WO2011145556A1 - 塗布装置 - Google Patents

塗布装置 Download PDF

Info

Publication number
WO2011145556A1
WO2011145556A1 PCT/JP2011/061185 JP2011061185W WO2011145556A1 WO 2011145556 A1 WO2011145556 A1 WO 2011145556A1 JP 2011061185 W JP2011061185 W JP 2011061185W WO 2011145556 A1 WO2011145556 A1 WO 2011145556A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
kneaded material
temperature
electrode kneaded
coating
Prior art date
Application number
PCT/JP2011/061185
Other languages
English (en)
French (fr)
Inventor
若松 広憲
智之 夏目
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/697,454 priority Critical patent/US20130056092A1/en
Priority to KR1020127032909A priority patent/KR20130030764A/ko
Priority to EP11783490.3A priority patent/EP2573840A4/en
Priority to KR1020157008206A priority patent/KR20150043520A/ko
Priority to JP2012515876A priority patent/JP5644856B2/ja
Priority to CN201180022026.0A priority patent/CN102884657B/zh
Publication of WO2011145556A1 publication Critical patent/WO2011145556A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1042Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material provided with means for heating or cooling the liquid or other fluent material in the supplying means upstream of the applying apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M2010/0495Nanobatteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system
    • Y10T137/6579Circulating fluid in heat exchange relationship
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86035Combined with fluid receiver

Definitions

  • the present invention relates to a coating apparatus.
  • JP 2007-66744A describes a coating apparatus that performs stable coating by adjusting the pressure at the time of coating a coating to suppress variation in the coating amount.
  • the present invention has been made paying attention to such problems, and aims to shorten the time from the start of application to the constant amount of application.
  • the present invention provides an application part for applying a slurry-like electrode kneaded material in which an electrode material and a solvent are kneaded, a pump for pumping the electrode kneaded material to the application part, and before application
  • the electrode kneaded product is provided with a temperature raising unit that raises the temperature to a predetermined temperature range in which the storage elastic modulus of the electrode kneaded material becomes substantially constant.
  • FIG. 1 is a schematic view of a lithium ion secondary battery.
  • FIG. 2 is a schematic configuration diagram of the electrode manufacturing apparatus.
  • FIG. 3 is a graph plotting the storage elastic modulus of the positive and negative electrode kneaded materials at each temperature shown in Table 1.
  • FIG. 1 is a schematic view of a lithium ion secondary battery 1.
  • FIG. 1A is a perspective view of a lithium ion secondary battery 1
  • FIG. 1B is a cross-sectional view taken along line BB of FIG. 1A.
  • the lithium ion secondary battery 1 includes a power storage element 2 and an outer case 3 that houses the power storage element 2.
  • the electricity storage element 2 is configured as a laminate in which a positive electrode 4, a separator 5 as an electrolyte layer, and a negative electrode 6 are sequentially laminated.
  • the positive electrode 4 has a positive electrode layer 4b on both sides of a plate-like positive electrode current collector 4a
  • the negative electrode 6 has a negative electrode layer 6b on both sides of a plate-like negative electrode current collector 6a.
  • the positive electrode layer 4b is formed only in the single side
  • Adjacent positive electrode 4, separator 5, and negative electrode 6 constitute one unit cell 7, and lithium ion battery 1 is configured by electrically connecting a plurality of stacked unit cells 7 in parallel.
  • the outer case 3 is made of a sheet material of a polymer-metal composite laminate film in which a metal such as aluminum is covered with an insulator such as a polypropylene film.
  • the outer case 3 is joined to the outer periphery of the case by thermal fusion in a state in which the electricity storage element 2 is housed.
  • the outer case 3 is provided with a positive electrode tab 8 and a negative electrode tab 9 as external terminals in order to extract the electric power from the power storage element 2 to the outside.
  • One end of the positive electrode tab 8 is on the outside of the outer case 3, and the other end of the positive electrode tab 8 is connected to the collecting portion of each positive electrode current collector 4 a inside the outer case 3.
  • One end of the negative electrode tab 9 is on the outer side of the outer case 3, and the other end of the negative electrode tab 9 is connected to the collecting portion of each negative electrode current collector 6 a inside the outer case 3.
  • an electrode is formed by applying a slurry-like electrode kneaded material obtained by kneading an electrode material and a solvent to a current collector (positive electrode current collector 4a or negative electrode current collector 6a), and then applying the electrode kneaded material. It is manufactured through a drying process for evaporating the solvent to form an electrode layer (positive electrode layer 4b or negative electrode layer 6b) having a solid content of 100%.
  • the time required for the coating process is shortened by suppressing the temperature change of the electrode kneaded product in the coating process and stabilizing the coating amount at an early stage.
  • FIG. 2 is a schematic configuration diagram of the electrode manufacturing apparatus 100 according to the present embodiment used when manufacturing the electrode of the lithium ion battery 1.
  • the electrode manufacturing apparatus 100 includes a transport apparatus 10, a kneading apparatus 20, a coating apparatus 30, a drying apparatus 40, and a controller 50.
  • the electrode manufacturing apparatus 100 applies the electrode kneaded material 21 kneaded by the kneading device 20 to the surface of the metal foil 14 conveyed by the conveying device 10 by the coating device 30, and dries the electrode kneaded material 21 by the drying device 40.
  • An apparatus for manufacturing an electrode If necessary, the thickness may be adjusted by pressing the electrode with a pressing device after drying.
  • the transport device 10 includes an unwinding roll 11, a winding roll 12, and a support roll 13.
  • the transport device 10 winds a thin film metal foil (thickness 10 [ ⁇ m] to 40 [ ⁇ m]) 14 to be the positive electrode current collector 4a or the negative electrode current collector 6a from the unwinding roll 11 by a roll-to-roll method. Transport to take-up roll 12.
  • the metal foil 14 that becomes the positive electrode current collector 4a when the positive electrode 4 is manufactured, an aluminum foil is used as the metal foil 14 that becomes the positive electrode current collector 4a.
  • the metal foil 14 that becomes the negative electrode current collector 6a is copper. Although foil is used, it is not limited to this.
  • a metal foil 14 is wound around the unwinding roll 11.
  • the unwinding roll 11 includes a braking mechanism 15, and the rotation of the unwinding roll 11 is appropriately restricted by the braking mechanism 15, and a predetermined tension is applied to the metal foil 14.
  • the take-up roll 12 is rotated by a drive motor 16 and takes up the metal foil 14 taken up from the unwind roll 11.
  • a plurality of support rolls 13 are provided in the metal foil conveyance path between the unwinding roll 11 and the winding roll 12, and hold the lower surface of the metal foil 14 being conveyed.
  • the kneading apparatus 20 is a biaxial kneader, and is an apparatus for producing a slurry-like electrode kneaded material 21 by uniformly dispersing an electrode material in a solvent.
  • the kneading apparatus 20 is not limited to the twin-screw kneader, and for example, a planetary mixer or a kneader may be used.
  • the electrode kneaded material 21 includes a positive electrode kneaded material manufactured when the positive electrode 4 is manufactured and a negative electrode kneaded material manufactured when the negative electrode 6 is manufactured.
  • a positive electrode active material When manufacturing a positive electrode kneaded material, a positive electrode active material, a conductive auxiliary agent, and a binder (binder) as electrode materials are put into the kneading apparatus 20, and these are uniformly dispersed in a solvent.
  • a binder binder
  • the positive electrode active material is a material that occludes / releases lithium ions such as lithium metal oxide.
  • lithium manganate is used as the positive electrode active material.
  • the negative electrode active material is a substance that releases and occludes lithium ions such as hard carbon and graphite.
  • hard carbon is used as the negative electrode active material.
  • the conductive additive is a substance that enhances conductivity, such as a carbon material (carbon powder or carbon fiber).
  • a carbon material carbon powder or carbon fiber.
  • various carbon blacks such as acetylene black, furnace black, and ketjen black, and graphite powder can be used.
  • carbon black is used as a conductive additive both when the positive electrode kneaded material is manufactured and when the negative electrode kneaded material is manufactured.
  • the binder is a substance that binds the active material fine particles to each other.
  • PVDF polyvinylidene fluoride
  • the solvent is a liquid that dissolves the electrode material.
  • NMP N-methylpyrrolidone
  • the present invention is not limited to this.
  • the coating device 30 is a device that applies the electrode kneaded material 21 produced by the kneading device 20 to the surface of the metal foil 14, and includes a supply pipe 31, a supply pump 32, a slit die 33, a recovery pipe 34, A recovery valve 35, a hot water circulation pipe 36, a hot water tank 37, and a thermocouple 38 are provided.
  • the supply pipe 31 is a pipe having one end connected to the lower side of the kneading apparatus 20 and the other end connected to the slit die 33.
  • the supply pump 32 is provided in the supply pipe 31 and feeds the electrode kneaded material 21 manufactured by the kneading apparatus 20 into the slit die 33 through the supply pipe 31.
  • the slit die 33 extrudes the electrode kneaded material 21 fed from the supply pump 32 from the slit 331 formed at the tip and applies it to the surface of the metal foil 14 in the middle of conveyance.
  • the slit die 33 extrudes and applies the electrode kneaded material 21 at a right angle to the transport direction of the metal foil 14 while leaving a predetermined interval in the transport direction of the metal foil 14.
  • the recovery pipe 34 is a pipe having one end connected to the supply pipe 31 between the supply pump 32 and the slit die 33 and the other end connected above the kneading apparatus 20.
  • the recovery valve 35 is provided at a connection portion between the supply pipe 31 and the recovery pipe 34. If the recovery valve 35 is open, the electrode kneaded product 21 fed from the supply pump 32 is returned to the kneading device 20 via the recovery pipe 34. On the other hand, if the recovery valve 35 is closed, the electrode kneaded material 21 fed from the supply pump 32 is supplied to the slit die 33 via the supply pipe 31.
  • the hot water circulation pipe 36 is a pipe formed so as to cover the outer periphery of the supply pipe 31 from the supply pump 32 to the slit die 33, and both ends thereof are connected to the hot water tank 37 to circulate the hot water.
  • a double pipe is provided between the supply pump 32 and the slit die 33, and the electrode flowing through the supply pipe 31 between the supply pump 32 and the slit die 33 by the hot water circulating through the hot water circulation pipe 36.
  • the temperature of the kneaded material 21 is maintained at a predetermined temperature at which the degree of elasticity of the electrode kneaded material 21 (hereinafter referred to as “storage elastic modulus (G ′)”) is stabilized.
  • the hot water tank 37 stores water circulating through the hot water circulation pipe 36.
  • a warmer 371 is provided in the hot water tank 37.
  • the temperature riser 371 raises the temperature of the stored water to a set temperature to make warm water.
  • the thermocouple 38 detects the temperature of the electrode kneaded material 21 flowing through the recovery pipe 34.
  • the drying device 40 is, for example, a hot air drying furnace, and is provided in the metal foil conveyance path.
  • the drying device 40 blows hot air to the electrode kneaded product 21 while keeping the temperature in the device at a predetermined temperature, and volatilizes the solvent in the electrode kneaded product 21 to form an electrode layer having a solid content of 100%.
  • the controller 50 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the temperature of the electrode kneaded product 21 detected by the thermocouple 38 is input to the controller 50.
  • the controller 50 opens and closes the recovery valve 35 based on the input temperature of the electrode kneaded material 21. Specifically, the recovery valve 35 is opened until the temperature of the electrode kneaded material 21 reaches a predetermined temperature at which the storage elastic modulus of the electrode kneaded material 21 becomes stable, and when the temperature reaches the predetermined temperature, the recovery valve 35 is closed.
  • the temperature of the electrode kneaded material 21 flowing through the supply pipe 31 between the supply pump 32 and the slit die 33 by the hot water circulating through the hot water circulation pipe 36 is determined as follows. The reason for maintaining the predetermined temperature at which the storage elastic modulus is stabilized will be described.
  • the change rate of the storage elastic modulus is defined by the following equation.
  • Table 1 shows the storage elastic modulus of the positive electrode kneaded material and the negative electrode kneaded material at each temperature when the temperature was increased by about 2 [° C.], and the change in the storage elastic modulus of the positive electrode kneaded material and the negative electrode kneaded material at that time. It is the table
  • FIG. 3 is a graph plotting storage elastic moduli of the positive electrode kneaded material and the negative electrode kneaded material at the temperatures shown in Table 1, respectively.
  • the storage elastic modulus of the electrode kneaded material 21 at each temperature shows different values for the positive electrode kneaded material and the negative electrode kneaded material.
  • the change rate of the storage elastic modulus is large in the temperature range of 20 [° C.], which is normally set as the temperature, and the storage elastic modulus becomes unstable.
  • the electrode kneaded material 21 (positive electrode kneaded material and negative electrode kneaded material) is stable in a state where the active material, the conductive additive, and the binder are uniformly dispersed. At this time, near the room temperature, the electrode mixture 21 is stable in a state (colloidal state) in which the binder molecules are attached to the surfaces of the active material fine particles and the conductive additive fine particles. However, as the temperature is increased from around room temperature, the binder molecules are detached from the surface of the active material fine particles and conductive auxiliary agent fine particles as the temperature increases, and the interaction between the active material fine particles and the conductive auxiliary agent fine particles, That is, the repulsive force increases. Thereby, it is thought that the storage elastic modulus of the electrode kneaded material 21 increases.
  • the storage elastic modulus becomes a substantially constant value in a temperature range of approximately 35 [° C.] to 65 [° C.], and the storage elastic modulus becomes stable.
  • the storage elastic modulus increases again, the rate of change increases, and the storage elastic modulus becomes unstable. This is presumably because in the case of the positive electrode kneaded product, when the temperature exceeds 65 [° C.], the crosslinking reaction of the binder molecules proceeds and gelation of the positive electrode kneaded material is promoted.
  • the storage elastic modulus becomes a substantially constant value in a temperature range from approximately 35 [° C.] to 70 [° C.], and the storage elastic modulus becomes stable.
  • the storage elastic modulus is considered to show a repulsive force due to the steric hindrance between the active material fine particles and the conductive auxiliary agent fine particles inside the electrode kneaded material 21, and the electrode kneaded material 21 is applied to the current collector. If the storage elastic modulus of the electrode kneaded product 21 increases during the process, even if the electrode kneaded product 21 is extruded at a constant pressure, the feeding amount changes, and the coating amount becomes unstable.
  • the storage elastic modulus greatly changes even when the temperature of the electrode kneaded material 21 is increased by about several degrees C. by the supply pump 32 or the like. Fine adjustment is required to stabilize the coating amount after the start of the application of the coating 21, and it takes time to perform stable coating.
  • the temperature of the electrode kneaded product 21 is set to a predetermined temperature at which the storage elastic modulus of the electrode kneaded product 21 is stabilized (from 35 [° C.] to 65 [° C.] in the case of the positive electrode kneaded product, 35 in the case of the negative electrode kneaded product.
  • the electrode kneaded material 21 was applied to the current collector while maintaining the temperature from [° C.] to 70 [° C.].
  • the upper limit of the predetermined temperature when the negative electrode kneaded material is applied to the current collector is set to 70 [° C.] If the temperature is further increased, the negative electrode kneaded material is dried and solidified at the discharge port of the slit die 33. This is because it becomes difficult to make the negative electrode kneaded material uniform in thickness and the like.
  • the electrode kneaded material 21 kneaded by the kneading device 20 is first pumped by the supply pump 32 with the recovery valve 35 opened. Thereby, the electrode kneaded material 21 is filled in the supply pipe 31 between the supply pump 32 and the recovery valve 35.
  • the temperature of the water in the hot water tank is raised to a temperature at which the temperature of the electrode kneaded product 21 can be raised to a predetermined temperature at which the storage elastic modulus is stable, It is made to flow through 36 and circulate. Thereby, the temperature of the electrode kneaded material 21 filled in the supply pipe 31 between the supply pump 32 and the recovery valve 35 is adjusted to a predetermined temperature at which the storage elastic modulus of the electrode kneaded material 21 is stabilized.
  • the temperature of the electrode kneaded product 21 is detected by a thermocouple 38 provided in the recovery pipe 34. After the temperature of the electrode kneaded product 21 reaches a predetermined temperature at which the storage elastic modulus of the electrode kneaded product 21 becomes stable, the recovery valve 35 is recovered.
  • the electrode kneaded material 21 is supplied to the slit die 33, the electrode kneaded material 21 is extruded from the slit die 33, and the electrode kneaded material 21 is applied to the metal foil 14.
  • the temperature of the electrode kneaded material 21 is adjusted to a predetermined temperature at which the storage elastic modulus of the electrode kneaded material 21 is stabilized, and then applied to the metal foil 14. 21 is not affected by temperature change due to heat received from the coating device components such as the supply pump 32. Therefore, variations in the properties of the electrode kneaded product 21 due to temperature changes can be reduced, and stable application can be performed from the start of application of the electrode kneaded product 21. As a result, fine adjustment or the like for stabilizing the coating amount after the start of coating becomes unnecessary, and the adjustment time for that can be shortened. Thereby, since the time which an application process requires can be shortened, the production efficiency of the lithium ion secondary battery 1 can be improved.
  • the temperature of the electrode kneaded material 21 to be applied is raised to a predetermined temperature higher than room temperature in advance, the drying oven length can be shortened and the drying time can be shortened in the drying step after the coating step. Therefore, the production efficiency of the lithium ion secondary battery 1 can be further improved. In order to effectively obtain such an effect, it is desirable to set the predetermined temperature within a range of 60 [° C.] ⁇ 5 [° C.].
  • the electrode kneaded material 21 exemplified in the above embodiment but also a slurry-like kneaded material having viscoelasticity can be stably applied by using the coating apparatus according to the present embodiment.
  • the slurry-like kneaded material having viscoelasticity include water-based materials using water as a solvent and styrene-butadiene rubber (SBR) as a binder to which methyl cellulose acetate (CMC) as a thickener is added.
  • SBR styrene-butadiene rubber
  • the temperature of the electrode kneaded product 21 is maintained at a predetermined temperature by circulating hot water.
  • a heating element such as a ribbon heater is provided inside the supply pipe 31 to control the temperature of the electrode kneaded product 21. You may comprise so that it may maintain at predetermined temperature. However, from the viewpoint of safety and facility maintainability, the method of circulating hot water as in the above embodiment is more preferable.

Abstract

 本発明は塗布装置であって、電極材と溶媒とを混練させたスラリー状の電極混練物を塗布する塗布部と、塗布部に電極混練物を圧送するポンプと、塗布される前の電極混練物を、その電極混練物の貯蔵弾性率が略一定となる所定温度領域まで昇温させる昇温部と、を備えることを特徴とする。これにより、塗布開始から早期に安定した塗布を行うことができる。

Description

塗布装置
 本発明は塗布装置に関する。
 JP2007-66744Aには、塗布装置として、塗布物を塗布する際の圧力を調整することで、塗布量の変動を抑制して安定した塗布を行うものが記載されている。
 しかしながら、前述した従来の塗布装置では、電極材と溶媒とを混練させたスラリー状の電極混練物を集電体に塗布する場合、電極混練物がポンプなどの塗布装置構成部品から熱を受けていた。これにより、塗布開始から一定の時間が経過するまでは電極混練物の温度が変化して性状が安定せず、塗布量が変動して安定した塗布を行うことができなかった。そのため、塗布開始から塗布量を一定にするまでに時間を要するという問題点があった。
 本発明はこのような問題点に着目してなされたものであり、塗布開始から塗布量を一定にするまでの時間を短縮することを目的とする。
 上記目的を達成するため、本発明は、電極材と溶媒とを混練させたスラリー状の電極混練物を塗布する塗布部と、塗布部へ前記電極混練物を圧送するポンプと、塗布される前の電極混練物を、その電極混練物の貯蔵弾性率が略一定となる所定温度領域まで昇温させる昇温部と、を備えることを特徴とする。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、リチウムイオン二次電池の概略図である。 図2は、電極製造装置の概略構成図である。 図3は、表1で示した各温度における正極混練物及び負極混練物の貯蔵弾性率をそれぞれプロットして示した図である。
 以下、図面等を参照して本発明の実施形態について説明する。
 図1は、リチウムイオン二次電池1の概略図である。図1(A)はリチウムイオン二次電池1の斜視図であり、図1(B)は図1(A)のB-B断面図である。
 図1(A)及び図1(B)に示すように、リチウムイオン二次電池1は、蓄電要素2と、蓄電要素2を収容する外装ケース3と、を備える。
 蓄電要素2は、正極4、電解質層としてのセパレータ5、及び負極6を順次積層した積層体として構成される。正極4は板状の正極集電体4aの両面に正極層4bを有しており、負極6は板状の負極集電体6aの両面に負極層6bを有している。なお、蓄電要素2の最外層に配置される正極4については、正極集電体4aの片面にのみ正極層4bが形成される。
 隣接する正極4、セパレータ5、及び負極6が一つの単位電池7を構成しており、リチウムイオン電池1は積層された複数の単位電池7をそれぞれ電気的に並列接続して構成される。
 外装ケース3は、アルミニウム等の金属をポリプロピレンフィルム等の絶縁体で被覆した高分子-金属複合ラミネートフィルムのシート材からなる。外装ケース3は、蓄電要素2を収納した状態で、ケース外周部が熱融着によって接合される。この外装ケース3には、蓄電要素2からの電力を外部に取り出すため、外部端子としての正極タブ8及び負極タブ9が設けられる。
 正極タブ8の一端は外装ケース3の外側にあり、正極タブ8の他端は外装ケース3の内部で各正極集電体4aの集合部に接続する。負極タブ9の一端は外装ケース3の外側にあり、負極タブ9の他端は外装ケース3の内部で各負極集電体6aの集合部に接続する。
 次に、電極(正極4又は負極6)の一般的な製造方法について簡単に説明する。
 一般的に電極は、電極材と溶媒とを混練させたスラリー状の電極混練物を集電体(正極集電体4a又は負極集電体6a)に塗布する塗布工程の後に、電極混練物の溶媒を揮発させて固形分100%の電極層(正極層4b又は負極層6b)を形成する乾燥工程などを経て製造される。
 ここでリチウムイオン二次電池1の生産効率を上げるためには、前述した各工程に要する時間を短縮することが有効である。そこで本実施形態では、塗布工程における電極混練物の温度変化を抑制して早期に塗布量を安定させることで、塗布工程に要する時間を短縮する。以下、本実施形態による電極製造装置100について説明する。
 図2は、リチウムイオン電池1の電極製造時に使用する本実施形態による電極製造装置100の概略構成図である。
 電極製造装置100は、搬送装置10と、混練装置20と、塗布装置30と、乾燥装置40と、コントローラ50と、を備える。
 電極製造装置100は、搬送装置10によって搬送される金属箔14の表面に、混練装置20で混練した電極混練物21を塗布装置30によって塗布し、乾燥装置40によって電極混練物21を乾燥させて電極を製造する装置である。必要に応じて乾燥後にプレス装置などによって電極をプレスして厚みなどを調整しても良い。
 以下、電極製造装置100を構成する各装置について詳しく説明する。
 搬送装置10は、巻出ロール11と、巻取ロール12と、サポートロール13と、を備える。搬送装置10は、ロールトゥロール方式によって正極集電体4a又は負極集電体6aとなる薄い膜状の金属箔(厚さ10[μm]~40[μm])14を巻出ロール11から巻取ロール12へと搬送する。
 本実施形態では、正極4を製造する場合には正極集電体4aとなる金属箔14としてアルミニウム箔を使用し、負極6を製造する場合には負極集電体6aとなる金属箔14として銅箔を使用するが、これに限られるものではない。
 巻出ロール11には、金属箔14が巻かれる。巻出ロール11は制動機構15を備えており、この制動機構15によって巻出ロール11の回転が適宜規制され、金属箔14に所定の張力が付与される。
 巻取ロール12は、駆動モータ16によって回転駆動され、巻出ロール11から引き取った金属箔14を巻き取る。
 サポートロール13は、巻出ロール11と巻取ロール12との間の金属箔搬送経路に複数設けられ、搬送中の金属箔14の下面を保持する。
 混練装置20は二軸混練機であり、電極材を溶媒中で均一に分散させてスラリー状の電極混練物21を製造する装置である。混練装置20は二軸混練機に限られるものではなく、例えば遊星式ミキサやニーダを用いても良い。
 電極混練物21には、正極4を製造する場合に製造される正極混練物と、負極6を製造する場合に製造される負極混練物と、がある。
 正極混練物を製造する場合は、混練装置20に電極材としての正極活物質、導電助剤、及びバインダ(結着剤)が投入され、これらが溶媒中で均一に分散させられる。負極混練物を製造する場合は、混練装置20に電極材としての負極活物質、導電助剤、及びバインダが投入され、これらが溶媒中で均一に分散させられる。
 正極活物質は、リチウム金属酸化物などのリチウムイオンを吸蔵・放出する物質である。本実施形態では、正極活物質としてマンガン酸リチウムを使用する。
 負極活物質は、ハードカーボンやグラファイトなどのリチウムイオンを放出・吸蔵する物質である。本実施形態では、負極活物質としてハードカーボンを使用する。
 導電助剤は、カーボン材料(カーボン粉末やカーボンファイバ)などの導電性を高める物質である。カーボン粉末としては、アセチレンブラック、ファーネスブラック、及びケッチェンブラックなどの種々のカーボンブラックや、グラファイト粉末を使用することができる。本実施形態では、正極混練物を製造する場合も負極混練物を製造する場合も共に、導電助剤としてカーボンブラックを使用する。
 バインダは、活物質微粒子同士を結び付ける物質である。本実施形態では、正極混練物を製造する場合も負極混練物を製造する場合も共に、バインダとしてポリフッ化ビニリデン(PVDF)を使用するが、これに限られるものではない。
 溶媒は、電極材を溶かす液体である。本実施形態では、正極混練物を製造する場合も負極混練物を製造する場合も共に、溶媒としてN-メチルピロリドン(NMP)を使用するが、これに限られるものではない。
 塗布装置30は、混練装置20で製造された電極混練物21を金属箔14の表面に塗布する装置であって、供給配管31と、供給ポンプ32と、スリットダイ33と、回収配管34と、回収弁35と、温水循環配管36と、温水タンク37と、熱電対38と、を備える。
 供給配管31は、一端が混練装置20の下方に接続され、他端がスリットダイ33に接続される配管である。
 供給ポンプ32は、供給配管31に設けられ、混練装置20で製造された電極混練物21を供給配管31を介してスリットダイ33へ送り込む。
 スリットダイ33は、供給ポンプ32から送り込まれた電極混練物21を、先端部に形成されたスリット331から押し出して搬送途中の金属箔14の表面に塗布する。スリットダイ33は、金属箔14の搬送方向に所定の間隔を空けながら、金属箔14の搬送方向と直角に電極混練物21を押し出して塗布する。
 回収配管34は、一端が供給ポンプ32とスリットダイ33との間の供給配管31に接続され、他端が混練装置20の上方に接続される配管である。
 回収弁35は、供給配管31と回収配管34との接続部に設けられる。回収弁35が開かれていれば、供給ポンプ32から圧送された電極混練物21は、回収配管34を介して混練装置20に戻される。一方で、回収弁35が閉じていれば、供給ポンプ32から圧送された電極混練物21は、供給配管31を介してスリットダイ33に供給される。
 温水循環配管36は、供給ポンプ32からスリットダイ33までの間の供給配管31の外周を覆うように形成された配管であり、その両端は温水タンク37に接続されて温水が循環している。このように、供給ポンプ32からスリットダイ33までの間は二重配管となっており、温水循環配管36を循環する温水によって、供給ポンプ32からスリットダイ33までの間の供給配管31を流れる電極混練物21の温度を、電極混練物21の弾性の度合い(以下「貯蔵弾性率(G')」という)が安定する所定温度に保っている。
 温水タンク37は、温水循環配管36を循環する水を貯蔵する。温水タンク37には昇温器371が設けられる。昇温器371は、貯蔵された水の温度を設定された温度まで上昇させて温水にする。
 熱電対38は、回収配管34を流れる電極混練物21の温度を検出する。
 乾燥装置40は例えば熱風乾燥炉であり、金属箔搬送経路に設けられる。乾燥装置40は、装置内の温度を所定温度に保ちつつ電極混練物21に熱風を吹き付け、電極混練物21中の溶媒を揮発させて固形分100%の電極層を形成する。
 コントローラ50は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ50には、熱電対38で検出した電極混練物21の温度が入力される。コントローラ50は、入力された電極混練物21の温度に基づいて回収弁35を開閉する。具体的には、電極混練物21の温度が電極混練物21の貯蔵弾性率が安定する所定温度になるまでは回収弁35を開き、所定温度になったら回収弁35を閉じる。
 ここで、表1及び図3を参照し、温水循環配管36を循環する温水によって供給ポンプ32からスリットダイ33までの間の供給配管31を流れる電極混練物21の温度を、電極混練物21の貯蔵弾性率が安定する所定温度に保つ理由について説明する。
 なお、本実施形態において、「電極混練物21の貯蔵弾性率が安定する」とは、温度を1[℃]上昇させたときの電極混練物21の貯蔵弾性率の変化率が、5%以内に収まっていることをいう。貯蔵弾性率の変化率は、以下の式で定義するものとする。
Figure JPOXMLDOC01-appb-M000001
 
 表1は、約2[℃]ごと温度を上げていったときの各温度における正極混練物及び負極混練物の貯蔵弾性率と、そのときの正極混練物及び負極混練物の貯蔵弾性率の変化率と、を示した表である。
Figure JPOXMLDOC01-appb-T000002
 図3は、表1で示した各温度における正極混練物及び負極混練物の貯蔵弾性率をそれぞれプロットして示した図である。
 表1及び図3に示すように、各温度における電極混練物21の貯蔵弾性率は、正極混練物と負極混練物とでそれぞれ異なる値を示し、正極混練物及び負極混練物の両方とも、室内温度として通常設定されている20[℃]台の温度領域で貯蔵弾性率の変化率が大きく、貯蔵弾性率が不安定となる。
 電極混練物21(正極混練物及び負極混練物)は、活物質、導電助剤、及びバインダが均一に分散した状態で安定している。このとき、室温付近では、電極混練物21はバインダ分子が活物質微粒子や導電助剤微粒子の表面に付着した状態(コロイド状態)で安定している。しかしながら、室温付近から温度を上昇させていくと、温度の上昇に伴いバインダ分子が活物質微粒子や導電助剤微粒子の表面から脱離し、活物質微粒子と導電助剤微粒子との間の相互作用、すなわち反発力が増大する。これにより、電極混練物21の貯蔵弾性率が増大するものと考えられる。
 そして、正極混練物の場合は、概ね35[℃]から65[℃]までの間の温度領域で貯蔵弾性率がほぼ一定の値となり、貯蔵弾性率が安定した状態となる。65[℃]を超えると、再び貯蔵弾性率が上昇して変化率が大きくなり、貯蔵弾性率が不安定となる。これは、正極混練物の場合、65[℃]を超えるとバインダ分子の架橋反応が進行して正極混練物のゲル化が促進されるためと考えられる。
 一方、負極混練物の場合は、概ね35[℃]から70[℃]までの間の温度領域で、貯蔵弾性率がほぼ一定の値となり、貯蔵弾性率が安定した状態となる。
 このように、貯蔵弾性率は電極混練物21の内部の活物質微粒子と導電助剤微粒子との立体障害に起因する反発力を示すものと考えられ、電極混練物21を集電体に塗布している最中に電極混練物21の貯蔵弾性率が上昇してしまうと、一定の圧力で電極混練物21を押し出していたとしても送量に変化が生じてしまい、塗布量が安定しなくなる。
 したがって、室温付近で電極混練物21の塗布を行う場合には、供給ポンプ32などによって電極混練物21の温度が数℃程度上昇しても貯蔵弾性率が大きく変化してしまうので、電極混練物21の塗布開始後に塗布量を安定させるために微細な調整が必要となり、安定した塗布を行うまでに時間を要することになる。
 そこで本実施形態では、電極混練物21の温度を電極混練物21の貯蔵弾性率が安定する所定温度(正極混練物の場合は35[℃]から65[℃]、負極混練物の場合は35[℃]から70[℃])に保ちつつ、電極混練物21を集電体に塗布することにしたのである。なお、負極混練物を集電体に塗布する場合の所定温度の上限を70[℃]に設定したのは、これ以上高くするとスリットダイ33の吐出口での負極混練物の乾燥・固化が起きやすくなり、負極混練物の厚さなどを均一にして塗布するのが難しくなるためである。
 続いて、本実施形態による電極製造装置の作用について説明する。
 混練装置20で混練された電極混練物21は、まず回収弁35を開いた状態で供給ポンプ32によって圧送される。これにより、供給ポンプ32から回収弁35までの間の供給配管31に電極混練物21を充填する。
 次に、温水タンク内の水の温度を、電極混練物21の温度を貯蔵弾性率が安定する所定温度まで上昇させることが可能な温度まで上昇させて温水とした後、その温水を温水循環配管36に流して循環させる。これにより、供給ポンプ32から回収弁35までの間の供給配管31に充填させた電極混練物21の温度を電極混練物21の貯蔵弾性率が安定する所定温度に調節する。
 そして、回収配管34に設けた熱電対38によって電極混練物21の温度を検出し、電極混練物21の温度が電極混練物21の貯蔵弾性率が安定する所定温度になった後、回収弁35を閉じてスリットダイ33に電極混練物21を供給し、スリットダイ33から電極混練物21を押し出してその電極混練物21を金属箔14に塗布する。
 このように、以上説明した本実施形態によれば、電極混練物21の温度を電極混練物21の貯蔵弾性率が安定する所定温度に調節した上で金属箔14に塗布するため、電極混練物21が供給ポンプ32などの塗布装置構成部品からの受熱による温度変化の影響を受けない。そのため、温度変化による電極混練物21の性状のばらつきを低減でき、電極混練物21の塗布開始時から安定した塗布を行うことができる。その結果、塗布開始後に塗布量を安定させるための微細な調整等も不要になるので、そのための調整時間を短縮することができる。これにより、塗布工程に要する時間を短縮できるので、リチウムイオン二次電池1の生産効率を向上させることができる。
 さらに、塗布する電極混練物21の温度を事前に室温よりも高い所定温度まで高めておくので、塗布工程後の乾燥工程において、乾燥炉長を短縮できるとともに、乾燥時間も短縮することができる。よって、より一層リチウムイオン二次電池1の生産効率を向上させることができる。このような効果を効果的に得るためには、所定温度を60[℃]±5[℃]の範囲内で設定することが望ましい。
 以上、この発明を特定の実施形態を通じて説明してきたが、この発明は上記実施形態に限定されるものではない。当業者にとっては、本発明の技術的範囲で上記実施形態にさまざまな修正あるいは変更を加えることが可能である。
 例えば、上記実施形態で例示した電極混練物21に限らず、粘弾性を有するスラリー状の混練物であれば、本実施形態による塗布装置を使用することで安定した塗布を行うことができる。粘弾性を有するスラリー状の混練物としては、溶媒として水、バインダとしてスチレンブタジエンゴム(SBR)に増粘材である酢酸メチルセルロース(CMC)を加えたものを使用した水系のものが挙げられる。
 また、上記実施形態では温水を循環させて電極混練物21の温度を所定温度に保つように構成したが、供給配管31の内部にリボンヒータ等の発熱体を備えて電極混練物21の温度を所定温度に保つように構成しても良い。しかしながら、安全性や設備保守性の観点からは、上記実施形態のように温水を循環させる方法のほうがより好ましい。
 以上の説明に関して2010年5月18日を出願日とする日本国における特願2010-114297号の内容をここに引用により組み込む。

Claims (6)

  1.  電極材と溶媒とを混練させたスラリー状の電極混練物を塗布する塗布部と、
     前記塗布部へ前記電極混練物を圧送するポンプと、
     塗布される前の前記電極混練物を、その電極混練物の貯蔵弾性率が略一定となる所定温度領域まで昇温させる昇温部と、
    を備える塗布装置。
  2.  前記塗布部と前記ポンプとを接続する配管を備え、
     前記昇温部は、前記配管を流れる前記電極混練物の温度を前記所定温度領域まで昇温させる、
    請求項1に記載の塗布装置。
  3.  前記昇温部は、前記配管の外周を覆うように形成されて温水が循環する配管である、
    請求項2に記載の塗布装置。
  4.  前記所定温度領域は、前記電極混練物の温度を1℃上昇させたときの前記電極混練物の貯蔵弾性率の変化率が5%以内となる温度領域である、
    請求項1から請求項3までのいずれか1つに記載の塗布装置。
  5.  前記所定温度領域は、前記電極混練物が正極混練物のときは35℃から65℃の領域である、
    請求項1から請求項3までのいずれか1つに記載の塗布装置。
  6.  前記所定温度領域は、前記電極混練物が負極混練物のときは35℃から70℃の領域である、
    請求項1から請求項3までのいずれか1つに記載の塗布装置。
PCT/JP2011/061185 2010-05-18 2011-05-16 塗布装置 WO2011145556A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/697,454 US20130056092A1 (en) 2010-05-18 2011-05-16 Coating apparatus
KR1020127032909A KR20130030764A (ko) 2010-05-18 2011-05-16 도포 장치
EP11783490.3A EP2573840A4 (en) 2010-05-18 2011-05-16 COATING EQUIPMENT
KR1020157008206A KR20150043520A (ko) 2010-05-18 2011-05-16 도포 장치
JP2012515876A JP5644856B2 (ja) 2010-05-18 2011-05-16 塗布装置
CN201180022026.0A CN102884657B (zh) 2010-05-18 2011-05-16 涂敷装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010114297 2010-05-18
JP2010-114297 2010-05-18

Publications (1)

Publication Number Publication Date
WO2011145556A1 true WO2011145556A1 (ja) 2011-11-24

Family

ID=44991659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061185 WO2011145556A1 (ja) 2010-05-18 2011-05-16 塗布装置

Country Status (6)

Country Link
US (1) US20130056092A1 (ja)
EP (1) EP2573840A4 (ja)
JP (1) JP5644856B2 (ja)
KR (2) KR20130030764A (ja)
CN (1) CN102884657B (ja)
WO (1) WO2011145556A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312916A1 (en) * 2012-05-22 2013-11-28 Jtekt Corporation Electrode production system
EP2667431A3 (en) * 2012-05-22 2015-08-26 Jtekt Corporation Electrode production system
JP7483306B2 (ja) 2021-08-27 2024-05-15 エルジー エナジー ソリューション リミテッド 二次電池用電極スラリーコーティング装置およびそれを用いた電極スラリーコーティング方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102656135B1 (ko) 2015-07-17 2024-04-09 에리 파워 가부시키가이샤 전지 전극 슬러리 순환 장치, 전지 전극 슬러리 처리 장치, 전지 전극 슬러리 순환 방법, 전지 전극 슬러리 처리 방법
KR102040511B1 (ko) * 2016-09-09 2019-11-05 주식회사 엘지화학 전극 코팅 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199916A (ja) * 2002-12-17 2004-07-15 Matsushita Electric Ind Co Ltd リチウムイオン二次電池の電極の製造方法
JP2004296255A (ja) * 2003-03-27 2004-10-21 Toshiba Corp シート状極板の製造方法及び非水電解質電池
JP2010182485A (ja) * 2009-02-04 2010-08-19 Toyota Motor Corp 電極用スラリーの製造方法及び電極用スラリーの製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853410A (en) * 1971-10-22 1974-12-10 R Busoni Device for distributing hot-melt adhesive
EP0639865B1 (en) * 1993-06-15 1998-03-11 Fuji Photo Film Co., Ltd. A method for producing a sheet-like plate
US20040119194A1 (en) * 2002-12-24 2004-06-24 Boyko Aladjov Method for making electrodes for electrochemical cells
US7694894B2 (en) * 2005-04-19 2010-04-13 Warren Environmental, Inc. Method and system for preheating epoxy coatings for spray application
JP2008029962A (ja) * 2006-07-28 2008-02-14 Toyota Motor Corp 撥水性物質を含有するペーストを塗布する装置、方法及び燃料電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199916A (ja) * 2002-12-17 2004-07-15 Matsushita Electric Ind Co Ltd リチウムイオン二次電池の電極の製造方法
JP2004296255A (ja) * 2003-03-27 2004-10-21 Toshiba Corp シート状極板の製造方法及び非水電解質電池
JP2010182485A (ja) * 2009-02-04 2010-08-19 Toyota Motor Corp 電極用スラリーの製造方法及び電極用スラリーの製造装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312916A1 (en) * 2012-05-22 2013-11-28 Jtekt Corporation Electrode production system
CN103427071A (zh) * 2012-05-22 2013-12-04 株式会社捷太格特 电极制造***
EP2667431A3 (en) * 2012-05-22 2015-08-26 Jtekt Corporation Electrode production system
EP2667432A3 (en) * 2012-05-22 2015-09-02 Jtekt Corporation Electrode production system
US9172080B2 (en) 2012-05-22 2015-10-27 Jtekt Corporation Electrode production system
JP7483306B2 (ja) 2021-08-27 2024-05-15 エルジー エナジー ソリューション リミテッド 二次電池用電極スラリーコーティング装置およびそれを用いた電極スラリーコーティング方法

Also Published As

Publication number Publication date
US20130056092A1 (en) 2013-03-07
JPWO2011145556A1 (ja) 2013-07-22
KR20150043520A (ko) 2015-04-22
EP2573840A4 (en) 2013-12-04
CN102884657A (zh) 2013-01-16
KR20130030764A (ko) 2013-03-27
CN102884657B (zh) 2016-01-06
JP5644856B2 (ja) 2014-12-24
EP2573840A1 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP3953911B2 (ja) 塗膜シートの製造方法
US10361423B2 (en) Method of preparing battery electrodes
JP6036324B2 (ja) 蓄電装置の製造装置および製造方法
JP4879372B2 (ja) 膜−触媒層接合体の製造方法及び装置
JP5644856B2 (ja) 塗布装置
WO2011105348A1 (ja) リチウムイオン電池用電極塗膜の乾燥方法
JP5834898B2 (ja) 電極製造方法及び電極製造装置
JP5725580B2 (ja) 電極合材の塗工方法
CN111477971A (zh) 一种电芯整形方法
CN108352497B (zh) 电极涂覆设备
JP5691379B2 (ja) 塗布装置
JP2016115576A (ja) リチウムイオン電池の製造方法、リチウムイオン電池の製造装置およびリチウムイオン電池
WO2014141547A1 (ja) リチウムイオン二次電池の製造装置および製造方法
WO2013065478A1 (ja) リチウムイオン二次電池およびその製造方法
JP2009037893A (ja) 非水系二次電池用負極板の製造方法
JP2012069358A (ja) 電極乾燥方法、および電極乾燥装置
KR20130044160A (ko) 전극, 전극 제조 장치 및 전극 제조 방법
JP5655494B2 (ja) 電極製造方法及び電極の補修剤
JP7301082B2 (ja) 二次電池用電極の製造方法および二次電池の製造方法
JP2019032996A (ja) 負極の製造方法
JP2015173034A (ja) 非水電解質二次電池用の電極の製造方法および製造装置
CN205128595U (zh) 一种锂离子电池极片碾压装置
JP7328954B2 (ja) 非水電解液二次電池用電極の製造方法および製造装置
EP4239707A1 (en) Manufacturing method and drying apparatus of electrode
JP5803829B2 (ja) 電極の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022026.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515876

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13697454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127032909

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011783490

Country of ref document: EP