WO2011145604A1 - エッチング液およびシリコン基板の表面加工方法 - Google Patents

エッチング液およびシリコン基板の表面加工方法 Download PDF

Info

Publication number
WO2011145604A1
WO2011145604A1 PCT/JP2011/061293 JP2011061293W WO2011145604A1 WO 2011145604 A1 WO2011145604 A1 WO 2011145604A1 JP 2011061293 W JP2011061293 W JP 2011061293W WO 2011145604 A1 WO2011145604 A1 WO 2011145604A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
silicon substrate
etching solution
sulfonic acid
compound
Prior art date
Application number
PCT/JP2011/061293
Other languages
English (en)
French (fr)
Inventor
毅 沢井
石川 誠
利基 白濱
弘司 大坪
Original Assignee
株式会社新菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新菱 filed Critical 株式会社新菱
Priority to KR1020127030129A priority Critical patent/KR101407988B1/ko
Priority to EP11783538.9A priority patent/EP2573801A4/en
Priority to CN201180024459.XA priority patent/CN102906863B/zh
Priority to CA2798926A priority patent/CA2798926C/en
Publication of WO2011145604A1 publication Critical patent/WO2011145604A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/02Etching, surface-brightening or pickling compositions containing an alkali metal hydroxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an etching solution for forming a pyramidal concavo-convex structure on the surface of a silicon substrate and a surface processing method for a silicon substrate using the etching solution.
  • a fine pyramid-shaped unevenness called a texture structure is formed on the surface of a silicon substrate used for a crystalline silicon solar cell.
  • the irradiated light is multiple-reflected on the surface by this texture structure, increasing the chance of incidence on the silicon substrate and being efficiently absorbed inside the solar cell.
  • a silicon substrate having a texture structure is manufactured by etching a silicon substrate obtained by slicing a silicon ingot with a wire saw or the like. Etching of the silicon substrate can be performed by wet etching using an alkaline etchant. In the case of a sodium hydroxide solution, this etching proceeds by a reaction such as the following reaction formulas (1), (2), and (3).
  • Si + 2NaOH + H 2 O ⁇ Na 2 SiO 3 + 2H 2 reaction formula (1) 2Si + 2NaOH + 3H 2 O ⁇ Na 2 Si 2 O 5 + 4H 2 reaction formula (2) 3Si + 4NaOH + 4H 2 O ⁇ Na 4 Si 3 O 8 + 6H 2 reaction formula (3)
  • anisotropic etching is usually performed by using an etching solution with a controlled etching rate.
  • the purpose of the etching is to remove a damaged layer in which distortion or defect caused by slicing processing existing on the surface of the silicon substrate after slicing, which is a raw material, and to form a texture structure.
  • the removal of the damage layer and the formation of the texture structure may be carried out with the same etching solution, or from the viewpoint of productivity, a two-step etching process using different etching solutions for the removal of the damage layer and the formation of the texture is performed. Also good.
  • the two-stage etching process first, damage layer removal etching is performed with an alkaline etching solution having a relatively high etching rate, and then anisotropic etching is performed by using an etching solution with a controlled etching rate as texture etching. It is a processing method. In any method, the formation of the texture structure on the surface of the silicon substrate is based on the following mechanism. The etching rate of the silicon substrate with the alkaline aqueous solution is the fastest on the (100) plane of silicon and the slowest on the (111) plane.
  • etching inhibitor a specific additive that can reduce the etching rate to the alkaline aqueous solution
  • etching inhibitor a specific additive that can reduce the etching rate to the alkaline aqueous solution
  • a crystal plane that is easily etched is preferentially etched, and a (111) plane having a slow etching rate remains on the surface. Since the (111) plane has an inclination of about 54 degrees with respect to the (100) plane, pyramidal irregularities including the (111) plane and its equivalent plane are formed at the final stage of the process.
  • an etching solution composed of a general strong alkali chemical solution can be used, whereas in texture etching, the above-mentioned etching inhibitor is added to control various conditions such as solution temperature. Therefore, it is necessary to control the etching rate.
  • an etching solution in which isopropyl alcohol (hereinafter sometimes referred to as “IPA”) is added as an etching inhibitor to a sodium hydroxide (NaOH) aqueous solution is used as an etching solution for texture etching.
  • IPA isopropyl alcohol
  • NaOH sodium hydroxide
  • a method has been used in which the etching solution is heated to about 60 to 80 ° C. and the (100) plane silicon substrate is immersed for 10 to 30 minutes (see, for example, Patent Document 1 and Non-Patent Document 1). Further, a solution obtained by diluting 45% potassium hydroxide (KOH) 1: 1 with water is heated to 85 ° C., and the silicon substrate is immersed for 30 minutes to remove the damaged layer. Then, potassium hydroxide (KOH) A method of performing texture etching using an etching solution obtained by adding IPA as an etching inhibitor to an aqueous solution is also disclosed (for example, see Non-Patent Document 2).
  • IPA has high volatility, it is necessary to add IPA corresponding to the volatilization amount to the texture etching solution as needed, and an increase in etching cost due to an increase in consumption of IPA is a problem. Furthermore, using a large amount of highly volatile IPA is not preferable in terms of safety and environment, and even if an apparatus for recovering volatile IPA is added, the manufacturing cost of the etching processing equipment increases and the operating cost of the equipment also increases. There was a problem of increasing.
  • Patent Document 2 and Patent Document 3 disclose a texture etching solution to which an aliphatic carboxylic acid or a salt thereof is added.
  • Patent Document 4 discloses a texture etching solution containing an inorganic salt.
  • Patent Document 5 discloses an etching solution containing a compound containing a benzene ring as an etching inhibitor.
  • Patent Document 6 discloses an etching solution containing an alkyl sulfonic acid ester having 12 carbon atoms (C 12 H 25 —O—SO 3 Na).
  • the etching inhibitor containing a compound containing a benzene ring in Patent Document 5 is not preferable from the viewpoint of wastewater treatment and environmental conservation because it is inferior in toxicity and biodegradability compared with a compound having a simple chain structure.
  • Patent Document 6 has a description of adding an alkyl sulfonic acid ester having 12 carbon atoms (C 12 H 25 —O—SO 3 Na). Under the environment, the ester part is gradually hydrolyzed to produce alcohol having 12 carbon atoms and sodium hydrogen sulfate, and the original function of the surfactant cannot be expected over a long period of time, and a fine texture structure cannot be formed with good reproducibility. . For these reasons, it is not preferable to industrially use a surfactant having an ester structure.
  • an object of the present invention is to provide an etching solution capable of stably forming a silicon substrate having a fine texture structure without using a conventional etching inhibitor such as IPA. .
  • etching solution for immersing a silicon substrate to form pyramidal irregularities on the surface of the substrate, 1 type or more selected from the compound (A) represented by the following general formula (1) or its alkali salt, and the alkali hydroxide (B) whose density
  • R represents any of an alkyl group having 4 to 15 carbon atoms, an alkenyl group, and an alkynyl group, and X represents a sulfonic acid group.
  • R in the general formula (1) in the compound (A) is an alkyl group having 5 to 12 carbon atoms, and the concentration of the alkali hydroxide (B) is 0.5 to 20% by weight.
  • ⁇ 3> The etching solution according to ⁇ 1> or ⁇ 2>, wherein the concentration of the compound (A) is in the range of 0.0001 wt% to 10 wt%.
  • ⁇ 4> The etching solution according to any one of ⁇ 1> to ⁇ 3>, wherein the alkali hydroxide (B) is sodium hydroxide and / or potassium hydroxide.
  • ⁇ 5> The etching solution according to any one of ⁇ 1> to ⁇ 4>, further containing a silicate compound (C).
  • ⁇ 6> The etching solution according to ⁇ 5>, wherein the silicate compound (C) is sodium or potassium silicate.
  • ⁇ 8> A surface of a silicon substrate comprising a step of immersing a silicon substrate in the etching solution according to any one of ⁇ 1> to ⁇ 7> to form pyramidal irregularities on the substrate surface Processing method.
  • etching solution of the present invention When the etching solution of the present invention is used, a fine texture structure suitable for light confinement for solar cells can be formed on the surface of a silicon substrate with good reproducibility.
  • the present invention is an etching solution for immersing a silicon substrate to form pyramidal irregularities (hereinafter sometimes referred to as “texture structure”) on the surface of the substrate, and is represented by the following general formula (1).
  • the present invention relates to an etching solution containing at least one selected from the group (A) or an alkali salt thereof and an alkali hydroxide (B) having a concentration of 0.1 wt% or more and 30 wt% or less.
  • R represents any of an alkyl group having 4 to 15 carbon atoms, an alkenyl group, and an alkynyl group
  • X represents a sulfonic acid group.
  • the “silicon substrate” includes a single crystal silicon substrate and a polycrystalline silicon substrate.
  • the etching solution of the present invention is a single crystal silicon substrate, particularly a single crystal silicon substrate having a (100) plane on the surface. Suitable for etching.
  • the compound (A) or an alkali salt thereof has an advantage that it exhibits an etching suppression effect equivalent to or higher than that of IPA that is a conventional etching inhibitor and has a wide applicable concentration range as described later. Therefore, by using the etching solution of the present invention, the size and shape of pyramidal irregularities on the surface of the silicon substrate can be controlled within a suitable range.
  • the compound (A) is a compound in which R in the general formula (1) is any one of an alkyl group having 4 to 15 carbon atoms, an alkenyl group, and an alkynyl group.
  • a compound having an alkyl group structure Specifically, butyl (C: 4) sulfonic acid, pentyl (C: 5) sulfonic acid, hexyl (C: 6) sulfonic acid, heptyl (C: 7) sulfonic acid, octyl (C: 8) sulfonic acid, Nonyl (C: 9) sulfonic acid, decyl (C: 10) sulfonic acid, undecyl (C: 11) sulfonic acid, dodecyl (C: 12) sulfonic acid, tridecyl (C: 13) sulfonic acid, tetradecyl (C: 14) ) Sulfonic acid, pentadecane (C: 15) sulfonic acid;
  • Compounds having an alkenyl group structure include butene (C: 4) sulfonic acid, pentene (C: 5)
  • a Group 1 element and a Group 2 element can be used as an alkali component in the alkali salt of the compound (A).
  • a Group 1 element and a Group 2 element can be used as an alkali component in the alkali salt of the compound (A).
  • lithium hydroxide, sodium hydroxide, and potassium hydroxide are particularly easily available and costly. It is suitable because it is excellent in terms of surface.
  • the compound (A) is preferably a compound in which R in the general formula (1) is an alkyl group having 5 to 12 carbon atoms.
  • R in the general formula (1) is an alkyl group having 5 to 12 carbon atoms.
  • Examples include decyl (C: 10) sulfonic acid, undecyl (C: 11) sulfonic acid, and dodecyl (C: 12) sulfonic acid.
  • a compound having an alkyl group having 6 to 10 carbon atoms is preferred from the viewpoint of obtaining a particularly uniform texture structure.
  • hexyl (C: 6) sulfonic acid, heptyl (C: 7) sulfonic acid, octyl (C: 8) sulfonic acid, nonyl (C: 9) sulfonic acid, decyl (C: 10) sulfonic acid is there.
  • the concentration of the compound (A) is capable of forming a fine texture structure on the surface of the silicon substrate, and is selected within the range of an industrially effective etching rate, preferably 0.0001 wt% or more and 10 wt% or less. It is particularly preferably 0.0005 wt% or more and 10 wt% or less, and more preferably 0.001 wt% or more and 5 wt% or less. Within the above range, the surface of the substrate can be anisotropically etched to form a fine texture structure on the surface of the substrate.
  • the concentration of the compound (A) is less than 0.0001% by weight, the effect of suppressing the etching may be insufficient, and the concentration is too low, making it difficult to control the concentration in the etching solution with good reproducibility. It becomes difficult to manufacture a silicon substrate having a fine texture structure.
  • the etching suppression effect becomes too strong, and it takes a long time, and the chemical cost, the number of times of washing with water, and the waste liquid treatment cost increase.
  • a hydroxide of a Group 1 element and a hydroxide of a Group 2 element can be used.
  • lithium hydroxide, sodium hydroxide, and potassium hydroxide are particularly preferable because they are easily available and excellent in cost.
  • these alkali hydroxides may be mixed and used at an arbitrary ratio.
  • the alkali hydroxide (B) concentration in the etching solution must be 0.1 wt% or more and 30 wt% or less, and preferably 0.5 wt% or more and 20 wt% or less. . If it is this range, an etching will advance suitably and a fine texture structure can be formed in the surface of a silicon substrate.
  • the alkali concentration is less than 0.1% by weight, the etching rate is not sufficient.
  • the alkali concentration is more than 30% by weight, the etching rate is remarkably increased and texture formation becomes difficult.
  • the etching liquid of this invention can also contain a silicate compound (C) other than a compound (A) and alkali hydroxide (B).
  • a silicate compound (C) other than a compound (A) and alkali hydroxide (B).
  • Specific examples of the silicate compound (C) include lithium orthosilicate (Li 4 SiO 4 .nH 2 O), lithium metasilicate (Li 2 SiO 3 .nH 2 O), lithium pyrosilicate (Li 6 Si 2 O 7).
  • silicate compounds (C) can be used by adding the compound itself to the etching solution, or by directly using a silicon material such as a silicon wafer, silicon ingot, silicon cutting powder or silicon dioxide with an alkali hydroxide (B).
  • the silicate compound obtained as a reaction product by dissolving it in) may be used as the silicate compound (C). Since the silicate compound (C) has an action of suppressing the etching of silicon, by adding the silicate compound (C) to the etching solution of the present invention, the etching suppression action of the compound (A) can be assisted. Thus, the etching rate suitable for forming the texture structure can be controlled more appropriately.
  • the silicate concentration in the etching solution is preferably in the range of 10 wt% or less in terms of Si.
  • Si equivalent concentration means a concentration in terms of silicon (Si) atoms contained in the silicate.
  • the concentration of the silicate compound (C) in the etching solution together with the number of silicon substrates processed by repeated etching operations. Will increase.
  • the concentration of the silicate compound (C) in the etching solution exceeds 10% by weight in terms of Si, it may be diluted by replenishing other components such as water, or the solution may be replaced. preferable.
  • the etching solution of the present invention contains the compound (A), alkali hydroxide (B), and silicate compound (C) in the above concentration range (including the case where the silicate compound (C) is not contained).
  • concentration can be appropriately set within a range in which a normal texture structure can be formed on the surface of the target silicon substrate for solar cell.
  • components other than a compound (A), an alkali hydroxide (B), and a silicate compound (C) are included as other components in the range which does not impair the objective and effect of this invention. But you can.
  • examples of such components include a buffer, a pH adjuster, a viscosity adjuster, and a surface tension adjuster.
  • the etching liquid of the present invention can be obtained by dissolving the above compound (A), alkali hydroxide (B), and, if necessary, silicate compound (C) in water as a solvent by a conventional method.
  • the temperature for producing the etching solution is 0 ° C. to 100 ° C., preferably 20 ° C. to 40 ° C., and is usually room temperature.
  • the water as the solvent of the etching solution of the present invention is not particularly limited as long as a normal texture structure can be formed, but water from which impurities have been removed is preferable, and usually ion-exchanged water or distilled water is preferably used. .
  • ion-exchanged water or distilled water having an electric conductivity measured at 25 ° C. of 1 mS / cm or less (particularly 100 ⁇ S / cm or less) is suitable.
  • the silicon substrate a single crystal or polycrystalline silicon substrate formed by any manufacturing method may be used, but a single crystal silicon substrate is preferable, and a single crystal silicon substrate having a surface orientation of (100) is particularly preferable.
  • the silicon substrate having a surface orientation of (100) forms a fine texture structure and has a low reflectance. This is because the energy conversion efficiency is increased when the cell is formed.
  • the etching method is not particularly limited.
  • the silicon substrate is immersed in the silicon substrate for a predetermined time, so that a fine surface is formed on the surface of the silicon substrate.
  • a texture structure can be formed.
  • the operating temperature of the etching solution is not particularly limited, but it can be used in a temperature range of 0 ° C. to 100 ° C., and 80 ° C. to 100 ° C. is preferable from the viewpoint of etching efficiency.
  • the etching time is not particularly limited, but is usually 1 minute to 120 minutes (preferably 20 minutes to 40 minutes).
  • a silicon substrate having a fine texture structure on the surface of the silicon substrate can be obtained by the silicon substrate surface processing method using the etching solution of the present invention described above.
  • Table 1 shows the composition of the etching solution prepared.
  • the etching solutions of Examples 1, 2, 4 to 6 and 8, 9 were prepared by first dissolving a predetermined amount of NaOH (alkali hydroxide (B)) in water at room temperature, and then immersing the single crystal silicon substrate.
  • the silicate compound (C) was produced by dissolution while heating at 90 ° C.
  • etching was repeated until the Si equivalent concentration in the solution reached the concentration shown in Table 1, and then the solution was cooled to room temperature, and then the sodium salt of compound (A) shown in Table 1 was expressed.
  • Each etching liquid was produced by adding until it became the density
  • the concentration of NaOH in the etching solution is a value calculated on the premise of the following for convenience. That is, the form of the silicate compound (C) obtained by etching is regarded as “Na 2 Si 2 O 5 ” generated by the reaction shown in the above-described reaction formula (2), and the reaction formula (2 The value obtained by subtracting the amount of NaOH consumed by the reaction shown in FIG.
  • the etching solutions of Examples 3 and 7 and Comparative Example 1 not containing the silicate compound (C) were dissolved in a solution of NaOH (alkali hydroxide (B)) dissolved in water at room temperature at a concentration shown in Table 1. It was prepared by adding the sodium salt of compound (A) shown in Table 1 to a concentration shown in Table 1 and stirring until it was completely dissolved.
  • the etching solution of Comparative Example 2 containing no compound (A) and silicate compound (C) was prepared by dissolving NaOH (alkali hydroxide (B)) in water at a concentration shown in Table 1 at room temperature.
  • etching solution of Comparative Example 3 containing no compound (A)
  • a solution obtained by dissolving a predetermined amount of NaOH (alkali hydroxide (B)) in water at room temperature was heated to 90 ° C.
  • the silicon substrate was dissolved so as to have a Si equivalent concentration to produce a silicate compound (C).
  • the etching solution of Reference Example 1 uses conventional isopropyl alcohol (IPA) instead of the compound (A) as an etching inhibitor, and NaOH (alkaline hydroxide ( It was prepared by adding B)) and IPA.
  • IPA isopropyl alcohol
  • the etching solution of Reference Example 2 uses IPA instead of compound (A) as an etching inhibitor, and heats a solution obtained by dissolving in NaOH (alkali hydroxide (B)) in water at 90 ° C. at room temperature. Then, the silicon substrate was dissolved so as to have the Si equivalent concentration shown in Table 1 to produce a silicate compound (C), and then a predetermined amount of IPA was added.
  • IPA alkali hydroxide
  • Example 8 Example 1 except that the substrate was immersed in a 48 wt% sodium hydroxide solution heated to 80 ° C. for about 10 minutes, and after removing the deposits on the surface of the silicon substrate and the work-modified layer, the substrate was washed with water. Similarly, it was immersed in an etching solution having the composition shown in Table 1, and texture etching was performed under the conditions shown in Table 2.
  • Example 8 Example 1 except that the substrate was immersed in a 48 wt% sodium hydroxide solution heated to 80 ° C. for about 10 minutes, and after removing the deposits on the surface of the silicon substrate and the work-modified layer, the substrate was washed with water. Similarly, it was immersed in an etching solution having the composition shown in Table 1, and texture etching was performed under the conditions shown in Table 2.
  • Example 9 Except for using a 156 ⁇ 156 mm silicon substrate, it was immersed in an etching solution having the composition shown in Table 1 in the same manner as in Example 1, and texture etching was performed under the conditions shown in Table 2. (Reference Example 2) Except that the substrate was immersed in a 3.5 wt% sodium hydroxide solution heated to 80 ° C. for about 2 minutes, and after removing the deposits and the work-modified layer on the surface of the silicon substrate, washing was performed. 9 was immersed in an etching solution having the composition shown in Table 1, and texture etching was performed under the conditions shown in Table 2.
  • the etching amount in Table 2 is the etching thickness per one side of the substrate measured from the weight difference of the silicon substrate before and after texture etching, and the etching rate is the etching amount divided by the etching time. Represents the etching rate.
  • the silicon substrate after texture etching was subjected to visual appearance evaluation, electron microscope observation, surface reflectance measurement and conversion efficiency measurement.
  • the electron microscope observation is a scanning electron microscope (manufactured by JEOL Ltd., JSM-6510), and the surface reflectance measurement is an ultraviolet / visible / near infrared spectrophotometer (Shimadzu Corporation, UV-3150). )It was used.
  • the appearance evaluation of each silicon substrate and the results of reflectance at a wavelength of 600 nm are shown in Table 2, and electron micrographs are shown in FIGS.
  • the criteria for visual appearance evaluation are as follows. ⁇ : The entire surface of the substrate is uniformly etched. ⁇ : Slight spots or unevenness exists, but the etching uniformity is high over the entire surface of the substrate. X: Spots or unevenness is confirmed.
  • Table 2 also shows the results of manufacturing solar cells and measuring the conversion efficiency with respect to the silicon substrate subjected to texture etching using the etching solution of Example 9 and Reference Example 2.
  • the photovoltaic cell used for the measurement was manufactured in the following procedures. For each silicon substrate, an n + layer was formed on the substrate surface using phosphorus oxychloride (POCl 3 ) as a dopant in a diffusion furnace. Subsequently, the substrate end face is etched with a corrosive gas excited by plasma to perform PN separation, and then PSG on the surface of the substrate is removed with hydrofluoric acid, and a silicon nitride film is formed by CVD on the surface to be the light receiving surface by 90 nm. The thickness was formed.
  • POCl 3 phosphorus oxychloride
  • a comb-shaped grit electrode is formed using silver paste on the surface to be the light receiving surface, and an aluminum paste or aluminum-silver paste is printed on the back surface of the light receiving surface, followed by baking at 840 ° C. to form a back electrode.
  • a solar battery cell was obtained.
  • the uniformity of the appearance of the silicon substrate etched using the etching solutions of Examples 1 to 8 was equal to or higher than the etching solution using the conventional IPA (Reference Example 1). Furthermore, it was confirmed by electron microscope observation that a fine texture structure was formed on the surface of these silicon substrates. Moreover, the reflectance was also a sufficient value that can be used as a solar cell. Furthermore, the conversion efficiency as a solar cell of the silicon substrate etched using the etching solution of Example 9 was a result superior to the etching solution using the conventional IPA (Reference Example 2).
  • Comparative Example 1 On the other hand, the etching solution of Comparative Example 1 using sodium dodecylbenzenesulfonate as the sodium salt of compound (A) had a very slow etching rate, and the substrate appearance after etching was strongly white uneven. Further, Comparative Examples 2 and 3 to which the compound (A) was not added had an appearance close to a mirror surface, and a fine texture structure was not confirmed even by observation with an electron microscope.
  • fine irregularities can be formed on the surface of a silicon substrate, and high efficiency of a solar cell using the silicon substrate can be realized. Since the cost can be reduced, it is promising industrially.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Weting (AREA)
  • Photovoltaic Devices (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

 イソプロピルアルコール等の従来のエッチング抑制剤を使用することなく、微細なピラミッド状の凹凸(テクスチャー構造)を有するシリコン基板を安定的に形成することが可能なエッチング液を提供する。 シリコン基板を浸漬して、該基板表面にピラミッド状の凹凸を形成させるエッチング液であって、 下記一般式(1)で表わされる化合物(A)又はそのアルカリ塩より選択される1種以上と、濃度が0.1重量%以上30重量%以下である水酸化アルカリ(B)とを含有することを特徴とするエッチング液。 R-X (1) (式中、Rは、炭素数4以上15以下のアルキル基、アルケニル基、及びアルキニル基のいずれかを表し、Xは、スルホン酸基を表す。) 該エッチング液を使用することにより、シリコン基板表面に微細なテクスチャー構造を形成することができる。

Description

エッチング液およびシリコン基板の表面加工方法
 本発明は、シリコン基板表面にピラミッド状の凹凸構造を形成するためのエッチング液および該エッチング液を使用したシリコン基板の表面加工方法に関する。
 結晶シリコン太陽電池に使用されるシリコン基板表面には、テクスチャー構造と呼ばれる微細なピラミッド状の凹凸が形成されている。照射された光はこのテクスチャー構造により表面で多重反射することでシリコン基板への入射の機会が増加し、効率よく太陽電池内部に吸収される。
 テクスチャー構造を有するシリコン基板は、シリコンインゴットをワイヤーソー等によりスライスして得られるシリコン基板をエッチングすることにより製造される。
 シリコン基板のエッチングは、いずれもアルカリ性のエッチング液を用いた湿式エッチングにより行うことができる。このエッチングは水酸化ナトリウム溶液中の場合、以下の反応式(1)、(2)、(3)等の反応によって進行する。
 Si+2NaOH+H2O → Na2SiO3+2H2     反応式(1)

 2Si+2NaOH+3H2O → Na2Si25+4H2  反応式(2)

 3Si+4NaOH+4H2O → Na4Si38+6H2  反応式(3)
 シリコン基板の表面にテクスチャー構造を形成するために、通常はエッチング速度を制御したエッチング液を使用することにより異方性エッチングを行う。
 エッチングの目的は、原料であるスライス後のシリコン基板の表面に存在するスライス加工に起因する歪みや欠損が生じたダメージ層の除去と、テクスチャー構造の形成にある。ダメージ層の除去とテクスチャー構造の形成を同じエッチング液で実施しても良いし、生産性の観点からはダメージ層の除去とテクスチャーの形成に異なるエッチング液を使用した2段階のエッチング処理を行っても良い。
 2段階のエッチング処理は、先ず、比較的エッチング速度の速いアルカリ性のエッチング液によってダメージ層除去エッチングを行い、次いで、テクスチャーエッチングとしてエッチング速度を制御したエッチング液を使用することにより異方性エッチングを行う処理方法である。
 いずれの方法においてもシリコン基板の表面へのテクスチャー構造の形成は、以下のメカニズムに基づく。
 シリコン基板のアルカリ水溶液によるエッチング速度は、シリコンの(100)面が最も早く、(111)面が最も遅い。そのため、アルカリ水溶液にエッチング速度を低下させることができる特定の添加剤(以下、「エッチング抑制剤」ということもある。)を添加することによってテクスチャーエッチングの速度を抑制すると、シリコンの(100)面等のエッチングされやすい結晶面が優先的にエッチングされ、エッチング速度の遅い(111)面が表面に残存する。この(111)面は、(100)面に対して約54度の傾斜を持つためにプロセスの最終段階では(111)面とその等価な面で構成されるピラミッド状の凹凸が形成される。
 ダメージ層除去エッチングには、一般的な強アルカリ薬液からなるエッチング液を用いることができるのに対し、テクスチャーエッチングにおいては、上記のエッチング抑制剤を添加し、溶液温度などの諸条件を制御することにより、エッチング速度をコントロールする必要がある。
 通常、テクスチャーエッチング用エッチング液として、水酸化ナトリウム(NaOH)水溶液に、エッチング抑制剤としてイソプロピルアルコール(以下、「IPA」と称する場合がある。)を添加したエッチング液が使用されている。このエッチング液を60~80℃程度に加温し、(100)面のシリコン基板を10~30分間浸漬させる方法がとられてきた(例えば、特許文献1、非特許文献1参照)。
 さらに、45%水酸化カリウム(KOH)を水で1:1に希釈した液を85℃に加温し、シリコン基板を30分浸漬することでダメージ層を除去した後に、水酸化カリウム(KOH)水溶液に、エッチング抑制剤としてIPAを添加したエッチング液を使用してテクスチャーエッチングを行う方法も開示されている(例えば、非特許文献2参照)。
 一方で、IPAは揮発性が高いため、揮発量に相当するIPAをテクスチャーエッチング液中に随時添加する必要があり、IPAの消費量が増加することによるエッチング費用の増大が問題になっている。さらに、揮発性の高いIPAを多量使用することは安全性、環境面でも好ましくなく、揮発したIPAを回収する装置を付設したとしても、エッチング処理設備の製作費用が増大すると共に、設備運転費用も増加するという問題があった。
 そのため、IPAの代替となるエッチング抑制剤を含むテクスチャーエッチング液の開発が行われている。例えば、特許文献2及び特許文献3には、脂肪族カルボン酸あるいはその塩を添加したテクスチャーエッチング液が開示されている。また、特許文献4には、無機塩を含むテクスチャーエッチング液が開示されている。
 また、特許文献5には、ベンゼン環を含む化合物をエッチング抑制剤として含有するエッチング液が開示されている。
 また、特許文献6には、炭素数12のアルキルスルホン酸エステル(C12H25-O-SO3Na)を含有するエッチング液が開示されている。
特開昭61-96772号公報 特開2002-57139号公報 国際公開第06/046601号パンフレット 特開2000-183378号公報 特開2007-258656号公報 中国特許CN101570897号公報
「Uniform Pyramid Formation on Alkaline-etched Polished Monocrystalline (100) Silicon Wafers 」 Progress in Photovoltaics , Vol.4 , 435-438 (1996) 「EXPERIMENTAL OPTIMIZATION OF AN ANISOTROPIC ETCHING PROCESS FOR RANDOM TEXTURIZATION OF SILICON SOLAR CELLS」CONFERENCE RECORD OF THE IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE , P303-308 (1991)
 特許文献2及び特許文献3で開示された脂肪族カルボン酸を使用する方法では、原料コストが高く、廃液処理の際に中和すると脂肪族カルボン酸が遊離し、別途油水分離工程が必要となると共に特有の悪臭が生じるという問題がある。また、廃液処理にコストがかかり、製造コストの上昇にもつながるといった問題がある。
 また、特許文献4の方法では、重金属や塩類の不純物濃度を必要なレベルに抑制するには、高価なNa2CO3を使用する必要がある。また、系内の塩濃度が高くなり、シリコンのエッチングの際に副生する珪酸塩の溶解量が減少するため、テクスチャーエッチング液を頻繁に交換しなければならない。
 また、特許文献5のベンゼン環を含む化合物をエッチング抑制剤は、単純な鎖状構造の化合物に比較し、毒性及び生分解性に劣るため排水処理ならびに環境保全の観点から好ましくない。
 また、特許文献6には、炭素数12のアルキルスルホン酸エステル(C12H25-O-SO3Na)を添加する記載があるものの、特許文献2にも記載してある様に強アルカリの環境下ではエステル部分が徐々に加水分解を受けて、炭素数12のアルコールと硫酸水素ナトリウムが生成し、界面活性剤本来の機能を長期にわたって期待できず、微細なテクスチャー構造を再現良く形成出来ない。これらの理由で、エステル構造を有する界面活性剤を工業的に用いることは好ましくない。
 以上のように、従来のエッチング液では、シリコン基板状に微細なテクスチャー構造を再現性良く形成することができ、かつ、廃液処理や作業環境の面を含めて工業的に満足できる性能を有するエッチング液は未だ見出されていないのが実情である。
 かかる状況下、本発明の目的は、IPA等の従来のエッチング抑制剤を使用することなく、微細なテクスチャー構造を有するシリコン基板を安定的に形成することが可能なエッチング液を提供することである。
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。
 すなわち、本発明は、以下の発明に係るものである。
 <1> シリコン基板を浸漬して、該基板表面にピラミッド状の凹凸を形成させるエッチング液であって、
 下記一般式(1)で表わされる化合物(A)又はそのアルカリ塩より選択される1種以上と、濃度が0.1重量%以上30重量%以下である水酸化アルカリ(B)とを含有するエッチング液。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、炭素数4以上15以下のアルキル基、アルケニル基、及びアルキニル基のいずれかを表し、Xは、スルホン酸基を表す。)

 <2> 化合物(A)における一般式(1)中のRが、炭素数5以上12以下のアルキル基であり、水酸化アルカリ(B)の濃度が0.5重量%以上20重量%以下である前記<1>記載のエッチング液。
 <3> 化合物(A)の濃度が、0.0001重量%以上10重量%以下の範囲である前記<1>又は<2>記載のエッチング液。
 <4> 水酸化アルカリ(B)が、水酸化ナトリウムおよび/または水酸化カリウムである前記<1>から<3>のいずれかに記載のエッチング液。
 <5> さらに珪酸塩化合物(C)を含有することを前記<1>から<4>のいずれかに記載のエッチング液。
 <6> 珪酸塩化合物(C)が、ナトリウム又はカリウムの珪酸塩である前記<5>記載のエッチング液。
 <7> 珪酸塩化合物(C)の濃度が、Si換算濃度として10重量%以下である前記<5>または<6>に記載のエッチング液。
 <8> 前記<1>から<7>のいずれかに記載のエッチング液にシリコン基板を浸漬して、該基板表面にピラミッド状の凹凸を形成させる工程を含むことを特徴とするシリコン基板の表面加工方法。
 本発明のエッチング液を使用すると、シリコン基板の表面に、太陽電池用の光閉じ込めに適した微細なテクスチャー構造を再現性よく形成することができる。
実施例1のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 実施例2のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 実施例3のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 実施例4のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 実施例5のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 実施例6のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 実施例7のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 実施例9のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 比較例1のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 比較例2のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 比較例3のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。 参考例1のエッチング液を使用して、エッチングを行った後のシリコン基板表面の電子顕微鏡写真である。
 以下、本発明につき詳細に説明する。
 本発明は、シリコン基板を浸漬して、該基板表面にピラミッド状の凹凸(以下、「テクスチャー構造」と称す場合がある。)を形成させるエッチング液であって、下記一般式(1)で表わされる化合物(A)又はそのアルカリ塩より選択される1種以上と、濃度が0.1重量%以上30重量%以下である水酸化アルカリ(B)とを含有するエッチング液に関するものである。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、炭素数4以上15以下のアルキル基、アルケニル基、及びアルキニル基のいずれかを表し、Xは、スルホン酸基を表す。)
 本発明において、「シリコン基板」とは、単結晶シリコン基板および多結晶シリコン基板を含むが、本発明のエッチング液は、単結晶シリコン基板、特に(100)面を表面に有する単結晶シリコン基板のエッチングに適する。
 化合物(A)又はそのアルカリ塩は、従来のエッチング抑制剤であるIPAと同等以上のエッチング抑制効果を示し、かつ、後述するように適用可能な濃度範囲が広いという利点がある。そのため、本発明のエッチング液を使用することによって、シリコン基板の表面にピラミッド状の凹凸の大きさ、形状を好適な範囲に制御することができる。
 化合物(A)は、一般式(1)中のRが、炭素数4~15のアルキル基、アルケニル基、及びアルキニル基のいずれかである化合物であり、例えば、アルキル基構造を有する化合物として、具体的には、ブチル(C:4)スルホン酸、ペンチル(C:5)スルホン酸、ヘキシル(C:6)スルホン酸、ヘプチル(C:7)スルホン酸、オクチル(C:8)スルホン酸、ノニル(C:9)スルホン酸、デシル(C:10)スルホン酸、ウンデシル(C:11)スルホン酸、ドデシル(C:12)スルホン酸、トリデシル(C:13)スルホン酸、テトラデシル(C:14)スルホン酸、ペンタデカン(C:15)スルホン酸;
 アルケニル基構造を有する化合物として、ブテン(C:4)スルホン酸、ペンテン(C:5)スルホン酸、ヘキセン(C:6)スルホン酸、ヘプテン(C:7)スルホン酸、オクテン(C:8)スルホン酸、ノネン(C:9)スルホン酸、デセン(C:10)スルホン酸、ウンデセン(C:11)スルホン酸、ドデセン(C:12)スルホン酸、トリデセン(C:13)スルホン酸、テトラデセン(C:14)スルホン酸、ペンタデセン(C:15)スルホン酸;
 アルキニル基構造を有する化合物として、ブチン(C:4)スルホン酸、ペンチン(C:5)スルホン酸、ヘキシン(C:6)スルホン酸、ヘプチン(C:7)スルホン酸、オクチン(C:8)スルホン酸、ノニン(C:9)スルホン酸、デシン(C:10)スルホン酸、ウンデシン(C:11)スルホン酸、ドデシン(C:12)スルホン酸、トリデシン(C:13)スルホン酸、テトラデシン(C:14)スルホン酸、ペンタデシン(C:15)スルホン酸;
などが挙げられる。
 なお、化合物(A)のアルカリ塩におけるアルカリ成分としては、第1族元素、第2族元素が使用でき、この中でも、特に水酸化リチウム、水酸化ナトリウム、水酸化カリウムは、入手が容易でコスト面でも優れるため好適である。
 化合物(A)として、好適には一般式(1)中のRが、炭素数5~12のアルキル基である化合物である。具体的には、ペンチル(C:5)スルホン酸、ヘキシル(C:6)スルホン酸、ヘプチル(C:7)スルホン酸、オクチル(C:8)スルホン酸、ノニル(C:9)スルホン酸、デシル(C:10)スルホン酸、ウンデシル(C:11)スルホン酸、ドデシル(C:12)スルホン酸が挙げられる。
 この中でも、特に均一なテクスチャー構造が得られるという観点から、好ましくは、炭素数6~10のアルキル基である化合物である。具体的には、ヘキシル(C:6)スルホン酸、ヘプチル(C:7)スルホン酸、オクチル(C:8)スルホン酸、ノニル(C:9)スルホン酸、デシル(C:10)スルホン酸である。
 化合物(A)の濃度は、シリコン基板の表面に微細なテクスチャー構造を形成することができ、工業的に有効なエッチング速度の範囲で選択され、好ましくは0.0001重量%以上10重量%以下であり、特に好ましくは、0.0005重量%以上10重量%以下であり、さらに好ましくは、0.001重量%以上5重量%以下である。
 上記範囲であると、該基板の表面を異方エッチングし、該基板の表面に微細なテクスチャー構造を形成することができる。
 化合物(A)の濃度が、0.0001重量%未満の場合には、エッチングの抑制効果が不十分になるおそれがあり、また、濃度が低すぎ、エッチング液中の濃度管理が難しく再現性良く微細なテクスチャー構造を有するシリコン基板を製造することが困難となる。一方、10重量%より大きい場合には、エッチング抑制効果が強くなり過ぎて長時間を要することと薬剤コスト、水洗回数、廃液処理コストが増大するため好ましくない。
 本発明において用いる水酸化アルカリ(B)としては、第1族元素の水酸化物、第2族元素の水酸化物が使用できる。例えば、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)、水酸化ベリリウム(Be(OH)2)、水酸化マグネシウム(Mg(OH)2)、水酸化カルシウム(Ca(OH)2)、水酸化ストロンチウム(Sr(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化アンモニウム(NH4OH)等が挙げられ、これらを単独であるいは2種以上を混合して用いることができる。この中でも、特に水酸化リチウム、水酸化ナトリウム、水酸化カリウムは、入手が容易でコスト面でも優れるため好適である。また、これらの水酸化アルカリは任意の割合で混合して使用してもよい。
 本発明のエッチング液において、エッチング液中の水酸化アルカリ(B)の濃度は、0.1重量%以上30重量%以下であることを必須とし、0.5重量%以上20重量%以下が好ましい。
 この範囲であれば、エッチングが好適に進行し、シリコン基板の表面に微細なテクスチャー構造を形成することができる。アルカリ濃度が、0.1重量%未満では、エッチング速度が十分でなく、30重量%より大きいと、エッチング速度が著しく速くなりテクスチャー形成が困難になる。
 なお、本発明のエッチング液には、化合物(A)、水酸化アルカリ(B)以外に珪酸塩化合物(C)を含有させることもできる。
 珪酸塩化合物(C)として具体的には、オルト珪酸リチウム(Li4SiO4・nH2O)、メタ珪酸リチウム(Li2SiO3・nH2O)、ピロ珪酸リチウム(Li6Si27・nH2O)、メタ二珪酸リチウム(Li2Si25・nH2O)、メタ三珪酸リチウム(Li4Si38・nH2O)、オルト珪酸ナトリウム(Na4SiO4・nH2O)、メタ珪酸ナトリウム(Na2SiO3・nH2O)、ピロ珪酸ナトリウム(Na6Si27・nH2O)、メタ二珪酸ナトリウム(Na2Si25・nH2O)、メタ三珪酸ナトリウム(Na4Si38・nH2O)、オルト珪酸カリウム(K4SiO4・nH2O)、メタ珪酸カリウム(K2SiO3・nH2O)、ピロ珪酸カリウム(K6Si27・nH2O)、メタ二珪酸カリウム(K2Si25・nH2O)、メタ三珪酸カリウム(K4Si38・nH2O)が挙げられる。
 これら珪酸塩化合物(C)は、化合物そのものをエッチング液に添加して用いることも可能であるし、シリコンウェハ、シリコンインゴット、シリコン切削粉等のケイ素材料または二酸化珪素を直接、水酸化アルカリ(B)に溶解させて反応物として得られる珪酸塩化合物を珪酸塩化合物(C)として用いても構わない。
 珪酸塩化合物(C)にはシリコンのエッチングを抑制する作用があるため、本発明のエッチング液に珪酸塩化合物(C)を含有させることにより、化合物(A)のエッチング抑制作用を補助することができ、テクスチャー構造の形成に適したエッチング速度の制御がより適切に行うことが可能となる。
 珪酸塩化合物(C)の濃度が高すぎると、エッチング速度が著しく低下すること及び液粘度の上昇、更には珪酸塩化合物(C)の析出が起こりやすく、当該基板表面に正常なテクスチャー構造を形成することができなくなり、太陽電池用基板としての使用が困難となる。このため、エッチング液中の珪酸塩濃度は、Si換算濃度で10重量%以下の範囲が好適である。ここで、「Si換算濃度」とは、珪酸塩に含まれるシリコン(Si)原子換算での濃度を意味する。
 なお、珪酸塩化合物(C)は太陽電池用シリコン基板のエッチング時の副生成物としても生成するため、繰り返しのエッチング操作によりエッチング液中の珪酸塩化合物(C)の濃度はシリコン基板処理数量とともに増加してくることになる。この時、エッチング液中の珪酸塩化合物(C)の濃度が、Si換算濃度で10重量%を超える場合には、水などの他の成分を補充して希釈するか、溶液を交換することが好ましい。
 以上の様に、本発明のエッチング液は、化合物(A)、水酸化アルカリ(B)、珪酸塩化合物(C)を上記濃度範囲(珪酸塩化合物(C)は、未含有の場合を含む)で含有しており、それぞれの濃度は目的とする太陽電池用シリコン基板表面に正常なテクスチャー構造が形成でき得る範囲で適宜設定することが可能である。
 なお、本発明のエッチング液には、他の成分として、本発明の目的、効果を損なわない範囲で、化合物(A)、水酸化アルカリ(B)及び珪酸塩化合物(C)以外の成分を含んでもよい。
 このような成分としては、緩衝剤、pH調整剤、粘度調整剤、表面張力調整剤などが挙げられる。
 本発明のエッチング液は、常法によって、上記化合物(A)及び水酸化アルカリ(B)、並びに必要に応じて珪酸塩化合物(C)を溶媒である水に溶解することで得ることができる。なお、エッチング液を製造する温度は、0℃~100℃、好ましくは20℃~40℃であり、通常、室温である。
 なお、本発明のエッチング液の溶媒としての水は、正常なテクスチャー構造を形成することができれば特に限定されないが、不純物を除去した水が好ましく、通常、イオン交換水または蒸留水が好適に用いられる。具体的には、25℃で測定した電気伝導度が1mS/cm以下(特に、100μS/cm以下)のイオン交換水または蒸留水が好適である。
 以下、本発明のエッチング液を用いて、シリコン基板にテクスチャー構造を形成させる方法について説明する。
 シリコン基板は、いかなる製法で形成された単結晶および多結晶シリコン基板を使用しても良いが、単結晶シリコン基板が好ましく、特に表面の面方位が(100)である単結晶シリコン基板が好ましい。これは上述のようにアルカリ水溶液によるシリコン基板のエッチングは異方性エッチングであるため、表面の面方位が(100)のシリコン基板は、微細なテクスチャー構造を形成し低反射率のものが得られ、セル化した時のエネルギー変換効率が高くなるためである。
 本発明のエッチング液において、エッチング方法は特に限定されないものであり、所定の温度に加熱保持したエッチング液を用いて、シリコン基板を所定の時間、浸漬等することにより、シリコン基板の表面に微細なテクスチャー構造を形成することができる。
 エッチング液の使用温度は特に限定されないが、0℃~100℃の温度域において使用することができ、エッチング効率の観点からは、80℃~100℃が好ましい。エッチング時間も特に限定されないが、通常、1分~120分(好適には20分~40分)である。
 上述の本発明のエッチング液を使用したシリコン基板の表面加工方法により、シリコン基板表面に微細なテクスチャー構造を有するシリコン基板を得ることができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
 (1)エッチング液の作製
 表1に作製したエッチング液の組成を示す。
 実施例1,2,4~6及び8,9のエッチング液は、最初に室温下で水に所定量のNaOH(水酸化アルカリ(B))を溶解したのち、単結晶シリコン基板を浸漬して90℃に加熱しながら溶解させて珪酸塩化合物(C)を生成させた。それぞれのエッチング液につき、溶液中のSi換算濃度が表1に示す濃度になるまでエッチングを繰り返した後に、該溶液を室温まで冷却し、次いで、表1に示す化合物(A)のナトリウム塩を表1に示す濃度になるように添加して均一になるまで混合することにより各々のエッチング液を作製した。なお、溶解したSi量は、シリコン基板のエッチング前後の重量減から求めた。また、Siが溶解したエッチング液中のSi濃度をICP発光分析でも測定したが、得られたSi濃度は、前記のシリコン基板のエッチング前後の重量から算出した値と良い整合性を示した。
 なお、表1において、エッチング液中のNaOHの濃度は、便宜上、以下を前提として算出した値である。
 すなわち、エッチングにより得られる珪酸塩化合物(C)の形態を、上述した反応式(2)に示す反応で生成する「Na2Si25」とみなし、初期仕込みのNaOH量から反応式(2)に示す反応により消費されるNaOH量を差し引いた値をエッチング液中のNaOH濃度とした。
 珪酸塩化合物(C)を含有しない実施例3,7及び比較例1のエッチング液は、室温下で水にNaOH(水酸化アルカリ(B))を表1に示す濃度に溶解した溶液に表1に示す化合物(A)のナトリウム塩を表1に示す濃度になるように添加して、完全に溶解するまで攪拌することで作製した。
 化合物(A)及び珪酸塩化合物(C)を含有しない比較例2のエッチング液は、室温下で水にNaOH(水酸化アルカリ(B))を表1に示す濃度に溶解することで作製した。
 化合物(A)を含有しない比較例3のエッチング液は、室温下で水に所定量のNaOH(水酸化アルカリ(B))を溶解して得られる溶液を90℃に加熱して、表1のSi換算濃度となるようにシリコン基板を溶解させて珪酸塩化合物(C)を生成させることで作製した。
 参考例1のエッチング液は、エッチング抑制剤として、化合物(A)の代わりに従来のイソプロピルアルコール(IPA)を使用し、表1の組成になるように室温下で水にNaOH(水酸化アルカリ(B))とIPAを添加することによって作製した。
 参考例2のエッチング液は、エッチング抑制剤として、化合物(A)の代わりIPAを使用し、室温下で水にNaOH(水酸化アルカリ(B))に溶解して得られる溶液を90℃に加熱して、表1のSi換算濃度となるようにシリコン基板を溶解させて珪酸塩化合物(C)を生成させたのちに、所定量のIPAを添加することで作製した。
Figure JPOXMLDOC01-appb-T000004
 (2)シリコン基板のエッチング
 表2にテクスチャー構造の形成処理条件及びそれにより得られた太陽電池用シリコン基板の物性等の結果を示す。
(実施例1、参考例1)
 P型単結晶シリコンインゴットを切断加工して作製した50×50mm、厚さ約180μmの単結晶シリコン基板(表面結晶面:(100)面)を使用し、表1に示す組成のエッチング液に浸漬して、表2に示す条件でテクスチャーエッチングを行った。
 (実施例2~7、比較例1~3)
 当該基板を80℃に加温された25重量%の水酸化ナトリウム溶液に約15分間浸漬し、シリコン基板表面の付着物及び加工変性層を除去した後に水洗を行った以外は、実施例1と同様に表1に示す組成のエッチング液に浸漬して、表2に示す条件でテクスチャーエッチングを行った。
 (実施例8)
 当該基板を80℃に加温された48重量%の水酸化ナトリウム溶液に約10分間浸漬し、シリコン基板表面の付着物及び加工変性層を除去した後に水洗を行った以外は、実施例1と同様に表1に示す組成のエッチング液に浸漬して、表2に示す条件でテクスチャーエッチングを行った。
 (実施例9)
 156×156mmのシリコン基板を用いた以外は実施例1と同様に表1に示す組成のエッチング液に浸漬して、表2に示す条件でテクスチャーエッチングを行った。
 (参考例2)
 当該基板を80℃に加温された3.5重量%の水酸化ナトリウム溶液に約2分間浸漬し、シリコン基板表面の付着物及び加工変性層を除去した後に水洗を行った以外は、実施例9と同様に表1に示す組成のエッチング液に浸漬して、表2に示す条件でテクスチャーエッチングを行った。
 ここで、表2におけるエッチング量は、テクスチャーエッチング前後のシリコン基板の重量を測定し、その重量差から算出した基板片面あたりのエッチング厚みであり、エッチングレートとは、前記エッチング量をエッチング時間で除したエッチング速度を表す。
 (3)エッチング後のシリコン基板の評価
 テクスチャーエッチング後のシリコン基板に対して、目視での外観評価、電子顕微鏡観察、表面反射率測定並びに変換効率測定を行った。なお、電子顕微鏡観察は、走査型電子顕微鏡(日本電子株式会社製、JSM-6510)、表面反射率測定には、紫外・可視・近赤外分光光度計(株式会社島津製作所製、UV-3150)を使用した。
 各シリコン基板の外観評価及び波長600nmにおける反射率の結果を表2、電子顕微鏡写真を図1~12に示す。なお、目視での外観評価の基準は以下の通りである。

 ○:基板全面が一様にエッチングされている。
 △:わずかな斑点又はムラが存在するが、基板全面としてエッチング均一性は高い。
 ×:斑点又は、ムラが確認される。
 また、実施例9及び参考例2のエッチング液を使用してテクスチャーエッチングを行ったシリコン基板に対しては、太陽電池セルを製作し変換効率を測定した結果を表2に併せて示す。なお、測定に用いた太陽電池セルは以下の手順で製作した。
 それぞれのシリコン基板に対して、拡散炉にてオキシ塩化リン(POCl3)をドーパントとして用いて基板表面にn+層を形成した。続いてプラズマで励起した腐食性ガスで基板端面をエッチングしてPN分離を行った後、フッ化水素酸で基板表面のPSGを除去し、受光面となる面にCVDにてシリコン窒化膜を90nmの厚みで形成した。最後に受光面となる面に銀ペーストを用いて櫛型のグリット電極、受光面の裏面にはアルミペーストもしくはアルミ-銀ペーストを印刷塗布し、840℃で焼成して裏面電極を形成することにより太陽電池セルを得た。
Figure JPOXMLDOC01-appb-T000005
 実施例1~8のエッチング液を使用してエッチングを行ったシリコン基板の外観の均一性は、従来のIPAを使用したエッチング液(参考例1)と同等以上であった。さらに、電子顕微鏡観察によって、これらのシリコン基板の表面に微細なテクスチャー構造が形成されているのが確認された。また、反射率もそれぞれ太陽電池として使用でき得る十分な値であった。
 さらに、実施例9のエッチング液を使用してエッチングを行ったシリコン基板の太陽電池セルとしての変換効率は、従来のIPAを使用したエッチング液(参考例2)より優れた結果であった。
 一方、化合物(A)のナトリウム塩として、ドデシルベンゼンスルホン酸ナトリウムを使用した比較例1のエッチング液は、エッチング速度は非常に遅く、エッチング後の基板外観は白色のムラが強く発生していた。また、化合物(A)を添加しなかった比較例2及び3は、鏡面に近い外観であり、電子顕微鏡による観察でも微細なテクスチャー構造は確認されなかった。
 本発明によれば、シリコン基板表面に微細凹凸を形成することができ、該シリコン基板を使用した太陽電池の高効率化を実現することができるとともに、排ガス、廃水処理面での環境負荷低減及び低コスト化が可能であるため、工業的に有望である。

Claims (8)

  1.  シリコン基板を浸漬して、該基板表面にピラミッド状の凹凸を形成させるエッチング液であって、
     下記一般式(1)で表わされる化合物(A)又はそのアルカリ塩より選択される1種以上と、濃度が0.1重量%以上30重量%以下である水酸化アルカリ(B)とを含有することを特徴とするエッチング液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、炭素数4以上15以下のアルキル基、アルケニル基、及びアルキニル基のいずれかを表し、Xは、スルホン酸基を表す。)
  2.  化合物(A)における一般式(1)中のRが、炭素数5以上12以下のアルキル基であり、水酸化アルカリ(B)の濃度が0.5重量%以上20重量%以下である請求項1記載のエッチング液。
  3.  化合物(A)の濃度が、0.0001重量%以上10重量%以下の範囲である請求項1又は2記載のエッチング液。
  4.  水酸化アルカリ(B)が、水酸化ナトリウムおよび/または水酸化カリウムである請求項1から3のいずれかに記載のエッチング液。
  5.  さらに珪酸塩化合物(C)を含有することを特徴とする請求項1から4のいずれかに記載のエッチング液。
  6.  珪酸塩化合物(C)が、ナトリウム又はカリウムの珪酸塩である請求項5記載のエッチング液。
  7.  珪酸塩化合物(C)の濃度が、Si換算濃度として10重量%以下である請求項5または6に記載のエッチング液。
  8.  請求項1から7のいずれかに記載のエッチング液にシリコン基板を浸漬して、該基板表面にピラミッド状の凹凸を形成させる工程を含むことを特徴とするシリコン基板の表面加工方法。
PCT/JP2011/061293 2010-05-18 2011-05-17 エッチング液およびシリコン基板の表面加工方法 WO2011145604A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127030129A KR101407988B1 (ko) 2010-05-18 2011-05-17 에칭액 및 실리콘 기판의 표면가공 방법
EP11783538.9A EP2573801A4 (en) 2010-05-18 2011-05-17 ETCHING SOLUTION AND PROCESS FOR TREATING THE SURFACE OF A SILICON SUBSTRATE
CN201180024459.XA CN102906863B (zh) 2010-05-18 2011-05-17 刻蚀液和硅衬底的表面加工方法
CA2798926A CA2798926C (en) 2010-05-18 2011-05-17 Etching solution and method for processing surface of silicon substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-114615 2010-05-18
JP2010114615 2010-05-18
JP2010239923A JP5479301B2 (ja) 2010-05-18 2010-10-26 エッチング液およびシリコン基板の表面加工方法
JP2010-239923 2010-10-26

Publications (1)

Publication Number Publication Date
WO2011145604A1 true WO2011145604A1 (ja) 2011-11-24

Family

ID=44991706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061293 WO2011145604A1 (ja) 2010-05-18 2011-05-17 エッチング液およびシリコン基板の表面加工方法

Country Status (8)

Country Link
EP (1) EP2573801A4 (ja)
JP (1) JP5479301B2 (ja)
KR (1) KR101407988B1 (ja)
CN (1) CN102906863B (ja)
CA (1) CA2798926C (ja)
MY (1) MY156112A (ja)
TW (1) TWI503400B (ja)
WO (1) WO2011145604A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575822B2 (ja) * 2012-02-08 2014-08-20 第一工業製薬株式会社 テクスチャー形成用エッチング液
KR20150020186A (ko) * 2012-05-11 2015-02-25 와코 쥰야꾸 고교 가부시키가이샤 에칭액 및 이를 이용한 실리콘계 기판의 제조방법
JPWO2014010471A1 (ja) * 2012-07-09 2016-06-23 攝津製油株式会社 エッチング液、エッチング力回復剤、太陽電池用半導体基板の製造方法、及び太陽電池用半導体基板
JP6138794B2 (ja) * 2012-08-10 2017-05-31 第一工業製薬株式会社 テクスチャー形成用エッチング液およびそれを用いたテクスチャー形成方法
JP2014154617A (ja) * 2013-02-06 2014-08-25 Panasonic Corp テクスチャー構造を有するシリコン基板および、その形成方法
TWI586789B (zh) * 2013-08-06 2017-06-11 東友精細化工有限公司 紋理蝕刻液組成物及結晶矽晶圓紋理蝕刻方法
JP6373271B2 (ja) * 2013-09-19 2018-08-15 攝津製油株式会社 半導体基板用エッチング液
JP2015088712A (ja) * 2013-11-01 2015-05-07 日本酢ビ・ポバール株式会社 テクスチャエッチング液、テクスチャエッチング液用添加剤液、テクスチャ形成基板及びテクスチャ形成基板の製造方法並びに太陽電池
KR101535101B1 (ko) * 2014-09-15 2015-07-09 한양대학교 에리카산학협력단 수분 흡착을 위한 게터 및 그 제조방법
KR101772328B1 (ko) 2016-05-03 2017-08-29 한양대학교 에리카산학협력단 수분 수소 흡착 게터 및 그 제조 방법
KR101824813B1 (ko) 2016-09-26 2018-02-01 한양대학교 에리카산학협력단 열화학 센서 및 그 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196772A (ja) 1984-10-17 1986-05-15 Toshiba Corp 太陽電池用半導体基板の表面処理方法
JPS6442824A (en) * 1987-08-11 1989-02-15 Kyushu Electron Metal Wet etching
JPH0646601A (ja) 1992-07-31 1994-02-22 Iseki & Co Ltd 耕耘機枠
JP2000183378A (ja) 1998-12-17 2000-06-30 Mitsubishi Electric Corp シリコン太陽電池の製造方法
JP2002057139A (ja) 2000-08-09 2002-02-22 Sanyo Electric Co Ltd 凹凸基板の製造方法、凹凸構造形成用界面活性剤並びに光起電力素子の製造方法
JP2003282520A (ja) * 2002-03-22 2003-10-03 Sanyo Electric Co Ltd 容器の洗浄方法及び太陽電池の製造方法
JP2007258656A (ja) 2006-02-23 2007-10-04 Sanyo Electric Co Ltd 凹凸基板の製造方法及び光起電力素子の製造方法
JP2009094239A (ja) * 2007-10-05 2009-04-30 Dow Corning Toray Co Ltd セラミック状酸化ケイ素系被膜の形成方法、セラミック状酸化ケイ素系被膜を有する無機質基材の製造方法、セラミック状酸化ケイ素系被膜形成剤および半導体装置
WO2009072438A1 (ja) * 2007-12-04 2009-06-11 Mimasu Semiconductor Industry Co., Ltd. 多結晶シリコン基板の製造方法及び多結晶シリコン基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040389A (ja) * 1999-07-26 2001-02-13 Daikin Ind Ltd ウエハ洗浄液
US20050205835A1 (en) * 2004-03-19 2005-09-22 Tamboli Dnyanesh C Alkaline post-chemical mechanical planarization cleaning compositions
US20080210900A1 (en) * 2005-05-13 2008-09-04 William Wojtczak Selective Wet Etchings Of Oxides
CN1983645A (zh) * 2005-12-13 2007-06-20 上海太阳能科技有限公司 多晶硅太阳电池绒面的制备方法
WO2011056948A2 (en) * 2009-11-05 2011-05-12 Advanced Technology Materials, Inc. Methods of texturing surfaces for controlled reflection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196772A (ja) 1984-10-17 1986-05-15 Toshiba Corp 太陽電池用半導体基板の表面処理方法
JPS6442824A (en) * 1987-08-11 1989-02-15 Kyushu Electron Metal Wet etching
JPH0646601A (ja) 1992-07-31 1994-02-22 Iseki & Co Ltd 耕耘機枠
JP2000183378A (ja) 1998-12-17 2000-06-30 Mitsubishi Electric Corp シリコン太陽電池の製造方法
JP2002057139A (ja) 2000-08-09 2002-02-22 Sanyo Electric Co Ltd 凹凸基板の製造方法、凹凸構造形成用界面活性剤並びに光起電力素子の製造方法
JP2003282520A (ja) * 2002-03-22 2003-10-03 Sanyo Electric Co Ltd 容器の洗浄方法及び太陽電池の製造方法
JP2007258656A (ja) 2006-02-23 2007-10-04 Sanyo Electric Co Ltd 凹凸基板の製造方法及び光起電力素子の製造方法
JP2009094239A (ja) * 2007-10-05 2009-04-30 Dow Corning Toray Co Ltd セラミック状酸化ケイ素系被膜の形成方法、セラミック状酸化ケイ素系被膜を有する無機質基材の製造方法、セラミック状酸化ケイ素系被膜形成剤および半導体装置
WO2009072438A1 (ja) * 2007-12-04 2009-06-11 Mimasu Semiconductor Industry Co., Ltd. 多結晶シリコン基板の製造方法及び多結晶シリコン基板

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"EXPERIMENTAL OPTIMIZATION OF AN ANISOTROPIC ETCHING PROCESS FOR RANDOM TEXTURIZATION OF SILICON SOLAR CELLS", CONFERENCE RECORD OF THE IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 1991, pages 303 - 308
"Uniform Pyramid Formation on Alkaline-etched Polished Monocrystalline (100) Silicon Wafers", PROGRESS IN PHOTOVOLTAICS, vol. 4, 1996, pages 435 - 438
See also references of EP2573801A4 *

Also Published As

Publication number Publication date
TW201209139A (en) 2012-03-01
JP2012004528A (ja) 2012-01-05
EP2573801A4 (en) 2015-03-11
CA2798926A1 (en) 2011-11-24
CN102906863A (zh) 2013-01-30
CA2798926C (en) 2014-09-02
CN102906863B (zh) 2015-09-09
KR101407988B1 (ko) 2014-06-18
EP2573801A1 (en) 2013-03-27
KR20130020792A (ko) 2013-02-28
JP5479301B2 (ja) 2014-04-23
TWI503400B (zh) 2015-10-11
MY156112A (en) 2016-01-15

Similar Documents

Publication Publication Date Title
JP5479301B2 (ja) エッチング液およびシリコン基板の表面加工方法
TWI494416B (zh) 用於蝕紋單晶及多晶矽基板表面之酸性蝕刻溶液及方法
US8759231B2 (en) Silicon texture formulations with diol additives and methods of using the formulations
JP5339880B2 (ja) シリコン基板のエッチング液およびシリコン基板の表面加工方法
CN103314448A (zh) 用于高度掺杂的半导体层湿化学蚀刻的方法
KR101894603B1 (ko) 수성 알칼리 에칭 및 세정 조성물 및 실리콘 기판 표면을 처리하는 방법
JP4989042B2 (ja) 太陽電池用基板の製造方法
US20130130508A1 (en) Compositions and Methods for Texturing of Silicon Wafers
CA2395265A1 (en) Process for the rough-etching of silicon solar cells
SG181267A1 (en) Compositions and methods for texturing of silicon wafers
US20150040983A1 (en) Acidic etching process for si wafers
JP2012517121A (ja) シリコン単結晶基板のダメージエッチング及びテクスチャリング方法
WO2012144461A1 (ja) エッチング液組成物およびエッチング方法
JP2013110327A (ja) 太陽電池用シリコン基板の製造方法
KR101213147B1 (ko) 태양전지용 단결정 실리콘 웨이퍼의 텍스쳐링제 조성물 및 이를 이용한 텍스쳐링 방법
JP2013089629A (ja) エッチング液およびシリコン基板の表面加工方法
KR101608610B1 (ko) 텍스처 형성용 에칭액
TWI558791B (zh) 用於太陽能電池製造中蝕紋多晶矽晶圓之化學溶液
TWI635160B (zh) 紋理蝕刻溶液組成物及晶體矽晶圓紋理蝕刻方法
WO2014010471A1 (ja) エッチング液、エッチング力回復剤、太陽電池用半導体基板の製造方法、及び太陽電池用半導体基板
TW201322326A (zh) 處理矽晶圓的方法,處理液及矽晶圓
CN107177889A (zh) 一种单晶硅太阳能电池的表面绒面制备方法
JP2014165385A (ja) テクスチャー構造を有するシリコン基板及びその製造方法
JP2014090086A (ja) シリコン基板のエッチング方法、シリコン基板のエッチング液および太陽電池の製造方法
Su et al. Texturization of silicon wafers for solar cells by anisotropic etching with sodium silicate solutions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024459.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783538

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011783538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011783538

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2798926

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3437/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12012502241

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20127030129

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE