogen gas generated during sintering more smoothly to the outside of the material. Although the effects of the present invention can be expected even if the molding is carried out by the die press method as described above, the effects are further enhanced by carrying out the molding by the CIP method.

【0028】表2において試験番号13,試験番号14
はそれぞれ従来法である試験番号1および本発明の実施
例である試験番号4で作製された焼結体に900℃、1
20MPa 、2時間のHIP処理を行い、引張試験を行っ
た結果である。表2に示すように原料粉末に水素を添加
した粉末を使用しても、従来法と同様に100%の相対
密度が得られ、引張試験も遜色ない結果が得られてお
り、本発明の請求範囲内では残留水素による特性の劣化
は見られず、HIP処理により、焼結チタン合金の特性
をさらに向上させることができる。
In Table 2, test number 13 and test number 14
Is 900 ° C. for each of the sintered bodies prepared in Test No. 1 which is a conventional method and Test No. 4 which is an example of the present invention.
It is a result of performing a tensile test after performing HIP treatment for 20 hours at 20 MPa. As shown in Table 2, even if a powder obtained by adding hydrogen to the raw material powder was used, a relative density of 100% was obtained as in the conventional method, and a result comparable with the tensile test was obtained. Within the range, no characteristic deterioration due to residual hydrogen is observed, and the characteristics of the sintered titanium alloy can be further improved by the HIP treatment.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】以上説明したように、本発明を適用する
ことにより、本来チタン合金の有する優れた特性を損な
うことなく、なおかつ安価な製造コストで製造するため
の方法を提供ことができる。
As described above, by applying the present invention, it is possible to provide a method for producing a titanium alloy at a low production cost without deteriorating the excellent characteristics inherent in the titanium alloy.

フロントページの続き (72)発明者 田村 道夫 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内Front page continued (72) Inventor Michio Tamura 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo Shin Nippon Steel Corp. Hirohata Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 素粉末混合法によって焼結チタン合金を
製造する方法において、チタン粉末の代わりに、チタン
粉末及び(Ti−H)合金粉末及び水素化チタン粉末を
水素:チタンが質量比で0.002以上で0.030未
満となるように配合した粉末を原料粉末として使用する
ことを特徴とする焼結チタン合金の製造方法。
1. A method for producing a sintered titanium alloy by an elementary powder mixing method, wherein titanium powder, (Ti—H) alloy powder and titanium hydride powder are replaced by titanium powder in place of titanium powder, and hydrogen: titanium is contained in a mass ratio of 0. A method for producing a sintered titanium alloy, which comprises using as a raw material powder a powder blended so as to be 0.002 or more and less than 0.030.
【請求項2】 素粉末混合法によって焼結チタン合金を
製造する方法において、チタン粉末の代わりに、チタン
粉末及び(Ti−H)合金粉末及び水素化チタン粉末を
水素:チタンが質量比で0.002以上で0.030未
満となるように配合した粉末を原料粉末として使用し、
圧粉体の成形を300MPa 以上で600MPa 以下の圧力
でCIP(冷間等方圧成形)により行うことを特徴とす
る焼結チタン合金の製造方法。
2. A method for producing a sintered titanium alloy by an elementary powder mixing method, wherein titanium powder, (Ti—H) alloy powder and titanium hydride powder are replaced by titanium powder in place of titanium powder and hydrogen: titanium in a mass ratio of 0. The powder blended so as to be 0.002 or more and less than 0.030 is used as a raw material powder,
A method for producing a sintered titanium alloy, characterized in that compacting is performed by CIP (cold isostatic pressing) at a pressure of 300 MPa or more and 600 MPa or less.
【請求項3】 素粉末混合法によって焼結チタン合金を
製造する方法において、チタン粉末の代わりに、チタン
粉末及び(Ti−H)合金粉末及び水素化チタン粉末を
水素:チタンが質量比で0.002以上で0.030未
満となるように配合した粉末を原料粉末として使用し、
圧粉体の成形を300MPa 以上で600MPa 以下の圧力
でCIP(冷間等方圧成形)により行い、焼結後HIP
(熱間等方圧成形)処理を行うことを特徴とする焼結チ
タン合金の製造方法。
3. A method for producing a sintered titanium alloy by an elementary powder mixing method, wherein titanium powder, (Ti—H) alloy powder and titanium hydride powder are replaced by titanium powder in place of titanium powder and hydrogen: titanium in a mass ratio of 0. The powder blended so as to be 0.002 or more and less than 0.030 is used as a raw material powder,
The green compact is formed by CIP (cold isostatic pressing) at a pressure of 300 MPa or more and 600 MPa or less, and HIP after sintering
A method for producing a sintered titanium alloy, which comprises performing (hot isostatic pressing) treatment.
JP4194319A 1992-07-21 1992-07-21 Manufacture of sintered titanium alloy Withdrawn JPH0633165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4194319A JPH0633165A (en) 1992-07-21 1992-07-21 Manufacture of sintered titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4194319A JPH0633165A (en) 1992-07-21 1992-07-21 Manufacture of sintered titanium alloy

Publications (1)

Publication Number Publication Date
JPH0633165A true JPH0633165A (en) 1994-02-08

Family

ID=16322627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4194319A Withdrawn JPH0633165A (en) 1992-07-21 1992-07-21 Manufacture of sintered titanium alloy

Country Status (1)

Country Link
JP (1) JPH0633165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010993A1 (en) * 2008-07-24 2010-01-28 Mtig Co., Ltd. Method of manufacturing powder injection-molded body
JP2020029598A (en) * 2018-08-23 2020-02-27 東邦チタニウム株式会社 Method for manufacturing green compact
WO2021060363A1 (en) 2019-09-27 2021-04-01 東邦チタニウム株式会社 Method for producing green compact and method for producing sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010993A1 (en) * 2008-07-24 2010-01-28 Mtig Co., Ltd. Method of manufacturing powder injection-molded body
JP2020029598A (en) * 2018-08-23 2020-02-27 東邦チタニウム株式会社 Method for manufacturing green compact
WO2021060363A1 (en) 2019-09-27 2021-04-01 東邦チタニウム株式会社 Method for producing green compact and method for producing sintered body

Similar Documents

Publication Publication Date Title
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
JP5889786B2 (en) Titanium alloy mixed powder blended with copper powder, chromium powder or iron powder, method for producing the same, and method for producing titanium alloy material
US5098469A (en) Powder metal process for producing multiphase NI-AL-TI intermetallic alloys
US8920712B2 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
US3950166A (en) Process for producing a sintered article of a titanium alloy
US9777347B2 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
US20160243617A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
WO2013022531A1 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JPH0633165A (en) Manufacture of sintered titanium alloy
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JPH05345937A (en) Production of ti-fe-al type sintered titanium alloy
JPH05171321A (en) Titanium alloy for high density powder sintering
JPH0688153A (en) Production of sintered titanium alloy
JPS62224602A (en) Production of sintered aluminum alloy forging
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JP3793813B2 (en) High strength titanium alloy and method for producing the same
GB2107738A (en) Forming aluminium and titanium alloys by powder metallurgy
JPH02259029A (en) Manufacture of aluminide
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
JPH0688104A (en) Production of titanium powder
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JPH06306513A (en) Production of high fatigue strength sintered titanium alloy
JPH06100969A (en) Production of ti-al intermetallic compound sintered body

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005