WO2011136204A1 - 電力系統制御システム、及び、電力系統制御方法 - Google Patents

電力系統制御システム、及び、電力系統制御方法 Download PDF

Info

Publication number
WO2011136204A1
WO2011136204A1 PCT/JP2011/060130 JP2011060130W WO2011136204A1 WO 2011136204 A1 WO2011136204 A1 WO 2011136204A1 JP 2011060130 W JP2011060130 W JP 2011060130W WO 2011136204 A1 WO2011136204 A1 WO 2011136204A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
frequency
control
voltage
power system
Prior art date
Application number
PCT/JP2011/060130
Other languages
English (en)
French (fr)
Inventor
修 石岡
Original Assignee
通研電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通研電気工業株式会社 filed Critical 通研電気工業株式会社
Publication of WO2011136204A1 publication Critical patent/WO2011136204A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a method for stabilizing an electric power system by load device control.
  • control means by various voltage control devices in each part of the system exists for controlling the voltage of the power system.
  • the frequency is a characteristic that varies depending on the balance between the generated power and the consumed power. When the power consumption exceeds the generated power, the frequency decreases, and when the power consumption decreases, the frequency increases. Conventionally, a stable frequency has been maintained by matching power demand forecast and supply capacity plan. However, if a large amount of renewable energy power generation, for which a technology for predicting the amount of power generation is not established, frequency stabilization becomes more difficult to solve.
  • Patent Document 1 discloses a method of stabilizing the frequency of the power system by detecting the frequency.
  • FIG. 6 is a diagram illustrating a configuration of a power system disclosed in Patent Document 1. As illustrated in FIG. The power system 101 is connected with small-capacity power generation devices 104 and 105 using natural energy. The frequency detection unit 1 on the customer load device side detects the frequency of the power system and adjusts the power consumption of the load device 106 to stabilize the frequency. Further, the system frequency control device 108 of the electric power company detects the frequency of the power system and adjusts the power generation output of the power plants 102 and 103 to stabilize the frequency.
  • Patent Document 2 discloses a method for stabilizing the frequency of a power system by measuring the frequency deviation of the power system inside the controllable load control system and controlling the power consumption of the controllable load according to the measured frequency deviation. Is disclosed.
  • a power generation method using natural energy such as solar power generation or wind power generation not only has a large fluctuation in output power but also a large fluctuation in output voltage.
  • the problem that the voltage of a power distribution system rises by linking photovoltaic power generation has been reported.
  • the conventional control method for detecting the frequency and stabilizing the frequency has a problem that it is difficult to improve comprehensive stability including the frequency and voltage of the power system.
  • it is possible to maintain the system voltage by arranging a number of voltage stabilizing devices in the power system there is a problem that the cost of countermeasures is high.
  • Non-Patent Document 1 proposes a method of detecting a frequency and blocking a load in order to improve the frequency and system stability in such an emergency situation.
  • An electric device such as a washing / drying machine detects the frequency by itself, and automatically stops the device when the frequency is greatly reduced.
  • the system voltage greatly fluctuates in an emergency, but there is a problem that sufficient power quality cannot be maintained because the stabilization control does not function while the frequency fluctuation is small. .
  • An object of the present invention is to provide a power system control system and a power system control method capable of improving comprehensive stability of a power system at a relatively low cost and preventing occurrence of a large-scale power outage accident in an emergency situation. .
  • the frequency and voltage of the power system are detected by a system information detection device.
  • the power system frequency is controlled by controlling the power consumption of the electric device to be controlled that the customer system has based on the detected frequency and the voltage, or by cutting off the electric device.
  • An electric power system control system characterized by stabilizing a voltage.
  • the system information detection device detects the frequency of the power system.
  • a power system control system characterized by implementing safety measures in the event of an emergency situation including tightness.
  • the present invention (4) is the power system control system according to any one of the inventions (1) to (3), wherein the electrical device is a thermal energy supply device, an energy storage device, or a power generation facility. .
  • the present invention (5) is characterized in that the system information detection device includes a device for converting a detection signal into a control signal, and transmits the control signal to the electric device through a power line. It is an electric power system control system of the said invention (4).
  • the present invention (6) is characterized in that the power system characteristic fluctuation factor is a wind power generator or a power generator using renewable energy including a solar power generator. It is an electric power system control system given in any 1 paragraph of (3).
  • the present invention (7) in an electric power system constituted by a transmission / distribution system and a plurality of customer systems, the frequency and voltage of the electric power system and the system stability are connected.
  • the frequency and voltage of the power system is detected by a system information detection device, and the electric system to be controlled that the consumer system has based on the detected frequency and voltage. It is a power system control method comprising controlling power consumption or shutting off the electrical equipment.
  • a system information detection device e.g., a Bosch Sensortec BMA150 /Chip
  • a power system control method comprising controlling power consumption or shutting off the electrical equipment.
  • an emergency situation including a substation accident and supply / demand tightness occurs in a power system composed of a power transmission / distribution system and a plurality of customer systems connected to one or a plurality of power system characteristic fluctuation factors.
  • the power system control method includes a step of controlling power consumption of an electric device to be controlled included in the customer system or cutting off the electric device.
  • the present invention (9) is the power system control method according to the invention (7) or the invention (8), wherein the system information detecting device is provided at a boundary point between the power distribution system and the customer system.
  • the present invention (10) is the power system control method according to any one of the inventions (7) to (9), wherein the electrical device is a thermal energy supply device, an energy storage device, or a power generation facility. .
  • the present invention (11) is characterized in that the system information detection device includes a device for converting a detection signal into a control signal, and transmits the control signal to the electric device via a power line.
  • the invention (12) is characterized in that the variation factor of the power system characteristics is a wind power generator or a power generator using renewable energy including a solar power generator. This is the power system control method of (11).
  • the present invention (1), (2), (6), (7), (8), (12), it contributes to the stabilization of the power system such as frequency, voltage and system stability and can be regenerated. It is possible to increase the possible amount of system linkage of fluctuation factors of power system characteristics such as energy. Power system can be stabilized with relatively easy technology, social cost is low, and early feasibility is high. As a countermeasure for stabilization in an emergency or tight supply and demand situation, it is possible to provide a stabilization method that has a smaller control delay and is more effective than a system stabilization method that uses only frequency detection. According to the present invention (3) and (9), the transmission path installation cost can be suppressed and the transmission delay can be reduced. According to the present invention (4), (10), it is possible to minimize the burden on the customer side. According to the present invention (5) and (11), it is not necessary to newly install a line dedicated to control signal transmission, and therefore the system can be realized at low cost.
  • the power system control system is a control system that detects frequency fluctuations and voltage fluctuations of the power system and automatically controls power consumption of the load equipment or automatically shuts off the load equipment.
  • a detection device that detects a frequency and a voltage is arranged at a boundary point between a commercial power system and a power system in a consumer for each consumer such as a house or a business office.
  • a customer system an electric power system connecting load devices for each consumer such as a house or business office
  • a detection device is referred to as a system information detection device or a smart meter.
  • a smart meter installed for each door generates a control signal based on the detected voltage and frequency deviation, and transmits the control signal to an electric device (control target device) that is a controlled load.
  • a circuit that receives a control signal is added to the control target device, and the output of the electric device is controlled based on the control signal from the smart meter and the base output signal during operation, or the electric device is shut off.
  • the control target device it is preferable to target a heat energy supply device, for example, a heat pump water heater, an air conditioner, a refrigerator, or a vending machine, in which output fluctuation is difficult to be recognized by the user even when output control is performed. In the future, it may be applied to energy storage devices such as PEHV (plug-in hybrid vehicles) and EV (electric vehicles) storage batteries.
  • PEHV plug-in hybrid vehicles
  • EV electric vehicles
  • FIG. 1 is a conceptual diagram of a power system stabilizing autonomous load control system according to an embodiment of the present invention.
  • the power system includes a transmission / distribution system 1 and a consumer system 2 that consumes power.
  • a transmission / distribution system 1 such as commercial power
  • electric power is supplied from a wind power generator 5 and solar power generators 6 and 7 in addition to a system power supply 4 such as thermal power generation and hydroelectric power generation.
  • a customer system is connected to the end of the power system.
  • Smart meters 3 and 8 for detecting power quality are arranged at the boundary points between the power system and the customer system.
  • control target devices 9 and 10 included in the customer system 2 are provided with a circuit for controlling power consumption by a control signal from a smart meter.
  • the non-controllable device 12 does not have such a control circuit and does not perform power consumption control depending on power quality.
  • the control target device it is preferable to select a thermal energy supply device, an energy storage device, or the like as described above.
  • power generation facilities such as the solar power generation 11 can be targeted by the smart meter.
  • an electric device in which output fluctuation is easily recognized by the user for example, a television, a lighting device, etc.
  • the power system control system according to the present invention is not limited to a power generator using renewable energy, but is applied to a power system including a fluctuation factor of some power system characteristics (voltage, frequency, etc.) to stabilize or Needless to say, it is an effective system for implementing safety measures at times.
  • a method of arranging a detection device (smart meter) as shown in FIG. 1 at a boundary point between the power system and the customer system is called a door-to-door detection method.
  • the central control method is a method in which system characteristics such as frequency are detected at a central power supply command station or a system power supply station, and a control signal is transmitted to a control target position through a lower electrical station or a lower system. If load control is performed by this method, the system behavior may become unstable due to transmission delay. Therefore, tuning for coordinating the central control system and the device control system is indispensable, and it is difficult to implement it for a load control system for a large number of devices.
  • the distribution station detection method is a method in which system characteristics are detected in the distribution station and an output control signal is transmitted to the control device of each house.
  • the self-end detection method is a method in which all electric devices to be controlled by consumers have a detection device and generate a control signal according to the detected system characteristic. Since the detection device and the control device are in each device, it is not necessary to secure a transmission path outside the device, and it is relatively easy to implement, but there is a problem that it costs more to install the detection device in all devices. is there. In contrast to these methods, the door-to-door detection method requires only that the control signal transmission line be installed inside the customer system, so the transmission line installation cost is relatively low and the transmission delay is small.
  • FIG. 2 is a block diagram showing a configuration example of the power system stabilization autonomous load control system according to the embodiment of the present invention.
  • the internal configuration of the customer system will be described in more detail with reference to FIG.
  • the smart meter 21 includes a frequency detection device 26 that detects the frequency of the power system and a voltage detection device 28 that detects the voltage. It is also possible to provide a watt hour meter 35.
  • the detected frequency deviation ⁇ f and voltage deviation ⁇ v are converted into output control signals ⁇ Pf and ⁇ Pv by conversion circuits 27 and 29, respectively.
  • the output control signal is added by the adder 30, and the signal is placed on the power line 22 and transmitted to the control target device 23.
  • the control target device 23 includes a signal extraction circuit that extracts a signal from the power line.
  • a method for transmitting a signal using a power line is called a power line method.
  • the equipment / system configuration is simple, the technical difficulty is low, and the low There are many excellent points such as low cost and small transmission delay, and it is the most practical method.
  • the control signal ⁇ P transmitted through the power line is added to the pre-change output command value ⁇ P 0 inside the control target device 23 and sent to the control circuits 32 and 33 as the post-change output ⁇ Pe.
  • the heat energy supply device In this case, it is used as a signal for controlling the heat output.
  • the heat energy supply device As shown in FIG. 2, it is also possible to arrange switches 24 and 25 inside the smart meter 21 so as to perform input switching between the frequency detection device and the voltage detection device.
  • a reactive power output may be output by the control circuit 38 disposed in the control circuit 23.
  • FIG. 3 is a specific example of the output control characteristic based on the frequency deviation according to the embodiment of the present invention.
  • the control method according to the embodiment of the present invention shown in FIG. 3 is an “output control method using frequency deviation” in which the output is adjusted in proportion to the frequency deviation.
  • the control command is output by changing the ratio to the rated output in proportion to the frequency deviation with respect to an arbitrary operation output at the reference frequency.
  • the control command ⁇ P load is expressed by the following formula with respect to the frequency deviation ⁇ f.
  • inverter control is mainstream, and constant power control is performed to maintain power consumption substantially constant even when the frequency fluctuates.
  • the control method according to the present invention is a variable frequency deviation output method that changes the output in proportion to the frequency deviation while using the output value based on the operation command as the base output.
  • the time delay T f is the total of the detection time and the signal transmission time T 1 and the control delay T 2 after the device receives the signal.
  • the device receives the ⁇ f signal and converts it to a ⁇ P output according to the set characteristics.
  • T 2 Since the heat output device is controlled by an inverter, the time delay T 2 can be regarded as almost zero. Since T 1 is a time delay from the signal detection point to the electric device, it depends on the system configuration. When the signal detection location is on the power system side, T 1 is about 2 to 10 seconds. When it is detected by a location close to the load device, for example, a watt hour meter, it is about several tens of msec. When detected in a load device, it can be regarded as almost zero. Consider the effect of delay on the frequency after ⁇ P changes.
  • M is the generator inertia constant of the entire system
  • D is the braking coefficient.
  • the delay time after the change of ⁇ P is a time delay of about 8 seconds corresponding to M.
  • the time delay is about the same as the movement of the instantaneous reserve force. Therefore, it works in the direction of worsening the frequency. For this reason, it is not preferable to employ central control, and it is preferable to employ a load control method based on frequency-by-door detection.
  • FIG. 4 is a specific example of output control characteristics based on voltage fluctuation according to the embodiment of the present invention. Basically, it is the same as in the case of frequency detection. When the voltage increases, the power consumption is increased by increasing the output, and when the voltage decreases, the power consumption is decreased by decreasing the output. In contrast to the conventional control of the constant power characteristic, the present invention controls the substantially constant impedance characteristic.
  • v min and v max are set to 95% and 105%, respectively, with respect to the reference voltage during operation.
  • Load control by ⁇ v can be used for voltage drop operation when supply and demand is tight. If the transmission voltage of the upper system, for example, the distribution substation is lowered by 5 to 10% when supply and demand is tight, the power consumption can be automatically reduced by the control on the smart meter side.
  • Load control logic by combining ⁇ f and ⁇ v As an example of the load control logic according to the present invention, it is also possible to control so that the combined value ⁇ P of the output change amount ⁇ P f by ⁇ f detection and the output change amount ⁇ P v by ⁇ v detection becomes a change from the current operation output. It is.
  • the frequency deviation changes with a time lag in the generator inertia constant of the entire system, but there is no time lag with respect to the voltage, and the voltage changes immediately according to the change in the detection amount. Therefore, control of ⁇ f and ⁇ v can be regarded as independent control, and the deviation-output relationship may be set independently.
  • load control is performed only by frequency detection, the following problems may occur.
  • the distribution voltage tends to increase.
  • the control by only the frequency detection works in the direction of load suppression, and also the voltage is induced higher, so that solar power generation is suppressed. Therefore, it is not preferable in terms of effective use of renewable energy and frequency stability control.
  • the stabilization control in such a case becomes possible. For example, in the case described above, automatic control is performed so as to increase the power consumption of the load device by detecting a highly induced voltage, so that the distribution voltage is stably maintained.
  • Patent Document 3 in a power system consisting of a high-voltage system that is a host system and a low-voltage system on the customer side equipped with a distributed power source, the frequency and voltage of the low-voltage system are measured by a measuring device disposed in the low-voltage system. , By constantly monitoring the load status (power consumption) based on the measured signal and controlling the shutoff of the load equipment, it is possible to effectively use the capacity of the distributed power source possessed by the consumer. An operating system is disclosed. Patent Document 3 is similar to the present invention in that there is a description that frequency and voltage are detected, but there is no description of “detecting frequency and voltage simultaneously” described in the present invention.
  • Patent Document 3 the purpose of the system described in Patent Document 3 is “effective use of distributed power supply capability”, and the purposes of the present invention are “stabilization of power system such as frequency, voltage, stability of power system” and “ It is different from “automated safety measures and cost reduction of power system in emergency such as demand tightness”.
  • the technique disclosed in the present invention is a technique for achieving the object by simultaneously detecting the frequency and voltage of the power system and performing load control.
  • the technique according to the present invention is devised from the description disclosed in Patent Document 3. It is not easy to do.
  • the frequency controllability is defined as the amount of decrease in frequency when the power loss of 10% of the system capacity is lost and the frequency controllability is calculated using X as a parameter, the graph shown in FIG. 5 is obtained.
  • FIG. 5 shows that the frequency controllability is lowered by 1.25 Hz without the control load, whereas the frequency controllability can be improved by introducing the control load even slightly.
  • the frequency controllability becomes 0.57 Hz, and the frequency drop can be suppressed to about half compared to the case without the control load, which is a significant effect in improving frequency stability.
  • the frequency controllability becomes 0.57 Hz, and the frequency drop can be suppressed to about half compared to the case without the control load, which is a significant effect in improving frequency stability.
  • the present invention detects the frequency and voltage of the power feeding system by the door-to-door detection method and controls the power consumption of the load equipment, thereby reducing the stabilization of the power system during normal times and emergency. It will be realized in the field and will greatly contribute to the field of power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 電力系統に対する再生可能エネルギー発電の大量導入に伴い予測される電力品質の低下や大規模停電の発生等の対策として負荷制御システムの研究が進んでいる。従来の負荷制御システムでは、電力系統の周波数を検出して負荷機器の消費電力を制御する方式であったが、電圧、周波数、安定度を含めた包括的な電力品質および安定供給を維持可能なものではなかった。 電力系統の周波数以外に電圧を検出して負荷機器の消費電力を制御する方式を採用した。包括的な電力品質の維持および安定供給が可能になった。検出装置の配置は戸別検出方式とし、制御装置は制御対象機器の内部に配置することにし、制御信号は電力線を介して送信することにした。大幅なハードウェアの変更や追加が不要であり、低コストで電力系統の安定化を実現可能になった。

Description

電力系統制御システム、及び、電力系統制御方法
 本発明は、負荷機器制御による電力系統システムの安定化方法に関する。
 近年、低炭素社会実現のため、太陽光発電や風力発電等の再生可能エネルギーの導入が積極的にすすめられている。これらの自然エネルギーを利用する発電は、炭素を放出せず枯渇しない半永久的なエネルギー源であるという長所がある一方で、時間帯や発電地域による出力変動が大きいという問題がある。これらの発電装置により発電された電力は、特定の需要家により消費されるだけでなく、電力系統に接続され商用電力側にも供給されている。再生可能エネルギーによる発電装置は比較的小規模の発電装置が多いが、将来これらの発電装置の利用が加速度的に増え、その結果、電力系統に与える影響が大きくなると予想される。そのため、周波数、電圧等の電力系統の品質を適正に維持するための系統対策が必要となる。
 電力系統の電圧の制御には、発電側での制御に加えて、系統各部でのさまざまな電圧制御装置による制御手段が存在する。一方、周波数は発電電力と消費電力のバランスに依存して変動する特性である。消費電力が発電電力を上回ると周波数は低下し、下回ると周波数は上昇する。従来は、電力の需要予測と供給力計画をマッチングさせることにより安定な周波数を維持してきた。しかし、発電量の予測技術が確立されていない再生可能エネルギー発電が大量に導入されると、周波数の安定化はより解決が困難となる。また、系統側の対策が主体となる従来の考え方では、周波数安定化の対策コストが膨大となることが予想され、近年、より低コストで実現が可能な負荷制御による周波数安定化対策の研究が進んでいる。
 特許文献1には、周波数を検出することにより電力系統の周波数を安定化する方法が開示されている。図6は、特許文献1に開示された電力系統の構成を示す図である。電力系統101には、自然エネルギー利用の小容量発電装置104、105が接続されている。需要家負荷機器側の周波数検出部1により、電力系統の周波数を検出し、負荷機器106の消費電力を調整することにより周波数を安定化している。また、電気事業者の系統周波数制御装置108において電力系統の周波数を検出し、発電所102、103の発電出力を調整することによっても周波数の安定化を図っている。
 特許文献2には、可制御負荷制御システム内部で電力系統の周波数偏差を計測し、計測した周波数偏差に応じて可制御負荷の消費電力を制御することにより、電力系統の周波数を安定化する方法が開示されている。
 太陽光発電や風力発電等の自然エネルギーを利用する発電方式は、出力する電力の変動が大きいだけでなく、出力電圧の変動も大きい。例えば、太陽光発電を連携することにより配電系統の電圧が上昇するという問題が報告されている。従来の周波数を検出して周波数を安定化させる制御方法では、電力系統の周波数、電圧を含めた包括的な安定度の向上が困難であるという問題があった。電力系統に電圧安定化装置を多数配置することにより系統の電圧を維持することも可能であるが、対策コストが大きいという問題があった。
 また、変電所事故による電源脱落や、夏場の冷房需要等による消費電力の急峻な増加が発生すると、電力の需給バランスがくずれ、発電機の連鎖トリップが発生し、大規模な停電事故が起きる可能性がある。また、周波数変動が大きくなることにより発電機の連鎖トリップが発生する場合もある。非特許文献1には、このような緊急事態における周波数と系統安定度向上のために、周波数を検出して負荷遮断を行う方式が提案されている。洗濯乾燥機などの電気機器が自端で周波数を検出し、周波数が大きく低下した際に機器の停止を自動的に行うものである。しかし、非特許文献1に開示された方法では、緊急時に系統電圧が大きく変動したが、周波数変動が小さい間は安定化制御が機能しないため、十分な電力品質の維持ができないという問題があった。
特開2006-42458号公報 特開2006-94578号公報 特開2008-125290号公報
 本発明は、比較的低コストで電力系統の包括的な安定度向上および緊急事態における大規模な停電事故の発生防止が可能な電力系統制御システム、及び、電力系統制御方法の提供を目的とする。
 本発明(1)は、一つ又は複数の電力系統特性の変動要因が接続され、配電系統と複数の需要家システムにより構成される電力系統において、系統情報検出装置により前記電力系統の周波数と電圧を検出し、検出された前記周波数と前記電圧に基づいて前記需要家システムが有する制御対象の電気機器の消費電力を制御、又は、前記電気機器の遮断を行うことにより、前記電力系統の周波数と電圧を安定化することを特徴とする電力系統制御システムである。
 本発明(2)は、一つ又は複数の電力系統特性の変動要因が接続され、送配電系統と複数の需要家システムにより構成される電力系統において、系統情報検出装置により前記電力系統の周波数と電圧を検出し、検出された前記周波数と前記電圧に基づいて前記需要家システムが有する制御対象の電気機器の消費電力を制御、又は、前記電気機器の遮断を行うことにより、変電所事故や需給逼迫を含む緊急事態発生時における安全対策を実施することを特徴とする電力系統制御システムである。
 本発明(3)は、前記系統情報検出装置が前記配電系統と前記需要家システムの境界点に設けられていることを特徴とする前記発明(1)又は前記発明(2)の電力系統制御システムである。
 本発明(4)は、前記電気機器が、熱エネルギー供給機器、エネルギー貯蔵装置、又は、発電設備であることを特徴とする前記発明(1)乃至前記発明(3)の電力系統制御システムである。
 本発明(5)は、前記系統情報検出装置が検出信号を制御信号に変換する装置を備え、電力線を介して前記制御信号を前記電気機器に送信することを特徴とする前記発明(1)乃至前記発明(4)の電力系統制御システムである。
 本発明(6)は、前記電力系統特性の変動要因が、風力発電装置、又は、太陽光発電装置を含む再生可能エネルギー利用の発電装置であることを特徴とする前記発明(1)乃至前記発明(3)のいずれか1項記載の電力系統制御システムである。
 本発明(7)は、一つ又は複数の電力系統特性の変動要因が接続され、送配電系統と複数の需要家システムにより構成される電力系統において、前記電力系統の周波数と電圧および系統安定度を安定化することを目的として、系統情報検出装置により前記電力系統の周波数と電圧を検出するステップと、検出された前記周波数と前記電圧に基づいて前記需要家システムが有する制御対象の電気機器の消費電力を制御、又は、前記電気機器の遮断を行うステップとからなる電力系統制御方法である。
 本発明(8)は、一つ又は複数の電力系統特性の変動要因が接続され、送配電系統と複数の需要家システムにより構成される電力系統において、変電所事故や需給逼迫を含む緊急事態発生時における安全対策の実施を目的として、前記電力系統の電圧を制御するステップと、系統情報検出装置により前記電力系統の周波数と電圧を検出するステップと、検出された前記周波数と前記電圧に基づいて前記需要家システムが有する制御対象の電気機器の消費電力を制御、又は、前記電気機器の遮断を行うステップとからなる電力系統制御方法である。
 本発明(9)は、前記系統情報検出装置が前記配電系統と前記需要家システムの境界点に設けられていることを特徴とする前記発明(7)又は前記発明(8)の電力系統制御方法。
 本発明(10)は、前記電気機器が、熱エネルギー供給機器、エネルギー貯蔵装置、又は、発電設備であることを特徴とする前記発明(7)乃至前記発明(9)の電力系統制御方法である。
 本発明(11)は、前記系統情報検出装置が検出信号を制御信号に変換する装置を備え、電力線を介して前記制御信号を前記電気機器に送信することを特徴とする前記発明(7)乃至前記発明(10)の電力系統制御方法である。
 本発明(12)は、前記電力系統特性の変動要因が、風力発電装置、又は、太陽光発電装置を含む再生可能エネルギー利用の発電装置であることを特徴とする前記発明(7)乃至前記発明(11)の電力系統制御方法である。
 本発明(1)、(2)、(6)、(7)、(8)、(12)によれば、周波数・電圧・系統安定度など電力系統の安定化に寄与し、かつ、再生可能エネルギー等の電力系統特性の変動要因の系統連係可能量を増大できる。比較的容易な技術で電力系統の安定化が可能であり、社会コストも低く、早期実現性が高い。緊急時や需給逼迫時の安定化対策としても、周波数検出のみによる系統安定化方法と比較して、制御遅延も小さく、より効果の大きい安定化方法の提供が可能である。
 本発明(3)、(9)によれば、伝送路設置コストを抑制可能で、伝送遅れを小さくできる。本発明(4)、(10)によれば、需要家側の負担を最小限に抑制することが可能になる。
 本発明(5)、(11)によれば、制御信号送信専用の回線をあらたに設置する必要がないため、システムを低コストで実現可能である。
本発明の実施の形態に係る電力系統安定化自律負荷制御システムの概念図である。 本発明の実施の形態に係る電力系統安定化自律負荷制御システムの構成例を示すブロック図である。 本発明の実施の形態に係る周波数偏差に基づく出力制御特性の具体例である。 本発明の実施の形態に係る電圧変動に基づく出力制御特性の具体例である。 本発明の実施例に係る周波数制御性の制御対象負荷比率依存性を示すグラフである。 従来の周波数制御装置を含む電力系統の構成を示す図である。
1 送配電系統
2 需要家負荷システム
4 系統電源
5 風力発電装置
6、7 太陽光発電装置
3、8 検出装置
9、10 制御対象機器
11 太陽光発電装置
12 制御対象外機器
21 検出装置
22 電力線
23 制御対象機器
24、25、34 切替えスイッチ
26 周波数検出装置
28 電圧検出装置
27、29、36 信号変換装置
30、31、37 加算器
35 電力量計
32、33、38 制御回路
101 電力系統
102 火力発電所
103 水力発電所
104 風力発電装置
105 太陽光発電装置
106、107 需要家負荷機器
108 系統周波数制御装置
109 周波数検出装置
110、111 周波数検出部
112、113 周波数制御装置
 以下、本発明の最良形態について説明する。
 本発明の実施の形態に係る電力系統制御システムは、電力系統の周波数変動と電圧変動を検出し、負荷機器の消費電力を自動制御、或いは、負荷機器を自動遮断する制御システムである。周波数と電圧を検出する検出装置は、住宅や事業所等の需要家ごとに商用の電力系統と需要家における電力系統の境界点に配置する。以下、本願明細書では、係る住宅や事業所等の需要家ごとの負荷機器を接続した電力系統を需要家システムと呼び、係る検出装置を系統情報検出装置、又は、スマートメーターと呼ぶことにする。戸別に設置されたスマートメーターが、検出した電圧と周波数偏差に基づく制御信号を生成し、被制御負荷である電気機器(制御対象機器)に制御信号を送信する。制御対象機器には、制御信号を受信する回路が付加されており、スマートメーターからの制御信号と運転中のベース出力信号に基づいて、電気機器の出力を制御する、或いは、電気機器の遮断を行う。制御対象機器としては、出力制御を行ってもユーザー側に出力変動が認識されにくい熱エネルギー供給機器、例えば、ヒートポンプ式温水器、エアコン、冷蔵庫、自動販売機を対象とするのが好ましい。また、将来的には、PEHV(プラグインハイブリッド自動車)やEV(電気自動車)用蓄電池等のエネルギー貯蔵装置に適用することも考えられる。
(制御情報検出方式)
 図1は、本発明の実施の形態に係る電力系統安定化自律負荷制御システムの概念図である。電力系統は、送配電系統1と電力を消費する需要家システム2とから構成される。図1では、一つの需要家システムのみが示されているが、複数の需要家システムを送配電系統に接続した構成としてもよい。商用電力等の送配電系統1では、火力発電や水力発電等の系統電源4に加えて、風力発電装置5や太陽光発電装置6、7により電力が供給されている。電力系統の終端には、需要家システムが接続されている。電力系統と需要家システムの境界点には、電力品質を検出するスマートメーター3、8が配置されている。需要家システムの内部には、複数の電気機器があり、これらは、制御対象機器と制御対象外機器に分類される。例えば、需要家システム2が有する制御対象機器9、10には、スマートメーターからの制御信号により消費電力を制御する回路が備えられている。一方、制御対象外機器12には、係る制御回路がなく、電力品質に依存した消費電力制御を行わない。制御対象機器としては、上記したように熱エネルギー供給機器やエネルギー貯蔵装置等を選択するのが好ましい。また、太陽光発電11など発電設備もスマートメーターによる対象とすることができる。一方、ユーザー側に出力変動が認識されやすい電気機器、例えば、テレビ、照明装置等は制御対象外機器とするのが好ましい。
 なお、本発明に係る電力系統制御システムは、再生可能エネルギー利用の発電装置に限らず、何らかの電力系統特性(電圧や周波数等)の変動要因を含む電力系統に適用して、その安定化や緊急時の安全対策の実施に有効なシステムであることは言うまでもない。
 図1に示すような検出装置(スマートメーター)を電力系統と需要家システムの境界点に配置する方式を戸別検出方式と呼ぶ。制御対象機器を制御する電力系統情報を検出する方式としては、戸別検出方式以外に、以下に列挙する複数の方式がある。
 中央制御方式は、中央給電指令所又は系統給電所等において周波数等の系統特性を検出し、下位電気所や下位系統を通して制御対象箇所まで制御信号を送出する方式である。この方式で負荷制御を行おうとすると、伝送遅れがあるために系統の挙動が不安定になる可能性がある。そのため、中央制御系と機器制御系の協調をとるためのチューニングが不可欠であり、大量の機器を対象とする負荷制御システムに対して実施することが困難である。
 配電子局検出方式は、配電子局において系統特性を検出して、各戸の制御装置に出力制御信号を伝送する方式である。専用の情報伝送路の確保が必要であり、システム構成が複雑となる問題がある。また、中央制御方式と同様に、伝送遅れの問題がある。
 自端検出方式は、需要家が有する制御対象となる電気機器すべてが検出装置を備え、検出した系統特性に応じて制御信号を生成する方式である。検出装置と制御装置が各機器の中にあるので、機器外部の伝送路の確保は不要で、実現は比較的容易であるが、検出装置をすべての機器に備えるためのコストがかかるという問題がある。
 これらの方式に対し、戸別検出方式は、制御信号伝送路を需要家システムの内部に設置すればよいので、伝送路設置コストが比較的低く、伝送遅れが小さい。対象システムが膨大な数になるが、自端方式と比べれば検出装置と制御装置の数が少なくなり、総合的なコストを考えると実現性が高い方式である。また、対象システムの数が多いので、システム構成や制御ソフトを標準化することで、経済性や利便性を十分確保できると予測される。
(負荷制御システムの制御論理)
 図2は、本発明の実施の形態に係る電力系統安定化自律負荷制御システムの構成例を示すブロック図である。図2を用いて需要家システムの内部構成をより詳細に説明する。需要家システム内部には、上述したようにスマートメーター21と、一つ又は複数の制御対象機器23があり、電力線22により接続されている。スマートメーター21には、電力系統の周波数を検出する周波数検出装置26と電圧を検出する電圧検出装置28が備えられている。また、電力量計35を備えることも可能である。検出された周波数偏差Δfと電圧偏差Δvは、それぞれ、変換回路27、29で出力制御信号ΔPfとΔPvに変換される。出力制御信号は加算器30で加算され、電力線22に信号を載せて制御対象機器23に送信する。制御対象機器23には、電力線から信号を抽出する信号抽出回路が備えられている。電力線を用いて信号を送信する方式は電力線方式と呼ばれ、通信線や無線を用いて信号を送信する方式と異なり、設備・システム構成が単純であること、技術的難易度が低いこと、低コストであること、伝送遅れが小さいこと等、優れた点が多く、最も実現性が高い方式である。電力線を通って送信された制御信号ΔPは、制御対象機器23の内部で変更前出力指令値ΔP0と加算され、変更後出力ΔPeとして制御回路32、33に送られ、例えば、熱エネルギー供給機器の場合は、熱出力を制御する信号として用いられる。図2に示すように、スマートメーター21の内部に切替えスイッチ24、25を配置し、周波数検出装置と電圧検出装置の入力切替えを行う構成にすることも可能である。また、制御回路23内に配置された制御回路38により無効電力出力を出力する構成としてもよい。
(Δfによる負荷制御論理)
 図3は、本発明の実施の形態に係る周波数偏差に基づく出力制御特性の具体例である。図3に示す本発明の実施の形態に係る制御方式は、周波数偏差に比例して出力を調整する「周波数偏差による出力制御方式」である。基準周波数での任意の運転出力に対して周波数偏差に比例して定格出力に対する比率を変え制御指令を出力する。制御指令ΔPloadは周波数偏差Δfに対して以下の数式で表される。
ΔPload[kW]=Kf[kW/0.1Hz]×Δf[0.1Hz]     :fmin≦f≦fmax
ΔPload[kW]=0(機器を停止)         
:f<fmin
ΔPload[kW]=一定値(定格出力)        :f>fmax
fminとfmaxは、通常、それぞれ運転時基準周波数に対し±0.1~0.3Hzに設定される。
 従来型制御は、インバーター制御が主流であり、周波数が変動しても消費電力をほぼ一定に維持する定電力制御が行われていた。それに対し、本発明に係る制御方式は、運転指令に基づく出力値をベース出力としながら周波数偏差に比例して出力を変化させる周波数偏差可変出力方式である。電力系統の周波数が低下する場合は、消費電力を低下させることで周波数を上昇させるフィードバック制御を行う。電力系統の緊急時対応機能を強化する観点から、系統での大電源脱落時のような周波数低下が過大となるようなケースでは自動停止機能を付加する。電力系統の周波数が上昇する場合は、消費電力を増加させることで周波数を低下させるフィードバック制御を行う。
 制御ブロックは、ΔP=Δf・K/(1+Tf・S)と表せる。時間遅れTfは、検出時間と信号伝送時間の合計T1と機器の信号受信後の制御遅れT2の合計である。機器がΔf信号を受信し、設定した特性に応じてΔP出力に換算する。熱出力機器はインバーター制御であるので、その時間遅れT2は、ほぼ0とみなすことができる。T1は、信号検出箇所から電気機器に至る時間遅れであるため、システム構成に依存する。信号検出箇所が電力系統側の場合は、T1は2~10sec程度となる。負荷機器に近い箇所、例えば、電力量計で検出する場合は、数十msec程度となる。負荷機器において検出する場合は、ほぼ0とみなすことができる。
 ΔPの変化後の周波数に対する遅延の影響を考える。電気出力変化ΔPe=Δf・K/(1+Tf・S)により、周波数変化は、Δf=ΔPe/(M・S+D)となる。Mは系統全体の発電機慣性定数で、Dは制動係数である。中央制御の場合、ΔPの変化後の遅延時間は、Mに相当する8sec程度の時間遅れとなり、中央制御で周波数検出による負荷制御を行うと、瞬動予備力の動きとほぼ同程度の時間遅れの動きとなるので、周波数を悪化させる方向に働く。そのため、中央制御の採用は好ましくなく、周波数の戸別検出による負荷制御方式の採用が好ましい。
(Δvによる負荷制御論理)
 図4は、本発明の実施の形態に係る電圧変動に基づく出力制御特性の具体例である。基本的に、周波数検出の場合と同様であり、電圧が高くなれば出力を上昇させることで消費電力を増加させ、電圧が低くなれば出力を低下させることで消費電力を低下させる。従来の定電力特性の制御に対し、本発明では、ほぼ定インピーダンス特性の制御を行う。
ΔPload[kW]=Kv[kW/v]×Δv[v]      :vmin≦v≦vmax
ΔPload[kW]=0(機器を停止)      
:v<vmin
ΔPload[kW]=一定値(定格出力)     :v>vmax
vminとvmaxは、例えば、それぞれ運転時基準電圧に対し95%、105%に設定される。
 Δvによる負荷制御は、需給逼迫時の電圧低下運転に活用することが可能である。上位系統、例えば、需給逼迫時に配電用変電所の送出電圧を5~10%低くすれば、スマートメーター側の制御によって消費電力を自動的に低減することができる。全系統で実施すれば数%の総電力需要を抑制することも可能であり、需給逼迫時には系統安定化に極めて有効な対策となる。さらに、制御特性の設定次第で、需給逼迫時に対象機器を停止する方法をとることも可能で、輪番停電のような複雑なシステムを構築しなくても需要家にとって公平で影響の少ない機能を電力会社として保有することができる。
(Δf・Δvの合成による負荷制御論理)
 本発明に係る負荷制御論理の例として、Δf検出による出力変更量ΔPfとΔv検出による出力変更量ΔPvの合成値ΔPが現在の運転出力からの変更分となるように制御することも可能である。周波数偏差は系統全体の発電機慣性定数での時間遅れで変化するが、電圧については時間遅れがなく、検出量の変化に応じ直ちに電圧が変化する。従って、ΔfとΔvの制御は、それぞれ独立した制御ととらえることが可能で、偏差―出力の関係も独立して設定してよい。
 周波数検出のみによる負荷制御を行う場合は、次の問題の発生が懸念される。例えば、太陽光発電が多数連携された系統で発電量が余剰気味の時は、配電電圧が高め方向に行く傾向がある。一方、これに周波数が低下し易い夏季需要ピークが重なると、周波数検出のみによる制御では、負荷抑制の方向に制御が働き、やはり、電圧が高めに誘導されるので、太陽光発電が抑制されることになり再生可能エネルギーの有効活用および周波数安定制御面では好ましくない。周波数検出に電圧検出を組み合わせて制御することにより、このような場合の安定化制御が可能になる。例えば、上記したケースでは、高めに誘導された電圧を検出して負荷機器の消費電力が増加するように自動制御が行われるので、配電電圧が安定に維持される。
 これに対し、電圧検出のみによる負荷制御を行う場合は、周波数が目標値となるように制御するのが困難であるという問題があり、周波数のみによる負荷検出と同様に好ましくない。電圧検出と同時に周波数を検出して負荷制御を行うことにより、周波数が目標値となるように制御することができる。
 周波数検出と電圧検出を同時に行う場合は、周波数検出による制御と電圧検出による制御の比重はさまざまなケースを想定して適宜調整を行うのが好ましい。例えば、周波数、電圧のいずれかの制御によって出力が上限又は下限に至っている場合は他の検出信号による制御が効かないので制御パラメータの設定には注意が必要である。需給逼迫時の状況を考慮すると、周波数低下が大きくなる前の予防保全策として電圧低下運転による需要抑制を優先させるべきであると考えれば、制御特性において電圧検出側による負荷制御感度を高めにしておく必要がある。さらに、負荷遮断が必要なケースを想定すれば、配電用変電所送り出し電圧の制御が可能な範囲で負荷遮断に至る運転下限電圧の設定が必要になる。
(電力系統制御と負荷制御の組み合わせ)
(平常時における電力系統制御)
 系統全体において、負荷制御量ΔPLにより改善される負荷周波数特性は、
KL0=ΔPL
/Δf
となる。従って、従来の負荷周波数特性をKLold、負荷制御機器導入後のそれをKLnewとすれば、
KLnew=KL0+KLold
となる。系統全体で需給過不足が発生した場合、ΔPLの分だけ需給過不足を解消できるため、電力系統のガバナフリーの発動が小さくて済む。また、出力の変動する風力発電や太陽光発電による需給変化があった場合においても同様で、発電・負荷双方が同時に即応的に反応するので過渡的な周波数変動も小さくすることができる。
(緊急時における電力系統制御)
 電力系統において需給逼迫が発生し大幅に周波数が低下した場合には、発電機の機械的破損を防ぐために緊急に負荷を遮断する必要がある。これを電力系統側で自動的に行うためには、大規模な自動化システムが必要であり、かつ確率的には頻度が小さい現象であるため享受できるメリットに対して投資コストは高いものとなる。負荷制御システムを導入し、緊急時には電力系統側の電圧を負荷制御が作動するように誘導すれば、緊急時周波数自動制御システムを比較的低コストで構築することが可能であり、需給運用上大きなメリットが得られる。
(類似の先行技術との相違点)
 特許文献3には、上位系統である高圧系統と分散型電源を備えた需要家側の低圧系統からなる電力系統において、低圧系統に配置された計測装置により、低圧系統の周波数や電圧を計測し、計測した信号に基づき負荷状態(使用電力量)を常時監視し、負荷機器の遮断制御を行うことにより、需要家が有する分散型電源の能力を有効に活用することが可能な低圧系統の自立運転システムが開示されている。特許文献3は、周波数や電圧を検出するとの記載がある点で、本発明と類似しているが、本発明に記載された「周波数と電圧を同時に検出する」との記載はなく、周波数と電圧を同時に検出することにより得られる効果についても記載されていない。また、特許文献3に記載されたシステムの目的は「分散型電源能力の有効活用」であり、本発明の目的である「電力系統の周波数・電圧・安定度など電力系統の安定化」及び「需要逼迫時など緊急時の電力系統システムの安全対策の自動化、低コスト化」とは異なる。本発明で開示する技術は、電力系統の周波数と電圧を同時に検出し、負荷制御を行うことにより係る目的を達成する技術であり、特許文献3に開示された記載から本願発明に係る技術を考案するのは容易ではない。
 送配電系統に複数の負荷機器が接続され、一部の負荷機器を制御対象とした電力系統モデルを作成し、周波数制御性のシミュレーションを行った。図5は、周波数制御性の制御対象負荷比率依存性を示すグラフである。全系の負荷機器のうちX%が制御対象負荷であり、残りの(1-X)%が制御対象外負荷(一般負荷)であるとした。また、制御対象負荷の周波数特性定数を10%MW/0.1Hz、一般負荷の周波数特性定数を0.4%MW/0.1Hzと設定した。この場合、全体の負荷周波数特性定数KLは、KL=10X+0.4(1-X)[%MW/0.1Hz]となる。
 さらに、電源周波数特性を0.4%MW/0.1Hzとすれば、系統周波数特性Kは、制御負荷無しで、K=0.4%MW/0.1Hz、制御負荷有りでK=10X+0.4(1-X)+0.4[%MW/0.1Hz]となる。
 周波数制御性を系統容量の10%の電源脱落があった場合の周波数低下量と定義して、Xをパラメータとして周波数制御性を計算すると、図5に示すグラフが得られた。図5から、制御負荷無しでは、周波数制御性は1.25Hzの低下であるのに対し、制御負荷の導入をわずかでも行うことにより周波数制御性の改善がみられることがわかる。例えば、全体の10%を制御負荷とすることにより、周波数制御性は0.57Hzとなり、制御負荷無しの場合に比べ、周波数低下を半分程度まで抑えることができ、周波数安定性の向上に顕著な効果が得られることがわかった。
 以上詳述したように、本発明は、給電系統の周波数と電圧を戸別検出方式で検出して負荷機器の消費電力を制御することにより、通常時及び緊急時の電力系統の安定化を低コストで実現するものであり、電力給電の分野で大きく寄与する。

Claims (12)

  1. 一つ又は複数の電力系統特性の変動要因が接続され、送配電系統と複数の需要家システムにより構成される電力系統において、系統情報検出装置により前記電力系統の周波数と電圧を検出し、検出された前記周波数と前記電圧に基づいて前記需要家システムが有する制御対象の電気機器の消費電力を制御、又は、前記電気機器の遮断を行うことにより、前記電力系統の周波数と電圧を安定化することを特徴とする電力系統制御システム。
  2. 一つ又は複数の電力系統特性の変動要因が接続され、送配電系統と複数の需要家システムにより構成される電力系統において、系統情報検出装置により前記電力系統の周波数と電圧を検出し、検出された前記周波数と前記電圧に基づいて前記需要家システムが有する制御対象の電気機器の消費電力を制御、又は、前記電気機器の遮断を行うことにより、変電所事故や需給逼迫を含む緊急事態発生時における安全対策を実施することを特徴とする電力系統制御システム。
  3. 前記系統情報検出装置が前記送配電系統と前記需要家システムの境界点に設けられていることを特徴とする請求項1又は2のいずれか1項記載の電力系統制御システム。
  4. 前記電気機器が、熱エネルギー供給機器、エネルギー貯蔵装置、又は、発電設備であることを特徴とする請求項1乃至3のいずれか1項記載の電力系統制御システム。
  5. 前記系統情報検出装置が検出信号を制御信号に変換する装置を備え、電力線を介して前記制御信号を前記電気機器に送信することを特徴とする請求項1乃至4のいずれか1項記載の電力系統制御システム。
  6. 前記電力系統特性の変動要因が、風力発電装置、又は、太陽光発電装置を含む再生可能エネルギー利用の発電装置であることを特徴とする請求項1乃至3のいずれか1項記載の電力系統制御システム。
  7. 一つ又は複数の電力系統特性の変動要因が接続され、送配電系統と複数の需要家システムにより構成される電力系統において、前記電力系統の周波数と電圧を安定化することを目的として、系統情報検出装置により前記電力系統の周波数と電圧を検出するステップと、検出された前記周波数と前記電圧に基づいて前記需要家システムが有する制御対象の電気機器の消費電力を制御、又は、前記電気機器の遮断を行うステップとからなる電力系統制御方法。
  8. 一つ又は複数の電力系統特性の変動要因が接続され、送配電系統と複数の需要家システムにより構成される電力系統において、変電所事故や需給逼迫を含む緊急事態発生時における安全対策の実施を目的として、前記電力系統の電圧を制御するステップと、系統情報検出装置により前記電力系統の周波数と電圧を検出するステップと、検出された前記周波数と前記電圧に基づいて前記需要家システムが有する制御対象の電気機器の消費電力を制御、又は、前記電気機器の遮断を行うステップとからなる電力系統制御方法。
  9. 前記系統情報検出装置が前記配電系統と前記需要家システムの境界点に設けられていることを特徴とする請求項7又は8のいずれか1項記載の電力系統制御方法。
  10. 前記電気機器が、熱エネルギー供給機器、エネルギー貯蔵装置、又は、発電設備であることを特徴とする請求項7乃至9のいずれか1項記載の電力系統制御方法。
  11. 前記系統情報検出装置が検出信号を制御信号に変換する装置を備え、電力線を介して前記制御信号を前記電気機器に送信することを特徴とする請求項7乃至10のいずれか1項記載の電力系統制御方法。
  12. 前記電力系統特性の変動要因が、風力発電装置、又は、太陽光発電装置を含む再生可能エネルギー利用の発電装置であることを特徴とする請求項7乃至11のいずれか1項記載の電力系統制御方法。
PCT/JP2011/060130 2010-04-28 2011-04-26 電力系統制御システム、及び、電力系統制御方法 WO2011136204A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010104447A JP5309077B2 (ja) 2010-04-28 2010-04-28 電力系統制御システム、及び、電力系統制御方法
JP2010-104447 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011136204A1 true WO2011136204A1 (ja) 2011-11-03

Family

ID=44861502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060130 WO2011136204A1 (ja) 2010-04-28 2011-04-26 電力系統制御システム、及び、電力系統制御方法

Country Status (2)

Country Link
JP (1) JP5309077B2 (ja)
WO (1) WO2011136204A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163846A (zh) * 2011-05-24 2011-08-24 清华大学 一种以降损和负荷均衡为目标的地区电网网络重构方法
CN103401257A (zh) * 2013-08-01 2013-11-20 哈尔滨工业大学 含风电电网应对高峰期功率陡坡的多源协调型控制方法
CN103986155A (zh) * 2014-05-08 2014-08-13 浙江诺耶禾华微电网***技术有限公司 微型电网控制***
JP2015023594A (ja) * 2013-07-16 2015-02-02 日本電気株式会社 需要調整システム、電力調整装置および需要調整方法
EP2780727B1 (en) * 2011-11-14 2018-08-15 Emeter Corporation Smart meters, and systems and method for electrical power reconnection
JP7450504B2 (ja) 2020-09-16 2024-03-15 三菱電機株式会社 系統安定化システムおよび系統安定化方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106585B2 (ja) * 2010-06-21 2012-12-26 中国電力株式会社 電力供給システムの制御方法、及び電力供給システム
JP6106374B2 (ja) * 2012-07-06 2017-03-29 ローム株式会社 電力供給システム
JP2014241678A (ja) * 2013-06-11 2014-12-25 富士電機株式会社 電力調整装置、電力調整システム、プログラム
JP2015076931A (ja) * 2013-10-07 2015-04-20 株式会社日立製作所 電力需要調整システム、電力需要調整方法および電力管理装置
US9471080B2 (en) * 2013-10-21 2016-10-18 Restore Nv Portfolio managed, demand-side response system
CN103997044A (zh) * 2014-05-29 2014-08-20 中冶京诚工程技术有限公司 电力负荷控制方法及***
JP2016032313A (ja) * 2014-07-28 2016-03-07 通研電気工業株式会社 インバータ機器およびその制御方法
CN104578113B (zh) * 2015-01-05 2017-02-01 国电南瑞科技股份有限公司 基于agc的机组控制模式自适应切换方法
CN104993475A (zh) * 2015-06-19 2015-10-21 中山顺富节能科技有限公司 一种家用电器连接节电器
JP6572113B2 (ja) * 2015-11-30 2019-09-04 株式会社東芝 消費電力制御装置および消費電力制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749332A (en) * 1980-07-14 1982-03-23 South Eastern Elec Board Method and device for controlling load and ac power supply system
JP2003092829A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 電気機器システム
WO2007094054A1 (ja) * 2006-02-15 2007-08-23 Mitsubishi Denki Kabushiki Kaisha 電力系統安定化システム
JP2009171823A (ja) * 2007-12-21 2009-07-30 Nippon Telegr & Teleph Corp <Ntt> 電力供給制御システムとその制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5071598A (en) * 1996-11-14 1998-06-03 Brian Tolley Corporation Limited Improvements relating to signalling in electricity distribution systems
JP2008125295A (ja) * 2006-11-14 2008-05-29 Central Res Inst Of Electric Power Ind 需要家における負荷選択遮断方法及び需要家における負荷選択遮断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749332A (en) * 1980-07-14 1982-03-23 South Eastern Elec Board Method and device for controlling load and ac power supply system
JP2003092829A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 電気機器システム
WO2007094054A1 (ja) * 2006-02-15 2007-08-23 Mitsubishi Denki Kabushiki Kaisha 電力系統安定化システム
JP2009171823A (ja) * 2007-12-21 2009-07-30 Nippon Telegr & Teleph Corp <Ntt> 電力供給制御システムとその制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163846A (zh) * 2011-05-24 2011-08-24 清华大学 一种以降损和负荷均衡为目标的地区电网网络重构方法
EP2780727B1 (en) * 2011-11-14 2018-08-15 Emeter Corporation Smart meters, and systems and method for electrical power reconnection
JP2015023594A (ja) * 2013-07-16 2015-02-02 日本電気株式会社 需要調整システム、電力調整装置および需要調整方法
CN103401257A (zh) * 2013-08-01 2013-11-20 哈尔滨工业大学 含风电电网应对高峰期功率陡坡的多源协调型控制方法
CN103401257B (zh) * 2013-08-01 2015-06-17 哈尔滨工业大学 含风电电网应对高峰期功率陡坡的多源协调型控制方法
CN103986155A (zh) * 2014-05-08 2014-08-13 浙江诺耶禾华微电网***技术有限公司 微型电网控制***
JP7450504B2 (ja) 2020-09-16 2024-03-15 三菱電機株式会社 系統安定化システムおよび系統安定化方法

Also Published As

Publication number Publication date
JP5309077B2 (ja) 2013-10-09
JP2011234577A (ja) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5309077B2 (ja) 電力系統制御システム、及び、電力系統制御方法
CN101814769B (zh) 一种风光市电互补通讯基站供电***
US10018180B2 (en) Wind power plant with reduced losses
AU2010285341B2 (en) Power regulating system for solar power station
US8405247B2 (en) Method and apparatus for control of fault-induced delayed voltage recovery (FIDVR) with photovoltaic and other inverter-based devices
KR101259728B1 (ko) 마이크로그리드 운전 제어 시스템 및 방법
JP2001292531A (ja) 二次電池システムを用いた電力系統安定化装置および電力系統安定化方法
AU2013101461A4 (en) Grid stability control system and method
JP2012120428A (ja) 再生可能発電技術と統合電圧・無効電力制御システムとの統合
KR102299604B1 (ko) 에너지 저장 시스템
JP2011193685A (ja) パワーコンディショナ
KR20050120624A (ko) 풍력 발전 기지와 전력 전송 시스템 간의 전력 제어인터페이스
KR101034276B1 (ko) 출력안정화형 풍력발전 시스템 및 그 제어방법
WO2013015256A1 (ja) 電力管理システム及び管理方法
Nguyen et al. Power management approach to minimize battery capacity in wind energy conversion systems
CN112448418B (zh) 一种水电微网及其功率调节方法
Krim et al. A flexible control strategy of a renewable active generator to participate in system services under grid faults
JP2019534675A (ja) 商用電力グリッドを運用するためのシステム及び方法
Ouyang et al. Fault overload control method for high-proportion wind power transmission systems based on emergency acceleration of doubly-fed induction generator
Eissa et al. Emergency frequency control by using heavy thermal conditioning loads in commercial buildings at smart grids
WO2013047840A1 (ja) 電力管理システム、電力管理装置及び電力管理方法
CN109904875B (zh) 一种含燃料电池发电装置的微电网能量管理方法
KR102234527B1 (ko) 발전 연계형 ESS의 주파수 추종 제어를 이용하는 SoC 관리 장치 및 방법
US20220014025A1 (en) Feed-in method for a wind power system, and wind power system
Nanou et al. Evaluation of DC voltage control strategies for multi-terminal HVDC grids comprising island systems with high RES penetration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774985

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774985

Country of ref document: EP

Kind code of ref document: A1