WO2011151902A1 - 容器のガス置換方法及び装置 - Google Patents

容器のガス置換方法及び装置 Download PDF

Info

Publication number
WO2011151902A1
WO2011151902A1 PCT/JP2010/059370 JP2010059370W WO2011151902A1 WO 2011151902 A1 WO2011151902 A1 WO 2011151902A1 JP 2010059370 W JP2010059370 W JP 2010059370W WO 2011151902 A1 WO2011151902 A1 WO 2011151902A1
Authority
WO
WIPO (PCT)
Prior art keywords
replacement
gas
opening
nozzle
height
Prior art date
Application number
PCT/JP2010/059370
Other languages
English (en)
French (fr)
Inventor
俊朗 鷲崎
朝帆 菊地
Original Assignee
東洋製罐株式会社
東洋食品機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社, 東洋食品機械株式会社 filed Critical 東洋製罐株式会社
Priority to PCT/JP2010/059370 priority Critical patent/WO2011151902A1/ja
Priority to JP2012518179A priority patent/JP5906533B2/ja
Priority to CN201080067183.9A priority patent/CN102917953B/zh
Priority to KR1020127033136A priority patent/KR101584165B1/ko
Priority to US13/701,659 priority patent/US10065756B2/en
Priority to EP10852508.0A priority patent/EP2578503B1/en
Publication of WO2011151902A1 publication Critical patent/WO2011151902A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/06Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus using counterpressure, i.e. filling while the container is under pressure
    • B67C3/10Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus using counterpressure, i.e. filling while the container is under pressure preliminary filling with inert gases, e.g. carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/04Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
    • B65B31/043Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzles acting horizontally between an upper and a lower part of the container or wrapper, e.g. between container and lid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/04Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/222Head-space air removing devices, e.g. by inducing foam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a gas replacement method and apparatus for a container in which an inert gas is blown into the head space of a content filling container such as a beverage can to replace the residual gas in the head space, and in particular, an undercover gassing for a can lid winding machine
  • the present invention relates to a method and an apparatus.
  • the can lid is formed between the gas turret 1 and the seaming turret 2 as shown in FIG.
  • An undercover gassing method is widely used in which gas replacement is performed by blowing a replacement gas between the can lid and the can body opening immediately before the cover 33 covers the opening of the can body 30. Since the replacement efficiency of the method is low, the flow rate of the replacement gas used to achieve a replacement rate higher than a predetermined level has been remarkably increased with the recent increase in production line speed and diversification of contents. In addition, the amount of liquid spilled from the can tends to increase as the replacement gas flow rate increases.
  • a large replacement gas flow path to the replacement nozzle is formed (provided with a so-called buffer), and a group of blowout holes of the nozzle is blown toward the flange of the can lid.
  • a second gas jet hole that blows into the space under the lid in a right angle direction and a third gas jet hole that blows out to the wall portion below the can mouth edge in three stages in the vertical direction Patent Document 1
  • a branch body that branches the gas flow left and right at the center of the replacement gas injection flow path and forming nozzles on the left and right
  • the replacement gas injected from the pair of nozzles collides with the center of the upper space in the can
  • the replacement gas is directed to the liquid level of the head space of the can (Patent Document 2), and the replacement gas blown out from the pair of left and right outlets is made to collide in a substantially linear collision region. Things (patents Document 3,4) it has been proposed.
  • FIG. 11 and 12 show an example of a conventional nozzle body 50 provided in a pocket portion of a gas turret as shown in Patent Document 3.
  • FIG. The replacement gas flow paths 51a and 51b branched to the left and right are partitioned by a wind direction adjusting plate 52 to form opposed outlets 53a and 53b, and the replacement gas is blown symmetrically between the can body and the can lid from the outlet.
  • the conventional nozzle body is disposed on the gas turret body at the same level position as the nozzle body, as shown in the front view of the gas turret pocket. Since the finger 55 is provided, the angle ⁇ between the outermost walls 54a and 54b of the nozzle outlet can be formed only to 90 ° or less (usually 80 °).
  • the most ideal gas replacement method is to reduce the amount of residual oxygen in the container, the amount of consumption of the replacement gas, and the amount of liquid spillage from the container at the time of replacement. All of these methods are aimed at achieving this ideal technical challenge, but these challenges are technically conflicting and if one requirement is met, the other requirement must be sacrificed, It is difficult to achieve three quantities at the same time, and a satisfactory one has not yet been obtained.
  • Patent Document 1 if the replacement gas flow rate is increased, a reduction in the amount of residual oxygen (that is, an improvement in the replacement rate) can be obtained, but a large amount of replacement gas is consumed. There is.
  • An object of the present invention is to provide a gas replacement method and apparatus that can dramatically reduce the gas replacement rate and increase the gas replacement rate.
  • the present inventor has configured the opening angle between the outermost walls of the nozzle opening in a specific range larger than that of the conventional nozzle in the undercover gassing device.
  • the gas replacement method of the present invention for solving the above problems is as follows.
  • the replacement nozzle partitions a nozzle port outermost wall with a wind direction adjusting plate to form a plurality of outlets.
  • the replacement gas jets that are blown symmetrically from the outlet center line in the radial direction of the vessel, the replacement gas jets blown along the outermost wall of the nozzle port are blown out so that the angle between them is 100 ° to 130 °. It is a feature.
  • the replacement nozzle is formed by partitioning the outermost wall of the nozzle opening with a plurality of air direction adjusting plates to form a plurality of outlets,
  • the displacement gas flow to be blown in is a depth of 1/3 or more of the height of the can neck portion downward from the can opening end, or a depth of 3 mm or more from the can opening end toward the can body, and the can lid height upward. It blows out from the said replacement nozzle over the range above 3 mm or more from the above height or can opening end.
  • the range of the replacement gas flow blown from the replacement nozzle is the end of the can opening when the can body that performs gas replacement is a can body that has been subjected to netine processing of a normal height (height of the neck-in processing portion: 5 to 20 mm). It is only necessary to cover a depth of 1/3 or more of the height of the can neck portion downward from the can opening when the can body not subjected to the neck-in process or the neck-in processed portion is a long can body Cover the depth of 3 mm or more in the can body direction.
  • the height of the can lid is the normal can lid (chuck wall height: 4 to 8 mm)
  • the height can be higher than the can lid height from the can opening end.
  • the chuck wall portion is set to a range of 3 mm or more from the end of the can opening.
  • the gas replacement apparatus of the present invention that achieves the above-mentioned problems is as follows.
  • the replacement nozzle partitions the nozzle wall outermost wall from each other with a wind direction adjusting plate to make the container radial center line symmetrical
  • a plurality of outlets for discharging the replacement gas toward the opening of the container are arranged on an arc, and the opening angle between the outermost walls of the nozzle opening is 100 ° to 130 °.
  • another gas replacement device of the present invention that solves the above problems is (2) a gas replacement method that replaces residual gas in a head space by blowing a replacement gas into a head space of a content filling container from a replacement nozzle.
  • the replacement nozzle forms a plurality of outlets by partitioning the outermost wall of the nozzle opening with a plurality of wind direction adjusting plates, and the replacement gas flow blown from the replacement nozzle has a height of the can neck portion downward from the can opening end. Blow out from the replacement nozzle at a depth of 1/3 or more, or 3 mm or more in the can body direction from the can opening end, and above the can lid height or 3 mm or more upward from the can opening end.
  • the replacement gas is blown from the side toward the gap between the can lid and the can body opening immediately before the can lid covers the opening of the content-filled can body.
  • another gas replacement apparatus of the present invention that solves the above-described problems can increase the replacement rate with a smaller amount of replacement gas and reduce liquid spillage by providing the configurations of (1) and (2). Is made possible.
  • the wind direction adjusting plates are preferably arranged in parallel to each other.
  • the improvement of the conventional technique can ensure a replacement rate equal to or higher than that of the conventional one with a small replacement gas flow rate, and the amount of spillage can be reduced without limit. Has a special effect.
  • FIG. 10 is a schematic plan view of a conventional gas replacement device for a parallel comb-shaped nozzle, and is a cross-sectional plan view of a replacement gas flow path excluding finger portions. It is a principal part front view seen from the circular-arc-shaped recessed part side of the gas displacement apparatus shown in FIG.
  • FIG. 1 is a plan cross-sectional view of a nozzle body of an undercover gassing device according to an embodiment of a gas replacement device of the present invention so as to face an arcuate recess (pocket) 3 of a gas turret 1 shown in FIG. Provided.
  • a nozzle body 11 is fixed to the upper surface of the gas turret body 10 of the gas turret 1, and a replacement gas flow path 12 communicating with each arcuate recess 3 is formed inside the nozzle body.
  • the replacement gas flow path 12 leading to the replacement gas supply port 14 is formed in a straight having a substantially equal height, as shown in FIG. It is not done.
  • the replacement gas flow path 12 extends in a tapered shape from the replacement gas supply port 14 toward the arcuate recess 3, but is branched into the gas flow paths 12 a and 12 b by the branch plate 13 on the way, and the replacement of the tip portion is performed.
  • the gas blowout ports (hereinafter referred to as blowout ports) are partitioned by a plurality of parallel wind direction adjusting plates 16a and 16b, and formed as a group of a plurality of parallel blowout ports 15a and 15b toward the arc-shaped concave portion to constitute an injection nozzle. ing.
  • each outlet 15a and 15b are formed symmetrically with respect to the center line L, respectively, and the angle ⁇ between the outermost walls 17a and 17b of the outlets is an angle of 100 ° to 130 °, and the wind direction adjusting plate 16a 16b are provided in parallel with the outermost walls 17a and 17b, respectively. Accordingly, in the present embodiment, each outlet is also formed with an angle ⁇ between the opposing outlets of 100 ° to 130 °, and the replacement gases blown from the opposing outlets are mutually on the center line L. It is supposed to collide.
  • the angle between the outlets 100 ° to 130 ° is as follows, compared to the angle between the outlets of the conventional gas turret being about 80 ° as shown in FIGS. It is formed at a large angle for technical reasons. That is, the present inventor is in the process of studying the reason why the gas replacement rate is not improved by the conventional undercover gassing method.
  • the nozzle opening base outer position indicated by the phantom line in FIG. As a means to solve the problem that vortex is generated in Z, gas stagnation occurs in that portion, gas replacement is not performed well, and liquid spillage generated during gas replacement occurs, the opening area width of the outlet ( It has been found that these problems can be solved by increasing the blowing angle.
  • the conventional gas turret 1 has fingers for positioning and transporting can lids 33 placed on the outer periphery of the pocket at both ends of the arcuate recess 3 of the gas turret body 10 in the pocket as shown in FIGS. 55 is provided, and the nozzle body 50 is provided between them. Therefore, the installation range of the outlets arranged on the peripheral surface of the pocket is naturally limited, and can be installed only within a maximum of 100 °, usually only about 80 °. Not formed.
  • the conventional finger 55 is removed from the gas turret body 10 and the nozzle body is expanded to the position where the conventional finger is located.
  • the fingers 4 and 4 were provided on the nozzle body 11 as shown in FIGS.
  • the range of the replacement nozzle can be formed so that the angle between the outermost walls 17a and 17b can be increased to 130 ° as shown in FIG. 1, and the opposing angle of the outlet is 130 °. It was.
  • the vicinity of the outer surface of the neck portion 31 is reduced in order to reduce the amount of air entrained in the outer peripheral portion of the neck portion 31 of the can 30 as shown in FIG.
  • the height h of the blowout port 15 of the replacement gas nozzle is made higher than the sum of the can lid height a and the length of the can neck portion 1/3 so that a replacement gas atmosphere can be formed. Compared with, the height of the injection channel area was increased.
  • the can body is transported by the conveyor and begins to move on the lifter of the seamer. Above the opening, the can lid positioned between the fingers on both ends of the pocket of the gas turret is transported on the circular arc track.
  • the state of being positioned above the can opening is shown, and in this state, the longitudinal center of the gas flow blown out from the nozzle outlet is set to be in a state slightly below the bottom end of the can lid,
  • the displacement gas flow blown out from the mouth has a depth of 1/3 or more of the height of the can neck portion 31 downward from the can opening end 32 or 3 mm or more from the can opening end toward the can body, and a gap above it.
  • the height of the nozzle opening is set so as to blow out to the range where it hits the outer peripheral surface of the chuck wall 34 of the can lid located through the nozzle.
  • the height h of the outlet that is, the length h in the height direction of the gas flow path
  • the height h of the outlet is set to the length of the can neck when the neck is at the top of the can. Then, a range satisfying the relationship of a + b / 3 ⁇ h ⁇ a + b / 1.5 is desirable. If the length h in the height direction of the gas flow path is lower than the above range, the injection flow rate becomes high, liquid spillage is likely to occur, and the amount of outside air entrainment increases, making it difficult to improve the replacement rate.
  • the can shape has the presence or absence of a neck portion and various neck shapes, and the lid shape also has various heights.
  • the direction is preferably 3 mm or more from the end of the can opening, more preferably 5 mm or more.
  • the upper direction of the can is 3 mm or more from the opening of the can, more preferably 8 mm or more.
  • the height of the opening area of the blowout port 15 of the replacement gas nozzle is made higher than the sum of the can lid height and the length of the can neck portion, and compared with the conventional parallel nozzle.
  • the injection channel area height is increased.
  • the gas blown out from the blow-out port hits the chuck wall of the lid and flows into the can, the parallel flow f3 that flows parallel to the gap between the lid and the can, and the can neck portion
  • the flow f3 parallel to the gap has the effect of weakening the downflow f1 and mitigating the liquid level collision of f1.
  • the surrounding liquid level at the collided portion rises.
  • the rise of the liquid level is reduced and liquid spillage is less likely to occur.
  • the gas replacement device of the present embodiment is configured as described above, and the replacement gas flow F injected from the outlets 15a and 15b collides with the central line L at an angle of 100 ° to 130 °,
  • the can is bent in the axial direction of the can body and blown into the head space in the can, and the replacement gas flow collides in the collision region including the gas flow passage side edge of the can 30, which is difficult in the conventional under cover gassing.
  • the replacement gas can be blown into the head space near the gas flow path side edge portion, and the gas replacement in that portion can be effectively performed.
  • FIG. 7A shows the case where the opening angle is 120 °
  • FIG. 7B shows the case where the conventional nozzle opening angle is 80 °.
  • the time course of the gas flow is represented by a short broken line, a long broken line and Shown in the order of solid lines.
  • the gas flow blown out from the blowout port first flows into the central part as if it was a breaststroke hand, and then left and right after colliding with the opposite can wall.
  • the air can be efficiently replaced with a small gas flow rate because the space for extruding air is large and the space for extrusion is wide.
  • the replacement gas is filled from the outside of the head space, and the flow of the inside air is driven forward with a delay. It was found that a large amount of replacement gas was required.
  • FIG. 8 shows the result of numerical analysis of the spread after the collision in a jet colliding from two directions (a) when the collision angle is 90 ° and (b) when the collision angle is 120 °. From FIG. 8B, it can be seen that the region where the collision angle is 120 ° is wider after the collision. By increasing the angle of the impinging jet, it is considered that the region in which the replacement gas is expanded after the collision becomes wider and the replacement efficiency is increased.
  • the opening height of the replacement gas channel is made higher than the conventional one as described above, but the effect of this was examined by numerical analysis as well as the influence by the opening angle.
  • the result is shown in FIG.
  • FIG. 9 (a) shows the case where the opening height of the conventional blowing nozzle is 8 mm, and (b) shows the case where the opening height of the present invention is set to 13 mm.
  • the opening height is 8 mm
  • the liquid level S to which the replacement gas hits is pushed deeper by P1, compared with the case of 13 mm, and the liquid level S is raised by P2 by a corresponding amount on the downstream side. I understand that.
  • the height h of the gas flow path is formed higher than 1/3 of the can lid height a and the can neck length b.
  • the gas flow f1 ejected from the upper part of the nozzle opening in the replacement gas flow F hits the outer surface of the chuck wall 34 of the can lid and then enters the head space to strike the liquid surface.
  • the nozzle opening area is large, the flow velocity is slowed, so that the impact of hitting the liquid surface is small, the liquid surface collision flow is weakened, and the liquid surface near the gas flow path edge is pushed up.
  • the occurrence of liquid spillage in the traveling direction can be suppressed, and gas replacement in the vicinity of the liquid surface and the inner peripheral surface of the can can be performed efficiently.
  • the gas flow f2 below the nozzle opening hits the outer peripheral surface of the neck 31 of the can and surrounds the vicinity with a replacement gas atmosphere, thereby preventing the outside air from being sucked into the can.
  • FIG. 4 shows another embodiment of the nozzle body of the gas replacement device of the present invention.
  • the nozzle body 40 of the present embodiment is different from the nozzle body shown in FIG. 1 in that the replacement gas flow path is not branched and the replacement gas outlet 42 is formed on the outer peripheral surface of the arcuate recess 45.
  • the gas replacement gas outlets are radially arranged so that the replacement gas is blown into the center of the arc. Therefore, in this embodiment, the wind direction adjusting plate 43 is arrange
  • An opening in the height direction higher than the sum of the height of the can lid to be replaced and the height of the can neck portion is 1/3.
  • FIG. 5 shows the amount of residual oxygen in the head space when the replacement gas flow rate is changed to 600, 800, and 1000 Nl / min
  • FIG. 6 shows the change in the amount of liquid spillage.
  • Comparative Example 1 As Comparative Example 1, a gas displacement device having a nozzle height of 8 mm in a nozzle body having the structure shown in FIG. 11 was employed. Other gas replacement conditions are the same as in the examples. Comparative Example 2: As Comparative Example 2, a nozzle having a structure in which a gas replacement device has a buffer in a replacement gas flow path as described in Patent Document 1 and injection ports are arranged radially is employed. Other gas replacement conditions are the same as in the examples. In Comparative Examples 1 and 2 above, the residual oxygen amount and liquid spillage in the head space were measured when the replacement gas flow rate was changed to 600, 800, and 1000 Nl / min. The above experiment was performed for each of the 6 cans in both the examples and comparative examples.
  • FIG. 5 The average value of the measurement result of each residual oxygen amount for each injection flow rate is shown in FIG.
  • the a diagram represents Example
  • the b diagram represents Comparative Example 1
  • the c diagram represents Comparative Example 2.
  • FIG. 6 shows the amount of liquid spillage.
  • a bar graph is displayed in FIG. 6, meaning that no liquid spill occurred in Comparative Example 2 at 800 Nl / min.
  • the residual oxygen amount that is, the gas replacement rate
  • the residual oxygen amount in the head space is about 0.076 ml to 0.027 ml. Halved.
  • the residual oxygen amount is about 0.255 ml, and the substitution rate is remarkably bad.
  • Comparative Example 3 The same gas replacement conditions as in Example 2 using a nozzle body in which the discharge angle is 100 ° and the height of the discharge port is 7 mm in the same radial comb-like nozzle shape as the nozzle body of Example 2 Thus, the amount of liquid spillage and the amount of residual oxygen when undercover gassing was performed at a replacement gas injection flow rate of 900 cc were obtained by numerical analysis. The results are shown in Table 1 together with Example 2.
  • the present invention has a dramatic effect that a gas replacement rate equal to or higher than that of the conventional gas can be secured with a small replacement gas flow rate and that the liquid spillage amount is zero. .
  • the replacement gas consumption can be saved by 30% or more, and a significant cost reduction can be expected.
  • the present invention can be used as a gas replacement device that replaces the residual gas by blowing a replacement gas into the head space of the content-filled container.
  • the replacement gas flow rate can be reduced to achieve a high replacement rate and a significant reduction in liquid spillage.
  • it has high industrial applicability as an undercover gassing device for cans, but it is not limited to gas replacement for can containers, but for example, heat for gas replacement devices just before sealing bottle lids and lid materials for cup containers It can also be applied as a gas replacement device before sealing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vacuum Packaging (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

 置換ガス量を低減できて且つガス置換率を高め、液こぼれ量を低減できるガス置換装置を提供する。容器径方向中心線を対称に容器開口部に向けて置換ガスを噴き出す置換ノズル11は、ノズル口最外側壁間を複数の風向調整板16a、16bで仕切って複数の吹出し口を形成し、ノズル口最外側壁に沿って吹き出される置換ガス噴流間角度が100゜~130゜をなすように吹き込まれ、且つ缶開口端から下方に缶ネック部の高さの1/3以上の深さで且つ上方に缶蓋高さ以上の高さの範囲に亘って前記置換ノズルより吹き出すように吹出す。

Description

容器のガス置換方法及び装置
 本発明は、飲料缶等の内容物充填容器のヘッドスペースに不活性ガスを吹き込んでヘッドスペース内の残存気体と置換する容器のガス置換方法及び装置、特に缶蓋巻締機のアンダーカバーガッシング方法及び装置に関する。
 飲料缶等の内容物充填容器の内容物の酸化による鮮度や風味の劣化を防ぐために、缶詰製造工程において、図10に示すように、ガスターレット1とシーミングターレット2との間で、缶蓋33が缶体30の開口部に被さる直前に缶蓋と缶体開口部の間に向けて置換ガスを吹き込んでガス置換を行なうアンダーカバーガッシング法が広く用いられているが、アンダーカバーガッシング法は、置換効率が悪いため、近年製造ラインの高速化及び内容物の多様化に伴い、所定以上の置換率を達成するのに使用する置換ガスの流量が著しく増大してきている。また、置換ガス流量を増やすことに伴い缶からの液こぼれ量も増大傾向にある。
 アンダーカバーガッシング法の置換効率を上げるために、従来より種々の工夫が提案されている。例えば、置換ノズルへの置換ガス流路を大きく形成して(いわゆるバッファを設けて)ノズルの吹き出し孔群を、缶蓋のフランジに向けて置換ガスを吹き出す第1ガス噴流用孔、缶に対して直角方向に蓋下の空間中に吹き出す第2ガス噴流用孔、及び缶口縁より下にある壁部分に対して吹き出す第3ガス噴流用孔を縦方向に3段設けたもの(特許文献1)、置換ガス噴射流路中央部にガス流を左右に分岐する分岐体を設けて左右にノズルを形成することにより、一対のノズルから噴射する置換ガスを缶内上部空間中心部で衝突させることによって、置換ガスを缶のヘッドスペースの液面に指向させるようにしたもの(特許文献2)、さらに左右一対の吹出し口から吹き出した置換ガスを略直線上の衝突領域で衝突させるようにしたもの(特許文献3、4)等が提案されている。図11及び図12は、特許文献3に示すようなガスターレットのポケット部に設けられる従来のノズル体50の一例を示している。左右に分岐した置換ガス流路51a、51bを風向調整板52で仕切って対向する吹出し口53a、53bを形成し、該吹出し口から置換ガスを缶体と缶蓋の間に対称に吹き出しているが、従来のノズル体は、その両端部の外側に、図12のガスターレットのポケット部の正面図に示すように、前記ノズル体と同一レベル位置にガスターレット本体上に、缶蓋送り用のフィンガー55が設けられているため、ノズル吹出し口の最外側壁54a、54b間の角度θは90゜以下(通常は80゜)にしか形成できなかった。
特公昭49-28627号公報 特開平8-324513号公報 特開2004-59016号公報 特開2005-59885号公報
 容器のガス置換方法において、最も理想的なガス置換方法は、容器内の残存酸素量、置換ガスの消費量、置換時における容器からの液こぼれ量の3量を同時に低減できることであり、従来提案されている方法は何れもこの理想的な技術課題達成を目的とするものであるが、これらの課題は技術的に相反し、一方の要求を満たせば他の要求を犠牲にしなければならず、3量を同時に達成することは困難で、未だ満足するものが得られていない。例えば、上記特許文献1の方法によれば、置換ガス流量を多くすれば残存酸素量の低減(即ち、置換率の向上)は満足するものが得られるが大量の置換ガスを消費するという問題点がある。一方、特許文献2~4に示す方法では、容器内の中心部あるいは中心線に沿って噴流を衝突させることによって、置換ガス流を液面に衝突させて、液面近傍に効果的に置換ガスを供給して置換効率を高めるものであるが、置換効率を高めるためには置換ガス噴流の速度を高める必要があるため、液面に衝突する置換ガス流の衝撃により液こぼれが発生し易いという問題点がある。アンダーカバーガッシングは直線軌道から円軌道に乗り移る不安定なところで行なわれ、しかも近年の高速生産に伴い僅かな衝撃でも液こぼれが生じやすいという問題があり、上記提案の方法では未だ満足に液こぼれ量を低減させるに至っていない。また、従来置換率向上のためには、大量の置換ガス量を必要とすることから製造コストが増大し、大量の缶詰を製造する製造メーカー又はボトラーにとって大幅な置換ガス消費量の低減が求められている。
 そこで、本発明は、従来達成できなかった上記課題、即ち、残存酸素量、置換ガスの消費量、置換時における缶からの液こぼれ量の3量を同時に低減でき、特に置換ガス量を従来と比べて飛躍的に低減できて且つガス置換率を高めることができるガス置換方法及び装置を提供することを目的とする。
 本発明者は、上記課題を解決するために、鋭意研究した結果、アンダーカバーガッシング装置において、ノズル口の最外側壁間の開口角度を従来のノズルよりも大きい特定の範囲に構成することによって従来と比べてガス置換率を向上させることができ、かつその吹出し口の開口高さを高くして容器開口上部と缶ネック部を含む容器上部に対し置換ガスを吹き出すようにするという改良によって、従来全く予測できなかった程、従来と比べて飛躍的に置換ガス消費量を少なくしてガス置換率を向上させることができ、且つ液こぼれも飛躍的に減少させることができることを見出し本発明に到達したものである。
 即ち、上記課題を解決するための本発明のガス置換方法は、(1)缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方から置換ガスを置換ノズルより吹き込んで前記缶体のヘッドスペース内の残存気体と置換するガス置換方法において、前記置換ノズルはノズル口最外側壁間を風向調整板で仕切って複数の吹出し口を形成し、該吹出し口から容器径方向中心線を対称に吹き出す置換ガス噴流のうち、前記ノズル口最外側壁に沿って吹き出される置換ガス噴流間角度が100゜~130゜をなすように吹き出すことを特徴とするものである。
 また、上記課題を解決する本発明の他のガス置換方法は、(2)前記置換ノズルはノズル口最外側壁間を複数の風向調整板で仕切って複数の吹出し口を形成し、該置換ノズルより吹き込む置換ガス流が、缶開口端から下方に缶ネック部の高さの1/3以上の深さ若しくは缶開口端から缶胴方向に3mm以上の深さで、且つ上方に缶蓋高さ以上の高さ若しくは缶開口端から上方に3mm以上の範囲に亘って前記置換ノズルより吹き出すことを特徴とするものである。前記置換ノズルより吹き込む置換ガス流の範囲は、ガス置換を行う缶体が通常の高さのネッイン加工を施した缶体(ネックイン加工部の高さ:5~20mm)の場合は缶開口端から下方に缶ネック部の高さの1/3以上の深さをカバーすればよいが、ネックイン加工を施していない缶体又はネックイン加工部が長い缶体である場合は缶開口端から缶胴方向に3mm以上の深さをカバーするようにする。同様に、缶蓋がチャックウォール部の高さが通常の缶蓋(チャックウォール部高さ:4~8mm)であれば缶開口端から上方に缶蓋高さ以上であればよいが、缶蓋がチャックウォール部の高さが通常の缶体より低い又は高い場合は缶開口端から3mm以上の範囲となるようにする。
 さらに、上記課題を解決する本発明の他のガス置換方法は、前記(1)及び(2)の構成を備えることにより、より少ない置換ガス量でより置換率を高め、且つ液こぼれ量を低減させることを可能にしたものである。
 そして、上記課題を達成する本発明のガス置換装置は、(1)缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方から置換ガスを置換ノズルより吹き込んで前記缶体のヘッドスペース内の残存気体と置換するガス置換装置において、前記置換ノズルはノズル口最外側壁間を互いに風向調整板で仕切って容器径方向中心線を対称に容器開口部に向けて置換ガスを噴き出す複数の吹出し口を円弧上に配置してなり、前記ノズル口最外側壁間の開口角度が100゜~130゜であることを特徴とするものである。
 また、上記課題を解決する本発明の他のガス置換装置は、(2)内容物充填容器のヘッドスペースに置換ノズルより置換ガスを吹き込んでヘッドスペース内の残存気体を置換するガス置換方法において、前記置換ノズルはノズル口最外側壁間を複数の風向調整板で仕切って複数の吹出し口を形成し、該置換ノズルより吹き込む置換ガス流が、缶開口端から下方に缶ネック部の高さの1/3以上の深さ若しくは缶開口端から缶胴方向に3mm以上で、且つ上方に缶蓋高さ以上の高さ若しくは缶開口端から上方に3mm以上の範囲に亘って前記置換ノズルより吹き出すようにして、缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方より置換ガスを吹き込むことを特徴とするものである。
 さらに、上記課題を解決する本発明の他のガス置換装置は、前記(1)及び(2)の構成を備えることにより、より少ない置換ガス量で置換率を高め、且つ液こぼれを低減させることを可能にしたものである。前記風向調整板は、互いに平行に配置することが望ましい。
 本発明によれば、従来技術の改良により少ない置換ガス流量で従来と比べて同等以上の置換率を確保することができ、且つこぼれ量も限りなく減少させることができるという従来のものと比べて格別な効果を奏する。
本発明の実施形態に係るガス置換装置の平面模式図であり、フィンガー部を除く置換ガス流路の平面断面図である。 その円弧状凹部側からみた要部正面図である。 本発明の実施形態に係るガス置換装置の缶体及び缶蓋との関係を示すノズル体断面の模式図である。 本発明の他の実施形態に係るガス置換装置の平面模式図であり、フィンガー部を除く置換ガス流路の平面断面図である。 実施例及び比較例1、2における置換ガス(炭酸ガス)流量に対する残存酸素量の関係を示すグラフである。 実施例及び比較例1、2における置換ガス(炭酸ガス)流量に対する液こぼれ量の関係を示すグラフである。 アンダーカバーガッシング時における置換ガスの平面方向の流れ状態を示す数値解析図であり、(a)は本発明に係る最外側壁間の角度が120゜であるノズル体による場合、 (b)は従来の最外側壁間の角度が80゜であるノズル体による場合をそれぞれ示している。 ノズル体の2方向の吹出し口から吹き出した噴流の衝突後の缶胴軸方向への広がりを数値解析した結果を示し、(a)は従来のノズル体に係る衝突の角度が90°の場合、(b)は本発明のノズル体に係る衝突の角度が120°の場合をそれぞれ示す。 ノズル体から吹き出した置換ガスの液面への衝突による液面の盛り上がり状態を示す数値解析図であり、(a)は従来のノズル体に係るノズル開口高さが8mmの場合、(b)は本発明のノズル体に係るノズル開口高さが13mmの場合をそれぞれ示す。 缶巻締装置におけるアンダーカバーガッシング装置の平面配置を示す概略図である。 従来の平行櫛歯型ノズルのガス置換装置の平面模式図であり、フィンガー部を除く置換ガス流路の平面断面図である。 図11に示すガス置換装置の円弧状凹部側からみた要部正面図である。
 1 ガスターレット
 2 シーミングターレット
 3 円弧状凹部(ポケット)
 4 フィンガー
10 ガスターレット本体
11、40 ノズル体
12、12-1、12-2、41 置換ガス流路
13 分岐板
14 置換ガス供給口
15、15-1、15-2、42 置換ガス吹出し口(吹出し口)
16、43 風向調整板
17a、17b、46a、46b 最外側壁
30 缶体
31 ネック部
33 缶蓋
34 チャックウォール
 以下、本発明の実施形態を図面を基に詳細に説明する。
 図1は、本発明のガス置換装置の実施形態に係るアンダーカバーガッシング装置のノズル体の平面断面図であり、図10に示すガスターレット1の円弧状凹部(ポケット)3に面するように設けられる。ガスターレット1のガスターレット本体10の上面にノズル体11が固定され、該ノズル体の内部に各円弧状凹部3に通じる置換ガス流路12が形成されている。
 本実施形態では、置換ガス供給口14に至る置換ガス流路12は、置換ガス量を少なくするため、図3に示すように、略等高さのストレートに形成され、途中でのバッファは設けられていない。該置換ガス流路12は、置換ガス供給口14から円弧状凹部3に向けてテーパー状に拡がっているが、途中に分岐板13によってガス流路12a及び12bに分岐され、その先端部の置換ガス吹出し口(以下、吹出し口という)は複数の平行な風向調整板16a、16bによって仕切られ、円弧状凹部に向けて複数の平行な吹出し口15a、15b群として形成されて噴射ノズルを構成している。吹き出し口15a、15b群は、それぞれ中心線Lに対して対称に形成され、該吹出し口の最外側壁17a、17b間の角度θが100゜~130゜の角度をなし、前記風向調整板16a、16bが最外側壁17a、17bにそれぞれ平行に設けられている。従って、本実施形態では各吹出し口も対向する吹出し口間の角度θが100゜~130゜の角度をなして形成され、対向する吹出し口から吹き出された置換ガスは、中心線L上で互いに衝突するようになっている。
 上記吹出し口間角度100゜~130゜は、従来のガスターレットの吹出し口間の角度が図11、図12に示すように略80゜程度に形成してあるのに比べて、次のような技術的理由により大きな角度に形成されている。即ち、本発明者は、従来のアンダーカバーガッシング方法でガス置換率が向上しない理由を研究する過程で、従来のノズル体では容器開口部に図11に仮想線で示すノズル吹出し口基部外側位置Zに渦が発生し、その部分にガスの淀みが生じガス置換が良好に行われない点、及びガス置換時に発生する液こぼれが発生する点を解決する手段として、吹出し口の開口面積幅(吹き出し角度)を大きくすることによって、これらの問題点が解決できることを見出した。しかしながら、従来のガスターレット1は、図11~12に示すようにガスターレット本体10の円弧状凹部3の両端部にポケット外周縁に載った缶蓋33をポケットに位置決めして搬送するためにフィンガー55が設けられ、その間にノズル体50が設けられているため、ポケット周面に配置する吹出し口の設置範囲は自ずと制限を受け、最大で100゜以内しか設置できず、通常80゜程度にしか形成されていない。
 そこで、本発明では置換ノズルの設置範囲を広げるために、従来のフィンガー55をガスターレット本体10上から除去して、従来のフィンガーが位置している位置まで、置換ノズルの範囲を広げたノズル体を形成し、図1、2に示すようにノズル体11の上にフィンガー4、4を設けた。それにより、置換ノズルの範囲を図1に示すように最外側壁17a、17b間の角度を130゜まで拡大することができ、吹出し口の対向角度が130゜となるように形成することができた。その結果、噴射流路面積幅を拡大できて同一流量の置換ガスを噴射する場合の流速を遅くすることを可能にすると共に、ヘッドスペースの渦の発生を抑制することができた。
 さらに、本発明では、置換ノズルからの置換ガス吹き込み時に図3に示すように缶体30のネック部31の外周部に位置する空気の巻き込み量を減少させるために、該ネック部31の外面近傍に置換ガス雰囲気を形成できるように、置換ガスノズルの吹出し口15の高さhを缶蓋高さaと缶ネック部の長さの1/3との合計より高くして、従来の平行形ノズルに比べて噴射流路面積高さを大きくした。図3はコンベヤにより搬送され缶体がシーマーのリフター上に載り移りはじめ、その開口部上方にガスターレットのポケットの両端側にあるフィンガー間に位置して円弧軌道を搬送されてくる缶蓋が、缶開口部上方に位置していく状態を示し、この状態でノズルの吹出し口から吹出すガス流の縦方向中心がほぼ缶蓋の最下端部から僅か下方近傍に位置する状態に設定され、吹出し口から吹出される置換ガス流が、缶開口端32から下方に缶ネック部31の高さの1/3以上の深さ若しくは缶開口端から缶胴方向に3mm以上で、且つその上方に隙間を介して位置する缶蓋のチャックウォール34の外周面に当たる範囲に吹出すようにノズル開口高さを設定してある。
 より詳細には、吹出し口の高さ、即ちガス流路の高さ方向の長さhは、図3に示すように、缶上部にネック部を有する場合は、缶ネック部の長さをbとすると、a+b/3≦h≦a+b/1.5の関係を満たす範囲が望ましい。ガス流路の高さ方向の長さhが上記範囲よりも低いと、噴射流速が早くなり、液こぼれが発生し易くなると共に、外気の巻きこみ量が増えて置換率が向上し難くなる不都合が発生し、逆に上記範囲より高い(大きい)と置換ガスの流速が遅くなって缶体内の残存エアを十分に除去できなくなるので、上記範囲が望ましい。
 缶形状についてはネック部の有無や種々のネック形状があり、また、蓋形状についても種々の高さがあるので、これらに対応するためは具体的な数値として、缶開口部を基準として胴部方向は、缶開口端から3mm以上の範囲、より好ましくは5mm以上の範囲がよく、缶上部方向は、缶開口端から3mm以上の範囲、より好ましくは8mm以上の範囲がよい。それにより、従来のアンダーカバーガッシングのノズル体の流路高さは約8mmであるが、本実施形態ではガス流路の高さhを約13mmの高さに高くしてある。
 以上のように、本発明では、置換ガスノズルの吹出し口15の開口面積高さを缶蓋高さと缶ネック部の長さの1/3との合計より高くして、従来の平行形ノズルに比べて噴射流路面積高さを大きくしている。吹出し口より吹き出されたガスは、図3に示すように、蓋のチャックウォールに当たって缶内に流入するダウンフローf1と、蓋と缶の隙間に平行に流入する平行な流れf3と、缶ネック部に当たる流れf2を生じるが、その際、隙間に対して平行な流れf3がダウンフローf1を弱め、f1の液面衝突を緩和する効果がある。ダウンフローf1は液面Sに衝突することで、衝突した箇所の周囲液面が盛り上がる。ダウンフローf1が緩和することで液面の盛り上がりが少なくなり、液こぼれが生じにくくなる。
 本実施形態のガス置換装置は、以上のように構成され、吹出し口15a、15bから噴射される置換ガス流Fが中心線Lに沿って100゜以上130゜以内の角度をなして衝突し、缶体の軸方向に曲げられて缶内のヘッドスペース内に吹き込まれ、置換ガス流が缶30のガス流路側縁部を含む衝突領域で衝突することによって、従来のアンダーカバーガッシングでは困難であったガス流路側縁部近傍のヘッドスペースにも置換ガスを吹き込むことができ、その部分のガス置換を効果的に行うことができる。最外側の吹出し口の角度を100゜以上になして噴射口幅を広げることによって、少ないガス流量で置換率が向上する理由を調べるために噴出ガスの流れをコンピュータで数値解析した。その結果を図7に示す。該図はノズルから吹き出した置換ガスの同時刻における濃度90%の流入するフロント面を表している。図7において、(a)は開口角度が120゜の場合であり、(b)は従来のノズル開口角度である80゜の場合で、ガスの流れの時間的な経過を短破線、長破線及び実線の順で示している。その結果、開口角度が大きい本発明のノズルでは、吹出し口より吹き出されたガス流は、あたかも平泳ぎの手の形のように、まず中央部にガスが流れ、反対側の缶壁に衝突後左右に空気を押し出す流れとなり、押し出す空間が広いため、その結果少ないガス流量で効率的にガス置換ができることがわかった。一方、開口角度が80゜の従来のノズル構造の場合は、ヘッドスペースの外側から置換ガスが充満し、遅れて内側の空気を前方に追い出す流れとなっており、押し出す空間が狭くなるので、その分多量の置換ガスが必要であることが分かった。
 開口角度を120°に広げた影響は、衝突する噴流の角度そのものを大きくすることにつながる。図8は、2方向から衝突する噴流において、(a)衝突の角度が90°の場合と(b)衝突の角度が120°の場合で衝突後の広がりを数値解析した結果を示している。図8(b)から衝突角度が120°の方が衝突後に広がる領域が広いことが分かる。衝突する噴流の角度を大きくすることで、衝突後の置換ガスが広がる領域が、より広くなることで置換効率が上がる効果があると考えられる。
 また、本発明では前記のように置換ガス流路の開口高さを従来よりも高くしてあるが、それによる作用効果を前記開口角度による影響と同様に数値解析によって調べた。その結果を図9に示す。図9において(a)は従来の吹出しノズルの開口高さを8mmにした場合を示し、(b)は本発明の開口高さを13mmに設定した場合を示す。該図から明らかなように、開口高さ8mmの場合は、13mmの場合と比べて置換ガスが当たる液面SをP1だけ深く押し込み、その分液面SがP2だけ下流側で高く盛り上がっていることが分かる。即ち、従来の開口が8mmの場合は、開口面積が狭くその分流速が早くなり、且つノズル口から吹出す置換ガス流f1は殆どが缶蓋のチャックウォール部に当たって缶と蓋の隙間に流入するため、図9(a)に示すような強いダウンフローf5が発生して吹出し口手前の液面に当たり、液面Sが進行方向に高く盛り上がる。一方、本発明では、吹出し口の開口高さが高くなっていることによって流速が低下し、液面に衝突する置換ガス量が低下し、図9(b)に示すような平行流れf6が従来の置換ガスフローf1を弱めるため、進行方向の液面Sの波立ちが緩和される。この結果、置換ガス流が液こぼれに及ぼす影響を可及的に少なくすることすることができると共に、少ない置換ガス流量で缶体内の残存酸素量をより少なくすることができた。
 具体的には本発明では、ガス流路の高さhが、缶蓋高さaと缶ネック部の長さbの1/3よりも高く形成されている。その結果、図3に示すように、置換ガス流Fのうちノズル開口上方部から噴射するガス流f1は缶蓋のチャックウォール34の外面に当たってからヘッドスペースに進入して液面を叩くが、本発明の場合は前述のようにノズルの開口面積が大きいため流速が遅くなり、それにより液面を叩く衝撃は少なく且つ、液面衝突流れを弱め、ガス流路縁部付近の液面を押し上げることで進行方向の液こぼれの発生を抑制し、液面及び缶内周面近傍のガス置換を効率よく行うことができる。一方、ノズル開口下方部のガス流f2は缶のネック部31の外周面に当たり、該近傍を置換ガス雰囲気で包囲することによって、缶内への外気の吸い込みを防ぐことができる。
 図4は、本発明のガス置換装置のノズル体の他の実施形態を示している。本実施形態のノズル体40は、図1に示すノズル体と比較して相違している点は、置換ガス流路が分岐されてなく、置換ガス吹出し口42が円弧状凹部45の外周面に沿って均一に形成され、置換ガスがほぼその円弧中心部に吹き込まれるように、ガス置換ガス吹出し口が放射状に配置されている点である。そのため、本実施形態では、風向調整板43は放射状に配置されている。そして、ガス置換ガス吹出し口の最外側壁46a、46b間の開口角度を前記実施形態と同様に、100~130゜まで拡げ、且つ開口部高さを、前記実施形態と同様に吹出し口がガス置換する缶蓋高さと缶ネック部の高さの1/3との合計より高い高さ方向の開口を有している。
 本発明の作用効果を確認するため、以下のような設定条件で、図1~図3の実施形態に示す缶巻締装置のガス置換装置及び図4に示すガス置換装置でアンダーカバーガッシングを行った場合、また比較例として従来の平行櫛歯形ノズルで行う場合、及び櫛歯形ノズルでバッファが設けられているノズル体で行った場合について、置換ガス噴射流量を変えて残存エア量、液こぼれ量を測定して評価を行った。なお、噴射時間は、缶蓋巻締機における蓋が缶体上方に位置し、蓋が閉まるまでの0.04秒間である。
実施例1:
(1)ガス置換装置
  吹出し口の形状:平行櫛歯型ノズル
  吹き出し角度(置換ガス噴射角度):120゜
  吹出し口(ガス流路)の高さ:h=13mm
(2)ガス置換条件
  缶形状:缶胴350ml缶(胴部直径66mm、開口部直径62mm、缶ネック部高さ19.5mm)
  缶蓋形状:蓋高さ8mm
  内溶液の種類及びその量:飽和食塩水350g、
  ヘッドスペース容積:30.2ml
  置換ガス:炭酸ガス
  巻締速度:1000cpm
  置換ガス流量:600、800、1000Nl/minの場合についてそれぞれ行った。
(3)測定法
  残存エア量:ヘッドスペースの初期設定をエアーとして、置換後のヘッドスペースのガスを採集し、酸素濃度を測定器にて残存酸素量を算出した。
  液こぼれ量:シーマーを通過する前後の重量変化を測定して求めた。
 その結果を図5の線図a及び図6の棒グラフaに示す。図5は、置換ガス流量を、600、800、1000Nl/minと変化させた場合のヘッドスペースの残存酸素量、また図6は液こぼれ量の変化を示している。
 比較例1:
 比較例1として、ガス置換装置を図11に示す構造のノズル体においてノズル高さを8mmにしたものを採用した。その他のガス置換条件は実施例と同様である。
 比較例2:
 比較例2として、ガス置換装置を特許文献1に記載のように置換ガス流路にバッファを有し、噴射口が放射状に配置されている構造のノズルを採用した。その他のガス置換条件は実施例と同様である。
 以上の比較例1、2において、置換ガス流量を600、800、1000Nl/minと変化させた場合のヘッドスペースの残存酸素量及び液こぼれ量を測定した。以上の実験を実施例及び比較例とも各6缶づつ行なった。各噴射流量ごとのそれぞれの残存酸素量の測定結果の平均値を実施例と共に図5に示す。図5においてa線図が実施例、b線図が比較例1、c線図が比較例2を表している。また、図6に液こぼれ量を表している。なお、図6において棒グラフが表示されて800Nl/minにおける比較例2では液こぼれが起きなかったことを意味している。
 以上の結果を示す図5及び図6のグラフから次のようなことが明らかになった。
 (1)残存酸素量、即ちガス置換率に関して、実施例の場合は、流量が600Nl/minから、800、1000と増えると、ヘッドスペースの残存酸素量は、約0.076mlから0.027mlまで半減した。比較例2の場合は流量が600Nl/minの場合、残存酸素量が共に約0.255mlあり、置換率が著しく悪い。流量を800、1000Nl/minと増やすことによって、残存酸素量は減り、置換率は向上しているが、800Nl/min以上では残存酸素量は約0.096からあまり下がらなかった上、実施例と比べて残存酸素量が3倍以上多く置換率が低い。
 (2)一方、液こぼれ量に関して、実施例1の場合は、置換ガス流量が800Nl/minの場合は、液こぼれ量がほとんど無かった。また、1000Nl/minの時は液こぼれ量が1mlでありごく少量であった。
 比較例1は、実施例に比べ残存酸素量は6割程度であるが液こぼれが1000Nl/minでは、実施例の5倍以上であった。
 (3)以上の(1)(2)のことから、比較例2に示す従来技術では置換ガス流量が600Nl/minでは置換率が極端に悪く、実用的なガス置換率を得るには少なくとも800Nl/min以上を必要とするのに対し、実施例1では600Nl/minで比較例2の800Nl/minと比べて大幅に残存酸素量を減らすことができ、この量で実用的なガス置換が十分可能である。即ち、実施例によれば、従来のガス置換装置に比べて置換ガス使用量を30%以上節約できることを意味している。しかも、置換ガス流量が600Nl/minでは液こぼれ量もゼロであることが分かる。一方、比較例1はガス置換率については、実施例とほぼ同等以上の結果が得られているが、液こぼれ量が実施例1と比べて特段に多く、液こぼれを低減させる課題は達成できなかった。
実施例2:
(1)ガス置換装置
  吹出し口の形状:放射型櫛歯型ノズル
  吹き出し角度(置換ガス噴射角度):120゜
  吹出し口(ガス流路)の高さ:h=12mm
(2)ガス置換条件
  全て、実施例1と同じ
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
比較例3:
 実施例2のノズル体と同様な放射型櫛歯型ノズル形状において、吹出し角度を100゜にし、且つ吹出し口の高さを7mmとしたノズル体を使用して実施例2と同様なガス置換条件で、置換ガス噴射流量900ccでアンダーカバーガッシングを行った場合の液こぼれ量及び残存酸素量を数値解析により求めた。その結果を実施例2とともに表1に示す。
 表1から明らかなように、放射型櫛歯型ノズルの場合も、吹出し角度を100゜、吹出し口の高さを12mmと大きくした実施例2の場合が、比較例3に比べて液こぼれ量及び残存酸素量とも明らかに低減しており、本発明の効果が確認された。
 以上の結果から、本発明では少ない置換ガス流量で従来と比べて同等以上のガス置換率を確保することができ、且つ液こぼれ量が零であるという劇的効果を奏していることが判明した。その結果、缶詰製造に大量の置換ガス量を必要とする缶詰製造メーカーやボトラーにとって、本発明を採用することにより、置換ガス消費量が30%以上も節約でき大幅なコスト削減が期待できる。
 本発明は、内容物充填容器のヘッドスペースに置換ガスを吹き込んで残存気体と置換するガス置換装置として利用でき、特に置換ガス流量を少なくして高置換率、液こぼれの大幅な低減が可能であり、缶詰のアンダーカバーガッシング装置として産業上の利用可能性が高いが、缶容器のガス置換に限らず、例えばボトル状容器の蓋密封直前のガス置換装置やカップ状容器の蓋材のヒートシール前のガス置換装置としても適用可能である。

Claims (8)

  1.  缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方から置換ガスを置換ノズルより吹き込んで前記缶体のヘッドスペース内の残存気体と置換するガス置換方法において、前記置換ノズルはノズル口最外側壁間を風向調整板で仕切って複数の吹出し口を形成し、該吹出し口から容器径方向中心線を対称に吹き出す置換ガス噴流のうち、前記ノズル口最外側壁に沿って吹き出される置換ガス噴流間角度が100゜~130゜をなすように吹き出すことを特徴とする容器のガス置換方法。
  2.  缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方から置換ガスを置換ノズルより吹き込んで前記缶体のヘッドスペース内の残存気体と置換するガス置換方法において、前記置換ノズルはノズル口最外側壁間を複数の風向調整板で仕切って複数の吹出し口を形成し、該置換ノズルより吹き込む置換ガス流が、缶開口端から下方に缶ネック部の高さの1/3以上若しくは缶開口端から缶胴方向に3mm以上の深さで、且つ上方に缶蓋高さ以上若しくは開口端から上方に3mm以上の高さの範囲に亘って前記置換ノズルより吹き出すことを特徴とする容器のガス置換方法。
  3.  缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方から置換ガスを置換ノズルより吹き込んで前記缶体のヘッドスペース内の残存気体と置換するガス置換方法において、前記置換ノズルはノズル口最外側壁間を複数の風向調整板で仕切って複数の吹出し口を形成し、該吹出し口から容器径方向中心線を対称に吹き出す置換ガス噴流のうち、前記ノズル口最外側壁に沿って吹き出される置換ガス噴流間角度が100゜~130゜をなすように吹き込まれ、且つ該置換ノズルより吹き込む置換ガス流が、缶開口端から下方に缶ネック部の高さの1/3以上若しくは缶開口端から缶胴方向に3mm以上の深さで、且つ上方に缶蓋高さ以上若しくは開口端から上方に3mm以上の高さの範囲に亘って前記置換ノズルより吹き出すようにしてなることを特徴とする容器のガス置換方法。
  4.  前記風向調整板は、互いに平行に配置され、対向するノズル口から噴射される置換ガス流が容器径方向中心線上で互いに衝突する請求項1~3の何れかに記載の容器のガス置換方法。
  5.  缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方から置換ガスを置換ノズルより吹き込んで前記缶体のヘッドスペース内の残存気体と置換するガス置換装置において、前記置換ノズルはノズル口最外側壁間を互いに風向調整板で仕切って容器径方向中心線を対称に容器開口部に向けて置換ガスを噴き出す複数の吹出し口を円弧上に配置してなり、前記ノズル口最外側壁間の開口角度が100゜~130゜であることを特徴とするガス置換装置。
  6.  缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方から置換ガスを置換ノズルより吹き込んで前記缶体のヘッドスペース内の残存気体と置換するガス置換装置において、前記置換ノズルはノズル口最外側壁間を互いに風向調整板で仕切って容器径方向中心線を対称に容器開口部に向けて置換ガスを噴き出す複数の吹出し口を円弧上に配置してなり、前記吹出し口がガス置換する缶蓋高さと缶ネック部の高さの1/3との合計より高い高さ方向の開口を有していることを特徴とするガス置換装置。
  7.  缶蓋が内容物充填缶体の開口部に被さる直前に缶蓋と缶体開口部の間に向けて側方から置換ガスを置換ノズルより吹き込んで前記缶体のヘッドスペース内の残存気体と置換するガス置換装置において、前記置換ノズルはノズル口最外側壁間を風向調整板で仕切って容器径方向中心線を対称に容器開口部に向けて置換ガスを噴き出す複数の吹出し口を円弧上に配置してなり、前記吹出し口がガス置換する缶蓋高さと缶ネック部の高さの1/3以上若しくは缶開口端から缶胴方向に3mm以上の深さで、且つ上方に缶蓋高さ以上若しくは開口端から上方に3mm以上の高さの合計より高い高さ方向の開口を有し、且つ前記ノズル口最外側壁間の開口角度が100゜~130゜であることを特徴とするガス置換装置。
  8.  前記風向調整板は、互いに平行に配置されている請求項5~7の何れかに記載のガス置換装置。
PCT/JP2010/059370 2010-06-02 2010-06-02 容器のガス置換方法及び装置 WO2011151902A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/059370 WO2011151902A1 (ja) 2010-06-02 2010-06-02 容器のガス置換方法及び装置
JP2012518179A JP5906533B2 (ja) 2010-06-02 2010-06-02 容器のガス置換方法及び装置
CN201080067183.9A CN102917953B (zh) 2010-06-02 2010-06-02 容器的气体置换方法以及装置
KR1020127033136A KR101584165B1 (ko) 2010-06-02 2010-06-02 용기의 가스 치환 방법 및 장치
US13/701,659 US10065756B2 (en) 2010-06-02 2010-06-02 Method and device for gas replacement of container
EP10852508.0A EP2578503B1 (en) 2010-06-02 2010-06-02 Method and device for gas replacement of container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/059370 WO2011151902A1 (ja) 2010-06-02 2010-06-02 容器のガス置換方法及び装置

Publications (1)

Publication Number Publication Date
WO2011151902A1 true WO2011151902A1 (ja) 2011-12-08

Family

ID=45066299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059370 WO2011151902A1 (ja) 2010-06-02 2010-06-02 容器のガス置換方法及び装置

Country Status (6)

Country Link
US (1) US10065756B2 (ja)
EP (1) EP2578503B1 (ja)
JP (1) JP5906533B2 (ja)
KR (1) KR101584165B1 (ja)
CN (1) CN102917953B (ja)
WO (1) WO2011151902A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922067A (zh) * 2015-08-24 2018-04-17 三菱重工机械***株式会社 气体置换***及气体置换方法
US10941029B2 (en) 2015-08-24 2021-03-09 Mitsubishi Heavy Industries Machinery Systems, Ltd. Filling-and-sealing device and filling-and-sealing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102102764B1 (ko) 2018-12-27 2020-04-22 주식회사 세원정공 카울 크로스 부품의 성형 및 체결부 접합 겸용 금형장치
IT202200006953A1 (it) 2022-04-07 2023-10-07 Gai Macch S P A Metodo e gruppo di accoppiamento di un coperchio ad un contenitore contenente un prodotto alimentare per la formatura di lattine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928627B1 (ja) 1968-12-05 1974-07-27
JPS57122774A (en) * 1981-01-23 1982-07-30 Toyo Seikan Kaisha Ltd Preparation of canned juice
JPH08324513A (ja) 1995-06-06 1996-12-10 Mitsubishi Heavy Ind Ltd 飲料容器内気体置換装置
JP2003312609A (ja) * 2002-04-19 2003-11-06 Mitsubishi Materials Corp 缶のガス置換装置
JP2004059016A (ja) 2002-07-25 2004-02-26 Toyo Seikan Kaisha Ltd ガス置換方法及びその装置
JP2005059885A (ja) 2003-08-12 2005-03-10 Toyo Seikan Kaisha Ltd ガス置換方法およびその装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2184493A (en) * 1935-11-23 1939-12-26 Crown Cork & Seal Co Filling and crowning mechanism
US2693305A (en) * 1949-02-17 1954-11-02 Continental Can Co Apparatus for removing air from the head spaces of filled cans
US3246447A (en) * 1963-02-25 1966-04-19 Anchor Hocking Glass Corp Air purging mechanism
US4409252A (en) * 1982-04-12 1983-10-11 Messer Griesheim Gmbh Procedure for packaging of food under protective gas in synthetic containers with flexible tops
EP0092966B1 (en) * 1982-04-22 1987-01-28 Daiwa Can Company, Limited Method of manufacturing gas-sealed containered food
DE3515334A1 (de) * 1985-04-27 1986-10-30 Krones Ag Hermann Kronseder Maschinenfabrik, 8402 Neutraubling Gefaessverschliessmaschine
FR2614005B1 (fr) * 1987-04-15 1989-10-13 Bresse Bleu Ste Laitiere Coop Appareil pour injecter un gaz neutre dans des barquettes notamment de produits alimentaires
US5201165A (en) * 1990-10-05 1993-04-13 International Paper Company Gas displacement device for packaging food and non-food products
US5247746A (en) * 1992-06-04 1993-09-28 W. R. Grace & Co.-Conn. Tray sealing and gas flush apparatus
US5617705A (en) * 1993-09-16 1997-04-08 Sanfilippo; James J. System and method for sealing containers
US5417255A (en) * 1993-09-16 1995-05-23 Sanfilippo; James J. Gas flushing apparatus and method
JPH0928627A (ja) 1995-05-13 1997-02-04 Daito Syst:Kk ブラインドの洗浄方法
KR100628780B1 (ko) * 1998-04-17 2006-09-29 도요 세이칸 가부시키가이샤 양압 포장체의 제조방법 및 그 장치
JP4429008B2 (ja) * 2003-12-22 2010-03-10 サントリーホールディングス株式会社 ガス置換装置およびガス置換方法
US20070056251A1 (en) * 2005-01-05 2007-03-15 Ruppman Kurt H Sr Method and Apparatus for Flushing a Container with an Inert Gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928627B1 (ja) 1968-12-05 1974-07-27
JPS57122774A (en) * 1981-01-23 1982-07-30 Toyo Seikan Kaisha Ltd Preparation of canned juice
JPH08324513A (ja) 1995-06-06 1996-12-10 Mitsubishi Heavy Ind Ltd 飲料容器内気体置換装置
JP2003312609A (ja) * 2002-04-19 2003-11-06 Mitsubishi Materials Corp 缶のガス置換装置
JP2004059016A (ja) 2002-07-25 2004-02-26 Toyo Seikan Kaisha Ltd ガス置換方法及びその装置
JP2005059885A (ja) 2003-08-12 2005-03-10 Toyo Seikan Kaisha Ltd ガス置換方法およびその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2578503A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922067A (zh) * 2015-08-24 2018-04-17 三菱重工机械***株式会社 气体置换***及气体置换方法
CN107922067B (zh) * 2015-08-24 2020-03-13 三菱重工机械***株式会社 气体置换***及气体置换方法
US10941029B2 (en) 2015-08-24 2021-03-09 Mitsubishi Heavy Industries Machinery Systems, Ltd. Filling-and-sealing device and filling-and-sealing method
US11180357B2 (en) 2015-08-24 2021-11-23 Mitsubishi Heavy Industries Machinery Systems, Ltd. Gas replacement system and gas replacement method

Also Published As

Publication number Publication date
JPWO2011151902A1 (ja) 2013-07-25
EP2578503A4 (en) 2014-03-05
US10065756B2 (en) 2018-09-04
CN102917953A (zh) 2013-02-06
KR20130038878A (ko) 2013-04-18
JP5906533B2 (ja) 2016-04-20
US20130078116A1 (en) 2013-03-28
KR101584165B1 (ko) 2016-01-11
CN102917953B (zh) 2014-11-05
EP2578503B1 (en) 2016-03-23
EP2578503A1 (en) 2013-04-10
EP2578503A8 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5906533B2 (ja) 容器のガス置換方法及び装置
US20210147110A1 (en) Paper container with stopper
JP5201377B1 (ja) 充填密封方法及び装置
CN102292265B (zh) 容器的气体置换方法及其装置
EP2490949B1 (en) A nozzle head and a filling machine provided with said nozzle head
KR20060103338A (ko) 가스 치환 장치 및 가스 치환 방법
MX2011003341A (es) Metodo para llenado y dispositivo.
CN216970082U (zh) 灌装头及其灌装装置
JP5442241B2 (ja) 容器のガス置換方法及びその装置
JP5659719B2 (ja) 液化ガス添加用ノズル
JP4466820B2 (ja) ガス置換方法およびその装置
US11827399B2 (en) Funnels for package filling
JP2009073545A (ja) 不活性ガス噴射装置
JP2004059016A (ja) ガス置換方法及びその装置
JP7013815B2 (ja) 容器処理装置および容器処理方法
JP2003312609A (ja) 缶のガス置換装置
JP4466812B2 (ja) 不活性ガス置換方法とその装置
JP4816857B2 (ja) 容器内残存酸素量の低減方法及びその装置
CN116923770A (zh) 灌装头及其灌装装置和灌装方法
JP2009007069A (ja) 不活性ガス噴射装置及び不活性ガス噴射方法
JP2003341617A (ja) ボトル缶のガス置換装置および置換方法
JP2009073546A (ja) 不活性ガス噴射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067183.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518179

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1201006265

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701659

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127033136

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010852508

Country of ref document: EP