WO2011152217A1 - ディスプレイ装置 - Google Patents

ディスプレイ装置 Download PDF

Info

Publication number
WO2011152217A1
WO2011152217A1 PCT/JP2011/061434 JP2011061434W WO2011152217A1 WO 2011152217 A1 WO2011152217 A1 WO 2011152217A1 JP 2011061434 W JP2011061434 W JP 2011061434W WO 2011152217 A1 WO2011152217 A1 WO 2011152217A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
light source
refrigerant
light sources
flow path
Prior art date
Application number
PCT/JP2011/061434
Other languages
English (en)
French (fr)
Inventor
正樹 千葉
直樹 増田
Original Assignee
日本電気株式会社
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necディスプレイソリューションズ株式会社 filed Critical 日本電気株式会社
Priority to CN201180027114.XA priority Critical patent/CN103069472B/zh
Priority to US13/700,110 priority patent/US9804484B2/en
Priority to JP2012518324A priority patent/JP5804522B2/ja
Publication of WO2011152217A1 publication Critical patent/WO2011152217A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources

Definitions

  • the present invention relates to a display device typified by a liquid crystal display and a projector, and more particularly to a display device having a function of cooling a solid light source such as an LED (Light Emitting Diode) or a semiconductor laser.
  • a solid light source such as an LED (Light Emitting Diode) or a semiconductor laser.
  • LEDs including three color LEDs of red (R), green (G), and blue (B) are known.
  • an LED has a characteristic that luminance (illuminance) decreases with increasing temperature. For this reason, in order to realize high brightness of the projector, it is necessary to cool the LEDs and suppress a decrease in brightness (illuminance).
  • Patent Document 1 describes a liquid cooling system that cools red, green, and blue LEDs.
  • the liquid cooling system includes a pump, a single flow path through which the refrigerant supplied from the pump circulates, a radiator that cools the refrigerant flowing in the flow path, and cooling air to the radiator. And a fan to supply.
  • the flow path is formed so as to sequentially pass through the inside of the heat conducting portion provided in each of the red LED, the green LED, and the blue LED in descending order of the calorific value of the LED.
  • the amount of heat generated by the green LED is the largest, and then the amount of heat generated by the blue LED is large.
  • the red LED generates the smallest amount of heat.
  • the refrigerant supplied from the pump first passes through the heat conducting portion of the green LED that generates the largest amount of heat. At this time, the green LED is cooled by heat exchange between the heat conducting unit and the refrigerant, but the temperature of the refrigerant also rises due to the heat exchange.
  • the refrigerant that has passed through the heat conducting part of the green LED passes through the heat conducting part of the blue LED, and then passes through the heat conducting part of the red LED.
  • the refrigerant passes through each of the heat conduction parts of the blue LED and the red LED, heat exchange is performed between the heat conduction part and the refrigerant, and the blue LED and the red LED are cooled. The temperature also rises.
  • the refrigerant that has passed through the heat conducting portion of the red LED is cooled by the radiator and then returned to the pump.
  • Patent Document 2 describes a system in which a cooling system that cools a light source unit that generates the largest amount of heat is provided independently of a cooling system that cools other light source units. According to this configuration, the light source unit having a large calorific value and the other light source units are cooled by the independent cooling systems, so that the light source unit can be efficiently cooled.
  • a red LED has a larger luminance change due to a temperature change than a green LED or a blue LED.
  • the luminance change due to the temperature change of the red LED is steeper than that of the green LED or the blue LED.
  • the red LED is more sensitive to temperature change than the green LED and the blue LED. Therefore, the temperature management of the red LED is most important.
  • the refrigerant passes through the heat conductive portions of the red LED after passing through the heat conductive portions of the green LED and the blue LED.
  • the temperature of the refrigerant rises due to heat exchange when the green LED and the blue LED pass through the heat conduction portions, and as a result, the refrigerant whose temperature has risen is supplied to the heat conduction portion of the red LED. Since it is difficult to obtain a sufficient cooling effect with a refrigerant whose temperature has risen, the temperature of the red LED rises, and the brightness of the red LED is greatly reduced as compared with LEDs of other colors.
  • the illuminance balance of the LEDs of each color changes, and the color of white light (white balance) obtained by combining the light of each color from the LEDs of each color changes.
  • the red LED in order to suppress the temperature rise of the red LED, it is necessary to limit the drive current of the red LED. Therefore, the red LED cannot be used with high luminance.
  • the light source having a large calorific value and the other light source such as the red LED are cooled by independent cooling systems, so that the red LED can be sufficiently cooled.
  • a display device includes a plurality of solid-state light sources, and a refrigerant circulation unit that includes a flow path formed so as to pass through each of the plurality of solid-state light sources, and the refrigerant circulates through the flow paths.
  • a refrigerant circulation unit that includes a flow path formed so as to pass through each of the plurality of solid-state light sources, and the refrigerant circulates through the flow paths.
  • Each of the plurality of solid state light sources has a characteristic that the luminance changes according to a temperature change.
  • the flow path is formed such that the refrigerant first passes through the plurality of solid-state light sources as the degree of luminance change of the characteristic increases.
  • FIG. 5 is a characteristic diagram showing a relationship between a junction temperature and a flow rate of a red solid-state light source, which is a comparison result between the display device shown in FIG. 2 and the comparative systems shown in FIGS. 3 and 4.
  • FIG. 5 is a characteristic diagram showing a relationship between a junction temperature and a flow rate of a red solid-state light source, which is a comparison result between the display device shown in FIG. 2 and the comparative systems shown in FIGS. 3 and 4.
  • FIG. 5 is a characteristic diagram showing a relationship between a junction temperature and a flow rate of a green solid-state light source, which is a comparison result between the display device shown in FIG. 2 and the comparative systems shown in FIGS. 3 and 4.
  • FIG. 5 is a characteristic diagram showing a relationship between a junction temperature and a flow rate of a blue solid-state light source, which is a comparison result between the display device shown in FIG. 2 and the comparative systems shown in FIGS. 3 and 4.
  • FIG. 3 is a perspective view showing a part of the internal structure of the projector according to the embodiment of the invention. It is a disassembled perspective view which shows an example of the light source unit of the projector shown in FIG. It is a schematic diagram which shows the flow of the refrigerant
  • Refrigerant circulation means 100a Flow path 101 to 103 Solid light source
  • FIG. 1 is a block diagram showing a configuration relating to a cooling system of a display apparatus according to a first embodiment of the present invention.
  • the display device is an image display device or a projector typified by a liquid crystal display, and passes through solid light sources 101 to 103 having different emission colors and the solid light sources 101 to 103, respectively. It has a formed flow path 100a, and has a refrigerant circulation means 100 in which a refrigerant (liquid) circulates through the flow path 100a.
  • the configuration other than the configuration related to the cooling system is the same as the existing configuration, and those configurations are omitted in FIG.
  • the solid-state light sources 101 to 103 are LEDs, semiconductor lasers, and the like, and have a characteristic that the luminance changes according to a temperature change, and the degree of the luminance change (gradient in the characteristic diagram) of the characteristic varies for each emission color.
  • the degree of luminance change is, for example, the degree of luminance change with respect to temperature change in the operating temperature range (predetermined temperature range).
  • the solid light source 101 has the largest luminance change, and then the solid light source 102 has the largest luminance change.
  • the degree of luminance change of the solid light source 103 is the smallest.
  • the refrigerant circulating means 100 includes a pump that supplies the refrigerant to the flow path 100a, a radiator for cooling the refrigerant flowing through the flow path 100a, and a fan that supplies cooling air to the radiator.
  • the flow path 100a may be configured by a flexible tube.
  • the refrigerant cooled by the radiator is supplied in the order of the degree of luminance change due to temperature change, that is, in order of the solid light source 101, the solid light source 102, and the solid light source 103.
  • the cooling effect of the refrigerant increases as the temperature of the refrigerant decreases.
  • the solid light source having a larger degree of luminance change is cooled by the refrigerant having a lower temperature.
  • a solid light source that is more sensitive to temperature changes has a higher cooling effect.
  • the luminance change due to the temperature change of the solid light sources 101 to 103 is suppressed as a whole, and as a result, the luminance balance (illuminance balance) of the solid light sources 101 to 103 is maintained, and high brightness and optimum white balance are achieved. Can be provided.
  • the refrigerant circulation means 100 since it is not necessary to use two sets of pumps, radiators and fans unlike the one described in Patent Document 2, the cost can be reduced compared to the one described in Patent Document 2. Can be planned.
  • the solid light sources 101, 102, and 103 correspond to a red LED, a green LED, and a blue LED, respectively.
  • the refrigerant is supplied in order from the one with the largest degree of luminance change, that is, in the order of red LED, green LED, and blue LED.
  • the conditions are “green LED> blue LED> red LED”.
  • the flow path is formed so that the refrigerant passes through the LEDs in order from the one having the largest amount of heat generation.
  • the display device does not employ such a cooling method based on the cooling order based on the heat generation amount, and pays attention to the fact that an LED having a higher degree of brightness change is more sensitive to temperature, and the degree of brightness change.
  • a new cooling method based on the cooling order based on the above is adopted.
  • the amount of heat generated by the green LED is larger than that of the blue LED.
  • the refrigerant circulating means 100 includes a plurality of radiators provided in parallel and supplied to each of the radiators to which the refrigerant circulating in the flow path 100a is divided and supplied. You may have. According to the parallel structure of the radiators, the flow rate of the refrigerant passing through each radiator can be reduced as compared with the configuration in which the radiators are provided in series.
  • each radiator is provided in series
  • the temperature of the medium flowing into the radiator located in the subsequent stage is lowered, so the cooling effect of the medium in the latter radiator is not increased.
  • the cooling effect by the cooling air increases as the temperature difference between the refrigerant and the cooling air increases and as the refrigerant flow rate decreases. Therefore, by making a radiator into a parallel structure, the cooling effect by cooling air increases and it can supply the refrigerant
  • FIG. 2 is a block diagram showing a configuration relating to a cooling system of the display apparatus according to the second embodiment of the present invention.
  • the display device includes a flow path 200 through which a refrigerant (liquid) circulates, first and second solid light sources 201R, first to third solid light sources 201G, solid light sources 201B, pumps 202, and two.
  • Radiators 203a and 203b, two fans 204a and 204b, and a reserve tank 205 are provided.
  • the first and second solid state light sources 201R output red light.
  • the first to third solid light sources 201G output green light.
  • the solid light source 201B outputs blue light.
  • an LED or a semiconductor laser can be used as these solid light source 201R, solid light source 201G, and solid light source 201B.
  • the pump 202 includes an outflow port through which the refrigerant flows out and an inflow port through which the refrigerant flows in.
  • the outflow port is connected to one side of the flow path 200, and the inflow port is connected to the other side of the flow path 200. Yes.
  • the refrigerant that has flowed out from the outlet of the pump 202 returns to the inlet of the pump 202 via the flow path 200 (circulation of the refrigerant).
  • the flow path 200 is formed so as to pass through each part of the two radiators 203a and 203b, the reserve tank 205, the first and second solid light sources 201R, the first to third solid light sources 201G, and the solid light sources 201B. Yes.
  • Radiators 203a and 203b are provided in parallel.
  • the flow path portion of the flow path 200 that passes through the radiators 203a and 203b is composed of two branch flow paths 200c and 200d provided in parallel.
  • the radiator 203a is disposed on the branch flow path 200c side, and the radiator 203b is branched. It is arranged on the 200d side.
  • the fan 204a supplies cooling air to the radiator 203a.
  • the refrigerant flowing in the branch flow path 200c is cooled by the cooling air from the fan 204a.
  • the fan 204b supplies cooling air to the radiator 203b.
  • the refrigerant flowing in the branch flow path 200d is cooled by the cooling air from the fan 204b.
  • the reserve tank 205 is provided in a flow path portion after the refrigerant that has passed through the radiators 203a and 203b merges.
  • the refrigerant is temporarily accumulated in the reserve tank 205.
  • the first and second solid state light sources 201R are provided in parallel.
  • the flow path portion of each flow path 200 that passes through each solid light source 201R includes two branch flow paths 200a and 200b provided in parallel.
  • the first solid light source 201R is disposed on the branch flow path 200a side, and the second The solid light source 201R is arranged on the branch flow path 200b side.
  • or 3rd solid light source 201G and solid light source 201B are provided in series in the flow-path part after the refrigerant
  • the refrigerant passes through the first solid light source 201G, the second solid light source 201G, the third solid light source 201G, and the solid light source 201B in this order.
  • the refrigerant that has passed through the solid light source 201B is supplied to the inlet of the pump 202.
  • the flow path 200, the pump 202, the radiators 203a and 203b, the fans 204a and 204b, and the reserve tank 205 correspond to the refrigerant circulation means 100 shown in FIG.
  • the solid light source 201R has the largest luminance change degree among the solid light sources 201R, 201G, and 201B, and then the solid light source 201G has the largest luminance change degree.
  • the degree of luminance change of the solid light source 201B is the smallest.
  • the refrigerant cooled by the radiators 203a and 203b is first supplied via the reserve tank 205 to the branch flow path 200a provided with the first and second solid-state light sources 201R having the greatest degree of luminance change due to temperature change. It flows through 200b. Thereby, a higher cooling effect is provided to the first and second solid-state light sources 201R.
  • each solid light source 201R Since the temperature of the refrigerant flowing through the branch flow paths 200a and 200b is substantially the same, the cooling effect for each solid light source 201R is also substantially the same, and each solid light source 201R can be maintained at substantially the same temperature. As a result, the luminance (light quantity) of each solid light source 201R becomes substantially the same.
  • the amount of heat generated by the solid light source 201G is larger than that of the solid light source 201B. Since the refrigerant passes through the solid light source 201G having a large calorific value before the solid light source 201B, it is possible to provide a more efficient cooling effect.
  • the radiators 203a and 203b are provided in parallel. According to such a parallel structure of the radiators 203a and 203b, the flow rate of the refrigerant flowing through each of the radiators 203a and 203b can be made slower than that in which two radiators are provided in series. Therefore, the cooling effect by the cooling air of each radiator 203a, 203b increases, As a result, a higher cooling effect can be provided.
  • FIG. 3 is a block diagram showing a configuration related to the cooling system of the first comparative system
  • FIG. 4 is a block diagram showing a configuration related to the cooling system of the second comparative system.
  • the first comparative system includes a flow path 200 through which a refrigerant (liquid) circulates, first and second solid light sources 201R, first to third solid light sources 201G, solid light sources 201B, and a pump. 202, two radiators 203a and 203b, two fans 204a and 204b, and a reserve tank 205.
  • a refrigerant liquid
  • the first comparative system has the same configuration as that of the second embodiment, except that the route of the flow path 200 to the solid light source 201R, the solid light source 201G, and the solid light source 201B is different.
  • the channel 200 includes branch channels 200a and 200b provided in parallel, and the first solid light source 201R, the first solid light source 201G, and the second solid light source 201G are serially arranged in this order on the branch channel 200a side.
  • the second solid light source 201R, the third solid light source 201G, and the solid light source 201B are provided in series in this order on the branch flow path 200b side.
  • the refrigerant cooled by the radiators 203a and 203b first passes through the reserve tank 205 through the first and second solid-state light sources 201R having the greatest degree of luminance change due to temperature change. Thereby, a higher cooling effect is provided to the first and second solid-state light sources 201R.
  • each solid light source 201R can be maintained at substantially the same temperature as in the second embodiment described above.
  • the second comparative system shown in FIG. 4 is provided except that the first and second solid light sources 201R, the first to third solid light sources 201G, and the solid light sources 201B are provided in series with respect to the flow path 200. This is the same as that of the second embodiment and the first comparison system.
  • FIG. 5 shows the relationship between the junction (pn junction) temperature and flow rate for the solid-state light source 201R, which is a comparison result between the display device shown in FIG. 2 and the comparative systems shown in FIGS.
  • the flow rate is a value measured in the flow path between the reserve tank 205 and the solid light source 201R.
  • white squares and broken lines correspond to the first and second solid state light sources 201R in FIG.
  • What is indicated by a white circle and an alternate long and short dash line (R1) corresponds to the first solid-state light source 201R in FIG. 4
  • what is indicated by a black circle and an alternate long and short dash line (R2) is the second solid-state light source 201R in FIG.
  • Corresponding to The white triangles and solid lines (R1, R2) correspond to the first and second solid state light sources 201R in FIG.
  • the temperature of the first solid-state light source 201R can be kept low, but the temperature of the second solid-state light source 201R becomes high.
  • the first and second solid light sources 201R are both maintained at the same temperature, and the temperature of the first and second solid light sources 201R is the second temperature. It can be made lower than the second solid-state light source 201R in the comparison system.
  • FIG. 6 shows the relationship between the junction (pn junction) temperature and flow rate for the solid-state light source 201G, which is a result of comparison between the display device shown in FIG. 2 and the comparative systems shown in FIGS.
  • the flow rate is a value measured in the flow path between the reserve tank 205 and the solid light source 201R.
  • white squares and broken lines (G1, G2) correspond to the first and second solid state light sources 201G in FIG.
  • a black square and a broken line (G3) correspond to the third solid light source 201G in FIG.
  • What is indicated by a white circle and an alternate long and short dash line (G1) corresponds to the first solid light source 201G in FIG. 4
  • what is indicated by a black circle and an alternate long and short dash line (G2) is the second solid light source 201G in FIG.
  • the gray circle and the one-dot chain line (G3) correspond to the third solid light source 201G in FIG.
  • a white triangle and a solid line (G1) correspond to the first solid light source 201G in FIG. 2
  • a black triangle and a solid line (G2) correspond to the second solid light source 201G in FIG.
  • the gray triangle and the solid line (G3) correspond to the third solid light source 201G in FIG.
  • the temperatures of the first to third solid-state light sources 201G are the same as those of the first comparison system (FIG. 3) and the second. This is lower than the temperature of the first to third solid-state light sources 201G of the comparison system (FIG. 4).
  • FIG. 7 shows the relationship between the junction (pn junction) temperature and flow rate of the solid-state light source 201B, which is a result of comparison between the display device shown in FIG. 2 and the comparative systems shown in FIGS.
  • the flow rate is a value measured in the flow path between the reserve tank 205 and the solid light source 201R.
  • the white square and the broken line correspond to the solid light source 201 ⁇ / b> B in FIG. 3.
  • What is indicated by a white circle and an alternate long and short dash line corresponds to the solid light source 201B of FIG.
  • the white triangle and the solid line correspond to the solid light source 201B in FIG.
  • the temperature of the solid light source 201B is slight, but the first comparison system (FIG. 3) and the second comparison light source It is lower than the temperature of the solid state light source 201B of the system (FIG. 4).
  • FIG. 8 is a perspective view showing a part of the internal structure of the projector according to the embodiment of the present invention.
  • the housing is not shown to show the internal structure.
  • the projector projects an image forming unit 1, three LED (Light Emitting Diode) light source units 2 arranged around the image forming unit 1, and an image formed in the image forming unit 1. It has a lens 3 and a liquid cooling system 4.
  • LED Light Emitting Diode
  • the three LED light source units 2 include a red light source unit 2R that generates red light, a green light source unit 2G that generates green light, and a blue light source unit 2B that generates blue light.
  • each light source unit 2 includes at least a pair of holders 11 on which the LEDs 10 are mounted, a cooling mechanism 12 for maintaining the temperature of the LEDs 10 below a predetermined temperature, and a condenser lens 13. .
  • the components of each light source unit 2 including the holder 11, the cooling mechanism 12, and the condenser lens 13 are accommodated in and integrated with the box 14.
  • a pair of holders 11 in each light source unit 2 are arranged to face each other, and light emitted from the LEDs 10 mounted on the respective holders 11 is condensed by a condenser lens 13 and is image forming unit 1 (FIG. 8).
  • the image forming unit 1 includes at least a cross dichroic prism and three liquid crystal panels arranged around the prism. Three liquid crystal panels are prepared for each light source unit. Each liquid crystal panel modulates the light emitted from each light source unit 2 based on the video signal. That is, the light (red light) emitted from the red light source unit 2R is incident on the red liquid crystal panel and modulated. Light (green light) emitted from the green light source unit 2G is incident on the green liquid crystal panel and modulated. The light (blue light) emitted from the blue light source unit 2B enters the blue liquid crystal panel and is modulated. The light modulated by each liquid crystal panel is combined by a cross dichroic prism and projected onto a screen or the like via a projection lens 3.
  • the liquid cooling system 4 includes a flow path 20 that passes through the light source units 2R, 2G, and 2B.
  • a pump 21 that supplies cooling air to the radiator 23 are disposed.
  • the liquid cooling system 4 includes two radiators (a first radiator 23a and a second radiator 23b) and two fans (a first fan 24a and a second fan) that supply cooling air to the radiators 23a and 23b. Fan 24b).
  • the flow path 20 is comprised with the tube which has flexibility.
  • FIG. 10 schematically shows the refrigerant flow in the liquid cooling system 4.
  • the arrows in FIG. 10 indicate the flow of the refrigerant in the liquid cooling system 4.
  • the arrows in FIG. 10 indicate the main flow of the refrigerant and do not completely match the actual flow path design.
  • the refrigerant sent out from the pump 21 is branched before the radiator 23 and flows into the first radiator 23a and the second radiator 23b, respectively.
  • the refrigerant flowing into each radiator 23a, 23b is cooled by heat exchange.
  • the refrigerant that has flowed out of the first radiator 23 a and the second radiator 23 b merges and flows into the reserve tank 22.
  • the refrigerant that has flowed out of the reserve tank 22 flows into the red light source unit 2R, and cools the LEDs in the light source unit 2R. Thereafter, the refrigerant returns to the pump 21 via the green light source unit 2G and the blue light source unit 2B.
  • the refrigerant that has flowed into the green light source unit 2G and the blue light source unit 2B cools the LEDs in the light source units 2G and 2B. That is, when the pump 21 is the starting point, the refrigerant circulates in the order of pump 21 ⁇ radiator 23 ⁇ reserve tank 22 ⁇ red light source unit 2R ⁇ green light source unit 2G ⁇ blue light source unit 2B ⁇ pump 21.
  • the temperature of the refrigerant is lowest immediately after flowing out of the radiator 23, and the temperature of the refrigerant gradually increases in the process of passing through the light source units 2R, 2G, and 2B.
  • the amount of heat generated by the red LED incorporated in the red light source unit 2R is smaller than the amount of heat generated by the green LED and the blue LED incorporated in the other light source units 2G and 2B.
  • red LEDs are more sensitive to temperature changes than green and blue LEDs.
  • the change in the temperature characteristic of the red LED is more steep than the change in the temperature characteristic of the green LED or the blue LED. Therefore, temperature management of the red LED is most important.
  • the flow path design as described above is adopted. That is, a flow path design is adopted in which the refrigerant cooled in the radiator 23 is first supplied to the red light source unit 2R.
  • each light source unit 2 includes a pair of LEDs 10.
  • the temperature difference between the pair of LEDs 10 is small.
  • the temperature difference between the pair of red LEDs 10 incorporated in the red light source unit 2R is preferably maintained as zero as possible.
  • red light source unit 2R and the other light source units 2G, 2B different flow path designs are adopted for the red light source unit 2R and the other light source units 2G, 2B. Specifically, parallel flow paths are provided in the red light source unit 2R, and serial flow paths are provided in the green light source unit 2G and the blue light source unit 2B.
  • each light source unit 2 a pair of holders 11 with the LEDs 10 mounted on the surface are disposed to face each other. Further, a heat radiating element (Peltier element 15 in the present embodiment) is disposed in close contact with the back surface of each holder 11 of the red light source unit 2R. Further, cold plates 16 are arranged in close contact with the back surface of the Peltier element 15. Note that two assemblies of the holder 11, the Peltier element 15 and the cold plate 16 are built in the box 14, but only the structure of one of the assemblies is shown in FIG. However, the two assemblies have the same structure.
  • the refrigerant flows into the cold plate 16 through the inlet and flows out of the cold plate 16 through the outlet.
  • heat exchange is performed between the Peltier element 15 and the refrigerant via the cold plate 16.
  • heat exchange is performed between the refrigerant and the LED 10 via the cold plate 16 and the Peltier element 15.
  • the refrigerant flowing into the red light source unit 2R having the above structure is divided and supplied to the two cold plates 16, respectively.
  • the refrigerant flowing into the green light source unit 2G and the blue light source unit 2B is sequentially supplied to the two cold plates 16 without being divided. Therefore, the two red LEDs 10 incorporated in the red light source unit 2R are cooled by the refrigerant having the same temperature.
  • the refrigerant having the lowest temperature is supplied to the red light source unit 2R. That is, the two red LEDs 10 incorporated in the red light source unit 2R are uniformly cooled by the refrigerant having the lowest temperature and the same temperature. As a result, the temperature of the two red LEDs 10 is maintained below a predetermined temperature, and the temperature difference between the two red LEDs 10 is maintained as zero as possible.
  • the two LEDs 10 incorporated in the green light source unit 2G and the blue light source unit 2B having a series flow path are cooled by refrigerants having different temperatures.
  • the rear-stage LED 10 is cooled by the refrigerant whose temperature has increased due to heat exchange with the front-stage LED 10. More specifically, the refrigerant flowing into the green light source unit 2G flows into the cold plate 16 at the front stage, cools the green LED 10 at the front stage, and then flows into the cold plate 16 at the rear stage to cool the green LED 10 at the rear stage.
  • the refrigerant flowing into the blue light source unit flows into the cold plate 16 at the front stage, cools the blue LED 10 at the front stage, and then flows into the cold plate 16 at the rear stage to cool the blue LED 10 at the rear stage.
  • the luminance change due to the temperature change of the green LED 10 and the blue LED 10 is smaller than that of the red LED 10. Therefore, a slight temperature difference between the two green LEDs 10 in the green light source unit 2G is acceptable. Similarly, some temperature difference between the two blue LEDs 10 in the blue light source unit 2B is acceptable.
  • a solid light source having a greater degree of luminance change (a solid light source having a larger luminance decrease due to temperature rise) is cooled by a lower temperature refrigerant.
  • a solid light source that is more sensitive to temperature changes has a higher cooling effect.
  • a decrease in luminance due to a temperature increase of each solid-state light source is suppressed as a whole.
  • a luminance balance (illuminance balance) of each solid-state light source is maintained, and the display has a high luminance and an optimal white balance.
  • the present invention can be applied to all display devices including a plurality of light sources having different emission colors as light sources. More specifically, the present invention is applied to a display device or a projector using a light modulation device such as a liquid crystal panel or DMD. be able to.
  • a light modulation device such as a liquid crystal panel or DMD.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 ディスプレイ装置は、複数の固体光源101~103と、これら固体光源101~103の各々を経由するように形成された流路100aを備え、冷媒が流路100aを介して循環する冷媒循環手段100とを有する。固体光源101~103の各々は、温度変化に応じて輝度が変化する特性を有する。流路100aは、冷媒が固体光源101~103の上記特性の輝度変化の度合いが大きなものほど最初に通過するように形成されている。

Description

ディスプレイ装置
 本発明は、液晶ディスプレイやプロジェクタに代表されるディスプレイ装置に関し、特に、LED(Light Emitting Diode)や半導体レーザなどの固体光源を冷却する機能を備えたディスプレイ装置に関する。
 赤色(R)、緑色(G)、青色(B)の3色のLEDを備えるプロジェクタが知られている。一般に、LEDは、温度が上昇するとそれに伴って輝度(照度)が低下する特性を有している。このため、プロジェクタの高輝度化を実現するためには、LEDを冷却して輝度(照度)の低下を抑制する必要がある。
 特許文献1には、赤色、緑色、青色の各色のLEDを冷却する液冷システムが記載されている。
 特許文献1に記載の液冷システムでは、発熱量が各色のLEDで異なることに着目し、発熱量が大きなLEDから順番に冷却する。具体的には、この液冷システムは、ポンプと、このポンプから供給された冷媒が循環する単一の流路と、その流路内を流れる冷媒を冷却するラジエターと、このラジエターに冷却風を供給するファンとを有する。
 上記流路は、赤色LED、緑色LED、青色LEDのそれぞれに設けられた熱伝導部の内部を、LEDの発熱量が大きなものから順に通るように形成されている。通常、緑色LEDの発熱量が最も多く、次いで、青色LEDの発熱量が多い。赤色LEDの発熱量は、最も小さい。
 上記の液冷システムでは、ポンプから供給された冷媒は、まず、発熱量が最も大きな緑色LEDの熱伝導部を通過する。このとき、熱伝導部と冷媒との間で熱交換が行われることで緑色LEDが冷却されるが、その熱交換によって冷媒の温度も上昇する。
 緑色LEDの熱伝導部を通過した冷媒は、青色LEDの熱伝導部を通過し、その後、赤色LEDの熱伝導部を通過する。冷媒が青色LEDおよび赤色LEDの各熱伝導部を通過した際に、熱伝導部と冷媒との間で熱交換が行われ、青色LEDおよび赤色LEDが冷却されるが、その熱交換によって冷媒の温度も上昇する。
 赤色LEDの熱伝導部を通過した冷媒は、ラジエターで冷却された後、ポンプに戻される。
 特許文献2には、発熱量が最も大きな光源部を冷却する冷却系を、他の光源部を冷却する冷却系と独立して設けたものが記載されている。この構成によれば、発熱量が大きな光源部と他の光源部とをそれぞれ独立した冷却系で冷却するので、光源部を効率よく冷却することが可能である。
特開2009-31557号公報 特開2007-316626号公報
 しかしながら、特許文献1に記載の液冷システムでは、発熱量が大きなLEDから順に冷却するようになっているため、以下のような問題が生じる。
 一般に、赤色LEDは、緑色LEDや青色LEDに比べて、温度変化に起因する輝度変化が大きい。換言すれば、赤色LEDの温度変化に起因する輝度変化は、緑色LEDや青色LEDのそれに比べて急峻である。このように、赤色LEDは、緑色LEDや青色LEDに比べて、温度変化に対して敏感であるので、赤色LEDの温度管理が最も重要である。
 特許文献1に記載の液冷システムにおいて、冷媒は、緑色LEDおよび青色LEDの各熱伝導部を通過した後に、赤色LEDの熱伝導部を通過する。緑色LEDおよび青色LEDの各熱伝導部を通過した際の熱交換により冷媒の温度が上昇し、その結果、温度が上昇した冷媒が赤色LEDの熱伝導部に供給される。温度が上昇した冷媒では十分な冷却効果を得ることは困難であるため、赤色LEDの温度が上昇して、他の色のLEDに比較して赤色LEDの輝度が大きく低下する。その結果、各色のLEDの照度バランスが変化して、各色のLEDからの各色の光を合成した白色光の色味(ホワイトバランス)が変化する。また、赤色LEDの温度上昇を抑制するために、赤色LEDの駆動電流を制限する必要がある。そのため、赤色LEDを高輝度で使用することができない。
 特許文献2に記載の冷却系では、発熱量が大きな光源部と、赤色LEDなどの他の光源部とをそれぞれ独立した冷却系で冷却するので、赤色LEDを十分に冷却することが可能である。しかし、この場合は、ポンプやラジエターなどを冷却系毎に設ける必要があり、その分、液冷システムのコストが増大する。
 上記のように各固体光源の温度上昇に起因する各固体光源の輝度低下が問題となる。温度上昇に対して敏感な固体光源の冷却が不十分な問題や上記のシステムのコスト増大の問題を解決し、高輝度で、最適なホワイトバランスを得られるディスプレイ装置が求められている。
 本発明の一態様によるディスプレイ装置は、複数の固体光源と、前記複数の固体光源の各々を経由するように形成された流路を備え、冷媒が該流路を介して循環する冷媒循環手段とを有する。前記複数の固体光源の各々は、温度変化に応じて輝度が変化する特性を有している。前記流路は、前記冷媒が前記複数の固体光源を前記特性の輝度変化の度合いが大きなものほど最初に通過するように形成されている。
本発明の第1の実施形態であるディスプレイ装置の冷却系に係わる構成を示すブロック図である。 本発明の第2の実施形態であるディスプレイ装置の冷却系に係わる構成を示すブロック図である。 比較用システムの一例を示すブロック図である。 比較用システムの他の一例を示すブロック図である。 図2に示したディスプレイ装置と図3および図4に示した各比較用システムとの比較結果である、赤色の固体光源のジャンクションの温度と流量の関係を示す特性図である。 図2に示したディスプレイ装置と図3および図4に示した各比較用システムとの比較結果である、緑色の固体光源のジャンクションの温度と流量の関係を示す特性図である。 図2に示したディスプレイ装置と図3および図4に示した各比較用システムとの比較結果である、青色の固体光源のジャンクションの温度と流量の関係を示す特性図である。 本発明の一実施形態であるプロジェクタの内部構造の一部を示す斜視図である。 図8に示すプロジェクタの光源ユニットの一例を示す分解斜視図である。 図8に示すプロジェクタの液冷システムにおける冷媒の流れを示す模式図である。
 100 冷媒循環手段
 100a 流路
 101~103 固体光源
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の第1の実施形態であるディスプレイ装置の冷却系に係わる構成を示すブロック図である。
 図1を参照すると、ディスプレイ装置は、液晶ディスプレイに代表される画像表示装置やプロジェクタなどであって、発光色が異なる固体光源101~103と、これら固体光源101~103の各々を経由するように形成された流路100aを備え、冷媒(液体)が流路100aを介して循環する冷媒循環手段100とを有する。なお、冷却系に係わる構成以外は、既存のものと同じであり、図1では、それらの構成は省略されている。
 固体光源101~103は、LEDや半導体レーザなどであって、温度変化に応じて輝度が変化する特性を有し、該特性の輝度変化の度合い(特性図における傾き)が発光色毎に異なる。ここで、輝度変化の度合いは、例えば使用温度範囲(所定温度範囲)における、温度変化に対する輝度変化の度合いである。固体光源101~103のうち、固体光源101の輝度変化の度合いが最も大きく、次いで、固体光源102の輝度変化の度合いが大きい。固体光源103の輝度変化の度合いは最も小さい。
 冷媒循環手段100は、流路100aに冷媒を供給するポンプ、流路100aを流れる冷媒を冷却するためのラジエター、このラジエターに冷却風を供給するファンを含む。流路100aは、可撓性を有するチューブによって構成されてもよい。
 冷媒循環手段100では、ラジエターによって冷却された冷媒は、温度変化に起因する輝度変化の度合いが大きなものから順に、すなわち、固体光源101、固体光源102、固体光源103の順に供給される。
 冷媒による冷却効果は、冷媒の温度が低いほど大きい。冷媒循環手段100によれば、輝度変化の度合いが大きな固体光源ほど、より温度が低い状態の冷媒で冷却される。換言すると、温度変化に対して敏感な固体光源ほどより冷却効果が高くなっている。これにより、固体光源101~103の温度変化に起因する輝度変化が全体として抑制され、その結果、固体光源101~103の輝度バランス(照度バランス)が保たれ、高輝度で、最適なホワイトバランスを提供することができる。
 また、冷媒循環手段100によれば、特許文献2に記載のもののように、ポンプ、ラジエターおよびファンを2セット用いる必要がないので、特許文献2に記載のものに比較して、低コスト化を図ることができる。
 本実施形態のディスプレイ装置において、固体光源101、102、103はそれぞれ赤色LED、緑色LED、青色LEDに対応する。冷媒は、輝度変化の度合いが大きなものから順番に、すなわち、赤色LED、緑色LED、青色LEDの順に供給される。
 なお、発熱量に関しては、「緑色LED>青色LED>赤色LED」の条件とされている。通常、冷媒によってLEDを順次冷却する場合は、発熱量の大きなものから順に冷媒がLEDを経由するように流路を形成する。しかし、本実施形態のディスプレイ装置では、そのような発熱量に基づく冷却順序による冷却方式は採用せず、輝度変化の度合いが高いLEDほど温度に敏感である点に着目し、その輝度変化の度合いに基づく冷却順序による新規の冷却方式を採用している。
 加えて、緑色LEDの発熱量は青色LEDに比べて大きい。本実施形態では、青色LEDよりも先に、冷媒が発熱量が大きな緑色LEDを通過することで、より効率的な冷却効果を提供することが可能になっている。
 また、本実施形態のディスプレイ装置において、冷媒循環手段100は、流路100aを循環する冷媒が分流されてそれぞれ供給される、並列に設けられた複数のラジエターと、ラジエターのそれぞれに取り付けられたファンとを有していてもよい。ラジエターの並列構造によれば、各ラジエターを直列に設けた構成と比較して、各ラジエターを通過する冷媒の流速を遅くすることができる。
 さらに、各ラジエターを直列に設けた構成の場合、後段に位置するラジエターへ流入する媒体の温度は低くなるので、後段のラジエターにおける媒体の冷却効果は高くならない。冷却風による冷却効果は、冷媒と冷却風の温度差が大きいほど、また、冷媒の流速が遅いほど増大する。よって、ラジエターを並列構造とすることで、冷却風による冷却効果が増大し、より低い温度の冷媒を供給することができる。
 (第2の実施形態)
 図2は、本発明の第2の実施形態であるディスプレイ装置の冷却系に係わる構成を示すブロック図である。
 図2を参照すると、ディスプレイ装置は、冷媒(液体)が循環する流路200、第1および第2の固体光源201R、第1乃至第3の固体光源201G、固体光源201B、ポンプ202、2個のラジエター203a、203b、2個のファン204a、204b、リザーブタンク205を有する。
 第1および第2の固体光源201Rは、赤色の光を出力する。第1乃至第3の固体光源201Gは、緑色の光を出力する。固体光源201Bは、青色の光を出力する。これら固体光源201R、固体光源201Gおよび固体光源201Bとして、例えばLEDや半導体レーザを用いることができる。
 ポンプ202は、冷媒が流出する流出口と、冷媒が流入する流入口とを備え、流出口が流路200の一方の側に連結され、流入口が流路200の他方の側に連結されている。ポンプ202の流出口から流出した冷媒は、流路200を介してポンプ202の流入口に戻る(冷媒の循環)。
 流路200は、2個のラジエター203a、203b、リザーブタンク205、第1および第2の固体光源201R、第1乃至第3の固体光源201G、固体光源201Bの各部を経由するように形成されている。
 ラジエター203a、203bは並列に設けられている。流路200のラジエター203a、203bを経由する流路部分は、並列に設けられた2つの分岐流路200c、200dよりなり、ラジエター203aが分岐流路200c側に配置され、ラジエター203bが分岐流路200d側に配置されている。
 ファン204aは、冷却風をラジエター203aに供給する。ラジエター203aでは、分岐流路200c内を流れる冷媒がファン204aからの冷却風によって冷却される。ファン204bは、冷却風をラジエター203bに供給する。ラジエター203bでは、分岐流路200d内を流れる冷媒がファン204bからの冷却風によって冷却される。
 リザーブタンク205は、ラジエター203a、203bを通過した冷媒が合流した後の流路部分に設けられている。冷媒はリザーブタンク205に一旦蓄積される。
 第1および第2の固体光源201Rは並列に設けられている。流路200の各固体光源201Rを経由する流路部分は、並列に設けられた2つの分岐流路200a、200bよりなり、第1の固体光源201Rが分岐流路200a側に配置され、第2の固体光源201Rが分岐流路200b側に配置されている。
 第1乃至第3の固体光源201Gおよび固体光源201Bは、第1および第2の固体光源201Rを通過した冷媒が合流した後の流路部分に直列に設けられている。冷媒は、第1の固体光源201G、第2の固体光源201G、第3の固体光源201G、固体光源201Bをこの順番で通過する。
 固体光源201Bを通過した冷媒は、ポンプ202の流入口に供給される。
 流路200、ポンプ202、ラジエター203a、203b、ファン204a、204bおよびリザーブタンク205は、図1に示した冷媒循環手段100に相当する。
 本実施形態のディスプレイ装置において、固体光源201R、201G、201Bのうち、固体光源201Rの輝度変化の度合いが最も大きく、次いで、固体光源201Gの輝度変化の度合いが大きい。固体光源201Bの輝度変化の度合いは最も小さい。
 ラジエター203a、203bによって冷却された冷媒は、リザーブタンク205を介して、まず、温度変化に起因する輝度変化の度合いが最も大きな第1および第2の固体光源201Rが設けられた分岐流路200a、200bを流れる。これにより、第1および第2の固体光源201Rに対して、より高い冷却効果が提供される。
 また、各固体光源201Rに対して冷媒を並列に供給することで、以下のような効果も得られる。
 分岐流路200a、200bを流れる冷媒の温度はほぼ同じであるので、各固体光源201Rに対する冷却効果もほぼ同じとなり、各固体光源201Rをほぼ同じ温度で維持することができる。この結果、各固体光源201Rの輝度(光量)がほぼ同じとなる。
 また、本実施形態のディスプレイ装置において、固体光源201Gの発熱量は固体光源201Bよりも大きい。固体光源201Bよりも前に、発熱量が大きな固体光源201Gを冷媒が通過することで、より効率的な冷却効果を提供することが可能になっている。
 また、本実施形態のディスプレイ装置においては、ラジエター203a、203bは並列に設けられている。このようなラジエター203a、203bの並列構造によれば、2個のラジエターを直列に設けたものに比較して、ラジエター203a、203bのそれぞれに流れる冷媒の流速を遅くすることができる。したがって、各ラジエター203a、203bの冷却風による冷却効果が増大し、その結果、より高い冷却効果を提供することができる。
 次に、上述した第2の実施形態のディスプレイ装置の効果について、図3および図4に示す構成を有する比較例との比較に基づき、さらに詳細に説明する。
 図3は、第1の比較用システムの冷却系に係わる構成を示すブロック図、図4は、第2の比較用システムの冷却系に係わる構成を示すブロック図である。
 図3を参照すると、第1の比較用システムは、冷媒(液体)が循環する流路200、第1および第2の固体光源201R、第1乃至第3の固体光源201G、固体光源201B、ポンプ202、2個のラジエター203a、203b、2個のファン204a、204b、リザーブタンク205を有する。
 第1の比較用システムは、固体光源201R、固体光源201Gおよび固体光源201Bに対する流路200の経由経路が異なる以外は、第2の実施形態のものと同じ構成である。
 流路200は並列に設けられた分岐流路200a、200bを有し、第1の固体光源201R、第1の固体光源201G、第2の固体光源201Gがこの順番で分岐流路200a側に直列に設けられ、第2の固体光源201R、第3の固体光源201G、固体光源201Bがこの順番で分岐流路200b側に直列に設けられている。
 ラジエター203a、203bによって冷却された冷媒は、リザーブタンク205を介して、まず、温度変化に起因する輝度変化の度合いが最も大きな第1および第2の固体光源201Rを通過する。これにより、第1および第2の固体光源201Rに対して、より高い冷却効果が提供される。
 また、各固体光源201Rに対して冷媒を並列に供給することで、上述した第2の実施形態と同様、各固体光源201Rをほぼ同じ温度で維持することができる。
 図4に示す第2の比較用システムは、流路200に対して、第1および第2の固体光源201R、第1乃至第3の固体光源201G、固体光源201Bを直列に設けた以外は、第2の実施形態および第1の比較用システムのものと同じである。
 図5に、図2に示したディスプレイ装置と図3および図4に示した各比較用システムとの比較結果である、固体光源201Rに関するジャンクション(pn接合部)の温度と流量の関係を示す。流量は、リザーブタンク205と固体光源201Rとの間の流路で測定した値である。
 図5において、白の四角と破線で示したもの(R1、R2)が図3の第1および第2の固体光源201Rに対応する。白の丸と一点鎖線で示したもの(R1)が図4の第1の固体光源201Rに対応し、黒の丸と一点鎖線で示したもの(R2)が図4の第2の固体光源201Rに対応する。白の三角と実線で示したもの(R1、R2)が図2の第1および第2の固体光源201Rに対応する。
 図5から分かるように、第2の比較用システムでは、第1の固体光源201Rの温度は低く抑えることができるものの、第2の固体光源201Rの温度は高くなる。これに対して、第2の実施形態の構成によれば、第1および第2の固体光源201Rはともに同じ温度で維持され、かつ、第1および第2の固体光源201Rの温度は第2の比較用システムにおける第2の固体光源201Rよりも低くすることができる。
 図6に、図2に示したディスプレイ装置と図3および図4に示した各比較用システムとの比較結果である、固体光源201Gに関するジャンクション(pn接合部)の温度と流量の関係を示す。流量は、リザーブタンク205と固体光源201Rとの間の流路で測定した値である。
 図6において、白の四角と破線で示したもの(G1、G2)が図3の第1および第2の固体光源201Gに対応する。黒の四角と破線で示したもの(G3)が図3の第3の固体光源201Gに対応する。白の丸と一点鎖線で示したもの(G1)が図4の第1の固体光源201Gに対応し、黒の丸と一点鎖線で示したもの(G2)が図4の第2の固体光源201Gに対応し、グレーの丸と一点鎖線で示したもの(G3)が図4の第3の固体光源201Gに対応する。白の三角と実線で示したもの(G1)が図2の第1の固体光源201Gに対応し、黒の三角と実線で示したもの(G2)が図2の第2の固体光源201Gに対応し、グレーの三角と実線で示したもの(G3)が図2の第3の固体光源201Gに対応する。
 図6から分かるように、第2の実施形態の構成(図2)によれば、第1乃至第3の固体光源201Gの温度はいずれも、第1の比較用システム(図3)および第2の比較用システム(図4)の第1乃至第3の固体光源201Gの温度よりも低い。
 図7に、図2に示したディスプレイ装置と図3および図4に示した各比較用システムとの比較結果である、固体光源201Bに関するジャンクション(pn接合部)の温度と流量の関係を示す。流量は、リザーブタンク205と固体光源201Rとの間の流路で測定した値である。
 図7において、白の四角と破線で示したものが図3の固体光源201Bに対応する。白の丸と一点鎖線で示したものが図4の固体光源201Bに対応する。白の三角と実線で示したものが図2の固体光源201Bに対応する。
 図7から分かるように、第2の実施形態の構成(図2)によれば、固体光源201Bの温度は、わずかであるが、第1の比較用システム(図3)および第2の比較用システム(図4)の固体光源201Bの温度よりも低い。
 次に、本発明のディスプレイ装置の冷却系を適用したプロジェクタの構成について説明する。
 図8は、本発明の一実施形態であるプロジェクタの内部構造の一部を示す斜視図である。なお、図8では、内部構造を示すために筺体の図示は省略してある。
 本実施形態に係るプロジェクタは、画像形成ユニット1と、画像形成ユニット1の周囲に配置された3つのLED(Light Emitting Diode)光源ユニット2と、画像形成ユニット1において形成された画像を投射する投射レンズ3と、液冷システム4とを有する。
 3つのLED光源ユニット2には、赤色光を発生させる赤色光源ユニット2R、緑色光を発生する緑色光源ユニット2Gおよび青色光を発生する青色光源ユニット2Bが含まれる。
 図9に示すように、各光源ユニット2は、LED10がそれぞれ搭載された一対のホルダー11と、LED10の温度を所定温度以下に維持するための冷却機構12と、集光レンズ13とを少なくとも含む。ホルダー11、冷却機構12および集光レンズ13を含む各光源ユニット2の構成要素は、ボックス14内に収容されて一体化されている。また、各光源ユニット2内の一対のホルダー11は対向配置されており、それぞれのホルダー11に搭載されているLED10から発せられた光は集光レンズ13によって集光されて画像形成ユニット1(図8)に入射する。
 再び図8を参照する。画像形成ユニット1は、クロスダイクロイックプリズムと、該プリズムの周囲に配置された3つの液晶パネルとを少なくとも含む。3つの液晶パネルは、光源ユニット毎に用意されている。各液晶パネルは、各光源ユニット2から出射された光を映像信号に基づいて変調する。すなわち、赤色光源ユニット2Rから出射された光(赤色光)は、赤色用の液晶パネルに入射して変調される。緑色光源ユニット2Gから出射された光(緑色光)は、緑色用の液晶パネルに入射して変調される。青色光源ユニット2Bから出射された光(青色光)は、青色用の液晶パネルに入射して変調される。そして、各液晶パネルによって変調された光は、クロスダイクロイックプリズムによって合成され、投射レンズ3を介してスクリーンなどに投射される。
 次に、液冷システム4について説明する。液冷システム4は、光源ユニット2R、2G、2Bを経由する流路20を有する。流路20上には、ポンプ21、リザーブタンク22、ラジエター23およびラジエター23に冷却風を供給するファン24が少なくとも配置されている。さらに、液冷システム4は、2つのラジエター(第1のラジエター23a、第2のラジエター23b)と、それぞれのラジエター23a、23bに冷却風を供給する2つのファン(第1のファン24a、第2のファン24b)を備えている。なお、流路20は可撓性を有するチューブによって構成されている。
 図10に、液冷システム4における冷媒の流れを模式的に示す。図10中の矢印が液冷システム4内における冷媒の流れを示している。もっとも、図10中の矢印は、冷媒の主な流れを示しており、実際の流路デザインと完全には一致していない。
 ポンプ21から送り出された冷媒は、ラジエター23の手前で分流され、第1のラジエター23aおよび第2のラジエター23bにそれぞれ流入する。各ラジエター23a、23bに流入した冷媒は熱交換によって冷却される。第1のラジエター23aおよび第2のラジエター23bから流出した冷媒は、合流してリザーブタンク22に流入する。
 リザーブタンク22から流出した冷媒は、赤色光源ユニット2Rに流入し、該光源ユニット2R内のLEDを冷却する。その後、冷媒は、緑色光源ユニット2G、青色光源ユニット2Bを経由してポンプ21に戻る。
 緑色光源ユニット2Gおよび青色光源ユニット2Bに流入した冷媒は、各光源ユニット2G、2B内のLEDを冷却する。すなわち、ポンプ21を起点としたとき、冷媒は、ポンプ21⇒ラジエター23⇒リザーブタンク22⇒赤色光源ユニット2R⇒緑色光源ユニット2G⇒青色光源ユニット2B⇒ポンプ21の順で循環する。
 冷媒は上記のような循環経路をたどるので、冷媒の温度はラジエター23から流出した直後において最も低く、各光源ユニット2R、2G、2Bを経由する過程で冷媒の温度が次第に上昇する。
 ここで、赤色光源ユニット2Rに内蔵されている赤色LEDの発熱量は、他の光源ユニット2G、2Bに内蔵されている緑色LEDや青色LEDの発熱量よりも小さい。
 しかし、赤色LEDは、緑色LEDや青色LEDに比べて、温度変化に対して敏感である。換言すれば、赤色LEDの温度特性の変化は、緑色LEDや青色LEDの温度特性の変化に比べて急峻である。したがって、赤色LEDの温度管理が最も重要である。
 そこで、上記のような流路デザインが採用されている。すなわち、ラジエター23において冷却された冷媒が最初に赤色光源ユニット2Rに供給される流路デザインが採用されている。
 さらに、各光源ユニット2には一対のLED10が内蔵されている。温度管理の他にも、一対のLED10の間の温度差は小さいことが好ましい。特に、赤色光源ユニット2Rに内蔵されている一対の赤色LED10の間の温度差は可能な限り零に維持されることが好ましい。
 そこで、赤色光源ユニット2Rとその他の光源ユニット2G、2Bとで異なる流路デザインが採用されている。具体的には、赤色光源ユニット2Rには並行な流路が設けられており、緑色光源ユニット2Gおよび青色光源ユニット2Bには直列の流路が設けられている。
 図9に示すように、各光源ユニット2のボックス14内には、表面にLED10が搭載された一対のホルダー11が対向配置されている。また、赤光源ユニット2Rの各ホルダー11の裏面には放熱素子(本実施形態ではペルチェ素子15)がそれぞれ密接して配置されている。さらに、ペルチェ素子15の背面にはコールドプレート16がそれぞれ密接して配置されている。なお、ボックス14内には、ホルダー11、ペルチェ素子15およびコールドプレート16のアッセンブリーが2つ内蔵されているが、図9には一方のアッセンブリーの構造のみを示す。ただし、2つのアッセンブリーは同一の構造を有する。
 冷媒は、流入口を介してコールドプレート16に流入し、流出口を介してコールドプレート16から流出する。換言すれば、コールドプレート16を介してペルチェ素子15と冷媒との間で熱交換が行われる。さらに換言すれば、コールドプレート16およびペルチェ素子15を介して、冷媒とLED10との間で熱交換が行われる。
 光源ユニットの流路デザインの違いの説明に戻る。上記構造を有する赤色光源ユニット2Rに流入した冷媒は分流され、2つのコールドプレート16にそれぞれ供給される。一方、緑色光源ユニット2Gおよび青色光源ユニット2Bに流入した冷媒は分流されることなく、2つのコールドプレート16に順次供給される。したがって、赤色光源ユニット2Rに内蔵されている2つの赤色LED10は、同一温度の冷媒によって冷却される。
 上記のように、赤色光源ユニット2Rには、最も温度の低い状態の冷媒が供給される。すなわち、赤色光源ユニット2Rに内蔵されている2つの赤色LED10は、最も温度が低く、かつ、同一温度の冷媒によって均一に冷却される。結果、2つの赤色LED10の温度が所定温度以下に維持され、かつ、2つの赤色LED10の間の温度差が可能な限り零に維持される。
 直列の流路を有する緑色光源ユニット2Gおよび青色光源ユニット2Bに内蔵されている2つのLED10は、異なる温度の冷媒によって冷却される。具体的には、後段のLED10は、前段のLED10との間の熱交換によって温度が上昇した冷媒によって冷却される。より具体的には、緑色光源ユニット2Gに流入した冷媒は、前段のコールドプレート16に流入して前段の緑色LED10を冷却した後に後段のコールドプレート16に流入して後段の緑色LED10を冷却する。同様に、青色光源ユニットに流入した冷媒は、前段のコールドプレート16に流入して前段の青色LED10を冷却した後に後段のコールドプレート16に流入して後段の青色LED10を冷却する。
 しかし、緑色LED10および青色LED10の温度変化に起因する輝度変化は、赤色LED10のそれに比べて小さい。よって、緑色光源ユニット2G内の2つの緑色LED10の間の多少の温度差は許容できる。同様に、青色光源ユニット2B内の2つの青色LED10の間の多少の温度差は許容できる。
 以上説明した本発明のディスプレイ装置の冷却系によれば、輝度変化の度合いが大きな固体光源ほど(温度上昇に起因する輝度低下が大きな固体光源ほど)、より低い温度の冷媒で冷却される。換言すると、温度変化に対して敏感な固体光源ほどより冷却効果が高くなっている。これにより、各固体光源の温度上昇に起因する輝度低下が全体として抑制されるので、その結果、各固体光源の輝度バランス(照度バランス)が保たれ、高輝度で、最適なホワイトバランスを有するディスプレイ装置を提供することができる。
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成および動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解し得る様々な変更を行うことができる。
 この出願は、2010年5月31日に出願された日本出願特願2010-125109を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、光源として発光色が異なる複数の光源を備えるディスプレイ装置全般に適用することができ、より具体的には、液晶パネルやDMDなどの光変調装置を用いる、ディスプレイ装置やプロジェクタに適用することができる。

Claims (6)

  1.  複数の固体光源を備えるディスプレイ装置であって、
     前記複数の固体光源の各々を経由するように形成された流路を備え、冷媒が該流路を介して循環する冷媒循環手段を有し、
     前記複数の固体光源の各々は、温度変化に応じて輝度が変化する特性を有し、
     前記流路は、前記冷媒が前記複数の固体光源の前記特性の輝度変化の度合いが大きなものほど最初に通過するように形成されている、ディスプレイ装置。
  2.  前記複数の固体光源は、第1の色の光を出射する複数の第1の固体光源を有し、これら第1の固体光源の前記輝度変化の度合いは他の固体光源よりも大きいものとされており、
     前記流路は、前記複数の第1の固体光源を一つずつ別々に経由する、並列に設けられた複数の分岐流路を有する、請求項1に記載のディスプレイ装置。
  3.  前記他の固体光源は、前記複数の分岐流路が合流した後の流路に直列に設けられている、請求項2に記載のディスプレイ装置。
  4.  前記他の固体光源は、
     前記第1の色とは異なる第2の色の光を出射する複数の第2の固体光源と、
     前記第1および第2の色とは異なる第3の色の光を出射する少なくとも1つの第3の固体光源と、を有し、
     前記複数の第2の固体光源の前記輝度変化の度合いは前記第3の固体光源よりも大きいものとされており、
     前記複数の分岐流路が合流した後の流路は、前記冷媒が前記第3の固体光源より前記複数の第2の固体光源を先に通過するように形成されている、請求項2または3に記載のディスプレイ装置。
  5.  前記複数の第1の固体光源は、赤色の光を出射する2個の赤色LEDよりなり、前記複数の第2の固体光源は、緑色の光を出射する3個の緑色LEDよりなり、前記第3の固体光源は青色の光を出射する1個のLEDよりなる、請求項4に記載のディスプレイ装置。
  6.  前記冷媒循環手段は、
     並列に設けられた複数のラジエターと、
     前記複数のラジエターのそれぞれに冷却風を供給する複数のファンと、を有し、
     前記流路を循環する前記冷媒が分流されて前記複数のラジエターにそれぞれ供給される、請求項1から5のいずれか1項に記載のディスプレイ装置。
PCT/JP2011/061434 2010-05-31 2011-05-18 ディスプレイ装置 WO2011152217A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180027114.XA CN103069472B (zh) 2010-05-31 2011-05-18 显示设备
US13/700,110 US9804484B2 (en) 2010-05-31 2011-05-18 Display device
JP2012518324A JP5804522B2 (ja) 2010-05-31 2011-05-18 ディスプレイ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-125109 2010-05-31
JP2010125109 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011152217A1 true WO2011152217A1 (ja) 2011-12-08

Family

ID=45066596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061434 WO2011152217A1 (ja) 2010-05-31 2011-05-18 ディスプレイ装置

Country Status (4)

Country Link
US (1) US9804484B2 (ja)
JP (1) JP5804522B2 (ja)
CN (1) CN103069472B (ja)
WO (1) WO2011152217A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167774A (ja) * 2012-02-16 2013-08-29 Mitsubishi Electric Corp マルチ画面表示装置
CN103511883A (zh) * 2012-06-14 2014-01-15 三菱电机株式会社 光源装置
WO2015170405A1 (ja) * 2014-05-09 2015-11-12 日立マクセル株式会社 投写型映像表示装置
WO2016103935A1 (ja) * 2014-12-24 2016-06-30 富士フイルム株式会社 投写型表示装置及びその光源制御方法
WO2018225254A1 (ja) * 2017-06-09 2018-12-13 Necディスプレイソリューションズ株式会社 光源装置およびプロジェクタ、光源装置の起動方法
JP2020079950A (ja) * 2020-02-06 2020-05-28 セイコーエプソン株式会社 プロジェクター

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138525A (ja) * 2016-02-05 2017-08-10 日立マクセル株式会社 投射型映像表示装置
US11520219B2 (en) * 2019-08-04 2022-12-06 Coretronic Corporation Heat dissipating module and projection device
CN113741126A (zh) * 2020-05-29 2021-12-03 中强光电股份有限公司 散热***与投影装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139245A (ja) * 2004-10-15 2006-06-01 Sanyo Electric Co Ltd 投写型映像表示装置
JP2007165632A (ja) * 2005-12-14 2007-06-28 Sharp Corp Ledバックライト装置及び画像表示装置
JP2007165481A (ja) * 2005-12-12 2007-06-28 Seiko Epson Corp 熱交換器、光源装置、プロジェクタ、電子機器
JP2007264590A (ja) * 2005-09-28 2007-10-11 Sanyo Electric Co Ltd 液冷装置
JP2008268616A (ja) * 2007-04-23 2008-11-06 Matsushita Electric Ind Co Ltd 冷却装置を備えた投写型表示機器
JP2010020049A (ja) * 2008-07-10 2010-01-28 Seiko Epson Corp 冷却器、冷却装置、光源装置及びプロジェクタ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375582A (en) * 1993-12-03 1994-12-27 Mk Rail Corporation Method and apparatus for regulating temperature of natural gas fuel
JP3517624B2 (ja) * 1999-03-05 2004-04-12 キヤノン株式会社 画像形成装置
JP4102240B2 (ja) * 2003-04-08 2008-06-18 株式会社小糸製作所 車両用前照灯
US7334898B2 (en) * 2003-10-10 2008-02-26 Seiko Epson Corporation Projector
KR100600753B1 (ko) * 2004-08-17 2006-07-14 엘지전자 주식회사 열병합 발전 시스템
CN100498512C (zh) 2004-10-15 2009-06-10 三洋电机株式会社 投射型视频显示装置
JP4148230B2 (ja) * 2005-03-01 2008-09-10 セイコーエプソン株式会社 冷却ユニットの製造方法、冷却ユニット、光学装置、並びにプロジェクタ
CN1944978B (zh) * 2005-09-28 2010-07-28 三洋电机株式会社 液冷装置
JP2007127398A (ja) * 2005-10-05 2007-05-24 Seiko Epson Corp 熱交換器、熱交換器の製造方法、液冷システム、光源装置、プロジェクタ、電子デバイスユニット、電子機器
US20070114010A1 (en) * 2005-11-09 2007-05-24 Girish Upadhya Liquid cooling for backlit displays
JP4657242B2 (ja) 2006-04-27 2011-03-23 三洋電機株式会社 投写型映像表示装置
US20080142190A1 (en) * 2006-12-18 2008-06-19 Halla Climate Control Corp. Heat exchanger for a vehicle
JP2009031557A (ja) 2007-07-27 2009-02-12 Alps Electric Co Ltd 液冷システム
JP5081558B2 (ja) * 2007-09-28 2012-11-28 三洋電機株式会社 投写型映像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139245A (ja) * 2004-10-15 2006-06-01 Sanyo Electric Co Ltd 投写型映像表示装置
JP2007264590A (ja) * 2005-09-28 2007-10-11 Sanyo Electric Co Ltd 液冷装置
JP2007165481A (ja) * 2005-12-12 2007-06-28 Seiko Epson Corp 熱交換器、光源装置、プロジェクタ、電子機器
JP2007165632A (ja) * 2005-12-14 2007-06-28 Sharp Corp Ledバックライト装置及び画像表示装置
JP2008268616A (ja) * 2007-04-23 2008-11-06 Matsushita Electric Ind Co Ltd 冷却装置を備えた投写型表示機器
JP2010020049A (ja) * 2008-07-10 2010-01-28 Seiko Epson Corp 冷却器、冷却装置、光源装置及びプロジェクタ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167774A (ja) * 2012-02-16 2013-08-29 Mitsubishi Electric Corp マルチ画面表示装置
CN103511883A (zh) * 2012-06-14 2014-01-15 三菱电机株式会社 光源装置
CN103511883B (zh) * 2012-06-14 2017-03-01 三菱电机株式会社 光源装置
US10281634B2 (en) 2012-06-14 2019-05-07 Mitsubishi Electric Corporation Light source apparatus
WO2015170405A1 (ja) * 2014-05-09 2015-11-12 日立マクセル株式会社 投写型映像表示装置
US10264227B2 (en) 2014-05-09 2019-04-16 Maxell, Ltd. Projection-type image display device
WO2016103935A1 (ja) * 2014-12-24 2016-06-30 富士フイルム株式会社 投写型表示装置及びその光源制御方法
JPWO2016103935A1 (ja) * 2014-12-24 2017-07-20 富士フイルム株式会社 投写型表示装置及びその光源制御方法
WO2018225254A1 (ja) * 2017-06-09 2018-12-13 Necディスプレイソリューションズ株式会社 光源装置およびプロジェクタ、光源装置の起動方法
JPWO2018225254A1 (ja) * 2017-06-09 2020-04-09 Necディスプレイソリューションズ株式会社 光源装置およびプロジェクタ、光源装置の起動方法
JP2020079950A (ja) * 2020-02-06 2020-05-28 セイコーエプソン株式会社 プロジェクター
JP7021680B2 (ja) 2020-02-06 2022-02-17 セイコーエプソン株式会社 プロジェクター

Also Published As

Publication number Publication date
CN103069472B (zh) 2016-06-15
US20130070453A1 (en) 2013-03-21
CN103069472A (zh) 2013-04-24
US9804484B2 (en) 2017-10-31
JP5804522B2 (ja) 2015-11-04
JPWO2011152217A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5804522B2 (ja) ディスプレイ装置
US7578595B2 (en) Projection type video display apparatus
CN107765496B (zh) 光源装置、图像投影装置、光源装置的设置方法
JP4096896B2 (ja) プロジェクタ
US7740379B2 (en) Illumination module and projection apparatus
US20060203206A1 (en) Cooling apparatus and a projector having the same
US20090237619A1 (en) Liquid-cooling device and projector
US10678121B2 (en) Projector with detachable cooling
JP4988912B2 (ja) 投写型映像表示装置
JP5804112B2 (ja) プロジェクタ
US20120069586A1 (en) Light source device and projection type display device including the same
US20160124292A1 (en) Light source device and image display device
US11190740B2 (en) Projection display apparatus
US10890835B2 (en) Light conversion device, light source apparatus, and projection display apparatus with improved cooling efficiency
JP4657242B2 (ja) 投写型映像表示装置
US10996549B2 (en) Projector with polarization element cooled with cooling liquid
US10852628B2 (en) Projector
JP2009031557A (ja) 液冷システム
US20190212638A1 (en) Image projection apparatus
US10665767B2 (en) Light source device, projection-type display device, and method for cooling semiconductor light-emitting element
JP2005202112A (ja) 光源装置および投射型表示装置
JP6760308B2 (ja) プロジェクタ
CN216956649U (zh) 激光投影设备
CN113741126A (zh) 散热***与投影装置
JP2024023095A (ja) 画像形成ユニット及びプロジェクター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027114.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13700110

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012518324

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 10774/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11789626

Country of ref document: EP

Kind code of ref document: A1