WO2011151986A1 - 水素生成装置 - Google Patents

水素生成装置 Download PDF

Info

Publication number
WO2011151986A1
WO2011151986A1 PCT/JP2011/002819 JP2011002819W WO2011151986A1 WO 2011151986 A1 WO2011151986 A1 WO 2011151986A1 JP 2011002819 W JP2011002819 W JP 2011002819W WO 2011151986 A1 WO2011151986 A1 WO 2011151986A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
peripheral surface
inner cylinder
evaporator
middle cylinder
Prior art date
Application number
PCT/JP2011/002819
Other languages
English (en)
French (fr)
Inventor
多田浩司
信岡政樹
嶋和也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/637,491 priority Critical patent/US8974556B2/en
Priority to EP11789401.4A priority patent/EP2543628B1/en
Priority to JP2011552120A priority patent/JP5044048B2/ja
Publication of WO2011151986A1 publication Critical patent/WO2011151986A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00929Provided with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator that generates hydrogen to be supplied to a fuel cell system, and more specifically to an evaporator in the hydrogen generator.
  • a fuel cell system such as a home cogeneration system has a hydrogen generation device that generates a fuel gas containing hydrogen and a fuel cell that generates power using the fuel gas generated by the hydrogen generation device.
  • a hydrogen generator for a fuel cell system includes an evaporator that mixes a raw material gas such as city gas or hydrocarbon fuel such as LPG and steam, and a steam reforming reaction of the mixed gas at a high temperature of about 600 to 800 ° C.
  • the carbon monoxide concentration is reduced to about 0.5% by CO conversion of carbon monoxide, which has a poisoning effect on the fuel cell catalyst, and a reformer that produces hydrogen-containing gas containing hydrogen as the main component.
  • a CO remover that further reduces the carbon monoxide concentration to about 10 ppm or less by a selective oxidation reaction (see, for example, Patent Document 1).
  • FIG. 10 shows a cross section of an already proposed hydrogen generator (see Patent Document 1).
  • a hydrogen generator 1 shown in FIG. 10 includes an evaporator 10, a reformer 2, a shift converter 3, a CO remover 4, and a combustor 6.
  • the evaporator 10 has a spiral evaporating flow path defined by an inner cylinder 11, an outer cylinder 12, and a spiral round bar (flow path defining component) 50 provided between the inner cylinder 11 and the outer cylinder 12.
  • the inner cylinder 11 and the outer cylinder 12 can be manufactured by, for example, longitudinally welding a rolled stainless steel plate.
  • Such an evaporator 10 includes, for example, inserting the inner cylinder 11 into the outer cylinder 12 having a spiral round bar 50 welded to the inner peripheral surface in advance, and expanding the inserted inner cylinder 11. Manufactured. By expanding the inner cylinder 11 inserted into the outer cylinder 12, the outer peripheral surface of the inner cylinder 11 and the round bar 50 come into contact with each other, and the spiral evaporation channel 18 is interposed between the inner cylinder 11 and the outer cylinder 12. Is formed.
  • the raw material gas and the reformed water are supplied to the spiral evaporation channel 18 of the evaporator 10 having such a structure.
  • the raw material gas is supplied from the raw material supplier 15; the water is supplied from the reforming water supplier 16.
  • the water supplied to the evaporation channel 18 is heated and evaporated by the combustion gas flowing through the combustion gas channel 14; as a result, the evaporator 10 generates a mixed gas of the raw material gas and water vapor.
  • the length of the evaporation channel 18 can be increased, and the amount of heat supplied to the reforming water 17 in the process of passing through the evaporation channel 18 can be increased. it can. As a result, the reforming water 17 can be easily evaporated. Thereby, the amount of steam provided for the steam reforming reaction in the reformer can be increased.
  • Patent Document 3 Furthermore, a technique is known that uses a metal tube spirally wound around the outer peripheral surface of the inner cylinder as an evaporation channel (see, for example, Patent Document 3).
  • the raw material gas and the reformed water flow through a metal tube spirally wound around the outer peripheral surface of the inner cylinder.
  • the flow rate of steam generated in the evaporator 10 is required to stabilize the temperature within a desired range.
  • it is required to heat the reforming water at a constant speed in the evaporator 10 and evaporate at a constant speed.
  • the contact state between the round bar 50 and the inner cylinder 11 and the outer cylinder 12 becomes unstable, and the evaporation channel 18.
  • the seal was unstable.
  • a bead swelling of welding marks
  • a gap is formed between the round bar 50 and the inner cylinder 11 and the outer cylinder 12, so that the evaporation channel 18 is not sufficiently sealed.
  • the contact between the round bar 50 and the inner cylinder 11 and the outer cylinder 12 is line contact, if the contact state between the round bar 50 and the inner cylinder 11 and the outer cylinder 12 becomes unstable, the inner cylinder 11
  • the amount of heat transferred from the combustion gas passing through the peripheral surface to the round bar 50 and the amount of heat transferred from the round bar 50 to the outer cylinder 12 vary locally, and a sudden temperature change occurs in the evaporation channel 18. If the temperature fluctuates rapidly in the evaporation flow path 18, the reformed water does not evaporate at the position where it should evaporate, or the reformed water bumps, and the flow rate and temperature of water vapor generated in the evaporator are reduced. It varies.
  • the present invention has been made in view of such a point, and an object thereof is to provide a hydrogen generator having an evaporator that can suppress a shortcut of reforming water and occurrence of a rapid temperature change in an evaporation channel. To do.
  • the present inventor has found that by defining a spiral evaporating channel with a cylinder having elasticity and stretchability, it is possible to prevent a shortcut of reforming water and a sudden temperature change in the evaporating channel. Further studies were made to complete the invention.
  • this invention relates to the hydrogen generator shown below.
  • An evaporator that mixes a raw material gas containing methane and water vapor to generate a mixed gas, a reformer that changes the mixed gas into a hydrogen-containing gas by a steam reforming reaction, the evaporator,
  • a hydrogen generator having a combustor for supplying heat to the reformer, wherein the evaporator includes an inner cylinder, an outer cylinder surrounding the inner cylinder, and between the inner cylinder and the outer cylinder And a middle cylinder that defines a spiral flow path through which water supplied from the outside flows between the inner cylinder and the outer cylinder, on the inner circumferential surface and the outer circumferential surface of the middle cylinder
  • the spiral convex part and the concave part are integrally formed on the front and back, the upper surface of the convex part of the inner peripheral surface of the inner cylinder is in contact with the outer peripheral surface of the inner cylinder, and the convex part of the outer peripheral surface of the inner cylinder is A hydrogen generator
  • the reforming water does not shortcut and the temperature in the evaporation channel is stabilized.
  • the reformed water can be heated at a constant speed and evaporated at a constant speed. Therefore, the flow rate and temperature of the generated steam can be controlled without increasing the size of the evaporator. It can be stabilized. As a result, the hydrogen generator of the present invention can stably supply hydrogen.
  • FIG. Schematic diagram of a cross section of the hydrogen generator of Embodiment 1 of the present invention Side view of the middle cylinder in the first embodiment
  • the figure which shows the manufacturing method of the center cylinder in Embodiment 1 The figure which shows the manufacturing method of the evaporator in Embodiment 1.
  • FIG. Schematic diagram of a cross section of the evaporator in the second embodiment Schematic diagram of a cross section of the evaporator in the third embodiment
  • Schematic diagram of a cross section of the evaporator in the fourth embodiment Schematic diagram of a cross section of the evaporator in the fifth embodiment
  • Side view of middle cylinder in embodiment 6 Schematic diagram of the cross section of a conventional hydrogen generator
  • the hydrogen generator of the present invention has an evaporator, a reformer, a shift converter, a CO remover, and a combustor.
  • the hydrogen generating apparatus of the present invention is devised in the structure of the member that defines the evaporation flow path in the evaporator, thereby preventing 1) reforming water from short-circuiting the evaporation flow path or 2) evaporating flow path. It is characterized in that the temperature inside is prevented from changing suddenly.
  • the evaporator is supplied with water (reformed water) and raw material gas containing methane such as city gas or hydrocarbon fuel such as LPG from the outside.
  • the evaporator has a spiral channel (hereinafter also referred to as “evaporation channel”) through which reformed water supplied from the outside flows.
  • the reforming water supplied from the outside is heated in the process of flowing through the evaporation channel, evaporates, and becomes steam.
  • the vaporator the water vapor and the raw material gas are mixed to generate a mixed gas.
  • the detailed structure of the evaporator will be described later.
  • the reformer is connected to the evaporator and generates a hydrogen-containing gas containing hydrogen as a main component from the mixed gas generated by the evaporator by a steam reforming reaction.
  • the hydrogen-containing gas produced in the reformer contains a certain concentration of carbon monoxide.
  • the reformer includes a metal-based reforming catalyst such as a Ni-based catalyst or a Ru-based catalyst.
  • the transformer is connected to the reformer, and reduces the carbon monoxide concentration in the hydrogen-containing gas generated by the reformer to about 0.5% by a CO shift reaction (aquatic gas shift reaction).
  • the CO remover is connected to the transformer, and further removes carbon monoxide by an oxidation reaction from the hydrogen-containing gas having a low carbon monoxide concentration produced by the transformer.
  • Combustor supplies heat to evaporator and reformer.
  • the combustor is composed of a burner or the like.
  • the hydrogen generator of the present invention is characterized by the structure of the evaporator.
  • the structure of the evaporator will be described in detail.
  • the evaporator has an inner cylinder, an outer cylinder surrounding the inner cylinder, and a middle cylinder inserted between the inner cylinder and the outer cylinder (see FIG. 1).
  • a combustor is disposed inside the inner cylinder.
  • the combustion gas flow path for flowing the combustion gas heated by the combustor may be formed in the internal peripheral surface of an inner cylinder (refer FIG. 1).
  • the outer diameter of the inner cylinder is, for example, 60 to 100 mm; the inner diameter of the outer cylinder is, for example, 61 to 101 mm. Further, the gap between the outer cylinder and the inner cylinder is, for example, 1 to 5 mm.
  • the inner cylinder and the outer cylinder preferably have the same central axis.
  • the inner cylinder and the outer cylinder are not particularly limited, but are manufactured, for example, by vertically welding a round metal plate.
  • the thickness of the metal plate constituting the inner cylinder and the outer cylinder is 0.8 to 1.5 mm.
  • the material of the metal plate is, for example, austenitic stainless steel such as SUS310.
  • the middle cylinder is a member for defining a spiral evaporation channel in the space between the inner cylinder and the outer cylinder.
  • the middle cylinder preferably has the same central axis as the inner cylinder and the outer cylinder.
  • the present invention is characterized in that the spiral evaporating flow path is defined by the cylinder (middle cylinder) inserted between the inner cylinder and the outer cylinder.
  • a spiral convex portion and a spiral concave portion for defining a spiral evaporation channel are formed integrally on the inner and outer peripheral surfaces of the middle cylinder. That is, the convex portion on the outer peripheral surface of the middle cylinder corresponds to the concave portion on the inner peripheral surface of the middle cylinder, and the concave portion on the outer peripheral surface of the middle cylinder corresponds to the convex portion on the inner peripheral surface of the middle cylinder (see FIG. 1).
  • the convex portions formed on the inner and outer peripheral surfaces of the middle cylinder have an upper surface, and the concave portions have a bottom surface.
  • the shape of the convex portion is preferably a forward tapered shape.
  • the upper surface of the convex portion of the outer peripheral surface of the middle cylinder is in contact with the inner peripheral surface of the outer cylinder, and the upper surface of the convex portion of the inner peripheral surface of the middle cylinder is in contact with the outer peripheral surface of the inner cylinder.
  • the present invention is characterized in that the middle cylinder, the inner cylinder, and the outer cylinder are in surface contact. When the middle cylinder and the inner cylinder are in surface contact, the amount of heat received by the middle cylinder from the combustor via the inner cylinder can be stabilized.
  • the area of the upper surface of the convex portion of the outer peripheral surface of the middle cylinder that contacts the inner peripheral surface of the outer cylinder (hereinafter also referred to as “contact area between the outer cylinder and the middle cylinder”) is the middle cylinder that contacts the outer peripheral surface of the inner cylinder. May be the same as or different from the area of the upper surface of the convex portion of the inner peripheral surface (hereinafter also referred to as “contact area between the inner cylinder and the middle cylinder”) (see Embodiment 2, FIG. 5). ).
  • the amount of heat transferred from the combustion gas to the middle cylinder via the inner cylinder can be increased; reducing the contact area between the inner cylinder and the middle cylinder
  • the amount of heat transferred from the combustion gas to the middle cylinder via the inner cylinder can be reduced.
  • the amount of heat escaping from the middle cylinder to the outer cylinder can be increased; by reducing the contact area between the outer cylinder and the middle cylinder, The amount of heat escaping to the outer cylinder can be reduced.
  • the evaporator has a spiral space formed by a recess in the inner peripheral surface of the middle cylinder between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the middle cylinder; Between the outer peripheral surface of a cylinder, it has the spiral space comprised by the recessed part of the outer peripheral surface of a middle cylinder.
  • a spiral space between the middle cylinder and the inner cylinder or the outer cylinder functions as an evaporation channel.
  • the spiral space between the middle cylinder and the outer cylinder may be used as an evaporation channel according to the operating condition of the hydrogen generator, or the spiral space between the middle cylinder and the middle cylinder may be used.
  • the length of the evaporation channel is, for example, about 4000 mm.
  • the reforming water does not directly contact the inner cylinder containing the combustor, so that the reforming water can be heated gently. It is possible to prevent the reforming water from bumping.
  • the spiral space between the inner cylinder and the inner cylinder is used as an evaporation channel, the reforming water directly contacts the inner cylinder containing the combustor, so that the reforming water can be efficiently heated. it can.
  • the pitch of the spiral evaporation channel may be constant or may vary.
  • the temperature of the transformer and the CO remover can be maintained in the optimum range by making the pitch of the upstream evaporation channel smaller than the pitch of the downstream evaporation channel (Embodiment 3, (See FIG. 6).
  • the pitch of the spiral recesses constituting the evaporation channel may be changed.
  • the evaporating flow path may be multiple or single, but is preferably multiple. This is because if there are multiple evaporating channels, the temperature distribution in the circumferential direction of the evaporating channel can be reduced.
  • the middle cylinder may be manufactured by longitudinally welding a rolled metal plate in the same manner as the inner cylinder and the outer cylinder.
  • the material of the metal plate constituting the middle cylinder is, for example, austenitic stainless steel such as SUS310. It is preferable that the material of the metal plate constituting the middle cylinder is the same as the material of the metal plate constituting the inner cylinder and the outer cylinder. This is to make the thermal expansion coefficients of the inner cylinder, the outer cylinder, and the middle cylinder the same.
  • the thickness of the plate constituting the middle cylinder is preferably thinner than the plates constituting the inner cylinder and the outer cylinder.
  • the thickness of the plate constituting the middle cylinder is preferably 0.2 to 0.6 mm, and more preferably 0.2 to 0.4 mm.
  • the thickness of the plate constituting the middle cylinder is in the range of 0.2 to 0.6 mm, the concave and convex portions of the desired pattern can be easily formed on the inner and outer circumferential surfaces of the middle cylinder by bulging (hydroforming) Can be formed.
  • the corners of the convex part and concave part formed by bulge molding are round and usually have a radius of curvature of 1 to 3 mm.
  • the inner cylinder has axial and radial elasticity and stretchability. Can be granted.
  • the present invention is characterized in that the inner cylinder has elasticity and stretchability.
  • the manufacturing method of the evaporator is not particularly limited, and an intermediate cylinder in which spiral convex portions and concave portions are formed integrally with each other may be inserted between the prepared inner cylinder and outer cylinder.
  • an intermediate cylinder in which spiral convex portions and concave portions are formed integrally with each other may be inserted between the prepared inner cylinder and outer cylinder.
  • the middle cylinder when the middle cylinder is inserted between the inner cylinder and the outer cylinder, when the middle cylinder and the outer cylinder and the inner cylinder are not in close contact, after inserting the middle cylinder between the inner cylinder and the outer cylinder, The middle cylinder may be compressed in the axial direction to raise the convex portion of the middle cylinder (see FIG. 4), expand the inner cylinder, or contract the outer cylinder.
  • the middle cylinder since the middle cylinder is deformed and adhered to the inner cylinder and the outer cylinder by utilizing the elasticity and stretchability of the middle cylinder, it is temporarily welded to the outer circumferential surface of the inner cylinder or the inner circumferential surface of the outer cylinder. Even when the bead is placed or when the roundness of the inner cylinder or the outer cylinder is insufficient, the middle cylinder can be in close contact with the inner cylinder and the outer cylinder with a strong force. For this reason, in this invention, even if it does not weld an inner cylinder to an inner cylinder and an outer cylinder, an evaporating flow path can be sealed with a strong force. As a result, it is possible to prevent the reforming water from being short-cut between the evaporation channels.
  • the middle cylinder, the inner cylinder, and the outer cylinder are in close contact with each other as described above, the contact area between the middle cylinder, the inner cylinder, and the outer cylinder is stabilized, and the combustion gas passes from the combustion gas to the middle cylinder via the inner cylinder. The amount of heat transmitted is stabilized. Thereby, the temperature of the evaporation channel defined by the middle cylinder is stabilized, and a sudden temperature change in the evaporation channel can be prevented.
  • the evaporator in the hydrogen generator of the present invention can heat the reformed water at a constant speed and evaporate it at a constant speed. Therefore, the flow rate and temperature of the generated steam can be controlled without increasing the size of the evaporator. It can be stabilized. As a result, the hydrogen generator of the present invention can stably supply hydrogen.
  • FIG. 1 is a schematic diagram of a cross section of the hydrogen generator 1 of the first embodiment.
  • the hydrogen generator 1 includes an evaporator 10, a reformer 2, a transformer 3, a CO remover 4 connected to a hydrogen discharge port 5, and a combustor 6.
  • the evaporator 10 includes an inner cylinder 11, an outer cylinder 12 surrounding the inner cylinder 11, and a middle cylinder 13 inserted between the inner cylinder 11 and the outer cylinder 12.
  • the length of the evaporator 10 in the gravitational direction is 300 to 400 mm.
  • the reformer 2 is disposed below the evaporator 10 in the direction of gravity, and surrounds the inner cylinder 11 extending from the evaporator 10.
  • the transformer 3 surrounds the region of the evaporator 10 in the lower part in the direction of gravity (downstream of the evaporation channel 18).
  • the CO remover 4 surrounds the region in the upper part of the gravity direction (upstream of the evaporation flow path 18) in the evaporator 10.
  • the combustor 6 is arranged in a combustion cylinder 9 arranged inside the inner cylinder 11 of the evaporator 10.
  • the combustor is connected to a fuel air supplier 7 that supplies combustion fuel and air to the combustor 6.
  • the combustor 6 is a burner, for example.
  • the air heated by the combustor 6 passes through the combustion gas passage 14 and is discharged from the combustion gas discharge port 8.
  • the evaporator 10 includes the inner cylinder 11, the outer cylinder 12 surrounding the inner cylinder 11, and the middle cylinder 13 inserted between the inner cylinder 11 and the outer cylinder 12.
  • FIG. 2 shows a side view of the middle cylinder 13.
  • a spiral convex portion 21 and a spiral concave portion 22 are formed integrally on the front and back surfaces on the inner peripheral surface and the outer peripheral surface of the middle cylinder 13.
  • the convex portion 21A on the outer peripheral surface of the intermediate cylinder 13 corresponds to the concave portion 22B on the inner peripheral surface of the intermediate cylinder 13;
  • the concave portion 22A on the outer peripheral surface of the intermediate cylinder 13 corresponds to the convex portion 21B on the inner peripheral surface of the intermediate cylinder 13 To do.
  • the shape of the convex portion 21 is a forward tapered shape.
  • the width W1 of the convex portion 21A on the outer peripheral surface of the middle cylinder 13 that contacts the inner peripheral surface of the outer cylinder 12 is 1 to 30 mm, and the convex portion 21B on the inner peripheral surface of the middle cylinder 13 that contacts the outer peripheral surface of the inner cylinder 11
  • the width W2 is 2 to 50 mm.
  • the recess 22 ⁇ / b> A on the outer peripheral surface of the middle cylinder 13 constitutes the evaporation channel 18. For this reason, in the present embodiment, the reforming water 17 flows between the outer cylinder 12 and the middle cylinder 13.
  • the method of manufacturing the middle cylinder 13 by bulge forming is as follows: 1) First step (FIG. 3A) for preparing a cylindrical body 30 composed of a thin plate; A step of setting the cylinder 30 and sealing both ends of the cylinder 30 with the piston 33 (FIG. 3B), 3) a third step of injecting the liquid 35 into the cylinder (FIG. 3C), and 4) inside the cylinder 30 The pressure of the liquid 35 is increased, and a fourth step (FIG. 3D) for forming a concave portion and a convex portion in the cylindrical body 30 is included.
  • the manufacturing method of the evaporator 10 includes 1) a first step (FIG. 4A) for preparing the inner cylinder 11 and the outer cylinder 12, and 2) an inner cylinder 11 and an outer cylinder 12. 3), a second step (FIG. 4B) for inserting the middle cylinder 13, and a third step (FIG. 4C) for compressing the middle cylinder 13 inserted between the inner cylinder 11 and the outer cylinder 12 in the axial direction. ) And 4) a fourth step (FIG. 4D) for fixing the middle cylinder 13 in a compressed state in the axial direction.
  • the height h of the convex portion (or the depth of the concave portion) of the inner cylinder 13 is set so that the inner cylinder 13 can be easily inserted into the space between the inner cylinder 11 and the outer cylinder 12.
  • 11 and the outer cylinder 12 and the distance d is preferably smaller than the distance d.
  • the inner cylinder 13 is compressed in the axial direction.
  • the middle cylinder 13 has elasticity in the radial direction, the height h (or the depth of the recess) of the convex portion in the middle cylinder 13 is increased by compressing the middle cylinder 13 in the axial direction.
  • the middle cylinder 13 has elasticity, the uneven shape of the middle cylinder 13 is deformed in accordance with the shape of the space between the inner cylinder 11 and the outer cylinder 12, and the middle cylinder 13, the inner cylinder 11, and the outer cylinder 12 Are in close contact.
  • the middle cylinder is deformed and adhered to the inner cylinder and the outer cylinder using the elasticity and stretchability of the middle cylinder, the middle cylinder is firmly adhered to the inner cylinder and the outer cylinder. be able to. For this reason, in this Embodiment, an evaporating flow path can be sealed with a strong force. As a result, it is possible to prevent the reforming water from being short-cut between the evaporation channels.
  • the middle cylinder, the inner cylinder, and the outer cylinder are in close contact with each other by surface contact, the contact area between the middle cylinder, the inner cylinder, and the outer cylinder is stabilized, and the amount of heat transmitted from the combustion gas to the middle cylinder via the inner cylinder is stable. To do. Thereby, the temperature of the evaporation channel defined by the middle cylinder is stabilized, and a sudden temperature change in the evaporation channel can be prevented.
  • Combustor 6 is driven to heat the entire hydrogen generator 1. After confirming that each member of the hydrogen generator 1 has reached a temperature suitable for the reaction, the raw material gas from the raw material supplier 15 is changed from the reforming water supplier 16 to the evaporation flow path 18 of the evaporator 10. Supply quality water 17.
  • the temperature of the evaporation channel 18 of the evaporator 10 gradually increases from upstream to downstream due to heat transfer from the combustion gas in the combustion gas channel 14.
  • the temperature of the evaporation channel 18 is adjusted in consideration of the configuration of the hydrogen generator and the fuel cell system, the difference in activation temperatures of the shift catalyst and the selective oxidation catalyst, which will be described later, and the like. Specifically, the temperature on the upstream side of the evaporation channel 18 is about room temperature to 100 ° C., and the temperature on the downstream side of the evaporation channel 18 is 100 to 300 ° C.
  • the reforming water 17 does not evaporate on the upstream side of the evaporation flow path 18 but is gradually heated in the process of flowing through the evaporation flow path 18 and evaporates on the downstream side.
  • a mixed gas of water vapor and source gas is generated in the evaporator 10.
  • the mixed gas is further heated in the process of flowing through the evaporation channel 18.
  • the mixed gas generated in the evaporator 10 flows into the reformer 2.
  • the raw material gas and steam undergo a steam reforming reaction by the catalytic action of the reforming catalyst included in the reformer 2, and a hydrogen-containing gas is generated.
  • the hydrogen-containing gas generated in the reformer 2 flows into the transformer 3.
  • carbon monoxide in the hydrogen-containing gas is converted by a CO shift reaction by the action of the shift catalyst.
  • the shift catalyst Since the shift catalyst exhibits high catalytic action at about 150 ° C. to 400 ° C., it is required to maintain the temperature of the shift converter 3 at a relatively high temperature (150 ° C. to 400 ° C.) during operation of the hydrogen generator 1.
  • the temperature of the transformer 3 is maintained by exchanging heat with the lower region of the evaporator 10 in the direction of gravity.
  • the hydrogen-containing gas from which carbon monoxide has been removed by the transformer flows into the CO remover 4.
  • carbon monoxide and oxygen in the hydrogen-containing gas react by the action of the CO selective oxidation catalyst, the carbon monoxide in the hydrogen-containing gas is oxidized, and the carbon monoxide in the hydrogen-containing gas is removed.
  • the temperature of the CO remover 4 can be maintained at a relatively low temperature (80 ° C. to 200 ° C.) during the operation of the hydrogen generator 1. Desired.
  • the temperature of the CO remover 4 is maintained by exchanging heat with the upper region of the evaporator 10 in the direction of gravity.
  • the hydrogen-containing gas (fuel gas) from which carbon monoxide has been removed by the CO remover flows out of the hydrogen discharge port 5 and is supplied to the fuel cell.
  • a part of the hydrogen-containing gas that could not be consumed by the fuel cell is supplied to the combustor as off-gas and used as fuel for the combustor.
  • the evaporator 10 in the hydrogen generator 1 of the present embodiment can heat the reforming water 17 at a constant speed and evaporate at a constant speed, so that the evaporator 10 does not need to be enlarged.
  • the flow rate and temperature of the generated steam can be stabilized.
  • the hydrogen generator 1 can stably supply hydrogen.
  • FIG. 5 is a schematic cross-sectional view of the evaporator 10 according to the second embodiment.
  • the description of the same components as those of the evaporator 10 according to Embodiment 1 is omitted.
  • the recess 22 ⁇ / b> A on the outer peripheral surface of the middle cylinder 13 constitutes the evaporation channel 18.
  • the area of the upper surface of the convex portion 21 ⁇ / b> A on the outer peripheral surface of the middle cylinder 13 is larger than the area of the convex portion 21 ⁇ / b> B on the inner peripheral surface of the middle cylinder 13. .
  • the sealing performance of the evaporation channel 18 constituted by the concave portion 22A on the outer peripheral surface of the middle cylinder 13 is improved, and the reforming water 17 is improved. Can more reliably prevent shortcuts.
  • Embodiment 3 In the first and second embodiments, the mode in which the pitch of the evaporation channels is constant has been described. In Embodiment 3, a mode in which the channel pitch changes between the upstream side and the downstream side of the evaporation channel will be described.
  • FIG. 6 is a schematic cross-sectional view of the evaporator 10 according to the third embodiment. The description of the same components as those of the evaporator 10 according to Embodiment 1 is omitted.
  • the pitch of the evaporation flow path 18 varies between the upstream side and the downstream side. More specifically, the pitch P1 of the upstream evaporation flow path 18 is smaller than the pitch P2 of the downstream evaporation flow path 18.
  • the maximum pitch P2 of the downstream evaporating flow path 18 is preferably at least twice as large as the minimum pitch among the pitches P1 of the upstream evaporating flow path 18, and may be four times or more. Good.
  • the flow path pitch P1 at the upper part in the gravitational direction can be set to an average of 12 mm
  • the flow path pitch P2 at the lower part in the weight direction can be set to an average of 48 mm.
  • the pitch P1 of the upstream evaporation flow path 18 is made smaller than the pitch P2 of the downstream evaporation flow path 18, the unit height of the evaporator 10 included in the upper region in the weight direction of the evaporator 10 is obtained.
  • the length of the pervaporation flow path 18 is increased, and the length of the evaporation flow path 18 per unit height of the evaporator 10 included in the region below the gravity direction of the evaporator 10 is decreased.
  • the reforming water 17 is heated to the evaporation temperature in the process of flowing through the long evaporation channel 18 included in the upper region in the weight direction of the evaporator 10 and is evaporated. Thereby, the reforming water 17 hardly flows into the evaporation flow path 18 that the lower part in the weight direction of the evaporator 10 has. That is, in the present embodiment, the reformed water 17 is unevenly distributed in the upper part of the evaporator 10 in the gravity direction. More specifically, in the area surrounded by the CO remover 4, the flow path pitch is shortened; in the area surrounded by the transformer 3, the flow path pitch is increased.
  • the reforming water 17 is unevenly distributed on the upper part of the evaporator 10 in the gravity direction, so that the CO remover 4 and the transformer 3 can be maintained at the optimum temperature.
  • a mechanism for maintaining the CO remover 4 and the transformer 3 at the optimum temperature will be described.
  • the optimum temperature of the CO remover 4 is a relatively low temperature (80 to 200 ° C.). Further, the CO remover 4 surrounds the upper region of the evaporator 10 in the gravity direction (see FIG. 1). In the present embodiment, the reforming water 17 is unevenly distributed in the region in the upper part of the evaporator 10 in the direction of gravity, so that the reforming water 17 absorbs heat from the inner cylinder 11 in the upper region of the evaporator 10 in the direction of gravity. As a result, the amount of heat transferred from the inner cylinder 11 to the CO remover 4 surrounding the upper region of the evaporator 10 in the gravity direction can be reduced, and the CO remover 4 can be maintained at a relatively low temperature.
  • the optimum temperature of the transformer 3 is relatively high (150 to 400 ° C.). Moreover, the transformer 3 surrounds the area
  • the evaporation flow path 18 which the gravity direction lower part of the evaporator 10 has is short, the time for the water vapor or the raw material gas flowing through the evaporation flow path 18 to absorb heat from the transformer 3 is short. As a result, the temperature of the transformer 3 is prevented from decreasing, and the transformer 3 can be maintained at a relatively high temperature.
  • FIG. 7 is a schematic cross-sectional view of the evaporator 10 according to the fourth embodiment. The description of the same components as those of the evaporator 10 according to Embodiment 1 is omitted.
  • the recesses on the outer peripheral surface of the middle cylinder 13 constituting the evaporation flow path 18 are formed in a region 23 above the gravity direction having a different depth and a region below the gravity direction. Region 24.
  • the depth d1 of the region 23 is deeper than the depth d2 of the region 24.
  • the reforming water 17 flows between the region 24 and the inner peripheral surface of the outer cylinder 12. For this reason, in the present embodiment, the reformed water 17 is separated from the inner cylinder 11. Thereby, it is possible to prevent heat from being rapidly transferred from the combustor 6 to the reforming water 17 via the inner cylinder 11, and to prevent bumping of the reforming water 17.
  • FIG. 8 is a schematic cross-sectional view of the evaporator 10 according to the fifth embodiment. The description of the same components as those of the evaporator 10 according to Embodiment 1 is omitted.
  • the recess on the inner peripheral surface of the middle cylinder 13 constitutes the evaporation channel 18.
  • the concave portion on the inner peripheral surface of the middle cylinder 13 constituting the evaporation channel 18 has a region 23 above the gravity direction and a region 24 below the gravity direction having different depths.
  • the depth d1 of the region 23 is deeper than the depth d2 of the region 24.
  • the reforming water 17 flows between the region 24 and the outer peripheral surface of the inner cylinder 11. Therefore, in the present embodiment, the area where the reforming water 17 is in contact with the outer peripheral surface of the inner cylinder 11 is large, and the amount of heat received by the reforming water 17 from the combustor 6 via the inner cylinder 11 can be increased. Thereby, the evaporation flow path 18 can be shortened and the evaporator 10 can be reduced in size.
  • FIG. 9 is a side view of the middle cylinder 13 in the evaporator according to the sixth embodiment. A description of the same components as those of the middle cylinder 13 of the first embodiment is omitted.
  • the concave portion on the outer peripheral surface of the middle cylinder 13 constituting the evaporation flow path 18 has a protrusion 19 that serves as a resistance to the flow of reforming water.
  • the evaporating flow path 18 has the protrusions 19 that resist the flow of the reforming water, so that the speed of the reforming water can be reduced when the flow of the reforming water is too fast.
  • the quality water 17 can be stably evaporated.
  • the hydrogen generator according to the present invention can stably supply a hydrogen-containing gas, it is useful for a fuel cell system such as a home cogeneration system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、水素生成装置における蒸発器において、改質水のショートカットと、蒸発流路内における急激な温度変化の発生を防止することを目的とする。本発明は、メタンを含む原料ガスと水蒸気とを混合して混合ガスを生成する蒸発器と、前記混合ガスを水蒸気改質反応によって水素含有ガスへと変化させる改質器と、前記蒸発器と前記改質器とに熱を供給する燃焼器と、を有する水素生成装置であって、前記蒸発器は、内筒と、前記内筒を囲む外筒と、前記内筒と前記外筒との間に挿入され、かつ前記内筒と外筒との間に外部から供給される水が流れる螺旋状の流路を規定する中筒と、を有し、前記中筒の内周面および外周面には、螺旋状の凸部と凹部とが表裏一体に形成され、前記中筒の内周面の凸部の上面が前記内筒の外周面と接触し、前記中筒の外周面の凸部の上面が前記外筒の内周面と接触する、水素生成装置を提供する。

Description

水素生成装置
 本発明は、燃料電池システムに供給する水素を生成する水素生成装置に関し、より具体的には、水素生成装置内の蒸発器に関する。
 家庭用コージェネレーションシステムなどの燃料電池システムは、水素を含有する燃料ガスを生成する水素生成装置と、水素生成装置で生成された燃料ガスを利用して発電する燃料電池とを有する。
 燃料電池システム用の水素生成装置は、都市ガスやLPG等の炭化水素系燃料などの原料ガスと水蒸気とを混合する蒸発器と、混合ガスを600~800℃程度の高温で水蒸気改質反応させ、水素を主成分とする水素含有ガスを生成する改質器と、燃料電池の触媒に対して被毒作用のある一酸化炭素をCO変成反応で一酸化炭素濃度を0.5%程度まで低下させる変成器と、選択酸化反応でさらに一酸化炭素濃度を10ppm以下程度まで低下させるCO除去器とを有する(例えば特許文献1参照)。
 すでに提案されている水素生成装置(特許文献1を参照)の断面を図10に示す。図10に示される水素生成装置1は、蒸発器10と、改質器2と、変成器3と、CO除去器4と、燃焼器6とを有する。
 蒸発器10は、内筒11と、外筒12と内筒11と外筒12との間に設けられた螺旋状の丸棒(流路規定部品)50によって規定された螺旋状の蒸発流路18を有する。また、内筒11および外筒12は、例えば丸めたステンレス板を縦溶接することで製造されうる。
 このような蒸発器10は、例えば、内周面に予め螺旋状の丸棒50が溶接された外筒12の中に内筒11を挿入し、そして挿入された内筒11を拡管することで、製造される。外筒12内に挿入された内筒11を拡管することで、内筒11の外周面と丸棒50とが接触し、内筒11と外筒12との間に螺旋状の蒸発流路18が形成される。
 このような構造を有する蒸発器10の螺旋状の蒸発流路18には、原料ガスおよび改質水が供給される。原料ガスは原料供給器15から供給され;水は改質水供給器16から供給される。蒸発流路18に供給された水は、燃焼ガス流路14を流れる燃焼ガスによって加熱されて蒸発し;その結果、蒸発器10では原料ガスと水蒸気との混合ガスが生成される。
 また、蒸発流路18を螺旋状とすることで、蒸発流路18の長さを長くすることができ、蒸発流路18を通る過程で改質水17に供給される熱量を増加させることができる。その結果、改質水17を蒸発させやすくできる。これにより改質器における水蒸気改質反応に供される水蒸気量を増大させることができる。
 また、螺旋状の丸棒の代わりに、外筒の内周面または内筒の外周面に形成された突起で蒸発流路を規定する方法も提案されている(特許文献1または特許文献2参照)。
 さらに、内筒の外周面に螺旋状に巻きつけられた金属管を蒸発流路として利用する技術が知られている(例えば特許文献3参照)。特許文献3の水素生成装置では内筒の外周面に螺旋状に巻きつけられた金属管内を原料ガスおよび改質水が流れる。
特開2008-63193号公報 特開2002-211905号公報 特開2004-14141号公報
 図10に示されるような水素生成装置1では、改質器2における水蒸気改質反応を安定させ、安定した量の水素含有ガスを生成するために、蒸発器10で生成される水蒸気の流量および温度を所望の範囲内で安定させることが求められる。水蒸気の流量および温度を安定させるには、蒸発器10において改質水を一定速度で加熱し、一定速度で蒸発させることが求められる。
 一方、外筒12に挿入された内筒11を拡管することで製造される蒸発器10では、丸棒50と内筒11および外筒12との接触状態が不安定になり、蒸発流路18のシールが不安定という問題があった。例えば、縦溶接によるビード(溶接痕の盛り上がり)が内筒11の外周面側や外筒12の内周面に置かれたり、内筒11および外筒12が真円でなかった場合などは、丸棒50と内筒11および外筒12との間に隙間が形成され、蒸発流路18のシールが充分でなくなる。
 丸棒50と内筒11および外筒12との間に隙間が形成されると、本来、螺旋状の蒸発流路18に沿って螺旋状に流れるべき改質水の一部が、隙間を通って螺旋状の蒸発流路18をショートカットしてしまう。このように、改質水の一部が蒸発流路18をショートカットしてしまうと、改質水の蒸発位置が不安定になり、蒸発器で生成される水蒸気の流量や、温度がばらつく。
 また、丸棒50と内筒11および外筒12との接触は、線接触であるので、丸棒50と内筒11および外筒12との接触状態が不安定になると、内筒11の内周面を通る燃焼ガスから丸棒50に伝わる熱量や、丸棒50から外筒12に伝わる熱量が局所的にばらつき、蒸発流路18内で急激な温度変化が生じる。蒸発流路18内で温度が急激に変動すると、改質水が蒸発すべき位置で蒸発しなかったり、改質水が突沸したりして、蒸発器で生成される水蒸気の流量や、温度がばらつく。
 このような蒸発器10で生成される水蒸気の流量および温度がばらつくという問題は、蒸発流路18を長くすることで解決することもできる。しかし蒸発流路18を長くすること、蒸発器10も長くなり、その結果、水素生成装置1が大型化してしまう。
 さらに、丸棒50を所望の螺旋状に加工することは困難であるため、丸棒50で所望の螺旋状の蒸発流路18を規定することが困難であった。
 本発明は係る点に鑑みてなされたものであり、改質水のショートカットと、蒸発流路内における急激な温度変化の発生とを抑制できる蒸発器を有する水素生成装置を提供することを目的とする。
 本発明者は、弾性と伸縮性を有する筒体で、螺旋状の蒸発流路を規定することで、改質水のショートカットと、蒸発流路内における急激な温度変化の発生を防止できることを見出しさらに検討を加え、発明を完成させた。
 すなわち、本発明は、以下に示す水素生成装置に関する。
 [1]メタンを含む原料ガスと水蒸気とを混合して混合ガスを生成する蒸発器と、前記混合ガスを水蒸気改質反応によって水素含有ガスへと変化させる改質器と、前記蒸発器と前記改質器とに熱を供給する燃焼器と、を有する水素生成装置であって、前記蒸発器は、内筒と、前記内筒を囲む外筒と、前記内筒と前記外筒との間に挿入され、かつ前記内筒と外筒との間に外部から供給される水が流れる螺旋状の流路を規定する中筒と、を有し、前記中筒の内周面および外周面には、螺旋状の凸部と凹部とが表裏一体に形成され、前記中筒の内周面の凸部の上面が前記内筒の外周面と接触し、前記中筒の外周面の凸部の上面が前記外筒の内周面と接触する、水素生成装置。
 [2]前記中筒を構成する板の厚さは、0.2~0.6mmである、[1]に記載の水素生成装置。
 [3]前記中筒は、前記内筒および前記外筒に溶接されない、[1]または[2]に記載の水素生成装置。
 [4]前記内筒の外周面と接触する前記中筒の内周面の凸部の上面の面積と、前記外筒の内周面と接触する前記中筒の外周面の凸部の上面の面積とは異なる、[1]~[3]のいずれか一つに記載の水素生成装置。
 [5]上流側の前記螺旋状の流路のピッチと、下流側の前記螺旋状の流路のピッチとは異なる、[1]~[4]のいずれか一つに記載の水素生成装置。
 [6]前記水が流れる螺旋状の流路は、前記中筒の外周面の凹部によって構成される、[1]~[5]のいずれか一つに記載の水素生成装置。
 [7]前記中筒の外周面の凹部は、重力方向上方の領域と、重力方向下方の領域と、を有し、前記重力方向下方の領域は、前記重力方向上方の領域よりも浅く、前記水は、前記重力方向下方の領域と前記外筒の内周面との間を流れる、[6]に記載の水素生成装置。
 [8]前記水が流れる螺旋状の流路は、前記中筒の内周面の凹部によって構成される、[1]~[5]のいずれか一つに記載の水素生成装置。
 [9]前記中筒の内周面の凹部は、重力方向上方の領域と、重力方向下方の領域と、を有し、前記重力方向下方の領域は、前記重力方向上方の領域よりも浅く、前記水は、前記重力方向下方の領域と前記内筒の外周面との間を流れる、[8]に記載の水素生成装置。
 [10]前記水が流れる螺旋状の流路は、前記水の流れの抵抗となる突起を有する、[1]~[9]のいずれか一つに記載の水素生成装置。
 本発明の水素生成装置における蒸発器では、改質水がショートカットせず、かつ蒸発流路内の温度が安定する。このため本発明の水素生成装置における蒸発器では、改質水を一定速度で加熱し、一定速度で蒸発させることができるので、蒸発器を大型化せずとも生成される水蒸気の流量および温度を安定させることができる。その結果、本発明の水素生成装置は、安定して水素の供給を行うことができる。
本発明の実施の形態1の水素生成装置の断面の模式図 実施の形態1における中筒の側面図 実施の形態1における中筒の製造方法を示す図 実施の形態1における蒸発器の製造方法を示す図 実施の形態2における蒸発器の断面の模式図 実施の形態3における蒸発器の断面の模式図 実施の形態4における蒸発器の断面の模式図 実施の形態5における蒸発器の断面の模式図 実施の形態6における中筒の側面図 従来の水素生成装置の断面の模式図
 本発明の水素生成装置は、蒸発器と、改質器と、変成器と、CO除去器と、燃焼器とを有する。本発明の水素生成装置は、蒸発器内の蒸発流路を規定する部材の構造を工夫することで、1)改質水が蒸発流路をショートカットすることを防止したり、2)蒸発流路内の温度が急激に変化することを防止したことを特徴とする。
 蒸発器には、外部から水(改質水)と、都市ガスやLPG等の炭化水素系燃料などのメタンを含む原料ガスとが供給される。蒸発器は外部から供給される改質水が流れるらせん状の流路(以下「蒸発流路」とも称する)を有する。外部から供給された改質水は蒸発流路を流れる過程で加熱され、蒸発し、水蒸気となる。その結果、蒸発器では水蒸気と原料ガスとが混合され、混合ガスが生成される。蒸発器の詳細な構造については後述する。
 改質器は、蒸発器と接続し、蒸発器で生成された混合ガスから水蒸気改質反応によって水素を主成分とする水素含有ガスを生成する。改質器で生成された水素含有ガスは、一定濃度の一酸化炭素を含む。改質器は、Ni系触媒やRu系触媒などの金属系の改質触媒を含む。
 変成器は、改質器と接続し、改質器で生成された水素含有ガスにおける一酸化炭素濃度をCO変成反応(水生ガスシフト反応)によって、0.5%程度まで低下させる。
 CO除去器は、変成器と接続し、変成器で生成された一酸化炭素濃度が低い水素含有ガスから、酸化反応によって、一酸化炭素をさらに除去する。
 燃焼器は蒸発器および改質器に熱を供給する。燃焼器は、バーナなどから構成される。
 上述のように本発明の水素生成装置は、蒸発器の構造に特徴を有する。以下蒸発器の構造について詳細に説明する。
 蒸発器は、内筒と、内筒を囲む外筒と、内筒と外筒との間に挿入された中筒と、を有する(図1参照)。内筒の内側には、燃焼器が配置される。また、内筒の内周面には、燃焼器によって加熱された燃焼ガスを流すための燃焼ガス流路が形成されていてもよい(図1参照)。
 内筒の外径は、例えば60~100mmであり;外筒の内径は、例えば61~101mmである。また、外筒と内筒との間の隙間は、例えば1~5mmである。内筒と外筒とは同一の中心軸を有することが好ましい。
 内筒および外筒は、特に限定されないが例えば丸めた金属板を縦溶接することで製造される。内筒および外筒を構成する金属板の厚さは、0.8~1.5mmである。金属板の材料は例えば、SUS310などのオーステナイト系のステンレスである。
 中筒は、内筒と外筒との間の空間に螺旋状の蒸発流路を規定するための部材である。中筒は、内筒および外筒と同一の中心軸を有することが好ましい。このように本発明では、内筒と外筒との間に挿入された筒体(中筒)で螺旋状の蒸発流路を規定することを特徴とする。
 中筒の内周面および外周面には、螺旋状の蒸発流路を規定するための螺旋状の凸部および螺旋状の凹部が表裏一体に形成されている。すなわち、中筒の外周面の凸部が中筒の内周面の凹部に対応し、中筒の外周面の凹部が中筒の内周面の凸部に対応する(図1参照)。
 中筒の内周面および外周面に形成された凸部は上面を有し、凹部は底面を有する。凸部の形状は、順テーパ状であることが好ましい。中筒の外周面の凸部の上面は、外筒の内周面に接触し、中筒の内周面の凸部の上面は、内筒の外周面に接触する。このように本発明では、中筒と内筒および外筒とが面接触することを特徴とする。中筒と内筒とが面接触すると燃焼器から内筒を介して中筒が受け取る熱量を安定させることができる。
 外筒の内周面に接触する中筒の外周面の凸部の上面の面積(以下、「外筒と中筒との接触面積」とも称する)は、内筒の外周面に接触する中筒の内周面の凸部の上面の面積(以下、「内筒と中筒との接触面積」とも称する)と同じであってもよいが、異なってもよい(実施の形態2、図5参照)。このように、内筒または外筒と中筒との接触面積を調節することで、蒸発流路のシール性を向上させたり(実施の形態2参照)、中筒に伝わる熱量を調節したりすることができる。例えば、内筒と中筒との接触面積を大きくすることで、燃焼ガスから内筒を介して中筒に伝わる熱量を増加させることができ;内筒と中筒との接触面積を小さくすることで、燃焼ガスから内筒を介して中筒に伝わる熱量を減少させることができる。また、外筒と中筒との接触面積を大きくすることで、中筒から外筒に逃げる熱量を増加させることができ;外筒と中筒との接触面積を小さくすることで、中筒から外筒に逃げる熱量を減少させることができる。
 中筒の螺旋状の凹部は、内筒および外筒に接触しない。このため、蒸発器は、内筒の外周面と中筒の内周面との間に、中筒の内周面の凹部によって構成された螺旋状の空間と;外筒の内周面と中筒の外周面との間に、中筒の外周面の凹部によって構成された螺旋状の空間とを有する。中筒と内筒または外筒との間の螺旋状の空間は、蒸発流路として機能する。
 本発明では、水素生成装置の運転状況に応じて、中筒と外筒との間の螺旋状空間を蒸発流路として用いてもよいし、中筒と中筒との間の螺旋状空間を蒸発流路として用いてもよいし、中筒と内筒との間の螺旋状空間および中筒と外筒との間の螺旋状空間の両方を蒸発流路として用いてもよい。蒸発流路の長さは、例えば、約4000mmである。
 中筒と外筒との間の螺旋状空間を蒸発流路として用いる場合、改質水は、燃焼器を内包する内筒に直接接触しないので、改質水を穏やかに加熱することができ、改質水が突沸することを防止することができる。一方、中筒と内筒との間の螺旋状空間を蒸発流路として用いる場合、改質水は燃焼器を内包する内筒に直接接触するので、改質水を効率的に加熱することができる。
 また、螺旋状の蒸発流路のピッチは一定であってもよいし、変動していてもよい。例えば、上流側の蒸発流路のピッチを下流側の蒸発流路のピッチよりも小さくすることで、変成器およびCO除去器の温度を最適な範囲に維持することができる(実施の形態3、図6参照)。蒸発流路のピッチを変えるには、蒸発流路を構成する螺旋形の凹部のピッチを変えればよい。
 また、蒸発流路は多条であっても一条であってもよいが、多条であることが好ましい。蒸発流路が多条であれば、蒸発流路の周方向の温度分布を低減できるからである。
 中筒も内筒および外筒と同様に、丸めた金属板を縦溶接することで製造されてもよい。中筒を構成する金属板の材料は、例えばSUS310などのオーステナイト系のステンレスである。中筒を構成する金属板の材料は、内筒および外筒を構成する金属板の材料と同じであることが好ましい。内筒、外筒および中筒の熱膨張係数を同じにするためである。内筒、外筒および中筒の熱膨張係数が異なると、水素生成装置の運転時に、内筒および外筒と中筒との間に隙間が生じ、蒸発流路のシール性が低下してしまうからである。
 一方、中筒を構成する板の厚さは、内筒および外筒を構成する板よりも薄いことが好ましい。具体的には、中筒を構成する板の厚さは、0.2~0.6mmであることが好ましく、0.2~0.4mmであることがより好ましい。中筒を構成する板の厚さが0.2~0.6mmの範囲であると、中筒の内周面および外周面に所望のパターンの凹部および凸部をバルジ成形(ハイドロフォーミング)によって容易に形成することができる。
 このように、バルジ成形で形成された凸部および凹部の角は丸く、通常1~3mmの曲率半径を有する。
 このような薄い金属板から構成される中筒の内周面および外周面に螺旋状の凹部および凸部を表裏一体に形成することで、中筒に、軸方向および径方向の弾性および伸縮性を付与することができる。このように、本発明では、中筒が弾性および伸縮性を有することを特徴とする。
 蒸発器の作製方法は特に限定されないが、準備した内筒および外筒との間に、螺旋状の凸部および凹部が表裏一体に形成された中筒を挿入すればよい。上述のように、中筒は径方向に弾性および伸縮性を有するので、中筒の凹凸形状が内筒と外筒との間の空間に合わせて変形し、中筒と外筒および内筒とが密着する。
 一方、内筒および外筒との間に中筒を挿入した時点で、中筒と外筒および内筒とが密着しない場合は、内筒および外筒との間に中筒を挿入した後、中筒を軸方向に圧縮し、中筒の凸部を高くしたり(図4参照)、内筒を拡管したり、外筒を縮管したりすればよい。
 このように、本発明では、中筒が有する弾性および伸縮性を利用して中筒を内筒および外筒に変形密着させるので、仮に内筒の外周面や外筒の内周面に縦溶接によるビードが置かれている場合や内筒または外筒の真円度が不十分な場合でも、中筒が内筒および外筒に強い力で密着することができる。このため、本発明では、中筒を、内筒および外筒に溶接しなくとも、強い力で蒸発流路をシールできる。これにより蒸発流路間を改質水がショートカットすることを防止することができる。
 さらに、上述のように中筒と内筒および外筒とは面接触で密着するので、中筒と内筒および外筒との接触面積が安定し、燃焼ガスから内筒を介して中筒に伝わる熱量が安定する。これにより、中筒が規定する蒸発流路の温度が安定し、蒸発流路内の急激な温度変化を防止することができる。
 このため本発明の水素生成装置における蒸発器は、改質水を一定速度で加熱し、一定速度で蒸発させることができるので、蒸発器を大型化せずとも生成される水蒸気の流量および温度を安定させることができる。その結果、本発明の水素生成装置は、安定して水素の供給を行うことができる。
 以下、図面を参照しながら、本発明の実施の形態について説明する。本発明は、以下の実施の形態に限定されない。
 [実施の形態1]
 図1は、実施の形態1の水素生成装置1の断面の模式図である。図1に示されるように水素生成装置1は、蒸発器10と、改質器2と、変成器3と、水素排出口5に接続したCO除去器4と、燃焼器6とを有する。
 蒸発器10は、内筒11と、内筒11を囲む外筒12と、内筒11と外筒12との間に挿入された中筒13と、を有する。蒸発器10の重力方向の長さは、300~400mmである。
 改質器2は蒸発器10の重力方向下方に配置され、蒸発器10から伸びた内筒11を包囲する。変成器3は蒸発器10のうち、重力方向下部(蒸発流路18の下流側)の領域を包囲する。CO除去器4は、蒸発器10のうち、重力方向上部(蒸発流路18の上流側)の領域を包囲する。
 燃焼器6は蒸発器10の内筒11の内側に配置された燃焼筒9内に配置される。燃焼器は、燃焼器6に燃焼用の燃料および空気を供給する燃料空気供給器7に接続されている。燃焼器6は、例えばバーナである。燃焼器6によって加熱された空気は、燃焼ガス流路14を通って、燃焼ガス排出口8から排出される。
 次に蒸発器10の構造について詳細に説明する。上述のように、蒸発器10は、内筒11と、内筒11を囲む外筒12と、内筒11と外筒12との間に挿入された中筒13と、を有する。
 図2は、中筒13の側面図を示す。図1および図2に示されるように中筒13の内周面および外周面には、螺旋状の凸部21と、螺旋状の凹部22とが表裏一体に形成されている。中筒13の外周面の凸部21Aは、中筒13の内周面の凹部22Bに対応し;中筒13の外周面の凹部22Aは、中筒13の内周面の凸部21Bに対応する。図2および図1に示されるように、凸部21の形状は順テーパ状である。
 外筒12の内周面に接触する中筒13の外周面の凸部21Aの幅W1は1~30mmであり、内筒11の外周面に接触する中筒13の内周面の凸部21Bの幅W2は2~50mmである。
 本実施の形態では、中筒13の外周面の凹部22Aが蒸発流路18を構成する。このため、本実施の形態では、改質水17は、外筒12と中筒13との間を流れる。
 次に、このような中筒13をバルジ成形によって製造する方法について、図3A~図3Dを参照しながら説明する。
 図3A~図3Dに示されるように、バルジ成形による中筒13の製造方法は、1)薄板から構成された筒体30を準備する第1ステップ(図3A)と、2)金型31に筒体30をセットし、筒体30の両端をピストン33で密封するステップ(図3B)と、3)筒体内に液体35を注入する第3ステップ(図3C)と、4)筒体30内の液体35の圧力を上昇させて、筒体30に凹部および凸部を形成する第4ステップ(図3D)とを有する。
 次に、本実施の形態における蒸発器10を製造する方法について、図4A~図4Dを参照しながら説明する。
 図4A~図4Dに示されるように、蒸発器10の製造方法は、1)内筒11および外筒12を準備する第1ステップ(図4A)と、2)内筒11および外筒12との間に、中筒13を挿入する第2ステップ(図4B)と、3)内筒11と外筒12との間に挿入された中筒13を軸方向に圧縮する第3ステップ(図4C)と、4)中筒13を軸方向に圧縮された状態で固定する第4ステップ(図4D)とを有する。
 第2ステップで、内筒11および外筒12との間の空間に中筒13を容易に挿入できるように、中筒13における凸部の高さh(または凹部の深さ)を、内筒11と外筒12と間隔dよりも小さくしておくことが好ましい。
 第3ステップで、中筒13を軸方向に圧縮する。上述のように、中筒13は径方向に伸縮性を有するので、中筒13を軸方向に圧縮することで、中筒13における凸部の高さh(または凹部の深さ)が増加する。また、中筒13は弾性を有するので、中筒13の凹凸形状が内筒11と外筒12との間の空間の形状に合わせて変形し、中筒13と内筒11および外筒12とが密着する。
 このように、本実施の形態では、中筒が有する弾性および伸縮性を用いて中筒を内筒および外筒に変形密着させているので、中筒が内筒および外筒に強固に密着することができる。このため、本実施の形態では、強い力で蒸発流路をシールできる。これにより蒸発流路間を改質水がショートカットすることを防止することができる。
 さらに、中筒と内筒および外筒とは面接触で密着するので、中筒と内筒および外筒との接触面積が安定し、燃焼ガスから内筒を介して中筒に伝わる熱量が安定する。これにより、中筒が規定する蒸発流路の温度が安定し、蒸発流路内の急激な温度変化を防止することができる。
 次に本実施の形態の水素生成装置1を用いて燃料ガスを生成する手順について、図1を参照しながら説明する。
 燃焼器6を駆動し、水素生成装置1全体を加熱する。そして水素生成装置1の各部材が反応に適した温度に達したことを確認した後、蒸発器10の蒸発流路18に、原料供給器15から原料ガスを、改質水供給器16から改質水17を供給する。
 蒸発器10の蒸発流路18では、燃焼ガス流路14内の燃焼ガスからの伝熱によって、上流から下流に向かって徐々に温度が上昇する。蒸発流路18の温度は、水素生成装置および燃料電池システムの構成や、後述する変成触媒および選択酸化触媒の活性温度の違い等を考慮しつつ調節される。具体的には、蒸発流路18の上流側の温度は、常温~100℃程度であり、蒸発流路18の下流側の温度は、100~300℃である。
 このため、改質水17は、蒸発流路18の上流側では蒸発せず、蒸発流路18を流れる過程で徐々に加熱され、下流側で蒸発する。その結果、蒸発器10内で水蒸気と原料ガスとの混合ガスが生成される。混合ガスは、蒸発流路18を流れる過程でさらに加熱される。
 蒸発器10で生成された混合ガスは、改質器2に流入する。改質器2では、改質器2が有する改質触媒の触媒作用で、原料ガスと水蒸気とが水蒸気改質反応して、水素含有ガスが生成される。
 改質器2で生成された水素含有ガスは変成器3に流入する。変成器3では、変成触媒の作用によるCO変成反応によって水素含有ガス中の一酸化炭素が変成される。
 変成触媒は約150℃~400℃で高い触媒作用を発揮するので、水素生成装置1の運転中、変成器3の温度を比較的高温(150℃~400℃)に維持することが求められる。変成器3の温度は、蒸発器10の重力方向下部の領域と熱交換することで維持される。
 変成器で一酸化炭素が除去された水素含有ガスは、CO除去器4に流入する。CO除去器では、水素含有ガス中の一酸化炭素と酸素とがCO選択酸化触媒の作用で反応し、水素含有ガス中の一酸化炭素が酸化され、水素含有ガス中の一酸化炭素が除去される。
 CO選択酸化触媒は約80℃~200℃で高い触媒作用を発揮するので、水素生成装置1の運転中、CO除去器4の温度を比較的低温(80℃~200℃)に維持することが求められる。CO除去器4の温度は、蒸発器10の重力方向上部の領域と熱交換することで維持される。
 CO除去器で一酸化炭素が除去された水素含有ガス(燃料ガス)は、水素排出口5から流出し、燃料電池に供給される。また、燃料電池で消費しきれなかった水素含有ガスの一部はオフガスとして燃焼器に供給され燃焼器の燃料として使用される。
 上述のように、本実施の形態の水素生成装置1における蒸発器10は、改質水17を一定速度で加熱し、一定速度で蒸発させることができるので、蒸発器10を大型化せずとも生成される水蒸気の流量および温度を安定させることができる。その結果、水素生成装置1は、安定して水素の供給を行うことができる。
 [実施の形態2]
 実施の形態1では、外筒と中筒との接触面積が、内筒と中筒との接触面積と等しい形態について説明した。実施の形態2では、外筒と中筒との接触面積が、内筒と中筒との接触面積よりも大きい形態について説明する。
 図5は実施の形態2の蒸発器10の断面の模式図である。実施の形態1の蒸発器10と同一の構成要素については説明を省略する。実施の形態1と同様に、実施の形態2でも中筒13の外周面の凹部22Aが、蒸発流路18を構成する。
 図5に示されるように、実施の形態2の蒸発器10では、中筒13の外周面の凸部21Aの上面の面積が、中筒13の内周面の凸部21Bの面積よりも大きい。このように、中筒13の外周面の凸部21Aの上面を広くすることで、中筒13の外周面の凹部22Aによって構成された蒸発流路18のシール性が向上し、改質水17がショートカットすることをより確実に防止できる。
 [実施の形態3]
 実施の形態1および2では、蒸発流路のピッチが一定である形態について説明した。実施の形態3では、蒸発流路の上流側と下流側とで流路ピッチが変化する形態について説明する。
 図6は実施の形態3の蒸発器10の断面の模式図である。実施の形態1の蒸発器10と同一の構成要素については説明を省略する。
 図6に示されるように、実施の形態3の蒸発器10では、蒸発流路18のピッチが上流側と下流側とで変化する。より具体的には、上流側の蒸発流路18のピッチP1が、下流側の蒸発流路18のピッチP2よりも小さい。下流側の蒸発流路18のピッチP2の最大ピッチは、上流側の蒸発流路18のピッチP1のうちの最小ピッチに対して、2倍以上であることが好ましく、4倍以上であってもよい。例えば、重力方向上部の流路ピッチP1を平均12mmとすることができ、重量方向下部の流路ピッチP2を平均48mmとすることができる。
 このように、上流側の蒸発流路18のピッチP1を下流側の蒸発流路18のピッチP2よりも小さくすることで、蒸発器10の重量方向上部の領域が有する蒸発器10の単位高さあたりの蒸発流路18の長さが長くなり、蒸発器10の重力方向下部の領域が有する蒸発器10の単位高さあたりの蒸発流路18の長さが短くなる。
 このため、本実施の形態では、改質水17のほとんどが蒸発器10の重量方向上部の領域が有する長い蒸発流路18を流れる過程で蒸発温度まで加熱され、蒸発する。これにより、改質水17は、ほとんど蒸発器10の重量方向下部が有する蒸発流路18には流入しなくなる。すなわち、本実施の形態では、改質水17が蒸発器10の重力方向上部に偏在する。より具体的には、CO除去器4に包囲された領域では、流路ピッチを短くして;変成器3に包囲された領域では、流路ピッチを長くする。
 このように、改質水17を蒸発器10の重力方向上部に偏在させることで、CO除去器4および変成器3を最適温度に維持することができる。以下、CO除去器4および変成器3を最適温度に維持するメカニズムについて説明する。
 実施の形態1の説明で述べたように、CO除去器4の最適温度は、比較的低温(80~200℃)である。また、CO除去器4は、蒸発器10の重力方向上部の領域を包囲する(図1参照)。本実施の形態では、蒸発器10の重力方向上部の領域に改質水17が偏在するので、蒸発器10の重力方向上部の領域では改質水17が内筒11からの熱を吸収する。これにより、内筒11から蒸発器10の重力方向上部の領域を包囲するCO除去器4に伝わる熱量を減少させ、CO除去器4を比較的低温に維持することができる。
 一方、変成器3の最適温度は、比較的高温(150~400℃)である。また、変成器3は、蒸発器10の重力方向下部の領域を包囲する(図1参照)。上述のように、本実施の形態では、蒸発器10の重量方向下部が有する蒸発流路18には、主に水蒸気および原料ガスが流れ、高い熱吸収能を有する改質水17が存在しない。このため、内筒11から蒸発器10の重力方向下部の領域を包囲する変成器3に伝わる熱量は減少されない。さらに蒸発器10の重力方向下部が有する蒸発流路18は短いので、蒸発流路18を流れる水蒸気や原料ガスが変成器3から熱を吸収する時間が短い。この結果、変成器3の温度が低下することが防止され、変成器3を比較的高温に維持することができる。
 [実施の形態4]
 実施の形態4では、蒸発流路を構成する中筒の凹部が、深さが深い領域と、深さが浅い領域とを有する形態について説明する。
 図7は、実施の形態4の蒸発器10の断面の模式図である。実施の形態1の蒸発器10と同一の構成要素については説明を省略する。
 図7に示されるように、実施の形態4の蒸発器10では、蒸発流路18を構成する中筒13の外周面の凹部は、深さが異なる重力方向上方の領域23と、重力方向下方の領域24とを有する。領域23の深さd1は、領域24の深さd2よりも深い。
 このような実施の形態4の蒸発器10では、改質水17は、領域24と外筒12の内周面との間を流れる。このため、本実施の形態では、改質水17が内筒11から離れている。これにより、燃焼器6から内筒11を介して改質水17に熱が急激に伝達することを防止し、改質水17の突沸を防止することができる。
 [実施の形態5]
 実施の形態1~4では、蒸発流路が中筒の外周面の凹部によって構成される形態について説明した。実施の形態5では、蒸発流路が中筒の内周面の凹部によって構成される形態について説明する。また、実施の形態5では、実施の形態4と同様に蒸発流路を構成する中筒の凹部が、深さが深い領域と、深さが浅い領域とを有する。
 図8は実施の形態5の蒸発器10の断面の模式図である。実施の形態1の蒸発器10と同一の構成要素については説明を省略する。
 図8に示されるように、本実施の形態では、中筒13の内周面の凹部が蒸発流路18を構成する。また蒸発流路18を構成する中筒13の内周面の凹部は、深さが異なる重力方向上方の領域23と、重力方向下方の領域24とを有する。領域23の深さd1は、領域24の深さd2よりも深い。
 このような、実施の形態5の蒸発器10では、改質水17は、領域24と内筒11の外周面との間を流れる。このため、本実施の形態では、改質水17が内筒11の外周面に接する面積が多く、改質水17が内筒11を介して燃焼器6から受取る熱量を多くすることができる。これにより、蒸発流路18を短くすることができ、蒸発器10の小型化が可能となる。
 [実施の形態6]
 実施の形態6では、蒸発流路が改質水の流れの抵抗となる突起を有する形態について説明する。
 図9は実施の形態6の蒸発器における中筒13の側面図である。実施の形態1の中筒13と同一の構成要素については説明を省略する。
 図9に示されるように、本実施の形態では、蒸発流路18を構成する中筒13の外周面の凹部が、改質水の流れの抵抗となる突起19を有する。
 このように、蒸発流路18が改質水の流れの抵抗となる突起19を有することで、改質水の流れが速すぎる場合などに、改質水の速度を減速させることができ、改質水17を安定して蒸発させることができる。
 本発明にかかる水素生成装置は安定して水素含有ガスを供給することができることから、家庭用コージェネレーションシステムなどの燃料電池システムに有用である。
 1 水素生成装置
 2 改質器
 3 変成器
 4 CO除去器
 5 水素排出口
 6 燃焼器
 7 燃料空気供給器
 8 燃焼ガス排出口
 9 燃焼筒
 10 蒸発器
 11 内筒
 12 外筒
 13 中筒
 14 燃焼ガス流路
 15 原料供給器
 16 改質水供給器
 17 改質水
 18 蒸発流路
 19 突起
 21 凸部
 22 凹部
 23 深さが深い領域
 24 深さが浅い領域
 30 筒体
 31 金型
 33 ピストン
 35 液体
 50 丸棒
 

Claims (10)

  1.  メタンを含む原料ガスと水蒸気とを混合して混合ガスを生成する蒸発器と、前記混合ガスを水蒸気改質反応によって水素含有ガスへと変化させる改質器と、前記蒸発器と前記改質器とに熱を供給する燃焼器と、を有する水素生成装置であって、
     前記蒸発器は、内筒と、前記内筒を囲む外筒と、前記内筒と前記外筒との間に挿入され、かつ前記内筒と外筒との間に外部から供給される水が流れる螺旋状の流路を規定する中筒と、を有し、
     前記中筒の内周面および外周面には、螺旋状の凸部と凹部とが表裏一体に形成され、
     前記中筒の内周面の凸部の上面が前記内筒の外周面と接触し、前記中筒の外周面の凸部の上面が前記外筒の内周面と接触する、水素生成装置。
  2.  前記中筒を構成する板の厚さは、0.2~0.6mmである、請求項1に記載の水素生成装置。
  3.  前記中筒は、前記内筒および前記外筒に溶接されない、請求項1に記載の水素生成装置。
  4.  前記内筒の外周面と接触する前記中筒の内周面の凸部の上面の面積と、前記外筒の内周面と接触する前記中筒の外周面の凸部の上面の面積とは異なる、請求項1に記載の水素生成装置。
  5.  上流側の前記螺旋状の流路のピッチと、下流側の前記螺旋状の流路のピッチとは異なる、請求項1に記載の水素生成装置。
  6.  前記水が流れる螺旋状の流路は、前記中筒の外周面の凹部によって構成される、請求項1に記載の水素生成装置。
  7.  前記中筒の外周面の凹部は、重力方向上方の領域と、重力方向下方の領域と、を有し、
     前記重力方向下方の領域は、前記重力方向上方の領域よりも浅く、前記水は、前記重力方向下方の領域と前記外筒の内周面との間を流れる、請求項6に記載の水素生成装置。
  8.  前記水が流れる螺旋状の流路は、前記中筒の内周面の凹部によって構成される、請求項1に記載の水素生成装置。
  9.  前記中筒の内周面の凹部は、重力方向上方の領域と、重力方向下方の領域と、を有し、
     前記重力方向下方の領域は、前記重力方向上方の領域よりも浅く、前記水は、前記重力方向下方の領域と前記内筒の外周面との間を流れる、請求項8に記載の水素生成装置。
  10.  前記水が流れる螺旋状の流路は、前記水の流れの抵抗となる突起を有する、請求項1に記載の水素生成装置。
PCT/JP2011/002819 2010-06-02 2011-05-20 水素生成装置 WO2011151986A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/637,491 US8974556B2 (en) 2010-06-02 2011-05-20 Hydrogen generator
EP11789401.4A EP2543628B1 (en) 2010-06-02 2011-05-20 Hydrogen generator
JP2011552120A JP5044048B2 (ja) 2010-06-02 2011-05-20 水素生成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010126982 2010-06-02
JP2010-126982 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011151986A1 true WO2011151986A1 (ja) 2011-12-08

Family

ID=45066379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002819 WO2011151986A1 (ja) 2010-06-02 2011-05-20 水素生成装置

Country Status (4)

Country Link
US (1) US8974556B2 (ja)
EP (1) EP2543628B1 (ja)
JP (1) JP5044048B2 (ja)
WO (1) WO2011151986A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055012A (ja) * 2011-09-06 2013-03-21 Aisin Seiki Co Ltd 燃料電池用蒸発器
WO2014002468A1 (en) * 2012-06-25 2014-01-03 Panasonic Corporation Fuel processor
EP2837595A4 (en) * 2012-06-25 2015-07-29 Panasonic Ip Man Co Ltd DEVICE FOR FUEL PROCESSING
JP2015189648A (ja) * 2014-03-28 2015-11-02 フタバ産業株式会社 燃料改質装置
JP2018523569A (ja) * 2015-07-24 2018-08-23 ヌヴェラ・フュエル・セルズ,エルエルシー 同心管の触媒反応器アセンブリを製造する方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013086190A1 (en) * 2011-12-06 2013-06-13 Hy9 Corporation Catalyst-containing reactor system and associated methods
EP3473594B1 (en) * 2016-06-16 2021-05-19 Kyocera Corporation Reformer, cell stack device, fuel cell module and fuel cell device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192040A (ja) * 1995-01-13 1996-07-30 Fuji Electric Co Ltd 燃料改質器
JP2002211905A (ja) 2000-12-28 2002-07-31 Matsushita Electric Ind Co Ltd 水素生成器
JP2003327407A (ja) * 2002-05-09 2003-11-19 Mitsubishi Electric Corp 改質装置
JP2004014141A (ja) 2002-06-03 2004-01-15 Mitsubishi Heavy Ind Ltd 改質器用蒸発器
JP2008063193A (ja) 2006-09-08 2008-03-21 Matsushita Electric Ind Co Ltd 水素生成装置及び燃料電池システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339631A (en) * 1966-07-13 1967-09-05 James A Mcgurty Heat exchanger utilizing vortex flow
DE2625930A1 (de) * 1975-06-18 1976-12-30 Artisan Ind Duennschichtverdampfer sowie verfahren zur behandlung von fluessigkeiten in duennen schichten
DE2721848C2 (de) * 1977-05-14 1982-12-02 Bayer Ag, 5090 Leverkusen Verfahren zum Konzentrieren von Lösungen mit gleichzeitiger Erstarrung
US4495154A (en) * 1982-05-28 1985-01-22 Energy Research Corporation Fuel reformer
FR2541761B1 (fr) * 1983-02-24 1989-02-10 Zundel Daniel Echangeur de chaleur a tuyaux
DE10119083C1 (de) 2001-04-19 2002-11-28 Joachim Alfred Wuenning Kompakt-Dampf-Reformer
CN1639532A (zh) * 2002-02-26 2005-07-13 麦克罗斯制造公司 毛细蒸发器
US8568495B2 (en) * 2008-09-05 2013-10-29 Samsung Sdi Co., Ltd. Evaporator and fuel reformer having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192040A (ja) * 1995-01-13 1996-07-30 Fuji Electric Co Ltd 燃料改質器
JP2002211905A (ja) 2000-12-28 2002-07-31 Matsushita Electric Ind Co Ltd 水素生成器
JP2003327407A (ja) * 2002-05-09 2003-11-19 Mitsubishi Electric Corp 改質装置
JP2004014141A (ja) 2002-06-03 2004-01-15 Mitsubishi Heavy Ind Ltd 改質器用蒸発器
JP2008063193A (ja) 2006-09-08 2008-03-21 Matsushita Electric Ind Co Ltd 水素生成装置及び燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2543628A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055012A (ja) * 2011-09-06 2013-03-21 Aisin Seiki Co Ltd 燃料電池用蒸発器
WO2014002468A1 (en) * 2012-06-25 2014-01-03 Panasonic Corporation Fuel processor
JP2014521576A (ja) * 2012-06-25 2014-08-28 パナソニック株式会社 燃料処理装置
EP2837595A4 (en) * 2012-06-25 2015-07-29 Panasonic Ip Man Co Ltd DEVICE FOR FUEL PROCESSING
JP2015189648A (ja) * 2014-03-28 2015-11-02 フタバ産業株式会社 燃料改質装置
JP2018523569A (ja) * 2015-07-24 2018-08-23 ヌヴェラ・フュエル・セルズ,エルエルシー 同心管の触媒反応器アセンブリを製造する方法
JP2021169092A (ja) * 2015-07-24 2021-10-28 ヌヴェラ・フュエル・セルズ,エルエルシー 同心管の触媒反応器アセンブリを製造する方法
US11389778B2 (en) 2015-07-24 2022-07-19 Powertap Hydrogen Fueling Corp. Method of fabricating concentric-tube catalytic reactor assembly

Also Published As

Publication number Publication date
JPWO2011151986A1 (ja) 2013-07-25
EP2543628A1 (en) 2013-01-09
EP2543628B1 (en) 2015-03-11
EP2543628A4 (en) 2013-05-01
JP5044048B2 (ja) 2012-10-10
US8974556B2 (en) 2015-03-10
US20130064723A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5044048B2 (ja) 水素生成装置
EP2810326B1 (en) Fuel cell module
JP2009078954A (ja) 改質装置
JP4880086B2 (ja) 水素生成装置とその製造方法およびそれを用いた燃料電池システム
JP2008524817A (ja) 燃料電池改質器
JP2008063193A (ja) 水素生成装置及び燃料電池システム
JP4366136B2 (ja) 水素発生装置及び燃料電池発電システム
US20150118129A1 (en) Fuel processing device
WO2013061580A1 (ja) 水添脱硫装置、水素生成装置及び燃料電池システム
JP2000203802A (ja) 改質器
JP4918629B2 (ja) 燃料処理装置
JP4060349B2 (ja) 水素生成装置の製造方法
JP4990045B2 (ja) 水素製造装置及び燃料電池システム
JP5336696B2 (ja) 流体処理装置及びその製造方法
JP2011136868A (ja) 改質ユニットおよび燃料電池システム
JP2009062223A (ja) 改質装置
JP4664767B2 (ja) 改質器
JP2006282424A (ja) 水素生成器
JP2018104232A (ja) 水素生成装置
JP2004014141A (ja) 改質器用蒸発器
WO2014002470A1 (ja) 燃料処理装置
JP6205581B2 (ja) 水素生成装置及びそれを用いた燃料電池システム
JP2009280408A (ja) 水素生成装置及び燃料電池システム
KR101361698B1 (ko) 연소기와 개질기가 일체로 복합된 연료전지 시스템
JP2015010012A (ja) 燃料処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011552120

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13637491

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011789401

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE