WO2011142463A1 - 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品 - Google Patents

紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品 Download PDF

Info

Publication number
WO2011142463A1
WO2011142463A1 PCT/JP2011/061073 JP2011061073W WO2011142463A1 WO 2011142463 A1 WO2011142463 A1 WO 2011142463A1 JP 2011061073 W JP2011061073 W JP 2011061073W WO 2011142463 A1 WO2011142463 A1 WO 2011142463A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing film
ultraviolet
ultraviolet absorbing
forming
coating solution
Prior art date
Application number
PCT/JP2011/061073
Other languages
English (en)
French (fr)
Inventor
広和 小平
浩之 朝長
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2011800236625A priority Critical patent/CN102892851A/zh
Priority to JP2012514850A priority patent/JPWO2011142463A1/ja
Publication of WO2011142463A1 publication Critical patent/WO2011142463A1/ja
Priority to US13/676,651 priority patent/US20130071669A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/74UV-absorbing coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • Y10T428/31612As silicone, silane or siloxane

Definitions

  • the present invention relates to a coating liquid for forming an ultraviolet absorbing film on the surface of an article such as glass and an ultraviolet absorbing glass article having an ultraviolet absorbing film formed using the coating liquid.
  • transparent substrates such as window glass for vehicles such as automobiles and window glass for building materials attached to buildings such as houses and buildings have the ability to absorb ultraviolet rays incident on the interior of cars and indoors through these, and are resistant. Attempts have been made to form a UV-absorbing film having mechanical durability such as wear.
  • the silica-based ultraviolet absorbing film described in Patent Document 1 has mechanical durability such as friction resistance, the film may be yellowish even when colorless and transparent are required, and the long-time exposure. There was a problem in that the ultraviolet absorption ability deteriorated.
  • the present invention has been made to solve the above-mentioned problems, and has mechanical durability such as abrasion resistance, sufficient colorless transparency, and little deterioration of ultraviolet absorption ability due to long-time exposure.
  • An object of the present invention is to provide an ultraviolet-absorbing glass article having an ultraviolet-absorbing film with little deterioration.
  • the present invention provides a coating solution for forming an ultraviolet absorbing film and an ultraviolet absorbing glass article having the following configuration.
  • a silicon oxide matrix raw material component comprising at least one selected from hydrolyzable silicon compounds, an ultraviolet absorber, an acid having a pKa of the first proton of 1.0 to 5.0, and water.
  • the acid is contained at a ratio of 0.005 to 5.0 mol / kg as the molar concentration of the proton with respect to the total mass of the coating solution when the first proton of the acid is completely dissociated.
  • the coating liquid for ultraviolet-ray absorption film formation of description is described.
  • a tetrafunctional hydrolyzable silicon compound that may contain a partially hydrolyzed condensate as a main component of the silicon oxide matrix raw material component, and further a flexibility-imparting component.
  • a tetrafunctional hydrolyzable silicon compound and a trifunctional which each may contain a partial hydrolysis condensate and / or a partial hydrolysis cocondensate of both as a main component of the silicon oxide matrix raw material component
  • the content of the silicon oxide-based matrix material component to the coating solution the total mass, the content of SiO 2 when converted to silicon atoms contained in said component in SiO 2, from 1 to 20 mass%, [ [1]
  • the ultraviolet absorbing film has mechanical durability such as abrasion resistance, sufficiently ensures colorless transparency, and has little deterioration in ultraviolet absorbing ability due to long-time exposure.
  • the UV-absorbing glass article of the present invention having such an UV-absorbing film is colorless and transparent, and has long-term durability both mechanically and UV-absorbing ability.
  • the coating solution for forming an ultraviolet absorbing film has a silicon oxide matrix raw material component comprising at least one selected from hydrolyzable silicon compounds, an ultraviolet absorber, and a pKa of the first proton of 1.0 to 5.0. Contains acid and water.
  • the silicon oxide matrix raw material component contained in the coating solution for forming an ultraviolet absorbing film of the present invention comprises at least one selected from hydrolyzable silicon compounds.
  • the hydrolyzable silicon compounds are a silane compound group in which at least one hydrolyzable group is bonded to a silicon atom, and one or two or more partial hydrolysiss of such a silane compound group ( Used as a generic term for condensates.
  • the number of functionalities of the hydrolyzable silicon compound refers to the number of hydrolyzable groups bonded to the silicon atom.
  • the hydrolyzable silicon compounds are a hydroxyl group in which the hydrolyzable group is hydrolyzed and bonded to a silicon atom in the presence of the acid and water as a catalyst (that is, silanol). Group), and then silanol groups are dehydrated and condensed to form a siloxane bond represented by —Si—O—Si— to increase the molecular weight.
  • a linear polysiloxane is formed only from a bifunctional hydrolyzable silicon compound, but a three-dimensional network of polysiloxane is formed from a trifunctional hydrolyzable silicon compound or a tetrafunctional hydrolyzable silicon compound.
  • a silicon oxide matrix is formed.
  • a three-dimensional network / silicon oxide matrix of polysiloxane is formed from a mixture of a bifunctional hydrolyzable silicon compound and a trifunctional hydrolyzable silicon compound or a tetrafunctional hydrolyzable silicon compound. .
  • the coating solution for forming an ultraviolet absorbing film of the present invention preferably contains a tetrafunctional hydrolyzable silicon compound that may contain a partial hydrolysis condensate as a main component of the silicon oxide matrix raw material component, In that case, it is preferable to contain the flexibility provision component mentioned later.
  • a partial hydrolytic condensate and / or a partial hydrolytic cocondensate of a tetrafunctional hydrolyzable silicon compound and a trifunctional hydrolyzable silicon compound as main components, respectively.
  • those containing a tetrafunctional hydrolyzable silicon compound and a trifunctional hydrolyzable silicon compound which may contain
  • the silicon oxide matrix raw material component is composed of only a tetrafunctional hydrolyzable silicon compound which may contain a partial hydrolysis condensate, and a flexibility imparting component. Both are blended in the coating solution for forming an ultraviolet absorbing film.
  • hydrolyzable groups possessed by the hydrolyzable silicon compound include alkoxy groups (including substituted alkoxy groups such as alkoxy-substituted alkoxy groups), alkenyloxy groups, acyl groups, acyloxy groups, oxime groups, amide groups, Examples thereof include an amino group, an iminoxy group, an aminoxy group, an alkyl-substituted amino group, an isocyanate group, and a chlorine atom.
  • the hydrolyzable group is preferably an organooxy group such as an alkoxy group, an alkenyloxy group, an acyloxy group, an iminoxy group, an aminoxy group, and particularly preferably an alkoxy group.
  • an alkoxy group having 4 or less carbon atoms and an alkoxy-substituted alkoxy group having 4 or less carbon atoms are preferable, and a methoxy group and an ethoxy group are particularly preferable.
  • the tetrafunctional hydrolyzable silicon compound is a compound in which four hydrolyzable groups are bonded to a silicon atom. Four of the hydrolyzable groups may be the same as or different from each other.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 4 or less carbon atoms, and still more preferably a methoxy group and an ethoxy group. Specific examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert-butoxysilane. In the present invention, tetraethoxysilane is preferable. Silane, tetramethoxysilane, etc. are used. These may be used alone or in combination of two or more.
  • the trifunctional hydrolyzable silicon compound is a compound in which three hydrolyzable groups and one non-hydrolyzable group are bonded to a silicon atom. Three of the hydrolyzable groups may be the same as or different from each other.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 4 or less carbon atoms, and still more preferably a methoxy group and an ethoxy group.
  • the non-hydrolyzable group is preferably a monovalent organic group having a non-hydrolyzable functional group or having no functional group, and is a non-hydrolyzable monovalent organic group having a functional group. Is more preferable.
  • the non-hydrolyzable monovalent organic group refers to an organic group in which the organic group and a silicon atom are bonded by a carbon-silicon bond, and a bond terminal atom is a carbon atom.
  • the functional group used in this specification is a term comprehensively indicating a reactive group, which is distinguished from a mere substituent, and includes, for example, a non-reactive group such as a saturated hydrocarbon group. Is not included in this.
  • An addition polymerizable unsaturated double bond (ethylenic double bond) that is not involved in the formation of the main chain of the polymer compound that the monomer has in the side chain is one kind of functional group.
  • (meth) acryl ...” such as (meth) acrylic acid ester used in the present specification is a term meaning both “acryl” and “methacryl”.
  • the non-hydrolyzable monovalent organic group having no functional group does not have an addition polymerizable unsaturated double bond such as an alkyl group or an aryl group.
  • a halogenated hydrocarbon group having no addition polymerizable unsaturated double bond such as a hydrocarbon group or a halogenated alkyl group is preferred.
  • the non-hydrolyzable monovalent organic group having no functional group has particularly preferably 20 or less carbon atoms, more preferably 10 or less. As this monovalent organic group, an alkyl group having 4 or less carbon atoms is preferable.
  • trifunctional hydrolyzable silicon compound having a non-hydrolyzable monovalent organic group having no functional group examples include methyltrimethoxysilane, methyltriethoxysilane, methyltris (2-methoxyethoxy) silane, Examples include methyltriacetoxysilane, methyltripropoxysilane, methyltriisopropenoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltriacetoxysilane. . These may be used alone or in combination of two or more.
  • Examples of the functional group in the non-hydrolyzable monovalent organic group having the functional group include an epoxy group, a (meth) acryloxy group, a primary or secondary amino group, an oxetanyl group, a vinyl group, a styryl group, a ureido group, Examples include a mercapto group, an isocyanate group, a cyano group, and a halogen atom, and an epoxy group, a (meth) acryloxy group, a primary or secondary amino group, an oxetanyl group, a vinyl group, a ureido group, a mercapto group, and the like are preferable.
  • an epoxy group, a primary or secondary amino group, and a (meth) acryloxy group are preferable.
  • the monovalent organic group having an epoxy group is preferably a monovalent organic group having a glycidoxy group or a 3,4-epoxycyclohexyl group, and the organic group having a primary or secondary amino group is an amino group or a monoalkyl group.
  • Monovalent organic groups having an amino group, a phenylamino group, an N- (aminoalkyl) amino group and the like are preferable.
  • a monovalent organic group having one functional group is preferable except for a primary or secondary amino group.
  • a primary or secondary amino group it may have two or more amino groups, in which case a monovalent organic group having one primary amino group and one secondary amino group
  • N- (2-aminoethyl) -3-aminopropyl group and 3-ureidopropyl group are preferable.
  • the total carbon number of the monovalent organic group having these functional groups is preferably 20 or less, and more preferably 10 or less.
  • preferable compounds include a glycidoxy group, a 2,3-epoxycyclohexyl group, an amino group, an alkylamino group (the alkyl group has 4 or less carbon atoms), phenyl at the terminal of the alkyl group having 2 or 3 carbon atoms.
  • a trifunctional hydrolyzable silicon compound in which three of the alkoxy groups are bonded to a silicon atom.
  • Such compounds include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, di- (3-methacryloxy) propyltriethoxysilane, and the like.
  • 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4 -Epoxycyclohexyl) ethyltriethoxysilane and the like are particularly preferred. These may be used alone or in combination of two or more.
  • the bifunctional hydrolyzable silicon compound is a compound in which two hydrolyzable groups and two non-hydrolyzable groups are bonded to a silicon atom. Two of the hydrolyzable groups may be the same as or different from each other.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 4 or less carbon atoms, and still more preferably a methoxy group and an ethoxy group.
  • the non-hydrolyzable group is preferably a non-hydrolyzable monovalent organic group.
  • the non-hydrolyzable monovalent organic group may have a functional group similar to that of the trifunctional hydrolyzable silicon compound as necessary.
  • bifunctional hydrolyzable silicon compound examples include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi (2-methoxyethoxy) silane, dimethyldiacetoxysilane, dimethyldipropoxysilane, and dimethyldiisopropenoxysilane.
  • the tetrafunctional hydrolyzable silicon compound, the trifunctional hydrolyzable silicon compound, and the bifunctional hydrolyzable silicon compound may be blended as such, You may mix
  • the partially hydrolyzed condensate and the partially hydrolyzed cocondensate are collectively referred to as a partially hydrolyzed (co) condensate.
  • the partially hydrolyzed (co) condensate is an oligomer (multimer) produced by hydrolysis of a hydrolyzable silicon compound and subsequent dehydration condensation.
  • the partially hydrolyzed (co) condensate is a high molecular weight compound that is usually soluble in a solvent.
  • the partially hydrolyzed (co) condensate has a hydrolyzable group and a silanol group, and further has a property of being hydrolyzed (co) condensed to be a final cured product.
  • a partial hydrolysis condensate can be obtained only from one kind of hydrolyzable silicon compound, and a partial hydrolysis cocondensate that is a cocondensate thereof can be obtained from two or more kinds of hydrolyzable silicon compounds. it can.
  • the partial hydrolysis (co) condensation of the hydrolyzable silicon compound is performed, for example, by subjecting a reaction solution obtained by adding water to a lower alcohol solution of the hydrolyzable silicon compound in the presence of an acid catalyst at 1 to 48.degree. This can be done by stirring for a period of time.
  • the type and amount of the acid catalyst used for the reaction are the same as the acid contained in the coating solution for forming an ultraviolet absorbing film.
  • the tetrafunctional hydrolyzable silicon compound, the trifunctional hydrolyzable silicon compound, and the bifunctional hydrolyzable silicon compound are blended in any of the above states. Are finally distinguished as units constituting the silicon oxide matrix.
  • a tetrafunctional hydrolyzable silicon compound itself and a partially hydrolyzed condensate thereof, and its hydrolyzable silicon in a partially hydrolyzed cocondensate The component derived from the compound is referred to as a component derived from the tetrafunctional hydrolyzable silicon compound.
  • the silicon oxide-based matrix raw material component contained in the coating solution for forming an ultraviolet absorbing film of the present invention preferably comprises (1) a tetrafunctional hydrolyzable silicon compound-derived component as described above, or (2) It is composed of a component derived from a tetrafunctional hydrolyzable silicon compound and a component derived from a trifunctional hydrolyzable silicon compound.
  • the coating solution for forming an ultraviolet absorbing film has a flexibility imparting component, in particular, in order to obtain sufficient crack resistance while ensuring the film thickness of the obtained ultraviolet absorbing film is constant. It is preferable to contain.
  • the proportion of the tetrafunctional hydrolyzable silicon compound-derived component and the trifunctional hydrolyzable silicon compound-derived component is: tetrafunctional hydrolyzable silicon compound-derived component / 3 trifunctional hydrolysis
  • the mass ratio is preferably 30/70 to 95/5, more preferably 40/60 to 90/10, and most preferably 50/50 to 80/20.
  • the bifunctional hydrolyzable silicon compound-derived component is optionally blended as necessary in (1) and (2).
  • the blending amount is preferably 30% by mass or less based on the total mass of the silicon oxide matrix raw material component.
  • the content of the silicon oxide matrix raw material component with respect to the total mass of the coating liquid is calculated by converting the silicon atoms contained in the silicon oxide matrix raw material component into SiO 2.
  • the SiO 2 content is preferably 1 to 20% by mass, more preferably 3 to 15% by mass.
  • the coating solution for forming an ultraviolet absorbing film of the present invention contains an ultraviolet absorber so that a film formed using the coating liquid functions as an ultraviolet absorbing film.
  • the acid catalyst is made specific to prevent deterioration of the ultraviolet absorber due to light and enable long-term use.
  • ultraviolet absorbers include organic ultraviolet absorbers such as benzophenones, triazines, benzotriazoles, cyanoacrylates, azomethines, indoles, salicylates, and anthracenes. These UV absorbers include benzotriazole UV absorbers, triazine UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, azomethine UV absorbers, indole UV absorbers, and salicylate UV absorbers. Agents, anthracene ultraviolet absorbers and the like, and aqueous dispersions and emulsions prepared using these compounds, as well as complexes of these compounds with metals.
  • triazine ultraviolet absorber examples include 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4- Dimethylphenyl) -1,3,5-triazine, 2- [4-[(2-hydroxy-3- (2′-ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6-bis (2, 4-dimethylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-bis-butoxyphenyl) -1,3,5-triazine 2- (2-hydroxy-4- [1-octylcarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine, TINUVIN477 (trade name, Ciba Japan Ltd. Company, Ltd.)), and the like.
  • cyanoacrylate-based ultraviolet absorber examples include UVINUL3008 (trade name, manufactured by BASF Japan Ltd.).
  • Specific examples of the salicylate-based ultraviolet absorber include pt-butylphenyl salicylate, p- Octylphenyl salicylate and the like are anthracene ultraviolet absorbers, specifically anthracene and anthracene derivatives, etc.
  • indole ultraviolet absorbers are BONASORB UA-3911 and BONASORB UA-3912 (both trade names, both manufactured by Orient Chemical Co., Ltd.) ) Etc.
  • examples of the azomethine ultraviolet absorber examples include BONASORB UA-3701 (trade name, manufactured by Orient Chemical Co., Ltd.).
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2,2 ′, 3 (or any of 4, 5, 6) -trihydroxybenzophenone, 2,2 ′, 4,4.
  • examples include '-tetrahydroxybenzophenone, 2,4-dihydroxy-2', 4'-dimethoxybenzophenone, and 2-hydroxy-4-n-octoxybenzophenone.
  • the maximum absorption wavelength of light of these exemplified organic ultraviolet absorbers is in the range of 325 to 425 nm, mostly in the range of 325 to 390 nm, and has the ability to absorb relatively long wavelength ultraviolet rays. Is.
  • these ultraviolet absorbers can be used alone or in combination of two or more.
  • a benzophenone-based ultraviolet absorber is preferably used from the viewpoint of solubility in the coating solution for forming an ultraviolet absorbing film of the present invention.
  • the content of the ultraviolet absorber in the coating solution for forming an ultraviolet absorbing film of the present invention is such that the obtained ultraviolet absorbing film has sufficient ultraviolet absorbing ability and the mechanical strength of the ultraviolet absorbing film is ensured.
  • the amount is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and particularly preferably 8 to 30 parts by mass with respect to 100 parts by mass of the matrix raw material component.
  • a functional group is introduced into the organic ultraviolet absorbent as necessary as an ultraviolet absorbent, and this is a non-hydrolyzable 1 having the functional group. It is also possible to add a reaction product obtained by reacting a hydrolyzable silicon compound having a valent organic group.
  • reaction product a reaction product of a benzophenone-based ultraviolet absorber preferably used in the present invention, for example, a hydroxyl group-containing benzophenone compound and an epoxy group-containing hydrolyzable silicon compound (hereinafter referred to as “reaction product”) , Also referred to as “silylated benzophenone compounds”).
  • reaction product a hydroxyl group-containing benzophenone compound and an epoxy group-containing hydrolyzable silicon compound
  • silylated benzophenone compounds a silylated benzophenone compound
  • the silylated benzophenone compound is added to the coating solution for forming an ultraviolet absorbing film, the compound forms a silicon oxide matrix having a crosslinked structure together with the hydrolyzable silicon compound.
  • the hydroxyl group-containing benzophenone compound residue derived from the silylated benzophenone compound is fixed to the silicon oxide matrix, and bleed out is prevented.
  • the obtained ultraviolet absorbing film can maintain the ultraviolet absorbing ability over a long period of time.
  • the benzophenone compound having a hydroxyl group as a raw material of the silylated benzophenone compound may be any compound having a benzophenone skeleton and having a hydroxyl group.
  • the following general formula ( A benzophenone compound represented by a) having 2 to 4 hydroxyl groups is preferably used since it has an excellent ultraviolet absorbing ability even after silylation. From the viewpoint of ultraviolet absorbing ability, particularly from the viewpoint of ultraviolet absorbing ability of a long wavelength up to 380 nm, the hydroxyl group-containing benzophenone compound has more preferably 3 or 4 hydroxyl groups.
  • Xs may be the same or different and each represents a hydrogen atom or a hydroxyl group, at least one of which is a hydroxyl group.
  • benzophenone compounds having a hydroxyl group represented by the general formula (a) 2,4-dihydroxybenzophenone, 2,2 ′, 3-trihydroxybenzophenone, 4, 5, 6 are used in the present invention.
  • -Trihydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone and the like are more preferable, and 2,2', 4,4'-tetrahydroxybenzophenone is particularly preferable.
  • the hydroxyl group-containing benzophenone compound can be used alone or as a mixture of two or more.
  • Examples of the epoxy group-containing hydrolyzable silicon compound used in the reaction for silylating such a hydroxyl group-containing benzophenone compound include trifunctional compounds in which the non-hydrolyzable monovalent organic group having the epoxy group is bonded to a silicon atom. Or a bifunctional hydrolyzable silicon compound is mentioned.
  • the epoxy group-containing hydrolyzable silicon compound is particularly preferably 3-glycidoxypropyltrimethoxysilane, 2- (3, 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane and the like are used.
  • the epoxy group-containing hydrolyzable silicon compound can be used alone or as a mixture of two or more.
  • At least one hydroxyl group-containing benzophenone compound and at least one epoxy group-containing hydrolyzable silicon compound are reacted in the presence of a catalyst as necessary.
  • the amount of the epoxy group-containing hydrolyzable silicon compound used in the reaction is not particularly limited, but is preferably 0.5 to 5.0 mol, more preferably 1.0 to 3.3 mol per mol of the hydroxyl group-containing benzophenone compound. 0 mole.
  • the amount of the epoxy group-containing hydrolyzable silicon compound relative to 1 mol of the hydroxyl group-containing benzophenone compound is less than 0.5 mol, it is not silylated when it is added to the coating solution for forming an ultraviolet absorbing film of the present invention.
  • quaternary ammonium salt as described in JP-A-58-10591 is preferable.
  • the quaternary ammonium salt include tetramethylammonium chloride, tetraethylammonium chloride, benzyltrimethylammonium chloride, benzyltriethylammonium chloride and the like.
  • the addition amount of the catalyst to the reaction system is not particularly limited, but the addition amount is 0.005 to 10 parts by mass with respect to 100 parts by mass in total of the hydroxyl group-containing benzophenone compound and the epoxy group-containing hydrolyzable silicon compound.
  • the amount is preferably, and more preferably 0.01 to 5 parts by mass.
  • the amount of the catalyst added is less than 0.005 parts by mass with respect to a total of 100 parts by mass of the hydroxyl group-containing benzophenone compound and the epoxy group-containing hydrolyzable silicon compound, the reaction takes a long time, and when the amount exceeds 10 parts by mass, When this reaction product is added to the coating solution for forming an ultraviolet absorbing film of the present invention, the catalyst may reduce the stability of the coating solution.
  • the silylation reaction is carried out by heating a mixture of a hydroxyl group-containing benzophenone compound and an epoxy group-containing hydrolyzable silicon compound, preferably in the above ratio, in the temperature range of 50 to 150 ° C. for 4 to 20 hours in the presence of a catalyst. It can be carried out. This reaction may be carried out in the absence of a solvent or in a solvent that dissolves both the hydroxyl group-containing benzophenone compound and the epoxy group-containing hydrolyzable silicon compound, but it is easy to control the reaction and easy to handle.
  • a method using a solvent is preferred. Examples of such a solvent include toluene, xylene, ethyl acetate, butyl acetate and the like.
  • the amount of the solvent to be used is about 10 to 300 parts by mass with respect to 100 parts by mass in total of the hydroxyl group-containing benzophenone compound and the epoxy group-containing hydrolyzable silicon compound.
  • the silylated benzophenone compound preferably used in the present invention is obtained by reacting 1 to 2 hydroxyl groups of a benzophenone compound containing 3 or more hydroxyl groups with an epoxy group of an epoxy group-containing hydrolyzable silicon compound. More preferably, 4- (2-hydroxy-3- (3-trimethoxysilyl) propoxy) propoxy) -2,2 ′, 4′- represented by the following formula (b): And trihydroxybenzophenone.
  • Me represents a methyl group.
  • the blending amount thereof is the amount of the hydroxyl group-containing benzophenone compound residue in the silylated benzophenone compound, What is necessary is just to adjust so that it may become content of the ultraviolet absorber shown above.
  • the silylated benzophenone compound may be blended as a partially hydrolyzed condensate similar to the hydrolyzable silicon compounds constituting the silicon oxide matrix raw material component, and a part of these hydrolyzable silicon compounds. You may mix
  • the ultraviolet absorbing film is formed by curing a silicon oxide matrix raw material component comprising at least one selected from the hydrolyzable silicon compounds contained therein as described below.
  • the coating solution for forming an ultraviolet absorbing film of the present invention has a pKa of the first proton (hereinafter referred to as “pKa1” as necessary) of 1.0 to 5.0 as an acid catalyst for promoting the curing. Contains acid.
  • pKa1 the first proton
  • the obtained ultraviolet absorbing film is sufficiently colorless and transparent, and has sufficient light resistance, particularly preventing photodegradation of ultraviolet absorbing ability. It is possible to do.
  • acetic acid is particularly preferable in the present invention. These may be used alone or in combination of two or more.
  • the amount of the acid added can be set without particular limitation as long as it can function as a catalyst and can sufficiently ensure the colorless transparency of the ultraviolet absorbing film.
  • the molar concentration of the proton when completely dissociated with respect to the total mass of the coating solution is preferably 0.005 to 5.0 mol / kg, preferably 0.01 to 3.5 mol / kg. It is more preferable to contain. If the concentration of the acid used is less than 0.005 mol / kg, the catalyst may not function sufficiently, and if it exceeds 5.0 mol / kg, the hydrolysis rate increases and long-term storage may not be sufficient. is there.
  • the coating liquid for forming an ultraviolet absorbing film of the present invention may contain a curing catalyst as necessary in addition to the acid catalyst.
  • Curing catalysts include aliphatic carboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, lactic acid, tartaric acid, succinic acid, etc.), alkali metal salts such as lithium salt, sodium salt, potassium salt; benzyltrimethylammonium salt, tetramethylammonium salt Quaternary ammonium salts such as salts and tetraethylammonium salts; metal alkoxides and chelates such as aluminum, titanium and cerium; ammonium perchlorate, ammonium chloride, ammonium sulfate, sodium acetate, imidazoles and their salts, ammonium trifluoromethylsulfonate, Bis (tolufluoromethylsulfonyl) bromomethylammonium and the like can be mentioned.
  • the coating solution for forming an ultraviolet absorbing film of the present invention has a silicon oxide matrix raw material component comprising at least one selected from the above hydrolyzable silicon compounds, an ultraviolet absorber and a pKa of the first proton of 1.0 to 5. It contains water for hydrolyzing and polycondensing the hydrolyzable silicon compounds together with 0 acid.
  • the amount of water contained in the coating liquid for forming the ultraviolet absorbing film is The amount of the silicon oxide-based matrix raw material component is preferably 2 to 20 equivalents, more preferably 3 to 17.5 equivalents with respect to the SiO 2 equivalent amount. If the amount of water is less than 2 equivalents in the above molar ratio, the hardness of the ultraviolet absorbing film may be reduced, and if it exceeds 20 equivalents, the hydrolysis rate is increased and long-term storage properties may not be sufficient.
  • the coating solution for forming an ultraviolet absorbing film of the present invention comprises at least one silicon oxide matrix raw material component selected from the hydrolyzable silicon compounds as essential components, an ultraviolet absorber, and a pKa1 of 1.0 to 1.0.
  • various optional compounding agents can be contained as necessary within the range not impairing the effects of the present invention.
  • flexibility imparting component In the coating solution for forming an ultraviolet absorbing film of the present invention, flexibility is imparted to a silicon oxide matrix obtained by curing a silicon oxide matrix raw material component comprising at least one selected from the above hydrolyzable silicon compounds. Ingredients (hereinafter, referred to as “flexibility-imparting ingredient”) can be added, which is preferable. The blending of the flexibility-imparting component can contribute to the prevention of cracks in the ultraviolet absorbing film.
  • the composition of the flexibility-imparting component is effective regardless of the structure of the silicon oxide matrix raw material component, but the silicon oxide system composed only of the tetrafunctional hydrolyzable silicon compound is particularly effective.
  • the matrix may not be sufficiently flexible, and if a combination of a tetrafunctional hydrolyzable silicon compound and a flexibility-imparting component is added to the coating solution for forming an ultraviolet absorbing film, mechanical strength and crack resistance can be improved. An ultraviolet absorbing film excellent in both can be easily produced.
  • the flexibility-imparting component examples include silicone resins, acrylic resins, polyester resins, polyurethane resins, hydrophilic organic resins containing polyoxyalkylene groups, various organic resins such as epoxy resins, and organic compounds such as glycerin. it can.
  • an organic resin When an organic resin is used as the flexibility-imparting component, its form is preferably liquid or fine particles.
  • the organic resin may also be blended in the coating solution for forming an ultraviolet absorbing film as a raw material component of a resin that crosslinks and cures when the silicon oxide matrix raw material component is cured and dried. In this case, as long as the characteristics of the silicon oxide matrix are not hindered, a part of the silicon oxide matrix raw material component and the organic resin raw material component or organic resin which is a flexibility-imparting component partially react to crosslink. Also good.
  • the silicone resin is preferably a silicone oil containing various modified silicone oils, and a diorganosilicone containing a hydrolyzable silyl group or a polymerizable group-containing organic group at the end is partially or fully crosslinked.
  • examples include silicone rubber.
  • hydrophilic organic resin containing a polyoxyalkylene group examples include polyethylene glycol (PEG) and polyether phosphate ester polymers.
  • Polyurethane rubber, etc. can be used as the polyurethane resin, and acrylonitrile rubber, homopolymer of alkyl acrylate ester, homopolymer of alkyl methacrylate ester, alkyl acrylate ester and its alkyl acrylate copolymer can be copolymerized.
  • Preferred examples include a copolymer with a monomer, a copolymer of an alkyl methacrylate and a monomer copolymerizable with the alkyl methacrylate, and the like.
  • polyepoxides are a general term for compounds having a plurality of epoxy groups. That is, the average number of epoxy groups in the polyepoxides is 2 or more, but in the present invention, a polyepoxide having an average number of epoxy groups of 2 to 10 is preferred.
  • Such polyepoxides are preferably polyglycidyl compounds such as polyglycidyl ether compounds, polyglycidyl ester compounds, and polyglycidyl amine compounds.
  • the polyepoxides may be either aliphatic polyepoxides or aromatic polyepoxides, and aliphatic polyepoxides are preferred. These are compounds having two or more epoxy groups.
  • polyglycidyl ether compounds are preferred, and aliphatic polyglycidyl ether compounds are particularly preferred.
  • a glycidyl ether of a bifunctional or higher alcohol is preferable, and a glycidyl ether of a trifunctional or higher alcohol is particularly preferable from the viewpoint of improving light resistance.
  • These alcohols are preferably aliphatic alcohols, alicyclic alcohols, or sugar alcohols.
  • ethylene glycol diglycidyl ether polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol poly Examples thereof include glycidyl ether, trimethylolpropane polyglycidyl ether, sorbitol polyglycidyl ether, and pentaerythritol polyglycidyl ether. These may use only 1 type and may use 2 or more types together.
  • a poly of an aliphatic polyol having three or more hydroxyl groups such as glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, and sorbitol polyglycidyl ether.
  • Glycidyl ether one having an average number of glycidyl groups (epoxy groups) exceeding 2 per molecule is preferred. These may be used alone or in combination of two or more.
  • an ultraviolet absorbing film of the present invention among the above-mentioned flexibility-imparting components, it is possible to obtain ultraviolet rays by blending such an epoxy resin, particularly polyepoxides, PEG (polyethylene glycol), glycerin and the like. It is preferable from the viewpoint that sufficient flexibility can be imparted to the absorbent film while maintaining mechanical strength.
  • the blending amount of the flexibility imparting component is not particularly limited as long as it is an amount capable of imparting flexibility to the ultraviolet absorbing film and improving crack resistance without impairing the effects of the present invention.
  • An amount of 0.1 to 20 parts by mass is preferable with respect to 100 parts by mass of the raw material component, and an amount of 1.0 to 20 parts by mass is more preferable.
  • silica fine particles examples of an optional compounding agent that can be contained in the coating solution for forming an ultraviolet absorbing film of the present invention include silica fine particles blended to improve the wear resistance of the ultraviolet absorbing film.
  • silica fine particles are blended in a coating solution for forming an ultraviolet absorbing film, it is preferable to blend as colloidal silica.
  • Colloidal silica refers to silica fine particles dispersed in water or an organic solvent such as methanol, ethanol, isobutanol, or propylene glycol monomethyl ether.
  • colloidal silica can be appropriately blended to produce a coating solution for forming an ultraviolet absorbing film containing silica fine particles.
  • colloidal silica is blended with the raw material hydrolyzable silicon compound to perform partial hydrolyzate (co) condensation, and silica fine particle-containing partial hydrolyzate is produced.
  • a decomposition (co) condensate can be obtained, and this can be used as the coating solution for forming an ultraviolet absorbing film of the present invention containing silica fine particles.
  • silica fine particles are blended as an optional component in the coating solution for forming an ultraviolet absorbing film of the present invention, it is preferable to blend silica fine particles having an average particle diameter (BET method) of 1 to 100 nm.
  • BET method average particle diameter
  • the average particle diameter exceeds 100 nm, the particles diffusely reflect light, so that the value of the haze value of the obtained ultraviolet absorbing film increases, which may be undesirable in terms of optical quality.
  • the average particle size is particularly preferably 5 to 40 nm. This is for imparting abrasion resistance to the ultraviolet absorbing film and maintaining the colorless transparency of the ultraviolet absorbing film.
  • colloidal silica can use both a water dispersion type and an organic solvent dispersion type, it is preferable to use an organic solvent dispersion type.
  • the colloidal silica may contain inorganic fine particles other than silica fine particles such as alumina sol, titania sol, and ceria sol.
  • the blending amount thereof is 100 parts by mass of the silicon oxide matrix raw material component in the coating liquid for forming an ultraviolet absorbing film.
  • the amount is preferably 5 to 50 parts by mass, and more preferably 10 to 30 parts by mass.
  • the range of the above blending amount maintains the film forming property of the ultraviolet absorbing film while ensuring sufficient wear resistance, and cracks. This is a range of the amount of the silica fine particles that can prevent the generation of colorlessness and the colorless transparency of the ultraviolet absorbing film due to the aggregation of the silica fine particles.
  • the above-mentioned pKa1 is 1.0 to 5.5 as an acid catalyst for the purpose of improving the light resistance of the resulting ultraviolet absorbing film, particularly preventing the photoabsorption of the ultraviolet absorbing ability.
  • an acid of 0 is used, the hardness, for example, the scratch resistance, may be reduced as compared with the case where a conventionally used strong acid is used.
  • the silica fine particles blended to improve the wear resistance of the UV absorbing film function to prevent such deterioration of scratch resistance and maintain the UV absorbing film hardness at a certain level. Is. Specific embodiments and preferred embodiments of the silica fine particles are the same as described above.
  • the blending amount of the silica fine particles blended for preventing the deterioration of the scratch resistance is preferably 0.5 to 50 parts by mass, more preferably 1 with respect to 100 parts by mass of the silicon oxide matrix raw material component. 0.0 to 10 parts by mass.
  • the silica fine particles in addition to the addition of the silica fine particles, it is further added to hydrolyze / condensate the hydrolyzable silicon compound and the like. It is preferred to increase the amount of water produced. Specifically, the amount of water in this case is preferably 2 to 20 equivalents, more preferably 3 to 17.5 equivalents in terms of molar ratio with respect to the SiO 2 equivalent of the silicon oxide matrix raw material component. A compounding quantity is mentioned.
  • the scratch resistance may be lowered.
  • silica fine particles are blended in excess of the above upper limit, it may affect the film-forming property of the ultraviolet absorbing film, and if water is blended in excess of the above upper limit, the hydrolysis rate will increase and long-term storage will not be sufficient. There is.
  • the coating solution for forming an ultraviolet absorbing film of the present invention may further contain a light stabilizer for the purpose of improving light resistance.
  • the light stabilizer is preferably a hindered amine light stabilizer (HALS).
  • HALS hindered amine light stabilizer
  • the blending amount of the light stabilizer is preferably 0.001 to 0.015 parts by mass, more preferably 100 parts by mass of the silicon oxide matrix raw material component in the coating solution for forming an ultraviolet absorbing film. Is 0.002 to 0.009 parts by mass.
  • the coating solution for forming an ultraviolet absorbing film of the present invention may further contain functional fine particles such as indium tin oxide fine particles and antimony tin oxide fine particles and an organic dye for the purpose of imparting functionality.
  • the coating solution for forming an ultraviolet absorbing film of the present invention may contain a surfactant as an additive for the purpose of improving the coating property to the substrate and the smoothness of the resulting coating film.
  • the coating solution for forming an ultraviolet absorbing film of the present invention may further contain additives such as an antifoaming agent and a viscosity modifier for the purpose of improving the coating property to the substrate, and the adhesion to the substrate.
  • additives such as an adhesion-imparting agent may be included.
  • the amount of these additives is preferably 0.01 to 2 parts by mass for each additive component with respect to 100 parts by mass of the silicon oxide matrix raw material component in the coating solution for forming an ultraviolet absorbing film.
  • the coating liquid for forming an ultraviolet absorbing film of the present invention may contain a dye, a pigment, a filler and the like as long as the object of the present invention is not impaired.
  • the coating solution for forming an ultraviolet absorbing film of the present invention usually contains a predetermined amount of the above-mentioned silicon oxide matrix raw material component, an ultraviolet absorber, an acid and water having a pKa1 of 1.0 to 5.0, and an optional component.
  • Various additives and the like as compounding agents are prepared in an arbitrary amount and dissolved and dispersed in a solvent. It is necessary that all the non-volatile components in the coating liquid for forming an ultraviolet absorbing film be stably dissolved and dispersed in a solvent.
  • the solvent contains at least 20% by mass, preferably 50% by mass or more alcohol. .
  • alcohols used in such solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, and 2-ethoxyethanol. 4-methyl-2-pentanol, 2-butoxyethanol and the like are preferable.
  • alcohols having a boiling point of 80 to 160 ° C. are preferable from the viewpoint of good solubility of the above-mentioned silicon oxide matrix raw material components and good coatability to the substrate.
  • ethanol 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 1-methoxy-2-propanol, 2-ethoxyethanol, 4-methyl-2- Pentanol and 2-butoxyethanol are preferred.
  • the coating solution for forming an ultraviolet absorbing film of the present invention when the coating solution contains a partially hydrolyzed (co) condensate of a hydrolyzable silicon compound, in the production process, When a decomposable silicon compound (for example, alkyltrialkoxysilane) is hydrolyzed, a lower alcohol or the like generated in the hydrolysis, or a colloidal silica dispersed in an organic solvent is used.
  • a decomposable silicon compound for example, alkyltrialkoxysilane
  • solvents other than alcohol that can be mixed with water / alcohol may be used in combination.
  • examples include ketones such as acetone and acetylacetone; esters such as ethyl acetate and isobutyl acetate; ethers such as propylene glycol monomethyl ether, dipropylene glycol monomethyl ether and diisopropyl ether.
  • the amount of the solvent used in the coating solution for forming an ultraviolet absorbing film of the present invention is preferably 100 to 1900 parts by weight, and preferably 250 to 900 parts per 100 parts by weight of all nonvolatile components in the coating solution for forming an ultraviolet absorbing film. More preferably, it is part by mass.
  • the coating liquid for forming an ultraviolet absorbing film of the present invention contains the hydrolyzable silicon compound itself as the silicon oxide matrix raw material component, these are used for stabilizing the coating liquid during storage and the like.
  • a treatment for partial hydrolysis (co) condensation may be performed.
  • the partial hydrolysis cocondensation is preferably performed in the presence of the same acid catalyst as described above under the same reaction conditions as described above.
  • one or more hydrolyzable silicon compounds are mixed as required, and then the purpose is achieved by stirring for a predetermined time at room temperature in the presence of an acid catalyst having a pKa1 of 1.0 to 5.0. it can.
  • the optional compounding agent may be added before the partial hydrolysis cocondensation or after the partial hydrolysis cocondensation. It is preferable to add the catalyst and adjust the pH after the partial hydrolysis cocondensation.
  • the ultraviolet-absorbing glass article of the present invention has a glass substrate and an ultraviolet-absorbing film formed on the surface of at least a part of the glass substrate using the coating liquid for forming an ultraviolet-absorbing film of the present invention.
  • the material of the glass substrate used in the ultraviolet absorbing glass article of the present invention is not particularly limited, and examples thereof include ordinary soda lime glass, borosilicate glass, non-alkali glass, and quartz glass. Moreover, it is also possible to use the glass base material which absorbs an ultraviolet-ray and infrared rays as a glass base material of the ultraviolet-absorption glass article of this invention.
  • the ultraviolet absorbing glass article of the present invention is preferably used for applications in which abrasion resistance is particularly required since the ultraviolet absorbing film is excellent in abrasion resistance.
  • Glass plates for sliding windows such as windshields and side windows.
  • the ultraviolet-absorbing glass article of the present invention has an ultraviolet-absorbing film formed as described later using the coating liquid for forming an ultraviolet-absorbing film of the present invention having the above-described structure, and contains an ultraviolet absorber, particularly preferably used benzophenone.
  • This is an ultraviolet-absorbing glass article in which the transmittance of light having a wavelength of 380 nm is suppressed to a low level due to the ultraviolet-absorbing ability of the ultraviolet absorber.
  • the ultraviolet-absorbing glass article of the present invention has a transmittance of light having a wavelength of 380 nm measured using a spectrophotometer (manufactured by Hitachi, Ltd .: U-3500) as a glass plate in terms of a plate thickness of 3.5 mm. Is preferably 7.0% or less, more preferably 4.0% or less, and particularly preferably 1.0% or less.
  • the ultraviolet absorbing film of the ultraviolet absorbing glass article of the present invention uses an acid having the above pKa1 of 1.0 to 5.0 as an acid catalyst, and preferably further imparts flexibility such as the above polyepoxides, PEG, glycerin and the like.
  • the coating liquid for forming an ultraviolet absorbing film of the present invention containing the above components light of mechanical strength such as crack resistance and ultraviolet absorbing ability is maintained while maintaining the colorless transparency of the ultraviolet absorbing film. It is an ultraviolet absorbing film having durability against light irradiation over a long period of time, that is, light resistance, in which deterioration is prevented.
  • the benzophenone ultraviolet absorber preferably used in the present invention as an ultraviolet absorber is used as a silylated benzophenone compound which is a reaction product of a hydroxyl group-containing benzophenone compound and an epoxy group-containing hydrolyzable silicon compound, Since the contained benzophenone compound residue is fixed to the silicon oxide matrix constituting the UV absorbing film, there is little bleed out due to long-term use, and the UV absorbing glass article of the present invention has long-term storage stability with UV absorbing ability. It can be excellent.
  • the ultraviolet absorbing film-forming coating solution of the present invention As a specific method for forming the ultraviolet absorbing film-forming coating solution of the present invention on the glass substrate, (A) a step of coating the coating solution on the glass substrate to form a coating film, and (B) Removing the organic solvent from the coating film and curing an at least one silicon oxide matrix raw material component selected from the hydrolyzable silicon compounds to form a cured product to form an ultraviolet absorbing film.
  • the method of including is mentioned.
  • a coating solution is applied on a glass substrate to form a coating film of the coating solution.
  • the film formed here is a film containing the said solvent.
  • the coating method of the coating solution on the glass substrate is not particularly limited as long as it is a method of uniform coating, and is a flow coating method, a dip coating method, a spin coating method, a spray coating method, a flexographic printing method, a screen printing method.
  • Well-known methods such as a gravure printing method, a roll coating method, a meniscus coating method, and a die coating method can be used.
  • the thickness of the coating film of the coating solution is determined in consideration of the thickness of the finally obtained ultraviolet absorbing film.
  • step (B) the step of removing the solvent from the coating film of the coating solution on the glass substrate and curing the silicon oxide matrix raw material component such as the hydrolyzable silicon compound to form an ultraviolet absorbing film is included. To be implemented.
  • the volatile components are first removed by evaporation after the coating film is formed with the coating solution.
  • This removal of volatile components is preferably carried out by heating and / or drying under reduced pressure. It is preferable from the viewpoint of improving the leveling property of the coating film that the coating solution is formed on the glass substrate and then temporarily dried at a temperature of about room temperature to 120 ° C.
  • the volatile components are vaporized and removed in parallel with this, so the operation of removing the volatile components is included in the temporary drying.
  • the temporary drying time that is, the operation time for removing the volatile components, is preferably about 3 seconds to 2 hours, although it depends on the coating solution used for film formation.
  • the volatile component is sufficiently removed, but it may not be completely removed. That is, an organic solvent or the like can remain in the ultraviolet absorbing film as long as the performance of the ultraviolet absorbing film is not affected.
  • the silicon oxide matrix raw material components such as the hydrolyzable silicon compound are cured.
  • This reaction can be carried out at room temperature or under heating.
  • the upper limit of the heating temperature is preferably 200 ° C., and particularly preferably 190 ° C., because the cured product contains an organic component. Since the cured product can be generated even at normal temperature, the lower limit of the heating temperature is not particularly limited. However, when the promotion of the reaction by heating is intended, the lower limit of the heating temperature is preferably 60 ° C, more preferably 80 ° C. Therefore, the heating temperature is preferably 60 to 200 ° C, more preferably 80 to 190 ° C.
  • the heating time is preferably from several minutes to several hours, although it depends on the coating solution used for film formation.
  • the film thickness of the ultraviolet absorbing film of the ultraviolet absorbing glass article having the ultraviolet absorbing film thus formed using the coating liquid for forming an ultraviolet absorbing film of the present invention is 1.0 to 8.0 ⁇ m.
  • the thickness is preferably 1.5 to 7.0 ⁇ m.
  • the film thickness of the ultraviolet absorbing film is less than 1.0 ⁇ m, the ultraviolet absorbing effect may be insufficient.
  • the film thickness of the ultraviolet absorbing film exceeds 8.0 ⁇ m, cracks may occur when desired wear resistance is exhibited.
  • Examples 1 to 10 described below are examples, and examples 11 to 13 are comparative examples.
  • the constituent compounds of drugs described by trade names in each example are shown below.
  • SR-SEP sorbitol polyglycidyl ether manufactured by Sakamoto Pharmaceutical Co., Ltd.
  • Methanol silica sol Colloidal silica in which silica fine particles having an average primary particle size of 10 to 20 nm are dispersed in methanol at a solid content concentration of 30% by mass, manufactured by Nissan Chemical Industries, Ltd.
  • Example 1 50.3 g of Solmix AP-1, 12.1 g of tetramethoxysilane, 3.8 g of 3-glycidoxypropyltrimethoxysilane, 11.0 g of the silylated UV absorber solution obtained in the above synthesis example, 11.4 g of acetic acid and 11.4 of ion exchange water were charged to obtain a coating solution 1 for forming an ultraviolet absorbing film.
  • a coating solution 1 for forming an ultraviolet absorbing film was applied by a spin coating method and dried in the atmosphere at 180 ° C. for 30 minutes to obtain a glass plate with an ultraviolet absorbing film.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated as follows. The evaluation results are shown in Table 2.
  • Spectral characteristics measured with a spectrophotometer (manufactured by Hitachi, Ltd .: U-3500), transmittance of light at a wavelength of 380 nm, visible light transmittance and ultraviolet transmittance calculated according to JIS-R3106 Judged by.
  • YI yellowing degree
  • a spectrophotometer manufactured by Hitachi, Ltd .: U-3500
  • Abrasion resistance Using a Taber type abrasion resistance tester, a wear test of 1000 revolutions was performed with a CS-10F wear wheel by the method described in JIS-R3212 (1998), and the degree of scratches before and after the test was clouded The haze value was measured, and the haze value was increased by [%].
  • Accelerated weather resistance test (light resistance evaluation): A specimen is placed on a super xenon weather meter (Suga test machine: SX75), the illumination intensity is 150 W / m 2 (300-400 nm), the black panel temperature is 83 ° C., and the humidity is 50 RH%. After 1000 hours had passed after the specimen was exposed to the above conditions, the transmittance of light having a wavelength of 380 nm to the specimen was measured, and cracks were determined by the same method as in 2) above.
  • Example 2 52.2 g of Solmix AP-1, 12.1 g of tetramethoxysilane, 3.8 g of 3-glycidoxypropyltrimethoxysilane, 11.0 g of the silylated UV absorber solution obtained in the above synthesis example, 9.5 g of lactic acid and 11.4 g of ion-exchanged water were charged to obtain a coating solution 2 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 2 was used instead of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 3 61.5 g of Solmix AP-1, 12.1 g of tetramethoxysilane, 3.8 g of 3-glycidoxypropyltrimethoxysilane, 11.0 g of the silylated UV absorber solution obtained in the above synthesis example, 0.2 g of malonic acid and 11.4 g of ion-exchanged water were charged to obtain a coating solution 3 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 3 was used in place of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 4 52.5 g of Solmix AP-1, 11.3 g of tetramethoxysilane, 3.6 g of 3-glycidoxypropyltrimethoxysilane, 10.3 g of the silylated UV absorber solution obtained in the above synthesis example, As polyepoxide, 0.9 g of SR-SEP, 10.7 g of acetic acid, and 10.7 g of ion-exchanged water were charged to obtain a coating solution 4 for forming an ultraviolet absorbing film. A glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 4 was used instead of the coating solution 1. The characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 5 52.1 g of Solmix AP-1, 11.4 g of tetramethoxysilane, 3.7 g of 3-glycidoxypropyltrimethoxysilane, 10.5 g of the silylated UV absorber solution obtained in the above synthesis example, 0.7 g of glycerin, 10.8 g of acetic acid, and 10.8 g of ion-exchanged water were charged to obtain a coating solution 5 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 5 was used instead of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 6 52.5 g of Solmix AP-1, 11.3 g of tetramethoxysilane, 3.6 g of 3-glycidoxypropyltrimethoxysilane, 10.3 g of the silylated UV absorber solution obtained in the above synthesis example, 0.9 g of polyethylene glycol 400 (manufactured by Kanto Chemical Co., Inc.), 10.7 g of acetic acid, and 10.7 g of ion-exchanged water were charged to obtain a coating solution 6 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 6 was used instead of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 7 45.0 g of Solmix AP-1, 10.5 g of tetramethoxysilane, 3.5 g of 3-glycidoxypropyltrimethoxysilane, 10.2 g of the silylated UV absorber solution obtained in the above synthesis example, 0.8 g of SR-SEP as polyepoxide, 1.5 g of methanol silica sol as colloidal silica, 9.9 g of acetic acid, and 18.6 g of ion-exchanged water were charged to obtain a coating solution 7 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 7 was used instead of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 8 61.7 g of Solmix AP-1, 12.1 g of tetramethoxysilane, 3.8 g of 3-glycidoxypropyltrimethoxysilane, 11.0 g of the silylated UV absorber solution obtained in the above synthesis example, Shu 4.8 g of 1% acid aqueous solution and 6.7 g of ion-exchanged water were charged to obtain a coating solution 8 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 8 was used in place of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 9 40.5 g of Solmix AP-1, 16.0 g of tetramethoxysilane, 10.6 g of 3-glycidoxypropyltrimethoxysilane, 2.7 g of 2,2 ′, 4,4′-tetrahydroxybenzophenone, 15.1 g of acetic acid and 15.1 g of ion-exchanged water were charged to obtain a coating solution 9 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 9 was used instead of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 10 (Example 10) 30.4 g of Solmix AP-1, 31.0 g of tetraethoxysilane, 3.9 g of 2,2 ′, 4,4′-tetrahydroxybenzophenone, 3.2 g of polyethylene glycol 400 (manufactured by Kanto Chemical Co., Inc.) 10.2 g of acetic acid and 21.4 g of ion-exchanged water were charged to obtain a coating solution 10 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 10 was used instead of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 11 61.8 g of Solmix AP-1, 12.1 g of tetramethoxysilane, 3.8 g of 3-glycidoxypropyltrimethoxysilane, 11.0 g of the silylated UV absorber solution obtained in the above synthesis example, 2.4 g of a 10% sulfuric acid aqueous solution and 9.3 ion-exchanged water were charged to obtain a coating solution 11 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 11 was used instead of the coating solution 1. The characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • membrane since the crack generate
  • Example 12 61.6 g of Solmix AP-1, 12.1 g of tetramethoxysilane, 3.8 g of 3-glycidoxypropyltrimethoxysilane, 11.0 g of the silylated UV absorber solution obtained in the above synthesis example, 1.3 g of a 10% nitric acid aqueous solution and 10.2 g of ion-exchanged water were charged to obtain a coating solution 12 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was prepared in the same manner as in Example 1 except that the coating solution 12 was used instead of the coating solution 1.
  • the characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 13 17.4 g of Solmix AP-1, 19.1 g of tetramethoxysilane, 12.7 g of 3-glycidoxypropyltrimethoxysilane, 3.2 g of 2,2 ′, 4,4′-tetrahydroxybenzophenone, 48.4 g of 0.1N nitric acid (manufactured by Junsei Kagaku) was charged to obtain a coating solution 13 for forming an ultraviolet absorbing film.
  • a glass plate with an ultraviolet absorbing film was produced in the same manner as in Example 1 except that the coating solution 13 was used instead of the coating solution 1. The characteristics of the obtained glass plate with an ultraviolet absorbing film were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Table 1 summarizes the compositions of the coating solutions for forming an ultraviolet absorbing film obtained in Examples 1 to 13.
  • the abbreviations of the compounds used indicate the following compounds.
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • GPTMS 3-glycidoxypropyltrimethoxysilane
  • Si-THBP Silylated ultraviolet absorber obtained in the synthesis example
  • THBP 2,2 ′, 4,4′-tetrahydroxybenzophenone
  • -PEG400 Polyethylene glycol 400.
  • the amount of the ultraviolet absorber shown in Table 1 indicates the amount of the portion derived from THBP in Si-THBP.
  • the ultraviolet absorbing films prepared in Comparative Examples 11 to 13 have an ultraviolet absorbing ability, but are inferior in colorless transparency and have insufficient resistance to photodegradation of the ultraviolet absorbing ability.
  • the ultraviolet absorbing films prepared in Examples 1 to 10 which are examples, are excellent in ultraviolet absorbing ability, excellent in mechanical properties such as wear resistance and crack resistance, and sufficiently ensure colorless transparency. Therefore, there is little deterioration of the ultraviolet absorption ability due to long exposure.
  • the UV-absorbing glass article of the present invention has excellent UV-absorbing properties and mechanical strength, and is excellent in weather resistance and durability. It can also be applied to parts that require high mechanical durability and weather resistance.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2010-1111813 filed on May 14, 2010 are incorporated herein by reference. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Silicon Polymers (AREA)

Abstract

 耐摩耗性等の機械的耐久性を有するとともに、無色透明性が十分に確保され、長時間露光による紫外線吸収能の劣化が少ない紫外線吸収膜を形成させるための塗布液、およびその塗布液を用いて形成された耐摩耗性等の機械的耐久性を有し、無色透明性が十分に確保され、長時間露光による紫外線吸収能の劣化が少ない紫外線吸収膜を有する紫外線吸収ガラス物品を提供する。 加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分と、紫外線吸収剤と、第一プロトンのpKaが1.0~5.0の酸と、水とを含有する紫外線吸収膜形成用塗布液およびこれを用いて得られる紫外線吸収ガラス物品。

Description

紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品
 本発明は、ガラス等の物品表面に紫外線吸収膜を形成させるための塗布液およびその塗布液を用いて形成された紫外線吸収膜を有する紫外線吸収ガラス物品に関する。
 近年、自動車等の車輌用の窓ガラスや家屋、ビル等の建物に取り付けられる建材用の窓ガラス等の透明基板に、これらを通して車内や屋内に入射する紫外線を吸収する能力を有し、かつ耐摩耗性等の機械的耐久性を備えた紫外線吸収膜を被膜形成する試みがなされている。
 上記高い耐摩耗性と紫外線吸収能を有する紫外線吸収被膜を得るために、従来から、有機系紫外線吸収剤をシラン化合物に配合した塗布液を用いて基板上にシリカ系紫外線吸収膜を形成させる試みがなされている。例えば、特許文献1には、シリコンアルコキシドと、ポリエチレングリコール等の水溶性有機ポリマーとを含み、さらに紫外線吸収剤や有機色素を含有する塗布液をガラス板上に塗布し、硬化させて有機無機複合膜からなる紫外線吸収膜を得ることが記載されている。しかしながら、特許文献1に記載のシリカ系紫外線吸収膜では、耐摩擦性等の機械的耐久性は有するものの、無色透明が求められる場合にも膜に黄色味がでてしまう点や、長時間露光により紫外線吸収能が劣化する点で問題があった。
 そこで、耐摩耗性等の機械的耐久性を確保しつつ、無色透明性が十分に確保され、長時間露光による紫外線吸収能の劣化が少ない紫外線吸収膜が求められていた。
国際公開第2006/137454号パンフレット
 本発明は上記問題を解決するためになされたものであって、耐摩耗性等の機械的耐久性を有するとともに、無色透明性が十分に確保され、長時間露光による紫外線吸収能の劣化が少ない紫外線吸収膜を形成させるための塗布液、およびその塗布液を用いて形成された耐摩耗性等の機械的耐久性を有し、無色透明性が十分に確保され、長時間露光による紫外線吸収能の劣化が少ない紫外線吸収膜を有する紫外線吸収ガラス物品を提供することを目的とする。
 本発明は、以下の構成を有する紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品を提供する。
[1]加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分と、紫外線吸収剤と、第一プロトンのpKaが1.0~5.0の酸と、水とを含有する紫外線吸収膜形成用塗布液。
[2]前記酸を、該酸の第一プロトンが完全に解離したときのプロトンの塗布液全質量に対するモル濃度として0.005~5.0モル/kgとなる割合で含有する[1]に記載の紫外線吸収膜形成用塗布液。
[3]前記酸が、酢酸、乳酸、マレイン酸、マロン酸およびシュウ酸からなる群から選ばれる少なくとも1種である[1]または[2]に記載の紫外線吸収膜形成用塗布液。
[4]前記酸化ケイ素系マトリクス原料成分の主成分として部分加水分解縮合物を含んでいてもよい4官能性加水分解性ケイ素化合物を含有し、さらに可撓性付与成分を含有する、[1]~[3]のいずれかに記載の紫外線吸収膜形成用塗布液。
[5]前記酸化ケイ素系マトリクス原料成分の主成分として、それぞれ部分加水分解縮合物および/または両者の部分加水分解共縮合物を含んでいてもよい、4官能性加水分解性ケイ素化合物および3官能性加水分解性ケイ素化合物を含有する、[1]~[4]のいずれかに記載の紫外線吸収膜形成用塗布液。
[6]前記紫外線吸収剤がベンゾフェノン系紫外線吸収剤である、[1]~[5]のいずれかに記載の紫外線吸収膜形成用塗布液。
[7]前記ベンゾフェノン系紫外線吸収剤が、水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物とが反応して得られる加水分解性ケイ素化合物である[6]に記載の紫外線吸収膜形成用塗布液。
[8]前記紫外線吸収剤の含有量が前記酸化ケイ素系マトリクス原料成分100質量部に対して1~50質量部である、[1]~[7]のいずれか1項に記載の紫外線吸収膜形成用塗布液。
[9]前記水の含有量が前記酸化ケイ素系マトリクス原料成分のSiO換算量に対してモル比で1~20当量である[1]~[8]のいずれかに記載の紫外線吸収膜形成用塗布液。
[10]シリカ微粒子をさらに含有する[1]~[9]のいずれかに記載の紫外線吸収膜形成用塗布液。
[11]前記シリカ微粒子の含有量が前記酸化ケイ素系マトリクス原料成分100質量部に対して0.5~50質量部である[10]に記載の紫外線吸収膜形成用塗布液。
[12]塗布液全質量に対する前記酸化ケイ素系マトリクス原料成分の含有量が、該成分に含まれるケイ素原子をSiOに換算したときのSiO含有量として、1~20質量%である、[1]~[11]のいずれかに記載の紫外線吸収膜形成用塗布液。
[13]ガラス基材と、前記ガラス基材の少なくとも一部の表面に[1]~[12]のいずれかに記載の紫外線吸収膜形成用塗布液を用いて形成された紫外線吸収膜とを有する紫外線吸収ガラス物品。
 本発明の紫外線吸収膜形成用塗布液を用いれば、耐摩耗性等の機械的耐久性を有するとともに、無色透明性が十分に確保され、長時間露光による紫外線吸収能の劣化が少ない紫外線吸収膜が形成可能であり、このような紫外線吸収膜を有する本発明の紫外線吸収ガラス物品は、無色透明であり機械的にも紫外線吸収能についても長期耐久性を有する。
 以下に本発明の実施の形態を説明する。
[本発明の紫外線吸収膜形成用塗布液]
 紫外線吸収膜形成用塗布液は、加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分と、紫外線吸収剤と、第一プロトンのpKaが1.0~5.0の酸と、水とを含有する。
<酸化ケイ素系マトリクス原料成分>
 本発明の紫外線吸収膜形成用塗布液が含有する酸化ケイ素系マトリクス原料成分は、加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる。本明細書において、加水分解性ケイ素化合物類とは、少なくとも1個の加水分解性基がケイ素原子に結合したシラン化合物群およびこのようなシラン化合物群の1種または2種以上の部分加水分解(共)縮合物の総称として用いる。また、加水分解性ケイ素化合物の官能性の数は、ケイ素原子に結合した加水分解性基の数をいう。
 本発明の紫外線吸収膜形成用塗布液において、加水分解性ケイ素化合物類は、触媒としての上記酸と水の存在下、加水分解性基が加水分解してケイ素原子に結合した水酸基(すなわち、シラノール基)を生成し、次いでシラノール基同士が脱水縮合して-Si-O-Si-で表されるシロキサン結合を生成して高分子量化する。2官能性加水分解性ケイ素化合物のみからは線状のポリシロキサンが生成するが、3官能性加水分解性ケイ素化合物や4官能性加水分解性ケイ素化合物からはポリシロキサンの3次元的なネットワークが生成され、酸化ケイ素系マトリクスが形成される。また、2官能性加水分解性ケイ素化合物と3官能性加水分解性ケイ素化合物や4官能性加水分解性ケイ素化合物との混合物からもポリシロキサンの3次元的なネットワーク・酸化ケイ素系マトリクスが形成される。
 本発明の紫外線吸収膜形成用塗布液においては、酸化ケイ素系マトリクス原料成分の主成分として、部分加水分解縮合物を含んでいてもよい4官能性加水分解性ケイ素化合物を含有することが好ましく、その場合には、さらに後述する可撓性付与成分を含有することが好ましい。上記酸化ケイ素系マトリクス原料成分としては、また、主成分として4官能性加水分解性ケイ素化合物および3官能性加水分解性ケイ素化合物のそれぞれ部分加水分解縮合物および/またはこれらの部分加水分解共縮合物を含んでいてもよい、4官能性加水分解性ケイ素化合物および3官能性加水分解性ケイ素化合物を含有するものも好ましい。
 酸化ケイ素系マトリクス原料成分に係る特に好ましい態様としては、酸化ケイ素系マトリクス原料成分が部分加水分解縮合物を含んでいてもよい4官能性加水分解性ケイ素化合物のみで構成され、可撓性付与成分ともに紫外線吸収膜形成用塗布液に配合される態様である。または、酸化ケイ素系マトリクス原料成分がそれぞれ部分加水分解縮合物および/またはこれらの部分加水分解共縮合物を含んでいてもよい、4官能性加水分解性ケイ素化合物および3官能性加水分解性ケイ素化合物で構成され、必要に応じて可撓性付与成分ともに紫外線吸収膜形成用塗布液に配合される態様である。
 加水分解性ケイ素化合物が有する加水分解性基として、具体的には、アルコキシ基(アルコキシ置換アルコキシ基などの置換アルコキシ基を含む)、アルケニルオキシ基、アシル基、アシルオキシ基、オキシム基、アミド基、アミノ基、イミノキシ基、アミノキシ基、アルキル置換アミノ基、イソシアネート基、塩素原子などが挙げられる。これらのうちでも加水分解性基としては、アルコキシ基、アルケニルオキシ基、アシルオキシ基、イミノキシ基、アミノキシ基等のオルガノオキシ基が好ましく、特にアルコキシ基が好ましい。アルコキシ基としては、炭素数4以下のアルコキシ基と炭素数4以下のアルコキシ置換アルコキシ基(2-メトキシエトキシ基など)が好ましく、特にメトキシ基とエトキシ基が好ましい。
 上記4官能性加水分解性ケイ素化合物は、4個の加水分解性基がケイ素原子に結合した化合物である。加水分解性基の4個は互いに同一であっても異なっていてもよい。加水分解性基は、好ましくはアルコキシ基であり、より好ましくは炭素数4以下のアルコキシ基、さらに好ましくはメトキシ基とエトキシ基である。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトラn-ブトキシシラン、テトラsec-ブトキシシラン、テトラtert-ブトキシシラン等が挙げられるが、本発明において好ましくは、テトラエトキシシラン、テトラメトキシシラン等が用いられる。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 上記3官能性加水分解性ケイ素化合物は、3個の加水分解性基と1個の非加水分解性基がケイ素原子に結合した化合物である。加水分解性基の3個は互いに同一であっても異なっていてもよい。加水分解性基は、好ましくはアルコキシ基であり、より好ましくは炭素数4以下のアルコキシ基、さらに好ましくはメトキシ基とエトキシ基である。
 非加水分解性基としては、非加水分解性の官能基を有する、または官能基を有しない1価有機基であることが好ましく、官能基を有する非加水分解性の1価有機基であることがより好ましい。非加水分解性の1価有機基とは、当該有機基とケイ素原子が炭素-ケイ素結合で結合する、結合末端原子が炭素原子である有機基をいう。
 ここで、本明細書に用いる官能基とは、単なる置換基とは区別された、反応性を有する基を包括的に示す用語であり、例えば、飽和炭化水素基のような非反応性の基は、これに含まれない。また、モノマーが側鎖に有するような高分子化合物の主鎖形成に関わらない付加重合性の不飽和二重結合(エチレン性二重結合)は官能基の1種とする。また、本明細書に用いる(メタ)アクリル酸エステル等の「(メタ)アクリル…」の用語は、「アクリル…」と「メタクリル…」の両方を意味する用語である。
 上記非加水分解性の1価有機基のうちでも、官能基を有しない非加水分解性の1価有機基としては、アルキル基、アリール基などの付加重合性の不飽和二重結合を有しない炭化水素基、ハロゲン化アルキル基などの付加重合性の不飽和二重結合を有しないハロゲン化炭化水素基が好ましい。官能基を有しない非加水分解性の1価有機基としては、特に炭素数20以下、より好ましくは10以下が好ましい。この1価有機基としては、炭素数4以下のアルキル基が好ましい。
 官能基を有しない非加水分解性の1価有機基を有する3官能性加水分解性ケイ素化合物としては具体的には、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリス(2-メトキシエトキシ)シラン、メチルトリアセトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロペノキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン等が挙げられる。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 上記官能基を有する非加水分解性の1価有機基における官能基としては、エポキシ基、(メタ)アクリロキシ基、1級または2級のアミノ基、オキセタニル基、ビニル基、スチリル基、ウレイド基、メルカプト基、イソシアネート基、シアノ基、ハロゲン原子等が挙げられるが、エポキシ基、(メタ)アクリロキシ基、1級または2級のアミノ基、オキセタニル基、ビニル基、ウレイド基、メルカプト基などが好ましい。特に、エポキシ基、1級または2級のアミノ基、(メタ)アクリロキシ基が好ましい。エポキシ基を有する1価有機基としては、グリシドキシ基、3,4-エポキシシクロヘキシル基を有する1価有機基が好ましく、1級または2級のアミノ基を有する有機基としては、アミノ基、モノアルキルアミノ基、フェニルアミノ基、N-(アミノアルキル)アミノ基などを有する1価有機基が好ましい。
 1価有機基における官能基は2個以上存在していてもよいが、1級または2級のアミノ基の場合を除いて1個の官能基を有する1価有機基が好ましい。1級または2級のアミノ基の場合は、2個以上のアミノ基を有していてもよく、その場合は1個の1級アミノ基と1個の2級アミノ基を有する1価有機基、例えば、N-(2-アミノエチル)-3-アミノプロピル基や3-ウレイドプロピル基などが好ましい。これら官能基を有する1価有機基の全炭素数は20以下が好ましく、10以下がより好ましい。
 官能基を有する非加水分解性の1価有機基を有する3官能性加水分解性ケイ素化合物としては具体的には、以下の化合物が挙げられる。
 ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリイソプロペノキシシラン、p-スチリルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、5,6-エポキシへキシルトリメトキシシラン、9,10-エポキシデシルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、ジ-(3-メタクリロキシ)プロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-クロロプロピルトリプロポキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-シアノエチルトリメトキシシラン等を挙げることができる。
 これらのうちでも好ましい化合物としては、炭素数2または3のアルキル基の末端に、グリシドキシ基、2,3-エポキシシクロヘキシル基、アミノ基、アルキルアミノ基(アルキル基の炭素数は4以下)、フェニルアミノ基、N-(アミノアルキル)アミノ基(アルキル基の炭素数は4以下)、および(メタ)アクリロキシ基のいずれかの官能基を有する1価有機基の1個と、炭素数4以下のアルコキシ基の3個がケイ素原子に結合した3官能性加水分解性ケイ素化合物である。
 このような化合物として、具体的には、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、ジ-(3-メタクリロキシ)プロピルトリエトキシシラン等が挙げられる。シラン化合物との反応性の点から3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が特に好ましい。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 また、本発明の紫外線吸収膜形成用塗布液においては、酸化ケイ素系マトリクス原料成分として、必要に応じて2官能性加水分解性ケイ素化合物を含有してもよい。
 2官能性加水分解性ケイ素化合物は、2個の加水分解性基と2個の非加水分解性基がケイ素原子に結合した化合物である。加水分解性基の2個は互いに同一であっても異なっていてもよい。加水分解性基は、好ましくはアルコキシ基であり、より好ましくは炭素数4以下のアルコキシ基、さらに好ましくはメトキシ基とエトキシ基である。
 非加水分解性基としては、非加水分解性の1価有機基であることが好ましい。非加水分解性の1価有機基は必要に応じて、上記3官能性加水分解性ケイ素化合物と同様の官能基を有してもよい。
 上記2官能性加水分解性ケイ素化合物として、具体的には、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ(2-メトキシエトキシ)シラン、ジメチルジアセトキシシラン、ジメチルジプロポキシシラン、ジメチルジイソプロペノキシシラン、ジメチルジブトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジアセトキシシラン、ビニルメチルジ(2-メトキシエトキシ)シラン、ビニルメチルジイソプロペノキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルメチルジアセトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、3-クロロプロピルメチルジプロポキシシラン、3,3,3-トリフロロプロピルメチルジメトキシシラン、3-メタクリルオキシプロピルメチルジメトキシシラン、3-アクリルオキシプロピルメチルジメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、2-シアノエチルメチルジメトキシシラン等が挙げられる。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 本発明の紫外線吸収膜形成用塗布液において、上記4官能性加水分解性ケイ素化合物、3官能性加水分解性ケイ素化合物、2官能性加水分解性ケイ素化合物は、それ自体として配合されてもよく、それぞれの部分加水分解縮合物として配合されてもよく、これらの2種以上の部分加水分解共縮合物として配合されてもよい。以下、部分加水分解縮合物と部分加水分解共縮合物を総称して部分加水分解(共)縮合物ともいう。
 部分加水分解(共)縮合物とは、加水分解性ケイ素化合物が加水分解し、次いで脱水縮合することによって生成するオリゴマー(多量体)である。部分加水分解(共)縮合物は通常溶媒に溶解する程度の高分子量化体である。部分加水分解(共)縮合物は、加水分解性基やシラノール基を有し、さらに加水分解(共)縮合して最終的な硬化物になる性質を有する。ある1種の加水分解性ケイ素化合物のみから部分加水分解縮合物を得ることができ、また2種以上の加水分解性ケイ素化合物からそれらの共縮合体である部分加水分解共縮合物を得ることもできる。
 上記加水分解性ケイ素化合物の部分加水分解(共)縮合は、例えば、酸触媒存在下、加水分解性ケイ素化合物の低級アルコール溶液に水が添加された反応液を、10~40℃で1~48時間撹拌することで行うことができる。なお、反応に用いる酸触媒の種類や量については紫外線吸収膜形成用塗布液が含有する酸と同様とする。
 なお、本発明の紫外線吸収膜形成用塗布液において、4官能性加水分解性ケイ素化合物、3官能性加水分解性ケイ素化合物、2官能性加水分解性ケイ素化合物は、上記何れの状態で配合されても、最終的に酸化ケイ素系マトリクスを構成する単位として、それぞれ区別されるものである。以下、本発明の紫外線吸収膜形成用塗布液においては、例えば、4官能性加水分解性ケイ素化合物について、それ自体およびその部分加水分解縮合物と、部分加水分解共縮合物におけるその加水分解性ケイ素化合物由来の成分とを併せて、4官能性加水分解性ケイ素化合物の由来成分という。
 本発明の紫外線吸収膜形成用塗布液が含有する酸化ケイ素系マトリクス原料成分は、好ましくは上記の通り、(1)4官能性加水分解性ケイ素化合物由来成分のみで構成されるか、(2)4官能性加水分解性ケイ素化合物由来成分および3官能性加水分解性ケイ素化合物由来成分で構成される。なお、(1)の場合、紫外線吸収膜形成用塗布液は、特に、得られる紫外線吸収膜が一定の膜厚を確保しながら十分な耐クラック性を獲得するために、可撓性付与成分を含有することが好ましい。また、(2)の場合、4官能性加水分解性ケイ素化合物由来成分と3官能性加水分解性ケイ素化合物由来成分の配合割合は、4官能性加水分解性ケイ素化合物由来成分/3官能性加水分解性ケイ素化合物由来成分として質量比で、30/70~95/5が好ましく、40/60~90/10がより好ましく、50/50~80/20が最も好ましい。
 また、上記2官能性加水分解性ケイ素化合物由来成分は、(1)、(2)において必要に応じて任意に配合される。配合量は、酸化ケイ素系マトリクス原料成分全量に対して質量%で30質量%以下の量とすることが好ましい。
 また、本発明の紫外線吸収膜形成用塗布液において、塗布液全質量に対する上記酸化ケイ素系マトリクス原料成分の含有量は、該酸化ケイ素系マトリクス原料成分に含まれるケイ素原子をSiOに換算したときのSiO含有量として、1~20質量%であることが好ましく、より好ましくは3~15質量%である。この塗布液全質量に対する酸化ケイ素系マトリクス原料成分の含有量が、1%未満であると、所望の膜厚の紫外線吸収膜を得るための塗布液の塗布量を多くする必要があり、その結果外観が悪化するおそれがあり、20質量%を超えると、塗布液を塗布した状態での膜厚が厚くなり、得られる紫外線吸収膜にクラックが発生するおそれがある。
<紫外線吸収剤>
 本発明の紫外線吸収膜形成用塗布液は、これを用いて形成される膜が紫外線吸収膜として機能するように、紫外線吸収剤を含有する。本発明の紫外線吸収膜形成用塗布液においては、酸触媒を特定なものとすることで、紫外線吸収剤の光による劣化を防止し、長期使用を可能としたものである。
 紫外線吸収剤として、具体的には、ベンゾフェノン類、トリアジン類、ベンゾトリアゾール類、シアノアクリレート類、アゾメチン類、インドール類、サリシレート類および、アントラセン類等の有機系紫外線吸収剤が挙げられる。これらの紫外線吸収剤には、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、アゾメチン系紫外線吸収剤、インドール系紫外線吸収剤、サリシレート系紫外線吸収剤、アントラセン系紫外線吸収剤等およびこれらの化合物を用いて作製された水分散体、エマルジョン、さらに、これらの化合物と金属との錯体が含まれる。
 上記ベンゾトリアゾール系紫外線吸収剤として、具体的には、2-〔5-クロロ(2H)-ベンゾトリアゾール-2-イル〕-4-メチル-6-(tert-ブチル)フェノール(市販品としては、TINUVIN 326(商品名、チバ・ジャパン社製)等)、オクチル-3-[3-tert-4-ヒドロキシ-5-[5-クロロ-2H-ベンゾトリアゾール-2-イル]プロピオネート、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル]ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-2H-ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-(2H-ベンゾチリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール等が挙げられる。
 上記トリアジン系紫外線吸収剤として、具体的には、2-[4-[(2-ヒドロキシ-3-ドデシロキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ビス-ブトキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、TINUVIN477(商品名、チバ・ジャパン株式会社製))等が挙げられる。
 上記シアノアクリレート系紫外線吸収剤として、具体的には、UVINUL3008(商品名、BASFジャパン株式会社製)等が、サリシレート系紫外線吸収剤として、具体的には、p-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート等が、アントラセン系紫外線吸収剤として、具体的には、アントラセンおよびアントラセン誘導体等が、インドール系紫外線吸収剤としてはBONASORB UA-3911、BONASORB UA-3912(商品名、共にオリエント化学社製)等が、アゾメチン系紫外線吸収剤としては、BONASORB UA-3701(商品名、オリエント化学社製)等が挙げられる。
 上記ベンゾフェノン系紫外線吸収剤として、具体的には、2,4-ジヒドロキシベンゾフェノン、2,2’,3(または4、5、6のいずれか)-トリヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,4-ジヒドロキシ-2’,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン等が挙げられる。
 これら例示した有機系紫外線吸収剤の光の極大吸収波長は、325~425nmの範囲にあり、概ね325~390nmの範囲にあるものが多く、比較的長波長の紫外線に対しても吸収能を有するものである。本発明において、これら紫外線吸収剤は1種を単独で用いることも、2種以上を併用することも可能である。また、これら紫外線吸収剤のうちでも本発明の紫外線吸収膜形成用塗布液においては、溶解性の点からベンゾフェノン系紫外線吸収剤が好ましく用いられる。
 本発明の紫外線吸収膜形成用塗布液における紫外線吸収剤の含有量は、得られる紫外線吸収膜が十分な紫外線吸収能を有するとともに、紫外線吸収膜の機械的強度を確保する点から、酸化ケイ素系マトリクス原料成分100質量部に対して1~50質量部であることが好ましく、5~40質量部であることがより好ましく、8~30質量部であることが特に好ましい。
 また、本発明の紫外線吸収膜形成用塗布液においては、紫外線吸収剤として、上記有機系紫外線吸収剤に必要に応じて官能基を導入し、これと上記官能基を有する非加水分解性の1価有機基を有する加水分解性ケイ素化合物とを反応させて得られる反応生成物を、配合することも可能である。
 このような反応生成物として、具体的には、上記本発明に好ましく用いられるベンゾフェノン系紫外線吸収剤、例えば、水酸基含有ベンゾフェノン系化合物と、エポキシ基含有加水分解性ケイ素化合物との反応生成物(以下、「シリル化ベンゾフェノン系化合物」ともいう)が挙げられる。シリル化ベンゾフェノン系化合物を紫外線吸収膜形成用塗布液に配合すれば、この化合物は上記加水分解性ケイ素化合物とともに架橋構造を有する酸化ケイ素系マトリクスを形成する。これにより、シリル化ベンゾフェノン系化合物由来の水酸基含有ベンゾフェノン系化合物残基が酸化ケイ素系マトリクスに固定されて、ブリードアウト(bleed out)が防止される。その結果、得られる紫外線吸収膜は、長期にわたって紫外線吸収能を保持することが可能となる。
 上記シリル化ベンゾフェノン系化合物の原料である水酸基を有するベンゾフェノン系化合物としては、ベンゾフェノン骨格を有する化合物であって水酸基を有するものであればいずれのものでもよいが、本発明においては、下記一般式(a)で示される、水酸基を2~4個有するベンゾフェノン系化合物が、シリル化した後も優れた紫外線吸収能を有する点から好ましく用いられる。紫外線吸収能の点、特に380nmまでの長波長の紫外線吸収能の点からいえば、水酸基含有ベンゾフェノン系化合物が有する水酸基数は、より好ましくは3個または4個である。
Figure JPOXMLDOC01-appb-C000001
(式中、Xはそれぞれ同一でも異なっていてもよい、水素原子または水酸基を表し、そのうちの少なくとも1個は水酸基である。)
 さらに、上記一般式(a)で表される水酸基を有するベンゾフェノン系化合物のうちでも、本発明においては、2,4-ジヒドロキシベンゾフェノン、2,2’,3-トリヒドロキシベンゾフェノン、4、5、6-トリヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン等がより好ましく、2,2’,4,4’-テトラヒドロキシベンゾフェノンが特に好ましい。水酸基を有するベンゾフェノン系化合物をシリル化する反応において、水酸基含有ベンゾフェノン系化合物は1種を単独でまたは2種以上の混合物として用いることが可能である。
 このような水酸基含有ベンゾフェノン系化合物をシリル化する反応に用いるエポキシ基含有加水分解性ケイ素化合物としては、上記エポキシ基を有する非加水分解性の1価有機基がケイ素原子に結合した、3官能性または2官能性の加水分解性ケイ素化合物が挙げられる。好ましくは、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランおよび2-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン等が挙げられる。
 これらのなかでも、本発明においては、塗布液への溶解性等の観点から、上記エポキシ基含有加水分解性ケイ素化合物として特に好ましくは、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン等が用いられる。なお、水酸基含有ベンゾフェノン系化合物をシリル化する反応において、エポキシ基含有加水分解性ケイ素化合物は1種を単独でまたは2種以上の混合物として用いることが可能である。
 水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物との反応生成物を得る方法としては、通常のシリル化反応にかかる方法が特に限定されずに適用可能であるが、具体的には、以下の方法が挙げられる。
 水酸基含有ベンゾフェノン系化合物の少なくとも1種とエポキシ基含有加水分解性ケイ素化合物の少なくとも1種を、必要に応じて触媒の存在下で、反応させる。反応に用いるエポキシ基含有加水分解性ケイ素化合物の量は、特に限定されないが、水酸基含有ベンゾフェノン系化合物1モルに対して好ましくは0.5~5.0モル、さらに好ましくは1.0~3.0モルである。水酸基含有ベンゾフェノン系化合物1モルに対するエポキシ基含有加水分解性ケイ素化合物の量が0.5モル未満であると、本発明の紫外線吸収膜形成用塗布液に添加しようとする場合、シリル化されていない水酸基含有ベンゾフェノン系化合物が多く膜中に存在することにより、ブリードアウトするおそれがある。また、水酸基含有ベンゾフェノン系化合物1モルに対するエポキシ基含有加水分解性ケイ素化合物の量が5.0モルを超えると、紫外線吸収に関する水酸基含有ベンゾフェノン系化合物の絶対量が少なくなるため、紫外線吸収性が低下するおそれがある。
 上記シリル化反応に用いられる触媒としては、特開昭58-10591号公報に記されているような、第4級アンモニウム塩が好ましい。第4級アンモニウム塩としては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド等が例示される。
 反応系への触媒の添加量は特に限定されないが、水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物との合計100質量部に対して、0.005~10質量部となるような添加量が好ましく、さらに好ましくは0.01~5質量部となるような添加量である。水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物との合計100質量部に対する触媒の添加量が0.005質量部未満では、反応に長時間を要し、また10質量部を超えると、この反応生成物を本発明の紫外線吸収膜形成用塗布液に添加した場合に触媒が塗布液の安定性を低下させるおそれがある。
 上記シリル化反応は、触媒の存在下、水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物の好ましくは上記割合の混合物を、50~150℃の温度範囲で4~20時間加熱することにより行うことができる。この反応は無溶媒で行っても、水酸基含有ベンゾフェノン系化合物およびエポキシ基含有加水分解性ケイ素化合物の双方を溶解する溶媒中で行ってもよいが、反応の制御のしやすさ、扱いやすさから溶媒を用いる方法が好ましい。このような溶媒としては、トルエン、キシレン、酢酸エチル、酢酸ブチルなどが例示される。また、用いる溶媒の量としては、水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物との合計100質量部に対して10~300質量部程度の量が挙げられる。
 本発明において好ましく用いられるシリル化ベンゾフェノン系化合物としては、3個以上の水酸基を含有するベンゾフェノン系化合物の1~2個の水酸基と、エポキシ基含有加水分解性ケイ素化合物のエポキシ基が反応して得られる反応生成物等が挙げられ、より好ましくは、下記式(b)に示される4-(2-ヒドロキシ-3-(3-トリメトキシシリル)プロポキシ)プロポキシ)-2,2’,4’-トリヒドロキシベンゾフェノン等が挙げられる。なお、下記式(b)中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000002
 本発明の紫外線吸収膜形成用塗布液が、紫外線吸収剤としてシリル化ベンゾフェノン系化合物を含有する場合には、その配合量は該シリル化ベンゾフェノン系化合物における水酸基含有ベンゾフェノン系化合物残基の量が、上に示す紫外線吸収剤の含有量となるように調整すればよい。また、シリル化ベンゾフェノン系化合物は、上記酸化ケイ素系マトリクス原料成分を構成する加水分解性ケイ素化合物類と同様、部分加水分解縮合物として配合されてもよく、これら加水分解性ケイ素化合物類との部分加水分解共縮合物として配合されてもよい。
<酸>
 本発明の紫外線吸収膜形成用塗布液においては、これが含有する上記加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分を、後述の通り硬化させることで紫外線吸収膜を形成する。本発明の紫外線吸収膜形成用塗布液は、この硬化を促進するための酸触媒として第一プロトンのpKa(以下、必要に応じて「pKa1」と表記する)が1.0~5.0の酸を含有する。本発明においては、酸触媒としてこのような酸を用いることで、得られる紫外線吸収膜の無色透明性を十分に確保するとともに、十分な耐光性を保持する、特に紫外線吸収能の光劣化を防止することを可能としている。
 上記本発明に用いる酸としては、第一プロトンのpKaが1.0~5.0の酸であれば特に制限されないが、具体的には、酢酸(pKa1=4.76)、乳酸(pKa1=3.64)、マレイン酸(pKa1=1.84)、マロン酸(pKa1=2.60)、シュウ酸(pKa1=1.04)等が挙げられる。これらの中でも、本発明においては酢酸が特に好ましい。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 酸の添加量は、触媒としての機能が果たせる範囲で、かつ紫外線吸収膜の無色透明性を十分に確保できる範囲で、特に限定なく設定できるが、具体的には、該酸の第一プロトンが完全に解離したときのプロトンの塗布液全質量に対するモル濃度として0.005~5.0モル/kgとなる割合で含有することが好ましく、0.01~3.5モル/kgとなる割合で含有することがより好ましい。用いる酸の濃度が0.005モル/kg未満では触媒としても機能が十分に果たせないことがあり、5.0モル/kgを超えると加水分解速度が速くなり長期保管性が十分でなくなるおそれがある。
 なお、本発明の紫外線吸収膜形成用塗布液は、上記酸触媒の他に必要に応じて硬化触媒を含有してもよい。硬化触媒としては、脂肪族カルボン酸(ギ酸、酢酸、プロピオン酸、酪酸、乳酸、酒石酸、コハク酸等)のリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;ベンジルトリメチルアンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等の四級アンモニウム塩;アルミニウム、チタン、セリウム等の金属アルコキシドやキレート;過塩素酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、酢酸ナトリウム、イミダゾール類及びその塩、トリフルオロメチルスルホン酸アンモニウム、ビス(トルフルオルメチルスルホニル)ブロモメチルアンモニウム等が挙げられる。
<水>
 本発明の紫外線吸収膜形成用塗布液は、上記加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分、紫外線吸収剤および第一プロトンのpKaが1.0~5.0の酸とともに、上記加水分解性ケイ素化合物類を加水分解・縮重合させるための水を含有する。
 本発明の紫外線吸収膜形成用塗布液が含有する水の量は、上記加水分解性ケイ素化合物類を加水分解・縮重合させるために十分な量であれば、特に制限されないが、上記酸化ケイ素系マトリクス原料成分のSiO換算量に対してモル比で1~20当量となる量が好ましく、3~16当量となる量がより好ましい。水の量が上記モル比で1当量未満では加水分解が進行しにくく、塗布時に基材によっては塗布液がはじかれたり、ヘイズが上昇することがあり、20当量を超えると加水分解速度が速くなり長期保管性が十分でなくなることがある。
 なお、後述のように耐摩耗性や耐傷付き性等の紫外線吸収膜における硬度を向上させる目的で、シリカ微粒子を配合する場合は、特に、紫外線吸収膜形成用塗布液が含有する水の量は、上記酸化ケイ素系マトリクス原料成分のSiO換算量に対してモル比で2~20当量となる量が好ましく、3~17.5当量となる量がより好ましい。水の量が上記モル比で2当量未満では紫外線吸収膜の硬度が低下することがあり、20当量を超えると加水分解速度が速くなり長期保管性が十分でなくなることがある。
 なお、シリカ微粒子として後述する水分散型コロイダルシリカを用いた場合や上記紫外線吸収剤が水分散体として用いられる場合には、これらの水も紫外線吸収膜形成用塗布液に含まれる水として扱われる。
<その他成分>
 また、本発明の紫外線吸収膜形成用塗布液は、必須成分である上記加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分、紫外線吸収剤、pKa1が1.0~5.0の酸および水以外に、本発明の効果を損なわない範囲において、必要に応じて、種々の任意の配合剤を含有することができる。
(可撓性付与成分)
 本発明の紫外線吸収膜形成用塗布液においては、上記加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分が硬化して得られる酸化ケイ素系マトリクスに可撓性を付与する成分(以下、「可撓性付与成分」という。)を配合することが可能であり、好ましい。可撓性付与成分の配合は、紫外線吸収膜におけるクラック発生の防止に寄与することが可能である。
 なお、上記酸化ケイ素系マトリクス原料成分がいずれの構成であっても、可撓性付与成分の配合は有効であるが、特に、上記4官能性加水分解性ケイ素化合物のみで構成される酸化ケイ素系マトリクスは可撓性が十分でない場合があり、紫外線吸収膜形成用塗布液に4官能性加水分解性ケイ素化合物と可撓性付与成分とを組合せて配合すれば、機械的強度と耐クラック性の双方に優れた紫外線吸収膜を容易に作製することができる。
 可撓性付与成分としては、例えば、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオキシアルキレン基を含む親水性有機樹脂、エポキシ樹脂などの各種有機樹脂、グリセリン等の有機化合物を挙げることができる。
 可撓性付与成分として有機樹脂を用いる場合、その形態としては、液状、微粒子などが好ましい。有機樹脂は、また、上記酸化ケイ素系マトリクス原料成分の硬化・乾燥等の際に、架橋・硬化するような樹脂の原料成分として、紫外線吸収膜形成用塗布液に配合してもよい。この場合、酸化ケイ素系マトリクスの特性を阻害しない範囲で、上記酸化ケイ素系マトリクス原料成分の一部と可撓性付与成分である有機樹脂原料成分や有機樹脂が部分的に反応して架橋してもよい。
 可撓性付与成分のうちシリコーン樹脂として好ましくは、各種変性シリコーンオイルを含むシリコーンオイル、末端が加水分解性シリル基もしくは重合性基含有有機基を含有するジオルガノシリコーンを一部あるいは全部架橋させたシリコーンゴム等が挙げられる。
 ポリオキシアルキレン基を含む親水性有機樹脂として好ましくは、ポリエチレングリコール(PEG)、ポリエーテルリン酸エステル系ポリマー等が挙げられる。
 ポリウレタン樹脂としてはポリウレタンゴム等を、アクリル系樹脂としてはアクリロニトリルゴム、アクリル酸アルキルエステルの単独重合体、メタクリル酸アルキルエステルの単独重合体、アクリル酸アルキルエステルとそのアクリル酸アルキルエステルと共重合可能なモノマーとの共重合体、メタクリル酸アルキルエステルとそのメタクリル酸アルキルエステルと共重合可能なモノマーとの共重合体等を好ましく挙げることができる。上記(メタ)アクリル酸アルキルエステルと共重合可能なモノマーとしては、(メタ)アクリル酸のヒドロキシアルキルエステル、ポリオキシアルキレン基を有する(メタ)アクリル酸エステル、紫外線吸収剤の部分構造を有する(メタ)アクリル酸エステル、ケイ素原子を有する(メタ)アクリル酸エステル等を使用できる。
 可撓性付与成分としてエポキシ樹脂を紫外線吸収膜形成用塗布液に配合する場合には、エポキシ樹脂の原料成分であるポリエポキシド類と硬化剤の組合せまたはポリエポキシド類を単独で配合することが好ましい。ポリエポキシド類とは、複数のエポキシ基を有する化合物の総称である。すなわち、ポリエポキシド類の平均エポキシ基数は2以上であるが、本発明においては平均エポキシ基数が2~10のポリエポキシドが好ましい。
 このようなポリエポキシド類としては、ポリグリシジルエーテル化合物、ポリグリシジルエステル化合物、およびポリグリシジルアミン化合物等のポリグリシジル化合物が好ましい。また、ポリエポキシド類としては、脂肪族ポリエポキシド類、芳香族ポリエポキシド類のいずれであってもよく、脂肪族ポリエポキシド類が好ましい。これらは、エポキシ基を2個以上有する化合物である。
 これらのなかでもポリグリシジルエーテル化合物が好ましく、脂肪族ポリグリシジルエーテル化合物が特に好ましい。ポリグリシジルエーテル化合物としては、2官能以上のアルコールのグリシジルエーテルであることが好ましく、耐光性を向上できる点から3官能以上のアルコールのグリシジルエーテルであることが特に好ましい。なお、これらアルコールは、脂肪族アルコール、脂環式アルコール、または糖アルコールであることが好ましい。
 具体的には、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。
 これらのうちでも、特に耐光性を向上できる点から、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、およびソルビトールポリグリシジルエーテル等の3個以上の水酸基を有する脂肪族ポリオールのポリグリシジルエーテル(1分子あたり平均のグリシジル基(エポキシ基)数が2を超えるもの)が好ましい。これらは1種が単独で用いられても、2種以上が併用されてもよい。
 本発明の紫外線吸収膜形成用塗布液においては、上記可撓性付与成分のうちでも、このようなエポキシ樹脂、特にポリエポキシド類、PEG(ポリエチレングリコール)、グリセリン等を配合することが、得られる紫外線吸収膜に、機械的強度も保持しながら十分な可撓性を付与できる点から好ましい。また、上記エポキシ樹脂、特にポリエポキシド類、PEG、グリセリン等は、長期間に亘る光照射による、クラックの発生を防止する機能に加えて、紫外線吸収膜の無色透明性を確保しながら上記ベンゾフェノン系紫外線吸収剤の紫外線吸収能の低下を防止することで耐光性を向上させる機能も有するものである。なお、本発明においては、これらのなかでもポリエポキシド類が特に好ましい。
 上記可撓性付与成分の配合量は、本発明の効果を損なわずに、紫外線吸収膜に可撓性を付与し耐クラック性を向上できる量であれば特に制限されないが、上記酸化ケイ素系マトリクス原料成分100質量部に対して、0.1~20質量部となる量が好ましく、1.0~20質量部となる量がより好ましい。
(シリカ微粒子)
 本発明の紫外線吸収膜形成用塗布液が含有可能な任意の配合剤として、紫外線吸収膜の耐摩耗性を向上させるために配合されるシリカ微粒子が挙げられる。シリカ微粒子を紫外線吸収膜形成用塗布液に配合する場合には、コロイダルシリカとして配合することが好ましい。なお、コロイダルシリカとは、シリカ微粒子が、水またはメタノール、エタノール、イソブタノール、プロピレングリコールモノメチルエーテル等の有機溶媒中に分散されたものをいう。本発明の紫外線吸収膜形成用塗布液製造の際にコロイダルシリカを適宜配合して、シリカ微粒子を含む紫外線吸収膜形成用塗布液を製造することができる。また、加水分解性ケイ素化合物の部分加水分解(共)縮合物を製造する場合、その原料加水分解性ケイ素化合物にコロイダルシリカを配合して部分加水分解(共)縮合を行い、シリカ微粒子含有部分加水分解(共)縮合物を得ることができ、これを用いてシリカ微粒子を含む本発明の紫外線吸収膜形成用塗布液とすることも可能である。
 本発明の紫外線吸収膜形成用塗布液に任意成分としてシリカ微粒子を配合する場合には、平均粒径(BET法)が1~100nmのシリカ微粒子を配合することが好ましい。平均粒径が100nmを超えると、粒子が光を乱反射するため、得られる紫外線吸収膜の曇価の値が大きくなり、光学品質上好ましくない場合がある。さらに、平均粒径は5~40nmであることが特に好ましい。これは、紫外線吸収膜に耐摩耗性を付与しつつ、かつ紫外線吸収膜の無色透明性を保持するためである。また、コロイダルシリカは水分散型および有機溶剤分散型のどちらも使用できるが、有機溶剤分散型を使用することが好ましい。さらに、コロイダルシリカには、アルミナゾル、チタニアゾル、セリアゾル等のシリカ微粒子以外の無機質微粒子を含有させることもできる。
 また、本発明の紫外線吸収膜形成用塗布液に任意成分としてシリカ微粒子を配合する場合には、その配合量としては、紫外線吸収膜形成用塗布液中の上記酸化ケイ素系マトリクス原料成分100質量部に対して、5~50質量部となる量が好ましく、10~30質量部となる量がより好ましい。上記配合量の範囲が、本発明の紫外線吸収膜形成用塗布液を用いて形成される紫外線吸収膜において、十分な耐摩耗性を確保しながら紫外線吸収膜の製膜性を維持し、かつクラックの発生や、シリカ微粒子同士の凝集による紫外線吸収膜の無色透明性の低下を防止できるシリカ微粒子の配合量の範囲である。
 なお、本発明の紫外線吸収膜形成用塗布液においては、得られる紫外線吸収膜の耐光性の向上、特に紫外線吸収能の光劣化を防止する目的で酸触媒として上記pKa1が1.0~5.0の酸を用いるが、それにより、従来用いられている強酸を用いた場合に比べて、硬度、例えば耐傷つき性に低下が見られることがある。しかし、上記紫外線吸収膜の耐摩耗性を向上させるために配合されるシリカ微粒子は、このような耐傷つき性の低下を防止して、紫外線吸収膜硬度を一定レベルに維持するためにも機能するものである。シリカ微粒子の具体的な態様や好ましい態様は上記同様である。また、耐傷つき性の低下を防止するために配合されるシリカ微粒子の配合量は、上記酸化ケイ素系マトリクス原料成分100質量部に対して、好ましくは0.5~50質量部、より好ましくは1.0~10質量部である。
 ここで、上記シリカ微粒子による耐傷つき性低下の防止機能を十分に発揮させるためには、該シリカ微粒子の添加に加えて、さらに上記加水分解性ケイ素化合物等を加水分解・縮重合させるために配合される水の量を増加することが好ましい。この場合の水の配合量として、具体的には、上記酸化ケイ素系マトリクス原料成分のSiO換算量に対してモル比で、好ましくは2~20当量、より好ましくは3~17.5当量の配合量が挙げられる。
 シリカ微粒子と水の配合量のいずれかが上記配合量のそれぞれの下限より少ないと、耐傷つき性が低下することがある。また、シリカ微粒子を上記上限を超えて配合すると紫外線吸収膜の製膜性に影響を及ぼすことがあり、水を上記上限を超えて配合すると加水分解速度が速くなり長期保管性が十分でなくなることがある。
 本発明の紫外線吸収膜形成用塗布液は、さらに、耐光性向上の目的で、光安定剤を含んでいてもよい。光安定剤として好ましくは、ヒンダードアミン系光安定化剤(HALS)等が挙げられる。光安定剤の配合量は、紫外線吸収膜形成用塗布液中の上記酸化ケイ素系マトリクス原料成分100質量部に対して、好ましくは0.001~0.015質量部となる量であり、より好ましくは0.002~0.009質量部となる量である。
 本発明の紫外線吸収膜形成用塗布液は、さらに、機能性付与の目的でインジウム錫酸化物微粒子、アンチモン錫酸化物微粒子等の機能性微粒子や有機色素を含んでいてもよい。
 また、本発明の紫外線吸収膜形成用塗布液は、基材への塗工性および得られる塗膜の平滑性を向上させる目的で界面活性剤を添加剤として含んでいてもよい。
 本発明の紫外線吸収膜形成用塗布液は、さらに、基材への塗工性向上の目的で、消泡剤や粘性調整剤等の添加剤を含んでいてもよく、基材への密着性向上の目的で密着性付与剤等の添加剤を含んでいてもよい。これらの添加剤の配合量は、紫外線吸収膜形成用塗布液中の上記酸化ケイ素系マトリクス原料成分100質量部に対して、各添加剤成分毎に0.01~2質量部となる量が好ましい。また、本発明の紫外線吸収膜形成用塗布液は、本発明の目的を損なわない範囲で、染料、顔料、フィラーなどを含んでいてもよい。
 本発明の紫外線吸収膜形成用塗布液は、通常、必須成分である所定量の上記酸化ケイ素系マトリクス原料成分、紫外線吸収剤、pKa1が1.0~5.0の酸および水と、任意の配合剤である種々の添加剤等が任意の量、溶媒中に溶解、分散した形態で調製される。上記紫外線吸収膜形成用塗布液中の全不揮発成分が溶媒に安定に溶解、分散することが必要であり、そのために溶媒は、少なくとも20質量%以上、好ましくは50質量%以上のアルコールを含有する。
 このような溶媒に用いるアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-メトキシ-2-プロパノール、2-エトキシエタノール、4-メチル-2-ペンタノール、および2-ブトキシエタノール等が好ましい。これらのうちでも、上記酸化ケイ素系マトリクス原料成分の溶解性が良好な点、基材への塗工性が良好な点から、沸点が80~160℃のアルコールが好ましい。具体的には、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、1-メトキシ-2-プロパノール、2-エトキシエタノール、4-メチル-2-ペンタノール、および2-ブトキシエタノールが好ましい。
 また、本発明の紫外線吸収膜形成用塗布液に用いる溶媒としては、前記塗布液が、加水分解性ケイ素化合物の部分加水分解(共)縮合物を含む場合には、その製造過程で、原料加水分解性ケイ素化合物(例えばアルキルトリアルコキシシラン)を加水分解することに伴って発生する低級アルコール等や、有機溶媒分散系のコロイダルシリカを使用した場合にはその分散有機溶媒も含まれる。
 さらに、本発明の紫外線吸収膜形成用塗布液においては、上記以外の溶媒として、水/アルコールと混和することができるアルコール以外の他の溶媒を併用してもよく、このような溶媒としては、アセトン、アセチルアセトン等のケトン類;酢酸エチル、酢酸イソブチル等のエステル類;プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジイソプロピルエーテル等のエーテル類が挙げられる。
 本発明の紫外線吸収膜形成用塗布液において用いる溶媒の量は、紫外線吸収膜形成用塗布液中の全不揮発成分100質量部に対して、100~1900質量部であることが好ましく、250~900質量部であることがより好ましい。
 また、本発明の紫外線吸収膜形成用塗布液が、上記酸化ケイ素系マトリクス原料成分として、加水分解性ケイ素化合物自体を含有する場合には、保存等に際して塗布液を安定化するために、これらを部分加水分解(共)縮合させる処理を行ってもよい。
 上記と同様にこの部分加水分解共縮合においては、上記同様の酸触媒の存在下で、上記と同様の反応条件の下で行うことが好ましい。通常は、加水分解性ケイ素化合物単体の1種以上を必要に応じて混合後、pKa1が1.0~5.0の酸触媒の存在下に常温で所定時間攪拌することにより目的を達することができる。前記任意の配合剤の配合は、この部分加水分解共縮合の前に行ってもよく、この部分加水分解共縮合の後に行ってもよい。触媒の添加やpHの調整はこの部分加水分解共縮合の後に行うことが好ましい。
[本発明の紫外線吸収ガラス物品]
 本発明の紫外線吸収ガラス物品は、ガラス基材と、前記ガラス基材の少なくとも一部の表面に上記本発明の紫外線吸収膜形成用塗布液を用いて形成された紫外線吸収膜とを有する。
 本発明の紫外線吸収ガラス物品に用いるガラス基材の材質としては、特に限定されず、通常のソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。また、本発明の紫外線吸収ガラス物品のガラス基材としては、紫外線や赤外線を吸収するガラス基材を用いることも可能である。
 なお、本発明の紫外線吸収ガラス物品は、紫外線吸収膜が耐磨耗性に優れることから、好ましく適用されるのは、耐摩耗性が特に求められる用途であり、具体的には、自動車の窓用、特にウインドシールドやサイド窓等の摺動窓用のガラス板である。
 本発明の紫外線吸収ガラス物品は、上記構成の本発明の紫外線吸収膜形成用塗布液を用いて後述のように形成された紫外線吸収膜を有し、含有する紫外線吸収剤、特に好ましく用いられるベンゾフェノン系紫外線吸収剤の紫外線吸収能により、波長380nmの光の透過率が小さく抑えられた紫外線吸収ガラス物品である。本発明の紫外線吸収ガラス物品は、ガラス板として、板厚3.5mm換算として、具体的には、分光光度計(日立製作所製:U-3500)を用いて測定した波長380nmの光の透過率が7.0%以下であることが好ましく、4.0%以下であることがより好ましく、1.0%以下であることが特に好ましい。
 また、本発明の紫外線吸収ガラス物品が有する紫外線吸収膜は、酸触媒として上記pKa1が1.0~5.0の酸を用い、好ましくはさらに上記ポリエポキシド類、PEGやグリセリン等の可撓性付与成分を配合した上記本発明の紫外線吸収膜形成用塗布液を用いて作製されることで、紫外線吸収膜の無色透明性を保持しながら、耐クラック性等の機械的強度と紫外線吸収能の光劣化が防止された、長期に亘る光照射に対する耐久性すなわち耐光性を有する紫外線吸収膜である。
 さらに、紫外線吸収剤として本発明に好ましく用いられるベンゾフェノン系紫外線吸収剤を、水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物との反応生成物であるシリル化ベンゾフェノン系化合物として用いれば、水酸基含有ベンゾフェノン系化合物残基は、紫外線吸収膜を構成する酸化ケイ素系マトリクスに固定されているため、長期使用によるブリードアウトも少なく、本発明の紫外線吸収ガラス物品を紫外線吸収能の長期保存安定性に優れるものとすることができる。
 本発明の紫外線吸収膜形成用塗布液を上記ガラス基材上に形成させる具体的な方法としては、(A)ガラス基材上に塗布液を塗布し塗膜を形成する工程と、(B)前記塗膜から前記有機溶媒を除去するとともに上記加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分を硬化させて硬化物とすることで紫外線吸収膜を形成する工程を含む方法が挙げられる。
 まず(A)工程において、塗布液をガラス基材上に塗布して、塗布液の被膜を形成する。なお、ここで形成される被膜は上記溶媒を含む被膜である。ガラス基材上への塗布液の塗布方法は、均一に塗布される方法であれば特に限定されず、フローコート法、ディップコート法、スピンコート法、スプレーコート法、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、ロールコート法、メニスカスコート法、ダイコート法など、公知の方法を用いることができる。塗布液の被膜の厚さは、最終的に得られる紫外線吸収膜の厚さを考慮して決められる。
 次に(B)の工程として、ガラス基材上の塗布液の被膜から溶媒を除去するとともに上記加水分解性ケイ素化合物等の酸化ケイ素系マトリクス原料成分を硬化させて紫外線吸収膜を形成する工程が実施される。
 上記塗布液の被膜は揮発性の有機溶媒などを含んでいるため、塗布液による被膜形成後、まずこの揮発性成分を蒸発させて除去する。この揮発性成分の除去は加熱および/または減圧乾燥によって行うことが好ましい。ガラス基材上に塗布液の被膜を形成した後、室温~120℃程度の温度下で仮乾燥を行うことが塗膜のレベリング性向上の観点から好ましい。通常この仮乾燥の操作中に、これと並行して揮発成分が気化して除去されるため、揮発成分除去の操作は仮乾燥に含まれることになる。仮乾燥の時間、すなわち揮発成分除去の操作の時間は、被膜形成に用いる塗布液にもよるが3秒~2時間程度であることが好ましい。
 なお、この際、揮発成分が十分除去されることが好ましいが、完全に除去されなくてもよい。つまり、紫外線吸収膜の性能に影響を与えない範囲で紫外線吸収膜に有機溶媒等が残存することも可能である。また、上記揮発性成分の除去のために加熱を行う場合には、その後必要に応じて行われる酸化ケイ素系化合物の作製のための加熱と、上記揮発性成分の除去のための加熱、すなわち一般的には仮乾燥と、は連続して実施してもよい。
 上記のようにして塗膜から揮発成分を除去した後、上記加水分解性ケイ素化合物等の酸化ケイ素系マトリクス原料成分を硬化させる。この反応は、常温下ないし加熱下に行うことができる。加熱下に硬化物(酸化ケイ素系マトリクス)を生成させる場合、硬化物が有機成分を含むことより、その加熱温度の上限は200℃が好ましく、特に190℃が好ましい。常温においても硬化物を生成させることができることより、その加熱温度の下限は特に限定されるものではない。ただし、加熱による反応の促進を意図する場合は、加熱温度の下限は60℃が好ましく、80℃がより好ましい。したがって、この加熱温度は60~200℃が好ましく、80~190℃がより好ましい。加熱時間は、被膜形成に用いる塗布液にもよるが、数分~数時間であることが好ましい。
 本発明の紫外線吸収膜形成用塗布液を用いて、このようにして形成される紫外線吸収膜を有する紫外線吸収ガラス物品の、紫外線吸収膜の膜厚は、1.0~8.0μmであることが好ましく、より好ましくは1.5~7.0μmである。紫外線吸収膜の膜厚が1.0μm未満であると、紫外線吸収効果が不十分となることがある。また、紫外線吸収膜の膜厚が8.0μmを越えると所望の耐摩耗性を発現したときにクラックが発生することがある。
 以下、本発明の実施例を挙げてさらに説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下に説明する例1~10が実施例であり、例11~13が比較例である。また、各例において商品名で記載した薬剤の構成化合物を以下に示す。
 各例において商品名で記載した薬剤の構成化合物を以下に示す。
  ・SR-SEP:阪本薬品工業社製、ソルビトール系ポリグリシジルエーテル。
  ・ソルミックスAP-1:日本アルコール販売社製、エタノール:イソプロピルアルコール:メタノール=85:10:5(質量比)の混合溶媒。
  ・メタノールシリカゾル:日産化学工業社製、平均一次粒径10~20nmのシリカ微粒子を固形分濃度30質量%でメタノールに分散させたコロイダルシリカ。
(シリル化紫外線吸収剤の合成例)
 2,2’,4,4’-テトラヒドロキシベンゾフェノン(BASF社製)49.2g、3-グリシドキシプロピルトリメトキシシラン(信越化学社製)47.3g、塩化ベンジルトリエチルアンモニウム(純正化学社製)0.8g、酢酸ブチル(純正化学社製)100gを仕込み攪拌しながら60℃に昇温し、溶解させ、120℃まで加熱し4時間反応させることにより上記式(b)に示される4-(2-ヒドロキシ-3-(3-トリメトキシシリル)プロポキシ)プロポキシ)-2,2’,4’-トリヒドロキシベンゾフェノン(Si-THBP)を固形分濃度49質量%で含有するシリル化紫外線吸収剤溶液を得た。なお、シリル化紫外線吸収剤溶液中の4-(2-ヒドロキシ-3-(3-トリメトキシシリル)プロポキシ)プロポキシ)-2,2’,4’-トリヒドロキシベンゾフェノンのうち、51質量%が2,2’,4,4’-テトラヒドロキシベンゾフェノンに由来する。
(例1)
 ソルミックスAP-1の50.3g、テトラメトキシシランの12.1g、3-グリシドキシプロピルトリメトキシシランの3.8g、上記合成例で得られたシリル化紫外線吸収剤溶液の11.0g、酢酸の11.4g、イオン交換水の11.4を仕込み、紫外線吸収膜形成用塗布液1を得た。
 その後、表面を清浄した高熱線吸収グリーンガラス(Tv:75.2%、Tuv:9.5%、波長380nmの光の透過率:38.5%、縦10cm、横10cm、厚さ3.5mm、旭硝子社製、通称UVFL)上にスピンコート法によって紫外線吸収膜形成用塗布液1を塗布し、大気中、180℃で30分間乾燥させた後、紫外線吸収膜付きガラス板を得た。得られた紫外線吸収膜付きガラス板の特性を以下のとおり評価した。評価結果を表2に示す。
[評価]
 1)膜厚:走査型電子顕微鏡(日立製作所製:S-800)によって紫外線吸収膜の断面観察を行い、得られた観察像より膜厚[nm]を得た。
 2)クラック試験:乾燥後の紫外線吸収膜を肉眼および金属顕微鏡にて観察し、層面にクラックが入っているかどうかで判断した。クラックが入っていない、つまり肉眼でも顕微鏡でも観察できないものを○、肉眼では見えないが顕微鏡では観察されるものを△、肉眼でも観察できるものを×とした。
 3)分光特性(透過率):分光光度計(日立製作所製:U-3500)を用いて測定し、波長380nmにおける光線の透過率と、JIS-R3106に従って算出した可視光線透過率および紫外線透過率によって判定した。
 4)YI(黄変度):分光光度計(日立製作所製:U-3500)を用いて測定し、JIS-K7105に従って算出した黄変度によって判定した。
 5)耐摩耗性:テーバー式耐摩耗試験機を用い、JIS-R3212(1998年)に記載の方法によって、CS-10F摩耗ホイールで1000回転の摩耗試験を行い、試験前後の傷の程度を曇価(ヘイズ値)によって測定し、曇価の増加量[%]で評価した。
 6)促進耐候性試験(耐光性評価):スーパーキセノンウェザーメーター(スガ試験機:SX75)に検体を設置し、照射照度150W/m(300-400nm)、ブラックパネル温度83℃、湿度50RH%の条件に検体を曝し1000時間経過した後、検体に対する波長380nmの光の透過率を測定するとともに、上記2)と同様の方法でクラックの判定を行った。
(例2)
 ソルミックスAP-1の52.2g、テトラメトキシシランの12.1g、3-グリシドキシプロピルトリメトキシシランの3.8g、上記合成例で得られたシリル化紫外線吸収剤溶液の11.0g、乳酸の9.5g、イオン交換水の11.4gを仕込み、紫外線吸収膜形成用塗布液2を得た。塗布液1に代えて上記塗布液2を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例3)
 ソルミックスAP-1の61.5g、テトラメトキシシランの12.1g、3-グリシドキシプロピルトリメトキシシランの3.8g、上記合成例で得られたシリル化紫外線吸収剤溶液の11.0g、マロン酸の0.2g、イオン交換水の11.4gを仕込み、紫外線吸収膜形成用塗布液3を得た。塗布液1に代えて上記塗布液3を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例4)
 ソルミックスAP-1の52.5g、テトラメトキシシランの11.3g、3-グリシドキシプロピルトリメトキシシランの3.6g、上記合成例で得られたシリル化紫外線吸収剤溶液の10.3g、ポリエポキシドとしてSR-SEPの0.9g、酢酸の10.7g、イオン交換水の10.7gを仕込み、紫外線吸収膜形成用塗布液4を得た。塗布液1に代えて上記塗布液4を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例5)
 ソルミックスAP-1の52.1g、テトラメトキシシランの11.4g、3-グリシドキシプロピルトリメトキシシランの3.7g、上記合成例で得られたシリル化紫外線吸収剤溶液の10.5g、グリセリンの0.7g、酢酸の10.8g、イオン交換水の10.8gを仕込み、紫外線吸収膜形成用塗布液5を得た。塗布液1に代えて上記塗布液5を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例6)
 ソルミックスAP-1の52.5g、テトラメトキシシランの11.3g、3-グリシドキシプロピルトリメトキシシランの3.6g、上記合成例で得られたシリル化紫外線吸収剤溶液の10.3g、ポリエチレングリコール400(関東化学社製)の0.9g、酢酸の10.7g、イオン交換水の10.7gを仕込み、紫外線吸収膜形成用塗布液6を得た。塗布液1に代えて上記塗布液6を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例7)
 ソルミックスAP-1の45.0g、テトラメトキシシランの10.5g、3-グリシドキシプロピルトリメトキシシランの3.5g、上記合成例で得られたシリル化紫外線吸収剤溶液の10.2g、ポリエポキシドとしてSR-SEPの0.8g、コロイダルシリカとしてメタノールシリカゾルの1.5g、酢酸の9.9g、イオン交換水の18.6gを仕込み、紫外線吸収膜形成用塗布液7を得た。塗布液1に代えて上記塗布液7を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例8)
 ソルミックスAP-1の61.7g、テトラメトキシシランの12.1g、3-グリシドキシプロピルトリメトキシシラン3.8g、上記合成例で得られたシリル化紫外線吸収剤溶液の11.0g、シュウ酸1%水溶液の4.8g、イオン交換水の6.7gを仕込み、紫外線吸収膜形成用塗布液8を得た。塗布液1に代えて上記塗布液8を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例9)
 ソルミックスAP-1の40.5g、テトラメトキシシランの16.0g、3-グリシドキシプロピルトリメトキシシランの10.6g、2,2’,4,4’-テトラヒドロキシベンゾフェノンの2.7g、酢酸の15.1g、イオン交換水の15.1gを仕込み、紫外線吸収膜形成用塗布液9を得た。塗布液1に代えて上記塗布液9を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例10)
 ソルミックスAP-1の30.4g、テトラエトキシシランの31.0g、2,2’,4,4’-テトラヒドロキシベンゾフェノンの3.9g、ポリエチレングリコール400(関東化学社製)の3.2g、酢酸の10.2g、イオン交換水の21.4gを仕込み、紫外線吸収膜形成用塗布液10を得た。塗布液1に代えて上記塗布液10を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例11)
 ソルミックスAP-1の61.8g、テトラメトキシシランの12.1g、3-グリシドキシプロピルトリメトキシシランの3.8g、上記合成例で得られたシリル化紫外線吸収剤溶液の11.0g、硫酸10%水溶液の2.4g、イオン交換水の9.3を仕込み、紫外線吸収膜形成用塗布液11を得た。塗布液1に代えて上記塗布液11を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。なお、この紫外線吸収膜付きガラス板につき、クラック試験を行なった後、紫外線吸収膜にクラックが発生したため、促進耐候性試験としての透過率変化の測定は行なわなかった。
(例12)
 ソルミックスAP-1の61.6g、テトラメトキシシランの12.1g、3-グリシドキシプロピルトリメトキシシランの3.8g、上記合成例で得られたシリル化紫外線吸収剤溶液の11.0g、硝酸10%水溶液の1.3g、イオン交換水の10.2gを仕込み、紫外線吸収膜形成用塗布液12を得た。塗布液1に代えて上記塗布液12を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。
(例13)
 ソルミックスAP-1の17.4g、テトラメトキシシランの19.1g、3-グリシドキシプロピルトリメトキシシランの12.7g、2,2’,4,4’-テトラヒドロキシベンゾフェノンの3.2g、0.1N硝酸(純正化学製)の48.4gを仕込み、紫外線吸収膜形成用塗布液13を得た。塗布液1に代えて上記塗布液13を使用した以外は例1と同様にして、紫外線吸収膜付きガラス板を作製した。得られた紫外線吸収膜付きガラス板の特性を例1と同様に評価した。評価結果を表2に示す。なお、この紫外線吸収膜付きガラス板につき、クラック試験を行なった後、紫外線吸収膜にクラックが発生したため、促進耐候性試験としての透過率変化の測定は行なわなかった。
 上記例1~例13で得られた紫外線吸収膜形成用塗布液の組成を表1にまとめて示す。なお、表1において、用いた化合物の略号は以下の化合物を示すものである。
・TMOS:テトラメトキシシラン、
・TEOS:テトラエトキシシラン、
・GPTMS:3-グリシドキシプロピルトリメトキシシラン、
・Si-THBP:合成例で得られたシリル化紫外線吸収剤、
・THBP:2,2’,4,4’-テトラヒドロキシベンゾフェノン、
・PEG400:ポリエチレングリコール400。
 また、紫外線吸収剤としてSi-THBPを用いた場合には、表1の紫外線吸収剤の量は、Si-THBP中のTHBPに由来する部分の量を示すものである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2が示す通り、比較例である例11~13で作製された紫外線吸収膜では、紫外線吸収能はあるものの無色透明性に劣り、紫外線吸収能の光劣化への耐性が不十分である。一方、実施例である例1~10で作製された紫外線吸収膜では、紫外線吸収能に優れ、また耐摩耗性、耐クラック性等の機械的特性にも優れるとともに、無色透明性が十分に確保され、長時間露光による紫外線吸収能の劣化が少ない。
 本発明の紫外線吸収ガラス物品は、優れた紫外線吸収性および機械的強度を有し、耐候性、耐久性にも優れることから、自動車用のドアガラス板など、耐摩耗性、耐クラック性等の機械的耐久性や耐候性が高度に要求される部位への適用も可能である。
 なお、2010年5月14日に出願された日本特許出願2010-111813号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。

Claims (13)

  1.  加水分解性ケイ素化合物類から選ばれる少なくとも1種からなる酸化ケイ素系マトリクス原料成分と、紫外線吸収剤と、第一プロトンのpKaが1.0~5.0の酸と、水とを含有する紫外線吸収膜形成用塗布液。
  2.  前記酸を、該酸の第一プロトンが完全に解離したときのプロトンの塗布液全質量に対するモル濃度として0.005~5.0モル/kgとなる割合で含有する、請求項1に記載の紫外線吸収膜形成用塗布液。
  3.  前記酸が、酢酸、乳酸、マレイン酸、マロン酸およびシュウ酸からなる群から選ばれる少なくとも1種である、請求項1または2に記載の紫外線吸収膜形成用塗布液。
  4.  前記酸化ケイ素系マトリクス原料成分の主成分として部分加水分解縮合物を含んでいてもよい4官能性加水分解性ケイ素化合物を含有し、さらに可撓性付与成分を含有する、請求項1~3のいずれか1項に記載の紫外線吸収膜形成用塗布液。
  5.  前記酸化ケイ素系マトリクス原料成分の主成分として、それぞれ部分加水分解縮合物および/または両者の部分加水分解共縮合物を含んでいてもよい、4官能性加水分解性ケイ素化合物および3官能性加水分解性ケイ素化合物を含有する、請求項1~4のいずれか1項に記載の紫外線吸収膜形成用塗布液。
  6.  前記紫外線吸収剤がベンゾフェノン系紫外線吸収剤である、請求項1~5のいずれか1項に記載の紫外線吸収膜形成用塗布液。
  7.  前記ベンゾフェノン系紫外線吸収剤が、水酸基含有ベンゾフェノン系化合物とエポキシ基含有加水分解性ケイ素化合物とが反応して得られる加水分解性ケイ素化合物である、請求項6に記載の紫外線吸収膜形成用塗布液。
  8.  前記紫外線吸収剤の含有量が前記酸化ケイ素系マトリクス原料成分100質量部に対して1~50質量部である、請求項1~7のいずれか1項に記載の紫外線吸収膜形成用塗布液。
  9.  前記水の含有量が前記酸化ケイ素系マトリクス原料成分のSiO換算量に対してモル比で1~20当量である、請求項1~8のいずれか1項に記載の紫外線吸収膜形成用塗布液。
  10.  シリカ微粒子をさらに含有する、請求項1~9のいずれか1項に記載の紫外線吸収膜形成用塗布液。
  11.  前記シリカ微粒子の含有量が前記酸化ケイ素系マトリクス原料成分100質量部に対して0.5~50質量部である、請求項10に記載の紫外線吸収膜形成用塗布液。
  12.  塗布液全質量に対する前記酸化ケイ素系マトリクス原料成分の含有量が、該成分に含まれるケイ素原子をSiOに換算したときのSiO含有量として、1~20質量%である、請求項1~11のいずれか1項に記載の紫外線吸収膜形成用塗布液。
  13.  ガラス基材と、前記ガラス基材の少なくとも一部の表面に請求項1~12のいずれか1項に記載の紫外線吸収膜形成用塗布液を用いて形成された紫外線吸収膜とを有する紫外線吸収ガラス物品。
PCT/JP2011/061073 2010-05-14 2011-05-13 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品 WO2011142463A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800236625A CN102892851A (zh) 2010-05-14 2011-05-13 紫外线吸收膜形成用涂布液和紫外线吸收玻璃物品
JP2012514850A JPWO2011142463A1 (ja) 2010-05-14 2011-05-13 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品
US13/676,651 US20130071669A1 (en) 2010-05-14 2012-11-14 Coating solution for forming ultraviolet-absorbing film and ultraviolet-absorbing glass article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010111813 2010-05-14
JP2010-111813 2010-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/676,651 Continuation US20130071669A1 (en) 2010-05-14 2012-11-14 Coating solution for forming ultraviolet-absorbing film and ultraviolet-absorbing glass article

Publications (1)

Publication Number Publication Date
WO2011142463A1 true WO2011142463A1 (ja) 2011-11-17

Family

ID=44914514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061073 WO2011142463A1 (ja) 2010-05-14 2011-05-13 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品

Country Status (4)

Country Link
US (1) US20130071669A1 (ja)
JP (1) JPWO2011142463A1 (ja)
CN (1) CN102892851A (ja)
WO (1) WO2011142463A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045853A1 (ja) * 2012-09-24 2014-03-27 旭硝子株式会社 液状組成物およびガラス物品
WO2015166863A1 (ja) * 2014-04-28 2015-11-05 旭硝子株式会社 液状組成物およびガラス物品
WO2015166858A1 (ja) * 2014-04-28 2015-11-05 旭硝子株式会社 液状組成物および抗菌性物品
WO2015170647A1 (ja) * 2014-05-08 2015-11-12 旭硝子株式会社 ガラス物品
US20160060485A1 (en) * 2012-02-29 2016-03-03 Sabic Global Technologies B.V. Infrared radiation absorbing articles and method of manufacture
KR20180093041A (ko) 2016-01-12 2018-08-20 후지필름 가부시키가이샤 조성물, 막, 유리 물품, 화합물, 고순도 조성물, 화합물의 제조 방법 및 막의 제조 방법

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128332A1 (ja) 2011-03-24 2012-09-27 旭硝子株式会社 液状組成物およびその製造方法、並びにガラス物品
JP6443438B2 (ja) * 2014-02-28 2018-12-26 Agc株式会社 液状組成物およびガラス物品
KR101845081B1 (ko) 2014-11-28 2018-04-04 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR101908163B1 (ko) * 2014-12-03 2018-10-16 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR101908164B1 (ko) * 2014-12-04 2018-10-16 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR101835866B1 (ko) 2014-12-17 2018-03-08 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
KR101835867B1 (ko) 2014-12-23 2018-03-08 삼성에스디아이 주식회사 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
WO2016181987A1 (ja) * 2015-05-12 2016-11-17 旭硝子株式会社 光学フィルタおよび撮像装置
CN106905843A (zh) * 2017-04-05 2017-06-30 沙河市湡久新材料有限公司 日照遮蔽膜形成用涂布液及相关的粘合剂、日照遮蔽膜和基材
GB201806935D0 (en) * 2018-04-27 2018-06-13 Pilkington Group Ltd Coated substrate and process of preparation
US20190369312A1 (en) * 2018-06-04 2019-12-05 Hoya Candeo Optronics Corporation Optical filter and imaging apparatus
CN112646398B (zh) 2020-12-15 2022-03-29 福耀玻璃工业集团股份有限公司 隔紫外线防蓝光涂液、玻璃及其制造方法
CN113527968A (zh) * 2021-07-27 2021-10-22 浙江精筑环保科技有限公司 一种玻璃表面超亲水自清洁纳米涂层及其制备方法
CN117538206A (zh) * 2024-01-09 2024-02-09 常州市武进晨光金属涂料有限公司 一种涂层使用可靠性的快速判断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812922A (ja) * 1993-07-14 1996-01-16 Asahi Glass Co Ltd 屋外物品表面を処理する方法
JP2001098222A (ja) * 1999-09-28 2001-04-10 Shin Etsu Chem Co Ltd 下塗り剤組成物及びプラスチック基体の表面保護方法
JP2005068165A (ja) * 2003-06-27 2005-03-17 Dainippon Shikizai Kogyo Kk ケイ素含有組成物
JP2005272835A (ja) * 2004-02-27 2005-10-06 Mitsubishi Chemicals Corp ケイ素含有液状組成物
JP2006265431A (ja) * 2005-03-25 2006-10-05 Aica Kogyo Co Ltd ケイ素含有組成物
WO2006137454A1 (ja) * 2005-06-21 2006-12-28 Nippon Sheet Glass Company, Limited 透明物品およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574759B1 (en) * 2000-01-18 2003-06-03 Rambus Inc. Method for verifying and improving run-time of a memory test
US6649212B2 (en) * 2001-07-30 2003-11-18 Guardian Industries Corporation Modified silicon-based UV absorbers useful in crosslinkable polysiloxane coatings via sol-gel polymerization
JP2004341052A (ja) * 2003-05-13 2004-12-02 Ito Kogaku Kogyo Kk 光学要素
CN101070442B (zh) * 2007-06-06 2010-08-25 长兴科技(上海)有限公司 复合材料及含该复合材料的组成物
JP6010299B2 (ja) * 2009-05-15 2016-10-19 旭硝子株式会社 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品
CN101629033B (zh) * 2009-08-14 2011-09-07 广东工业大学 一种用于丙烯酸涂料的抗紫外线剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812922A (ja) * 1993-07-14 1996-01-16 Asahi Glass Co Ltd 屋外物品表面を処理する方法
JP2001098222A (ja) * 1999-09-28 2001-04-10 Shin Etsu Chem Co Ltd 下塗り剤組成物及びプラスチック基体の表面保護方法
JP2005068165A (ja) * 2003-06-27 2005-03-17 Dainippon Shikizai Kogyo Kk ケイ素含有組成物
JP2005272835A (ja) * 2004-02-27 2005-10-06 Mitsubishi Chemicals Corp ケイ素含有液状組成物
JP2006265431A (ja) * 2005-03-25 2006-10-05 Aica Kogyo Co Ltd ケイ素含有組成物
WO2006137454A1 (ja) * 2005-06-21 2006-12-28 Nippon Sheet Glass Company, Limited 透明物品およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160060485A1 (en) * 2012-02-29 2016-03-03 Sabic Global Technologies B.V. Infrared radiation absorbing articles and method of manufacture
WO2014045853A1 (ja) * 2012-09-24 2014-03-27 旭硝子株式会社 液状組成物およびガラス物品
JPWO2014045853A1 (ja) * 2012-09-24 2016-08-18 旭硝子株式会社 液状組成物およびガラス物品
US9783455B2 (en) 2012-09-24 2017-10-10 Asahi Glass Company, Limited Liquid composition and glass article
WO2015166863A1 (ja) * 2014-04-28 2015-11-05 旭硝子株式会社 液状組成物およびガラス物品
WO2015166858A1 (ja) * 2014-04-28 2015-11-05 旭硝子株式会社 液状組成物および抗菌性物品
WO2015170647A1 (ja) * 2014-05-08 2015-11-12 旭硝子株式会社 ガラス物品
JPWO2015170647A1 (ja) * 2014-05-08 2017-04-20 旭硝子株式会社 ガラス物品
KR20180093041A (ko) 2016-01-12 2018-08-20 후지필름 가부시키가이샤 조성물, 막, 유리 물품, 화합물, 고순도 조성물, 화합물의 제조 방법 및 막의 제조 방법
US11364710B2 (en) 2016-01-12 2022-06-21 Fujifilm Corporation Composition, film, glass article, compound, high purity composition, method for producing compound, and method for producing film

Also Published As

Publication number Publication date
US20130071669A1 (en) 2013-03-21
CN102892851A (zh) 2013-01-23
JPWO2011142463A1 (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
JP6004054B2 (ja) 自動車用紫外線吸収ガラス物品および自動車の摺動窓
WO2011142463A1 (ja) 紫外線吸収膜形成用塗布液および紫外線吸収ガラス物品
US10301214B2 (en) Liquid composition, glass article and method of forming coating film
US9725355B2 (en) Liquid composition and its production process, and glass article
JP6102931B2 (ja) 液状組成物およびガラス物品
JP3846545B2 (ja) コーティング剤組成物、コーティング方法及び被覆物品
JP6481685B2 (ja) 液状組成物および抗菌性物品
JPWO2015166858A6 (ja) 液状組成物および抗菌性物品
JP6617699B2 (ja) ガラス物品
JP2013136482A (ja) 紫外線吸収ガラス物品
JP5337360B2 (ja) コーティング組成物、硬化膜及び樹脂積層体
WO2015166863A1 (ja) 液状組成物およびガラス物品
JP2017136696A (ja) 被膜つき透明基体
WO2015174373A1 (ja) 防曇性物品および輸送機器用物品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023662.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514850

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780719

Country of ref document: EP

Kind code of ref document: A1